WorldWideScience

Sample records for bacterial magnetotactic behaviors

  1. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.; Ezzedine, Alaa H.; Abdallah, Abdallah; Sougrat, Rachid; Khashab, Niveen M.

    2016-01-01

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  2. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.

    2016-07-27

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  3. Magnetotactic bacteria in marine sediments: clues from recent cores from Brazilian Coast

    Science.gov (United States)

    Jovane, L.; Pellizari, V. H.; Brandini, F. P.; Braga, E. D. S.; Freitas, G. R.; Benites, M.; Rodelli, D.; Giorgioni, M.; Iacoviello, F.; Ruffato, D. G.; Lins, U.

    2014-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of marine magnetotactic bacteria, in conjunction with geophysical, geochemical and oceanographic data from the Brazilian Coast, provide interesting insights regarding the primary productivity distribution in oceans. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a "magnetic fingerprint" for the presence of magnetotactic bacteria. The use of those magnetic properties is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We will also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We studied magnetotactic bacterial concentration and geophysical, geochemical and oceanographic results in marine settings measuring crucially nutrients availability in the water column and in sediments, on particulate delivery to the seafloor, to understand the environmental condition that allow the presence of magnetotactic bacteria and magnetosomes in sediments.

  4. Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification.

    Science.gov (United States)

    Arakaki, Atsushi; Shibusawa, Mie; Hosokawa, Masahito; Matsunaga, Tadashi

    2010-03-01

    Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using phi29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, "Magnetospirillum magneticum AMB-1," whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.

  5. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  6. Magnetosome chain superstructure in uncultured magnetotactic bacteria

    International Nuclear Information System (INIS)

    Abraçado, Leida G; Farina, Marcos; Abreu, Fernanda; Keim, Carolina N; Lins, Ulysses; Campos, Andrea P C

    2010-01-01

    Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1 1 1) and (1-bar 1-bar 1-bar) capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed

  7. Magnetotactic algae

    International Nuclear Information System (INIS)

    Barros, H.G. de P.L. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    The first observation is reported of an enkaryote micro-organism (chlamydomona), collected in samples from the Rodrigo de Freitas lagune in Rio de Janeiro, which responds to the magnetic field in a similar way as the magnetotactic bacterias. (L.C.) [pt

  8. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  9. On the swimming motion of spheroidal magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui Zhen; Kong Dali; Zhang Keke [Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Pan Yongxin, E-mail: kzhang@ex.ac.uk [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2012-10-15

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  10. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    Cui Zhen; Kong Dali; Zhang Keke; Pan Yongxin

    2012-01-01

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  11. Metabolic activity of uncultivated magnetotactic bacteria revealed by NanoSIMS

    Science.gov (United States)

    He, M.; Zhang, W.; Gu, L.; Pan, Y.; Lin, W.

    2017-12-01

    Microorganisms that exhibit magnetotaxis behavior, collectively known as the magnetotactic bacteria (MTB), are those whose motility is influenced by the Earth's magnetic field. MTB are a physiologically diverse group of bacteria with a unique feature of intracellular biomineralization of magnetosomes (Fe3O4 and/or Fe3S4) (Bazylinski et al., 2013). However, the ecophysiology of uncultivated MTB, especially those within the Nitrospirae phylum forming hundreds of bullet-shaped magnetite magnetosomes per cell, is still not well characterized (Lin et al., 2014). Nanoscale secondary ion mass spectrometry (NanoSIMS) is a powerful tool for revealing element distribution in nanometer-scale resolution, which opens exciting possibilities for the study of interactions between microorganisms and environments (Gao et al., 2016; Musat et al., 2016). Here we applied NanoSIMS to investigate the dynamics of carbon and nitrogen assimilations in two magnetotactic Nitrospirae populations at single cell level. Our NanoSIMS results confirmed the metabolic potential of Nitrospirae MTB proposed by genomic and metagenomic analysis and provided additional insights into the ecophysiology of uncultivated MTB. This study suggests that NanoSIMS-based analyses are powerful approaches for investigating and characterizing the ecological function of environmental microorganisms. References: Bazylinski D A., Lefèvre, C T., Schüler D., 2013. Magnetotactic Bacteria. 453-494.Lin W, Bazylinski DA, Xiao T, Wu L- F, Pan Y., 2014. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol, 16: 1462-2920.Gao D., Huang X., Tao Y., 2016. A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit Rev Biotechnol, 36: 884-890.Musat N., Musat F., Weber PK., Pett-Ridge J., 2016. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol, 41: 114-121.

  12. Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK.

    Directory of Open Access Journals (Sweden)

    Sanjiv Sonkaria

    Full Text Available Magnetotactic bacteria (MTB synthesize magnetosomes, which are intracellular vesicles comprising a magnetic particle. A series of magnetosomes arrange themselves in chains to form a magnetic dipole that enables the cell to orient itself along the Earth's magnetic field. MamK, an actin-like homolog of MreB has been identified as a central component in this organisation. Gene deletion, fluorescence microscopy and in vitro studies have yielded mechanistic differences in the filament assembly of MamK with other bacterial cytoskeletal proteins within the cell. With little or no information on the structural and behavioural characteristics of MamK outside the cell, the mamK gene from Magnetospirillium gryphiswaldense was cloned and expressed to better understand the differences in the cytoskeletal properties with its bacterial homologues MreB and acitin. Despite the low sequence identity shared between MamK and MreB (22% and actin (18%, the behaviour of MamK monitored by light scattering broadly mirrored that of its bacterial cousin MreB primarily in terms of its pH, salt, divalent metal-ion and temperature dependency. The broad size variability of MamK filaments revealed by light scattering studies was supported by transmission electron microscopy (TEM imaging. Filament morphology however, indicated that MamK conformed to linearly orientated filaments that appeared to be distinctly dissimilar compared to MreB suggesting functional differences between these homologues. The presence of a nucleotide binding domain common to actin-like proteins was demonstrated by its ability to function both as an ATPase and GTPase. Circular dichroism and structural homology modelling showed that MamK adopts a protein fold that is consistent with the 'classical' actin family architecture but with notable structural differences within the smaller domains, the active site region and the overall surface electrostatic potential.

  13. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    Science.gov (United States)

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  14. Tuning bacterial hydrodynamics with magnetic fields

    Science.gov (United States)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  15. Motion of magnetotactic microorganisms

    International Nuclear Information System (INIS)

    Esquivel, D.M.S.; Barros, H.G. de P.L. de.

    1985-01-01

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author) [pt

  16. Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature.

    Science.gov (United States)

    Martel, Sylvain; Mohammadi, Mahmood; Felfoul, Ouajdi; Lu, Zhao; Pouponneau, Pierre

    2009-04-01

    Although nanorobots may play critical roles for many applications in the human body such as targeting tumoral lesions for therapeutic purposes, miniaturization of the power source with an effective onboard controllable propulsion and steering system have prevented the implementation of such mobile robots. Here, we show that the flagellated nanomotors combined with the nanometer-sized magnetosomes of a single Magnetotactic Bacterium (MTB) can be used as an effective integrated propulsion and steering system for devices such as nanorobots designed for targeting locations only accessible through the smallest capillaries in humans while being visible for tracking and monitoring purposes using modern medical imaging modalities such as Magnetic Resonance Imaging (MRI). Through directional and magnetic field intensities, the displacement speeds, directions, and behaviors of swarms of these bacterial actuators can be controlled from an external computer.

  17. Low field orientation magnetic separation methods for magnetotactic bacteria

    International Nuclear Information System (INIS)

    Moeschler, F.D.

    1999-01-01

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the

  18. Geobiology of Marine Magnetotactic Bacteria

    Science.gov (United States)

    2006-06-01

    prokaryotic cells of diverse phylogeny when grown in media containing 45 1mM iron, suggesting some kind of detoxification function . The inclusions were...salt marsh productivity. FISH also showed that aggregates consist of genetically identical cells. QPCR data indicated that populations are finely...my advisor Katrina Edwards for taking a chance on someone who initially knew nothing about magnetotactic bacteria, microbial ecology , or microbiology

  19. Bacterial Community Sstructure and Novel Species of Magnetotactic Bacteria in Sediments from a Seamount in the Mariana Volcanic Arc

    Science.gov (United States)

    PAN, H.; LIU, J.; Zhang, W.; Xiao, T.; Wu, L. F.

    2017-12-01

    Seamounts are unique ecosystems where undersea mountains rise abruptly from the sea floor and interact dynamically with underwater currents, creating peculiar biological habitats with various microbial community structures. Certain bacteria associated with seamounts form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend knowledge of seamount microorganisms we performed a systematic analysis of the population composition and occurrence of live magnetotactic bacteria (MTB) in sediments of a seamount in the Mariana volcanic arc. Proteobacteria dominated at 13 stations, and were the second in abundance to members of the Firmicutes at a deep station on a steep slope facing the Yap-Mariana trench. We found MTB that synthesize intracellular iron-oxide nanocrystals in biogenic sediments at all 14 stations, at seawater depths ranging from 238 to 2023 m. A novel flagellar apparatus, and the most complex yet reported, was observed in magnetotactic cocci; it comprises one or two bundles of 19 flagella arranged in a 3:4:5:4:3 array. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. The geographic properties at the various stations on the seamount appear to be important in shaping the microbial community structure.

  20. Characterization of Eight Kinds of Marine Magnetotactic Bacteria

    Science.gov (United States)

    Du, H.; Pan, H.; Zhang, W.; Wu, L. F.; Xiao, T.

    2017-12-01

    Eight marine magnetotactic bacteria were isolated from intertidal sediments. Six of them are magnetococci (RO-1, RO-2, RO-3, RO-4, SC-1 and SC-2), and two of them are manetospirilla (SH-1 and HH-1). Strain RO-1, RO-2, RO-3, and RO-4 were from Lake Yuehu, Rongcheng (the Yellow Sea). Strain SC-1, SC-2 and SH-1 were from Sanya (the South China Sea). Strain HH-1 was from Huiquan Bay, Qingdao (the Yellow Sea). Magnetosomes arranged in a disorganized cluster in RO-1 and RO-4, two chains in SC-2, and in one chain in others. All the magnetosome crystals were prismatic magnetites. Phylogenetic analysis revealed that they all belonged to the Alphaproteobacteria. Strain RO-1, RO-2, RO-3, RO-4, SC-2 and SH-1 are novel cultured magnetotactic bacteria.

  1. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  2. Constant Flux of Spatial Niche Partitioning through High-Resolution Sampling of Magnetotactic Bacteria.

    Science.gov (United States)

    He, Kuang; Gilder, Stuart A; Orsi, William D; Zhao, Xiangyu; Petersen, Nikolai

    2017-10-15

    ) occupied distinctly different niches in the aquaria. Maximum and average growth and death rates were quantified for each of the three morphotypes based on 72 sites that were measured six times. The findings provided novel insight into the differential behavior of noncultured magnetotactic bacteria. Copyright © 2017 American Society for Microbiology.

  3. A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields

    Science.gov (United States)

    Fradin, Cécile

    2013-01-01

    Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185

  4. Analysis of magnetite crystals and inclusion bodies inside magnetotactic bacteria from different environmental locations

    Science.gov (United States)

    Oestreicher, Z.; Lower, B.; Lower, S.; Bazylinski, D. A.

    2011-12-01

    Biomineralization occurs throughout the living world; a few common examples include iron oxide in chiton teeth, calcium carbonate in mollusk shells, calcium phosphate in animal bones and teeth, silica in diatom shells, and magnetite crystals inside the cells of magnetotactic bacteria. Biologically controlled mineralization is characterized by biominerals that have species-specific properties such as: preferential crystallographic orientation, consistent particle size, highly ordered spatial locations, and well-defined composition and structure. It is well known that magnetotactic bacteria synthesize crystals of magnetite inside of their cells, but how they mineralize the magnetite is poorly understood. Magnetosomes have a species-specific morphology that is due to specific proteins involved in the mineralization process. In addition to magnetite crystals, magnetotactic bacteria also produce inclusion bodies or granules that contain different elements, such as phosphorus, calcium, and sulfur. In this study we used the transmission electron microscope to analyze the structure of magnetite crystals and inclusion bodies from different species of magnetotactic bacteria in order to determine the composition of the inclusion bodies and to ascertain whether or not the magnetite crystals contain elements other than iron and oxygen. Using energy dispersive spectroscopy we found that different bacteria from different environments possess inclusion bodies that contain different elements such as phosphorus, calcium, barium, magnesium, and sulfur. These differences may reflect the conditions of the environment in which the bacteria inhabit.

  5. Metagenome-assembled genomes of deep-branching magnetotactic bacteria in the Nitrospirae phylum

    Science.gov (United States)

    Zhang, W.; He, M.; Gu, L.; Tang, X.; Pan, Y.; Lin, W.

    2017-12-01

    Magnetotactic bacteria (MTB) are aquatic microorganisms that synthesize intracellular magnetic nanoparticles composed of magnetite and/or greigite. MTB have thus far been identified in the phyla of Proteobacteria, Nitrospirae, Omnitrophica, Latescibacteria and Planctomycetes (Lin et al., 2017b). Among these organisms, MTB belonging to the Nitrospirae phylum are of great interest because of the formation of hundreds of magnetite magnetosomes in a single cell and of the great potential for iron, sulfur, nitrogen, and carbon cycling in natural environments. However, due to the lack of genomic information, our current knowledge on magnetotactic Nitrospirae remains very limited. In the present study, we have identified and characterized two novel populations of uncultivated MTB from freshwater lakes in Shaanxi province, China. 16S rRNA gene-based analyses revealed that they belonged to two different clusters in the Nitrospirae. The draft population genomes of these two Nitrospirae MTB were successfully recovered through genome-resolved metagenomics, both of which containing nearly complete magnetosome gene clusters (MGCs) responsible for magnetosome biomineralization and organization. In consistent with our previous study (Lin et al., 2017a), we found that the gene content and gene organization of the MGCs in the Nitrospirae MTB were highly conserved, indicating that Nitrospirae gene clusters represent one of the ancestral types of MGCs. The population genome sequences suggest that magnetotactic Nitrospirae are capable of CO2 fixtion through Wood-Ljungdahl pathway. They may also reduce sulfate and nitrate/nitrite through sulfate reduction pathway and denitrification pathway, respectively. Our genomic analyses revealed the potential metabolic capability of the Nitrospirae MTB and shed light on their ecology, evolution and biomineralization mechanism. References: Lin W, Paterson GA, Zhu Q, Wang Y, Kopylova E, Li Y, Knight R, Bazylinski DA, Zhu R, Kirschvink JL, Pan Y

  6. Switching between Magnetotactic and Aerotactic Displacement Controls to Enhance the Efficacy of MC-1 Magneto-Aerotactic Bacteria as Cancer-Fighting Nanorobots

    Directory of Open Access Journals (Sweden)

    Sylvain Martel

    2016-05-01

    Full Text Available The delivery of drug molecules to tumor hypoxic areas could yield optimal therapeutic outcomes. This suggests that effective cancer-fighting micro- or nanorobots would require more integrated functionalities than just the development of directional propelling constructs which have so far been the main general emphasis in medical micro- and nanorobotic research. Development of artificial agents that would be most effective in targeting hypoxic regions may prove to be a very challenging task considering present technological constraints. Self-propelled, sensory-based and directionally-controlled agents in the form of Magnetotactic Bacteria (MTB of the MC-1 strain have been investigated as effective therapeutic nanorobots in cancer therapy. Following computer-based magnetotactic guidance to reach the tumor area, the microaerophilic response of drug-loaded MC-1 cells could be exploited in the tumoral interstitial fluid microenvironments. Accordingly, their swimming paths would be guided by a decreasing oxygen concentration towards the hypoxic regions. However, the implementation of such a targeting strategy calls for a method to switch from a computer-assisted magnetotactic displacement control to an autonomous aerotactic displacement control. In this way, the MC-1 cells will navigate to tumoral regions and, once there, target hypoxic areas through their microaerophilic behavior. Here we show not only how the magnitude of the magnetic field can be used for this purpose but how the findings could help determine the specifications of a future compatible interventional platform within known technological and medical constraints.

  7. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    Science.gov (United States)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  8. Magnetic fingerprint in marine sediments: clues from cultivated Magnetovibrio blakemorei and recent cores from Brazilian Coast

    Science.gov (United States)

    Jovane, L.; Florindo, F.; Bazylinski, D. A.; Pellizari, V. H.; Brandini, F. P.; de Almeida, L. A.; Carneiro, F. R.; Braga, E. D.; Lins, U.

    2013-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of Magnetovibrio blakemorei strain MV-1, a marine magnetotactic bacterium, differ from those of other magnetotactic species from sediments deposited in lakes and marine habitats previously studied. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a 'magnetic fingerprint' for a specific magnetotactic bacterium. The technique used to determine this fingerprint is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We focused on studying the environmental conditions that allow for the presence of magnetotactic bacteria and magnetosomes in sediments including determining magnetotactic bacterial populations in marine settings, measuring crucial nutrient availability in the water column and in sediments, and examining particulate delivery to the seafloor.

  9. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  10. The Bacterial Actin MamK

    Science.gov (United States)

    Ozyamak, Ertan; Kollman, Justin; Agard, David A.; Komeili, Arash

    2013-01-01

    It is now recognized that actin-like proteins are widespread in bacteria and, in contrast to eukaryotic actins, are highly diverse in sequence and function. The bacterial actin, MamK, represents a clade, primarily found in magnetotactic bacteria, that is involved in the proper organization of subcellular organelles, termed magnetosomes. We have previously shown that MamK from Magnetospirillum magneticum AMB-1 (AMB-1) forms dynamic filaments in vivo. To gain further insights into the molecular mechanisms that underlie MamK dynamics and function, we have now studied the in vitro properties of MamK. We demonstrate that MamK is an ATPase that, in the presence of ATP, assembles rapidly into filaments that disassemble once ATP is depleted. The mutation of a conserved active site residue (E143A) abolishes ATPase activity of MamK but not its ability to form filaments. Filament disassembly depends on both ATPase activity and potassium levels, the latter of which results in the organization of MamK filaments into bundles. These data are consistent with observations indicating that accessory factors are required to promote filament disassembly and for spatial organization of filaments in vivo. We also used cryo-electron microscopy to obtain a high resolution structure of MamK filaments. MamK adopts a two-stranded helical filament architecture, but unlike eukaryotic actin and other actin-like filaments, subunits in MamK strands are unstaggered giving rise to a unique filament architecture. Beyond extending our knowledge of the properties and function of MamK in magnetotactic bacteria, this study emphasizes the functional and structural diversity of bacterial actins in general. PMID:23204522

  11. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria.

    Science.gov (United States)

    Arakaki, Atsushi; Yamagishi, Ayana; Fukuyo, Ayumi; Tanaka, Masayoshi; Matsunaga, Tadashi

    2014-08-01

    Magnetotactic bacteria synthesize magnetosomes comprised of membrane-enveloped single crystalline magnetite (Fe3 O4 ). The size and morphology of the nano-sized magnetite crystals (Mms (Mms5, Mms6, Mms7, and Mms13), was previously isolated from the surface of cubo-octahedral magnetite crystals in Magnetospirillum magneticum strain AMB-1. Analysis of an mms6 gene deletion mutant suggested that the Mms6 protein plays a major role in the regulation of magnetite crystal size and morphology. In this study, we constructed various mms gene deletion mutants and characterized the magnetite crystals formed by the mutant strains. Comparative analysis showed that all mms genes were involved in the promotion of crystal growth in different manners. The phenotypic characterization of magnetites also suggested that these proteins are involved in controlling the geometries of the crystal surface structures. Thus, the co-ordinated functions of Mms proteins regulate the morphology of the cubo-octahedral magnetite crystals in magnetotactic bacteria. © 2014 John Wiley & Sons Ltd.

  12. Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine

    International Nuclear Information System (INIS)

    Alphandéry, Edouard

    2014-01-01

    Magnetotactic bacteria belong to a group of bacteria that synthesize iron oxide nanoparticles covered by biological material that are called magnetosomes. These bacteria use the magnetosomes as a compass to navigate in the direction of the earth’s magnetic field. This compass helps the bacteria to find the optimum conditions for their growth and survival. Here, we review several medical applications of magnetosomes, such as those in magnetic resonance imaging (MRI), magnetic hyperthermia, and drug delivery. Different methods that can be used to prepare the magnetosomes for these applications are described. The toxicity and biodistribution results that have been published are summarized. They show that the magnetosomes can safely be used provided that they are prepared in specific conditions. The advantageous properties of the magnetosomes compared with those of chemically synthesized nanoparticles of similar composition are also highlighted.

  13. Life with compass: diversity and biogeography of magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei [Institute of Geology and Geophysics; Bazylinski, Dennis A [Ames Laboratory; Xiao, Tian [Chinese Academy of Sciences; Wu, Long-Fei [v; Pan, Yongxin [Institute of Geology and Geophysics

    2013-11-12

    Magnetotactic bacteria (MTB) are unique in their ability to synthesize intracellular nano-sized minerals of magnetite and/or greigite magnetosomes for magnetic orientation. Thus, they provide an excellent model system to investigate mechanisms of biomineralization. MTB play important roles in bulk sedimentary magnetism and have numerous versatile applications in paleoenvironmental reconstructions, and biotechnological and biomedical fields. Significant progress has been made in recent years in describing the composition of MTB communities and distribution through innovative cultivation-dependent and -independent techniques. In this review, the most recent contributions to the field of diversity and biogeography of MTB are summarized and reviewed. Emphasis is on the novel insights into various factors/processes potentially affecting MTB community distribution. An understanding of the present-day biogeography of MTB, and the ruling parameters of their spatial distribution, will eventually help us predict MTB community shifts with environmental changes and assess their roles in global iron cycling.

  14. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    Science.gov (United States)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  15. Combined genomic and structural analyses of a cultured magnetotactic bacterium reveals its niche adaptation to a dynamic environment

    Directory of Open Access Journals (Sweden)

    Ana Carolina Vieira Araujo

    2016-10-01

    Full Text Available Abstract Background Magnetotactic bacteria (MTB are a unique group of prokaryotes that have a potentially high impact on global geochemical cycling of significant primary elements because of their metabolic plasticity and the ability to biomineralize iron-rich magnetic particles called magnetosomes. Understanding the genetic composition of the few cultivated MTB along with the unique morphological features of this group of bacteria may provide an important framework for discerning their potential biogeochemical roles in natural environments. Results Genomic and ultrastructural analyses were combined to characterize the cultivated magnetotactic coccus Magnetofaba australis strain IT-1. Cells of this species synthesize a single chain of elongated, cuboctahedral magnetite (Fe3O4 magnetosomes that cause them to align along magnetic field lines while they swim being propelled by two bundles of flagella at velocities up to 300 μm s−1. High-speed microscopy imaging showed the cells move in a straight line rather than in the helical trajectory described for other magnetotactic cocci. Specific genes within the genome of Mf. australis strain IT-1 suggest the strain is capable of nitrogen fixation, sulfur reduction and oxidation, synthesis of intracellular polyphosphate granules and transporting iron with low and high affinity. Mf. australis strain IT-1 and Magnetococcus marinus strain MC-1 are closely related phylogenetically although similarity values between their homologous proteins are not very high. Conclusion Mf. australis strain IT-1 inhabits a constantly changing environment and its complete genome sequence reveals a great metabolic plasticity to deal with these changes. Aside from its chemoautotrophic and chemoheterotrophic metabolism, genomic data indicate the cells are capable of nitrogen fixation, possess high and low affinity iron transporters, and might be capable of reducing and oxidizing a number of sulfur compounds. The relatively

  16. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  17. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Bacterial behavior has been observed to change during spaceflight. Higher final cell counts enhanced biofilm formation increased virulence and reduced susceptibility...

  18. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Morillo, Viviana [Universidade Federal do Rio de Janeiro; Abreu, Fernanda [Universidade Federal do Rio de Janeiro; Araujo, Ana C [Universidade Federal do Rio de Janeiro; de Almeida, Luiz G [Laboratorio Nacional de Computacao Cientifica; Enrich-Prast, Alex [Universidade Federal do Rio de Janeiro; Farina, Marcos [Universidade Federal do Rio de Janeiro; de Vasconcelos, Ana T [Laboratorio Nacional de Computacao Cientifica; Bazylinski, Dennis A [Ames Laboratory; Lins, Ulysses [Universidade Federal do Rio de Janeiro

    2014-01-01

    Although magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats, they are still considered fastidious microorganisms with regard to growth and cultivation with only a relatively low number of axenic cultures available to date. Here, we report the first axenic culture of an MTB isolated in the Southern Hemisphere (Itaipu Lagoon in Rio de Janeiro, Brazil). Cells of this new isolate are coccoid to ovoid in morphology and grow microaerophilically in semi-solid medium containing an oxygen concentration ([O2]) gradient either under chemoorganoheterotrophic or chemolithoautotrophic conditions. Each cell contains a single chain of approximately 10 elongated cuboctahedral magnetite (Fe3O4) magnetosomes. Phylogenetic analysis based on the 16S rRNA gene sequence shows that the coccoid MTB isolated in this study represents a new genus in the Alphaproteobacteria; the name Magnetofaba australis strain IT-1 is proposed. Preliminary genomic data obtained by pyrosequencing shows that M. australis strain IT-1 contains a genomic region with genes involved in biomineralization similar to those found in the most closely related magnetotactic cocci Magnetococcus marinus strain MC-1. However, organization of the magnetosome genes differs from M. marinus.

  19. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  20. Measurement of Behavioral Evolution in Bacterial Populations

    Science.gov (United States)

    Austin, Robert

    2013-03-01

    A curious aspect of bacterial behavior under stress is the induction of filamentation: the anomalous growth of certain bacteria in which cells continue to elongate but do not divide into progeny. We show that E.coli under the influence of the genotoxic antibiotic ciprofloxacin have robust filamentous growth, which provides individual bacteria a mesoscopic niche for evolution until resistant progeny can bud off and propagate. Hence, filamentation is a form of genomic amplification where even a single, isolated bacteria can have access to multiple genomes. We propose a model that predicts that the first arrival time of the normal sized progeny should follow a Gompertz distribution with the mean first arrival time proportional to the elongation rate of filament. These predictions agree with our experimental measurements. Finally, we suggest bacterial filament growth and budding has many similarities to tumor growth and metastasis and can serve as a simpler model to study those complicated processes. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  1. A Feasibility Study for Microwave Breast Cancer Detection Using Contrast-Agent-Loaded Bacterial Microbots

    Directory of Open Access Journals (Sweden)

    Yifan Chen

    2013-01-01

    Full Text Available We propose a new approach to microwave breast tumor sensing and diagnosis based on the use of biocompatible flagellated magnetotactic bacteria (MTB adapted to operate in human microvasculature. It has been verified experimentally by Martel et al. that externally generated magnetic gradients could be applied to guide the MTB along preplanned routes inside the human body, and a nanoload could be attached to these bacterial microbots. Motivated by these useful properties, we suggest loading a nanoscale microwave contrast agent such as carbon nanotubes (CNTs or ferroelectric nanoparticles (FNPs onto the MTB in order to modify the dielectric properties of tissues near the agent-loaded bacteria. Subsequently, we propose a novel differential microwave imaging (DMI technique to track simultaneously multiple swarms of MTB microbots injected into the breast. We also present innovative strategies to detect and localize a breast tissue malignancy and estimate its size via this DMI-trackable bacterial microrobotic system. Finally, we use an anatomically realistic numerical breast phantom as a platform to demonstrate the feasibility of this tumor diagnostic method.

  2. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  3. Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria

    Directory of Open Access Journals (Sweden)

    Ulysses Lins

    2006-09-01

    Full Text Available We report on the application of off-axis electron holography and high-resolution TEM to study the crystal habits of magnetosomes and magnetic microstructure in two coccoid morphotypes of magnetotactic bacteria collected from a brackish lagoon at Itaipu, Brazil. Itaipu-1, the larger coccoid organism, contains two separated chains of unusually large magnetosomes; the magnetosome crystals have roughly square projections, lengths up to 250 nm and are slightly elongated along [111] (width/length ratio of about 0.9. Itaipu-3 magnetosome crystals have lengths up to 120 nm, greater elongation along [111] (width/length ~0.6, and prominent corner facets. The results show that Itaipu-1 and Itaipu-3 magnetosome crystal habits are related, differing only in the relative sizes of their crystal facets. In both cases, the crystals are aligned with their [111] elongation axes parallel to the chain direction. In Itaipu-1, but not Itaipu-3, crystallographic positioning perpendicular to [111] of successive crystals in the magnetosome chain appears to be under biological control. Whereas the large magnetosomes in Itaipu-1 are metastable, single-magnetic domains, magnetosomes in Itaipu-3 are permanent, single-magnetic domains, as in most magnetotactic bacteria.Nós relatamos a aplicação de holografia não-axial e microscopia eletrônica de alta resolução para estudar os hábitos cristalinos de magnetossomos e a microestrutura magnética de dois morfotipos de cocos de bactérias magnetotáticas coletadas em uma lagoa salobra em Itaipu, Brasil. Itaipu-1, o organismo cocóide maior, contémduas cadeias separadas de magnetossomos atipicamente grandes; os cristais dos magnetossomos possuem projeções aproximadamente quadradas, comprimentos deaté 250 nm e são ligeiramente alongados na direção [111] (razão largura/comprimento de aproximadamente 0.9.Os cristais dos magnetossomos em Itaipu-3 possuemcomprimentos até 120 nm, maior alongamento na direção [111

  4. From Magnetotactic Bacteria to Sediment Magnetizations: new insights

    Science.gov (United States)

    Egli, R.; Mao, X.; Zhao, X.

    2015-12-01

    Magnetotactic bacteria (MTB) represent one of the most intriguing examples of iron biomineralization and magnetic navigation in nature. MTB synthesize magnetic nanocrystals, called magnetosomes, which act as an incorporated compass for navigation purposes (magnetotaxis). MTB are ubiquitous organisms living in chemically stratified freshwater and marine environments, where they contribute significantly to the Fe cycle. Magnetosomes accumulate as fossil MTB remains in sediment (magnetofossils). The recent development of magnetic measurement protocols enabling to detect small magnetosome concentrations among complex iron mineral mixtures led to the discovery that magnetofossil preservation over geological times is not uncommon. Therefore, magnetofossils can play an important role in sedimentary records of the Earth's magnetic field, as well as conveying selective information about past environmental conditions (e.g. redox conditions and nutrient concentration). Paleomagnetic and environmental applications require us to understand the processes that control MTB occurrence, magnetofossil formation and preservation, and the final alignment with the Earth's magnetic field. Our current knowledge relies mostly on experiments performed with cultured MTB in aqueous solutions, under physical and chemical conditions that do not necessarily reproduce those encountered in sediment. These experiments have been pivotal for understanding magnetosome growth and the fundaments of magnetotaxis. On the other hand, recent investigations of living MTB populations in sediment with specially developed observation techniques led to unexpected findings, with important implications for magnetotaxis models, MTB ecology, and, indirectly, for modeling the acquisition of natural magnetizations in bioturbated sediments. Ludwig, P. et al. (2013), Global Planet. Change 110, 321-339. Mao, X. et al. (2014), Geochem. Geophys. Geosys. 15, doi:10.1002/2013GC005034. Mao, X. et al. (2014). PLoS ONE 9, doi

  5. Light irradiation helps magnetotactic bacteria eliminate intracellular reactive oxygen species.

    Science.gov (United States)

    Li, Kefeng; Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Lulu; Song, Tao

    2017-09-01

    Magnetotactic bacteria (MTB) demonstrate photoresponse. However, little is known about the biological significance of this behaviour. Magnetosomes exhibit peroxidase-like activity and can scavenge reactive oxygen species (ROS). Magnetosomes extracted from the Magnetospirillum magneticum strain AMB-1 show enhanced peroxidase-like activity under illumination. The present study investigated the effects of light irradiation on nonmagnetic (without magnetosomes) and magnetic (with magnetosomes) AMB-1 cells. Results showed that light irradiation did not affect the growth of nonmagnetic and magnetic cells but significantly increased magnetosome synthesis and reduced intracellular ROS level in magnetic cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyse the expression level of magnetosome formation-associated genes (mamA, mms6, mms13 and mmsF) and stress-related genes (recA, oxyR, SOD, amb0664 and amb2684). Results showed that light irradiation upregulated the expression of mms6, mms13 and mmsF. Furthermore, light irradiation upregulated the expression of stress-related genes in nonmagnetic cells but downregulated them in magnetic cells. Additionally, magnetic cells exhibited stronger phototactic behaviour than nonmagnetic ones. These results suggested that light irradiation could heighten the ability of MTB to eliminate intracellular ROS and help them adapt to lighted environments. This phenomenon may be related to the enhanced peroxidase-like activity of magnetosomes under light irradiation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Characterization of the vaginal microbiota among sexual risk behavior groups of women with bacterial vaginosis.

    Science.gov (United States)

    Muzny, Christina A; Sunesara, Imran R; Kumar, Ranjit; Mena, Leandro A; Griswold, Michael E; Martin, David H; Lefkowitz, Elliot J; Schwebke, Jane R; Swiatlo, Edwin

    2013-01-01

    The pathogenesis of bacterial vaginosis (BV) remains elusive. BV may be more common among women who have sex with women (WSW). The objective of this study was to use 454 pyrosequencing to investigate the vaginal microbiome of WSW, women who have sex with women and men (WSWM), and women who have sex with men (WSM) with BV to determine if there are differences in organism composition between groups that may inform new hypotheses regarding the pathogenesis of BV. Vaginal swab specimens from eligible women with BV at the Mississippi State Department of Health STD Clinic were used. After DNA extraction, 454 pyrosequencing of PCR-amplified 16S rRNA gene sequences was performed. Sequence data was classified using the Ribosomal Database Program classifer. Complete linkage clustering analysis was performed to compare bacterial community composition among samples. Differences in operational taxonomic units with an abundance of ≥ 2% between risk behavior groups were determined. Alpha and beta diversity were measured using Shannon's Index implemented in QIIME and Unifrac analysis, respectively. 33 WSW, 35 WSWM, and 44 WSM were included. The vaginal bacterial communities of all women clustered into four taxonomic groups with the dominant taxonomic group in each being Lactobacillus, Lachnospiraceae, Prevotella, and Sneathia. Regarding differences in organism composition between risk behavior groups, the abundance of Atopobium (relative ratio (RR)=0.24; 95%CI 0.11-0.54) and Parvimonas (RR=0.33; 95%CI 0.11-0.93) were significantly lower in WSW than WSM, the abundance of Prevotella was significantly higher in WSW than WSWM (RR=1.77; 95%CI 1.10-2.86), and the abundance of Atopobium (RR=0.41; 95%CI 0.18-0.88) was significantly lower in WSWM than WSM. Overall, WSM had the highest diversity of bacterial taxa. The microbiology of BV among women in different risk behavior groups is heterogeneous. WSM in this study had the highest diversity of bacterial taxa. Additional studies are

  7. Characterization of the vaginal microbiota among sexual risk behavior groups of women with bacterial vaginosis.

    Directory of Open Access Journals (Sweden)

    Christina A Muzny

    Full Text Available The pathogenesis of bacterial vaginosis (BV remains elusive. BV may be more common among women who have sex with women (WSW. The objective of this study was to use 454 pyrosequencing to investigate the vaginal microbiome of WSW, women who have sex with women and men (WSWM, and women who have sex with men (WSM with BV to determine if there are differences in organism composition between groups that may inform new hypotheses regarding the pathogenesis of BV.Vaginal swab specimens from eligible women with BV at the Mississippi State Department of Health STD Clinic were used. After DNA extraction, 454 pyrosequencing of PCR-amplified 16S rRNA gene sequences was performed. Sequence data was classified using the Ribosomal Database Program classifer. Complete linkage clustering analysis was performed to compare bacterial community composition among samples. Differences in operational taxonomic units with an abundance of ≥ 2% between risk behavior groups were determined. Alpha and beta diversity were measured using Shannon's Index implemented in QIIME and Unifrac analysis, respectively.33 WSW, 35 WSWM, and 44 WSM were included. The vaginal bacterial communities of all women clustered into four taxonomic groups with the dominant taxonomic group in each being Lactobacillus, Lachnospiraceae, Prevotella, and Sneathia. Regarding differences in organism composition between risk behavior groups, the abundance of Atopobium (relative ratio (RR=0.24; 95%CI 0.11-0.54 and Parvimonas (RR=0.33; 95%CI 0.11-0.93 were significantly lower in WSW than WSM, the abundance of Prevotella was significantly higher in WSW than WSWM (RR=1.77; 95%CI 1.10-2.86, and the abundance of Atopobium (RR=0.41; 95%CI 0.18-0.88 was significantly lower in WSWM than WSM. Overall, WSM had the highest diversity of bacterial taxa.The microbiology of BV among women in different risk behavior groups is heterogeneous. WSM in this study had the highest diversity of bacterial taxa. Additional studies

  8. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    Science.gov (United States)

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  9. Magnetic control of potential microrobotic drug delivery systems: nanoparticles, magnetotactic bacteria and self-propelled microjets.

    Science.gov (United States)

    Khalil, Islam S M; Magdanz, Veronika; Sanchez, Samuel; Schmidt, Oliver G; Abelmann, Leon; Misra, Sarthak

    2013-01-01

    Development of targeted drug delivery systems using magnetic microrobots increases the therapeutic indices of drugs. These systems have to be incorporated with precise motion controllers. We demonstrate closed-loop motion control of microrobots under the influence of controlled magnetic fields. Point-to-point motion control of a cluster of iron oxide nanoparticles (diameter of 250 nm) is achieved by pulling the cluster towards a reference position using magnetic field gradients. Magnetotactic bacterium (MTB) is controlled by orienting the magnetic fields towards a reference position. MTB with membrane length of 5 µm moves towards the reference position using the propulsion force generated by its flagella. Similarly, self-propelled microjet with length of 50 µm is controlled by directing the microjet towards a reference position by external magnetic torque. The microjet moves along the field lines using the thrust force generated by the ejecting oxygen bubbles from one of its ends. Our control system positions the cluster of nanoparticles, an MTB and a microjet at an average velocity of 190 µm/s, 28 µm/s, 90 µm/s and within an average region-of-convergence of 132 µm, 40 µm, 235 µm, respectively.

  10. The mechanical life of magnetotactic bacteria inside sediments: implications for paleo- and environmental magnetism

    Science.gov (United States)

    Egli, Ramon; Mao, Xuegang

    2015-04-01

    Magnetotactic bacteria (MTB) are responsible for up to almost 100% of the magnetic signature of certain sediments through fossil reminders called magnetofossils. Besides being stable carriers of useful paleomagnetic signals, magnetofossils provide interesting environmental proxies that reflect MTB abundance variations due to nutrient supply and/or dilution by detrital/aeolian inputs. Unfortunately factors affecting MTB abundances in sediment are poorly known and based at best on extrapolations of observations on pure cultures. For example, MTB displacement models have been always based on the assumption that full alignment with the Earth magnetic field is possible, as observed in water. However, we recently found that the alignment of living MTB does not exceed few % inside sediments. This observation raises questions on the true nature of the biologic advantage of such bacteria over other motile organisms, and, ultimatively, on what is controlling their abundance in sediment. Here we report experiments that demonstrate the role of the Earth magnetic field in directing MTB to optimal living depths with the observed poor magnetic alignment. These exerments explain the apparent useless abundance of magnetosomes in certain MTB strains (e.g. M. Bavaricum) and reveal unexpected differences between strains with respect to their ability to cope with chemical signals and absent or reversed magnetic fields.

  11. The effect of bacterial cellulose on the shape memory behavior of polyvinyl alcohol nanocomposite hydrogel

    Science.gov (United States)

    Pirahmadi, Pegah; Kokabi, Mehrdad

    2018-01-01

    Most research on shape memory polymers has been confined to neat polymers in their dry state, while, some hydrogel networks are known for their shape memory properties. Hydrogels have low glass transition temperatures which are below 100°C depend on the content of water. But they are usually weak and brittle, and not suitable for structural applications due to their low mechanical strengths because of these materials have large amount of water (>50%), so they could not remember original shape perfectly. Bacterial cellulose nanofibers with perfect properties such as high water holding capacity, high crystallinity, high tensile strength and good biocompatibility can dismiss all the drawbacks. In the present study, polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel prepared by repetitive freezing-thawing method. The bacterial cellulose was used as reinforcement to improve the mechanical properties and stimuli response. Differential scanning calorimetry was employed to obtain the glass transition temperature. Nanocomposite morphology was characterized by field-emission scanning electron microscopy and mechanical properties were investigated by standard tensile test. Finally, the effect of bacterial cellulose nanofiber on shape memory behavior of polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel was investigated. It is found that switching temperature of this system is the glass transition temperature of the nano domains formed within the system. The results also show increase of shape recovery, and shape recovery speed due to presence of bacterial cellulose.

  12. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province.

    Science.gov (United States)

    Dong, Yi; Li, Jinhua; Zhang, Wuchang; Zhang, Wenyan; Zhao, Yuan; Xiao, Tian; Wu, Long-Fei; Pan, Hongmiao

    2016-04-01

    Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    Science.gov (United States)

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Integrating Metagenomics and NanoSIMS to Investigate the Evolution and Ecophysiology of Magnetotactic Bacteria

    Science.gov (United States)

    Lin, W.; Zhang, W.; He, M.; Pan, Y.

    2017-12-01

    Magnetotactic bacteria (MTB) synthesize intracellular nano-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals, called magnetosomes, which impart a permanent magnetic dipole moment to the cell causing it to align along the geomagnetic field lines as it swims. MTB play essential roles in global cycling of Fe, S, N and C, and represent an excellent model system not just for the investigation of the mechanisms of microbial engines that drive Earth's biogeochemical cycles but also for magnetotaxis and microbial biomineralization. Most of the previous studies on MTB were based on 16S rRNA gene-targeting analyses, which are powerful approaches to characterize the diversity, ecology and biogeography of MTB in nature. However, these approaches are somewhat limited in the physiological detail they can provide. In the present study, we have combined the genome-resolved metagenomics and nanoscale secondary ion mass spectrometry (NanoSIMS) analyses to study the genomic information, biomineralization mechanism and metabolic potential of environmental MTB. Two nearly complete genomes from uncultivated MTB belonging to the Nitrospirae phylum were reconstructed and their proposed metabolisms were further investigated and confirmed through NanoSIMS analyses. These results improve our understanding about the ecophysiology and evolution of MTB and their environmental function. The development of metagenomics-NanoSIMS integrated approach will provide a powerful tool for the research of geomicrobiology and environmental microbiology.

  15. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  16. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  17. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Partida, Ernesto [Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California (Mexico); Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Benjamín, E-mail: benval@uabc.edu.mx [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Escamilla, Alan; Curiel, Mario [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Ernesto [Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California (Mexico); Nedev, Nicola [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Bastidas, Jose M. [National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-03-01

    Amorphous titanium dioxide (TiO{sub 2}) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO{sub 2} nanotubes.

  18. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    International Nuclear Information System (INIS)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M.

    2016-01-01

    Amorphous titanium dioxide (TiO_2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO_2 nanotubes.

  19. Biogenic magnetite as a primary remanence carrier in limestone deposits

    Science.gov (United States)

    Chang, Shih-Bin R.; Kirschvink, Joseph L.; Stolz, John F.

    1987-06-01

    Studies on the microbial communities and magnetic phases of samples collected from carbonate oozes at Sugarloaf Key, FL, U.S.A. and calcareous laminated sediments from Laguna Figueroa, Baja California, Mexico have revealed the existence of magnetotactic bacteria and ultrafine-grained single domain magnetite in both environments. Magnetotactic bacteria were identified by light and electron microscopy. The single domain magnetite was detected by coercivity spectra analysis with a SQUID magnetometer and examined under the transmission electron microscope. The similarity, in terms of size and shape, between the single domain magnetite found in these sediments and the magnetite observed in the bacterial magnetosome from enriched cultures indicates the ultrafine-grained magnetite in these two marine environments was biologically formed. These results, combined with the common occurrences of ultrafine-grained magnetite in limestone deposits detected rock magnetically, suggest biogenic magnetite may be present and contribute to the magnetic remanence in these rocks. Several Cambrian limestone samples, separately collected from Siberia, China, and Kazakhstan, were examined for the presence of bacterial magnetite. Samples from the Lower Cambrian Sinskian Formation at Siberia Platform were found to contain both a large amount of apparently bacterial magnetite particles and a very stable primary magnetic component. Post-Cambrian diagenesis does not seem to affect the microgranulometry of these apparently bacterial magnetite crystals or the magnetic remanence carried by them. Assessing the potential role of biogenic magnetite as a primary remanence carrier in other Phanerozoic limestone deposits ought to be further pursued.

  20. EFFECTS OF PSYCHOTROPIC DRUGS AS BACTERIAL EFFLUX PUMP INHIBITORS ON QUORUM SENSING REGULATED BEHAVIORS

    Directory of Open Access Journals (Sweden)

    Aynur Aybey

    2014-10-01

    Full Text Available Psychotropic drugs are known to have antimicrobial activity against several groups of microorganisms. The antidepressant agents such as duloxetine, paroxetine, hydroxyzine and venlafaxine are shown to act as efflux pump inhibitors in bacterial cells. In order to the investigation of the effects of psychotropic drugs were determined for clinically significant pathogens by using standart broth microdillusion method. The anti-quorum sensing (anti-QS activity of psychotropic drugs was tested against four test pathogens using the agar well diffusion method. All drugs showed strong inhibitory effect on the growth of S. typhimurium. Additionally, quorum sensing-regulated behaviors of Pseudomonas aeruginosa, including swarming, swimming and twitching motility and alkaline protease production were investigated. Most effective drugs on swarming, swimming and twitching motility and alkaline protease production, respectively, were paroxetine and duloxetine; duloxetine; hydroxyzine and venlafaxine; paroxetine and venlafaxine; venlafaxine. Accordingly, psychotropic drugs were shown strongly anti-QS activity by acting as bacterial efflux pump inhibitors and effection on motility and alkaline protease production of P. aeruginosa.

  1. A Rules-Based Simulation of Bacterial Turbulence

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2015-11-01

    In sufficiently dense bacterial populations (>40% bacteria by volume), unusual collective swimming behaviors have been consistently observed, resembling von Karman vortex streets. The source of these collective swimming behavior has yet to be fully determined, and as of yet, no research has been conducted that would define whether or not this behavior is derived predominantly from the properties of the surrounding media, or if it is an emergent behavior as a result of the ``rules'' governing the behavior of individual bacteria. The goal of this research is to ascertain whether or not it is possible to design a simulation that can replicate the qualitative behavior of the densely packed bacterial populations using only behavioral rules to govern the actions of each bacteria, with the physical properties of the media being neglected. The results of the simulation will address whether or not it is possible for the system's overall behavior to be driven exclusively by these rule-based dynamics. In order to examine this, the behavioral simulation was written in MATLAB on a fixed grid, and updated sequentially with the bacterial behavior, including randomized tumbling, gathering and perceptual sub-functions. If the simulation is successful, it will serve as confirmation that it is possible to generate these qualitatively vortex-like behaviors without specific physical media (that the phenomena arises in emergent fashion from behavioral rules), or as evidence that the observed behavior requires some specific set of physical parameters.

  2. Neuronal Goα and CAPS regulate behavioral and immune responses to bacterial pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Ferdinand C O Los

    Full Text Available Pore-forming toxins (PFTs are abundant bacterial virulence factors that attack host cell plasma membranes. Host defense mechanisms against PFTs described to date all function in the host tissue that is directly attacked by the PFT. Here we characterize a rapid and fully penetrant cessation of feeding of Caenorhabditis elegans in response to PFT attack. We demonstrate via analyses of C. elegans mutants that inhibition of feeding by PFT requires the neuronal G protein Goα subunit goa-1, and that maintenance of this response requires neuronally expressed calcium activator for protein secretion (CAPS homolog unc-31. Independently from their role in feeding cessation, we find that goa-1 and unc-31 are additionally required for immune protection against PFTs. We thus demonstrate that the behavioral and immune responses to bacterial PFT attack involve the cross-talk between the nervous system and the cells directly under attack.

  3. Oral health behaviors and bacterial transmission from mother to child: an explorative study.

    Science.gov (United States)

    Virtanen, Jorma I; Vehkalahti, Kimmo I; Vehkalahti, Miira M

    2015-07-03

    Health behaviors play a major role in the prevention of the most common oral diseases. To investigate health behaviors related to the potential transmission of oral bacteria from mother to child using novel multiple correspondence analysis (MCA). Mothers (n = 313) with children under three years attending two municipal child health clinics in Finland completed a self-administered questionnaire on health knowledge and behaviors such as sharing a spoon with their child, kissing on the lips, and the mothers' tooth brushing, smoking, age, and level of education. We used MCA to reveal the relationships between the mothers' behaviors and background factors, along with unconditional, binary, multivariable logistic regression models, odds ratios (OR) and their 95 % confidence intervals (95 %CI). Of the mothers, 38 % kissed their child on the lips and 14 % shared a spoon with their child; 11 % believed that oral bacteria cannot be transmitted from mother to child. Two-thirds (68 %) of them reported tooth brushing twice daily, and 80 % were non-smokers. MCA revealed two diverging dimensions of the mothers' behaviors: a 'horizontal' one showing clear evidence of relationships between tooth brushing, smoking, age and education, whereas the 'vertical' one revealed the mothers' habits of kissing the child on the lips and sharing a spoon related to each other. Spoon sharing was related to the kissing on lips (OR 10.3), a higher level of education (OR 3.1), and, inversely, older age (OR 0.1), whereas kissing on lips behavior was inversely related to a higher level of education (OR 0.5). The study revealed two diverging dimensions of the mothers' health behaviors. More emphasis in health education ought to be put to how to avoid bacterial transmission from caregiver to child during feeding.

  4. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight...... into differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  5. Pine Defensive Monoterpene α-Pinene Influences the Feeding Behavior of Dendroctonus valens and Its Gut Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Letian Xu

    2016-11-01

    Full Text Available The exposure to plant defense chemicals has negative effects on insect feeding activity and modifies insect gut microbial community composition. Dendroctonus valens is a very destructive forest pest in China, and harbors a large diversity and abundance of gut microorganisms. Host pine defensive chemicals can protect the pines from attack by the holobiont. In this study, boring length of D. valens feeding on 0 mg/g α-pinene and 9 mg/g α-pinene concentration in phloem media for 6 and 48 h were recorded, and their gut bacterial communities were analyzed in parallel. Nine milligram per gram α-pinene concentration significantly inhibited boring length of D. valens and altered its gut microbial community structure after 6 h. The inhibition of boring length from 9 mg/g α-pinene in diets ceased after 48 h. No significant differences of the bacterial communities were observed between the beetles in 0 and 9 mg/g α-pinene concentration in phloem media after 48 h. Our results showed that the inhibition of the feeding behavior of D. valens and the disturbance to its gut bacterial communities in 9 mg/g α-pinene concentration in phloem media after 6 h were eliminated after 48 h. The resilience of gut bacterial community of D. valens may help the beetle catabolize pine defense chemical.

  6. Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum

    OpenAIRE

    Schumann, Dirk; Raub, Timothy D.; Kopp, Robert E.; Guerquin-Kern, Jean-Luc; Wu, Ting-Di; Rouiller, Isabelle; Smirnov, Aleksey V.; Sears, S. Kelly; Lücken, Uwe; Tikoo, Sonia M.; Hesse, Reinhard; Kirschvink, Joseph L.; Vali, Hojatollah

    2008-01-01

    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, New Jersey. Aside from previously-described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 μm long and hexaoctahedral prisms up to 1.4 μm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical...

  7. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  8. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  9. A compound magnetic field generating system for targeted killing of Staphylococcus aureus by magnetotactic bacteria in a microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linjie; Chen, Changyou [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China); Wang, Pingping; Chen, Chuanfang [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China); Wu, Long-Fei [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire de Chimie Bactérienne, UMR7283, Aix-Marseille University, Institut de Microbiologie de la Méditerranée, CNRS, Marseille (France); Song, Tao, E-mail: songtao@mail.iee.ac.cn [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China)

    2017-04-01

    A compound magnetic field generating system was built to kill Staphylococcus aureus (S. aureus) by magnetotactic bacteria (MTB) in a microfluidic chip in this paper. The system was consisted of coil pairs, a switch circuit, a control program and controllable electrical sources. It could produce a guiding magnetic field (gMF) of ±1 mT along arbitrary direction in the horizontal plane, a rotating magnetic field (rMF) and a swing magnetic field (sMF, 2 Hz, 10 mT) by controlling the currents. The gMF was used to guide MTB swimming to the S. aureus pool in the microfluidic chip, and then the rMF enhanced the mixture of S. aureus and MTB cells, therefore beneficial to the attachments of them. Finally, the sMF was used to induce the death of S. aureus via MTB. The results showed that MTB could be navigated by the gMF and that 47.1% of S. aureus were killed when exposed to the sMF. It provides a new solution for the targeted treatment of infected diseases and even cancers. - Highlights: • We built a system which generated a compound magnetic field in one device. • The compoud magnetic field includes guiding, rotating and swing magnetic fields. • MTB was guided and S. aureus attached to MTB was killed in the same device.

  10. Influence of type-I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution.

    Science.gov (United States)

    Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M

    2018-01-12

    Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are

  11. Energy spectrum scaling in an agent-based model for bacterial turbulence

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2017-11-01

    Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.

  12. Bacterial infection increases risk of carcinogenesis by targeting mitochondria

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A.B.; Desler, Claus; Rasmussen, Lene Juel

    2017-01-01

    pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce...... or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis....

  13. Independent behavior of bacterial laccases to inducers and metal ...

    African Journals Online (AJOL)

    Valued Acer Customer

    2012-05-15

    May 15, 2012 ... The medium for production was a high nitrogen medium containing ... effects of metal ions on either laccase production or laccase activity were not clear. ... this study was to isolate bacterial strains that produce ... The growth of cell culture was measured by using optical ... Conditions of laccase production.

  14. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  15. Cooperative Optimization QoS Cloud Routing Protocol Based on Bacterial Opportunistic Foraging and Chemotaxis Perception for Mobile Internet

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available In order to strengthen the mobile Internet mobility management and cloud platform resources utilization, optimizing the cloud routing efficiency is established, based on opportunistic bacterial foraging bionics, and puts forward a chemotaxis perception of collaborative optimization QoS (Quality of Services cloud routing mechanism. The cloud routing mechanism is based on bacterial opportunity to feed and bacterial motility and to establish the data transmission and forwarding of the bacterial population behavior characteristics. This mechanism is based on the characteristics of drug resistance of bacteria and the structure of the field, and through many iterations of the individual behavior and population behavior the bacteria can be spread to the food gathering area with a certain probability. Finally, QoS cloud routing path would be selected and optimized based on bacterial bionic optimization and hedge mapping relationship between mobile Internet node and bacterial population evolution iterations. Experimental results show that, compared with the standard dynamic routing schemes, the proposed scheme has shorter transmission delay, lower packet error ratio, QoS cloud routing loading, and QoS cloud route request overhead.

  16. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  17. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    Science.gov (United States)

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  18. Modeling of Scale-Dependent Bacterial Growth by Chemical Kinetics Approach

    Directory of Open Access Journals (Sweden)

    Haydee Martínez

    2014-01-01

    Full Text Available We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli  JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  19. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Science.gov (United States)

    Domin, Hanna; Zurita-Gutiérrez, Yazmín H.; Scotti, Marco; Buttlar, Jann; Hentschel Humeida, Ute; Fraune, Sebastian

    2018-01-01

    The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community. PMID:29740401

  20. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Directory of Open Access Journals (Sweden)

    Hanna Domin

    2018-04-01

    Full Text Available The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community.

  1. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  2. Polymorphism in Bacterial Flagella Suspensions

    Science.gov (United States)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  3. Evaluation of bacterial run and tumble motility parameters through trajectory analysis

    Science.gov (United States)

    Liang, Xiaomeng; Lu, Nanxi; Chang, Lin-Ching; Nguyen, Thanh H.; Massoudieh, Arash

    2018-04-01

    In this paper, a method for extraction of the behavior parameters of bacterial migration based on the run and tumble conceptual model is described. The methodology is applied to the microscopic images representing the motile movement of flagellated Azotobacter vinelandii. The bacterial cells are considered to change direction during both runs and tumbles as is evident from the movement trajectories. An unsupervised cluster analysis was performed to fractionate each bacterial trajectory into run and tumble segments, and then the distribution of parameters for each mode were extracted by fitting mathematical distributions best representing the data. A Gaussian copula was used to model the autocorrelation in swimming velocity. For both run and tumble modes, Gamma distribution was found to fit the marginal velocity best, and Logistic distribution was found to represent better the deviation angle than other distributions considered. For the transition rate distribution, log-logistic distribution and log-normal distribution, respectively, was found to do a better job than the traditionally agreed exponential distribution. A model was then developed to mimic the motility behavior of bacteria at the presence of flow. The model was applied to evaluate its ability to describe observed patterns of bacterial deposition on surfaces in a micro-model experiment with an approach velocity of 200 μm/s. It was found that the model can qualitatively reproduce the attachment results of the micro-model setting.

  4. Bacterial computing: a form of natural computing and its applications.

    Science.gov (United States)

    Lahoz-Beltra, Rafael; Navarro, Jorge; Marijuán, Pedro C

    2014-01-01

    The capability to establish adaptive relationships with the environment is an essential characteristic of living cells. Both bacterial computing and bacterial intelligence are two general traits manifested along adaptive behaviors that respond to surrounding environmental conditions. These two traits have generated a variety of theoretical and applied approaches. Since the different systems of bacterial signaling and the different ways of genetic change are better known and more carefully explored, the whole adaptive possibilities of bacteria may be studied under new angles. For instance, there appear instances of molecular "learning" along the mechanisms of evolution. More in concrete, and looking specifically at the time dimension, the bacterial mechanisms of learning and evolution appear as two different and related mechanisms for adaptation to the environment; in somatic time the former and in evolutionary time the latter. In the present chapter it will be reviewed the possible application of both kinds of mechanisms to prokaryotic molecular computing schemes as well as to the solution of real world problems.

  5. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  6. Engineering nanoparticles to silence bacterial communication

    Directory of Open Access Journals (Sweden)

    Kristen Publicover Miller

    2015-03-01

    Full Text Available The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. Quorum sensing is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP were engineered to target the signaling molecules (i.e. acylhomoserine lactones (HSL used for quorum sensing in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with beta-cyclodextrin (beta-CD, then added to cultures of bacteria (Vibrio fischeri, whose luminous output depends upon HSL-mediated quorum sensing, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR analyses of luminescence genes. Binding of AHLs to Si-NPs was examined using nuclear magnetic resonance (NMR spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate quorum sensing, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to quorum sensing – a target that will reduce resistance pressures imposed by traditional antibiotics.

  7. Bacterial determinants of the social behavior of Bacillus subtilis.

    Science.gov (United States)

    Romero, Diego

    2013-09-01

    Bacteria utilize sophisticated cellular machinery to sense environmental changes and coordinate the most appropriate response. Fine sensors located on cell surfaces recognize a myriad of triggers and initiate genetic cascades leading to activation or repression of certain groups of genes. Structural elements such as pilli, exopolysaccharides and flagella are also exposed at the cell surface and contribute to modulating the intimate interaction with surfaces and host cells. This review will cover the latest advances in our understanding of the biology and functionality of these bacterial determinants within the context of biofilm formation of Bacillus subtilis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Water Microbiology. Bacterial Pathogens and Water

    Directory of Open Access Journals (Sweden)

    João P. S. Cabral

    2010-10-01

    Full Text Available Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers. Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  9. Water microbiology. Bacterial pathogens and water.

    Science.gov (United States)

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  10. Biomimicry of quorum sensing using bacterial lifecycle model.

    Science.gov (United States)

    Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li

    2013-01-01

    Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms

  11. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  12. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  13. Bacterial computing: a form of natural computing and its applications

    Directory of Open Access Journals (Sweden)

    Rafael eLahoz-Beltra

    2014-03-01

    Full Text Available The capability to establish adaptive relationships with the environment is an essential characteristic of living cells. Both bacterial computing and bacterial intelligence are two general traits manifested along adaptive behaviors that respond to surrounding environmental conditions. These two traits have generated a variety of theoretical and applied approaches. Since the different systems of bacterial signaling and the different ways of genetic change are better known and more carefully explored, the whole adaptive possibilities of bacteria may be studied under new angles. For instance, there appear instances of molecular learning along the mechanisms of evolution. More in concrete, and looking specifically at the time dimension, the bacterial mechanisms of learning and evolution appear as two different and related mechanisms for adaptation to the environment; in somatic time the former and in evolutionary time the latter. In the present chapter it will be reviewed the possible application of both kinds of mechanisms to prokaryotic molecular computing schemes as well as to the solution of real world problems.

  14. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  15. Experimental Study of Bacterial Penetration into Chalk Rock: Mechanisms and Effect on Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander; Eliasson Lantz, Anna

    2014-01-01

    Bacterial selective plugging is one of the mechanisms through which microorganisms can be applied for enhanced oil recovery, as bacteria can plug the water-swept zones of a reservoir, thus altering the flow paths and improving sweep efficiency. However, complete understanding of the penetration...... behavior of bacteria is lacking, especially in chalk formations where characteristic pore throat sizes are comparable with the sizes of bacterial cells. In this study, two bacterial strains, Bacillus licheniformis 421 (spore-forming) and Pseudomonas putida K12 (non-spore forming) were used to investigate...... the penetration of bacteria into chalk and its effect on permeability reduction. The core plugs were produced from Stevns Klint outcrop with low permeability (2–4 mD) and with pore sizes comparable to bacterial sizes. Both types of bacteria were able to penetrate and to be transported through the cores to some...

  16. Calculation of ferromagnetic resonance spectra for chains of magnetic particles

    Science.gov (United States)

    Newell, A. J.

    2010-12-01

    Magnetotactic bacteria are a taxonomically diverse group of bacteria that have chains of ferromagnetic crystals inside. These bacteria mostly live in the oxic-anoxic interface (OAI) of aquatic environments. The magnetic chains orient the bacteria parallel to the Earth's magnetic field and help them to maintain their position near the OAI. These chains show the fingerprint of natural selection acting to optimize the magnetic moment per unit iron. This is achieved in a number of ways: the alignment in chains, a narrow size range, crystallographic perfection and chemical purity. Because of these distinctive characteristics, the particles can still be identified after the bacteria have died. Such magnetofossils are useful both as records of bacterial evolution and environmental markers. They can most reliably be identified by microscopy, but that is very labor-intensive. A number of magnetic measurements have been developed to identify magnetofossils quickly and non-invasively. However, the only test that can specifically identify the chain structure is ferromagnetic resonance (FMR), which measures the response to a magnetic field oscillating at microwave frequencies. Although the experimental side of ferromagnetic resonance is well developed, the theoretical models for interpreting them have been limited. A new method is presented for calculating resonance frequencies as well as complete power spectra for chains of interacting magnetic particles. Spectra are calculated and compared with data for magnetotactic bacteria.

  17. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    Science.gov (United States)

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  18. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  19. Evaluating the effects of variable water chemistry on bacterial transport during infiltration.

    Science.gov (United States)

    Zhang, Haibo; Nordin, Nahjan Amer; Olson, Mira S

    2013-07-01

    Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater. Mixing of stormwater runoff with groundwater during infiltration results in changes in local solution chemistry, which may lead to changes in both bacterial and collector surface properties and subsequent bacterial attachment rates. This study focuses on quantifying changes in bacterial transport behavior under variable solution chemistry, and on comparing the influences of chemical variability and physical variability on bacterial attachment rates. Bacterial attachment rate at the soil-water interface was predicted analytically using a combined rate equation, which varies temporally and spatially with respect to changes in solution chemistry. Two-phase Monte Carlo analysis was conducted and an overall input-output correlation coefficient was calculated to quantitatively describe the importance of physiochemical variation on the estimates of attachment rate. Among physical variables, soil particle size has the highest correlation coefficient, followed by porosity of the soil media, bacterial size and flow velocity. Among chemical variables, ionic strength has the highest correlation coefficient. A semi-reactive microbial transport model was developed within HP1 (HYDRUS1D-PHREEQC) and applied to column transport experiments with constant and variable solution chemistries. Bacterial attachment rates varied from 9.10×10(-3)min(-1) to 3.71×10(-3)min(-1) due to mixing of synthetic stormwater (SSW) with artificial groundwater (AGW), while bacterial attachment remained constant at 9.10×10(-3)min(-1) in a constant

  20. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction

    NARCIS (Netherlands)

    Leveau, J.H.J.; Preston, G.M.

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive

  1. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    Science.gov (United States)

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  2. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    DEFF Research Database (Denmark)

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High......-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized...... that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide...

  3. Plumage bacterial assemblages in a breeding wild passerine: relationships with ecological factors and body condition.

    Science.gov (United States)

    Saag, Pauli; Tilgar, Vallo; Mänd, Raivo; Kilgas, Priit; Mägi, Marko

    2011-05-01

    Microorganisms have been shown to play an important role in shaping the life histories of animals, and it has recently been suggested that feather-degrading bacteria influence the trade-off between parental effort and self-preening behavior in birds. We studied a wild breeding population of great tits (Parus major) to explore habitat-, seasonal-, and sex-related variation in feather-degrading and free-living bacteria inhabiting the birds' yellow ventral feathers and to investigate associations with body condition. The density and species richness of bacterial assemblages was studied using flow cytometry and ribosomal intergenic spacer analysis. The density of studied bacteria declined between the nest-building period and the first brood. The number of bacterial phylotypes per bird was higher in coniferous habitat, while bacterial densities were higher in deciduous habitat. Free-living bacterial density was positively correlated with female mass; conversely, there was a negative correlation between attached bacterial density and female mass during the period of peak reproductive effort. Bacterial species richness was sex dependent, with more diverse bacterial assemblages present on males than females. Thus, this study revealed that bacterial assemblages on the feathers of breeding birds are affected both by life history and ecological factors and are related to body condition.

  4. Redox-Based Regulation of Bacterial Development and Behavior.

    Science.gov (United States)

    Sporer, Abigail J; Kahl, Lisa J; Price-Whelan, Alexa; Dietrich, Lars E P

    2017-06-20

    Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.

  5. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  6. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    Science.gov (United States)

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  7. On the evolution of bacterial multicellularity.

    Science.gov (United States)

    Lyons, Nicholas A; Kolter, Roberto

    2015-04-01

    Multicellularity is one of the most prevalent evolutionary innovations and nowhere is this more apparent than in the bacterial world, which contains many examples of multicellular organisms in a surprising array of forms. Due to their experimental accessibility and the large and diverse genomic data available, bacteria enable us to probe fundamental aspects of the origins of multicellularity. Here we discuss examples of multicellular behaviors in bacteria, the selective pressures that may have led to their evolution, possible origins and intermediate stages, and whether the ubiquity of apparently convergent multicellular forms argues for its inevitability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions.

    Science.gov (United States)

    Ponnusamy, Loganathan; Schal, Coby; Wesson, Dawn M; Arellano, Consuelo; Apperson, Charles S

    2015-09-23

    The mosquitoes Aedes aegypti and Aedes albopictus are vectors of pathogenic viruses that cause major human illnesses including dengue, yellow fever and chikungunya. Both mosquito species are expanding their geographic distributions and now occur worldwide in temperate and tropical climates. Collection of eggs in oviposition traps (ovitraps) is commonly used for monitoring and surveillance of container-inhabiting Aedes populations by public health agencies charged with managing mosquito-transmitted illness. Addition of an organic infusion in these traps increases the number of eggs deposited. Gravid females are guided to ovitraps by volatile chemicals produced from the breakdown of organic matter by microbes. We previously isolated and cultured 14 species of bacteria from attractive experimental infusions, made from the senescent leaves of canebrake bamboo (Arundinaria gigantea). Cultures were grown for 24 h at 28 °C with constant shaking (120 rpm) and cell densities were determined with a hemocytometer. Behavioral responses to single bacterial isolates and to a mix of isolates at different cell densities were evaluated using two-choice sticky-screen bioassay methods with gravid Ae. aegypti and Ae. albopictus. In behavioral assays of a mix of 14 bacterial isolates, significantly greater attraction responses were exhibited by Ae. aegypti and Ae. albopictus to bacterial densities of 10(7) and 10(8) cells/mL than to the control medium. When we tested single bacterial isolates, seven isolates (B1, B2, B3, B5, B12, B13 and B14) were significantly attractive to Ae. aegypti, and six isolates (B1, B5, B7, B10, B13 and B14) significantly attracted Ae. albopictus. Among all the isolates tested at three different cell densities, bacterial isolates B1, B5, B13 and B14 were highly attractive to both Aedes species. Our results show that at specific cell densities, some bacteria significantly influence the attraction of gravid Ae. aegypti and Ae. albopictus females to

  9. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  10. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  11. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  12. Bacterial Cheating Limits the Evolution of Antibiotic Resistance

    Science.gov (United States)

    Yurtsev, Eugene; Xiao Chao, Hui; Datta, Manoshi; Artemova, Tatiana; Gore, Jeff

    2012-02-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removal of the antibiotic. The presence of a cooperative mechanism of resistance suggests that a cheater strain - which does not contribute to breaking down the antibiotic - may be able to take advantage of resistant cells. We find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We use a simple model in conjunction with difference equations to explain the observed population dynamics as a function of cell density and antibiotic concentration. Our experimental difference equations resemble the logistic map, raising the possibility of oscillations or even chaotic dynamics.

  13. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  14. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  15. Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Bolch, Christopher J S; Bejoy, Thaila A; Green, David H

    2017-01-01

    Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum , we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20-115 moles photons PAR m -2 s -1 ). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that

  16. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.

    Science.gov (United States)

    Hwang, Jiye; Kim, Jeongmin; Sung, Bong June

    2016-08-01

    There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.

  17. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Isao [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan); Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: isaoito@kuhp.kyoto-u.ac.jp; Ishida, Tadashi [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ishidat@kchnet.or.jp; Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ktogashi@kuhp.kyoto-u.ac.jp; Niimi, Akio [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: niimi@kuhp.kyoto-u.ac.jp; Koyama, Hiroshi [General Internal Medicine, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukohatacho, Fushimi-ku, Kyoto 612-8555 (Japan)], E-mail: hkoyama-kyt@umin.ac.jp; Ishimori, Takayoshi [Department of Radiology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ti10794@kchnet.or.jp; Kobayashi, Hisataka [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 1B40, MSC1088, 10 Center Drive, Bethesda, MD 20892-1088 (United States)], E-mail: kobayash@mail.nih.gov; Mishima, Michiaki [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: mishima@kuhp.kyoto-u.ac.jp

    2009-12-15

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age {+-} S.D.: 61.1 {+-} 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would

  18. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Ito, Isao; Ishida, Tadashi; Togashi, Kaori; Niimi, Akio; Koyama, Hiroshi; Ishimori, Takayoshi; Kobayashi, Hisataka; Mishima, Michiaki

    2009-01-01

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  19. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  20. Fitness and Recovery of Bacterial Communities and Antibiotic Resistance Genes in Urban Wastewaters Exposed to Classical Disinfection Treatments.

    Science.gov (United States)

    Di Cesare, Andrea; Fontaneto, Diego; Doppelbauer, Julia; Corno, Gianluca

    2016-09-20

    Antibiotic resistance genes (ARGs) are increasingly appreciated to be important as micropollutants. Indirectly produced by human activities, they are released into the environment, as they are untargeted by conventional wastewater treatments. In order to understand the fate of ARGs and of other resistant forms (e.g., phenotypical adaptations) in urban wastewater treatment plants (WWTPs), we monitored three WWTPs with different disinfection processes (chlorine, peracetic acid (PAA), and ultraviolet light (UV)). We monitored WWTPs influx and pre- and postdisinfection effluent over 24 h, followed by incubation experiments lasting for 96 h. We measured bacterial abundance, size distribution and aggregational behavior, the proportion of intact (active) cells, and the abundances of four ARGs and of the mobile element integron1. While all the predisinfection treatments of all WWTPs removed the majority of bacteria and of associated ARGs, of the disinfection processes only PAA efficiently removed bacterial cells. However, the stress imposed by PAA selected for bacterial aggregates and, similarly to chlorine, stimulated the selection of ARGs during the incubation experiment. This suggests disinfections based on chemically aggressive destruction of bacterial cell structures can promote a residual microbial community that is more resistant to antibiotics and, given the altered aggregational behavior, to competitive stress in nature.

  1. Bacterial Ventures into Multicellularity: Collectivism through Individuality.

    Directory of Open Access Journals (Sweden)

    Simon van Vliet

    2015-06-01

    Full Text Available Multicellular eukaryotes can perform functions that exceed the possibilities of an individual cell. These functions emerge through interactions between differentiated cells that are precisely arranged in space. Bacteria also form multicellular collectives that consist of differentiated but genetically identical cells. How does the functionality of these collectives depend on the spatial arrangement of the differentiated bacteria? In a previous issue of PLOS Biology, van Gestel and colleagues reported an elegant example of how the spatial arrangement of differentiated cells gives rise to collective behavior in Bacillus subtilus colonies, further demonstrating the similarity of bacterial collectives to higher multicellular organisms.

  2. Effects of ionizing radiation on locomotory behavior and mechanosensation in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Suzuki, Michiyo; Sakashita, Tetsuya; Kikuchi, Masahiro; Ohba, Hirofumi; Hamada, Nobuyuki; Funayama, Tomoo; Fukamoto, Kana; Kobayashi, Yasuhiko; Yanase, Sumino; Higashitani, Atsushi; Tsuji, Toshio

    2009-01-01

    Locomotory behavior (motility) and mechanosensation are of vital importance in animals. We examined the effects of ionizing radiation (IR) on locomotory behavior and mechanosensation using a model organism, the nematode Caenorhabditis elegans. Bacterial mechanosensation in C. elegans induces the dopamine-mediated slowing of locomotion in the presence of bacteria (food), known as the basal slowing response. We previously reported an IR-induced reduction of locomotory rate in the absence of food. In the present study, we observed a similar IR-induced reduction of locomotory rate in the cat-2 mutant, which is defective in bacterial mechanosensation. The dose response pattern of the locomotory rate in the presence of food was relatively flat in wild-type animals, but not in cat-2 mutants. This suggests that the dopamine system, which is related to bacterial mechanosensation in C. elegans, might have a dominant effect on locomotory rate in the presence of food, which masks the effects of other stimuli. Moreover, we found that the behavioral responses of hydrogen peroxide-exposed wild-type animals are similar to those of IR-exposed animals. Our findings suggest that the IR-induced reduction of locomotory rate in the absence of food is mediated by a different pathway from that for bacterial mechanosensation, at least partially through IR-produced hydrogen peroxide. (author)

  3. Impact of certain household micropollutants on bacterial behavior. Toxicity tests/study of extracellular polymeric substances in sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pasquini, Laure [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Merlin, Christophe [Laboratoire de Chimie, Physique et Microbiologie pour l' Environnement-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Hassenboehler, Lucille [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France); Munoz, Jean-François [Laboratoire d' Hydrologie de Nancy, ANSES, 40 rue Lionnois, 54000 Nancy (France); Pons, Marie-Noëlle [Laboratoire Réactions et Génie des Procédés-CNRS, Université de Lorraine, 1 Rue Grandville, 54001 Nancy Cedex (France); Görner, Tatiana [Laboratoire Environnement et Minéralurgie-CNRS, Université de Lorraine, 15 Avenue du Charmois, 54501 Vandoeuvre-lès-Nancy Cedex (France)

    2013-10-01

    The impact of eight household micropollutants (erythromycin, ofloxacin, ibuprofen, 4-nonylphenol, triclosan, sucralose, PFOA and PFOS (PFAAs)) on the laboratory bacterial strain Escherichia coli MG1655 and on activated sludge from an urban wastewater treatment plant was studied. Growth-based toxicity tests on E. coli were performed for each micropollutants. The effect of micropollutants on activated sludge (at concentrations usually measured in wastewater up to concentrations disturbing the bacterial growth of E. coli) was examined in batch reactors and by comparison to a control reactor (without micropollutants). The bound extracellular polymeric substances (EPS) secreted by the sludge were measured by size exclusion chromatography and their overexpression was considered as an indicator of bacteria sensitivity to environmental changes. The chemical oxygen demand (COD) and the ammonium concentration were monitored to evaluate the biomass ability to remove the macropollution. Some micropollutants induced an increase of bound EPS in activated sludge flocs at concentrations depending on the micropollutant: erythromycin from 100 μg/L, ofloxacin from 10 μg/L, triclosan from 0.5 μg/L, 4-nonylphenol from 5000 μg/L and PFAAs from 0.1 μg/L. This suggests that the biomass had to cope with new conditions. Moreover, at high concentrations of erythromycin (10 mg/L) and ibuprofen (5 mg/L) bacterial populations were no longer able to carry out the removal of macropollution. Ibuprofen induced a decrease of bound EPS at all the studied concentrations, probably reflecting a decrease of general bacterial activity. The biomass was not sensitive to sucralose in terms of EPS production, however at very high concentration (1 g/L) it inhibited the COD decrease. Micropollution removal was also assessed. Ibuprofen, erythromycin, ofloxacin, 4-nonylphenol and triclosan were removed from wastewater, mainly by biodegradation. Sucralose and PFOA were not removed from wastewater at all, and

  4. Impact of certain household micropollutants on bacterial behavior. Toxicity tests/study of extracellular polymeric substances in sludge

    International Nuclear Information System (INIS)

    Pasquini, Laure; Merlin, Christophe; Hassenboehler, Lucille; Munoz, Jean-François; Pons, Marie-Noëlle; Görner, Tatiana

    2013-01-01

    The impact of eight household micropollutants (erythromycin, ofloxacin, ibuprofen, 4-nonylphenol, triclosan, sucralose, PFOA and PFOS (PFAAs)) on the laboratory bacterial strain Escherichia coli MG1655 and on activated sludge from an urban wastewater treatment plant was studied. Growth-based toxicity tests on E. coli were performed for each micropollutants. The effect of micropollutants on activated sludge (at concentrations usually measured in wastewater up to concentrations disturbing the bacterial growth of E. coli) was examined in batch reactors and by comparison to a control reactor (without micropollutants). The bound extracellular polymeric substances (EPS) secreted by the sludge were measured by size exclusion chromatography and their overexpression was considered as an indicator of bacteria sensitivity to environmental changes. The chemical oxygen demand (COD) and the ammonium concentration were monitored to evaluate the biomass ability to remove the macropollution. Some micropollutants induced an increase of bound EPS in activated sludge flocs at concentrations depending on the micropollutant: erythromycin from 100 μg/L, ofloxacin from 10 μg/L, triclosan from 0.5 μg/L, 4-nonylphenol from 5000 μg/L and PFAAs from 0.1 μg/L. This suggests that the biomass had to cope with new conditions. Moreover, at high concentrations of erythromycin (10 mg/L) and ibuprofen (5 mg/L) bacterial populations were no longer able to carry out the removal of macropollution. Ibuprofen induced a decrease of bound EPS at all the studied concentrations, probably reflecting a decrease of general bacterial activity. The biomass was not sensitive to sucralose in terms of EPS production, however at very high concentration (1 g/L) it inhibited the COD decrease. Micropollution removal was also assessed. Ibuprofen, erythromycin, ofloxacin, 4-nonylphenol and triclosan were removed from wastewater, mainly by biodegradation. Sucralose and PFOA were not removed from wastewater at all, and

  5. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  6. Investigation of 6-[¹⁸F]-fluoromaltose as a novel PET tracer for imaging bacterial infection.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available Despite advances in the field of nuclear medicine, the imaging of bacterial infections has remained a challenge. The existing reagents suffer from poor sensitivity and specificity. In this study we investigate the potential of a novel PET (positron emission tomography tracer that overcomes these limitations.6-[¹⁸F]-fluoromaltose was synthesized. Its behavior in vitro was evaluated in bacterial and mammalian cultures. Detailed pharmacokinetic and biodistribution profiles for the tracer were obtained from a murine model.6-[¹⁸F]-fluoromaltose is taken up by multiple strains of pathogenic bacteria. It is not taken up by mammalian cancer cell lines. 6-[¹⁸F]-fluoromaltose is retained in infected muscles in a murine model of bacterial myositis. It does not accumulate in inflamed tissue.We have shown that 6-[¹⁸F]-fluoromaltose can be used to image bacterial infection in vivo with high specificity. We believe that this class of agents will have a significant impact on the clinical management of patients.

  7. Host-bacterial interplay in periodontal disease

    Directory of Open Access Journals (Sweden)

    Rudrakshi Chickanna

    2015-01-01

    Full Text Available A literature search was performed using MEDLINE (PubMed and other electronic basis from 1991 to 2014. Search included books and journals based on the systematic and critical reviews, in vitro and in vivo clinical studies on molecular basis of host microbial interactions. Clearly, an understanding of the host susceptibility factor in addition to microbial factors by elucidating the molecular basis offers opportunity for therapeutic manipulation of advancing periodontal destruction. One of the hallmarks of pathogenesis is the ability of pathogenic organisms to invade surrounding tissues and to evade the host defence. This paper focuses the general overview of molecular mechanisms involved in the microbiota and host response to bacterial inimical behavior in periodontics.

  8. Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum.

    Science.gov (United States)

    Schumann, Dirk; Raub, Timothy D; Kopp, Robert E; Guerquin-Kern, Jean-Luc; Wu, Ting-Di; Rouiller, Isabelle; Smirnov, Aleksey V; Sears, S Kelly; Lücken, Uwe; Tikoo, Sonia M; Hesse, Reinhard; Kirschvink, Joseph L; Vali, Hojatollah

    2008-11-18

    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 microm long and hexaoctahedral prisms up to 1.4 microm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability--a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming--drove diversification of magnetite-forming organisms, likely including eukaryotes.

  9. Social behaviour and decision making in bacterial conjugation

    Directory of Open Access Journals (Sweden)

    Günther eKoraimann

    2014-04-01

    Full Text Available Bacteria frequently acquire novel genes by HGT (horizontal gene transfer. HGT through the process of bacterial conjugation is highly efficient and depends on the presence of conjugative plasmids (CPs or integrated conjugative elements (ICEs that provide the necessary genes for DNA transmission. This review focuses on recent advancements in our understanding of ssDNA transfer systems and regulatory networks ensuring timely and spatially controlled DNA transfer (tra gene expression. As will become obvious by comparing different systems, by default, tra genes are shut off in cells in which conjugative elements are present. Only when conditions are optimal, donor cells – through epigenetic alleviation of negatively acting roadblocks and direct stimulation of DNA transfer genes – become transfer competent. These transfer competent cells have developmentally transformed into specialized cells capable of secreting ssDNA via a T4S (type IV secretion complex directly into recipient cells. Intriguingly, even under optimal conditions, only a fraction of the population undergoes this transition, a finding that indicates specialization and cooperative, social behavior. Thereby, at the population level, the metabolic burden and other negative consequences of tra gene expression are greatly reduced without compromising the ability to horizontally transfer genes to novel bacterial hosts. This undoubtedly intelligent strategy may explain why conjugative elements – CPs and ICEs – have been successfully kept in and evolved with bacteria to constitute a major driving force of bacterial evolution.

  10. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape.

    Science.gov (United States)

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-06-01

    ) according to phyla. Altogether, this study provided valuable clues about the ecological behavior of soil bacterial and archaeal taxa at an agricultural landscape scale and could be useful for developing sustainable strategies of land management. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Modification and Assembly of a Versatile Lactonase for Bacterial Quorum Quenching

    Directory of Open Access Journals (Sweden)

    Melissa K. Rhoads

    2018-02-01

    Full Text Available This work sets out to provide a self-assembled biopolymer capsule activated with a multi-functional enzyme for localized delivery. This enzyme, SsoPox, which is a lactonase and phosphotriesterase, provides a means of interrupting bacterial communication pathways that have been shown to mediate pathogenicity. Here we demonstrate the capability to express, purify and attach SsoPox to the natural biopolymer chitosan, preserving its activity to “neutralize” long-chain autoinducer-1 (AI-1 communication molecules. Attachment is shown via non-specific binding and by engineering tyrosine and glutamine affinity ‘tags’ at the C-terminus for covalent linkage. Subsequent degradation of AI-1, in this case N-(3-oxododecanoyl-l-homoserine lactone (OdDHL, serves to “quench” bacterial quorum sensing (QS, silencing intraspecies communication. By attaching enzymes to pH-responsive chitosan that, in turn, can be assembled into various forms, we demonstrate device-based flexibility for enzyme delivery. Specifically, we have assembled quorum-quenching capsules consisting of an alginate inner core and an enzyme “decorated” chitosan shell that are shown to preclude bacterial QS crosstalk, minimizing QS mediated behaviors.

  13. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    Science.gov (United States)

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  14. Observations of Bacterial Behavior during Infection Using the ARGOS Method

    Science.gov (United States)

    Charest, A. J.; Algarni, S.; Iannacchione, G. S.

    2015-03-01

    This research employed the Area Recorded Generalized Optical Scattering (ARGOS) approach which allowed for the observation of bacterial changes in terms of individual particles and population dynamics in real time. This new approach allows for an aqueous environment to be manipulated while conducting time-specific measurements over an indefinite amount of time. This current study provides a more time-specific method in which the bacteria remained within the initial conditions and allows for more time precision than provided by analyzing concentrations of plaque-forming units (PFU). This study involved the bacteria (F-amp) during infection by bacteriophage (MS2). The relative total intensity allows for detailed measurements of the bacteria population over time. The bacteria characteristics were also evaluated such as the root mean square image difference (at specific wavevectors), fractal dimension and effective radius. The growth rate of the infected bacteria occurred at a rate higher than the uninfected bacteria similarly, the death rates were also higher for the infected bacteria than the uninfected bacteria. The present study indicates that bacteria may react to infection by increasing the rate of population growth.

  15. Investigation of multimodal forward scatter phenotyping from bacterial colonies

    Science.gov (United States)

    Kim, Huisung

    A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with

  16. Bacterial vaginosis in pregnant adolescents: proinflammatory cytokine and bacterial sialidase profile. Cross-sectional study

    Directory of Open Access Journals (Sweden)

    Carolina Sanitá Tafner Ferreira

    Full Text Available ABSTRACT CONTEXT AND OBJECTIVE: Bacterial vaginosis occurs frequently in pregnancy and increases susceptibility to sexually transmitted infections (STI. Considering that adolescents are disproportionally affected by STI, the aim of this study was to evaluate the cervicovaginal levels of interleukin (IL-1 beta, IL-6, IL-8 and bacterial sialidase in pregnant adolescents with bacterial vaginosis. DESIGN AND SETTING: Cross-sectional study at mother and child referral units in Belém, Pará, Brazil. METHODS: Vaginal samples from 168 pregnant adolescents enrolled were tested for trichomoniasis and candidiasis. Their vaginal microbiota was classified according to the Nugent criteria (1991 as normal, intermediate or bacterial vaginosis. Cervical infection due to Chlamydia trachomatisand Neisseria gonorrhoeae was also assessed. Cytokine and sialidase levels were measured, respectively, using enzyme-linked immunosorbent assays and MUAN conversion in cervicovaginal lavages. Forty-eight adolescents (28.6% were excluded because they tested positive for some of the infections investigated. The remaining 120 adolescents were grouped according to vaginal flora type: normal (n = 68 or bacterial vaginosis (n = 52. Their cytokine and sialidase levels were compared between the groups using the Mann-Whitney test (P < 0.05. RESULTS: The pregnant adolescents with bacterial vaginosis had higher levels of IL-1 beta, IL-6 and IL-8 (P < 0.05. Sialidase was solely detected in 35 adolescents (67.2% with bacterial vaginosis. CONCLUSIONS: Not only IL-1 beta and sialidase levels, but also IL-6 and IL-8 levels are higher in pregnant adolescents with bacterial vaginosis, thus indicating that this condition elicits a more pronounced inflammatory response in this population, which potentially increases vulnerability to STI acquisition.

  17. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Fernanda V., E-mail: fernanda@intelab.ufsc.br [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Rambo, Carlos R. [Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Porto, Luismar M. [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2013-12-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography.

  18. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    International Nuclear Information System (INIS)

    Berti, Fernanda V.; Rambo, Carlos R.; Dias, Paulo F.; Porto, Luismar M.

    2013-01-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography

  19. Prostatitis-bacterial - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000395.htm Prostatitis - bacterial - self-care To use the sharing features ... enable JavaScript. You have been diagnosed with bacterial prostatitis . This is an infection of the prostate gland. ...

  20. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  1. Shaping bacterial population behavior through computer-interfaced control of individual cells.

    Science.gov (United States)

    Chait, Remy; Ruess, Jakob; Bergmiller, Tobias; Tkačik, Gašper; Guet, Călin C

    2017-11-16

    Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.

  2. Bacterial vaginosis among African American women who have sex with women.

    Science.gov (United States)

    Muzny, Christina A; Sunesara, Imran R; Austin, Erika L; Mena, Leandro A; Schwebke, Jane R

    2013-09-01

    Bacterial vaginosis (BV) is a frequent cause of vaginal discharge that may be more common among women reporting sex with women (WSW). The objective of this study was to determine the prevalence of BV and predictors of infection among a sample of African American WSW. African American WSW aged 18 years or older presenting to the Mississippi State Department of Health STD Clinic between 2009 and 2010 and reporting a history of sexual activity with a female partner during the preceding year were invited to participate. A survey on sexual history and sexual behavior characteristics was completed. Bacterial vaginosis was defined by Amsel criteria. Associations with participant characteristics were determined using logistic regression analysis. Bacterial vaginosis was diagnosed in 93 (47.4%) of 196 women. Bisexual identity (odds ratio [OR], 1.94; 95% confidence interval [CI], 1.03-3.66; P = 0.04), douching within the past 30 days (OR, 1.93; 95% CI, 1.09-3.43; P = 0.02), age 18 years or less at first sexual encounter with a female partner (OR, 3.18; 95% CI, 1.16-8.71; P = 0.02), and report of more than 1 lifetime male sexual partners (OR, 1.94; 95% CI, 1.01-3.74; P = 0.04) were significant predictors of BV in bivariate analysis. Bacterial vaginosis was less common among women who reported more than 1 lifetime female sexual partner (OR, 0.26; 95% CI, 0.09-0.76; P = 0.01). In multivariable analysis, age 18 years or less at first sex with a female partner approached significance, while report of 1 lifetime female sexual partner remained strongly associated with BV. Bacterial vaginosis was common in this sample of African American WSW and significantly associated with report of 1 lifetime female sexual partner.

  3. Rifaximin has minor effects on bacterial composition, inflammation and bacterial translocation in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Pedersen, Julie S.; Tavenier, Juliette

    2018-01-01

    .4), and MELD score 12 (±3.9). Patients received rifaximin 550 mg BD (n=36) or placebo BD (n=18). Blood and faecal (n=15) sampling were conducted at baseline and after four weeks. Bacterial DNA in blood was determined by real-time qPCR 16S rRNA gene quantification. Bacterial composition in faeces was analysed......BACKGROUND & AIMS: Decompensated cirrhosis is characterized by disturbed haemodynamics, immune dysfunction, and high risk of infections. Translocation of viable bacteria and bacterial products from the gut to the blood is considered a key driver in this process. Intestinal decontamination...... with rifaximin may reduce bacterial translocation (BT) and decrease inflammation. In a randomized, placebo-controlled trial investigated the effects of rifaximin on inflammation and BT in decompensated cirrhosis. METHODS: Fifty-four out-patients with cirrhosis and ascites were randomized, mean age 56 years (±8...

  4. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins.

    Science.gov (United States)

    Duraj-Thatte, Anna M; Praveschotinunt, Pichet; Nash, Trevor R; Ward, Frederick R; Joshi, Neel S

    2018-02-22

    Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.

  5. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  6. Phase Transition Behavior in a Neutral Evolution Model

    Science.gov (United States)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  7. Physical and bacterial controls on inorganic nutrients and dissolved organic carbon during a sea ice growth and decay experiment

    DEFF Research Database (Denmark)

    Zhou, J.; Delille, B.; Kaartokallio, H.

    2014-01-01

    . The major findings are: (1) the incorporation of dissolved compounds (nitrate, nitrite, ammonium, phosphate, silicate, and DOC) into the sea ice was not conservative (relative to salinity) during ice growth. Brine convection clearly influenced the incorporation of the dissolved compounds, since the non......-conservative behavior of the dissolved compounds was particularly pronounced in the absence of brine convection. (2) Bacterial activity further regulated nutrient availability in the ice: ammonium and nitrite accumulated as a result of remineralization processes, although bacterial production was too low to induce...

  8. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  9. Postviral Complications: Bacterial Pneumonia.

    Science.gov (United States)

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  10. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  11. Genes as early responders regulate quorum-sensing and control bacterial cooperation in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Kelei Zhao

    Full Text Available Quorum-sensing (QS allows bacterial communication to coordinate the production of extracellular products essential for population fitness at higher cell densities. It has been generally accepted that a significant time duration is required to reach appropriate cell density to activate the relevant quiescent genes encoding these costly but beneficial public goods. Which regulatory genes are involved and how these genes control bacterial communication at the early phases are largely un-explored. By determining time-dependent expression of QS-related genes of the opportunistic pathogen Pseudomonas aerugionsa, we show that the induction of social cooperation could be critically influenced by environmental factors to optimize the density of population. In particular, small regulatory RNAs (RsmY and RsmZ serving as early responders, can promote the expression of dependent genes (e.g. lasR to boost the synthesis of intracellular enzymes and coordinate instant cooperative behavior in bacterial cells. These early responders, acting as a rheostat to finely modulate bacterial cooperation, which may be quickly activated under environment threats, but peter off when critical QS dependent genes are fully functional for cooperation. Our findings suggest that RsmY and RsmZ critically control the timing and levels of public goods production, which may have implications in sociomicrobiology and infection control.

  12. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  13. Bacterial transport in heterogeneous porous media: Observations from laboratory experiments

    Science.gov (United States)

    Silliman, S. E.; Dunlap, R.; Fletcher, M.; Schneegurt, M. A.

    2001-11-01

    Transport of bacteria through heterogeneous porous media was investigated in small-scale columns packed with sand and in a tank designed to allow the hydraulic conductivity to vary as a two-dimensional, lognormally distributed, second-order stationary, exponentially correlated random field. The bacteria were Pseudomonas ftuorescens R8, a strain demonstrating appreciable attachment to surfaces, and strain Ml, a transposon mutant of strain R8 with reduced attachment ability. In bench top, sand-filled columns, transport was determined by measuring intensity of fluorescence of stained cells in the effluent or by measuring radiolabeled cells that were retained in the sand columns. Results demonstrated that strain Ml was transported more efficiently than strain R8 through columns packed with either a homogeneous silica sand or a more heterogeneous sand with iron oxide coatings. Two experiments conducted in the tank involved monitoring transport of bacteria to wells via sampling from wells and sample ports in the tank. Bacterial numbers were determined by direct plate count. At the end of the first experiment, the distribution of the bacteria in the sediment was determined by destructive sampling and plating. The two experiments produced bacterial breakthrough curves that were quite similar even though the similarity between the two porous media was limited to first- and second-order statistical moments. This result appears consistent with the concept of large-scale, average behavior such as has been observed for the transport of conservative chemical tracers. The transported bacteria arrived simultaneously with a conservative chemical tracer (although at significantly lower normalized concentration than the tracer). However, the bacterial breakthrough curves showed significant late time tailing. The concentrations of bacteria attached to the sediment surfaces showed considerably more spatial variation than did the concentrations of bacteria in the fluid phase. This

  14. Correlates of Bacterial Ulcers and Acute HSV-2 Infection among Men with Genital Ulcer Disease in South Africa: Age, Recent Sexual Behaviors, and HIV.

    Science.gov (United States)

    Leichliter, Jami S; Lewis, David A; Paz-Bailey, Gabriela

    2016-01-01

    Data from baseline surveys and STI/HIV laboratory tests (n=615 men) were used to examine correlates of bacterial ulcers ( Treponema pallidum , Haemophilus ducreyi , or Chlamydia trachomatis L1-L3 detected in ulcer) and acute HSV-2 ulcers (HSV-2 positive ulcer specimen, HSV-2 sero-negative, and negative for bacterial pathogens) vs. recurrent HSV-2 ulcers (sero-positive), separately. Compared to men with recurrent HSV-2 ulcers, men with bacterial ulcers had larger ulcers but were less likely to be HIV-positive whereas men with acute HSV-2 ulcers were younger with fewer partners. Acute HIV was higher among men with bacterial and acute HSV-2 ulcers; the difference was not statistically significant.

  15. Clonality of bacterial consortia in root canals and subjacent gingival crevices.

    Science.gov (United States)

    Parahitiyawa, Nipuna B; Chu, Frederick C S; Leung, Wai K; Yam, Wing C; Jin, Li Jian; Samaranayake, Lakshman P

    2015-02-01

    No oral niche can be considered to be segregated from the subjacent milieu because of the complex community behavior and nature of the oral biofilms. The aim of this study was to address the paucity of information on how these species are clonally related to the subjacent gingival crevice bacteria. We utilized a metagenomic approach of amplifying 16S rDNA from genomic DNA, cloning, sequencing and analysis using LIBSHUFF software to assess the genetic homogeneity of the bacterial species from two infected root canals and subjacent gingival crevices. The four niches studied yielded 186 clones representing 54 phylotypes. Clone library comparisons using LIBSHUFF software indicated that each niche was inhabited by a unique flora. Further, 42% of the clones were of hitherto unknown phylotypes indicating the extent of bacterial diversity, especially in infected root canals and subjacent gingival crevices. We believe data generated through this novel analytical tool shed new light on understanding oral microbial ecosystems. © 2014 Wiley Publishing Asia Pty Ltd.

  16. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  17. Molecular diagnosis of bacterial vaginosis: Does adjustment for total bacterial load or human cellular content improve diagnostic performance?

    Science.gov (United States)

    Plummer, E L; Garland, S M; Bradshaw, C S; Law, M G; Vodstrcil, L A; Hocking, J S; Fairley, C K; Tabrizi, S N

    2017-02-01

    We investigated the utility of quantitative PCR assays for diagnosis of bacterial vaginosis and found that while the best model utilized bacterial copy number adjusted for total bacterial load (sensitivity=98%, specificity=93%, AUC=0.95[95%CI=0.93,0.97]), adjusting for total bacterial or human cell load did not consistently increase the diagnostic performance of the assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  19. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  20. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  1. Correlates of Bacterial Ulcers and Acute HSV-2 Infection among Men with Genital Ulcer Disease in South Africa: Age, Recent Sexual Behaviors, and HIV

    OpenAIRE

    Leichliter, Jami S.; Lewis, David A.; Paz-Bailey, Gabriela

    2016-01-01

    Data from baseline surveys and STI/HIV laboratory tests (n=615 men) were used to examine correlates of bacterial ulcers (Treponema pallidum, Haemophilus ducreyi, or Chlamydia trachomatis L1–L3 detected in ulcer) and acute HSV-2 ulcers (HSV-2 positive ulcer specimen, HSV-2 sero-negative, and negative for bacterial pathogens) vs. recurrent HSV-2 ulcers (sero-positive), separately. Compared to men with recurrent HSV-2 ulcers, men with bacterial ulcers had larger ulcers but were less likely to be...

  2. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  3. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms.

    Science.gov (United States)

    Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le

    2013-01-01

    The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.

  4. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  5. Bacterial infec tions in travellers

    African Journals Online (AJOL)

    namely bacterial causes of travellers' diarrhoea and skin infections, as well as .... Vaccination: protective efficacy against typhoid may be overcome by ingesting a high bacterial load. Vaccine ..... preparation such as cream sauce. Only after ...

  6. Bacterial carbon cycling in a subarctic fjord

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Glud, Ronnie Nøhr; Sejr, M.K.

    2012-01-01

    of viruses on bacterial mortality (4–36% of cell production) and carbon cycling. Heterotrophic bacterial consumption was closely coupled with autochthonous BDOC production, and the majority of the primary production was consumed by pelagic bacteria at all seasons. The relatively low measured BGE emphasized......In this seasonal study, we examined the environmental controls and quantitative importance of bacterial carbon consumption in the water column and the sediment in the subarctic Kobbefjord, Greenland. Depth-integrated bacterial production in the photic zone varied from 5.0 ± 2.7 mg C m−2 d−1...... in February to 42 ± 28 mg C m−2 d−1 in May and 34 ± 7 mg C m−2 d−1 in September, corresponding to a bacterial production to primary production ratio of 0.34 ± 0.14, 0.07 ± 0.04, and 0.08 ± 0.06, respectively. Based on measured bacterial growth efficiencies (BGEs) of 0.09–0.10, pelagic bacterial carbon...

  7. Bacterial cells with improved tolerance to polyamines

    DEFF Research Database (Denmark)

    2017-01-01

    Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds.......Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds....

  8. Viral-bacterial associations in acute apical abscesses.

    Science.gov (United States)

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  9. Bacterial Nanocellulose Magnetically Functionalized for Neuro-Endovascular Treatment.

    Science.gov (United States)

    Echeverry-Rendon, Mónica; Reece, Lisa M; Pastrana, Fernando; Arias, Sandra L; Shetty, Akshath R; Pavón, Juan Jose; Allain, Jean Paul

    2017-06-01

    Current treatments for brain aneurysms are invasive, traumatic, and not suitable in most patients with increased risks. A new alternative method is using scaffold stents to create a local and focal attraction force of cells for an in situ reconstruction of the tunica media. For this purpose, a nanostructured bioactive coating is designed to render an asymmetric region of the stent scaffold magnetic and biomimetic, which utilizes bacterial nanocellulose (BNC) as a platform for both magnetic and cell attraction as well as proliferation. The magnetization of the BNC is realized through the reaction of Fe III and II, precipitating superparamagnetic iron oxide nanoparticles (SPION). Subsequently, magnetic bacterial nanocellulose (MBNC) is coated with polyethylene glycol to improve its biocompatibility. Cytotoxicity and biocompatibility are evaluated using porcine aortic smooth muscle cells. Preliminary cellular migration assays demonstrate the behavior between MBNC and cells labeled with SPION. In this work, (1) synthesis of BNC impregnated with magnetic nanoparticles is successfully demonstrated; (2) a viable, resilient, and biocompatible hydrogel membrane is tested for neuroendovascular application using a stent scaffold; (3) cell viability and minimal cytotoxicity is achieved; (4) cell migration tests and examination of cellular magnetic attraction confirm the viability of MBNC as a multifunctional coating. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  11. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  12. Oral bacterial DNA findings in pericardial fluid

    Directory of Open Access Journals (Sweden)

    Anne-Mari Louhelainen

    2014-11-01

    Full Text Available Background: We recently reported that large amounts of oral bacterial DNA can be found in thrombus aspirates of myocardial infarction patients. Some case reports describe bacterial findings in pericardial fluid, mostly done with conventional culturing and a few with PCR; in purulent pericarditis, nevertheless, bacterial PCR has not been used as a diagnostic method before. Objective: To find out whether bacterial DNA can be measured in the pericardial fluid and if it correlates with pathologic–anatomic findings linked to cardiovascular diseases. Methods: Twenty-two pericardial aspirates were collected aseptically prior to forensic autopsy at Tampere University Hospital during 2009–2010. Of the autopsies, 10 (45.5% were free of coronary artery disease (CAD, 7 (31.8% had mild and 5 (22.7% had severe CAD. Bacterial DNA amounts were determined using real-time quantitative PCR with specific primers and probes for all bacterial strains associated with endodontic disease (Streptococcus mitis group, Streptococcus anginosus group, Staphylococcus aureus/Staphylococcus epidermidis, Prevotella intermedia, Parvimonas micra and periodontal disease (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatus, and Dialister pneumosintes. Results: Of 22 cases, 14 (63.6% were positive for endodontic and 8 (36.4% for periodontal-disease-associated bacteria. Only one case was positive for bacterial culturing. There was a statistically significant association between the relative amount of bacterial DNA in the pericardial fluid and the severity of CAD (p=0.035. Conclusions: Oral bacterial DNA was detectable in pericardial fluid and an association between the severity of CAD and the total amount of bacterial DNA in pericardial fluid was found, suggesting that this kind of measurement might be useful for clinical purposes.

  13. Endocarditis in adults with bacterial meningitis.

    Science.gov (United States)

    Lucas, Marjolein J; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2013-05-21

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2012. Endocarditis was identified in 24 of 1025 episodes (2%) of bacterial meningitis. Cultures yielded Streptococcus pneumoniae in 13 patients, Staphylococcus aureus in 8 patients, and Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus salivarius in 1 patient each. Clues leading to the diagnosis of endocarditis were cardiac murmurs, persistent or recurrent fever, a history of heart valve disease, and S aureus as the causative pathogen of bacterial meningitis. Treatment consisted of prolonged antibiotic therapy in all patients and surgical valve replacement in 10 patients (42%). Two patients were treated with oral anticoagulants, and both developed life-threatening intracerebral hemorrhage. Systemic (70%) and neurological (54%) complications occurred frequently, leading to a high proportion of patients with unfavorable outcome (63%). Seven of 24 patients (29%) with meningitis and endocarditis died. Endocarditis is an uncommon coexisting condition in bacterial meningitis but is associated with a high rate of unfavorable outcome.

  14. [The composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora].

    Science.gov (United States)

    Lei, D; Lin, Y; Jiang, X; Lan, L; Zhang, W; Wang, B X

    2017-03-02

    Objective: To explore the composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora. Method: Twenty-four specimens were collected from pregnant Kunming mouse including 8 mice of early embryonic (12-13 days) gastrointestinal tissues, 8 cases of late embryonic (19-20 days)gastrointestinal tissues, 8 of late pregnancy placental tissues.The 24 samples were extracted by DNeasy Blood & Tissue kit for high-throughput DNA sequencing. Result: The level of Proteobacteria, Bacteroidetes, Actino-bacteria and Firmicutes were predominantin all specimens.The relative content of predominant bacterial phyla in each group: Proteobacteria (95.00%, 88.14%, 87.26%), Bacteroidetes(1.71%, 2.15%, 2.63%), Actino-Bacteria(1.16%, 4.10%, 3.38%), Firmicutes(0.75%, 2.62%, 2.01%). At the level of family, there were nine predominant bacterial families in which Enterobacteriaeae , Shewanel laceae and Moraxellaceae were dominant.The relative content of dominant bacterial family in eachgroup: Enterobacteriaeae (46.99%, 44.34%, 41.08%), Shewanellaceae (21.99%, 21.10%, 19.05%), Moraxellaceae (9.18%, 7.09%, 5.64%). From the species of flora, the flora from fetal gastrointestinal in early pregnancy and late pregnancy (65.44% and 62.73%) were the same as that from placenta tissue in the late pregnancy.From the abundance of bacteria, at the level of family, the same content of bacteria in three groups accounted for 78.16%, 72.53% and 65.78% respectively. Conclusion: It was proved that the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora were colonized. At the same time the bacteria are classified.

  15. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... measured in serum, and 4 in which it had been measured in both cerebrospinal fluid and serum. The odds ratio for bacterial meningitis versus aseptic meningitis for a positive CRP test with cerebrospinal fluid was estimated at 241 (95% confidence interval [CI]: 59-980), and the central tendencies.......06-0.08, respectively, the post-test probability of not having bacterial meningitis given a negative test is very high (> or = 97%), in the range of a pre-test probability (prevalence of bacterial meningitis) from 10 to 30%, whereas the post-test probability of bacterial meningitis given a positive test is considerably...

  16. Wireless Visual Sensor Network Robots- Based for the Emulation of Collective Behavior

    Directory of Open Access Journals (Sweden)

    Fredy Hernán Martinez Sarmiento

    2012-03-01

    Full Text Available We consider the problem of bacterial quorum sensing emulate on small mobile robots. Robots that reflect the behavior of bacteria are designed as mobile wireless camera nodes. They are able to structure a dynamic wireless sensor network. Emulated behavior corresponds to a simplification of bacterial quorum sensing, where the action of a network node is conditioned by the population density of robots(nodes in a given area. The population density reading is done visually using a camera. The robot makes an estimate of the population density of the images, and acts according to this information. The operation of the camera is done with a custom firmware, reducing the complexity of the node without loss of performance. It was noted the route planning and the collective behavior of robots without the use of any other external or local communication. Neither was it necessary to develop a model system, precise state estimation or state feedback.

  17. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  18. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  19. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation

    International Nuclear Information System (INIS)

    Zheng, Yi; Yang, Jingxuan; Zheng, Weili; Wang, Xiao; Xiang, Cao; Tang, Lian; Zhang, Wen; Chen, Shiyan; Wang, Huaping

    2013-01-01

    Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe 3 O 4 nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe 3 O 4 nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit. - Highlights: ► Flexible magnetic film is prepared by in situ synthesis on bacterial cellulose. ► Ultrasound and PEG are used together to inhibit the nanoparticle aggregation. ► The magnetic membrane demonstrates the great superparamagnetic behavior

  20. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  1. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    Science.gov (United States)

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the

  2. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  3. Radiological aspects of bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.; Ewing, D.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    Clinical, radiological, and pathological data derived from an analysis of over 70 cases of bacterial lung abscess are presented. Etiologic agents and risk factors are presented. Key radiographic findings are discussed, and those that are most useful in differentiating bacterial lung abscess from cavitated carcinoma, infected cyst, and emphysema are emphasized. Radiographic aspects of the complications of bacterial lung abscess are illustrated, and radiological approaches to their therapy are discussed

  4. Bacterial, Fungal, Parasitic, and Viral Myositis

    OpenAIRE

    Crum-Cianflone, Nancy F.

    2008-01-01

    Infectious myositis may be caused by a broad range of bacterial, fungal, parasitic, and viral agents. Infectious myositis is overall uncommon given the relative resistance of the musculature to infection. For example, inciting events, including trauma, surgery, or the presence of foreign bodies or devitalized tissue, are often present in cases of bacterial myositis. Bacterial causes are categorized by clinical presentation, anatomic location, and causative organisms into the categories of pyo...

  5. Bacterial assessment of food handlers in Sari City, Mazandaran Province, north of Iran

    Directory of Open Access Journals (Sweden)

    Mohtaram Nasrolahei

    2017-03-01

    Full Text Available Food handlers with poor personal hygiene could be potential sources of infection due to pathogenic bacteria. This study was designed to determine the prevalence of bacterial infestation among the food handlers attending the public health center laboratory in Sari, northern Iran for annual check-up.This study was performed from September 2013 to August 2014. Stool samples, fingernail specimens of both hands and nasal swabs were collected from 220 male and female food handlers of different jobs, aged between 17–65 years. The samples were cultured on bacteriological culture media and bacterial species were identified following standard procedures. A structured questionnaire was used to record sociodemographic and behavioral data analysis of the food handlers.Of the total 220 subjects examined, 62.2% showed positive culture for different bacterial species from their fingernail contents, 65.4% were found to be harboring Staphylococcus aureus in their nostrils and 0.9% tested positive for Shigella boydii from stool samples. Staphylococcus aureus was the predominant bacteria isolated from fingernail specimens (46%, followed by Escherichia coli (29.2%, Coliforms (18.2% and Pseudomonas aeruginosa (6.6%. This study showed a statistically significant difference in the rate of bacterial infestation between different occupational categories (p = 0.04. Butchers showed the highest prevalence of bacteria (86.6% in their fingernail contents, followed by fast food workers (76.5%, bakers (73.5%, chicken store workers (73%, school cafeterias staff (53.3%, restaurant workers (46.9% and fruit/vegetables sellers (42.5%. The highest rate of nasal carrier for Staphylococcus aureus was observed among chicken store workers 14/17(20.8%.These findings indicate the need for intensive training/retraining and health education of all food service employees and strengthening the existing screening methods to control the problem of bacterial infestation in food handlers

  6. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    Science.gov (United States)

    Veerapandian, Murugan; Zhang, Linghe; Krishnamoorthy, Karthikeyan; Yun, Kyusik

    2013-10-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml-1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml-1 for Bacillus subtilis and 0.5 μg ml-1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside.

  7. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    International Nuclear Information System (INIS)

    Veerapandian, Murugan; Zhang, Linghe; Yun, Kyusik; Krishnamoorthy, Karthikeyan

    2013-01-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml −1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml −1 for Bacillus subtilis and 0.5 μg ml −1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside. (paper)

  8. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    Science.gov (United States)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  9. Unraveling bacterial networks and their antimicrobial susceptibility on silicon microarchitectures using intrinsic phase-shift spectroscopy

    Science.gov (United States)

    Leonard, Heidi; Holtzman, Liran; Haimov, Yuri; Weizman, Daniel; Kashi, Yechezkel; Nativ, Ofer; Halachmi, Sarel; Segal, Ester

    2018-02-01

    We have developed a rapid phenotypic antimicrobial susceptibility testing (AST) in which photonic 2D silicon microarrays are employed as both the optical transducer element and as a preferable solid-liquid interface for bacterial colonization. We harness the intrinsic ability of the micro-architectures to relay optical phase-shift reflectometric interference spectroscopic measurements (termed PRISM) and incorporate it into a platform for culture-free, label-free tracking of bacterial accumulation, proliferation, and death. This assay employs microfluidic channels interfaced with PRISM chips and is carried out in a two-stage process, namely bacteria seeding and antibiotic incubation. Bacteria proliferation within the microtopologies results in an increase in refractive index of the medium, yielding an increase in optical path difference, while cell death or bacteriostatic activity results in decreasing or unchanged values. The optical responses of bacteria to various concentrations of relevant antibiotics have been tracked in real time, allowing for accurate determination of the minimum inhibitory concentration (MIC) values within 2-3 hours. We further extended this work to analyze antibiotic susceptibilities of clinical isolates and direct urine samples derived from patients at neighboring hospitals in newly designed, disposable microfluidic devices. This has opened the door to the observation of unique bacterial behaviors, as we can evaluate bacterial adhesion, growth, and antibiotic resistance on different microarchitectures, different surface chemistries, and even different strains. Motility, charge, and biofilm abilities have been explored for their effect of bacterial adhesion to the microstructures as we further develop our method of rapid, label-free AST for full clinical application.

  10. Bacterial cells with improved tolerance to polyols

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds.......The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds....

  11. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  12. The intrinsic resistome of bacterial pathogens.

    Science.gov (United States)

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  13. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  14. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

    Directory of Open Access Journals (Sweden)

    Jens Baumgartner

    Full Text Available The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm or even multi-domain behavior (> 80 nm. The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes of these bacteria.

  15. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  16. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    Science.gov (United States)

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Science.gov (United States)

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  18. Impact of Anthracene Exposure on Bacterial Community Composition and Function in an Egyptian Marine Environment

    International Nuclear Information System (INIS)

    Zakaria, A.E.M.; Lappin-Scott, H.

    2013-01-01

    The application of bioremediation technology for pollution treatment requires more knowledge about how do microbial communities respond to pollutant exposure. The main goals of this study are to investigate the behavior of natural bacterial microflora of Suez Gulf (SGM) in response to exposure to different concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) for different periods. In this study, anthracene, as a model of (PAHs) was added in different concentrations, (30,150 and 500 ppm) to fertilized Suez Gulf water in shaking microcosms to examine the possible shifts in bacterial community composition and function. Changes in bacterial community composition was followed up after different periods of exposure (0, 6, 12, and 18) days to the above mentioned concentrations of anthracene by profiling the amplified product of 16S rDNA via denaturing gradient gel electrophoresis (DGGE) of SGM in treated microcosm separately. DGGE profiles revealed remarkable changes in diversity due to exposure concentration and duration to anthracene. A diverse relationship between anthracene concentration and bacterial diversity was detected. On the other hand, changes in community function were determined by testing the biodegradation capabilities of the consortia after different exposures separately in microcosms containing 50 ppm of anthracene for 14 days. The remaining anthracene was extracted and monitored by high performance liquid chromatography (HPLC) and DGGE profiles of amplified 16S rDNA extracted from parallel biodegradation microcosms were examined to indicate the effects of pre-exposure to different concentrations for different periods to PAHs on the bacterial community compositions. The results confirm that the long term effects of pre exposure to high concentrations of PAH on the bacterial community composition, suggesting that that some organisms can be used as a bio marker indicating the exposures of the marine environment to high concentrations of PAHs. HPLC

  19. Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Seth Davis

    Full Text Available Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1 plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2 herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3 plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.

  20. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    Science.gov (United States)

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  1. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Science.gov (United States)

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  2. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Directory of Open Access Journals (Sweden)

    João Alves Gama

    Full Text Available It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  3. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong

    2016-12-01

    Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not

  4. Development of bacterial display peptides for use in biosensing applications

    Science.gov (United States)

    Stratis-Cullum, Dimitra N.; Kogot, Joshua M.; Sellers, Michael S.; Hurley, Margaret M.; Sarkes, Deborah A.; Pennington, Joseph M.; Val-Addo, Irene; Adams, Bryn L.; Warner, Candice R.; Carney, James P.; Brown, Rebecca L.; Pellegrino, Paul M.

    2012-06-01

    Recent advances in synthetic library engineering continue to show promise for the rapid production of reagent technology in response to biological threats. A synthetic library of peptide mutants built off a bacterial host offers a convenient means to link the peptide sequence, (i.e., identity of individual library members) with the desired molecular recognition traits, but also allows for a relatively simple protocol, amenable to automation. An improved understanding of the mechanisms of recognition and control of synthetic reagent isolation and evolution remain critical to success. In this paper, we describe our approach to development of peptide affinity reagents based on peptide bacterial display technology with improved control of binding interactions for stringent evolution of reagent candidates, and tailored performance capabilities. There are four key elements to the peptide affinity reagent program including: (1) the diverse bacterial library technology, (2) advanced reagent screening amenable to laboratory automation and control, (3) iterative characterization and feedback on both affinity and specificity of the molecular interactions, and (3) integrated multiscale computational prescreening of candidate peptide ligands including in silico prediction of improved binding performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be presented. Recent highlights of on cell vs. off-cell affinity behavior and correlation of the results with advanced docking simulations on the protein-peptide system(s) are included. The potential of this technology and approach to enable rapid development of a new affinity reagent with unprecedented speed (less than one week) would allow for rapid response to new and constantly emerging threats.

  5. Microscopic Analysis of Bacterial Motility at High Pressure

    Science.gov (United States)

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  6. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  7. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    Science.gov (United States)

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  8. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal.

    Directory of Open Access Journals (Sweden)

    Xavier Martini

    Full Text Available The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama. CLas is the putative causal agent of huanglongbing (HLB, which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.

  9. Bacterial reproductive pathogens of cats and dogs.

    Science.gov (United States)

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  10. Bacterial Community Succession in Pine-Wood Decomposition.

    Science.gov (United States)

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  11. Spontaneous Bacterial Peritonitis in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Dalip Gupta

    2013-11-01

    Full Text Available Hypothyroidism is an uncommon cause of ascites. Here we describe a case of a 75 year-old female patient with spontaneous bacterial peritonitis and subclinical hypothyroidism that resolved with thyroid replacement and antibiotic therapy respectively. Ascitic fluid analysis revealed a gram-positive bacterium on gram staining. A review of the literature revealed just one other reported case of myxoedema ascites with concomitant spontaneous bacterial peritonitis and no case has till been reported of spontaneous bacterial peritonitis in subclinical hypothyroidism.

  12. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Beevi, Akbar Sait Hameedha; Priya, Radhakrishnan Jeeva; Maduraiveeran, Govindhan

    2015-01-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices. (paper)

  13. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  14. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  15. The physical basis of bacterial quorum communication

    CERN Document Server

    2015-01-01

    This book aims to educate physical scientists and quantitatively-oriented biologists on the application of physical experimentation and analysis, together with appropriate modeling, to understanding and interpreting microbial chemical communication and especially quorum sensing (QS). Quorum sensing describes a chemical communication behavior that is nearly universal among bacteria. Individual cells release a diffusible small molecule (an autoinducer) into their environment. A high concentration of this autoinducer serves as a signal of high population density, triggering new patterns of gene expression throughout the population. However QS is often much more complex than simple census-taking. Many QS bacteria produce and detect multiple autoinducers, which generate quorum signal cross talk with each other and with other bacterial species. QS gene regulatory networks operate in physically complex environments and respond to a range of inputs in addition to autoinducer signals. While many individual QS systems ...

  16. Diagnosis and treatment of bacterial prostatitis.

    Science.gov (United States)

    Videčnik Zorman, Jerneja; Matičič, Mojca; Jeverica, Samo; Smrkolj, Tomaž

    2015-01-01

    Prostate inflammation is a common syndrome, especially in men under 50. It usually presents with voiding symptoms and pain in the genitourinary area, and sometimes as sexual dysfunction. Based on clinical and laboratory characteristics, prostatitis is classified as acute bacterial prostatitis, chronic bacterial prostatitis, chronic inflammatory and non-inflammatory prostatitis or chronic pelvic pain syndrome, and asymptomatic inflammatory prostatitis. Bacterial prostatitis is most often caused by infection with uropathogens, mainly Gram-negative bacilli, but Gram-positive and atypical microorganisms have also been identified as causative organisms of chronic prostatitis. According to reports by several authors, Chlamydia trachomatis and Trichomonas vaginalis are some of the most common pathogens, making chronic prostatitis a sexually transmitted disease. Diagnosis and treatment of acute and chronic bacterial prostatitis in particular can be challenging.

  17. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  18. Autophagy and bacterial clearance: a not so clear picture

    OpenAIRE

    Mostowy, Serge

    2012-01-01

    Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non-bacterial autophagy) or support bacterial replication (pro-bacterial autophagy). This review will focus on newfound intera...

  19. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    Directory of Open Access Journals (Sweden)

    Sahar Hasim

    2018-02-01

    Full Text Available The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.

  20. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  1. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Science.gov (United States)

    Bai, Fan; Lo, Chien-Jung; Berry, Richard M.; Xing, Jianhua

    2009-01-01

    Abstract The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest experiments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental procedures for verification. PMID:19383460

  2. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Energy Technology Data Exchange (ETDEWEB)

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  3. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota.

    Science.gov (United States)

    Kaczmarek, Jennifer L; Musaad, Salma Ma; Holscher, Hannah D

    2017-11-01

    Background: Preclinical research has shown that the gastrointestinal microbiota exhibits circadian rhythms and that the timing of food consumption can affect the composition and function of gut microbes. However, there is a dearth of knowledge on these relations in humans. Objective: We aimed to determine whether human gastrointestinal microbes and bacterial metabolites were associated with time of day or behavioral factors, including eating frequency, percentage of energy consumed early in the day, and overnight-fast duration. Design: We analyzed 77 fecal samples collected from 28 healthy men and women. Fecal DNA was extracted and sequenced to determine the relative abundances of bacterial operational taxonomic units (OTUs). Gas chromatography-mass spectroscopy was used to assess short-chain fatty acid concentrations. Eating frequency, percentage of energy consumed before 1400, and overnight-fast duration were determined from dietary records. Data were analyzed by linear mixed models or generalized linear mixed models, which controlled for fiber intake, sex, age, body mass index, and repeated sampling within each participant. Each OTU and metabolite were tested as the outcome in a separate model. Results: Acetate, propionate, and butyrate concentrations decreased throughout the day ( P = 0.006, 0.04, and 0.002, respectively). Thirty-five percent of bacterial OTUs were associated with time. In addition, relations were observed between gut microbes and eating behaviors, including eating frequency, early energy consumption, and overnight-fast duration. Conclusions: These results indicate that the human gastrointestinal microbiota composition and function vary throughout the day, which may be related to the circadian biology of the human body, the microbial community itself, or human eating behaviors. Behavioral factors, including timing of eating and overnight-fast duration, were also predictive of bacterial abundances. Longitudinal intervention studies are needed to

  4. Antimicrobial susceptibility in community-acquired bacterial ...

    African Journals Online (AJOL)

    Objectives: To determine the antimicrobial susceptibility patterns of Streptococcus pneumoniae and Haemophilus influenzae, two bacterial pathogens commonly associated with communityacquired pneumonia. Design: Cross-sectional study. Setting: Bacterial isolates were obtained from adults suspected to have ...

  5. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    Science.gov (United States)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  6. Insights from 20 years of bacterial genome sequencing

    DEFF Research Database (Denmark)

    Land, Miriam; Hauser, Loren; Jun, Se-Ran

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along...... the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative...... genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling...

  7. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  8. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  9. Bacterial Swarming: social behaviour or hydrodynamics?

    Science.gov (United States)

    Vermant, Jan

    2010-03-01

    Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)

  10. Endogenous CO2 may inhibit bacterial growth and induce virulence gene expression in enteropathogenic Escherichia coli.

    Science.gov (United States)

    Martínez, Haydee; Buhse, Thomas; Rivera, Marco; Parmananda, P; Ayala, Guadalupe; Sánchez, Joaquín

    2012-07-01

    Analysis of the growth kinetics of enteropathogenic Escherichia coli (EPEC) revealed that growth was directly proportional to the ratio between the exposed surface area and the liquid culture volume (SA/V). It was hypothesized that this bacterial behavior was caused by the accumulation of an endogenous volatile growth inhibitor metabolite whose escape from the medium directly depended on the SA/V. The results of this work support the theory that an inhibitor is produced and indicate that it is CO(2). We also report that concomitant to the accumulation of CO(2), there is secretion of the virulence-related EspB and EspC proteins from EPEC. We therefore postulate that endogenous CO(2) may have an effect on both bacterial growth and virulence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia

    International Nuclear Information System (INIS)

    Murray, R.E.; Cooksey, K.E.; Priscu, J.C.

    1986-01-01

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 10 4 cells cm -2 (diatoms) and 5 x 10 6 cells cm -2 (bacteria). The algal-bacterial consortia consistently exhibited higher rates of [ 3 H]thymidine incorporation than did biofilms composed solely of bacteria. The rates of [ 3 H]thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10 -21 mol to 17.9 x 10 -21 mol of [ 3 H]thymidine incorporated cell -1 h -1 ) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon

  12. Bacterial cells with improved tolerance to isobutyric acid

    DEFF Research Database (Denmark)

    2017-01-01

    Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds.......Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds....

  13. Bacterial community succession in pine-wood decomposition

    Directory of Open Access Journals (Sweden)

    Anna eKielak

    2016-03-01

    Full Text Available Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  14. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    Science.gov (United States)

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Endocarditis in adults with bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2013-01-01

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with

  16. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  17. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  18. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  19. Copper effects on bacterial activity of estuarine silty sediments

    Science.gov (United States)

    Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda

    2007-07-01

    Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and

  20. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  1. Neonatal Bacterial Meningitis And Dexamethasone Adjunctive ...

    African Journals Online (AJOL)

    Methodology: Babies admitted from1992 to 1995 in the Special Care Baby Unit of the University of Maiduguri Teaching Hospital, Maduguri, Nigeria, with bacterial meningitis were studied prospectively. Neonatal bacterial meningitis was confirmed if the cerebrospinal fluid (CSF) microbiological, chemical, immunological and ...

  2. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

    Science.gov (United States)

    Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon

    2003-09-01

    The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.

  4. Initial insights into bacterial succession during human decomposition.

    Science.gov (United States)

    Hyde, Embriette R; Haarmann, Daniel P; Petrosino, Joseph F; Lynne, Aaron M; Bucheli, Sibyl R

    2015-05-01

    Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession.

  5. SEXUAL DYSFUNCTION ASSOCIATION WITH THE CHRONIC BACTERIAL PROSTATITIS

    Directory of Open Access Journals (Sweden)

    H. S. Ibishev

    2013-01-01

    Full Text Available The study involved 230 patients aged 20 to 45 years with a diagnosis of chronic bacterial prostatitis. The study found that in patients with chronic bacterial prostatitis clinical picture, in addition to pain, is a lower urinary tract symptoms, neuro-vegetative and sexual dysfunction. In patients with chronic bacterial prostatitis, recorded various sexual disorders, most of which are normalized after antibiotic therapy. Erectile dysfunction, which are recorded in patients with chronic bacterial prostatitis is psychogenic in nature dysfunction.

  6. The burden of bacterial vaginosis: women's experience of the physical, emotional, sexual and social impact of living with recurrent bacterial vaginosis.

    Directory of Open Access Journals (Sweden)

    Jade E Bilardi

    Full Text Available BACKGROUND: Bacterial vaginosis is a common vaginal infection, causing an abnormal vaginal discharge and/or odour in up to 50% of sufferers. Recurrence is common following recommended treatment. There are limited data on women's experience of bacterial vaginosis, and the impact on their self-esteem, sexual relationships and quality of life. The aim of this study was to explore the experiences and impact of recurrent bacterial vaginosis on women. METHODS: A social constructionist approach was chosen as the framework for the study. Thirty five women with male and/or female partners participated in semi-structured interviews face-to-face or by telephone about their experience of recurrent bacterial vaginosis. RESULTS: Recurrent bacterial vaginosis impacted on women to varying degrees, with some women reporting it had little impact on their lives but most reporting it had a moderate to severe impact. The degree to which it impacted on women physically, emotionally, sexually and socially often depended on the frequency of episodes and severity of symptoms. Women commonly reported that symptoms of bacterial vaginosis made them feel embarrassed, ashamed, 'dirty' and very concerned others may detect their malodour and abnormal discharge. The biggest impact of recurrent bacterial vaginosis was on women's self-esteem and sex lives, with women regularly avoiding sexual activity, in particular oral sex, as they were too embarrassed and self-conscious of their symptoms to engage in these activities. Women often felt confused about why they were experiencing recurrent bacterial vaginosis and frustrated at their lack of control over recurrence. CONCLUSION: Women's experience of recurrent bacterial vaginosis varied broadly and significantly in this study. Some women reported little impact on their lives but most reported a moderate to severe impact, mainly on their self-esteem and sex life. Further support and acknowledgement of these impacts are required when

  7. Bacterial flora of conjunctiva after death

    Directory of Open Access Journals (Sweden)

    Sagili Chandrasekhara Reddy

    2013-10-01

    Full Text Available AIM:To evaluate the frequency of bacterial flora of conjunctiva after death (cadaver eyes which will give information about the bacterial contamination of donor eyes, and the in-vitro sensitivity of isolated bacteria to the commonly used antibiotics in ophthalmic practice.METHODS: Conjunctival swabs were taken from the cadavers (motor vehicle accident deaths and patients who died in the hospital, within 6h after death, and sent for culture and sensitivity test. Conjunctival swabs, taken from the healthy conjunctiva of patients admitted for cataract surgery, were sent for culture and sensitivity as controls (eyes in those of living status. The bacterial isolates were tested against the commonly used antibiotics (chloramphenicol, gentamicin, ciprofloxacin in ophthalmology practice.RESULTS: Bacteria were isolated in 41 out of 100 conjunctival swabs (41%, taken from 50 cadavers (study group. Coagulase negative staphylococcus was the most common bacteria isolated (15%, followed by pseudomonas aeruginosa (5%. Gentamicin was effective against majority of the bacterial isolates (82%. Bacteria were isolated from 7 out of 100 conjunctival swabs taken as control group (eyes in living state. Coagulase negative staphylococcus was the most common organism (5% isolated in control group; the others were staphylococcus aureus (1% and beta hemolyticus streptococci (1%.CONCLUSION: Bacteria were isolated from 41% of the cadaver eyes. High percentage sensitivity of the bacterial isolates to gentamicin (82% supports the practice of thorough irrigation of the eyes with gentamicin solution before starting the procedure of enucleation followed by immersion of the enucleated eyeballs in gentamycin solution, to prevent the bacterial contamination.

  8. Does circumcision alter the periurethral uropathogenic bacterial flora

    African Journals Online (AJOL)

    Background: The aim of this study was to assess the pattern of periurethral bacterial flora in uncircumcised boys and to evaluate the effect of circumcision on alteration of periurethral uropathogenic bacterial flora. Materials and Methods: Pattern of periurethral bacterial flora before and after circumcision was studied ...

  9. Diazotrophic Bacterial Community of Degraded Pastures

    Directory of Open Access Journals (Sweden)

    João Tiago Correia Oliveira

    2017-01-01

    Full Text Available Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN of bacteria per gram of sample, in order to determine population density and calculate the Shannon-Weaver diversity index. The diversity of total diazotrophic bacterial community was determined by the technique of Denaturing Gradient Gel Electrophoresis (DGGE of the nifH gene, while the diversity of the culturable diazotrophic bacteria was determined by the Polymerase Chain Reaction (BOX-PCR technique. The increase in the degradation stage of the B. decumbens Stapf. pasture did not reduce the population density of the cultivated diazotrophic bacterial community, suggesting that the degradation at any degree of severity was highly harmful to the bacteria. The structure of the total diazotrophic bacterial community associated with B. decumbens Stapf. was altered by the pasture degradation stage, suggesting a high adaptive capacity of the bacteria to altered environments.

  10. The epidemiology of bacterial meningitis in Kosovo.

    Science.gov (United States)

    Namani, Sadie A; Koci, Remzie A; Qehaja-Buçaj, Emine; Ajazaj-Berisha, Lindita; Mehmeti, Murat

    2014-07-14

    The purpose of this study was to present the epidemiologic features of bacterial meningitis in the developing country of Kosovo. Data were collected from active surveillance of bacterial meningitis cases treated at the University Clinical Center of Kosovo in the years 2000 (first post-war year) and 2010. Meningitis cases in 2000 compared with 2010 showed a 35.5% decline in incidence (from 4.8 to 3.1 cases per 100,000 population) and a decrease in the case fatality rate from 10% to 5%. In children, there was a lower mortality rate (5% versus 2%) and a lower incidence of neurological complications (13% versus 16%) as compared to adults (32% versus 10% and 16% versus 35%, respectively). Neisseria meningitidis was the most common pathogen of bacterial meningitis in both study periods. Bacterial meningitis was most prevalent in the pediatric population, and showed an increase in the median age, from three years in 2000 to seven years in 2010. A steady number of bacterial meningitis cases in adults throughout last decade (around 20 cases per year) was recorded. During the last decade, gradual changes have been observed in the epidemiology of bacterial meningitis that are unrelated to the introduction of new vaccines, but are partly due to the improvement of living conditions.

  11. Cation diffusion facilitators transport initiation and regulation is mediated by cation induced conformational changes of the cytoplasmic domain.

    Directory of Open Access Journals (Sweden)

    Natalie Zeytuni

    Full Text Available Cation diffusion facilitators (CDF are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all domains of life. CDF's were shown to be involved in several human diseases, such as Type-II diabetes and neurodegenerative diseases. In this work, we employed a multi-disciplinary approach to study the activation mechanism of the CDF protein family. For this we used MamM, one of the main ion transporters of magnetosomes--bacterial organelles that enable magnetotactic bacteria to orientate along geomagnetic fields. Our results reveal that the cytosolic domain of MamM forms a stable dimer that undergoes distinct conformational changes upon divalent cation binding. MamM conformational change is associated with three metal binding sites that were identified and characterized. Altogether, our results provide a novel auto-regulation mode of action model in which the cytosolic domain's conformational changes upon ligand binding allows the priming of the CDF into its transport mode.

  12. The use of 14C-FIAU to predict bacterial thymidine kinase presence: Implications for radiolabeled FIAU bacterial imaging

    International Nuclear Information System (INIS)

    Peterson, Kristin L.; Reid, William C.; Freeman, Alexandra F.; Holland, Steven M.; Pettigrew, Roderic I.; Gharib, Ahmed M.; Hammoud, Dima A.

    2013-01-01

    Currently available infectious disease imaging techniques cannot differentiate between infection and sterile inflammation or between different types of infections. Recently, radiolabeled FIAU was found to be a substrate for the thymidine kinase (TK) enzyme of multiple pathogenic bacteria, leading to its translational use in the imaging of bacterial infections. Patients with immunodeficiencies, however, are susceptible to a different group of pathogenic bacteria when compared to immunocompetent subjects. In this study, we wanted to predict the usefulness of radiolabeled FIAU in the detection of bacterial infections commonly occurring in patients with immunodeficiencies, in vitro, prior to attempting in vivo imaging with 124 I-FIAU-PET. Methods: We obtained representative strains of bacterial pathogens isolated from actual patients with genetic immunodeficiencies. We evaluated the bacterial susceptibility of different strains to the effect of incubation with FIAU, which would implicate the presence of the thymidine kinase (TK) enzyme. We also incubated the bacteria with 14 C-FIAU and consequently measured its rate of incorporation in the bacterial DNA using a liquid scintillation counter. Results: Unlike the other bacterial strains, the growth of Pseudomonas aeruginosa was not halted by FIAU at any concentration. All the tested clinical isolates demonstrated different levels of 14 C-FIAU uptake, except for P. aeruginosa. Conclusion: Radiolabeled FIAU has been successful in delineating bacterial infections, both in preclinical and pilot translational studies. In patients with immunodeficiencies, Pseudomonas infections are commonly encountered and are usually difficult to differentiate from fungal infections. The use of radiolabeled FIAU for in vivo imaging of those patients, however, would not be useful, considering the apparent lack of TK enzyme in Pseudomonas. One has to keep in mind that not all pathogenic bacteria possess the TK enzyme and as such will not all

  13. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  14. Perinatal Exposure to Environmental Tobacco Smoke (ETS Enhances Susceptibility to Viral and Secondary Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Jocelyn A. Claude

    2012-10-01

    Full Text Available Studies suggest childhood exposure to environmental tobacco smoke (ETS leads to increased incidence of infections of the lower respiratory tract. The objective of this study was to determine whether perinatal exposure to ETS increases the incidence, morbidity and severity of respiratory influenza infection and whether a secondary bacterial challenge at the peak of a pre-existing viral infection creates an enhanced host-pathogen susceptibility to an opportunistic infection. Timed-pregnant female Balb/c mice were exposed to either ETS for 6 h/day, 7 d/week beginning on gestation day 14 and continuing with the neonates to 6 weeks of age. Control animals were exposed to filtered air (FA. At the end of exposure, mice were intranasally inoculated with a murine-adapted influenza A. One week later, an intranasal inoculation of S. aureus bacteria was administered. The respective treatment groups were: bacteria only, virus only or virus+bacteria for both FA and ETS-exposed animals for a total of six treatment groups. Animal behavior and body weights were documented daily following infection. Mice were necropsied 1-day post-bacterial infection. Bronchoalveolar lavage fluid (BALF cell analysis demonstrated perinatal exposure to ETS, compared to FA, leads to delayed but enhanced clinical symptoms and enhanced total cell influx into the lungs associated with viral infection followed by bacterial challenge. Viral infection significantly increases the number of neutrophils entering the lungs following bacterial challenge with either FA or ETS exposure, while the influx of lymphocytes and monocytes is significantly enhanced only by perinatal ETS exposure. There is a significant increase in peribronchiolar inflammation following viral infection in pups exposed to ETS compared with pups exposed to FA, but no change is noted in the degree of lung injury between FA and ETS-exposed animals following bacterial challenge. The data suggests perinatal exposure to ETS

  15. Mass production of bacterial communities adapted to the degradation of volatile organic compounds (TEX).

    Science.gov (United States)

    Lapertot, Miléna; Seignez, Chantal; Ebrahimi, Sirous; Delorme, Sandrine; Peringer, Paul

    2007-06-01

    This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kg(DW)m(-3) d(-1) and 0.59 g(DW)g (C) (-1) , respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.

  16. Nest Material Shapes Eggs Bacterial Environment.

    Directory of Open Access Journals (Sweden)

    Cristina Ruiz-Castellano

    Full Text Available Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus of eggshells in nests of spotless starlings (Sturnus unicolor at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and

  17. Nest Material Shapes Eggs Bacterial Environment.

    Science.gov (United States)

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically

  18. Detergent-compatible bacterial amylases.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  19. Bacterial Signaling to the Nervous System through Toxins and Metabolites.

    Science.gov (United States)

    Yang, Nicole J; Chiu, Isaac M

    2017-03-10

    Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  1. Chemical and Enzymatic Strategies for Bacterial and Mammalian Cell Surface Engineering.

    Science.gov (United States)

    Bi, Xiaobao; Yin, Juan; Chen Guanbang, Ashley; Liu, Chuan-Fa

    2018-06-07

    The cell surface serves important functions such as the regulation of cell-cell and cell-environment interactions. The understanding and manipulation of the cell surface is important for a wide range of fundamental studies of cellular behavior and for biotechnological and medical applications. With the rapid advance of biology, chemistry and materials science, many strategies have been developed for the functionalization of bacterial and mammalian cell surfaces. Here, we review the recent development of chemical and enzymatic approaches to cell surface engineering with particular emphasis on discussing the advantages and limitations of each of these strategies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Grepafloxacin in Patients with Acute Bacterial Exacerbations of Chronic Bronchitis - a Question of Speed in Bacterial Killing

    Directory of Open Access Journals (Sweden)

    Jerome J Schentag

    1998-01-01

    Full Text Available OBJECTIVE: To characterize the population pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis (ABECB, with particular attention to the speed of bacterial killing. This was possible because the study design incorporated daily cultures of the patients’ sputum.

  3. Bacterial vaginosis - aftercare

    Science.gov (United States)

    Bacterial vaginosis (BV) is a type of vaginal infection. The vagina normally contains both healthy bacteria and unhealthy bacteria. BV occurs when more unhealthy bacteria grow than healthy bacteria. No one knows ...

  4. The bacterial meningitis score to distinguish bacterial from aseptic meningitis in children from Sao Paulo, Brazil.

    Science.gov (United States)

    Mekitarian Filho, Eduardo; Horita, Sérgio Massaru; Gilio, Alfredo Elias; Alves, Anna Cláudia Dominguez; Nigrovic, Lise E

    2013-09-01

    In a retrospective cohort of 494 children with meningitis in Sao Paulo, Brazil, the Bacterial Meningitis Score identified all the children with bacterial meningitis (sensitivity 100%, 95% confidence interval: 92-100% and negative predictive value 100%, 95% confidence interval: 98-100%). Addition of cerebrospinal fluid lactate to the score did not improve clinical prediction rule performance.

  5. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  6. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  7. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides

    NARCIS (Netherlands)

    van der Heijden, I. M.; Wilbrink, B.; Tchetverikov, I.; Schrijver, I. A.; Schouls, L. M.; Hazenberg, M. P.; Breedveld, F. C.; Tak, P. P.

    2000-01-01

    The continuous presence of bacteria or their degraded antigens in the synovium may be involved in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to determine the presence of bacterial nucleic acids and bacterial cell wall constituents in the joints of patients with RA and

  8. The Burden of Bacterial Vaginosis: Women’s Experience of the Physical, Emotional, Sexual and Social Impact of Living with Recurrent Bacterial Vaginosis

    Science.gov (United States)

    Bilardi, Jade E.; Walker, Sandra; Temple-Smith, Meredith; McNair, Ruth; Mooney-Somers, Julie; Bellhouse, Clare; Fairley, Christopher K.; Chen, Marcus Y.; Bradshaw, Catriona

    2013-01-01

    Background Bacterial vaginosis is a common vaginal infection, causing an abnormal vaginal discharge and/or odour in up to 50% of sufferers. Recurrence is common following recommended treatment. There are limited data on women’s experience of bacterial vaginosis, and the impact on their self-esteem, sexual relationships and quality of life. The aim of this study was to explore the experiences and impact of recurrent bacterial vaginosis on women. Methods A social constructionist approach was chosen as the framework for the study. Thirty five women with male and/or female partners participated in semi-structured interviews face-to-face or by telephone about their experience of recurrent bacterial vaginosis. Results Recurrent bacterial vaginosis impacted on women to varying degrees, with some women reporting it had little impact on their lives but most reporting it had a moderate to severe impact. The degree to which it impacted on women physically, emotionally, sexually and socially often depended on the frequency of episodes and severity of symptoms. Women commonly reported that symptoms of bacterial vaginosis made them feel embarrassed, ashamed, ‘dirty’ and very concerned others may detect their malodour and abnormal discharge. The biggest impact of recurrent bacterial vaginosis was on women’s self-esteem and sex lives, with women regularly avoiding sexual activity, in particular oral sex, as they were too embarrassed and self-conscious of their symptoms to engage in these activities. Women often felt confused about why they were experiencing recurrent bacterial vaginosis and frustrated at their lack of control over recurrence. Conclusion Women’s experience of recurrent bacterial vaginosis varied broadly and significantly in this study. Some women reported little impact on their lives but most reported a moderate to severe impact, mainly on their self-esteem and sex life. Further support and acknowledgement of these impacts are required when managing women

  9. Bacterial pyomyositis in a patient with aplastic anaemia.

    OpenAIRE

    Mitsuyasu, R.; Gale, R. P.

    1980-01-01

    Bacterial pyomyositis is common in the tropids but is rare in temperate climates. A patient with aplastic anaemia who had never left the continental United States developed bacterial pyomyositis secondary to Staphylococcus aureus which responded to antibiotics and surgical drainage. Bacterial pyomyositis should be considered in the differential diagnosis of fever and myalgias in the immunocompromised patient.

  10. Photoperiodic Regulation of Behavioral Responsiveness to Proinflammatory Cytokines

    OpenAIRE

    Wen, Jarvi C.; Prendergast, Brian J.

    2007-01-01

    Symptoms of bacterial infection include decreases in body mass (cachexia), induction of depressive-like hedonic tone (anhedonia), decreases in food intake (anorexia), and increases in body temperature (fever). Recognition of bacteria by the innate immune system triggers the release of proinflammatory cytokines which induce these sickness behaviors via central and peripheral substrates. In Siberian hamsters, exposure to short day lengths decreases both the production of proinflammatory cytokin...

  11. Minerals in soil select distinct bacterial communities in their microhabitats.

    Science.gov (United States)

    Carson, Jennifer K; Campbell, Louise; Rooney, Deirdre; Clipson, Nicholas; Gleeson, Deirdre B

    2009-03-01

    We tested the hypothesis that different minerals in soil select distinct bacterial communities in their microhabitats. Mica (M), basalt (B) and rock phosphate (RP) were incubated separately in soil planted with Trifolium subterraneum, Lolium rigidum or left unplanted. After 70 days, the mineral and soil fractions were separated by sieving. Automated ribosomal intergenic spacer analysis was used to determine whether the bacterial community structure was affected by the mineral, fraction and plant treatments. Principal coordinate plots showed clustering of bacterial communities from different fraction and mineral treatments, but not from different plant treatments. Permutational multivariate anova (permanova) showed that the microhabitats of M, B and RP selected bacterial communities different from each other in unplanted and L. rigidum, and in T. subterraneum, bacterial communities from M and B differed (Ppermanova also showed that each mineral fraction selected bacterial communities different from the surrounding soil fraction (P<0.05). This study shows that the structure of bacterial communities in soil is influenced by the mineral substrates in their microhabitat and that minerals in soil play a greater role in bacterial ecology than simply providing an inert matrix for bacterial growth. This study suggests that mineral heterogeneity in soil contributes to the spatial variation in bacterial communities.

  12. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  13. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  14. Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements

    Science.gov (United States)

    Pérez, María Teresa; Hörtnagl, Paul; Sommaruga, Ruben

    2010-01-01

    We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria-positive cells, whereas only 15–43% of Bacteria-positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells. PMID:19725866

  15. 9 CFR 113.64 - General requirements for live bacterial vaccines.

    Science.gov (United States)

    2010-01-01

    ... bacterial vaccines. 113.64 Section 113.64 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Live Bacterial Vaccines § 113.64 General requirements for live bacterial vaccines... bacterial vaccine shall meet the requirements in this section. (a) Purity test. Final container samples of...

  16. The Bacterial Sequential Markov Coalescent.

    Science.gov (United States)

    De Maio, Nicola; Wilson, Daniel J

    2017-05-01

    Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example, leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions (homoplasies) inconsistent with the hypothesis of a single evolutionary tree. Bacterial recombination is typically modeled as statistically akin to gene conversion in eukaryotes, i.e. , using the coalescent with gene conversion (CGC). However, this model can be very computationally demanding as it needs to account for the correlations of evolutionary histories of even distant loci. So, with the increasing popularity of whole genome sequencing, the need has emerged for a faster approach to model and simulate bacterial genome evolution. We present a new model that approximates the coalescent with gene conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based on a similar idea to the sequential Markov coalescent (SMC)-an approximation of the coalescent with crossover recombination. However, bacterial recombination poses hurdles to a sequential Markov approximation, as it leads to strong correlations and linkage disequilibrium across very distant sites in the genome. Our BSMC overcomes these difficulties, and shows a considerable reduction in computational demand compared to the exact CGC, and very similar patterns in simulated data. We implemented our BSMC model within new simulation software FastSimBac. In addition to the decreased computational demand compared to previous bacterial genome evolution simulators, FastSimBac provides more general options for evolutionary scenarios, allowing population structure with migration, speciation, population size changes, and recombination hotspots. FastSimBac is

  17. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  18. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly

    DEFF Research Database (Denmark)

    Uebe, René; Junge, Katja; Henn, Verena

    2011-01-01

    Magnetotactic bacteria form chains of intracellular membrane‐enclosed, nanometre‐sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated with the magn......Magnetotactic bacteria form chains of intracellular membrane‐enclosed, nanometre‐sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated...... with the magnetosome membrane of Magnetospirillum gryphiswaldense are MamB and MamM, which were implicated in magnetosomal iron transport because of their similarity to the cation diffusion facilitator family. Here we demonstrate that MamB and MamM are multifunctional proteins involved in several steps of magnetosome...

  19. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  20. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  1. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  2. Does circumcision alter the periurethral uropathogenic bacterial flora

    Directory of Open Access Journals (Sweden)

    Mushtaq Ahmad Laway

    2012-01-01

    Full Text Available Background: The aim of this study was to assess the pattern of periurethral bacterial flora in uncircumcised boys and to evaluate the effect of circumcision on alteration of periurethral uropathogenic bacterial flora. Materials and Methods: Pattern of periurethral bacterial flora before and after circumcision was studied prospectively in 124 boys. The results were analysed to compare change in bacterial colonisation before and after circumcision. Results: The age range was 6 weeks to 96 months. Most (94.3% of the boys had religious indication and 5.7% had medical indication for circumcision. E. coli, Proteus and Klebsiella were most common periurethral bacterial flora in uncircumcised subjects. Coagulase-negative staphylococcus and Staphylococcus aureus was most common periurethral bacterial flora in circumcised subjects. In 66.1% of circumcised subjects, no bacteria were grown from periurethral region. Conclusion: We conclude that presence of prepuce is associated with great quantity of periurethral bacteria, greater likelihood of the presence of high concentration of uropathogens and high incidence of urinary tract infection (UTI. This study provides circumstantial evidence supporting the idea that early circumcision may be beneficial for prevention of UTI.

  3. Metamorphosis of a butterfly-associated bacterial community.

    Science.gov (United States)

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  4. Metamorphosis of a butterfly-associated bacterial community.

    Directory of Open Access Journals (Sweden)

    Tobin J Hammer

    Full Text Available Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  5. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    Science.gov (United States)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  6. Acute Bacterial Prostatitis: Diagnosis and Management.

    Science.gov (United States)

    Coker, Timothy J; Dierfeldt, Daniel M

    2016-01-15

    Acute bacterial prostatitis is an acute infection of the prostate gland that causes pelvic pain and urinary tract symptoms, such as dysuria, urinary frequency, and urinary retention, and may lead to systemic symptoms, such as fevers, chills, nausea, emesis, and malaise. Although the true incidence is unknown, acute bacterial prostatitis is estimated to comprise approximately 10% of all cases of prostatitis. Most acute bacterial prostatitis infections are community acquired, but some occur after transurethral manipulation procedures, such as urethral catheterization and cystoscopy, or after transrectal prostate biopsy. The physical examination should include abdominal, genital, and digital rectal examination to assess for a tender, enlarged, or boggy prostate. Diagnosis is predominantly made based on history and physical examination, but may be aided by urinalysis. Urine cultures should be obtained in all patients who are suspected of having acute bacterial prostatitis to determine the responsible bacteria and its antibiotic sensitivity pattern. Additional laboratory studies can be obtained based on risk factors and severity of illness. Radiography is typically unnecessary. Most patients can be treated as outpatients with oral antibiotics and supportive measures. Hospitalization and broad-spectrum intravenous antibiotics should be considered in patients who are systemically ill, unable to voluntarily urinate, unable to tolerate oral intake, or have risk factors for antibiotic resistance. Typical antibiotic regimens include ceftriaxone and doxycycline, ciprofloxacin, and piperacillin/tazobactam. The risk of nosocomial bacterial prostatitis can be reduced by using antibiotics, such as ciprofloxacin, before transrectal prostate biopsy.

  7. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    Science.gov (United States)

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Effect of Litter on Development and Severity of Foot-Pad Dermatitis and Behavior of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    D Zikic

    Full Text Available ABSTRACT This study was conducted to evaluate the impact of litter type and litter treatment with enzymatic-bacterial production incidence and severity of footpad dermatitis and consequently on behavior of broiler chickens. A total of 1,200 one day-old Ross 308 broilers were randomly allocated to 4 treatments with 4 replicates in 2 x 2 factorial design. The first factor was the physical form of the straw (chopped on approximately 2 cm or un-chopped and the second factor was addition of enzymatic-bacterial product applied directly on the straw. Each replicate consisted of 75 as-hatched birds per pen. Occurrence and severity of the footpad dermatitis and histological evaluation of the scores was done at the end of the trial (42 days of age. During the trial, at 3 and 6 weeks of age, broiler behavior was observed by Scan Sampling Method. The results showed that chopped straw significantly lowered the incidence of footpad dermatitis. Chopped straw in combination with enzymatic-bacterial product showed the lowest footpad dermatitis score in broilers. Histological procedures confirmed the macroscopic evaluation of the footpad dermatitis severity. The chopped straw had a significant effect on some behavioral patterns of broiler chickens. Differences were observed for dust bathing and scratching. Correlation between footpad dermatitis and birds locomotor activity was not confirmed.

  9. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    International Nuclear Information System (INIS)

    Banitz, Thomas; Wick, Lukas Y.; Fetzer, Ingo; Frank, Karin; Harms, Hauke; Johst, Karin

    2011-01-01

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: → Bacterial dispersal networks can considerably improve biodegradation performance. → They facilitate bacterial access to dispersal-limited areas and remote resources. → Abiotic conditions, time horizon and network structure govern the improvements. → Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  10. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  11. Adjunctive Corticosteroids in Adults with Bacterial Meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; de Gans, Jan

    2005-01-01

    Bacterial meningitis is a complex disorder in which neurologic injury is caused, in part, by the causative organism and, in part, by the host's own inflammatory response. In studies of experimental bacterial meningitis, adjuvant treatment with corticosteroids, specifically dexamethasone, has

  12. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

    Science.gov (United States)

    Srinivasan, Sujatha; Hoffman, Noah G.; Morgan, Martin T.; Matsen, Frederick A.; Fiedler, Tina L.; Hall, Robert W.; Ross, Frederick J.; McCoy, Connor O.; Bumgarner, Roger; Marrazzo, Jeanne M.; Fredricks, David N.

    2012-01-01

    Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in

  13. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    Directory of Open Access Journals (Sweden)

    Lidianne L. Rocha

    2016-01-01

    Full Text Available We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1 to habitats covered by Avicennia schaueriana (S2 and Rhizophora mangle (S3. Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  14. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    Science.gov (United States)

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  15. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  16. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  17. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2014-01-01

    with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature......The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community...... showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor...

  18. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces

    Directory of Open Access Journals (Sweden)

    Tairacan Augusto Pereira da Fonseca

    2015-10-01

    Full Text Available Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$ notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or “feiras” in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  19. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Sanabani, Sabri Saeed

    2015-10-22

    Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$) notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or "feiras" in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  20. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  2. Bacterial Exposures and Associations with Atopy and Asthma in Children.

    Directory of Open Access Journals (Sweden)

    Maria Valkonen

    Full Text Available The increase in prevalence of asthma and atopic diseases in Western countries has been linked to aspects of microbial exposure patterns of people. It remains unclear which microbial aspects contribute to the protective farm effect.The objective of this study was to identify bacterial groups associated with prevalence of asthma and atopy, and to quantify indoor exposure to some of these bacterial groups.A DNA fingerprinting technique, denaturing gradient gel electrophoresis (DGGE, was applied to mattress dust samples of farm children and control children in the context of the GABRIEL Advanced study. Associations between signals in DGGE and atopy, asthma and other allergic health outcomes were analyzed. Quantitative DNA based assays (qPCR for four bacterial groups were applied on the dust samples to seek quantitative confirmation of associations indicated in DNA fingerprinting.Several statistically significant associations between individual bacterial signals and also bacterial diversity in DGGE and health outcomes in children were observed. The majority of these associations showed inverse relationships with atopy, less so with asthma. Also, in a subsequent confirmation study using a quantitative method (qPCR, higher mattress levels of specifically targeted bacterial groups - Mycobacterium spp., Bifidobacteriaceae spp. and two different clusters of Clostridium spp. - were associated with a lower prevalence of atopy.DNA fingerprinting proved useful in identifying bacterial signals that were associated with atopy in particular. These findings were quantitatively confirmed for selected bacterial groups with a second method. High correlations between the different bacterial exposures impede a clear attribution of protective effects to one specific bacterial group. More diverse bacterial flora in mattress dust may link to microbial exposure patterns that protect against development of atopic diseases.

  3. Bacterial contaminations of informally marketed raw milk in Ghana ...

    African Journals Online (AJOL)

    Background: Milk has an outstanding nutritional quality but is also an excellent medium for bacterial growth and an important source of bacterial infection when consumed without pasteurization. Objective: To estimate the bacterial health risk of milk consumption in Accra and Kumasi, the twomajor cities in Ghana. Method: A ...

  4. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance.

    Science.gov (United States)

    Patel, Seema

    2016-11-01

    Despite the advent of next-generation sequencing (NGS) technologies, sophisticated data analysis and drug development efforts, bacterial drug resistance persists and is escalating in magnitude. To better control the pathogens, a thorough understanding of their genomic architecture and dynamics is vital. Bacterial genome is extremely complex, a mosaic of numerous co-operating and antagonizing components, altruistic and self-interested entities, behavior of which are predictable and conserved to some extent, yet largely dictated by an array of variables. In this regard, mobile genetic elements (MGE), DNA repair systems, post-segregation killing systems, toxin-antitoxin (TA) systems, restriction-modification (RM) systems etc. are dominant agents and horizontal gene transfer (HGT), gene redundancy, epigenetics, phase and antigenic variation etc. processes shape the genome. By illegitimate recombinations, deletions, insertions, duplications, amplifications, inversions, conversions, translocations, modification of intergenic regions and other alterations, bacterial genome is modified to tackle stressors like drugs, and host immune effectors. Over the years, thousands of studies have investigated this aspect and mammoth amount of insights have been accumulated. This review strives to distillate the existing information, formulate hypotheses and to suggest directions, that might contribute towards improved mitigation of the vicious pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Community-acquired bacterial meningitis in alcoholic patients.

    Directory of Open Access Journals (Sweden)

    Martijn Weisfelt

    2010-02-01

    Full Text Available Alcoholism is associated with susceptibility to infectious disease, particularly bacterial pneumonia. In the present study we described characteristics in alcoholic patients with bacterial meningitis and delineate the differences with findings in non-alcoholic adults with bacterial meningitis.This was a prospective nationwide observational cohort study including patients aged >16 years who had bacterial meningitis confirmed by culture of cerebrospinal fluid (696 episodes of bacterial meningitis occurring in 671 patients. Alcoholism was present in 27 of 686 recorded episodes of bacterial meningitis (4% and alcoholics were more often male than non-alcoholics (82% vs 48%, P = 0.001. A higher proportion of alcoholics had underlying pneumonia (41% vs 11% P<0.001. Alcoholics were more likely to have meningitis due to infection with Streptococcus pneumoniae (70% vs 50%, P = 0.01 and Listeria monocytogenes (19% vs 4%, P = 0.005, whereas Neisseria meningitidis was more common in non-alcoholic patients (39% vs 4%, P = 0.01. A large proportion of alcoholics developed complications during clinical course (82% vs 62%, as compared with non-alcoholics; P = 0.04, often cardiorespiratory failure (52% vs 28%, as compared with non-alcoholics; P = 0.01. Alcoholic patients were at risk for unfavourable outcome (67% vs 33%, as compared with non-alcoholics; P<0.001.Alcoholic patients are at high risk for complications resulting in high morbidity and mortality. They are especially at risk for cardiorespiratory failure due to underlying pneumonia, and therefore, aggressive supportive care may be crucial in the treatment of these patients.

  6. Determinants of bacterial communities in Canadian agroforestry systems.

    Science.gov (United States)

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Bacterial successions in the Broiler Gastrointestinal tract

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Lawley, Blair; Tannock, Gerald

    2016-01-01

    diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and an increased bacterial diversity was observed. Lactobacillaceae (mainly Lactobacillus) represented most of the Firmicutes at all ages and in all segments of the gut except the ceca...

  8. neonatal bacterial meningitis in Cape Town children

    African Journals Online (AJOL)

    neonatal bacterial meningitis in Cape Town children. Bacterial meningitis is a major cause of childhood morbidity and mortality in South Africa. However, comprehensive regional or national epidemiological data, essential for rational public health interventions, are lacking. The purpose of this 1-year prospective study, from.

  9. Fate and behavior of ZnO- and Ag-engineered nanoparticles and a bacterial viability assessment in a simulated wastewater treatment plant

    CSIR Research Space (South Africa)

    Musee, N

    2014-01-01

    Full Text Available The fate and behaviour assessment of ZnO- and Ag-engineered nanoparticles (ENPs) and bacterial viability in a simulated wastewater treatment plant (WWTP) fed with municipal wastewater was investigated through determination of ENPs stability...

  10. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA.

    Science.gov (United States)

    Dorn-In, Samart; Bassitta, Rupert; Schwaiger, Karin; Bauer, Johann; Hölzel, Christina S

    2015-06-01

    Universal primers targeting the bacterial 16S-rRNA-gene allow quantification of the total bacterial load in variable sample types by qPCR. However, many universal primer pairs also amplify DNA of plants or even of archaea and other eukaryotic cells. By using these primers, the total bacterial load might be misevaluated, whenever samples contain high amounts of non-target DNA. Thus, this study aimed to provide primer pairs which are suitable for quantification and identification of bacterial DNA in samples such as feed, spices and sample material from digesters. For 42 primers, mismatches to the sequence of chloroplasts and mitochondria of plants were evaluated. Six primer pairs were further analyzed with regard to the question whether they anneal to DNA of archaea, animal tissue and fungi. Subsequently they were tested with sample matrix such as plants, feed, feces, soil and environmental samples. To this purpose, the target DNA in the samples was quantified by qPCR. The PCR products of plant and feed samples were further processed for the Single Strand Conformation Polymorphism method followed by sequence analysis. The sequencing results revealed that primer pair 335F/769R amplified only bacterial DNA in samples such as plants and animal feed, in which the DNA of plants prevailed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Temporal relationships exist between cecum, ileum and litter bacterial microbiomes in a commercial turkey flock, and subtherapeutic penicillin treatment impacts ileum bacterial community establishment

    Directory of Open Access Journals (Sweden)

    Jessica L Danzeisen

    2015-11-01

    Full Text Available Gut health is paramount for commercial poultry production, and improved methods to assess gut health are critically needed to better understand how the avian gastrointestinal tract matures over time. One important aspect of gut health is the totality of bacterial populations inhabiting different sites of the avian gastrointestinal tract, and associations of these populations with the poultry farm environment, since these bacteria are thought to drive metabolism and prime the developing host immune system. In this study, a single flock of commercial turkeys was followed over the course of twelve weeks to examine bacterial microbiome inhabiting the ceca, ileum, and corresponding poultry litter. Furthermore, the effects of low-dose, growth-promoting penicillin treatment (50 g/ton in feed on the ileum bacterial microbiome were also examined during the early brood period. The cecum and ileum bacterial communities of turkeys were distinct, yet shifted in parallel to one another over time during bird maturation. Corresponding poultry litter was also distinct yet more closely represented the ileal bacterial populations than cecal bacterial populations, and also changed parallel to ileum bacterial populations over time. Penicillin applied at low dose in feed significantly enhanced early weight gain in commercial poults, and this correlated with predictable shifts in the ileum bacterial populations in control versus treatment groups. Overall, this study identified the dynamics of the turkey gastrointestinal microbiome during development, correlations between bacterial populations in the gastrointestinal tract and the litter environment, and the impact of low-dose penicillin on modulation of bacterial communities in the ileum. Such modulations provide a target for alternatives to low-dose antibiotics.

  12. Structure of bacterial lipopolysaccharides.

    Science.gov (United States)

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  13. Interpreting the Effects of Pulse Remagnetization on Animal Behavior

    Science.gov (United States)

    Kirschvink, J. L.; Wang, C. X.; Golash, H. N.; Hilburn, I. A.; Wu, D. A.; Crucilla, S. J.; Badal, Y. D.; Shimojo, S.

    2017-12-01

    Observations of geomagnetic sensitivity by migratory and homing animals have puzzled biophysicists for over 70 years. Widely dismissed as biophysically implausible due to the lack of physiological ferromagnetic materials [e.g., D.R. Griffin, 1944, 1952], clear and reproducible responses to earth-strength magnetic fields is now firmly established in organisms ranging from Bacteria, Protists, and Animals from numerous phyla, including mollusks, arthropods, and the chordates. Behavior demands sensory transduction, as external stimuli only `get into the nervous system' through sensory cells specialized to transduce the physical stimulus into a modulated stream of action potentials in neurons. Three basic biophysical mechanisms could plausibly explain the biophysical transduction of geomagnetic cues, including electrical induction, hyperfine magnetic field effects on photo-activated free radicals (the `Quantum Compass'), or receptor cells containing biologically-precipitated crystals of a ferromagnetic mineral like magnetite (Fe3O4). The definitive test of a ferromagnetic receptor is the pulse-remagnetization experiment, in which you apply a brief, unidirectional magnetic pulse of about 1 mS in duration, configured to exceed the coercive force of the SD particles and reverse the orientation of the magnetic moment wrt to the crystal axis (typically, a pulse few tens of mT is adequate). A pulse configured in this fashion can be well below the dB/dt level needed to fire a sensory nerve through the induced electric fields. The pulse produces a permanent flip in magnetization direction, the same way information is coded on magnetic tape. Magnetotactic bacteria, exposed to such a pulse, reverse their magnetic swimming directions passively. There are now over 16 peer-reviewed papers in which this experiment has been applied to animals, including birds, all of which show clear and long-lasting effects of the pulse. Such a pulse would have no lasting effect on a quantum compass

  14. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Science.gov (United States)

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  15. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Directory of Open Access Journals (Sweden)

    Dalia Molina-Romero

    Full Text Available Plant growth-promoting rhizobacteria (PGPR increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440 and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02 strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  16. Normal bacterial flora from vaginas of Criollo Limonero cows.

    Science.gov (United States)

    Zambrano-Nava, Sunny; Boscán-Ocando, Julio; Nava, Jexenia

    2011-02-01

    In order to describe the normal bacterial flora in vaginas of Criollo Limonero cows, 51 healthy multiparous cows, at least 90-day postpartum, were selected. Duplicated swabs (N = 102) were taken from the vaginal fornix of cows to perform aerobic and anaerobic cultures as well as conventional biochemical tests. Out of 102 swabs, bacterial growth was obtained in 55 (53.9%) while the remaining 47 (46.1%) did not exhibited any bacterial growth. Of the 55 bacterial growths, 23 (41.8%) were aerobic whereas 32 (58.1%) were anaerobic. Likewise, 29 (52.72%) of bacterial growths were pure and 26 (47.27%) were mixed. Under both aerobic and anaerobic conditions, Gram positive bacteria were predominant (81.82% and 73.08%, respectively) over Gram negative bacteria (18.18% and 26.92%, respectively). Isolated bacteria were Arcanobacterium pyogenes (22.92%), Staphylococcus aureus (15.63%), Staphylococcus coagulase negative (17.71%), Erysipelothrix rhusiopathiae (6.25%), Bacteroides spp. (13.54%), and Peptostreptococcus spp. (7.29%). In conclusion, normal vaginal bacterial flora of Criollo Limonero cows was predominantly Gram positive and included A. pyogenes, S. aureus, coagulase negative Staphylococcus, E. rhusiopathiae, Bacteroides spp., and Peptostreptococcus spp. In Criollo Limonero cattle, adaptive aspects such as development of humoral and physical mechanisms for defense, and bacterial adaptation to host deserve research attention.

  17. Applications of bacterial cellulose and its composites in biomedicine.

    Science.gov (United States)

    Rajwade, J M; Paknikar, K M; Kumbhar, J V

    2015-03-01

    Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

  18. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    Science.gov (United States)

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  19. Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm

    Directory of Open Access Journals (Sweden)

    Nora eMellouk

    2016-04-01

    Full Text Available Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  20. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion

    NARCIS (Netherlands)

    Younes, Jessica A.; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J.; Reid, Gregor; van der Mei, Henny C.

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether

  1. Isolation of cell-free bacterial inclusion bodies.

    Science.gov (United States)

    Rodríguez-Carmona, Escarlata; Cano-Garrido, Olivia; Seras-Franzoso, Joaquin; Villaverde, Antonio; García-Fruitós, Elena

    2010-09-17

    Bacterial inclusion bodies are submicron protein clusters usually found in recombinant bacteria that have been traditionally considered as undesirable products from protein production processes. However, being fully biocompatible, they have been recently characterized as nanoparticulate inert materials useful as scaffolds for tissue engineering, with potentially wider applicability in biomedicine and material sciences. Current protocols for inclusion body isolation from Escherichia coli usually offer between 95 to 99% of protein recovery, what in practical terms, might imply extensive bacterial cell contamination, not compatible with the use of inclusion bodies in biological interfaces. Using an appropriate combination of chemical and mechanical cell disruption methods we have established a convenient procedure for the recovery of bacterial inclusion bodies with undetectable levels of viable cell contamination, below 10⁻¹ cfu/ml, keeping the particulate organization of these aggregates regarding size and protein folding features. The application of the developed protocol allows obtaining bacterial free inclusion bodies suitable for use in mammalian cell cultures and other biological interfaces.

  2. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  3. Endolymphatic sac involvement in bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Brandt, Christian; Østergaard, Christian

    2015-01-01

    The commonest sequelae of bacterial meningitis are related to the inner ear. Little is known about the inner ear immune defense. Evidence suggests that the endolymphatic sac provides some protection against infection. A potential involvement of the endolymphatic sac in bacterial meningitis...... is largely unaccounted for, and thus the object of the present study. A well-established adult rat model of Streptococcus pneumoniae meningitis was employed. Thirty adult rats were inoculated intrathecally with Streptococcus pneumoniae and received no additional treatment. Six rats were sham...... days. Bacteria invaded the inner ear through the cochlear aquaduct. On days 5-6, the bacteria invaded the endolymphatic sac through the endolymphatic duct subsequent to invasion of the vestibular endolymphatic compartment. No evidence of direct bacterial invasion of the sac through the meninges...

  4. Bacterial computing with engineered populations.

    Science.gov (United States)

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Bacterial community changes in an industrial algae production system.

    Science.gov (United States)

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  6. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination.

    Science.gov (United States)

    Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm

    2009-05-08

    The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.

  7. [Combination therapy of chronic bacterial prostatitis].

    Science.gov (United States)

    Khryanin, A A; Reshetnikov, O V

    2016-08-01

    The article discusses the possible etiological factors in the development of chronic bacterial prostatitis. The authors presented a comparative long-term analysis of morbidity from non-viral sexually transmitted infections (STIs) in Russia. Against the background of general decline in STIs incidence, a significant percentage of them is made up by urogenital trichomoniasis. The findings substantiated the advantages of combination therapy (ornidazole and ofloxacin) for bacterial urinary tract infections.

  8. S1PR3 Signaling Drives Bacterial Killing and Is Required for Survival in Bacterial Sepsis.

    Science.gov (United States)

    Hou, JinChao; Chen, QiXing; Wu, XiaoLiang; Zhao, DongYan; Reuveni, Hadas; Licht, Tamar; Xu, MengLong; Hu, Hu; Hoeft, Andreas; Ben-Sasson, Shmuel A; Shu, Qiang; Fang, XiangMing

    2017-12-15

    Efficient elimination of pathogenic bacteria is a critical determinant in the outcome of sepsis. Sphingosine-1-phosphate receptor 3 (S1PR3) mediates multiple aspects of the inflammatory response during sepsis, but whether S1PR3 signaling is necessary for eliminating the invading pathogens remains unknown. To investigate the role of S1PR3 in antibacterial immunity during sepsis. Loss- and gain-of-function experiments were performed using cell and murine models. S1PR3 levels were determined in patients with sepsis and healthy volunteers. S1PR3 protein levels were up-regulated in macrophages upon bacterial stimulation. S1pr3 -/- mice showed increased mortality and increased bacterial burden in multiple models of sepsis. The transfer of wild-type bone marrow-derived macrophages rescued S1pr3 -/- mice from lethal sepsis. S1PR3-overexpressing macrophages further ameliorated the mortality rate of sepsis. Loss of S1PR3 led to markedly decreased bacterial killing in macrophages. Enhancing endogenous S1PR3 activity using a peptide agonist potentiated the macrophage bactericidal function and improved survival rates in multiple models of sepsis. Mechanically, the reactive oxygen species levels were decreased and phagosome maturation was delayed in S1pr3 -/- macrophages due to impaired recruitment of vacuolar protein-sorting 34 to the phagosomes. In addition, S1RP3 expression levels were elevated in monocytes from patients with sepsis. Higher levels of monocytic S1PR3 were associated with efficient intracellular bactericidal activity, better immune status, and preferable outcomes. S1PR3 signaling drives bacterial killing and is essential for survival in bacterial sepsis. Interventions targeting S1PR3 signaling could have translational implications for manipulating the innate immune response to combat pathogens.

  9. Bacterial leaching of uranium ores - a review

    International Nuclear Information System (INIS)

    Lowson, R.T.

    1975-11-01

    The bacterial leaching of uranium ores involves the bacterially catalysed oxidation of associated pyrite to sulphuric acid and Fe 3+ by autotrophic bacteria and the leaching of the uranium by the resulting acidic, oxidising solution. Industrial application has been limited to Thiobacillus thiooxidans and Thiobacillus ferrooxidans at pH 2 to 3, and examples of these are described. The bacterial catalysis can be improved with nutrients or prevented with poisons. The kinetics of leaching are controlled by the bed depth, particle size, percolation rate, mineralogy and temperature. Current work is aimed at quantitatively defining the parameters controlling the kinetics and extending the method to alkaline conditions with other autotrophic bacteria. (author)

  10. Bacterial growth and DOC consumption in a tropical coastal lagoon

    Directory of Open Access Journals (Sweden)

    V. F. Farjalla

    Full Text Available The aims of this research were to determine the main limiting nutrient to bacterial growth in Imboassica lagoon, southeastern Brazil, to estimate the percentage of dissolved organic carbon (DOC available for bacterial growth, and to determine the bacterial growth efficiency (BGE of natural assemblages. Bacterial growth and DOC consumption were determined in batch culture experiments, in which water samples were supplemented with nitrogen and phosphorus together or separately, or incubated without nutrient additions. When added together, N and P stimulated higher bacterial growth rates and production, as well as higher DOC consumption. The BGEs and DOC consumption rates were strongly dependent on the method used to determine bacterial production. The BGE ranged from 11 to 72%. However, only a minor fraction of bulk DOC was consumed by the planktonic bacteria (from 0.7 to 3.4%. The results suggest that low availability of phosphorus and nitrogen coupled with excess organic carbon was the main factor responsible for the relatively low bacterial utilization of DOC in Imboassica lagoon.

  11. Bacterial sex in dental plaque.

    Science.gov (United States)

    Olsen, Ingar; Tribble, Gena D; Fiehn, Nils-Erik; Wang, Bing-Yan

    2013-01-01

    Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  12. Bacterial sex in dental plaque

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2013-06-01

    Full Text Available Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  13. Pediatric bacterial meningitis in French Guiana.

    Science.gov (United States)

    Elenga, N; Sicard, S; Cuadro-Alvarez, E; Long, L; Njuieyon, F; Martin, E; Kom-Tchameni, R; Balcaen, J; Moreau, B; Boukhari, R

    2015-01-01

    Controlling vaccine-preventable infectious diseases is a public health priority in French Guiana but there is currently no epidemiological data on pediatric bacterial meningitis in this overseas department. Our aim was to describe data related to pediatric bacterial meningitis in French Guiana and compare it with that of metropolitan France. We conducted a multicenter retrospective study from 2000 to 2010 to describe the clinical picture, biological data, epidemiology, and outcome of pediatric bacterial meningitis case patients in French Guiana. The median age of bacterial meningitis patients was 6months [0-15] and the sex ratio 1.06. We observed a total of 60 bacterial meningitis case patients. Most presented with pneumococcal meningitis (24 patients; 40%); 11 with Haemophilus influenzae type b meningitis (23%), five with group B streptococcal meningitis (8.5%), and five others (8.5%) with staphylococcal meningitis (three patients presented with coagulase-negative staphylococci and two with Staphylococcus aureus). Only one patient presented with group B meningococcal meningitis, an 18-month-old infant. We recorded 14 deaths (overall case fatality: 23%); eight were due to Streptococcus pneumoniae (case fatality: 33%). The overall sequelae rate was 28%. It was 32% for patients presenting with pneumococcal meningitis. We observed that 38% of children who had never been vaccinated were infected by a vaccine-preventable bacterium. We observed many differences in the distribution of the bacteria and in the patients' prognosis when comparing the French Guiana data with that of metropolitan France. Improving vaccination coverage would decrease the incidence of H. influenzae meningitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  15. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  16. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  17. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  18. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  19. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    Science.gov (United States)

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  20. Emerging antibiotic resistant enteric bacterial flora among food ...

    African Journals Online (AJOL)

    Emerging antibiotic resistant enteric bacterial flora among food animals in Abeokuta, Nigeria. ... Nigerian Journal of Animal Production ... Bacterial resistance to antibiotic in food animals is an emerging public health concern as a result of ...

  1. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    direct or indirect evidence of a compatible bacterial pathogen. Inflammation may be .... cardinal features (fever, confusion, headache and neck stiffness). .... specificity, inappropriate indications or poor sampling technique may diminish this ...

  2. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    OpenAIRE

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment pl...

  3. Diazotrophic Bacterial Community of Degraded Pastures

    OpenAIRE

    João Tiago Correia Oliveira; Everthon Fernandes Figueredo; Williane Patrícia da Silva Diniz; Lucianne Ferreira Paes de Oliveira; Pedro Avelino Maia de Andrade; Fernando Dini Andreote; Júlia Kuklinsky-Sobral; Danúbia Ramos de Lima; Fernando José Freire

    2017-01-01

    Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN) of bacteria per gram ...

  4. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  5. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Steven Biesmans

    2013-01-01

    Full Text Available Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice and increased immunoreactivity against the microglial marker ionized calcium-binding adapter molecule 1 in the dentate gyrus of wild-type mice. Furthermore, LPS treatment caused a strong but transient increase in cytokine levels in the serum and brain. In addition to studying LPS-induced neuroinflammation, we tested whether sickness could be separated from depressive-like behavior by evaluating LPS-treated mice in a panel of behavioral paradigms. Our behavioral data indicate that systemic LPS administration caused sickness and mild depressive-like behavior. However, due to the overlapping time course and mild effects on depression-related behavior per se, it was not possible to separate sickness from depressive-like behavior in the present rodent model.

  6. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  7. Functional recovery of biofilm bacterial communities after copper exposure

    International Nuclear Information System (INIS)

    Boivin, Marie-Elene Y.; Massieux, Boris; Breure, Anton M.; Greve, Gerdit D.; Rutgers, Michiel; Admiraal, Wim

    2006-01-01

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 μmol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 μmol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 μmol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days. - Genetically different bacterial communities can have similar functions and tolerance to copper

  8. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions.

    Science.gov (United States)

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M; Cai, Zhonghua

    2016-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.

  9. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  10. Determination of Bacterial Growth in Culture Media

    International Nuclear Information System (INIS)

    Elly Ellyna Rashid; Shariza Hanim Zainal Abidin; Mok, P.S.

    2015-01-01

    Bacteria is one of the important microorganism in our daily life. Bacteria provides human beings with products in the field of medical, industry, food, agriculture and others. Determination of bacteria growth is important so that we can enjoy the most benefit from it. Spread-plate method is one of the methods to obtain the bacterial counts. Agar plates, such as Nutrient Agar or Plate Count Agar are usually used for this purpose. Bacterial culture will be diluted first before being spread on the agar plate and incubated at specific temperature. The number of bacteria in colony-forming unit (CFU) will be counted the next day. The count will be used to determine the bacterial growth. (author)

  11. [Etiology of bacterial vaginosis (non-specific vaginitis)].

    Science.gov (United States)

    Lefèvre, J C; Jean, M; Averous, S; Viraben, R; Blanc, C; Bauriaud, R; Lareng, M B

    1985-01-01

    56 women who were diagnosed bioclinically as having a bacterial vaginal infection were studied, as were 35 women as a control group. The study was a semi-quantitative analysis of the vaginal bacterial flora, both aerobic and anaerobic. It shows that Gardnerella vaginalis and anaerobic bacteria such as Peptococcus, Peptostreptococcus, Bacteroïdes, Veillonella and Mobiluncus were associated in a statistically significant way with bacterial vaginitis. On the other hand Lactobacilli were less frequently found (p less than 0.001) than in the control group of women. The way in which the microbial flora is changed has been observed during attacks of vaginitis and is discussed, as is the importance of making the diagnosis and of treating this syndrome.

  12. Magnetotaxy in microorganisms of Rio de Janeiro region: an overview

    International Nuclear Information System (INIS)

    Barros, H.G. de P.L. de; Esquivel, D.M.S.

    1983-01-01

    Some characteristics of several magnetotactic microorganisms found in sediments collected in Rio de Janeiro region are presented. The study of magnetic characteristics of these microorganisms indicate some general properties of the magnetotaxy phenomenons. (L.C.) [pt

  13. Cholinesterase modulations in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Ofek, Keren; Qvist, Tavs

    2011-01-01

    The circulating cholinesterases acetyl- and butyrylcholinesterase may be suppressed and subsequently released from the brain in acute bacterial meningitis.......The circulating cholinesterases acetyl- and butyrylcholinesterase may be suppressed and subsequently released from the brain in acute bacterial meningitis....

  14. Buckling instability in ordered bacterial colonies

    Science.gov (United States)

    Boyer, Denis; Mather, William; Mondragón-Palomino, Octavio; Orozco-Fuentes, Sirio; Danino, Tal; Hasty, Jeff; Tsimring, Lev S.

    2011-04-01

    Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell-cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony.

  15. Buckling instability in ordered bacterial colonies

    International Nuclear Information System (INIS)

    Boyer, Denis; Mather, William; Mondragón-Palomino, Octavio; Danino, Tal; Hasty, Jeff; Orozco-Fuentes, Sirio; Tsimring, Lev S

    2011-01-01

    Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell–cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony

  16. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    Science.gov (United States)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  17. Benthic bacterial diversity in submerged sinkhole ecosystems.

    Science.gov (United States)

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  18. Interspecies chemical communication in bacterial development.

    Science.gov (United States)

    Straight, Paul D; Kolter, Roberto

    2009-01-01

    Our view of bacteria, from the earliest observations through the heyday of antibiotic discovery, has shifted dramatically. We recognize communities of bacteria as integral and functionally important components of diverse habitats, ranging from soil collectives to the human microbiome. To function as productive communities, bacteria coordinate metabolic functions, often requiring shifts in growth and development. The hallmark of cellular development, which we characterize as physiological change in response to environmental stimuli, is a defining feature of many bacterial interspecies interactions. Bacterial communities rely on chemical exchanges to provide the cues for developmental change. Traditional methods in microbiology focus on isolation and characterization of bacteria in monoculture, separating the organisms from the surroundings in which interspecies chemical communication has relevance. Developing multispecies experimental systems that incorporate knowledge of bacterial physiology and metabolism with insights from biodiversity and metagenomics shows great promise for understanding interspecies chemical communication in the microbial world.

  19. Bacterial self-defense antibiotics release from organic-inorganic hybrid multilayer films for long-term anti-adhesion and biofilm inhibition properties.

    Science.gov (United States)

    Xu, Qingwen; Li, Xi; Jin, Yingying; Sun, Lin; Ding, Xiaoxu; Liang, Lin; Wang, Lei; Nan, Kaihui; Ji, Jian; Chen, Hao; Wang, Bailiang

    2017-12-14

    Implant-associated bacterial infections pose serious medical and financial issues due to the colonization and proliferation of pathogens on the surface of the implant. The as-prepared traditional antibacterial surfaces can neither resist bacterial adhesion nor inhibit the development of biofilm over the long term. Herein, novel (montmorillonite/poly-l-lysine-gentamicin sulfate) 8 ((MMT/PLL-GS) 8 ) organic-inorganic hybrid multilayer films were developed to combine enzymatic degradation PLL for on-demand self-defense antibiotics release. Small molecule GS was loaded into the multilayer films during self-assembly and the multilayer films showed pH-dependent and linear growth behavior. The chymotrypsin- (CMS) and bacterial infections-responsive film degradation led to the peeling of the films and GS release. Enzyme-responsive GS release exhibited CMS concentration dependence as measured by the size of the inhibition zone and SEM images. Notably, the obtained antibacterial films showed highly efficient bactericidal activity which killed more than 99.9% of S. aureus in 12 h. Even after 3 d of incubation in S. aureus, E. coli or S. epidermidis solutions, the multilayer films exhibited inhibition zones of more than 1.5 mm in size. Both in vitro and in vivo antibacterial tests indicated good cell compatibility, and anti-inflammatory, and long-term bacterial anti-adhesion and biofilm inhibition properties.

  20. Growth behaviors of bacteria in biofouling cake layer in a dead-end microfiltration system.

    Science.gov (United States)

    Chao, Yuanqing; Zhang, Tong

    2011-01-01

    The growth behaviors of three bacterial species, i.e. Escherichia coli, Pseudomonas putida and Aquabaculum hongkongensis, in biofouling cake layer (attached form) were investigated using an unstirred dead-end continuous microfiltration system, and were compared with those in suspended form. Results showed that all the three bacteria had larger average growth rates in suspended form than in attached form under high substrates levels. Under oligotrophic conditions, the average growth rates in the attached form were faster than those in the suspended form, especially for A. hongkongensis. The growth behaviors analysis presented the same results due to all the tested bacteria had higher maximum growth rate and saturation constant in suspended form than attached form, indicating the dominant growth mode would be shifted from attached form to suspended form with substrate concentration increase. Finally, total filtration resistance determined in the experiments increased significantly with the bacterial growth in filtration system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The Prevalence of Bacterial Vaginosis among Pregnant Women ...

    African Journals Online (AJOL)

    60.4%) were asymptomatic. There were 92 out of 250 pregnant women (36.8%) that had three or more of the Amsel's criteria for the diagnosis of bacterial vaginosis. The associated risk factors for developing bacterial vaginosis in the study ...

  2. Bacterial colonization and gut development in preterm neonates

    DEFF Research Database (Denmark)

    Cilieborg, Malene S.; Boye, Mette; Sangild, Per Torp

    2012-01-01

    Necrotizing enterocolitis (NEC) develops in 5–10% of preterm infants in association with enteral feeding and bacterial colonization. It remains unclear how diet and bacteria interact to protect or provoke the immature gastrointestinal tract. Understanding the factors that control bacterial...

  3. Acute Sleep Deprivation Enhances Post-Infection Sleep and Promotes Survival during Bacterial Infection in Drosophila

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A.

    2014-01-01

    Study Objectives: Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Setting: Laboratory. Participants: Drosophila melanogaster. Methods and Results: Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Conclusions: Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection. Citation: Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. SLEEP 2014;37(5):859-869. PMID:24790264

  4. Use of agroindustrial waste in the preparation of nanocomposites based on bacterial cellulose and hydroxyapatite

    International Nuclear Information System (INIS)

    Duarte, Eden B.; Chagas, Bruna S. das; Feitosa, Judith P.A.; Andrade, Fabia K.; Borges, Maria F.; Muniz, Celli R.; Souza Filho, Men de Sa M.; Rosa, Morsyleide F.; Brigida, Ana I.; Morais, Joao P.S.

    2015-01-01

    Environmental issues have supported the interest in renewable sources and agroindustrial residues became a significant resource for the production of new materials. The present work presents the use of agroindustrial residues to obtain bacterial cellulose (BC) for further elaboration of nanocomposites with hydroxyapatite (HA). The production of BC membranes occurred in Hestrin & Schramm medium, cashew juice and sisal liquid waste cultivated under static conditions. After the incubation period, the BC membranes were purified and nanocomposites prepared by successive immersion of the purified membranes in solutions of Calcium Chloride (CaCl_2), and Sodium Phosphate (Na_2HPO_4), followed by drying and subsequent characterization. The materials obtained were characterized by Thermogravimetric Analysis (TGA) and X-ray Diffraction (XRD). Additionally, in vitro tests were performed for nanocomposites. The results showed the production of cellulose from the three substrates studied, without the need for further supplementation or pH change. In all characterizations, structure and typical behavior of bacterial cellulose were found. The composites showed bioactivity and the adsorption capacity of proteins, which lead to potential biocompatibility of these materials. (author)

  5. Bacterial contamination of platelet concentrates: pathogen detection and inactivation methods

    Directory of Open Access Journals (Sweden)

    Dana Védy

    2009-04-01

    Full Text Available Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.

  6. Altered Bacterial Profiles in Saliva from Adults with Caries Lesions

    DEFF Research Database (Denmark)

    Belstrøm, D; Fiehn, N-E; Nielsen, C H

    2014-01-01

    -Whitney's test with Benjamini-Hochberg correction for multiple comparisons. Principal component analysis was used to visualize bacterial community profiles. A reduced bacterial diversity was observed in samples from subjects with dental caries. Five bacterial taxa (Veillonella parvula, Veillonella atypica......, Megasphaera micronuciformis, Fusobacterium periodontium and Achromobacter xylosoxidans) and one bacterial cluster (Leptotrichia sp. clones C3MKM102 and GT018_ot417/462) were less frequently found in the caries group (adjusted p value ... salivarius) and three bacterial clusters (Streptococcus parasanguinis I and II and sp. clone BE024_ot057/411/721, Streptococcus parasanguinis I and II and sinensis_ot411/721/767, Streptococcus salivarius and sp. clone FO042_ot067/755) were present at significantly higher levels (adjusted p value

  7. Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus

    Directory of Open Access Journals (Sweden)

    Misako Okumura

    2017-11-01

    Full Text Available Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.

  8. Bacterial Acclimation Inside an Aqueous Battery.

    Science.gov (United States)

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  9. A study of magnetic properties of magnetotatic bacteria

    International Nuclear Information System (INIS)

    Wajnberg, E.; Souza, L.H. de; Barros, H.G. de P.L. de; Esquivel, D.M.S.

    1985-01-01

    The average magnetic moment and its anisotropy are determined in natural samples of magnetotactic bacteria at 4.2 K using a SQUID magnetometer. The results are in good agreement with estimates made from electron micrographs. (Author) [pt

  10. Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential.

    Science.gov (United States)

    de Alencar, Daniel Barroso; de Carvalho, Fátima Cristiane Teles; Rebouças, Rosa Helena; Dos Santos, Daniel Rodrigues; Dos Santos Pires-Cavalcante, Kelma Maria; de Lima, Rebeca Larangeira; Baracho, Bárbara Mendes; Bezerra, Rayssa Mendes; Viana, Francisco Arnaldo; Dos Fernandes Vieira, Regine Helena Silva; Sampaio, Alexandre Holanda; de Sousa, Oscarina Viana; Saker-Sampaio, Silvana

    2016-04-01

    To evaluate the antioxidant, antibacterial and bacterial cell agglutination activities of the hexane (Hex) and 70% ethanol (70% EtOH) extracts of two species of red seaweeds Pterocladiella capillacea (P. capillacea) and Osmundaria obtusiloba. In vitro antioxidant activity was determined by DPPH radical scavenging assay, ferric-reducing antioxidant power assay, ferrous ion chelating assay, β-carotene bleaching assay and total phenolic content quantification. Antimicrobial activity was tested using the method of disc diffusion on Mueller-Hinton medium. The ability of algal extracts to agglutinate bacterial cells was also tested. The 70% EtOH extract of the two algae showed the highest values of total phenolic content compared to the Hex extract. The results of DPPH for both extracts (Hex, 70% EtOH) of Osmundaria obtusiloba (43.46% and 99.47%) were higher than those of P. capillacea (33.04% and 40.81%) at a concentration of 1000 μg/mL. As for the ferrous ion chelating, there was an opposite behavior, extracts of P. capillacea had a higher activity. The extracts showed a low ferric-reducing antioxidant power, with optical density ranging from 0.054 to 0.180. Antioxidant activities of all extracts evaluated for β-carotene bleaching were above 40%. There was no antibacterial activity against bacterial strains tested. However, the extracts of both species were able to agglutinate bacterial Gram positive cells of Staphylococcus aureus and Gram negative cells of Escherichia coli, multidrug-resistant Salmonella and Vibrio harveyi. This is the first report of the interaction between these algal extracts, rich in natural compounds with antioxidant potential, and Gram positive and Gram negative bacterial cells. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  11. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  12. Molecular methods for bacterial genotyping and analyzed gene regions

    Directory of Open Access Journals (Sweden)

    İbrahim Halil Yıldırım1, Seval Cing Yıldırım2, Nadir Koçak3

    2011-06-01

    Full Text Available Bacterial strain typing is an important process for diagnosis, treatment and epidemiological investigations. Current bacterial strain typing methods may be classified into two main categories: phenotyping and genotyping. Phenotypic characters are the reflection of genetic contents. Genotyping, which refers discrimination of bacterial strains based on their genetic content, has recently become widely used for bacterial strain typing. The methods already used in genotypingof bacteria are quite different from each other. In this review we tried to summarize the basic principles of DNA-based methods used in genotyping of bacteria and describe some important DNA regions that are used in genotyping of bacteria. J Microbiol Infect Dis 2011;1(1:42-46.

  13. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we

  14. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  15. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  16. Gene calling and bacterial genome annotation with BG7.

    Science.gov (United States)

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  17. Bacterial nucleotide-based second messengers.

    Science.gov (United States)

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  18. Role of Autophagy and Apoptosis in the Postinfluenza Bacterial Pneumonia

    Directory of Open Access Journals (Sweden)

    Zhen Qin

    2016-01-01

    Full Text Available The risk of influenza A virus (IAV is more likely caused by secondary bacterial infections. During the past decades, a great amount of studies have been conducted on increased morbidity from secondary bacterial infections following influenza and provide an increasing number of explanations for the mechanisms underlying the infections. In this paper, we first review the recent research progress that IAV infection increased susceptibility to bacterial infection. We then propose an assumption that autophagy and apoptosis manipulation are beneficial to antagonize post-IAV bacterial infection and discuss the clinical significance.

  19. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  20. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  1. MAGNETIC BACTERIA AND THEIR POTENTIAL APPLICATIONS: A REVIEW ARTICLE

    Directory of Open Access Journals (Sweden)

    Sara Rajab Eljmeli

    2017-03-01

    Full Text Available Introduction: This outline explores the scientific discovery concerning the magnetotactic bacteria (MTB. The results of the discovery are used in microbiology, mineralogy, limnology, physics, biophysics, chemistry, biochemistry, geology, crystallography, and astrobiology. Magnetosomes of the MTB are organized in linear chains and orient the cell body along geomagnetic field lines while flagella actively propel the cells, resulting in so-called magnetotaxis. Materials and Methods: The review article about the magnetotactic bacteria is a collection of many research papers from different institutes. The emerging important points about this review lie in: (1 any biological system is capable of producing magnetic biomaterials such as magnetite (Fe3O4 and gregite (Fe3S4; (2 the navigation of these nano-crystals in the biological system is interconnected with the Earth’s magnetic field. Results: The researchers involved in the study have shown that the magnetotactic bacteria do respond to a magnetic field. This makes them attractive for biomedical and industrial applications because of the availability of superior electromagnets, superconducting magnets and permanent magnet. Magnetic bacteria can also be used as a diagnostic tool in the detection of imperfections even at the nanoscale. Discussion and Conclusions: Although the importance of this issue is still limitedly used in medical area, more performance is necessary to explore the world of these bacteria that are candidate for new industry and new therapy strategies in biotechnology and medical fields.

  2. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    Mineral phosphate solubilizing bacterial community in agro-ecosystem. N Saha, S Biswas. Abstract. The present communication deals with the assessment of phosphate solubilizing bacterial community structure across artificially created fertility gradient with regards to N, P and K status of soil in the experimental site.

  3. Partial drying accelerates bacterial growth recovery to rewetting

    DEFF Research Database (Denmark)

    Meisner, Annelein; Leizeaga, Ainara; Rousk, Johannes

    2017-01-01

    , bacterial growth rates increase immediately in a linear fashion. In the Type 2 pattern, bacterial growth rates increase exponentially after a lag period. However, soils are often only partially dried. Partial drying (higher remaining moisture content before rewetting) may be considered a less harsh...

  4. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species

    Science.gov (United States)

    Merino, Enrique; Bonomi, Hernán Ruy; Goldbaum, Fernando Alberto; García-Angulo, Víctor Antonio

    2015-01-01

    Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP) genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria. PMID:25938806

  5. Dynamic Computational Model of Symptomatic Bacteremia to Inform Bacterial Separation Treatment Requirements.

    Directory of Open Access Journals (Sweden)

    Sinead E Miller

    Full Text Available The rise of multi-drug resistance has decreased the effectiveness of antibiotics, which has led to increased mortality rates associated with symptomatic bacteremia, or bacterial sepsis. To combat decreasing antibiotic effectiveness, extracorporeal bacterial separation approaches have been proposed to capture and separate bacteria from blood. However, bacteremia is dynamic and involves host-pathogen interactions across various anatomical sites. We developed a mathematical model that quantitatively describes the kinetics of pathogenesis and progression of symptomatic bacteremia under various conditions, including bacterial separation therapy, to better understand disease mechanisms and quantitatively assess the biological impact of bacterial separation therapy. Model validity was tested against experimental data from published studies. This is the first multi-compartment model of symptomatic bacteremia in mammals that includes extracorporeal bacterial separation and antibiotic treatment, separately and in combination. The addition of an extracorporeal bacterial separation circuit reduced the predicted time of total bacteria clearance from the blood of an immunocompromised rodent by 49%, compared to antibiotic treatment alone. Implementation of bacterial separation therapy resulted in predicted multi-drug resistant bacterial clearance from the blood of a human in 97% less time than antibiotic treatment alone. The model also proposes a quantitative correlation between time-dependent bacterial load among tissues and bacteremia severity, analogous to the well-known 'area under the curve' for characterization of drug efficacy. The engineering-based mathematical model developed may be useful for informing the design of extracorporeal bacterial separation devices. This work enables the quantitative identification of the characteristics required of an extracorporeal bacteria separation device to provide biological benefit. These devices will potentially

  6. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  7. Soil bacterial community shifts associated with sugarcane straw removal

    Science.gov (United States)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  8. Skin bacterial flora as a potential risk factor predisposing to late bacterial infection after cross-linked hyaluronic acid gel augmentation.

    Science.gov (United States)

    Netsvyetayeva, Irina; Marusza, Wojciech; Olszanski, Romuald; Szyller, Kamila; Krolak-Ulinska, Aneta; Swoboda-Kopec, Ewa; Sierdzinski, Janusz; Szymonski, Zachary; Mlynarczyk, Grazyna

    2018-01-01

    Cross-linked hyaluronic acid (HA) gel is widely used in esthetic medicine. Late bacterial infection (LBI) is a rare, but severe complication after HA augmentation. The aim of this study was to determine whether patients who underwent the HA injection procedure and developed LBI had qualitatively different bacterial flora on the skin compared to patients who underwent the procedure without any complications. The study group comprised 10 previously healthy women with recently diagnosed, untreated LBI after HA augmentation. The control group comprised 17 healthy women who had a similar amount of HA injected with no complications. To assess the difference between the two groups, their skin flora was cultured from nasal swabs, both before and after antibiotic treatment in the study group. A significant increase in the incidence of Staphylococcus epidermidis was detected in the control group ( P =0.000) compared to the study group. The study group showed a significantly higher incidence of Staphylococcus aureus ( P =0.005), Klebsiella pneumoniae ( P =0.006), Klebsiella oxytoca ( P =0.048), and Staphylococcus haemolyticus ( P =0.048) compared to the control group. The bacterial flora on the skin differed in patients with LBI from the control group. The control group's bacterial skin flora was dominated by S. epidermidis . Patients with LBI had a bacterial skin flora dominated by potentially pathogenic bacteria.

  9. Species and Scale Dependence of Bacterial Motion Dynamics

    Science.gov (United States)

    Sund, N. L.; Yang, X.; Parashar, R.; Plymale, A.; Hu, D.; Kelly, R.; Scheibe, T. D.

    2017-12-01

    Many metal reducing bacteria are motile with their motion characteristics described by run-and-tumble behavior exhibiting series of flights (jumps) and waiting (residence) time spanning a wide range of values. Accurate models of motility allow for improved design and evaluation of in-situ bioremediation in the subsurface. While many bioremediation models neglect the motion of the bacteria, others treat motility using an advection dispersion equation, which assumes that the motion of the bacteria is Brownian.The assumption of Brownian motion to describe motility has enormous implications on predictive capabilities of bioremediation models, yet experimental evidence of this assumption is mixed [1][2][3]. We hypothesize that this is due to the species and scale dependence of the motion dynamics. We test our hypothesis by analyzing videos of motile bacteria of five different species in open domains. Trajectories of individual cells ranging from several seconds to few minutes in duration are extracted in neutral conditions (in the absence of any chemical gradient). The density of the bacteria is kept low so that the interaction between the bacteria is minimal. Preliminary results show a transition from Fickian (Brownian) to non-Fickian behavior for one species of bacteria (Pelosinus) and persistent Fickian behavior of another species (Geobacter).Figure: Video frames of motile bacteria with the last 10 seconds of their trajectories drawn in red. (left) Pelosinus and (right) Geobacter.[1] Ariel, Gil, et al. "Swarming bacteria migrate by Lévy Walk." Nature Communications 6 (2015).[2] Saragosti, Jonathan, Pascal Silberzan, and Axel Buguin. "Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis." PloS one 7.4 (2012): e35412.[3] Wu, Mingming, et al. "Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique." Applied and Environmental Microbiology 72.7 (2006): 4987-4994.

  10. Factors influencing bacterial adhesion to contact lenses.

    Science.gov (United States)

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  11. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  12. Bacterial flora of spices and its control by gamma irradiation

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Youssef, Y.A.; Awny, N.M.; Hussein, H.A.

    1985-01-01

    The bacterial contamination was tested in 26 samples of spices. Chili, allspice and paprika were the most contaminated spices by bacteria. Five bacterial genera were isolated, namely bacillus, staphylococcus, streptococcus, micrococcus, and coccobacillus, all being gram-positive. Most isolates have been related to the genus bacillus. The bacterial isolates were identified as B. alvei, B. circulans, B. megaterium, B. pasteurii, B. pumilus, B. thuringiensis, B. sphaericus, B. incertaesedis, Micrococcus luteus, staphylococcus aureus, streptococcus sp. and coccobacillus sp. Irradiation of spices led to a significant decrease in the bacterial count of all samples. The dose required to inhibit completely the natural bacterial flora was 25 KGY. The most radioresistant isolates were staphylococcus aureus and micrococcus luteus which were subjected to sublethal doses of 15 and 20 KGY respectively. The dose response curves of the 2 most radioresistant isolates showed simple exponential relationship. The D 10-value of S. aureus and M. luteus were 0.9 and 1.1 KGY, respectively. The effect of storage period on the bacterial load of, as well as, the antibacterial activity of the tested spices were investigated. (author)

  13. Bacterial flora of spices and its control by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawahry, Y A; Youssef, Y A; Awny, N M; Hussein, H A

    1985-01-01

    The bacterial contamination was tested in 26 samples of spices. Chili, allspice and paprika were the most contaminated spices by bacteria. Five bacterial genera were isolated, namely bacillus, staphylococcus, streptococcus, micrococcus, and coccobacillus, all being gram-positive. Most isolates have been related to the genus bacillus. The bacterial isolates were identified as B. alvei, B. circulans, B. megaterium, B. pasteurii, B. pumilus, B. thuringiensis, B. sphaericus, B. incertaesedis, Micrococcus luteus, staphylococcus aureus, streptococcus sp. and coccobacillus sp. Irradiation of spices led to a significant decrease in the bacterial count of all samples. The dose required to inhibit completely the natural bacterial flora was 25 KGY. The most radioresistant isolates were staphylococcus aureus and micrococcus luteus which were subjected to sublethal doses of 15 and 20 KGY respectively. The dose response curves of the 2 most radioresistant isolates showed simple exponential relationship. The D 10-value of S. aureus and M. luteus were 0.9 and 1.1 KGY, respectively. The effect of storage period on the bacterial load of, as well as, the antibacterial activity of the tested spices were investigated.

  14. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    Science.gov (United States)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  15. Bacterial community structure in the Cerasus sachalinensis Kom ...

    African Journals Online (AJOL)

    Jane

    2011-07-21

    Jul 21, 2011 ... The bacterial community structures of the Cerasus sachalinensis Kom. rhizosphere in wild and cultivated soil were studied and the community changes in different growth stages were analyzed by the PCR-denaturing gradient gel electrophoresis (PCR-DGGE) method. The results showed that the bacterial ...

  16. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective

    Directory of Open Access Journals (Sweden)

    Benjamin Rémy

    2018-03-01

    Full Text Available Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs, as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs to block the action of AIs and quorum quenching (QQ enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.

  17. Towards revealing the structure of bacterial inclusion bodies.

    Science.gov (United States)

    Wang, Lei

    2009-01-01

    Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6-12 nm, they are comprised of residue-specific cross-beta structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies.

  18. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    Science.gov (United States)

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  19. Bacterial contamination of platelet components not detected by BacT/ALERT®.

    Science.gov (United States)

    Abela, M A; Fenning, S; Maguire, K A; Morris, K G

    2018-02-01

    To investigate the possible causes for false negative results in BacT/ALERT ® 3D Signature System despite bacterial contamination of platelet units. The Northern Ireland Blood Transfusion Service (NIBTS) routinely extends platelet component shelf life to 7 days. Components are sampled and screened for bacterial contamination using an automated microbial detection system, the BacT/ALERT ® 3D Signature System. We report on three platelet components with confirmed bacterial contamination, which represent false negative BacT/ALERT ® results and near-miss serious adverse events. NIBTS protocols for risk reduction of bacterial contamination of platelet components are described. The methodology for bacterial detection using BacT/ALERT ® is outlined. Laboratory tests, relevant patient details and relevant follow-up information are analysed. In all three cases, Staphylococcus aureus was isolated from the platelet residue and confirmed on terminal sub-culture using BacT/ALERT ® . In two cases, S. aureus with similar genetic makeup was isolated from the donors. Risk reduction measures for bacterial contamination of platelet components are not always effective. Automated bacterial culture detection does not eliminate the risk of bacterial contamination. Visual inspection of platelet components prior to release, issue and administration remains an important last line of defence. © 2017 British Blood Transfusion Society.

  20. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yuan, Zhang [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ding, Hongyan [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu Province 223003 (China); Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2017-06-01

    To improve the biological performance of titanium substrates, a bioactive multilayered structure of chitosan/gelatin pair, containing zinc ions, was constructed via a layer-by-layer self-assembly technique. The successful preparation of zinc ions incorporated multilayer films was demonstrated by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements, respectively. The biological behaviors of osteoblasts adhered to modified Ti substrates were investigated in vitro via cytoskeleton observation, cell viability measurement, and alkaline phosphatase activity assay. The cytocompatibility evaluation verified that the present system was capable of promoting the growth of osteoblasts. In addition, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria were used to evaluate antibacterial property of modified Ti substrates. Bacterial adhesion and viability assay confirmed that Zn-loaded multilayer films were able to inhibit the adhesion and growth of bacteria. The approach presented here affords an alternative to reduce bacterial infection and promote osteoblast growth for titanium-based implants. - Highlights: • Polyelectrolyte multilayer films containing Zn ions were fabricated on Ti substrate. • Modified Ti substrate stimulated the biological responses of osteoblast. • Antibacterial property of Ti substrate was significantly improved. • The resulting material thus has potential application in orthopedic field.

  1. C-reactive protein velocity to distinguish febrile bacterial infections from non-bacterial febrile illnesses in the emergency department

    OpenAIRE

    Paran, Yael; Yablecovitch, Doron; Choshen, Guy; Zeitlin, Ina; Rogowski, Ori; Ben-Ami, Ronen; Katzir, Michal; Saranga, Hila; Rosenzweig, Tovit; Justo, Dan; Orbach, Yaffa; Halpern, Pinhas; Berliner, Shlomo

    2009-01-01

    Introduction C-reactive protein (CRP) is a real-time and low-cost biomarker to distinguish febrile bacterial infections from non-bacterial febrile illnesses. We hypothesised that measuring the velocity of the biomarker instead of its absolute serum concentration could enhance its ability to differentiate between these two conditions. Methods We prospectively recruited adult patients (age ? 18 years) who presented to the emergency department with fever. We recorded their data regarding the ons...

  2. Magnetic properties of heat treated bacterial ferrihydrite nanoparticles

    International Nuclear Information System (INIS)

    Balaev, D.A.; Krasikov, A.A.; Dubrovskiy, A.A.; Popkov, S.I.; Stolyar, S.V.; Bayukov, O.A.; Iskhakov, R.S.; Ladygina, V.P.; Yaroslavtsev, R.N.

    2016-01-01

    The magnetic properties of ferrihydrite nanoparticles, which are products of vital functions of Klebsiella oxitoca bacteria, have been studied. The initial powder containing the nanoparticles in an organic shell was subjected to low-temperature (T=160 °C) heat treatment for up to 240 h. The bacterial ferrihydrite particles exhibit a superparamagnetic behavior. Their characteristic blocking temperature increases from 26 to 80 K with the heat treatment. Analysis of the magnetization curves with regard to the magnetic moment distribution function and antiferromagnetic contribution shows that the low-temperature heat treatment enhances the average magnetic moment of a particle; i.e., the nanoparticles coarsen, probably due to their partial agglomeration during heat treatment. It was established that the blocking temperature nonlinearly depends on the particle volume. Therefore, a model was proposed that takes into account both the bulk and surface magnetic anisotropy. Using this model, the bulk and surface magnetic anisotropy constants K V ≈1.7×10 5 erg/cm 3 and K S ≈0.055 erg/cm 2 have been determined. The effect of the surface magnetic anisotropy of ferrihydrite nanoparticles on the observed magnetic hysteresis loops is discussed. - Highlights: • Ferrihydrite nanoparticles of biogenic origin are obtained. • Magnetic characterization reveals superparamagnetic behavior. • The blocking temperature increases upon the low-temperature (T=160 °C) heat treatment. • The blocking temperature nonlinearly depends on the particle volume. • The bulk and surface magnetic anisotropy constants have been determined.

  3. Childhood asthma after bacterial colonization of the airway in neonates

    DEFF Research Database (Denmark)

    Bisgaard, Hans; Hermansen, Mette Northman; Buchvald, Frederik

    2007-01-01

    Pathological features of the airway in young children with severe recurrent wheeze suggest an association between bacterial colonization and the initiating events of early asthma. We conducted a study to investigate a possible association between bacterial colonization of the hypopharynx in asymp......Pathological features of the airway in young children with severe recurrent wheeze suggest an association between bacterial colonization and the initiating events of early asthma. We conducted a study to investigate a possible association between bacterial colonization of the hypopharynx...... in asymptomatic neonates and later development of recurrent wheeze, asthma, and allergy during the first 5 years of life....

  4. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    Science.gov (United States)

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Counterimmunoelectrophoresis in the diagnosis of bacterial meningitis

    DEFF Research Database (Denmark)

    Colding, H; Lind, I

    1977-01-01

    The aim of the present study was to investigate whether counterimmunoelectrophoresis (CIE) would facilitate the rapid, etiological diagnosis of bacterial meningitis when used in parallel with other routine methods in a medical bacteriological laboratory. Of 3,674 consecutive specimens of cerebros......The aim of the present study was to investigate whether counterimmunoelectrophoresis (CIE) would facilitate the rapid, etiological diagnosis of bacterial meningitis when used in parallel with other routine methods in a medical bacteriological laboratory. Of 3,674 consecutive specimens....../139) of the culture-negative specimens. CSF specimens from 21 patients with bacterial meningitis caused by other species were all negative in CIE, except four, three of which contained Escherichia coli antigen reacting with antiserum to N. meningitidis group B and one E. coli antigen reacting with antiserum to H...

  7. Bacterial colonization of psoriasis plaques. Is it relevant?

    Directory of Open Access Journals (Sweden)

    Eva Marcus

    2011-08-01

    Full Text Available Bacterial colonization was investigated retrospectively in patients with plaque psoriasis (n=98 inpatient treatments, n=73 patients. At least one pathogen was found in 46% of all cases. Staphylococcus aureus was the most frequent bacterium. Bacterial colonization of psoriasis plaques could be relevant in individual cases.

  8. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  9. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  11. High level bacterial contamination of secondary school students' mobile phones.

    Science.gov (United States)

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-06-01

    While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students' mobile phones. Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline ( tet A, tet B, tet M), erythromycin ( erm B) and sulphonamide ( sul 1) resistance genes was assessed. We found a high median bacterial count on secondary school students' mobile phones (10.5 CFU/cm 2 ) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes ( Staphylococcus aureus , Acinetobacter spp. , Pseudomonas spp., Bacillus cereus and Neisseria flavescens ) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner's gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Quantitative study methods revealed high level bacterial contamination of secondary school students' mobile phones.

  12. Bacterial diversity at different stages of the composting process

    Directory of Open Access Journals (Sweden)

    Paulin Lars

    2010-03-01

    Full Text Available Abstract Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.

  13. Alternatives to overcoming bacterial resistances: State-of-the-art.

    Science.gov (United States)

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  14. Controlled progressive innate immune stimulation regimen prevents the induction of sickness behavior in the open field test.

    Science.gov (United States)

    Chen, Qun; Tarr, Andrew J; Liu, Xiaoyu; Wang, Yufen; Reed, Nathaniel S; Demarsh, Cameron P; Sheridan, John F; Quan, Ning

    2013-01-01

    Peripheral immune activation by bacterial mimics or live replicating pathogens is well known to induce central nervous system activation. Sickness behavior alterations are often associated with inflammation-induced increases in peripheral proinflammatory cytokines (eg, interleukin [IL]-1β and IL-6). However, most researchers have used acute high dose endotoxin/bacterial challenges to observe these outcomes. Using this methodology may pose inherent risks in the translational interpretation of the experimental data in these studies. Studies using Escherichia coli have yet to establish the full kinetics of repeated E. coli peripheral injections. Therefore, we sought to examine the effects of repeated low dose E. coli on sickness behavior and local peripheral inflammation in the open field test. Results from the current experiments showed a behavioral dose response, where increased amounts of E. coli resulted in correspondingly increased sickness behavior. Furthermore, animals that received a subthreshold dose (ie, one that did not cause sickness behavior) of E. coli 24 hours prior were able to withstand a larger dose of E. coli on the second day (a dose that would normally cause sickness behavior in mice without prior exposure) without inducing sickness behavior. In addition, animals that received escalating subthreshold doses of E. coli on days 1 and 2 behaviorally tolerated a dose of E. coli 25 times higher than what would normally cause sickness behavior if given acutely. Lastly, increased levels of E. coli caused increased IL-6 and IL-1β protein expression in the peritoneal cavity, and this increase was blocked by administering a subthreshold dose of E. coli 24 hours prior. These data show that progressive challenges with subthreshold levels of E. coli may obviate the induction of sickness behavior and proinflammatory cytokine expression.

  15. Carbon nanotubes as anti-bacterial agents.

    Science.gov (United States)

    Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian

    2017-10-01

    Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

  16. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing circuit bacterial filter. 868.5260 Section 868.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to remove...

  17. Binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1976-01-01

    Bacterial transformation in relation to DNA transport and competence in Streptococcus pneumoniae (also called Diplococcus pneumoniae) is discussed. This species will serve as a model with which to compare transformation in other bacterial species, particularly Bacillus subtilis and Haemophilus influenzae, with emphasis on the many similarities as well as differences.

  18. Heme Synthesis and Acquisition in Bacterial Pathogens

    OpenAIRE

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  19. Bacterial Vaginosis Presence in Sexually Active Women in Tuzla Canton Area

    Directory of Open Access Journals (Sweden)

    Fatima Numanović

    2008-11-01

    Full Text Available The goal of our research was to determine the presence of bacterial vaginosis in sexually active women in Tuzla Canton area. Diagnosis determination for bacterial vaginosis was conducted on the basis of three out of four internationally accepted criteria according to Amsel and isolation and identification of Gard- nerella vaginalis (G. vaginalis by standard microbiological procedures. Bacterial vaginosis was diagnosed in 20,5 % (41/200 women who asked for gynaecologist’s help due to their personal discomfort, since significantly higher percentage of diagnosed bacterial vaginosis of 48,80% (41/84 was determined in women with personal discomfort typical for this disease. All relevant factors, according to available literature, for genesis of bacterial vaginosis were processed in this research. In respect to the obtained outputs, bacterial vaginosis is significantly more frequent occurrence in women who are not married, since the number of sexual partners, the time of the first sexual intercourse, the use of intrauterine contraceptive device and smoking do not cause the genesis of bacterial vaginosis. According to Nugent, an increased vaginal discharge with unpleasant odour after sexual discourse, its pH>4,5, a positive amino odour test, an occurrence of clue cells in a direct microscopic concoction of vaginal discharge and assessment of the state of vaginal flora for bacterial vaginosis are significantly more frequent occurrences in women with individual discomforts. It was proved that G. vaginalisis a dominant micro organism in 95% of women with clinical signs of vaginosis although it was isolated from vaginal discharge in 40 to 50% of healthy women. In our research, G. vaginalis was isolated in 63,41% of examined women with all signs of bacterial vaginosis, in 36,59% of examined women with one or more clinical signs of bacterial vaginosis and in 2,58% of examined women of control group without clinical signs.

  20. Bacterial Communities Associated with the Lichen Symbiosis▿ †

    Science.gov (United States)

    Bates, Scott T.; Cropsey, Garrett W. G.; Caporaso, J. Gregory; Knight, Rob; Fierer, Noah

    2011-01-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and “algae” (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N2 fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N2 fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses. PMID:21169444

  1. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    Directory of Open Access Journals (Sweden)

    Lilibeth N Miranda

    Full Text Available Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1 to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2 determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3 to determine how the microbial community associated with a laboratory strain (P.um.1 established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1 were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads. The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7. The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria were also abundant. Sphingobacteria (Bacteroidetes and Flavobacteria (Bacteroidetes had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes, was abundant. Lewinella (as 66 OTUs was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had

  2. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  3. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Belén Álvarez

    2017-07-01

    Full Text Available Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis, not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta. Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  4. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.

    Science.gov (United States)

    Álvarez, Belén; Biosca, Elena G

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum , R. pseudosolanacearum , and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the advantage of being environmentally friendly. Advances in bacterial wilt biocontrol include an increasing interest in bacteriophage-based treatments as a promising re-emerging strategy. Bacteriophages against the bacterial wilt pathogens have been described with either lytic or lysogenic effect but, they were proved to be active against strains belonging to R. pseudosolanacearum and/or R. syzygii subsp. indonesiensis , not to the present R. solanacearum species, and only two of them demonstrated successful biocontrol potential in planta . Despite the publication of three patents on the topic, until now no bacteriophage-based product is commercially available. Therefore, there is still much to be done to incorporate valid bacteriophages in an integrated management program to effectively fight bacterial wilt in the field.

  5. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    Directory of Open Access Journals (Sweden)

    Grégory Francius

    Full Text Available The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM and electrokinetics (electrophoresis. Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus. From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively. Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the

  6. Isolation of the bacterial causes of tonsillitis in dogs

    Directory of Open Access Journals (Sweden)

    B. Al-Mufti

    2014-06-01

    Full Text Available The study was performed to identify the bacterial causes of tonsillitis in dogs. Twelve clinical cases of dogs (5 males and 7 females of different ages and breeds were observed. Tonsils swabs were taken from all the dogs, then cultured on different agars and bacterial smears prepared from all cultures and Gram stains were done. The study confirmed that the most bacterial causes of tonsillitis in dogs were Escherichia coli, Staphylococcus aureus, Staphylococcus intermedius, Staphylococcus albus, Streptococcus pyogenes, Klebsiella spp. and Pasteurella spp.

  7. period-Regulated Feeding Behavior and TOR Signaling Modulate Survival of Infection.

    Science.gov (United States)

    Allen, Victoria W; O'Connor, Reed M; Ulgherait, Matthew; Zhou, Clarice G; Stone, Elizabeth F; Hill, Vanessa M; Murphy, Keith R; Canman, Julie C; Ja, William W; Shirasu-Hiza, Mimi M

    2016-01-25

    Most metazoans undergo dynamic, circadian-regulated changes in behavior and physiology. Currently, it is unknown how circadian-regulated behavior impacts immunity against infection. Two broad categories of defense against bacterial infection are resistance, control of microbial growth, and tolerance, control of the pathogenic effects of infection. Our study of behaviorally arrhythmic Drosophila circadian period mutants identified a novel link between nutrient intake and tolerance of infection with B. cepacia, a bacterial pathogen of rising importance in hospital-acquired infections. We found that infection tolerance in wild-type animals is stimulated by acute exposure to dietary glucose and amino acids. Glucose-stimulated tolerance was induced by feeding or direct injection; injections revealed a narrow window for glucose-stimulated tolerance. In contrast, amino acids stimulated tolerance only when ingested. We investigated the role of a known amino-acid-sensing pathway, the TOR (Target of Rapamycin) pathway, in immunity. TORC1 is circadian regulated and inhibition of TORC1 decreased resistance, as in vertebrates. Surprisingly, inhibition of the less well-characterized TOR complex 2 (TORC2) dramatically increased survival, through both resistance and tolerance mechanisms. This work suggests that dietary intake on the day of infection by B. cepacia can make a significant difference in long-term survival. We further demonstrate that TOR signaling mediates both resistance and tolerance of infection and identify TORC2 as a novel potential therapeutic target for increasing survival of infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pattern Transitions in Bacterial Oscillating System under Nanofluidic Confinement

    Science.gov (United States)

    Shen, Jie-Pan; Chou, Chia-Fu

    2011-03-01

    Successful binary fission in E. coli relies on remarkable oscillatory behavior of the MinCDE protein system to determine the exact division site. The most favorable models to explain this fascinating spatiotemporal regulation on dynamic MinDE pattern formation in cells are based on reaction-diffusion scenario. Although not fully understood, geometric factors caused by bacterial morphology play a crucial role in MinDE dynamics. In the present study, bacteria were cultured, confined and reshaped in various micro/nanofluidic devices, to mimic either curvature changes of cell peripherals. Fluorescence imaging was utilized to detail the mode transitions in multiple MinDE patterns. The understanding of the physics in multiple pattern formations is further complemented via in silico modeling. The study synergizes the join merits of in vivo, in vitro and in silico approaches, to grasp the insight of stochastic dynamics inherited from the noisy mesoscopic biophysics. We acknowledge support from the Foresight Project, Academia Sinica.

  9. Soil bacterial diversity in degraded and restored lands of Northeast Brazil.

    Science.gov (United States)

    Araújo, Ademir Sérgio Ferreira; Borges, Clovis Daniel; Tsai, Siu Mui; Cesarz, Simone; Eisenhauer, Nico

    2014-11-01

    Land degradation deteriorates biological productivity and affects environmental, social, and economic sustainability, particularly so in the semi-arid region of Northeast Brazil. Although some studies exist reporting gross measures of soil microbial parameters and processes, limited information is available on how land degradation and restoration strategies influence the diversity and composition of soil microbial communities. In this study we compare the structure and diversity of bacterial communities in degraded and restored lands in Northeast Brazil and determine the soil biological and chemical properties influencing bacterial communities. We found that land degradation decreased the diversity of soil bacteria as indicated by both reduced operational taxonomic unit (OTU) richness and Shannon index. Soils under native vegetation and restoration had significantly higher bacterial richness and diversity than degraded soils. Redundancy analysis revealed that low soil bacterial diversity correlated with a high respiratory quotient, indicating stressed microbial communities. By contrast, soil bacterial communities in restored land positively correlated with high soil P levels. Importantly, however, we found significant differences in the soil bacterial community composition under native vegetation and in restored land, which may indicate differences in their functioning despite equal levels of bacterial diversity.

  10. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  11. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Flannery

    2015-12-01

    Full Text Available Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i conventional carbohydrate or glycan microarrays; (ii whole mucin microarrays; and (iii microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments.

  12. A LuxS-Dependent Cell-to-Cell Language Regulates Social Behavior and Development in Bacillus subtilis

    OpenAIRE

    Lombardía, Esteban; Rovetto, Adrián J.; Arabolaza, Ana L.; Grau, Roberto R.

    2006-01-01

    Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regula...

  13. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture

    OpenAIRE

    ?lvarez, Bel?n; Biosca, Elena G.

    2017-01-01

    Bacterial wilt diseases caused by Ralstonia solanacearum, R. pseudosolanacearum, and R. syzygii subsp. indonesiensis (former R. solanacearum species complex) are among the most important plant diseases worldwide, severely affecting a high number of crops and ornamentals. Difficulties of bacterial wilt control by non-biological methods are related to effectiveness, bacterial resistance and environmental impact. Alternatively, a great many biocontrol strategies have been carried out, with the a...

  14. Influence of temperature on the rheological behavior of a new fucose-containing bacterial exopolysaccharide.

    Science.gov (United States)

    Cruz, Madalena; Freitas, Filomena; Torres, Cristiana A V; Reis, Maria A M; Alves, Vítor D

    2011-05-01

    The effect of temperature on the rheology of a new fucose-containing extracellular polysaccharide (EPS) was evaluated. The steady state data revealed a shear-thinning behavior, with the viscosity being immediately recovered when the shear rate was decreased. The mechanical spectra indicated viscous solutions with entangled polymer molecules in the range of temperatures studied (from 15 °C to 65 °C). In addition, the Time-Temperature Superposition principle was successfully applied and the Cox-Merz rule was valid, reinforcing the idea of a thermorheologically simple behavior for the EPS in aqueous solution. Furthermore, the viscous and viscoelastic properties at 25 °C were maintained after consecutive heating and cooling cycles, indicating a good thermal stability under temperature fluctuations. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Community-acquired bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G.; Wijdicks, Eelco

    2016-01-01

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma

  16. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  17. Bacterial contribution to iodine volatilization in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Amachi, S; Kasahara, M; Fujii, T [Chiba Univ., Dept. of Bioresources Chemistry, Matsudo, Chiba (Japan); Muramatsu, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    2003-09-01

    The roles of microorganisms in iodine volatilization from the environment were studied. More than 100 bacterial strains were isolated from various environments such as soils, seawater and marine sediments, and were examined their capacities for volatilizing iodine. Approximately 40% of these bacteria showed significant capacities for volatilizing iodine. Gas chromatographic determinations revealed that the chemical species of gaseous iodine is methyl iodide (CH{sub 3}I). Phylogenetic analysis based on 16S ribosomal DNA showed that these 'iodine-volatilizing bacteria' are widely distributed through the bacterial domain. The iodide-methylating reaction was mediated by an enzyme protein with S-adenosyl-L-methionine (SAM) as the methyl donor. We then estimated bacterial contribution to iodine volatilization from soils. Iodine in soils was volatilized mainly as CH{sub 3}I. CH{sub 3}I emission was enhanced in the presence of glucose or yeast extract, but was inhibited by autoclaving of soils. Little CH{sub 3}I was produced under anaerobic conditions. Furthermore, the addition of streptomycin and tetracycline, antibiotics which inhibit bacterial growth, strongly inhibited CH{sub 3}I emission, while a fungal inhibitor cycloheximide caused little effect. These results suggest that iodine in soils is volatilized as CH{sub 3}I mainly by the action of aerobic soil bacteria. Similar experiment was carried out by using sea water samples. The emission of iodine from sea waters occurred biologically, and bacterial (and also other microbial) contribution was confirmed. Our results suggest that iodine is methylated and volatilized into the atmosphere as a result of bacterial activities. Since bacteria are so abundant and widespread in the environments, they may significantly contribute to global iodine volatilization. This indicates that if {sup 129}I would be released from nuclear facilities, weapons testing or ground storage of nuclear wastes, the pathway of volatilization by

  18. [Congenital skull base defect causing recurrent bacterial meningitis].

    Science.gov (United States)

    Berliner, Elihay; Bar Meir, Maskit; Megged, Orli

    2012-08-01

    Bacterial meningitis is a life threatening disease. Most patients will experience only one episode throughout life. Children who experience bacterial meningitis more than once, require further immunologic or anatomic evaluation. We report a 9 year old child with five episodes of bacterial meningitis due to a congenital defect of the skull base. A two and a half year old boy first presented to our medical center with pneumococcal meningitis. He was treated with antibiotics and fully recovered. Two months later he presented again with a similar clinical picture. Streptococcus pneumoniae grew in cerebrospinal fluid (CSF) culture. CT scan and later MRI of the brain revealed a defect in the anterior middle fossa floor, with protrusion of brain tissue into the sphenoidal sinus. Corrective surgery was recommended but the parents refused. Three months later, a third episode of pneumococcal meningitis occurred. The child again recovered with antibiotics and this time corrective surgery was performed. Five years later, the boy presented once again with clinical signs and symptoms consistent with bacterial meningitis. CSF culture was positive, but the final identification of the bacteria was conducted by broad spectrum 16S ribosomal RNA PCR (16S rRNA PCR) which revealed a sequence of Neisseria lactamica. CT and MRI showed recurrence of the skull base defect with encephalocele in the sphenoid sinus. The parents again refused neurosurgical intervention. A year later the patient presented with bacterial meningitis. CSF culture obtained after initiation of antibiotics was negative, but actinobacillus was identified in the CSF by 16S rRNA PCR. The patient is scheduled for neurosurgical intervention. In patients with recurrent bacterial meningitis caused by organisms colonizing the oropharynx or nasopharynx, an anatomical defect should be carefully sought and surgically repaired.

  19. Bacterial Meningitis in Adults After Splenectomy and Hyposplenic States

    NARCIS (Netherlands)

    Adriani, Kirsten S.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2013-01-01

    Objective: To examine the occurrence, disease course, prognosis, and vaccination status of patients with community-acquired bacterial meningitis with a history of splenectomy or functional hyposplenia. Patients and Methods: Patients with bacterial meningitis proven by cerebrospinal fluid culture

  20. Bacterial communities in the fruit bodies of ground basidiomycetes

    Science.gov (United States)

    Zagryadskaya, Yu. A.; Lysak, L. V.; Chernov, I. Yu.

    2015-06-01

    Fruit bodies of basidiomycetes at different stages of decomposition serve as specific habitats in forest biocenoses for bacteria and differ significantly with respect to the total bacterial population and abundance of particular bacterial genera. A significant increase in the total bacterial population estimated by the direct microscopic method with acridine orange staining and in the population of saprotrophic bacteria (inoculation of glucose peptone yeast agar) in fruit bodies of basidiomycetes Armillaria mellea and Coprinus comatus was recorded at the final stage of their decomposition in comparison with the initial stage. Gramnegative bacteria predominated in the tissues of fruit bodies at all the stages of decomposition and were represented at the final stage by the Aeromonas, Vibrio, and Pseudomonas genera (for fruit bodies of A. mellea) the Pseudomonas genus (for fruit bodies of C. comatus). The potential influence of bacterial communities in the fruit bodies of soil basidiomycetes on the formation of bacterial communities in the upper soil horizons in forest biocenoses is discussed. The loci connected with the development and decomposition of fruit bodies of basidiomycetes on the soil surface are promising for targeted search of Gram-negative bacteria, the important objects of biotechnology.

  1. Bacterial growth in solar heating prepared and traditional tanks

    International Nuclear Information System (INIS)

    Bagh, L.K.

    2000-01-01

    In Denmark it has been put forward that the introduction of solar heating prepared tanks into the building regulation can cause increased nuisance with respect to bacterial growth in hot water for domestic use. The reason is that solar heating prepared tanks have a larger volume and another form of operation than traditional tanks. In this investigation the difference between bacterial growth in solar heating prepared and traditional tanks was measured by heterotrophic plate counts as a general parameter for microbiological growth. There was no significant difference between the bacterial number in the solar heating prepared tanks and in the traditional tanks, either for bacteria determined at 37 deg. C, 44 deg. C, 55 deg. C or at 65 deg. C. The hot water for domestic use from the solar heating prepared tanks and the traditional tanks had in most cases a bacterial number below 1.000 CFU/ml, and all tests had a bacterial number below 10.000 CFU/ml. The number of bacteria must be considered low seen in relation to the other measurements of bacteria in hot water for domestic use, particularly in larger block of flats. (au)

  2. TBK1 protects vacuolar integrity during intracellular bacterial infection.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    2007-03-01

    Full Text Available TANK-binding kinase-1 (TBK1 is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella, more extensive bacterial proliferation was observed in tbk1(-/- than tbk1(+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.

  3. TBK1 Protects Vacuolar Integrity during Intracellular Bacterial Infection

    Science.gov (United States)

    Radtke, Andrea L; Delbridge, Laura M; Balachandran, Siddharth; Barber, Glen N; O'Riordan, Mary X. D

    2007-01-01

    TANK-binding kinase-1 (TBK1) is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella), more extensive bacterial proliferation was observed in tbk1−/− than tbk1+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1−/−cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity. PMID:17335348

  4. Bacterial strain changes during chronic otitis media surgery.

    Science.gov (United States)

    Kim, G J; Yoo, S; Han, S; Bu, J; Hong, Y; Kim, D-K

    2017-09-01

    Cultures obtained from pre-operative middle-ear swabs from patients with chronic otitis media have traditionally been used to guide antibiotic selection. This study investigated changes in the bacterial strains of the middle ear during chronic otitis media surgery. Pre-operative bacterial cultures of otorrhoea, and peri-operative cultures of the granulation tissue in either the middle ear or mastoid cavity, were obtained. Post-operative cultures were selectively obtained when otorrhoea developed after surgery. Bacterial growth was observed in 45.5 per cent of pre-operative cultures, 13.5 per cent of peri-operative cultures and 4.5 per cent of post-operative cultures. Methicillin-resistant Staphylococcus aureus was identified as the most common bacteria in all pre-operative (32.4 per cent), peri-operative (52.4 per cent) and post-operative (71.4 per cent) tests, and the percentage of Methicillin-resistant S aureus increased from the pre- to the post-operative period. The bacterial culture results for post-operative otorrhoea showed low agreement with those for pre-operative or peri-operative culture, and strain re-identification was required.

  5. A precise, efficient radiometric assay for bacterial growth

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, C.; Kirchner, P.T.

    1984-01-01

    The two-compartment radiometric assay for bacterial growth promised major advantages over systems in clinical use, but poor reproducibility and counting efficiency limited its application. In this method, 14-CO/sub 2/ produced by bacterial metabolism of C-14-glucose is trapped and counted on filter paper impregnated with NaOH and fluors. The authors sought to improve assay efficiency and precision through a systematic study of relevant physical and chemical factors. Improvements in efficiency (88% vs. 10%) and in precision (relative S.D. 5% vs. 40%) were produced by a) reversing growth medium and scintillator chambers to permit vigorous agitation, b) increasing NaOH quantity and using a supersaturated PPO solution and c) adding detergent to improve uniformity of NaOH-PPO mixture. Inoculum size, substrate concentration and O/sub 2/ transfer rate affected assay sensitivity but not bacterial growth rate. The authors' assay reliably detects bacterial growth for inocula of 10,000 organisms in 1 hour and for 25 organisms within 4 1/2 hours, thus surpassing other existing clinical and research methods

  6. Evaluation of localized bacterial infection using radioisotope-labeled nucleosides imaging modality

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Yong Jin; Lee, Tae Sup; Kim, Kwang Il; Lee, Kyo Chul; An, Gwang II; Cheon, Gi Jeong; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Lim, Sang Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Conventional diagnostic methods for infections are difficult to distinguish localized bacterial infections from sites of sterile inflammation. For this reason, the importance of developing methods to image bacterial infections is widely recognized. In this study to acquire bacterial infection imaging with radiolabeled nucleosides, in vitro bacterial thymidine kinase (tk) activities of Salmonella typhimurium with [{sup 18}F]FLT and [{sup 125}I]IVDU were measured and localized infections model in BALB/c mice was imaged with [{sup 18}F]FLT or [{sup 125}I]FIAU

  7. Characterization of Halophilic Bacterial Communities in Turda Salt Mine (Romania)

    Science.gov (United States)

    Carpa, Rahela; Keul, Anca; Muntean, Vasile; Dobrotă, Cristina

    2014-09-01

    Halophilic organisms are having adaptations to extreme salinity, the majority of them being Archaean, which have the ability to grow at extremely high salt concentrations, (from 3 % to 35 %). Level of salinity causes natural fluctuations in the halophilic populations that inhabit this particular habitat, raising problems in maintaining homeostasis of the osmotic pressure. Samples such as salt and water taken from Turda Salt Mine were analyzed in order to identify the eco-physiological bacterial groups. Considering the number of bacteria of each eco-physiological group, the bacterial indicators of salt quality (BISQ) were calculated and studied for each sample. The phosphatase, catalase and dehydrogenases enzymatic activities were quantitatively determined and the enzymatic indicators of salt quality (EISQ) were calculated. Bacterial isolates were analyzed using 16S rRNA gene sequence analysis. Universal bacterial primers, targeting the consensus region of the bacterial 16S rRNA gene were used. Analysis of a large fragment, of 1499 bp was performed to improve discrimination at the species level.

  8. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces

    Directory of Open Access Journals (Sweden)

    Bradon R. McDonald

    2017-06-01

    Full Text Available Lateral gene transfer (LGT profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces. Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution.

  9. Bacterial Communities in the Groundwater of Xikuangshan Antimony Mine, China

    Science.gov (United States)

    Wu, M.; Wang, H.; Wang, N.; Wang, M.

    2017-12-01

    Xikuangshan (XKS) is the biggest antimony (Sb) mine around the word, which causes serious environmental contamination due to the mining actives. To fully understand the bacterial compositions in the groundwater around the mining area in XKS and their correlation with environmental factors, groundwater samples were collected and subject to 16S rDNA high throughput sequencing. Results indicated that Proteobacteria (especially Gamma-Proteobacteria) dominated bacterial communities in high-Sb groundwater samples, whereas Bacteroidetes predominated in low-Sb groundwater. Furthermore, antimony concentration was found to be the most significant factor shaping bacterial communities (P=0.002) with an explanation of 9.16% of the variation. Other factors such as pH, contents of Mg, Ca and orthophosphate were also observed to significantly correlate with bacterial communities. This was the first report to show the important impact of Sb concentration on bacterial community structure in the groundwater in the mining area. Our results will enhance the understanding of subsurface biogeochemical processes mediated by microbes.

  10. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Taisa R.; Pértile, Renata A.N. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900 (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil)

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology.

  11. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Stumpf, Taisa R.; Pértile, Renata A.N.; Rambo, Carlos R.; Porto, Luismar M.

    2013-01-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology

  12. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    Science.gov (United States)

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  13. Incidence and Predictors of Bacterial infection in Febrile Children with Sickle Cell Disease.

    Science.gov (United States)

    Morrissey, Benita J; Bycroft, Thomas P; Almossawi, Ofran; Wilkey, Olufunke B; Daniels, Justin G

    2015-01-01

    Children with sickle cell disease are at increased risk of developing bacteremia and other serious bacterial infections. Fever is a common symptom in sickle cell disease and can also occur with sickle cell crises and viral infections. We aimed to evaluate the incidence and predictors of bacteremia and bacterial infection in children with sickle cell disease presenting with fever to a district hospital and sickle cell center in London. A retrospective analysis was performed on all attendances of children (aged under 16 years) with sickle cell disease presenting with a fever of 38.5 °C or higher over a 1-year period. Confirmed bacterial infection was defined as bacteremia, bacterial meningitis, urinary tract infection (UTI), pneumonia, osteomyelitis or other bacterial infection with positive identification of organism. Children were defined as having a suspected bacterial infection if a bacterial infection was suspected clinically, but no organism was identified. Over a 1-year period there were 88 episodes analyzed in 59 children. Bacteremia occurred in 3.4% of episodes and confirmed bacterial infection in 7.0%. Suspected bacterial infection occurred in 33.0%. One death occurred from Salmonella typhirium septicemia. C-reactive protein (CRP) level and white blood cell (WBC) count were both significantly associated with bacterial infection (p = 0.004 and 0.02, respectively.) In conclusion, bacterial infections continue to be a significant problem in children with sickle cell disease. C-reactive protein was significantly associated with bacterial infections, and could be included in clinical risk criteria for febrile children with sickle cell disease.

  14. Drug Insight: adjunctive therapies in adults with bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Weisfelt, Martijn; de Gans, Jan; Tunkel, Allan R.; Wijdicks, Eelco F. M.

    2006-01-01

    Despite the availability of effective antibiotics, mortality and morbidity rates associated with bacterial meningitis are high. Studies in animals have shown that bacterial lysis, induced by treatment with antibiotics, leads to inflammation in the subarachnoid space, which might contribute to an

  15. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    International Nuclear Information System (INIS)

    Cherrier, J.

    2005-01-01

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO 2 could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO 2 was used as the indicator of hydrocarbon degradation and (delta) 13 C analysis of the resultant CO 2 was used to evaluate the source of the respired CO 2 (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time

  16. Changes of Bacterial Diversity Depend on the Spoilage of Fresh Vegetables

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2011-04-01

    Full Text Available Almost 10~30% of vegetables were discarded by the spoilage from farms to tables. After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. This investigation was conducted to extent the knowledge of relationship the spoilage of vegetables and the diversity of microbes. The total aerobic bacterial numbers in fresh lettuce, perilla leaf, and chicory were 2.6~2.7×106, 4.6×105, 1.2×106 CFU/g of fresh weight, respectively. The most common bacterial species were Pseudomonas spp., Alysiella spp., and Burkholderia spp., and other 18 more genera were involved in. After one week of incubation of those vegetables at 28℃, the microbial diversity had been changed. The total aerobic bacterial numbers increased to 1.1~4.6×108, 4.9×107, and 7.6×108 CFU/g of fresh weight for lettuce, perilla leaf, and chicory that is about 102 times increased bacterial numbers than that before spoilage. However, the diversity of microbes isolated had been simplified and fewer bacterial species had been isolated. The most bacterial population (~48% was taken up by Pseudomonas spp., and followed by Arthrobacter spp. and Bacillus spp. The spoilage activity of individual bacterial isolates had been tested using axenic lettuce plants. Among tested isolates, Pseudomonas fluorescence and Pantoea agglomerans caused severe spoilage on lettuce.

  17. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    Science.gov (United States)

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the

  18. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  19. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila.

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A

    2014-05-01

    Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Laboratory. Drosophila melanogaster. Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection.

  20. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    Science.gov (United States)

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials

    International Nuclear Information System (INIS)

    Wanna, Dwi; Alam, Parvez; Alam, Catharina; Toivola, Diana M

    2013-01-01

    This short communication provides preliminary experimental details on the structure–property relationships of novel biomedical kaolin–bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin–cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials. (paper)

  2. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  3. Mapping and predictive variations of soil bacterial richness across France.

    Science.gov (United States)

    Terrat, Sébastien; Horrigue, Walid; Dequiedt, Samuel; Saby, Nicolas P A; Lelièvre, Mélanie; Nowak, Virginie; Tripied, Julie; Régnier, Tiffanie; Jolivet, Claudy; Arrouays, Dominique; Wincker, Patrick; Cruaud, Corinne; Karimi, Battle; Bispo, Antonio; Maron, Pierre Alain; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2017-01-01

    Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i) to describe the bacterial taxonomic richness variations across France, ii) to identify the ecological processes (i.e. selection by the environment and dispersal limitation) influencing this distribution, and iii) to develop a statistical predictive model of soil bacterial richness. We used the French Soil Quality Monitoring Network (RMQS), which covers all of France with 2,173 sites. The soil bacterial richness (i.e. OTU number) was determined by pyrosequencing 16S rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution, structured into patches of about 111km, where the main drivers were the soil physico-chemical properties (18% of explained variance), the spatial descriptors (5.25%, 1.89% and 1.02% for the fine, medium and coarse scales, respectively), and the land use (1.4%). Based on these drivers, a predictive model was developed, which allows a good prediction of the bacterial richness (R2adj of 0.56) and provides a reference value for a given pedoclimatic condition.

  4. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  5. Characterization and control of biological microrobots

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Zondervan, L.; Abelmann, Leon; Misra, Sarthak; Desai, Jaydev P.; Dudek, Gregory; Khatib, Oussama; Kumar, Vijay

    2013-01-01

    This work addresses the characterization and control of Magnetotactic Bacterium (MTB) which can be considered as a biological microrobot. Magnetic dipole moment of the MTB and response to a field-with-alternating-direction are characterized. First, the magnetic dipole moment is characterized using

  6. Characterization and Control of Biological Microrobots

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Pichel, M.P.; Zondervan, L.; Abelmann, Leon; Misra, Sarthak

    2012-01-01

    This work addresses the characterization and control of Magnetotactic Bacterium (MTB) which can be considered as a biological microrobot. Magnetic dipole moment of the MTB and response to a field-with-alternating-direction are characterized. First, the magnetic dipole moment is characterized using

  7. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    International Nuclear Information System (INIS)

    Möller, Jens; Emge, Philippe; Vizcarra, Ima Avalos; Kollmannsberger, Philip; Vogel, Viola

    2013-01-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length. (paper)

  8. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    Science.gov (United States)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  9. MIPS bacterial genomes functional annotation benchmark dataset.

    Science.gov (United States)

    Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen

    2005-05-15

    Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab

  10. Quantifying Multistate Cytoplasmic Molecular Diffusion in Bacterial Cells via Inverse Transform of Confined Displacement Distribution.

    Science.gov (United States)

    Chen, Tai-Yen; Jung, Won; Santiago, Ace George; Yang, Feng; Krzemiński, Łukasz; Chen, Peng

    2015-11-12

    Single-molecule tracking (SMT) of fluorescently tagged cytoplasmic proteins can provide valuable information on the underlying biological processes in living cells via subsequent analysis of the displacement distributions; however, the confinement effect originated from the small size of a bacterial cell skews the protein's displacement distribution and complicates the quantification of the intrinsic diffusive behaviors. Using the inverse transformation method, we convert the skewed displacement distribution (for both 2D and 3D imaging conditions) back to that in free space for systems containing one or multiple (non)interconverting Brownian diffusion states, from which we can reliably extract the number of diffusion states as well as their intrinsic diffusion coefficients and respective fractional populations. We further demonstrate a successful application to experimental SMT data of a transcription factor in living E. coli cells. This work allows a direct quantitative connection between cytoplasmic SMT data with diffusion theory for analyzing molecular diffusive behavior in live bacteria.

  11. Spatial variation of bacterial community composition near the Luzon ...

    African Journals Online (AJOL)

    Spatial variation of bacterial community composition near the Luzon strait assessed by polymerase chain reaction-denaturing gradient gel electrophoresis ... chain reaction (PCR)-amplified bacterial 16S ribosomal deoxyribonucleic acid (DNA) gene fragments and interpreted the results; its relationship with physical and ...

  12. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    Science.gov (United States)

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through

  13. Application of Sub-Micrometer Vibrations to Mitigate Bacterial Adhesion

    Directory of Open Access Journals (Sweden)

    Will R. Paces

    2014-03-01

    Full Text Available As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. Magnetoelastic materials possess unique magnetostrictive property that can convert a magnetic field stimulus into a mechanical deformation. In vitro experiments demonstrated that vibrational loads generated by the magnetoelastic materials significantly reduced the number of adherent bacteria on samples exposed to Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus suspensions. These experiments demonstrate that vibrational loads from magnetoelastic materials can be used as a post-deployment activated means to deter bacterial adhesion and device infection.

  14. Sensitive Detection of Deliquescent Bacterial Capsules through Nanomechanical Analysis.

    Science.gov (United States)

    Nguyen, Song Ha; Webb, Hayden K

    2015-10-20

    Encapsulated bacteria usually exhibit strong resistance to a wide range of sterilization methods, and are often virulent. Early detection of encapsulation can be crucial in microbial pathology. This work demonstrates a fast and sensitive method for the detection of encapsulated bacterial cells. Nanoindentation force measurements were used to confirm the presence of deliquescent bacterial capsules surrounding bacterial cells. Force/distance approach curves contained characteristic linear-nonlinear-linear domains, indicating cocompression of the capsular layer and cell, indentation of the capsule, and compression of the cell alone. This is a sensitive method for the detection and verification of the encapsulation status of bacterial cells. Given that this method was successful in detecting the nanomechanical properties of two different layers of cell material, i.e. distinguishing between the capsule and the remainder of the cell, further development may potentially lead to the ability to analyze even thinner cellular layers, e.g. lipid bilayers.

  15. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  16. Chronic bacterial prostatitis in men with spinal cord injury.

    Science.gov (United States)

    Krebs, Jörg; Bartel, Peter; Pannek, Jürgen

    2014-12-01

    Recurrent urinary tract infections (UTI) are a major problem affecting spinal cord injury (SCI) patients and may stem from chronic bacterial prostatitis. We have therefore investigated the presence of chronic bacterial prostatitis and its role in the development of recurrent symptomatic UTI in SCI men. This study is a prospective cross-sectional investigation of bacterial prostatitis in SCI men in a single SCI rehabilitation center. In 50 men with chronic SCI presenting for a routine urologic examination, urine samples before and after prostate massage were taken for microbiologic investigation and white blood cell counting. Furthermore, patient characteristics, bladder diary details, and the annual rate of symptomatic UTI were collected retrospectively. No participant reported current symptoms of UTI or prostatitis. In most men (39/50, 78 %), the microbiologic analysis of the post-massage urine sample revealed growth of pathogenic bacteria. The majority of these men (32/39, 82 %) also presented with mostly (27/39, 69 %) the same pathogenic bacteria in the pre-massage sample. There was no significant (p = 0.48) difference in the number of symptomatic UTI in men with a positive post-massage culture compared with those with a negative culture. No significant (p = 0.67) difference in the frequency distribution of positive versus negative post-massage cultures was detected between men with recurrent and sporadic UTI. Most SCI men are affected by asymptomatic bacterial prostatitis; however, bacterial prostatitis does not play a major role in the development of recurrent UTI. The indication for antibiotic treatment of chronic bacterial prostatitis in asymptomatic SCI men with recurrent UTI is questionable.

  17. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  18. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  19. Biosynthesis of highly porous bacterial cellulose nanofibers

    Science.gov (United States)

    Hosseini, Hadi; Kokabi, Mehrdad; Mousavi, Seyyed Mohammad

    2018-01-01

    Bacterial cellulose nanofibers (BCNFs) as a sustainable and biodegradable polymer has drawn tremendous research attention in tissue engineering, bacterial sensors and drug delivery due to its extraordinary properties such as high purity, high crystallinity, high water absorption capacity and excellent mechanical strength in the wet state. This awesome properties, is attributed to BCNFs structure, therefore its characterization is important. In this work, the bacterial strain, Gluconacetobacter xylinus (PTCC 1734, obtained from Iranian Research Organization for Science and Technology (IROST)), was used to produce BCNFs hydrogel using bacterial fermentation under static condition at 29 °C for 10 days in the incubator. Then, the biosynthesized BCNFs wet gel, were dried at ambient temperature and pressure and characterized using Brunauer-Emmett-Teller (BET) and Field emission scanning electron microscopy (FE-SEM) analysis. FESEM image displayed highly interconnected and porous structure composed of web-like continuous, nanofibers with an average diameter of 48.5±2.1 nm. BET result analysis depicted BCNFs dried at ambient conditions had IV isotherm type, according to the IUPAC classification, indicating that BCNFs dried at ambient condition is essentially mesoporous. On the other hand, BET results depicted, mesoporous structure is around 85%. In addition, Specific surface area (SBET) obtained 81.45 m2/g. These results are in accordance with the FESEM observation.

  20. Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †

    Science.gov (United States)

    Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643

  1. [Validation of a clinical prediction rule to distinguish bacterial from aseptic meningitis].

    Science.gov (United States)

    Agüero, Gonzalo; Davenport, María C; Del Valle, María de la P; Gallegos, Paulina; Kannemann, Ana L; Bokser, Vivian; Ferrero, Fernando

    2010-02-01

    Despite most meningitis are not bacterial, antibiotics are usually administered on admission because bacterial meningitis is difficult to be rule-out. Distinguishing bacterial from aseptic meningitis on admission could avoid inappropriate antibiotic use and hospitalization. We aimed to validate a clinical prediction rule to distinguish bacterial from aseptic meningitis in children, on arriving to the emergency room. This prospective study included patients aged or = 1000 cells/mm(3), CSF protein > or = 80 mg/dl, peripheral blood absolute neutrophil count > or = 10.000/mm(3), seizure = 1 point each. Sensitivity (S), specificity (E), positive and negative predictive values (PPV and NPV), positive and negative likelihood ratios (PLR and NLR) of the BMS to predict bacterial meningitis were calculated. Seventy patients with meningitis were included (14 bacterial meningitis). When BMS was calculated, 25 patients showed a BMS= 0 points, 11 BMS= 1 point, and 34 BMS > or = 2 points. A BMS = 0 showed S: 100%, E: 44%, VPP: 31%, VPN: 100%, RVP: 1,81 RVN: 0. A BMS > or = 2 predicted bacterial meningitis with S: 100%, E: 64%, VPP: 41%, VPN: 100%, PLR: 2.8, NLR:0. Using BMS was simple, and allowed identifying children with very low risk of bacterial meningitis. It could be a useful tool to assist clinical decision making.

  2. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  3. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  4. Cerebral oxygenation and energy metabolism in bacterial meningitis

    DEFF Research Database (Denmark)

    Larsen, Lykke

    Introduction: In a recent retrospective study of patients with severe bacterial meningitis we demonstrated that cerebral oxidative metabolism was affected in approximately 50% of the cases. An increase of lactate/pyruvate (LP) ratio above the upper normal limit, defined according to according...... bacterial meningitis; secondly to examine whether it is correct to separate the diagnosis of cerebral ischemia from mitochondrial dysfunction based exclusively on the biochemical pattern obtained during intracerebral microdialysis. Method: A prospective clinical study including patients with severe...... community acquired bacterial meningitis admitted to the Department of Infectious Diseases, Odense University Hospital, during the period January 2014 to June 2016. We relate data from measurements of brain tissue oxygen tension (PbtO2) to simultaneously recorded data reflecting cerebral cytoplasmic redox...

  5. In vitro activity of difloxacin against canine bacterial isolates

    NARCIS (Netherlands)

    Hoven, van den J.R.; Wagenaar, J.A.; Walker, R.D.

    2000-01-01

    The in vitro activity of difloxacin against canine bacterial isolates from clinical cases was studied in the United States and The Netherlands. Minimal inhibitory concentrations (MIC), the postantibiotic effect, the effect of pH on antimicrobial activity, and the bacterial killing rate tests were

  6. Risk factors for community-acquired bacterial meningitis in adults

    NARCIS (Netherlands)

    Adriani, K.S.

    2015-01-01

    Bacterial meningitis is an inflammation of the meninges and occurs when bacteria invade the subarachnoid space. The meninges are the protective membranes that surround the brain and the spinal cord. Bacterial meningitis is a life-threatening disease because the proximity of the infection to the

  7. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    Energy Technology Data Exchange (ETDEWEB)

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  8. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M

    2012-02-03

    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  9. Connecting the dots between bacterial biofilms and ice cream

    Science.gov (United States)

    Stanley-Wall, Nicola R.; MacPhee, Cait E.

    2015-12-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  10. Bacterial flora of soil after application of oily waste

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, V

    1975-01-01

    The influence of mineral oils and oily waste on the bacterial flora of soil was studied both in the field and in model experiments by plate counts followed by examination of the composition of the bacterial flora developing on the plates and by enrichment cultures followed by isolation of pure cultures. A strong increase in bacterial numbers after oil application was observed both in field and model experiments, and this increase occurred within all groups of bacteria, except spore formers and streptomycetes. The most important species of oil decomposing bacteria belonged to the genera Arthrobacter and Pseudomonas.

  11. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-01-01

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  12. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  13. Distributions of Bacterial Generalists among the Guts of Birds ...

    Science.gov (United States)

    Complex distributions of bacterial taxa within diverse animal microbiomes have inspired ecological and biogeographical approaches to revealing the functions of taxa that may be most important for host health. Of particular interest are bacteria that find many diverse habitats suitable for growth and remain competitive amongst finely-tuned host specialists. While previous work has focused on identifying these specialists, here our aims were to 1) identify generalist taxa, 2) identify taxonomic clades with enriched generalist diversity, and 3) describe the distribution of the largest generalist groups among hosts. We analyzed existing bacterial rRNA tag-sequencing data (v6) available on VAMPs (vamps.mbl.edu) from the microbiomes of 12 host species (106 samples total) spanning birds, mammals, and fish for generalist taxa using the CLAM test. OTUs with approximately equal abundance and a minimum of 10 reads in two hosts were classified as generalists. Generalist OTUs (n=2,982) were found in all hosts tested. Bacterial families Alcaligenaceae and Burkholderiaceae were significantly enriched with generalists OTUs compared to other families. Bacterial families such as Bacteroidaceae and Lachnospiraceae significantly lacked generalists OTUs compared to other families. Enterobacteriaceae, Peptostreptococcaceae, and Erysipelotrichaceae more so than other bacterial families were widely distributed and abundant in birds, mammals, and fish suggesting that these taxa mainta

  14. Bacterial diversity among four healthcare-associated institutes in Taiwan.

    Science.gov (United States)

    Chen, Chang-Hua; Lin, Yaw-Ling; Chen, Kuan-Hsueh; Chen, Wen-Pei; Chen, Zhao-Feng; Kuo, Han-Yueh; Hung, Hsueh-Fen; Tang, Chuan Yi; Liou, Ming-Li

    2017-08-15

    Indoor microbial communities have important implications for human health, especially in health-care institutes (HCIs). The factors that determine the diversity and composition of microbiomes in a built environment remain unclear. Herein, we used 16S rRNA amplicon sequencing to investigate the relationships between building attributes and surface bacterial communities among four HCIs located in three buildings. We examined the surface bacterial communities and environmental parameters in the buildings supplied with different ventilation types and compared the results using a Dirichlet multinomial mixture (DMM)-based approach. A total of 203 samples from the four HCIs were analyzed. Four bacterial communities were grouped using the DMM-based approach, which were highly similar to those in the 4 HCIs. The α-diversity and β-diversity in the naturally ventilated building were different from the conditioner-ventilated building. The bacterial source composition varied across each building. Nine genera were found as the core microbiota shared by all the areas, of which Acinetobacter, Enterobacter, Pseudomonas, and Staphylococcus are regarded as healthcare-associated pathogens (HAPs). The observed relationship between environmental parameters such as core microbiota and surface bacterial diversity suggests that we might manage indoor environments by creating new sanitation protocols, adjusting the ventilation design, and further understanding the transmission routes of HAPs.

  15. Bacterial Succession on Rat Carcasses and Applications for PMI Estimation.

    Science.gov (United States)

    Zhang, Lin; Guo, Juan-juan; Telet-Siyit; Peng, Yu-long; Xie, Dan; Guo, Ya-dong; Yan, Jie; Zha, Lagabaiyila; Cai, Ji-feng

    2016-02-01

    Abstract: To investigate the bacterial succession on rat carcasses and to evaluate the use of bacterial succession for postmortem interval (PMI) estimation. Adult female SD rat remains were placed in carton boxes. The bacterial colonization of circumocular skin, mouth and vagina was collected to be identified using culture-dependent biochemical methods. The changes in community composition were regularly documented. The bacterial succession in three habitats showed that Staphylococcus and Neisseria were predominated in early PMI, especially Staphylococcus aureus and Neisseria lactamica in 6 hours after death. Lactobacillus casei developed on the 3-4 days regularly, and kept stable at a certain level in late PMI. The involvement of normal and putrefactive bacteria in three body habitats of rat remains can be used for PMI estimation.

  16. Bacterial invasion of the uterus and oviducts in bovine pyometra

    DEFF Research Database (Denmark)

    Karstrup, C. C.; Pedersen, H. G.; Jensen, Tim Kåre

    2017-01-01

    of bacterial pathogenicity and development of lesions, have not been investigated. Bacterial invasion of the uterus and oviducts was studied in 21 cows diagnosed with pyometra at the time of slaughter by applying fluorescence in situ hybridization using probes targeting 16S ribosomal RNA of Fusobacterium...... necrophorum, Porphyromonas levii, Trueperella pyogenes and the overall bacterial domain Bacteria. Fusobacterium necrophorum and P. levii were found to invade the endometrium, especially if the endometrium was ulcerated, and penetrated deep into the lamina propria. These species co-localized within the tissue...... thus indicating a synergism. Trueperella pyogenes did not invade the uterine tissue. In addition to endometrial lesions, most cows with pyometra also had salpingitis but without significant bacterial invasion of the oviductal wall....

  17. Sugar Lego: gene composition of bacterial carbohydrate metabolism genomic loci.

    Science.gov (United States)

    Kaznadzey, Anna; Shelyakin, Pavel; Gelfand, Mikhail S

    2017-11-25

    Bacterial carbohydrate metabolism is extremely diverse, since carbohydrates serve as a major energy source and are involved in a variety of cellular processes. Bacterial genes belonging to same metabolic pathway are often co-localized in the chromosome, but it is not a strict rule. Gene co-localization in linked to co-evolution and co-regulation. This study focuses on a large-scale analysis of bacterial genomic loci related to the carbohydrate metabolism. We demonstrate that only 53% of 148,000 studied genes from over six hundred bacterial genomes are co-localized in bacterial genomes with other carbohydrate metabolism genes, which points to a significant role of singleton genes. Co-localized genes form cassettes, ranging in size from two to fifteen genes. Two major factors influencing the cassette-forming tendency are gene function and bacterial phylogeny. We have obtained a comprehensive picture of co-localization preferences of genes for nineteen major carbohydrate metabolism functional classes, over two hundred gene orthologous clusters, and thirty bacterial classes, and characterized the cassette variety in size and content among different species, highlighting a significant role of short cassettes. The preference towards co-localization of carbohydrate metabolism genes varies between 40 and 76% for bacterial taxa. Analysis of frequently co-localized genes yielded forty-five significant pairwise links between genes belonging to different functional classes. The number of such links per class range from zero to eight, demonstrating varying preferences of respective genes towards a specific chromosomal neighborhood. Genes from eleven functional classes tend to co-localize with genes from the same class, indicating an important role of clustering of genes with similar functions. At that, in most cases such co-localization does not originate from local duplication events. Overall, we describe a complex web formed by evolutionary relationships of bacterial

  18. Manipulation of host membranes by bacterial effectors.

    Science.gov (United States)

    Ham, Hyeilin; Sreelatha, Anju; Orth, Kim

    2011-07-18

    Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

  19. Bacterial Contribution in Chronicity of Wounds.

    Science.gov (United States)

    Rahim, Kashif; Saleha, Shamim; Zhu, Xudong; Huo, Liang; Basit, Abdul; Franco, Octavio Luiz

    2017-04-01

    A wound is damage of a tissue usually caused by laceration of a membrane, generally the skin. Wound healing is accomplished in three stages in healthy individuals, including inflammatory, proliferative, and remodeling stages. Healing of wounds normally starts from the inflammatory phase and ends up in the remodeling phase, but chronic wounds remain in an inflammatory stage and do not show progression due to some specific reasons. Chronic wounds are classified in different categories, such as diabetic foot ulcer (DFU), venous leg ulcers (VLU) and pressure ulcer (PU), surgical site infection (SSI), abscess, or trauma ulcers. Globally, the incidence rate of DFU is 1-4 % and prevalence rate is 5.3-10.5 %. However, colonization of pathogenic bacteria at the wound site is associated with wound chronicity. Most chronic wounds contain more than one bacterial species and produce a synergetic effect that results in previously non-virulent bacterial species becoming virulent and causing damage to the host. While investigating bacterial diversity in chronic wounds, Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia were found most frequently in chronic wounds. Recently, it has been observed that bacteria in chronic wounds develop biofilms that contribute to a delay in healing. In a mature biofilm, bacteria grow slowly due to deficiency of nutrients that results in the resistance of bacteria to antibiotics. The present review reflects the reasons why acute wounds become chronic. Interesting findings include the bacterial load, which forms biofilms and shows high-level resistance toward antibiotics, which is a threat to human health in general and particularly to some patients who have acute wounds.

  20. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily

    2012-09-04

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either \\'low microbial abundance\\' (LMA) or \\'high microbial abundance\\' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community. © 2012 Federation of European Microbiological Societies.