WorldWideScience

Sample records for bacterial isolates dna

  1. Comparison of Mycoplasma ovipneumoniae isolates using bacterial restriction endonuclease DNA analysis and SDS-PAGE.

    Science.gov (United States)

    Mew, A J; Ionas, G; Clarke, J K; Robinson, A J; Marshall, R B

    1985-12-01

    Sixteen isolates of Mycoplasma ovipneumoniae recovered from the nasal tract or lungs of sheep from different flocks in New Zealand were examined by bacterial restriction endonuclease DNA analysis (BRENDA) using EcoR1 and by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). All isolates gave BRENDA patterns which differed entirely from one another. Following 20 serial passages (corresponding to approximately 67 generations) of an isolate, no change was detected in the BRENDA pattern. When eight isolates were examined by SDS-PAGE most bands were common but, nevertheless, each isolate was unique in the sense that they differed from one another in one or more bands. The marked heterogeneity of patterns observed when strains of M. ovipneumoniae are compared by BRENDA, together with the stability of such patterns over many generations, will enable this approach to be used to study the epidemiology of individual strains of M. ovipneumoniae within a flock.

  2. A supramolecular nanobiological hybrid as a PET sensor for bacterial DNA isolated from Streptomyces sanglieri.

    Science.gov (United States)

    Chakravarty, Sudesna; Saikia, Dilip; Sharma, Priyanka; Adhikary, Nirab Chandra; Thakur, Debajit; Sen Sarma, Neelotpal

    2014-12-21

    The development of a rapid, label free, cost effective and highly efficient sensor for DNA detection is of great importance in disease diagnosis. Herein, we have reported a new hybrid fluorescent probe based on a cationic curcumin-tryptophan complex and water soluble mercapto succinic acid (MSA) capped CdTe quantum dots (QDs) for the detection of double stranded DNA (ds DNA) molecules. The cationic curcumin-tryptophan complex (CT) directly interacts with negatively charged MSA capped quantum dots via electrostatic coordination, resulting in photoluminescence (PL) quenching of QDs via the Photoinduced Electron Transfer (PET) process. Further, addition of ds DNA results in restoration of PL, as CT would intercalate between DNA strands. Thus, this process can be utilized for selective sensing of ds DNA via fluorescence measurements. Under optimized experimental conditions, the PL quenching efficiency of QDs is found to be 99.4% in the presence of 0.31 × 10(-9) M CT. Interestingly, the regain in PL intensity of QD-CT is found to be 99.28% in the presence of 1 × 10(-8) M ds DNA. The detection limit for ds DNA with the developed sensing probe is 1.4 × 10(-10) M. Furthermore, the probe is found to be highly sensitive towards bacterial DNA isolated from Streptomyces sanglieri with a detection limit of 1.7 × 10(-6) M. The present work will provide a new insight into preparation of bio-inspired hybrid materials as efficient sensors for disease diagnosis and agricultural development. PMID:25343270

  3. Molecular analysis of bacterial isolates and total community DNA from kraft pulp mill effluent treatment systems.

    Science.gov (United States)

    Fortin, N; Fulthorpe, R R; Allen, D G; Greer, C W

    1998-06-01

    Chloroaliphatics are major components of bleached kraft mill effluents. Gene probes and oligonucleotide primers were developed to monitor kraft pulp mill effluent treatment systems for the presence of key genes (dehalogenases) responsible for the dehalogenation of chloroaliphatic organics. The primers were used for polymerase chain reaction (PCR) analysis of genomic DNA extracted from dehalogenating bacterial isolates and from total community DNA extracted from water and sediments of mill effluent treatment system. PCR amplification with oligonucleotide primers designed from dhlB, encoding the haloacid dehalogenase from Xanthobacter autotrophicus, revealed the presence of dehalogenase genes in both aerated lagoons and stabilization basins. Similarly, positive results were obtained with mmoX primers designed from the soluble methane monooxygenase gene of Methylococcus capsulatus Bath. The haloacetate dehalogenase encoding gene (dehH2) from Moraxella sp. was typically not detected in mill effluent treatment systems unless the biomass was selectively enriched. DNA sequence analysis of several PCR fragaments revealed significant similarity to known dehalogenase amd methane monooxygenase genes. The results indicated a broad distribution of known dehalogenation genes and bacteria with chloroorganic-degrading potential in the mill effluent treatment systems. PMID:9734304

  4. Isolation of DNA from bacterial samples of the human gastrointestinal tract

    NARCIS (Netherlands)

    Zoetendal, E.G.; Heilig, G.H.J.; Klaassens, E.S.; Booijink, C.C.G.M.; Kleerebezem, M.; Smidt, H.; Vos, de W.M.

    2006-01-01

    The human gastrointestinal (GI) tract contains a complex microbial community that develops in time and space. The most widely used approaches to study microbial diversity and activity are all based on the analysis of nucleic acids, DNA, rRNA and mRNA. Here, we present a DNA isolation protocol that i

  5. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  6. Radiation Induced DNA Double Strand Break Studies of a Metal Sensitive Novel Bacterial Isolate from East Calcutta Wetland

    Directory of Open Access Journals (Sweden)

    Sanhita Chowdhury

    2009-01-01

    uncultivable anaerobic bacterial isolate and predict the growth conditions for the isolate. On irradiation with 60Co γ rays the isolate showed maximum repair following 60 Gray damage. DNA polymerase inhibitor arabinose CTP inhibited the repair mechanism completely. This indicated that DNA polymerase took active part in repair process and thus the mechanism was that of homologous recombination repair.

  7. Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damage in vitro: homology with bacterial repair enzymes.

    OpenAIRE

    Robson, C.N.; Milne, A M; Pappin, D J; Hickson, I. D.

    1991-01-01

    Ionizing radiation and radiomimetic compounds, such as hydrogen peroxide and bleomycin, generate DNA strand breaks with fragmented deoxyribose 3' termini via the formation of oxygen-derived free radicals. These fragmented sugars require removal by enzymes with 3' phosphodiesterase activity before DNA synthesis can proceed. An enzyme that reactivates bleomycin-damaged DNA to a substrate for Klenow polymerase has been purified from calf thymus. The enzyme, which has a Mr of 38,000 on SDS-PAGE, ...

  8. Bacterial isolates degrading aliphatic polycarbonates.

    Science.gov (United States)

    Suyama, T; Hosoya, H; Tokiwa, Y

    1998-04-15

    Bacteria that degrade an aliphatic polycarbonate, poly(hexamethylene carbonate), were isolated from river water in Ibaraki. Prefecture, Japan, after enrichment in liquid medium containing poly(hexamethylene carbonate) suspensions as carbon source, and dilution to single cells. Four of the strains, 35L, WFF52, 61A and 61B2, degraded poly(hexamethylene carbonate) on agar plate containing suspended poly(hexamethylene carbonate). Degradation of poly(hexamethylene carbonate) was confirmed by gel permeation chromatography. Besides poly(hexamethylene carbonate), the strains were found to degrade poly(tetramethylene carbonate). The strains were characterized morphologically, physiologically, and by 16S rDNA sequence analysis. Strains 35L and WFF52 were tentatively identified as Pseudomonas sp. and Variovorax sp., respectively, while strains 61A and 61B2 constitute an unidentified branch within the beta subclass of the Proteobacteria.

  9. Identification of leptospiral isolates by bacterial restriction endonuclease analysis (Brenda

    Directory of Open Access Journals (Sweden)

    Venkatesha M

    2001-01-01

    Full Text Available DNA samples from 19 reference serovars belonging to 19 different serogroups of Leptospira interrogans and two serovars belonging to Leptospira biflexa were examined by bacterial restriction endonuclease analysis using EcoR I and Hae III enzymes. All the serovars gave unique restriction patterns that differed from each other. DNA from 10 local isolates digested with these enzymes produced patterns which on comparison with the standard patterns produced by reference strains could be identified to serovar level.

  10. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Science.gov (United States)

    Croteau, Rodney Bruce; Crock, John E.

    2005-01-25

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-famesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-famesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  11. Bacterial community analysis of activated sludge: an evaluation of four commonly used DNA extraction methods

    NARCIS (Netherlands)

    Vanysacker, L.; Declerck, S.A.J.; Hellemans, B.; De Meester, L.; Vankelecom, I.; Declerck, P.

    2010-01-01

    The effectiveness of three commercially available direct DNA isolation kits (Mobio, Fast, Qiagen) and one published direct DNA extraction protocol (Bead) for extracting bacterial DNA from different types of activated sludge was investigated and mutually compared. The DNA quantity and purity were det

  12. Bacterial DNA delays human eosinophil apoptosis

    OpenAIRE

    Ilmarinen, Pinja; Hasala, Hannele; Sareila, Outi; Moilanen, Eeva; Kankaanranta, Hannu

    2009-01-01

    Bacterial DNA delays human eosinophil apoptosis correspondance: Corresponding author. Tel.: +358 3 3551 6687; fax: +358 3 3551 8082. (Ilmarinen, Pinja) (Ilmarinen, Pinja) The Immunopharmacology Research Group--> , Medical School--> , University of Tampere and Research Unit--> , Tampere University Hospital--> , Tampere--> - FINLAND (Ilmarinen, Pinja) The Immunopharmacology ...

  13. Genomic DNA fingerprint analysis of biotype 1 Gardnerella vaginalis from patients with and without bacterial vaginosis.

    Science.gov (United States)

    Wu, S R; Hillier, S L; Nath, K

    1996-01-01

    Of the 20 biotype 1 Gardnerella vaginalis isolates analyzed, 10 from patients with bacterial vaginosis and 10 from patients without bacterial vaginosis, none shared the same DNA fingerprint. However, a 1.18-kb HindIII fragment was common among 18 of the 20 biotype 1 isolates in a restriction fragment length polymorphism analysis with a 7.9-kb G. vaginalis DNA probe. PMID:8748302

  14. ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIAL ISOLATES

    Directory of Open Access Journals (Sweden)

    Utkarsha S. Shivsharan

    2013-08-01

    Full Text Available Micro-organisms have tendency to produce antimicrobial substances which show biological activity against other kind of micro-organisms. This phenomenon of bacterial antagonism is observed in lactic acid bacteria with competitive advantages. The lactic acid bacteria are commonly present in many fermented products, fruits and milk products. The variety of antimicrobial substances produced by lactic acid bacteria showing good inhibition capacity include production of lactic acid, acetic acid, hydrogen peroxide, carbon dioxide, diacetyl and bacteriocin. Bacteriocins produced by lactic acid bacteria are the subject of intense research because of their antimicrobial activity against food born bacteria such as Listeria monocytogenes, staphylococcus aureus, Bacillus cereus, Clostridium botulinum and several others .Bacteriocins may be bacteriostatic or bactericidal with narrow or broad range of activity. The main of the study was to study the antimicrobial activity of such lactic acid bacterial isolates.

  15. Detection of Bacterial Wilt Pathogen and Isolation of Its Bacteriophage from Banana in Lumajang Area, Indonesia

    Directory of Open Access Journals (Sweden)

    Hardian Susilo Addy

    2016-01-01

    Full Text Available Bacterial wilt disease on banana is an important disease in Lumajang District and causes severe yield loss. Utilizing bacteriophage as natural enemy of pathogenic bacteria has been widely known as one of the control strategies. This research was aimed at determining the causing agent of bacterial wilt on banana isolated from Lumajang area, to obtain wide-host range bacteriophages against bacterial wilt pathogen and to know the basic characteristic of bacteriophages, particularly its nucleic acid type. Causative agent of bacterial wilt was isolated from symptomatic banana trees from seven districts in Lumajang area on determinative CPG plates followed by rapid detection by PCR technique using specific pair-primer. Bacteriophages were also isolated from soil of infected banana crop in Sukodono District. Morphological observation showed that all bacterial isolates have similar characteristic as common bacterial wilt pathogen, Ralstonia solanacearum. In addition, detection of FliC region in all isolates confirmed that all isolates were R. solanacearum according to the presence of 400 bp of FliC DNA fragment. Moreover, two bacteriophages were obtained from this experiment (ϕRSSKD1 and ϕRSSKD2, which were able to infect all nine R. solanacearum isolates. Nucleic acid analysis showed that the nucleic acid of bacteriophages was DNA (deoxyribonucleic acid.

  16. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene

    OpenAIRE

    Crock, John; Wildung, Mark; Croteau, Rodney

    1997-01-01

    (E)-β-Farnesene is a sesquiterpene semiochemical that is used extensively by both plants and insects for communication. This acyclic olefin is found in the essential oil of peppermint (Mentha x piperita) and can be synthesized from farnesyl diphosphate by a cell-free extract of peppermint secretory gland cells. A cDNA from peppermint encoding (E)-β-farnesene synthase was cloned by random sequencing of an oil gland library and was expressed in Escherichia coli. The corresponding synthase has a...

  17. Production and characterization of bacterial cellulose by Leifsonia sp. CBNU-EW3 isolated from the earthworm, Eisenia fetida

    Science.gov (United States)

    A total of five bacterial strains were isolated from earthworm, Eisenia fetida and examined for bacterial cellulose (BC) production in Hestrin–Schramm medium (HS). Among the five strains tested, CBNU-EW3 exhibited excellent BC production and was identified as Leifsonia sp. by 16S rDNA sequence analy...

  18. Purifying Plasmid DNA from Bacterial Colonies Using the Qiagen Miniprep Kit

    OpenAIRE

    Zhang, Shenyuan; Cahalan, Michael D.

    2007-01-01

    Plasmid DNA purification from E. coli is a core technique for molecular cloning. Small scale purification (miniprep) from less than 5 ml of bacterial culture is a quick way for clone verification or DNA isolation, followed by further enzymatic reactions (polymerase chain reaction and restriction enzyme digestion). Here, we video-recorded the general procedures of miniprep through the QIAGEN's QIAprep 8 Miniprep Kit, aiming to introducing this highly efficient technique to the general beginner...

  19. Improved Method for Isolation of Bacterial Inhibitors from Oleuropein Hydrolysis

    OpenAIRE

    Federici, Federico; Bongi, Guido

    1983-01-01

    A new high-pressure liquid chromatography multidetection quantitative method for the isolation of the products of oleuropein hydrolysis is described. A single analysis yields sufficient amounts of the compounds to test their inhibitory effect on bacterial growth.

  20. In vitro activity of difloxacin against canine bacterial isolates

    NARCIS (Netherlands)

    Hoven, van den J.R.; Wagenaar, J.A.; Walker, R.D.

    2000-01-01

    The in vitro activity of difloxacin against canine bacterial isolates from clinical cases was studied in the United States and The Netherlands. Minimal inhibitory concentrations (MIC), the postantibiotic effect, the effect of pH on antimicrobial activity, and the bacterial killing rate tests were de

  1. Binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1976-01-01

    Bacterial transformation in relation to DNA transport and competence in Streptococcus pneumoniae (also called Diplococcus pneumoniae) is discussed. This species will serve as a model with which to compare transformation in other bacterial species, particularly Bacillus subtilis and Haemophilus influenzae, with emphasis on the many similarities as well as differences.

  2. Detection of bacterial pathogens in environmental samples using DNA microarrays.

    Science.gov (United States)

    Call, Douglas R; Borucki, Monica K; Loge, Frank J

    2003-05-01

    Polymerase chain reaction (PCR) is an important tool for pathogen detection, but historically, it has not been possible to accurately identify PCR products without sequencing, Southern blots, or dot-blots. Microarrays can be coupled with PCR where they serve as a set of parallel dot-blots to enhance product detection and identification. Microarrays are composed of many discretely located probes on a solid substrate such as glass. Each probe is composed of a sequence that is complimentary to a pathogen-specific gene sequence. PCR is used to amplify one or more genes and the products are then hybridized to the array to identify species-specific polymorphism within one or more genes. We illustrate this type of array using 16S rDNA probes suitable for distinguishing between several salmonid pathogens. We also describe the use of microarrays for direct detection of either RNA or DNA without the aid of PCR, although the sensitivity of these systems currently limits their application for pathogen detection. Finally, microarrays can also be used to "fingerprint" bacterial isolates and they can be used to identify diagnostic markers suitable for developing new PCR-based detection assays. We illustrate this type of array for subtyping an important food-borne pathogen, Listeria monocytogenes. PMID:12654494

  3. Innovative DNA microarray design for bacterial flora composition evaluation

    OpenAIRE

    Huyghe, Antoine

    2009-01-01

    During the past decade, the advent of new molecular techniques has led to enormous progress in biology, notably with the development of DNA microarray technology. This technology allows monitoring simultaneously the expression of thousands of genes from a given organism. DNA microarrays have been used in a variety of applications, including the characterization of bacteria in biological samples. In this thesis, two distinct DNA microarray approaches for the characterization of bacterial flora...

  4. Conjunctival sac bacterial flora isolated prior to cataract surgery

    Directory of Open Access Journals (Sweden)

    Suto C

    2012-01-01

    Full Text Available Chikako Suto1,2, Masahiro Morinaga1,2, Tomoko Yagi1,2, Chieko Tsuji3, Hiroshi Toshida41Department of Ophthalmology, Saiseikai Kurihashi Hospital, Saitama; 2Department of Ophthalmology, Tokyo Women's Medical University, Tokyo; 3Department of Clinical Laboratory, Saiseikai Kurihashi Hospital, Saitama; 4Department of Ophthalmology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, JapanObjective: To determine the trends of conjunctival sac bacterial flora isolated from patients prior to cataract surgery.Subjects and methods: The study comprised 579 patients (579 eyes who underwent cataract surgery. Specimens were collected by lightly rubbing the inferior palpebral conjunctival sac with a sterile cotton swab 2 weeks before surgery, and then cultured for isolation of bacteria and antimicrobial sensitivity testing. The bacterial isolates and percentage of drug-resistant isolates were compared among age groups and according to whether or not patients had diabetes mellitus, hyperlipidemia, dialysis therapy, oral steroid use, dry eye syndrome, or allergic conjunctivitis.Results: The bacterial isolation rate was 39.2%. There were 191 strains of Gram-positive cocci, accounting for the majority of all isolates (67.0%, among which methicillin-sensitive coagulase-negative staphylococci was the most frequent (127 strains, 44.5%, followed by methicillin-resistant coagulase-negative staphylococci (37 strains, 12.7%. All 76 Gram-positive bacillary isolates (26.7% were from the genus Corynebacterium. Among the 16 Gram-negative bacillary isolates (5.9%, the most frequent was Escherichia coli (1.0%. The bacterial isolation rate was higher in patients >60 years old, and was lower in patients with dry eye syndrome, patients under topical treatment for other ocular disorders, and patients with hyperlipidemia. There was no significant difference in bacterial isolation rate with respect to the presence/absence of diabetes mellitus, steroid therapy, dialysis, or

  5. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

    NARCIS (Netherlands)

    Duarte, G.F.; Rosado, A.S.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    1998-01-01

    A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils

  6. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    OpenAIRE

    Shahid Mahmood; Muhammad Arshad; Azeem Khalid; Zilli Huma Nazli; Tariq Mahmood

    2011-01-01

    Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of...

  7. DNA Protection by the Bacterial Ferritin Dps via DNA Charge Transport

    OpenAIRE

    Arnold, Anna R.; Barton, Jacqueline K.

    2013-01-01

    Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. Here we examine the mechanism of E. coli Dps protection of DNA, specifically whether this DNA-binding protein can utilize DNA charge transport through the base pair π-stack to protect the genome from a distance. An intercalating ruthenium photooxidant was employed to generate DNA damage localized to guanine repeats, the sites of lowest potential i...

  8. Isolation and characterization of organic-sulfur degradation bacterial strain

    Institute of Scientific and Technical Information of China (English)

    YANG Yu; DIAO Meng-xue; SHI Wu-yang; LI Li; DAI Qin-yun; QIU Guan-zhou

    2007-01-01

    A bacterial strain that was capable of degrading organic sulfur (dibenzothiophene) was isolated by enrichment techniques from the petroleum-contaminated soil collected from Zhongyuan Oil Field. The strain is named ZYX and is gram-positive.This strain undergoes bacilus-coccus morphological change, and forms yellow-pigment glossy circular colonies with 1.5 mm in diameter on average after 2 d incubation on Luria-Bertani(LB) plates. The full-length of 16S rDNA sequence of strain ZYX was determined and analyzed. Strain ZYX is found most relative with the genus of Arthrobacter. The similarity values between ZYX and Arthrobacter sp. P2 is 99.53%. The main morphological, biochemical and physiological features of strain ZYX accord with those of Arthrobacter. It is found that the optimal initial pH for growth is about 7.0, and the optimal concentration of dibenzothiophene(DBT)for growth is 0.10 g/L. Additionally, the results show that the best carbon source and nitrogen source are glycerol and glutamine,respectively.

  9. Antibiogram of bacterial species isolated from canine pyometra

    OpenAIRE

    Madhu Swamy; Varun Bassessar; Yamini Verma

    2013-01-01

    Aim: The aim of the present work was to ascertain the bacterial flora causing pyometra in female dogs and their antibiotic sensitivity. Materials and Methods: A study was conducted to determine the antibiogram of bacterial species isolated from 20 female dogs diagnosed with pyometra. The vaginal discharge was collected by sterile swab and streaked smoothly over Mueller Hinton medium and sensitivity towards antibiotics was determined by measuring the zone of inhibition using a Hi-media scale. ...

  10. Antibiogram of bacterial species isolated from canine pyometra

    Directory of Open Access Journals (Sweden)

    Madhu Swamy

    2013-06-01

    Full Text Available Aim: The aim of the present work was to ascertain the bacterial flora causing pyometra in female dogs and their antibiotic sensitivity. Materials and Methods: A study was conducted to determine the antibiogram of bacterial species isolated from 20 female dogs diagnosed with pyometra. The vaginal discharge was collected by sterile swab and streaked smoothly over Mueller Hinton medium and sensitivity towards antibiotics was determined by measuring the zone of inhibition using a Hi-media scale. Results: The antobiogram showed that Gentamicin was the most sensitive (85% antibiotic followed by Enrofloxacin, Ciprofloxacin and Amoxicillin (65%, 65% and 55%, respectively. The isolates were most resistant to Oxytetracycline (85% followed by Tetracycline, Ampicillin, Chloramphenicol, Cloxacillin and Erythromycin (80%, 80%, 75%, 70% and 70%, respectively. Conclusion: Gentamicin was found to be most effective antibiotic against the bacterial species isolated from canine pyometra. [Vet World 2013; 6(8.000: 546-549

  11. Heterogeneity in restriction patterns of Gardnerella vaginalis isolates from individuals with bacterial vaginosis.

    Science.gov (United States)

    Nath, K; Devlin, D; Beddoe, A M

    1992-02-01

    This study was undertaken to resolve the genetic make up of Gardnerella vaginalis present in bacterial vaginosis (BV). DNA from several G. vaginalis isolates from within and between individual BV patients were compared by BamHI, ClaI and EcoRI restriction endonuclease analysis (REA) followed by a restriction fragment length polymorphism (RFLP) study, utilizing a 5.7-kb BamHI G. vaginalis ATCC14018 DNA probe. Four G. vaginalis isolates from one patient (GVP-062) were composed of 3 different biotypes (biotypes 3, 5 and 8), and while the REA mirrored the biotype, in RFLP studies at least 3 isolates had DNA fragments in common. All of the isolates from 2 other patients (GVP-063 and GVP-072) represented a single biotype (biotype 2), but under REA and in RFLP studies, the isolates GVP-063 differed from GVP-072. An opposite case existed with the isolates GVP-072 (biotype 2) and GVP-065 (biotype 5), which appeared similar under REA and in RFLP studies. Finally, reisolates after 8 weeks (GVP-080) from a BV patient (isolates GVP-065) representing the same biotype (biotype 5) differed under REA and in RFLP studies. Thus, lacking any unique DNA fingerprint, G. vaginalis occurring in BV represents a (genetically) mixed population.

  12. Biodegradation of carcinogenic textile azo dyes using bacterial isolates of mangrove sediment

    Institute of Scientific and Technical Information of China (English)

    Guru Prasad Srinivasan; Asnar Sikkanthar; Anandajothi Elamaran; Caroline R Delma; Kumaran Subramaniyan

    2014-01-01

    Objective:To evaluate the biodegrading property against carcinogenic azo dyes using bacterial isolates of mangrove sediment. Methods: The bacterial isolates were subjected to submerged fermentation and their growth kinetics were studied. The potential strain was characterized using 16S rDNA sequencing. Results:In the present study, dye degrading bacterial colonies were isolated from the mangrove sediment samples of Parangipettai estuarine area, Tamil Nadu. Of the 30 morphologically different strains isolated, 5 showed antagonistic property. The growth kinetics of the two strains, P1 and G1, which showed potent activity were calculated. One particular isolate (P1) showing promising dye degrading potential in the submerged fermentation was further characterized. The strain was identified as Paenibacillus sp. by 16S rDNA sequencing. Conclusions:This study reveals the less explored microflora of mangrove sediments. The novel strain may further be analyzed and used in the treatment of effluent from dye industry so as to reduce the impact of carcinogenic contaminants.

  13. Biodegradation of carcinogenic textile azo dyes using bacterial isolates of mangrove sediment

    Directory of Open Access Journals (Sweden)

    Guru Prasad Srinivasan

    2014-02-01

    Full Text Available Objective: To evaluate the biodegrading property against carcinogenic azo dyes using bacterial isolates of mangrove sediment. Methods: The bacterial isolates were subjected to submerged fermentation and their growth kinetics were studied. The potential strain was characterized using 16S rDNA sequencing. Results: In the present study, dye degrading bacterial colonies were isolated from the mangrove sediment samples of Parangipettai estuarine area, Tamil Nadu. Of the 30 morphologically different strains isolated, 5 showed antagonistic property. The growth kinetics of the two strains, P1 and G1, which showed potent activity were calculated. One particular isolate (P1 showing promising dye degrading potential in the submerged fermentation was further characterized. The strain was identified as Paenibacillus sp. by 16S rDNA sequencing. Conclusions: This study reveals the less explored microflora of mangrove sediments. The novel strain may further be analyzed and used in the treatment of effluent from dye industry so as to reduce the impact of carcinogenic contaminants.

  14. Isolation of biologically active nanomaterial (inclusion bodies from bacterial cells

    Directory of Open Access Journals (Sweden)

    Peternel Špela

    2010-09-01

    Full Text Available Abstract Background In recent years bacterial inclusion bodies (IBs were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  15. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    Science.gov (United States)

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants. PMID:27252685

  16. Two-dimensional DNA displays for comparisons of bacterial genomes

    Directory of Open Access Journals (Sweden)

    Malloff Chad

    2003-01-01

    Full Text Available We have developed two whole genome-scanning techniques to aid in the discovery of polymorphisms as well as horizontally acquired genes in prokaryotic organisms. First, two-dimensional bacterial genomic display (2DBGD was developed using restriction enzyme fragmentation to separate genomic DNA based on size, and then employing denaturing gradient gel electrophoresis (DGGE in the second dimension to exploit differences in sequence composition. This technique was used to generate high-resolution displays that enable the direct comparison of > 800 genomic fragments simultaneously and can be adapted for the high-throughput comparison of bacterial genomes. 2DBGDs are capable of detecting acquired and altered DNA, however, only in very closely related strains. If used to compare more distantly related strains (e.g. different species within a genus numerous small changes (i.e. small deletions and point mutations unrelated to the interesting phenotype, would encumber the comparison of 2DBGDs. For this reason a second method, bacterial comparative genomic hybridization (BCGH, was developed to directly compare bacterial genomes to identify gain or loss of genomic DNA. BCGH relies on performing 2DBGD on a pooled sample of genomic DNA from 2 strains to be compared and subsequently hybridizing the resulting 2DBGD blot separately with DNA from each individual strain. Unique spots (hybridization signals represent foreign DNA. The identification of novel DNA is easily achieved by excising the DNA from a dried gel followed by subsequent cloning and sequencing. 2DBGD and BCGH thus represent novel high resolution genome scanning techniques for directly identifying altered and/or acquired DNA.

  17. DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain

    International Nuclear Information System (INIS)

    Biostimulation of tissues by low intensity lasers has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases, but their effects on DNA are controversial. The objective of this work was to evaluate effects of low intensity infrared laser exposure on survival and bacterial filamentation in Escherichia coli cultures, and induction of DNA lesions in bacterial plasmids. In E. coli cultures and plasmids exposed to an infrared laser at fluences used to treat pain, bacterial survival and filamentation and DNA lesions in plasmids were evaluated by electrophoretic profile. Data indicate that the infrared laser (i) increases survival of E. coli wild type in 24 h of stationary growth phase, (ii) induces bacterial filamentation, (iii) does not alter topological forms of plasmids and (iv) does not alter the electrophoretic profile of plasmids incubated with exonuclease III or formamidopyrimidine DNA glycosylase. A low intensity infrared laser at the therapeutic fluences used to treat pain can alter survival of E. coli wild type, induce filamentation in bacterial cells, depending on physiologic conditions and DNA repair, and induce DNA lesions other than single or double DNA strand breaks or alkali-labile sites, which are not targeted by exonuclease III or formamidopyrimidine DNA glycosylase. (letter)

  18. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division.

    Science.gov (United States)

    Oliva, María A

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex. PMID:27668216

  19. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    Directory of Open Access Journals (Sweden)

    Rhea eLumactud

    2016-05-01

    Full Text Available The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  20. Towards understanding the molecular basis of bacterial DNA segregation

    DEFF Research Database (Denmark)

    Leonard, Thomas A.; Møller-Jensen, Jakob; Löwe, Jan

    2005-01-01

    Bacteria ensure the fidelity of genetic inheritance by the coordinated control of chromosome segregation and cell division. Here, we review the molecules and mechanisms that govern the correct subcellular positioning and rapid separation of newly replicated chromosomes and plasmids towards the cell...... poles and, significantly, the emergence of mitotic-like machineries capable of segregating plasmid DNA. We further describe surprising similarities between proteins involved in DNA partitioning (ParA/ParB) and control of cell division (MinD/MinE), suggesting a mechanism for intracellular positioning...... common to the two processes. Finally, we discuss the role that the bacterial cytoskeleton plays in DNA partitioning and the missing link between prokaryotes and eukaryotes that is bacterial mechano-chemical motor proteins. Udgivelsesdato: Mar 29...

  1. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells.

    Science.gov (United States)

    Bravo-Angel, A M; Gloeckler, V; Hohn, B; Tinland, B

    1999-09-01

    Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins. PMID:10482518

  2. Rapid isolation of high molecular weight plant DNA.

    OpenAIRE

    Murray, M G; Thompson, W. F.

    1980-01-01

    A method is presented for the rapid isolation of high molecular weight plant DNA (50,000 base pairs or more in length) which is free of contaminants which interfere with complete digestion by restriction endonucleases. The procedure yields total cellular DNA (i.e. nuclear, chloroplast, and mitochondrial DNA). The technique is ideal for the rapid isolation of small amounts of DNA from many different species and is also useful for large scale isolations.

  3. Spectrum and Sensitivity of Bacterial Keratitis Isolates in Auckland

    Directory of Open Access Journals (Sweden)

    S. Marasini

    2016-01-01

    Full Text Available Background. The bacteria isolated from severe cases of keratitis and their antibiotic sensitivity are recognised to vary geographically and over time. Objectives. To identify the most commonly isolated bacteria in keratitis cases admitted over a 24-month period to a public hospital in Auckland, New Zealand, and to investigate in vitro sensitivity to antibiotics. Methods. Hospital admissions for culture-proven bacterial keratitis between January 2013 and December 2014 were identified. Laboratory records of 89 culture positive cases were retrospectively reviewed and antibiotic sensitivity patterns compared with previous studies from other NZ centres. Results. From 126 positive cultures, 35 species were identified. Staphylococcus was identified to be the most common isolate (38.2%, followed by Pseudomonas (21.3%. Over the last decade, infection due to Pseudomonas species, in the same setting, has increased (p≤0.05. Aminoglycosides, cefazolin, ceftazidime, erythromycin, tetracycline, and doxycycline were 100% effective against tested isolates in vitro. Amoxicillin (41.6%, cefuroxime (33.3%, and chloramphenicol (94.7% showed reduced efficacy against Gram-negative bacteria, whereas penicillin (51% and ciprofloxacin (98.8% showed reduced efficacy against Gram-positive bacteria. Conclusions. Despite a shift in the spectrum of bacterial keratitis isolates, antibiotic sensitivity patterns have generally remained stable and show comparability to results within the last decade from NZ centres.

  4. Isolation of DNA methyltransferase from plants

    International Nuclear Information System (INIS)

    DNA methyltransferases (DMT) were isolated from nuclei of cauliflower, soybean, and pea by extraction with 0.35 M NaCl. Assays were performed on hemimethylated Micrococcus luteus DNA or on M. luteus DNA to test for maintenance or de novo methylase activity, respectively. Fully methylated DNA was used as a substrate to determine background levels of methylation. Based on these tests, yields of maintenance DMT activity in the crude extract from pea hypocotyl, soybean hypocotyl, and cauliflower inflorescence were 2.8, 0.9, and 1.6 units per g wet tissue (one unit equals 1 pmol of methyl from [3H]AdoMet incorporated into acid precipitable material per h at 300). Two peaks of DMT activity were detected in the soybean nuclear extract following phosphocellulose chromatography. One eluted at 0.4 M and the other at 0.8 M KCl. With both fractions maintenance activity was approximately 2 times that of the de novo activity. Using gel filtration the DMT eluted at 220,000 Daltons. The optimal pH for activity was between 6.5 and 7.0, and the optimal temperature was 300

  5. Different patterns of bacterial DNA synthesis during postantibiotic effect.

    OpenAIRE

    Gottfredsson, M; Erlendsdóttir, H; Gudmundsson, A.; Gudmundsson, S.

    1995-01-01

    Studies on bacterial metabolism during the postantibiotic effect (PAE) period are limited but might provide insight into the nature of the PAE. We evaluated the rate of DNA synthesis in bacteria during the PAE period after a 1-h exposure of organisms in the logarithmic growth phase to various antibiotics. Staphylococcus aureus ATCC 25923 was exposed to vancomycin, dicloxacillin, rifampin, and ciprofloxacin; Escherichia coli ATCC 25922 was exposed to gentamicin, tobramycin, rifampin, imipenem,...

  6. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology

    Directory of Open Access Journals (Sweden)

    Francesca Grasso

    2015-08-01

    Full Text Available Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.

  7. Plasmid profiling of bacterial isolates from confined environments

    Science.gov (United States)

    van Houdt, Rob; Provoost, Ann; Coninx, Ilse; Leys, Natalie; Mergeay, Max

    Plasmid profiling of bacterial isolates from confined environments R. Van Houdt, I. Coninx, A. Provoost, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. Human exploration of extreme and isolated hostile environments such as space requires special confined small volume habitats to protect and house the crew. However, human confinement in such small volume habitats has restrictions on waste disposal and personal hygiene and inevitably generates a particular community of microorganisms within the habitat. These microorganisms are mainly originating from the crew (skin, mucous membranes, upper respiratory tract, mouth, and gastrointestinal tract) but also include the residing environmental microorganisms. Earth-based confined habitats such as the Antarctic Research Station Concordia are used as test beds for long-duration spaceflights to study the physiologic and psychological adaptation to isolated environments. The dynamics of the environmental microbial population in such a test bed could render additional insights in assessing the potential health risks in long-duration space missions. Not only total bacterial contamination levels are important, but it is essential to identify also the predominant microbial taxa and their mobile genetic elements (MGE). These MGEs could be exchanged between bacteria by horizontal gene transfer and may alter the pathogenic potential since they often carry antibiotic resistance or more in general adaptation-enhancing traits. In this study several bacterial strains isolated in the Concordia research station were examined for their plasmid content. An optimized protocol for extraction of large plasmids showed the present of at least one plasmid in 50% of the strains. For all strains the minimal inhibitory concentration of a range of antibiotics was determined indicating resistance to

  8. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  9. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ...Sweet MJ, Beasley SJ, Cronau SL, Hume DA. J Leukoc Biol. 1999 Oct;66(4):542-8. (.png) (.svg) (.html) (.csml) Show The action...s of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial D

  10. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    Science.gov (United States)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  11. [An efficient method for isolation of mitochondrial DNA in wheat].

    Science.gov (United States)

    Li, Wen-Qiang; Zhang, Gai-Sheng; Wang, Kui; Niu, Na; Pan, Dong-Liang

    2007-06-01

    An efficient method for isolation of mitochondrial DNA (mtDNA) from etiolated tissues of wheat was developed. The protocol consists of mitochondria isolation with differential centrifugation, Dnase I treatment, lysis with SDS and proteinase K, removing protein by TE-saturated phenol/chloroform extraction and a final RNase A treatment for obtaining mtDNA. The mtDNA samples were tested using spectrophotometry and agarose gel electrophoresis. It was proved that the mtDNA isolated by this method not only have the high yield but also structural complete, and contains no impurities, such as nuclear DNA, RNA and protein. The result showed that this high quality mtDNA can be successfully used in PCR and other genetic studies. In addition, it was found that adjusting the lysis temperature has a noticeable effect on the mtDNA yield.

  12. Bioremediation Potential of Bacterial Isolates for Municipal Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Nilesh A. Sonune

    2015-08-01

    Full Text Available The potential of bacteria for the treatment of municipal wastewater was investigated in present study. Total eight bacterial isolates were used for this study that showed growth on wastewater agar medium. These isolates were identified on the basis of morphological and biochemical test and identified as Bacillus licheniformis NW16, Pseudomonas aeruginosa NS19, Pseudomonas sp. NS20, Planococcus salinarum NS23, Stenotrophomonas maltophilia NS21, Paenibacillus sp. NW9, Paenibacillus borealis NS3 and Aeromonas hydrophilia NS17. The B. licheniformis NW16 showed highest potential to reduce all parameter under study than other isolates except Ammonical nitrogen. B. licheniformis NW16 and Aeromonas hydrophilia NS17 showed maximum reduction (42.86% in BOD each. B. licheniformis NW16 and Paenibacillus sp. NW9 showed 82.76% and 81.61% reduction in COD respectively. B. licheniformis NW16, P. salinarum NS23 and Aeromonas hydrophilia NS17 showed reduction in nitrate ranging from 17.36%-63.64%. All the isolates have potential to reduced phosphate from 17.55% -72.3%. B. licheniformis NW16, Ps. aeruginosa NS19, Pseudomonas sp. NS20, Paenibacillus sp. NW9 and Aeromonas hydrophilia NS17 showed reduction in TSS ranging from 42.69%-79.94%. B. licheniformis NW16, Ps. aeruginosa NS19, Pseudomonas sp. NS20, S. maltophilia NS21 and Paenibacillus sp. NW9 showed reduction in TDS ranging from 14%-81.4%.

  13. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  14. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments

    NARCIS (Netherlands)

    Garbeva, P.; Overbeek, van L.S.; Vuurde, van J.W.L.; Elsas, van J.D.

    2001-01-01

    The diversity of endophytic bacterial populations of potato (Solanum tuberosum cv Desiree) was assessed using a combination of dilution plating of plant macerates followed by isolation and characterization of isolates, and direct PCR-DGGE on the basis of DNA extracted from plants. The culturable end

  15. Effects of different methods of DNA extraction for activated sludge on the subsequent analysis of bacterial community profiles.

    Science.gov (United States)

    Sun, Lianpeng; Ouyang, Xiong; Tang, Yueheng; Yang, Ying; Luo, Ying

    2012-02-01

    The effect of different DNA extraction protocols on activated sludge DNA yield and bacterial community composition was evaluated by temperature gradient gel electrophoresis (TGGE). Nine different procedures to extract DNA were compared-sonication (30s), sonication (40s), sonication (50s), freezing-thawing, bead milling, sodium dodecyl sulfate (SDS)-lysozyme, SDS-proteinase K, SDS-lysozyme-proteinase, and a commercial extraction kit. It was found that the TGGE profiles and the DNA band numbers made significant differences via various extraction methods. The yield and purity of DNA extracted by sonication and other physical methods were not satisfactory, while the DNA purity extracted by SDS and other chemical-biological methods were better. Crude DNA extracts isolated by sonication and other physical methods passed the polymerase chain reaction, despite the absence of purification and acquired affluent DNA bands in TGGE. The affluence of bands in TGGE was not consistent with the yield and purification of DNA, but was correlative with extraction protocols. To analyze the activated sludge bacterial community by TGGE fingerprint, it is necessary to make a synthesis of the TGGE fingerprint profiles of chemical and physical DNA extraction methods to overcome the representative bias.

  16. Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit.

    Science.gov (United States)

    Yu, Ji-Gang; Lim, Jeong-A; Song, Yu-Rim; Heu, Sunggi; Kim, Gyoung Hee; Koh, Young Jin; Oh, Chang-Sik

    2016-02-01

    Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50°C, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits.

  17. Examination of bacterial inhibition using a catalytic DNA.

    Science.gov (United States)

    Qu, Long; Ali, M Monsur; Aguirre, Sergio D; Liu, Hongxia; Jiang, Yuyang; Li, Yingfu

    2014-01-01

    Determination of accurate dosage of existing antibiotics and discovery of new antimicrobials or probiotics entail simple but effective methods that can conveniently track bacteria growth and inhibition. Here we explore the application of a previously reported fluorogenic E. coli-specific DNAzyme (catalytic DNA), RFD-EC1, as a molecular probe for monitoring bacterial inhibition exerted by antibiotics and for studying bacterial competition as a result of cohabitation. Because the DNAzyme method provides a convenient way to monitor the growth of E. coli, it is capable of determining the minimal inhibitory concentration (MIC) of antibiotics much faster than the conventional optical density (OD) method. In addition, since the target for RFD-EC1 is an extracellular protein molecule from E. coli, RFD-EC1 is able to identify pore-forming antibiotics or compounds that can cause membrane leakage. Finally, RFD-EC1 can be used to analyse the competition of cohabitating bacteria, specifically the inhibition of growth of E. coli by Bacillus subtilis. The current work represents the first exploration of a catalytic DNA for microbiological applications and showcases the utility of bacteria-sensing fluorogenic DNAzymes as simple molecular probes to facilitate antibiotic and probiotic research. PMID:25531274

  18. Examination of bacterial inhibition using a catalytic DNA.

    Directory of Open Access Journals (Sweden)

    Long Qu

    Full Text Available Determination of accurate dosage of existing antibiotics and discovery of new antimicrobials or probiotics entail simple but effective methods that can conveniently track bacteria growth and inhibition. Here we explore the application of a previously reported fluorogenic E. coli-specific DNAzyme (catalytic DNA, RFD-EC1, as a molecular probe for monitoring bacterial inhibition exerted by antibiotics and for studying bacterial competition as a result of cohabitation. Because the DNAzyme method provides a convenient way to monitor the growth of E. coli, it is capable of determining the minimal inhibitory concentration (MIC of antibiotics much faster than the conventional optical density (OD method. In addition, since the target for RFD-EC1 is an extracellular protein molecule from E. coli, RFD-EC1 is able to identify pore-forming antibiotics or compounds that can cause membrane leakage. Finally, RFD-EC1 can be used to analyse the competition of cohabitating bacteria, specifically the inhibition of growth of E. coli by Bacillus subtilis. The current work represents the first exploration of a catalytic DNA for microbiological applications and showcases the utility of bacteria-sensing fluorogenic DNAzymes as simple molecular probes to facilitate antibiotic and probiotic research.

  19. Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4

    Institute of Scientific and Technical Information of China (English)

    LI Ang; QU Yuanyuan; ZHOU Jiti; GOU Min

    2009-01-01

    A novel biphenyl-degrading bacterial strain LA-4 was isolated from activated sludge. It was identified as Dyella ginsengisoli according to phylogenetic similarity of 16S rRNA gene sequence. This isolate could utilize biphenyl as sole source of carbon and energy, which degraded over 95 mg/L biphenyl within 36 h. The major metabolites formed from biphenyl, such as 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) and benzoic acid, were identified by LC-MS. The crude cell extract of strain LA-4 exhibited the activity of 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD) and the kinetic parameters were Km= 26.48 μmol/L and Vmax= 8.12 μmol/mg protein. A conserved region of the biphenyl dioxygenase gene bphA1 of strain LA-4 was amplified by PCR and confirmed by DNA sequencing.

  20. Antibiogram study of aerobic bacterial isolates from uropathogens

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Reddy C, Himabindu M, Maity Soumendranath, Kanta RC, Kapur Indu

    2014-04-01

    Full Text Available Background: Bacteria are capable of invading and infecting humans, leading to disease and sometimes death. Systems and tissues in human body are vulnerable to different organisms. Infection pattern is likely to differ by geographical regions. Aim: This study was aimed to isolate and identify the type of aerobic bacteria causing Urinary Tract Infections (UTI in different age groups and sexes, and also in some predisposing conditions. Their antibiogram also was done. Materials and Methods: Midstream urine sample collected aseptically from 276 patients were subjected for isolation and identification of aerobic bacteria by standard technique and subsequently antibiogram was done by Kirby –Bayer Method. Both sexes of patients with an age range of 10-70 years and patients with diabetes (22, hypertension (8 and anemia (8 were also included in the study. Results: Escherichia coli was the predominant organism(50% among other isolates – Klebsiella species (27.3%, Proteus species(7.14%, Staphylococcus saprophyticus (5.95%, Staphylococcus aureus (3.57%, Enterococci (3.57%, Pseudomonas species(2.38%. UTI was more common among patients of 60 and more years of age; however, incidence was more in female patients (36.2 – 38.5% compared with male patients (25-30%. Anemia, Diabetes and Hypertension conditions were found to predispose UTI. Aminoglycosides and Quinolones were found to be more effective against the isolates. Conclusion: The present study reveals in spite of the topographical diversity, the infecting bacterial isolates from this area were found to be the same as from any other part of India.

  1. Isolation and molecular characterisation of malathion-degrading bacterial strains from waste water in Egypt

    OpenAIRE

    Zeinat K. Mohamed; Mohamed A. Ahmed; Nashwa A. Fetyan; SHERIF M. ELNAGDY

    2010-01-01

    Efficiencies of local bacterial isolates in malathion degradation were investigated. Five bacterial isolates obtained from agricultural waste water were selected due to their ability to grow in minimal salt media, supplied with 250 ppm malathion as sole source of carbon and phosphorus. The purified bacterial isolates (MOS-1, MOS-2, MOS-3, MOS-4 and MOS-5) were characterised and identified using a combination of cellular profile (SDS-PAGE), genetic make up profile (RAPD-PCR), and morphological...

  2. Isolation and Characterization of Nickel Uptake by Nickel Resistant Bacterial Isolate (NiRBI)

    Institute of Scientific and Technical Information of China (English)

    JAGDISH S PATEL; PRERNA C PATEL; KIRAN KALIA

    2006-01-01

    Bioremediation technology has gained importance because microbes could be the convenient source of bio-absorption/bioaccumulation of metals from effluent streams. Methods The nickel-resistant bacterial isolates (NiRBI)were selected from various bacterial isolates from industrial effluent and grown in nutrient broth containing different concentrations of nickel sulfate (0.3-3.0 mmol/L) and their capability of accumulating metal from the medium. Results Well-defined growth of NiRBI was observed in the medium containing up to 2.5 mmol/L of nickel. The isolate was identified using 16S rRNA and closely related to Pseudomonas fragi. Maximum accumulation of nickel (0.59 mg/g dry weight of bacterial cells) was observed when NiRBI was grown in media containing 2 mmol/L of nickel. The protein profile of the NiRBI cellular extract by SDS-PAGE showed two metal stress-induced proteins of molecular weight 48 KD and 18 KD with a simultaneous down regulation of four proteins of 46.7 KD, 42.2 KD, 19.7 KD, and 4.0 KD. Conclusion 48 KD and 18 KD proteins play a role in metal resistance mechanism by NiRBI.

  3. Interactions of selected bacterial isolates with DBT and solubilized coal

    Energy Technology Data Exchange (ETDEWEB)

    Key, D.H.; Fox, R.V.; Kase, R.S.; Willey, M.S.; Stoner, D.L.; Ward, T.E.

    1990-01-01

    We are studying the interactions of isolated bacteria with dibenzothiophene (DBT), a sulfur-containing model compound, and with a solubilized coal product derived from a high-organic-sulfur lignite. The sensitivity of the tetrazolium assay used to identify and study these strains was improved by substituting tetrazolium violet for triphenyltetrazolium. DBT metabolism by thirteen strains was investigated using qualitative and quantitative GC and GC-MS analyses. Growth medium and incubation time affect the extent of DBT degradation and the production of DBT metabolites. Under specific conditions, seven of the strains produce metabolites which elute close to the position of one or another of the biphenyl standards. However, when these samples are spiked with the standard compounds, the bacterial metabolites do not co-elute with the standards. The modification of solubilized high-organic-sulfur coal by six of these strains was also studied. No selective removal of sulfur relative to carbon was observed. 13 refs., 1 fig., 2 tabs.

  4. DNA immunization with a herpes simplex virus 2 bacterial artificial chromosome

    International Nuclear Information System (INIS)

    Construction of a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) is described. BAC vector sequences were inserted into the thymidine kinase gene of HSV-2 by homologous recombination. DNA from cells infected with the resulting recombinant virus was transformed into E. coli, and colonies containing the HSV-2 BAC (HSV2-BAC) were isolated and analyzed for the expected genotype. HSV2-BAC DNA was infectious when transfected back into mammalian cells and the resulting virus was thymidine kinase negative. When used to immunize mice, the HSV2-BAC DNA elicited a strong HSV-2 specific antibody response that was equal to or greater than live virus immunization. Further, HSV2-BAC immunization was protective when animals were challenged with a lethal dose of virus. The utility of the HSV2-BAC for construction of recombinant virus genomes was demonstrated by elimination of the HSV-2 glycoprotein D (gD) gene. A recombinant HSV-2 BAC with the gD gene deleted was isolated and shown to be incapable of producing infectious virus following transfection unless an HSV gD gene was expressed in a complementing cell line. Immunization of mice with the HSV2 gD-BAC also elicited an HSV-2 specific antibody response and was protective. The results demonstrate the feasibility of DNA immunization with HSV-2 bacterial artificial chromosomes for replicating and nonreplicating candidate HSV-2 vaccines, as well as the utility of BAC technology for construction and maintenance of novel HSV-2 vaccines. The results further suggest that such technology will be a powerful tool for dissecting the immune response to HSV-2

  5. Isolation of amoebic-bacterial consortia capable of degrading trichloroethylene

    International Nuclear Information System (INIS)

    Groundwater from a waste disposal site contaminated with chlorinated alkenes was examined for the presence of amoebic-bacterial consortia capable of degrading the suspected carcinogen, trichloroethylene (TCE). Consortia were readily isolated from all of four test wells. They contained free-living amoebae, and heterotrophic and methylotrophic bacteria. Electron microscopic examination showed bacteria localized throughout the amoebic cytoplasm and an abundance of hyphomicrobium, but not Type I methanotrophs. The presence of Type II methanotrophs was indirectly indicated by lipid analysis of one consortium. The consortia have been passaged for over two years on mineral salts media in a methane atmosphere, which would not be expected to maintain the heterotrophs or amoebae separately. The methanotrophic bacteria apparently provided a stable nutrient source, allowing the persistence of the various genera. By use of 14C-radiotracer techniques, the degradation of TCE by the consortia was observed with 14C eventuating predominantly in CO2 and water-soluble products. In a more detailed examination of one consortia, the amoebae and heterotrohic components did not degrade TCE, while a mixed culture of heterotrophs and methanotrophs did degrade TCE, suggesting the latter component was the primary cause for the consortium's ability to degrade TCE. Amoebic-bacterial consortia may play a role in stabilizing and preserving methylotrophic bacteria in hostile environments

  6. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  7. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Rocha, F.J.; Olmos-Soto, J. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, San Diego, CA (United States). Departamento de Biotecnologia Marina; Rosano-Hernandez, M.A.; Muriel-Garcia, M. [Instituto Mexicano del Petroleo, CD Carmen Camp (Mexico). Zona Marina/Tecnologia Ambiental

    2005-01-01

    Of more than 20 bacteria isolated from a tropical soil using minimal medium supplemented with hydrocarbons, 11 grew well on diesel as sole carbon source, and another 11 grew in the presence of polynuclear aromatic hydrocarbons (PAHs). Ten isolates were identified phenotypically as Pseudomonas sp. and eight as Bacillus sp. Gene sequences representing the catabolic genes (alkM, todM, ndoM, and xylM) and 16S rRNA gene sequences characteristic for Pseudomona and Bacillus were amplified by PCR, using DNA recovered from the supernatant of hydrocarbon-contaminated soil suspensions. Based on their rapid growth characteristics in the presence of hydrocarbons and the formation of PCR products for the catabolic genes alkM and ndoM six isolates were selected for biodegradation assays. After 30 days a mixed culture of two isolates achieved close to 70% hydrocarbon removal and apparent mineralization of 16% of the hydrocarbons present in the soil. Biodegradation rates varied from 275 to 387 mg hydrocarbon kg{sup -1} day{sup -1}. Several bacterial isolates obtained in this study have catabolic capabilities for the biodegradation of alkanes and aromatic hydrocarbons including PAHs. (author)

  8. Recycling Isolation of Plant DNA, A Novel Method

    Institute of Scientific and Technical Information of China (English)

    Lingling Zhang; Bo Wang; Lei Pan; Junhua Peng

    2013-01-01

    DNA is one of the most basic and essential genetic materials in the field of molecular biology.To date,isolation of sufficient and goodquality DNA is still a challenge for many plant species,though various DNA extraction methods have been published.In the present paper,a recycling DNA extraction method was proposed.The key step of this method was that a single plant tissue sample was recycled for DNA extraction for up to four times,and correspondingly four DNA precipitations (termed as the 1st,2nd,3rd and 4th DNA sample,respectively) were conducted.This recycling step was integrated into the conventional CTAB DNA extraction method to establish a recycling CTAB method.This modified CTAB method was tested in eight plant species,wheat,sorghum,barley,corn,rice,Brachypodium distachyon,Miscanthus sinensis and tung tree.The results showed that high-yield and good-quality DNA samples could be obtained by using this new method in all the eight plant species.The DNA samples were good templates for PCR amplification of both ISSR and SSR markers.The recycling method can be used in multiple plant species and can be integrated with multiple conventional DNA isolation methods,and thus is an effective and universal DNA isolation method.

  9. Effect of isolate of ruminal fibrolytic bacterial culture supplementation on fibrolytic bacterial population and survivability of inoculated bacterial strain in lactating Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    Brishketu Kumar

    2013-02-01

    Full Text Available Aim: The present study was conducted to evaluate the effect of bacterial culture supplementation on ruminal fibrolytic bacterial population as well as on survivability of inoculated bacterial strain in lactating Murrah buffaloes kept on high fibre diet. Materials and Methods: Fibrolytic bacterial strains were isolated from rumen liquor of fistulated Murrah buffaloes and live bacterial culture were supplemented orally in treatment group of lactating Murrah buffaloes fed on high fibre diet to see it's effect on ruminal fibrolytic bacterial population as well as to see the effect of survivability of the inoculated bacterial strain at three different time interval in comparison to control group. Results: It has been shown by real time quantification study that supplementation of bacterial culture orally increases the population of major fibre degrading bacteria i.e. Ruminococcus flavefaciens, Ruminococcus albus as well as Fibrobacter succinogenes whereas there was decrease in secondary fibre degrading bacterial population i.e. Butyrivibrio fibrisolvens over the different time periods. However, the inoculated strain of Ruminococcus flavefaciens survived significantly over the period of time, which was shown in stability of increased inoculated bacterial population. Conclusion: The isolates of fibrolytic bacterial strains are found to be useful in increasing the number of major ruminal fibre degrading bacteria in lactating buffaloes and may act as probiotic in large ruminants on fibre-based diets. [Vet World 2013; 6(1.000: 14-17

  10. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Shekhawat G

    2009-07-01

    Full Text Available Abstract Background The synthesis of gold nanoparticles (GNPs has received considerable attention with their potential applications in various life sciences related applications. Recently, there has been tremendous excitement in the study of nanoparticles synthesis by using some natural biological system, which has led to the development of various biomimetic approaches for the growth of advanced nanomaterials. In the present study, we have demonstrated the synthesis of gold nanoparticles by a novel bacterial strain isolated from a site near the famous gold mines in India. A promising mechanism for the biosynthesis of GNPs by this strain and their stabilization via charge capping was investigated. Results A bacterial isolate capable of gold nanoparticle synthesis was isolated and identified as a novel strain of Stenotrophomonas malophilia (AuRed02 based on its morphology and an analysis of its 16S rDNA gene sequence. After 8 hrs of incubation, monodisperse preparation of gold nanoparticles was obtained. Gold nanoparticles were characterized and found to be of ~40 nm size. Electrophoresis, Zeta potential and FTIR measurements confirmed that the particles are capped with negatively charged phosphate groups from NADP rendering them stable in aqueous medium. Conclusion The process of synthesis of well-dispersed nanoparticles using a novel microorganism isolated from the gold enriched soil sample has been reported in this study, leading to the development of an easy bioprocess for synthesis of GNPs. This is the first study in which an extensive characterization of the indigenous bacterium isolated from the actual gold enriched soil was conducted. Promising mechanism for the biosynthesis of GNPs by the strain and their stabilization via charge capping is suggested, which involves an NADPH-dependent reductase enzyme that reduces Au3+ to Au0 through electron shuttle enzymatic metal reduction process.

  11. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket.

    Science.gov (United States)

    Liu, Bo; Luo, Jin; Li, Wei; Long, Xiu-Feng; Zhang, Yu-Qin; Zeng, Zhi-Gang; Tian, Yong-Qiang

    2016-01-01

    A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T).

  12. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available A bacterial isolate (SCU-B244T was obtained in China from crickets (Teleogryllus occipitalis living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T, which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52% between SCU-B244T and Erwinia oleae (DSM 23398T confirmed that SCU-B244T and Erwinia oleae (DSM 23398T represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%. The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T.

  13. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekar, Aruliah; Ting, Yen-Peng [National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering; Anandkumar, Balakrishnan [Sourashtra Coll., Madurai (India). Dept. of Biotechnology; Maruthamuthu, Sundaram [Central Electrochemical Research Inst., Karaikudi (India). Biocorrosion Group; Rahman, Pattanathu K.S.M. [Teesside Univ., Tees Valley (United Kingdom). Chemical and Bioprocess Engineering Group

    2010-01-15

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed. (orig.)

  14. Characterization of Bacterial Strains Isolated from a Novel Seawater-based Retting Treatment of Hemp

    Institute of Scientific and Technical Information of China (English)

    ZHU Run-ye; CHEN Jian-yong; FENG Xin-xing; ZHANG Jian-chun

    2008-01-01

    Cultivable bacteria were isolated from seawater-based retting treatment of hemp, in which three of purified strains (SW - 1, SW - 2, and S - SW1) produced relatively high levels of pectinase activities, and also produced mannanases and xylanases.PCR - based entebacterial repetitive intergenic consensus primers (ERIC- PCR) were employed for fingerprinting DNA of the bacterial strains.The ERIC - PCR fingerprints of stains SW- 1, SW -1, and S -SW1 were found to be different, and should be further identified for each isolate.Strains SW - 1 and SW - 2 were identified as Stenotrophomnas maltophilia, while strain S - SW1 was assigned to Ochrobactrum anthropi by BIOLOG system.These two species represented rhizosphere bacterial genera, and possibly were introduced by the hemp plants.These organisms seemed potentially capable of producing pectinase and hemicellulase, and thus effectively degrading the gum substances in the seawater retting.This research could be helpful for improving a novel seawater-based retting treatment of hemp.

  15. Genetic and biochemical diversity of Gardnerella vaginalis strains isolated from women with bacterial vaginosis.

    Science.gov (United States)

    Pleckaityte, Milda; Janulaitiene, Migle; Lasickiene, Rita; Zvirbliene, Aurelija

    2012-06-01

    Gardnerella vaginalis is considered a substantial player in the progression of bacterial vaginosis (BV). We analysed 17 G. vaginalis strains isolated from the genital tract of women diagnosed with BV to establish a potential link between genotypes/biotypes and the expression of virulence factors, vaginolysin (VLY) and sialidase, which are assumed to play a substantial role in the pathogenesis of BV. Amplified ribosomal DNA restriction analysis revealed two G. vaginalis genotypes. Gardnerella vaginalis isolates of genotype 2 appeared more complex than genotype 1 and were subdivided into three subtypes. Biochemical typing allowed us to distinguish four different biotypes. A great diversity of the level of VLY production among the isolates of G. vaginalis may be related to a different cytotoxicity level of the strains. We did not find any correlation between VLY production level and G. vaginalis genotype/biotype. In contrast, a link between G. vaginalis genotype and sialidase production was established. Our findings on the diversity of VLY expression level in different clinical isolates and linking sialidase activity with the genotype of G. vaginalis could help to evaluate the pathogenic potential of different G. vaginalis strains.

  16. Rapid, Effective DNA Isolation from Osmanthus via Modified Alkaline Lysis.

    Science.gov (United States)

    Alexander, Lisa

    2016-07-01

    Variability of leaf structure and presence of secondary metabolites in mature leaf tissue present a challenge for reliable DNA extraction from Osmanthus species and cultivars. The objective of this study was to develop a universal rapid, effective, and cost-efficient method of DNA isolation for Osmanthus mature leaf tissue. Four different methods were used to isolate DNA from 8 cultivars of Osmanthus. Absorbance spectra, DNA concentration, appearance on agarose gel, and performance in PCR were used to analyze quality, quantity, and integrity of isolated DNA. Methods were ranked in order, based on total quantity, quality, and performance points as the following: 1) solid-phase extraction (SPE), 2) modified alkaline lysis (SDS), 3) cetyltrimethylammonium bromide (CTAB) with chloroform (CHL), and 4) CTAB with phenol/chloroform (PHE). Total DNA, isolated via SPE, showed the least contamination but the lowest mean quantity (9.6 ± 3.4 μg) and highest cost. The highest quantity of DNA was isolated via SDS (117 ± 54.1 μg). SPE and SDS resolved the most individuals on agarose gel, whereas the 2 CTAB methods had poorly resolved gels. All methods except PHE performed well in PCR. Additions to the modified alkaline lysis method increased A260:A230 by up to 59% without affecting yield. With the use of SDS, an average of 1000 μg/g DNA was isolated from fresh leaf tissue of 18 samples in ∼1.5 h at a cost of 0.74 U.S. dollars (USD)/sample. We recommend improved alkaline lysis as a rapid, effective, and cost-efficient method of isolating DNA from Osmanthus species. PMID:26816495

  17. Isolation of DNA from forensic evidence.

    Science.gov (United States)

    Bing, D H; Bieber, F R; Holland, M M; Huffine, E F

    2001-05-01

    This unit covers the many and varied methods for extracting DNA from such diverse specimens as blood, tissue, stamps and envelopes, and cigarette butts, among others. Modifications to the methods that allow the DNA to be used for either PCR or Southern blotbased analyses are also included.

  18. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Theerthankar Das

    Full Text Available Calcium (Ca(2+ has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca(2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca(2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca(2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca(2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG values in iTC data confirmed that the interaction between DNA and Ca(2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca(2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca(2+ to eDNA thereby mediating bacterial aggregation and biofilm formation.

  19. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation.

    Science.gov (United States)

    Das, Theerthankar; Sehar, Shama; Koop, Leena; Wong, Yie Kuan; Ahmed, Safia; Siddiqui, Khawar Sohail; Manefield, Mike

    2014-01-01

    Calcium (Ca(2+)) has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA) being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca(2+) and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca(2+) binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca(2+) had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca(2+) at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG) values in iTC data confirmed that the interaction between DNA and Ca(2+) is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca(2+) alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca(2+) to eDNA thereby mediating bacterial aggregation and biofilm formation.

  20. Facile, High Quality Sequencing of Bacterial Genomes from Small Amounts of DNA

    OpenAIRE

    Momchilo Vuyisich; Ayesha Arefin; Karen Davenport; Shihai Feng; Cheryl Gleasner; Kim McMurry; Beverly Parson-Quintana; Jennifer Price; Matthew Scholz; Patrick Chain

    2014-01-01

    Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg). There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the util...

  1. Decolorization of the textile dyes by newly isolated bacterial strains.

    Science.gov (United States)

    Chen, Kuo-Cheng; Wu, Jane-Yii; Liou, Dar-Jen; Hwang, Sz-Chwun John

    2003-02-27

    Six bacterial strains with the capability of degrading textile dyes were isolated from sludge samples and mud lakes. Aeromonas hydrophila was selected and identified because it exhibited the greatest color removal from various dyes. Although A. hydrophila displayed good growth in aerobic or agitation culture (AGI culture), color removal was the best in anoxic or anaerobic culture (ANA culture). For color removal, the most suitable pH and temperature were pH 5.5-10.0 and 20-35 degrees C under anoxic culture (ANO culture). More than 90% of RED RBN was reduced in color within 8 days at a dye concentration of 3,000 mg l(-1). This strain could also decolorize the media containing a mixture of dyes within 2 days of incubation. Nitrogen sources such as yeast extract or peptone could enhance strongly the decolorization efficiency. In contrast to a nitrogen source, glucose inhibited decolorization activity because the consumed glucose was converted to organic acids that might decrease the pH of the culture medium, thus inhibiting the cell growth and decolorization activity. Decolorization appeared to proceed primarily by biological degradation.

  2. Kinetics of zinc toxicity to environmental bacterial isolates

    Directory of Open Access Journals (Sweden)

    Christian Okechukwu Nweke

    2009-12-01

    Full Text Available Toxicity of zinc to Pseudomonas, Escherichia, Proteus, Bacillus and Arthrobacter species isolated from a tropical river and petroleum refinery effluent was assessed using TTC-dehydrogenase activity (DHA inhibition test. At sufficient concentrations, zinc is toxic to these bacterial cells, and the exposure of the cells to zinc ion resulted in repression of dehydrogenase activity. The patterns of these toxic effects can be mathematically described with logistic dose-response models and in a manner similar to the non-competitive inhibition of enzymes. The threshold concentration above which toxic effect is observed ranged from 0.008 mM for Pseudomonas sp. DAF1 to 0.364 mM for Proteus sp. PLK2. The coefficients of inhibition Ki correlated with the IC50 and indicate that zinc toxicity is dependent on the organism. The Ki and toxicity threshold values predicted from the equations are comparable and are suitable indicators for kinetic analyses of zinc toxicity against bacteria.

  3. Biotypes and virulence factors of Gardnerella vaginalis isolated from cases of bacterial vaginosis

    OpenAIRE

    Udayalaxmi, J.; Bhat, G. K.; S Kotigadde

    2011-01-01

    The present study was conducted to correlate the biotypes of Gardnerella vaginalis strains isolated from cases of bacterial vaginosis and their virulence factors. Thirty-two strains of G. vaginalis isolated from cases of bacterial vaginosis were biotyped. Adherence to vaginal epithelial cells, biofilm production, surface hydrophobicity, phospholipase C and protease activity were tested on these isolates. Biotype 1 was the most prevalent (8; 25%), followed by biotype 2 (7; 21.9%) and biotypes ...

  4. DNA Microarray-Based Typing of Streptococcus agalactiae Isolates

    OpenAIRE

    Nitschke, Heike; Slickers, Peter; Müller, Elke; Ehricht, Ralf; Monecke, Stefan

    2014-01-01

    Streptococcus agalactiae frequently colonizes the urogenital tract, and it is a major cause of bacterial septicemia, meningitis, and pneumonia in newborns. For typing purposes, a microarray targeting group B streptococcus (GBS) virulence-associated markers and resistance genes was designed and validated with reference strains, as well as clinical and veterinary isolates. Selected isolates were also subjected to multilocus sequence typing. It was observed that putative typing markers, such as ...

  5. DNA-crosslinker cisplatin eradicates bacterial persister cells.

    Science.gov (United States)

    Chowdhury, Nityananda; Wood, Thammajun L; Martínez-Vázquez, Mariano; García-Contreras, Rodolfo; Wood, Thomas K

    2016-09-01

    For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc. PMID:26914280

  6. A modified procedure for isolation of yeast mitochondrial DNA.

    Science.gov (United States)

    Nedeva, Trayana; Petrova, Ventzislava; Hristozova, Tsonka; Kujumdzieva, Anna

    2002-01-01

    A modified, rapid and inexpensive method for preparation of mitochondrial DNA (mtDNA), suitable for molecular analysis is proposed. It comprises batch cultivation of Saccharomyces cerevisiae strain NBIMCC 583 on a simple nutrient medium at 28 degrees C; permeabialization of cells from late exponential growth phase with cetyltrimethylamonnium bromide, mechanical disintegration of the cell wall; preparation of a mitochondrial fraction and subsequent isolation and purification of mtDNA. The amount and the purity of the obtained mtDNA have been checked and its application for molecular analysis proven. The main advantages of the proposed procedure for isolation of mtDNA are introduction of simple nutrient medium, replacement of the enzymatic lysis of the cell wall by the cheaper mechanical one, avoidance of ultracentrifugation steps and use of harmful chemical substances. PMID:12440743

  7. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.

    Science.gov (United States)

    Yoo, Dae-goon; Floyd, Madison; Winn, Matthew; Moskowitz, Samuel M; Rada, Balázs

    2014-08-01

    Cystic fibrosis (CF) airway disease is characterized by Pseudomonas aeruginosa infection and recruitment of neutrophil granulocytes. Neutrophil granule components (myeloperoxidase (MPO), human neutrophil elastase (HNE)), extracellular DNA and P. aeruginosa can all be found in the CF respiratory tract and have all been associated with worsening CF lung function. Pseudomonas-induced formation of neutrophil extracellular traps (NETs) offers a likely mechanism for release of MPO, HNE and DNA from neutrophils. NETs are composed of a DNA backbone decorated with granule proteins like MPO and HNE. Here we sought to examine whether CF clinical isolates of Pseudomonas are capable of inducing NET release from human neutrophil granulocytes. We used two methods to quantify NETs. We modified a previously employed ELISA that detects MPO-DNA complexes and established a new HNE-DNA ELISA. We show that these methods reliably quantify MPO-DNA and HNE-DNA complexes, measures of NET formation. We have found that CF isolates of P. aeruginosa stimulate robust respiratory burst and NET release in human neutrophils. By comparing paired "early" and "late" bacterial isolates obtained from the same CF patient we have found that early isolates induced significantly more NET release than late isolates. Our data support that Pseudomonas-induced NET release represents an important mechanism for release of neutrophil-derived CF inflammatory mediators, and confirm that decreased induction of NET formation is required for long-term adaptation of P. aeruginosa to CF airways.

  8. Plasma Bacterial and Mitochondrial DNA Distinguish Bacterial Sepsis from Sterile SIRS and Quantify Inflammatory Tissue Injury in Nonhuman Primates

    OpenAIRE

    Sursal, Tolga; Stearns-Kurosawa, Deborah J.; Itagaki, Kiyoshi; Oh, Sun-Young; Sun, Shiqin; Kurosawa, Shinichiro; Hauser, Carl J

    2013-01-01

    Systemic inflammatory response syndrome (SIRS) is a fundamental host response common to bacterial infection and sterile tissue injury. SIRS can cause organ dysfunction and death but its mechanisms are incompletely understood. Moreover, SIRS can progress to organ failure or death despite being sterile or after control of the inciting infection. Biomarkers discriminating between sepsis, sterile SIRS and post-infective SIRS would therefore help direct care. Circulating mitochondrial DNA (mtDNA) ...

  9. Microbially-influenced corrosion capability of Yucca Mountain bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Pitonzo, B.; Castro, P.; Amy, P. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1996-12-01

    Microorganisms implicated in microbially-influenced corrosion have been isolated from the deep subsurface at Yucca Mt. Iron-oxidizing (FeOx), sulfate-reducing (SRB), and exopolymer (EPS)-producing bacteria were found. Microbial corrosion rate was monitored electrochemically. The test system was composed of a 1020 carbon steel coupon immersed in soft R2A agar prepared with simulated groundwater (J-13). A KCl bridge was used to connect the test and reference cell (calomel electrode). A platinum counter-electrode was used to apply a potential to the coupon and the corrosion process was measured by a potentiostat (Gamry). Corrosion cells (3x) were inoculated with purified cultures of EPS-producing bacteria and enrichment cultures of FeOx and SRB bacteria. Test cells were inoculated with microorganisms separately, as well as in various combinations. An uninoculated control cell was prepared to assess abiotic corrosion. Average corrosion rates were measured in milli-inches per year (mpy) against time. The control, and cells containing EPS-producing, FeOx or SRB bacteria alone or in combination demonstrated a rapid decrease in corrosion rate by 3 days. The corrosion rates stabilized, and at 35 days peaked at 2.25 mpy (FeOx), 3.30 mpy (SRB), and 2.80 mpy (EPS). AU of these values were significantly higher than the corrosion rate observed in the control cell, 1.30 mpy at 35 days. The various combinations demonstrated higher corrosion rates than any bacterial group alone. Coupons were cleaned, revealing surface pits. 200 pits/sq. in. were counted on a coupon previously exposed to a mixture of EPS-producing and FeOx microorganisms. Pit diameter ranged from 0.25 to 2.75 mm. The results indicate that Yucca Mountain microorganisms, alone and in combination, are capable of causing corrosion of 1020 carbon steel.

  10. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  11. Application of Oligonucleotide Microarrays for Bacterial Source Tracking of Environmental Enterococcus sp. Isolates

    OpenAIRE

    Furey, John S.; Kelley Betts; Indest, Karl J.

    2005-01-01

    In an effort towards adapting new and defensible methods for assessing and managing the risk posed by microbial pollution, we evaluated the utility of oligonucleotide microarrays for bacterial source tracking (BST) of environmental Enterococcus sp. isolates derived from various host sources. Current bacterial source tracking approaches rely on various phenotypic and genotypic methods to identify sources of bacterial contamination resulting from point or non-point pollution. For this study Ent...

  12. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    OpenAIRE

    Qiang Tu; Jia Yin; Jun Fu; Jennifer Herrmann; Yuezhong Li; Yulong Yin; Francis Stewart, A.; Rolf Müller; Youming Zhang

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and re...

  13. Isolation of the bacterial causes of tonsillitis in dogs

    Directory of Open Access Journals (Sweden)

    B. Al-Mufti

    2014-06-01

    Full Text Available The study was performed to identify the bacterial causes of tonsillitis in dogs. Twelve clinical cases of dogs (5 males and 7 females of different ages and breeds were observed. Tonsils swabs were taken from all the dogs, then cultured on different agars and bacterial smears prepared from all cultures and Gram stains were done. The study confirmed that the most bacterial causes of tonsillitis in dogs were Escherichia coli, Staphylococcus aureus, Staphylococcus intermedius, Staphylococcus albus, Streptococcus pyogenes, Klebsiella spp. and Pasteurella spp.

  14. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    OpenAIRE

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for ea...

  15. Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis Diversidade bacteriana de solo sob eucaliptos obtida por seqüenciamento do 16S rDNA

    OpenAIRE

    Érico Leandro da Silveira; Rodrigo Matheus Pereira; Denilson César Scaquitto; Eliamar Aparecida Nascimbém Pedrinho; Silvana Pómpeia Val-Moraes; Ester Wickert; Lúcia Maria Carareto-Alves; Eliana Gertrudes Macedo Lemos

    2006-01-01

    Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversi...

  16. In vivo compaction dynamics of bacterial DNA: A fingerprint of DNA/RNA demixing ?

    CERN Document Server

    Joyeux, Marc

    2016-01-01

    The volume occupied by unconstrained bacterial DNA in physiological solutions exceeds 1000 times the volume of the cell. Still, it is confined to a well defined region of the cell called the nucleoid, which occupies only a fraction of the cell volume. There is still no general agreement on the mechanism leading to the compaction of the DNA and the formation of the nucleoid. However, advances in in vivo sub-wavelength resolution microscopy techniques have recently allowed the observation of the nucleoid at an unprecedented level of detail. In particular, these observations show that the compaction of the nucleoid is not static but is instead a highly dynamic feature, which depends on several factors, like the richness of the nutrient, the cell cycle stage, temperature, the action of an osmotic shock or antibiotics, etc. After a short description of the electrolyte content of the cytosol and a brief overview of the different mechanisms that may lead to the formation of the nucleoid, this paper reviews some of t...

  17. Rapid isolation of yeast genomic DNA: Bust n' Grab

    Directory of Open Access Journals (Sweden)

    Peterson Kenneth R

    2004-04-01

    Full Text Available Abstract Background Mutagenesis of yeast artificial chromosomes (YACs often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Results Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. Conclusion An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.

  18. Biotypes and virulence factors of Gardnerella vaginalis isolated from cases of bacterial vaginosis.

    Science.gov (United States)

    Udayalaxmi, J; Bhat, G K; Kotigadde, S

    2011-01-01

    The present study was conducted to correlate the biotypes of Gardnerella vaginalis strains isolated from cases of bacterial vaginosis and their virulence factors. Thirty-two strains of G. vaginalis isolated from cases of bacterial vaginosis were biotyped. Adherence to vaginal epithelial cells, biofilm production, surface hydrophobicity, phospholipase C and protease activity were tested on these isolates. Biotype 1 was the most prevalent (8; 25%), followed by biotype 2 (7; 21.9%) and biotypes 5 and 8 (5; 15.6%). We did not find any statistical correlation between G. vaginalis biotypes and its virulence factors. Virulence factors expressed by G. vaginalis were not associated with a single biotype.

  19. Biotypes and virulence factors of Gardnerella vaginalis isolated from cases of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    J Udayalaxmi

    2011-01-01

    Full Text Available The present study was conducted to correlate the biotypes of Gardnerella vaginalis strains isolated from cases of bacterial vaginosis and their virulence factors. Thirty-two strains of G. vaginalis isolated from cases of bacterial vaginosis were biotyped. Adherence to vaginal epithelial cells, biofilm production, surface hydrophobicity, phospholipase C and protease activity were tested on these isolates. Biotype 1 was the most prevalent (8; 25%, followed by biotype 2 (7; 21.9% and biotypes 5 and 8 (5; 15.6%. We did not find any statistical correlation between G. vaginalis biotypes and its virulence factors. Virulence factors expressed by G. vaginalis were not associated with a single biotype.

  20. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  1. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre;

    2013-01-01

    generated by uptake of short DNA fragments escape mismatch repair. Moreover, doublenucleotide polymorphisms appear more common among genomes of transformable than nontransformable bacteria. Our findings reveal that short and damaged, including truly ancient, DNA molecules, which are present in large...... quantities in the environment, can be acquired by bacteria through natural transformation. Our findings open for the possibility that natural genetic exchange can occur with DNA up to several hundreds of thousands years old....

  2. MALDI-TOF mass spectrometry proteomic based identification of clinical bacterial isolates

    Directory of Open Access Journals (Sweden)

    Ashutosh Panda

    2014-01-01

    Full Text Available Background & objectives: Pathogenic bacteria often cause life threatening infections especially in immunocompromised individuals. Therefore, rapid and reliable species identification is essential for a successful treatment and disease management. We evaluated a rapid, proteomic based technique for identification of clinical bacterial isolates by protein profiling using matrix-assisted laser desorption-ionization time - of - flight mass spectrometry (MALDI-TOF MS. Methods: Freshly grown bacterial isolates were selected from culture plates. Ethanol/formic acid extraction procedure was carried out, followed by charging of MALDI target plate with the extract and overlaying with α-cyano-4 hydroxy-cinnamic acid matrix solution. Identification was performed using the MALDI BioTyper 1.1, software for microbial identification (Bruker Daltonik GmbH, Bremen, Germany. Results: A comparative analysis of 82 clinical bacterial isolates using MALDI -TOF MS and conventional techniques was carried out. Amongst the clinical isolates, the accuracy at the species level for clinical isolates was 98.78%. One out of 82 isolates was not in accordance with the conventional assays because MALDI-TOF MS established it as Streptococcus pneumoniae and conventional methods as Streptococcus viridans. Interpretation & conclusions: MALDI - TOF MS was found to be an accurate, rapid, cost-effective and robust system for identification of clinical bacterial isolates. This innovative approach holds promise for earlier therapeutic intervention leading to better patient care.

  3. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response.

    Science.gov (United States)

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  4. Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment.

    Science.gov (United States)

    Esham; Ye; Moran

    2000-12-01

    Bacterial isolates were obtained from enrichment cultures containing humic substances extracted from estuarine water using an XAD-8 resin. Eighteen isolates were chosen for phylogenetic and physiological characterization based on numerical importance in serial dilutions of the enrichment culture and unique colony morphology. Partial sequences of the 16S rRNA genes indicated that six of the isolates were associated with the alpha subclass of Proteobacteria, three with the gamma-Proteobacteria, and nine with the Gram-positive bacteria. Ten isolates degraded at least one (and up to six) selected aromatic single-ring compounds. Six isolates showed ability to degrade [(14)C]humic substances derived from the dominant salt marsh grass in the estuary from which they were isolated (Spartina alterniflora), mineralizing 0.4-1.1% of the humic substances over 4 weeks. A mixture of all 18 isolates did not degrade humic substances significantly faster than any of the individual strains, however, and no isolate degraded humic substances to the same extent as the natural marine bacterial community (3.0%). Similar studies with a radiolabeled synthetic lignin ([beta-(14)C]dehydropolymerisate) showed measurable levels of degradation by all 18 bacteria (3.0-8.8% in 4 weeks), but mineralization levels were again lower than that observed for the natural marine bacterial community (28.2%). Metabolic capabilities of the 18 isolates were highly variable and generally did not map to phylogenetic affiliation.

  5. A simple and efficient DNA isolation method for Salvia officinalis.

    Science.gov (United States)

    Aleksić, Jelena M; Stojanović, Danilo; Banović, Bojana; Jančić, Radiša

    2012-12-01

    We report an efficient, simple, and cost-effective protocol for the isolation of genomic DNA from an aromatic medicinal plant, common sage (Salvia officinalis L.). Our modification of the standard CTAB protocol includes two polyphenol adsorbents (PVP 10 and activated charcoal), high NaCl concentrations (4 M) for removing polysaccharides, and repeated Sevag treatment to remove proteins and other carbohydrate contaminants. The mean DNA yield obtained with our Protocol 2 was 330.6 μg DNA g(-1) of dry leaf tissue, and the absorbance ratios 260/280 and 260/230 nm averaged 1.909 and 1.894, respectively, revealing lack of contamination. PCR amplifications of one nuclear (26S rDNA) and one chloroplast (rps16-trnK) locus indicated that our DNA isolation protocol may be used in common sage and other aromatic and medicinal plants containing essential oil for molecular biologic and biotechnological studies and for population genetics, phylogeographic, and conservation surveys in which nuclear or chloroplast genomes would be studied in large numbers of individuals.

  6. A simple method for DNA isolation from Xanthomonas spp.

    Directory of Open Access Journals (Sweden)

    Gomes Luiz Humberto

    2000-01-01

    Full Text Available A simple DNA isolation method was developed with routine chemicals that yields high quality and integrity preparations when compared to some of the most well known protocols. The method described does not require the use of lysing enzymes, water bath and the DNA was obtained within 40 minutes The amount of nucleic acid extracted (measured in terms of absorbancy at 260 nm from strains of Xanthomonas spp., Pseudomonas spp. and Erwinia spp. was two to five times higher than that of the most commonly used method.

  7. Crystal Structure of a Bacterial Type IB DNA Topoisomerase Reveals a Preassembled Active Site in the Absence of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso (NWU); (SKI)

    2010-03-08

    Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C) domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.

  8. Silica-coated La0.75Sr0.25MnO3 nanoparticles for magnetically driven DNA isolation.

    Science.gov (United States)

    Trachtová, Stěpánka; Kaman, Ondřej; Spanová, Alena; Veverka, Pavel; Pollert, Emil; Rittich, Bohuslav

    2011-11-01

    Magnetic La(0.75)Sr(0.25)MnO(3) nanoparticles possessing an approximately 20-nm-thick silica shell (LSMO(0.25)@SiO(2) ) were characterised and tested for the isolation of PCR-ready bacterial DNA. The results presented here show that the nanoparticles do not interfere in PCR. DNA was apparently reversibly adsorbed on their silica shell from the aqueous phase system (16% PEG 6000-2 M NaCl). The method proposed was used for DNA isolation from complex food samples (dairy products and probiotic food supplements). The isolated DNA was compatible with PCR. The main advantages of the nanoparticles tested for routine use were their high colloidal stability allowing a more precise dosage and therefore high reproducibility of DNA isolation. PMID:21919199

  9. Surface Physicochemistry and Ionic Strength Affects eDNA's Role in Bacterial Adhesion to Abiotic Surfaces

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Lokanathan, Arcot R; Modrzynski, Jakub;

    2014-01-01

    with different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired......Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent e......DNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised...

  10. Manganese oxidation by bacterial isolates from the Indian Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Krishnan, K.P.; Khedekar, V.D.; LokaBharathi, P.A.

    ) observations of both isolates revealed free-living cells in clustered matrices apprrox. 2 Mu diameter. Energy dispersive spectrum of the cell matrix of CR35 cultured in 1 mM Mn detected 30%Mn, while the cell aggregates of CR48 harbored 7 -10% Mn. The relatively...

  11. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  12. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates.

    Science.gov (United States)

    Deitzler, Grace E; Ruiz, Maria J; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Warren G; Lewis, Amanda L

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  13. Diversity of Clinical and Environmental Isolates of Vibrio cholerae in Natural Transformation and Contact-Dependent Bacterial Killing Indicative of Type VI Secretion System Activity.

    Science.gov (United States)

    Bernardy, Eryn E; Turnsek, Maryann A; Wilson, Sarah K; Tarr, Cheryl L; Hammer, Brian K

    2016-05-01

    The bacterial pathogen Vibrio cholerae can occupy both the human gut and aquatic reservoirs, where it may colonize chitinous surfaces that induce the expression of factors for three phenotypes: chitin utilization, DNA uptake by natural transformation, and contact-dependent bacterial killing via a type VI secretion system (T6SS). In this study, we surveyed a diverse set of 53 isolates from different geographic locales collected over the past century from human clinical and environmental specimens for each phenotype outlined above. The set included pandemic isolates of serogroup O1, as well as several serogroup O139 and non-O1/non-O139 strains. We found that while chitin utilization was common, only 22.6% of the isolates tested were proficient at chitin-induced natural transformation, suggesting that transformation is expendable. Constitutive contact-dependent killing of Escherichia coli prey, which is indicative of a functional T6SS, was rare among clinical isolates (only 4 of 29) but common among environmental isolates (22 of 24). These results bolster the pathoadaptive model in which tight regulation of T6SS-mediated bacterial killing is beneficial in a human host, whereas constitutive killing by environmental isolates may give a competitive advantage in natural settings. Future sequence analysis of this set of diverse isolates may identify previously unknown regulators and structural components for both natural transformation and T6SS. PMID:26944842

  14. POLYSACCHARIDES AND eDNA AID BACTERIAL ATTACHMENT TO POLYMER BRUSH COATINGS (PLL-g-PEG)

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.;

    in complete absence of bacterial colonization from Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermis, whereas the conventional PLL-g-PEG coatings only resisted colonization by P. aeruginosa and S. aureus, but not S. epidermidis. Colonization patterns were also reflected in single...... of the conventional coating. These results explain why S. epidermidis, which produces polysaccharides and extracellular DNA, could successfully colonize the conventional PLL-g-PEG coatings. The ability of high-density PLL-g-PEG to resist polysaccharides, DNA, and bacterial adhesion of all strains is thus highly...

  15. Isolation, Characterization and Application of Bacterial Population From Agricultural Soil at Sohag Province, Egypt

    Directory of Open Access Journals (Sweden)

    Bahig, A. E.

    2008-01-01

    Full Text Available Forty soil samples of agriculture soil were collected from two different sites in Sohag province, Egypt, during hot and cold seasons. Twenty samples were from soil irrigated with canal water (site A and twenty samples were from soil irrigated with wastewater (site B. This study aimed to compare the incidence of plasmids in bacteria isolated from soil and to investigate the occurrence of metal and antibiotic resistance bacteria, and consequently to select the potential application of these bacteria in bioremediation. The total bacterial count (CFU/gm in site (B was higher than that in site (A. Moreover, the CFU values in summer were higher than those values in winter at both sites. A total of 771 bacterial isolates were characterized as Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Eschershia, Shigella, Xanthomonas, Acetobacter, Citrobacter, Enterobacter, Moraxella and Methylococcus. Minimum inhibitory concentrations (MICs of Pb+2, Cu+2, Zn+2, Hg+2, Co+2, Cd+2, Cr+3, Te+2, As+2 and Ni+2 for plasmid-possessed bacteria were determined and the highest MICs were 1200 µg/mL for lead, 800 µg/mL for both Cobalt and Arsenate, 1200 µg/mL for Nickel, 1000 µg/ml for Copper and less than 600 µg/mL for other metals. Bacterial isolates from both sites A and B showed multiple heavy metal resistance. A total of 337 bacterial isolates contained plasmids and the incidence of plasmids was approximately 25-50% higher in bacteria isolated from site (B than that from site (A. These isolates were resistance to different antibiotics. Approximately, 61% of the bacterial isolates were able to assimilate insecticide, carbaryl, as a sole source of carbon and energy. However, the Citrobacter AA101 showed the best growth on carbaryl.

  16. Facile, High Quality Sequencing of Bacterial Genomes from Small Amounts of DNA

    Science.gov (United States)

    Vuyisich, Momchilo; Arefin, Ayesha; Davenport, Karen; Feng, Shihai; Gleasner, Cheryl; McMurry, Kim; Parson-Quintana, Beverly; Price, Jennifer; Scholz, Matthew; Chain, Patrick

    2014-01-01

    Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg). There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the utility of NEBNext Ultra for resequencing and de novo assembly of four bacterial genomes and compared its performance with the TruSeq library preparation kit. The NEBNext Ultra reagents enable high quality resequencing and de novo assembly of a variety of bacterial genomes when using 100 ng of input genomic DNA. For the two most challenging genomes (Burkholderia spp.), which have the highest GC content and are the longest, we also show that the quality of both resequencing and de novo assembly is not decreased when only 10 ng of input genomic DNA is used. PMID:25478564

  17. Facile, High Quality Sequencing of Bacterial Genomes from Small Amounts of DNA

    Directory of Open Access Journals (Sweden)

    Momchilo Vuyisich

    2014-01-01

    Full Text Available Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg. There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the utility of NEBNext Ultra for resequencing and de novo assembly of four bacterial genomes and compared its performance with the TruSeq library preparation kit. The NEBNext Ultra reagents enable high quality resequencing and de novo assembly of a variety of bacterial genomes when using 100 ng of input genomic DNA. For the two most challenging genomes (Burkholderia spp., which have the highest GC content and are the longest, we also show that the quality of both resequencing and de novo assembly is not decreased when only 10 ng of input genomic DNA is used.

  18. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    Science.gov (United States)

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  19. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential

    OpenAIRE

    Bandounas Luaine; Wierckx Nick JP; de Winde Johannes H; Ruijssenaars Harald J

    2011-01-01

    Abstract Background To expand on the range of products which can be obtained from lignocellulosic biomass, the lignin component should be utilized as feedstock for value-added chemicals such as substituted aromatics, instead of being incinerated for heat and energy. Enzymes could provide an effective means for lignin depolymerization into products of interest. In this study, soil bacteria were isolated by enrichment on Kraft lignin and evaluated for their ligninolytic potential as a source of...

  20. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential

    OpenAIRE

    Bandounas, L.; Wierckx, N.J.P.; de Winde, J H; Ruijssenaars, H.J.

    2011-01-01

    Background - To expand on the range of products which can be obtained from lignocellulosic biomass, the lignin component should be utilized as feedstock for value-added chemicals such as substituted aromatics, instead of being incinerated for heat and energy. Enzymes could provide an effective means for lignin depolymerization into products of interest. In this study, soil bacteria were isolated by enrichment on Kraft lignin and evaluated for their ligninolytic potential as a source of novel ...

  1. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential

    OpenAIRE

    Bandounas, Luaine; Wierckx, Nick JP; de Winde, Johannes H; Ruijssenaars, Harald J.

    2011-01-01

    Background To expand on the range of products which can be obtained from lignocellulosic biomass, the lignin component should be utilized as feedstock for value-added chemicals such as substituted aromatics, instead of being incinerated for heat and energy. Enzymes could provide an effective means for lignin depolymerization into products of interest. In this study, soil bacteria were isolated by enrichment on Kraft lignin and evaluated for their ligninolytic potential as a source of novel en...

  2. Testing of DNA isolation for the identification of hemp

    Directory of Open Access Journals (Sweden)

    Tomáš Vyhnánek

    2015-12-01

    Full Text Available Hemp is diploid organism (2n = 2x = 20, genome size 534 Mb with nine pairs of autosomes plus XX (♀ or XY (♂ chromosomes. Cannabis sativa L. is an important economic plant for the production of food, fibre, oils, and intoxicants. Genotypes (varieties or chemovar of hemp with low Δ9-tetrahydrocannabinol content are used for industrial applications. Varieties with high Δ9-tetrahydrocannabinol or high cannabidiol content are used for medicinal applications. Biochemical and molecular methods can be used for identification and classification. An important step for molecular biology methods is to obtain the matrix of the native and sufficiently pure DNA. We tested two different experimental variant of samples (20 mg and 100 mg of seeds, oilcake and dried flowers for analysis of the Italian variety Carmagnola for analysis (harvested in 2014, Hempoint Ltd., Czech Republic. The DNeasy® Plant Mini Kit (Qiagen, GE was used to isolate the DNA. The DNA concentration and purity was assessed by agarose electrophoresis and via a spectrophotometer. Samples of lower weight yielded lower values of DNA concentration (average 16.30 - 38.90 ng.µL-1, but with better purity than samples of higher weight (ratio A260nm/A280nm for low-weight samples was near 1.80. To test the applicability of DNA analysis, we used two SSR markers (CAN1347 and CAN2913. PCR products were separated on 1% agarose and on 8% polyacrylamide electrophoresis. DNA samples obtained from samples of higher weight exhibited less PCR amplification than samples of lower weight. We found no effect of sample weight on the formation of non-specific amplification products during the PCR reaction. Based on our results we can be recommended for practical isolation procedure using DNeasy® Plant Mini Kit with lower of sample weight (20 mg. In future work the procedure for DNA isolating from wheat-cannabis products, e. g. breads, rolls or pasta, will be optimized.

  3. Importance of isolation and biotypization of Gardnerella vaginalis in diagnosis of bacterial vaginosis.

    Science.gov (United States)

    Numanović, Fatima; Hukić, Mirsada; Nurkić, Mahmud; Gegić, Merima; Delibegović, Zineta; Imamović, Alma; Pasić, Selma

    2008-08-01

    The natural habitat of Gardnerella vaginalis is a vagina since it could be located among 69% of women who have no signs of vaginal infection and in the vagina of as many as 13.5% girls. G. vaginalis is almost certainly identified among women diagnosed with bacterial vaginosis as well as in the urethra of their sexual partner. The increase in prevalence and concentration of G. vaginalis among patients diagnosed with this syndrome confirms that G. vaginalis plays a significant role in its pathogenesis. In our research, based on Amsel criteria for three or more clinical signs of bacterial vaginosis, it was diagnosed in 20.5% of women with subjective problems of vaginal infection, and in 48.80% of women with subjective symptoms characteristic of this disease. G. vaginalis was isolated from vaginal secretion of women without clinical signs characteristic of bacterial vaginosis. In 2.58% of cases it was solitary, while in 1.28% it was found in combination with other aerobic and anaerobic bacteria and, in 1.28% women combined with Candida albicans. The isolation of G. vaginalis was significantly increased (pbiotype of G. vaginalis, different from a source biotype or as a consequence of wrong treatment. Following Piot biotype scheme, biotypes 2., 3. and 7. G. vaginalis are significantly more often isolated from women who suffer from bacterial vaginosis. Biotype 7. G. vaginalis, isolated from the group of women without clinical signs of bacterial vaginosis, accounted for 2.58% cases. Following Benit biotype scheme, biotypes IVa, IVc and IIc were identified in 12.90% cases, while biotypes IIIa, IIa, Ia, IVb, IIb were found in 6.45% cases. Lipase-positive isolates of G. vaginalis were significantly more frequently accompanied by the syndrome of bacterial vaginosis.

  4. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  5. Multiple gene sequence analysis using genes of the bacterial DNA repair pathway

    OpenAIRE

    Miguel Rotelok Neto; Carolina Weigert Galvão; Leonardo Magalhães Cruz; Dieval Guizelini; Leilane Caline Silva; Jarem Raul Garcia; Rafael Mazer Etto

    2015-01-01

    The ability to recognize and repair abnormal DNA structures is common to all forms of life. Physiological studies and genomic sequencing of a variety of bacterial species have identified an incredible diversity of DNA repair pathways. Despite the amount of available genes in public database, the usual method to place genomes in a taxonomic context is based mainly on the 16S rRNA or housekeeping genes. Thus, the relationships among genomes remain poorly understood. In this work, an approach of...

  6. Co-isolation of in vivo 32P-labeled specific transcripts and DNA without phenol extraction of nuclease digestion

    International Nuclear Information System (INIS)

    A method is described for isolation and quantitation of specific intact transcripts, for which a hybridization probe is available, from 32P-labeled bacterial cells. The RNA is extracted in the absence of R Nase activity by incorporating an inert, physically removable R Nase inhibitor throughout the spheroplasting, cell lysis, and pronase digestion steps. [/sup 32/P]RNA is separated from [32P]DNA, without recourse to phenol extraction of DNase treatment, on a Cs2SO/sub 4-/HCONH2 step gradient in which the precipitated RNA forms a sharp band. Specific transcripts are purified from [32P]RNA by physical separation of the transcript and hybridization probe using gel-exclusion chromatography. The gentleness of this technique enables the co-isolation of DNA and can facilitate the analysis of covalently joined RNA-DNA replication intermediates

  7. Use of mitochondrial and ribosomal DNA polymorphisms to classify clinical and soil isolates of Histoplasma capsulatum.

    OpenAIRE

    Spitzer, E. D.; Lasker, B A; Travis, S J; Kobayashi, G. S.; Medoff, G

    1989-01-01

    We have developed an improved scheme for the classification of environmental and clinical isolates of Histoplasma capsulatum that is based on analysis of mitochondrial DNA (mtDNA) and ribosomal DNA (rDNA). Strains were initially divided into mtDNA groups according to restriction digests of whole-cell DNA and Southern hybridization with cloned mtDNA probes. Strains within a mtDNA class could be further grouped by polymorphisms in rDNA. The majority of soil and clinical isolates from the United...

  8. Compaction of bacterial genomic DNA: clarifying the concepts

    International Nuclear Information System (INIS)

    The unconstrained genomic DNA of bacteria forms a coil, whose volume exceeds 1000 times the volume of the cell. Since prokaryotes lack a membrane-bound nucleus, in sharp contrast with eukaryotes, the DNA may consequently be expected to occupy the whole available volume when constrained to fit in the cell. Still, it has been known for more than half a century that the DNA is localized in a well-defined region of the cell, called the nucleoid, which occupies only 15% to 25% of the total volume. Although this problem has focused the attention of many scientists in recent decades, there is still no certainty concerning the mechanism that enables such a dramatic compaction. The goal of this Topical Review is to take stock of our knowledge on this question by listing all possible compaction mechanisms with the proclaimed desire to clarify the physical principles they are based upon and discuss them in the light of experimental results and the results of simulations based on coarse-grained models. In particular, the fundamental differences between ψ-condensation and segregative phase separation and between the condensation by small and long polycations are highlighted. This review suggests that the importance of certain mechanisms, like supercoiling and the architectural properties of DNA-bridging and DNA-bending nucleoid proteins, may have been overestimated, whereas other mechanisms, like segregative phase separation and the self-association of nucleoid proteins, as well as the possible role of the synergy of two or more mechanisms, may conversely deserve more attention. (topical review)

  9. Isolation of Biosurfactant–Producing Bacteria with Antimicrobial Activity against Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Siripun Sarin

    2011-01-01

    Full Text Available The aims of this research were to study biosurfactant producing bacteria isolated from soil and to determine their property and efficiency as biosurfactants in order to inhibit bacterial pathogens. The result showed that there were 8 bacterial isolates out of 136 isolates of the total biosurfactant producing bacteria screened that exhibited the diameter of clear zone more than 1.5 cm. in the oil spreading test. The highest potential of emulsifying activity (%EA24 of 54.4 and the maximum additive concentration, (%MAC of 24.2 was obtained from the fermentation broth of the G7 isolate which the G7 isolate was later identified as Pseudomonas fluorescens. Escherichia coli, Staphylococcus aureus and Psuedomonas aeruginosa were the tested bacterial pathogens that were most sensitive to the acid precipitated biosurfactant obtained from P. fluorescens G7 with the lowest minimum inhibitory concentration (MIC of 41.6 mg/ml and minimum bactericidal concentration (MBC of 41.6 mg/ml compared with the acid precipitated bisurfactants of the other isolates used in the antimicrobial activity test. The type of the separated crude biosurfactant produced by P. fluorescens G7 analyzed later by using the rhamose test, TLC and FT-IR techniques was rhamnolipid.

  10. MICROFLUIDIC MODULES FOR ISOLATION OF RECOMBINANT CYTOKINE FROM BACTERIAL LYSATES

    Energy Technology Data Exchange (ETDEWEB)

    Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2014-01-01

    The portability and personalization of health-care diagnostics and treatments benefits from advancements and applications of micro and nanotechnology. Modularization and miniaturization of standardized biochemical processes and tests facilitates the advancement and customization of analyte detection and diagnosis on-chip. The goal of our work here is to develop modular platforms for on-chip biochemical processing of synthesized biologics for a range of on-demand applications. Our report focuses on the initial development, characterization and application of microfluidic size exclusion/gel filtration and ion exchange protein concentration modules for cytokine isolation from spiked cell extracts.

  11. Isolation and Identification of Active Compound Cause Light Emmitting of Bacterial Photobacterium phosphoreum Isolated from the Indonesia Jepara Marine Squid

    Directory of Open Access Journals (Sweden)

    Idam Arif

    2005-04-01

    Full Text Available This research carried out to study the bioluminescence process of bacterial Photobacterium phosphoreum isolated from Indonesia marine squid. The method used in the present study involved isolation, purification, electrophoresis, and the absorbance and light intensity measurement. This result show that the luciferace enzyme of bacterial Photobacterium phosphoreum or called LBPP catalyzes the emission of visible light from the reaction of reduced flavin mononucleotide (FMNH2, molecular oxygen (O2, and an aldehyde (RCOH. The electrophoresis data show that LBPP comprised of two different subunits α and βwith 41kD and 38 kD molecular weights. The absorb pattern showed that the bioluminescence process centered around 516 nm and are consistent with the fluorescence data. This result concluded that the excitation state formed after LBPP bind subtracts and the ground state formed after LBPP releases product and visible light.

  12. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.

    Science.gov (United States)

    Luo, Sheng-lian; Chen, Liang; Chen, Jue-liang; Xiao, Xiao; Xu, Tao-ying; Wan, Yong; Rao, Chan; Liu, Cheng-bin; Liu, Yu-tang; Lai, Cui; Zeng, Guang-ming

    2011-11-01

    This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency. PMID:21868057

  13. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity.

    Science.gov (United States)

    Rathi, Preeti; Maurer, Sara; Kubik, Grzegorz; Summerer, Daniel

    2016-08-10

    We report the direct isolation of user-defined DNA sequences from the human genome with programmable selectivity for both canonical and epigenetic nucleobases. This is enabled by the use of engineered transcription-activator-like effectors (TALEs) as DNA major groove-binding probes in affinity enrichment. The approach provides the direct quantification of 5-methylcytosine (5mC) levels at single genomic nucleotide positions in a strand-specific manner. We demonstrate the simple, multiplexed typing of a variety of epigenetic cancer biomarker 5mC with custom TALE mixes. Compared to antibodies as the most widely used affinity probes for 5mC analysis, i.e., employed in the methylated DNA immunoprecipitation (MeDIP) protocol, TALEs provide superior sensitivity, resolution and technical ease. We engineer a range of size-reduced TALE repeats and establish full selectivity profiles for their binding to all five human cytosine nucleobases. These provide insights into their nucleobase recognition mechanisms and reveal the ability of TALEs to isolate genomic target sequences with selectivity for single 5-hydroxymethylcytosine and, in combination with sodium borohydride reduction, single 5-formylcytosine nucleobases. PMID:27429302

  14. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential

    Directory of Open Access Journals (Sweden)

    Bandounas Luaine

    2011-10-01

    Full Text Available Abstract Background To expand on the range of products which can be obtained from lignocellulosic biomass, the lignin component should be utilized as feedstock for value-added chemicals such as substituted aromatics, instead of being incinerated for heat and energy. Enzymes could provide an effective means for lignin depolymerization into products of interest. In this study, soil bacteria were isolated by enrichment on Kraft lignin and evaluated for their ligninolytic potential as a source of novel enzymes for waste lignin valorization. Results Based on 16S rRNA gene sequencing and phenotypic characterization, the organisms were identified as Pandoraea norimbergensis LD001, Pseudomonas sp LD002 and Bacillus sp LD003. The ligninolytic capability of each of these isolates was assessed by growth on high-molecular weight and low-molecular weight lignin fractions, utilization of lignin-associated aromatic monomers and degradation of ligninolytic indicator dyes. Pandoraea norimbergensis LD001 and Pseudomonas sp. LD002 exhibited best growth on lignin fractions, but limited dye-decolourizing capacity. Bacillus sp. LD003, however, showed least efficient growth on lignin fractions but extensive dye-decolourizing capacity, with a particular preference for the recalcitrant phenothiazine dye class (Azure B, Methylene Blue and Toluidene Blue O. Conclusions Bacillus sp. LD003 was selected as a promising source of novel types of ligninolytic enzymes. Our observations suggested that lignin mineralization and depolymerization are separate events which place additional challenges on the screening of ligninolytic microorganisms for specific ligninolytic enzymes.

  15. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5500 Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  16. Bacterial DNA Sequence Compression Models Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Armando J. Pinho

    2013-08-01

    Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.

  17. 'Olegusella massiliensis' strain KHD7, a new bacterial genus isolated from the female genital tract.

    Science.gov (United States)

    Diop, K; Diop, A; Raoult, D; Fournier, P-E; Fenollar, F

    2016-07-01

    We report the main characteristics of 'Olegusella massiliensis' gen. nov., sp. nov., strain KHD7 (= CSUR P2268 = DSM 101849), a new member of the Coriobacteriaceae family isolated from the vaginal flora of a patient with bacterial vaginosis. PMID:27330814

  18. The Prevalence and Antimicrobial Susceptibility of Bacterial Uropathogens Isolated from Pediatric Patients

    Directory of Open Access Journals (Sweden)

    R Ranjbar

    2009-06-01

    Full Text Available "nBackground: Urinary tract infection (UTI is considered as the most common bacterial infectious disease seen among the pediatric patients. The aim of this study was to investigate the prevalence and antimicrobial susceptibility of bacterial uropathogens isolated from the pediatric patients with urinary tract infections."nMethods: This descriptive study was conducted in Children Medial Center, Tehran, Iran from March 2006 to Feb 2007. Clean-catch midstream urine specimens were obtained from the patients and cultured on the appropriate bacteriological media. Bacterial isolates were identified by standard biochemical and serological tests. Antimicrobial susceptibility testing was performed according to CLSI guidelines."nResults: From 14199 urine specimens, 16.2% had positive results for bacterial cultures. Nine hundred twenty one strains were identified as Escherichia coli; 412 as Klebsiella spp., 285 as Coagulase negative Staphylocococci, 202 as Enterococcus spp., 158 as Pseudomonas spp., and 83 as Staphylococcus aureus. E. coli isolates showed high resistance to carbenicillin (68%, ampicillin (96%, trimethoprim-sulfomethoxazol (70% and kanamycin (65%. More than 30% of isolates of Klebsiella spp., Pseudomonas spp. and Enterobacter spp. have shown high degree of resistance to commonly used antibiotics."nConclusion: Our findings reinforce the need for ongoing investigation to show trends in antibiotic resistance, which can help to prescribing of antibiotics in clinics.

  19. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.

    Directory of Open Access Journals (Sweden)

    Stefan Niemann

    Full Text Available BACKGROUND: Mycobacterium tuberculosis complex (MTBC, the causative agent of tuberculosis (TB, is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients. METHODOLOGY/PRINCIPAL FINDINGS: Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1 and one multidrug resistant (MDR isolate (K-2 of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan. Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1 and 33.0 million (K-2 paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations. CONCLUSIONS: Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse

  20. The interaction of DNA gyrase with the bacterial toxin CcdB

    DEFF Research Database (Denmark)

    Kampranis, S C; Howells, A J; Maxwell, A

    1999-01-01

    CcdB is a bacterial toxin that targets DNA gyrase. Analysis of the interaction of CcdB with gyrase reveals two distinct complexes. An initial complex (alpha) is formed by direct interaction between GyrA and CcdB; this complex can be detected by affinity column and gel-shift analysis, and has a pr...

  1. Industrially important hydrolytic enzyme diversity explored in stove ash bacterial isolates.

    Science.gov (United States)

    Kiran, Tabbassum; Asad, Wajeeha; Siddiqui, Shahla; Ajaz, Munazza; Rasool, Sheikh Ajaz

    2015-11-01

    Extreme environments merit special attention and significance because of the possible existence of thermophilic microorganisms in such ecological niches. Keeping this in mind indigenous stove ash samples were explored for extremophilic bacteria in term of their biodiversity. Accordingly, this study reports 37 bacterial isolates from the local wood run oven (Tandoor) ash samples. All the isolated strains belong to genus Bacillus on the bases of morpho-cultural and biochemical considerations. The average temperature tolerance profile was >45°C thereby, indicating towards the thermophilic nature of the isolated strains. The Bacillus isolates were screened for 10 different hydrolytic enzymes (cellulase, xylanase, amylase, pectinase, caseinase, keratinase, lipase, esterase, dextranase and β-galactosidase) by plate screening method using the medium incorporated with specific substrate(s). It was found that keratinase was produced by all the isolates while, 36 (97.2%) isolates showed caseinase and esterase production. Amylase was produced by 35(94.6%) isolates and 34 (91.8%) isolates were able to degrade Tween-80 and xylan as substrate for lipase and xylanase respectively. The enzyme, β-galactosidase was produced by 31 (89.1%) of the isolates. Cellulase and dextranase were produced by 26 (70.2%) and 22 (59.4%) isolates respectively. None of the isolates could (under the existing conditions) produce pectin-hydrolyzing enzyme. According to the Tukey's post hoc test, significant difference was found between the mean enzyme index of all the (screened) enzymes. Thus, the isolated bacterial strains with diverse hydrolytic potential may be of great value and relevance for the existing (national) industrial setups. PMID:26639497

  2. Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3.

    Science.gov (United States)

    Wang, Hui; Zheng, Xiao-Wei; Su, Jian-Qiang; Tian, Yun; Xiong, Xiao-Jing; Zheng, Tian-Ling

    2009-11-15

    Studies were carried out on the decolorization of the reactive dye Reactive Black 5 by a newly isolated bacterium, EC3. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparisons indicate that this strain belonged to the genus Enterobacter. The optimal conditions for the decolorizing activity of Enterobacter sp. EC3 were anaerobic conditions with glucose supplementation, at pH 7.0, and 37 degrees C. The maximum decolorization efficiency against Reactive Black 5 achieved in this study was 92.56%. Ultra-violet and visible (UV-vis) analyses before and after decolorization and the colorless bacterial biomass after decolorization suggested that decolorization was due to biodegradation, rather than inactive surface adsorption. The bacterial strain also showed a strong ability to decolorize various reactive textile dyes, including both azo and anthraquinone dyes. To our knowledge, it is the first time that a bacterial strain of Enterobacter sp. has been reported with decolorizing ability against both azo and anthraquinone dyes.

  3. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.

    Directory of Open Access Journals (Sweden)

    Pengfei Ding

    2015-06-01

    Full Text Available Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.

  4. Molecular detection of bacterial pathogens using microparticle enhanced double-stranded DNA probes.

    Science.gov (United States)

    Riahi, Reza; Mach, Kathleen E; Mohan, Ruchika; Liao, Joseph C; Wong, Pak Kin

    2011-08-15

    Rapid, specific, and sensitive detection of bacterial pathogens is essential toward clinical management of infectious diseases. Traditional approaches for pathogen detection, however, often require time-intensive bacterial culture and amplification procedures. Herein, a microparticle enhanced double-stranded DNA probe is demonstrated for rapid species-specific detection of bacterial 16S rRNA. In this molecular assay, the binding of the target sequence to the fluorophore conjugated probe thermodynamically displaces the quencher probe and allows the fluorophore to fluoresce. By incorporation of streptavidin-coated microparticles to localize the biotinylated probes, the sensitivity of the assay can be improved by 3 orders of magnitude. The limit of detection of the assay is as few as eight bacteria without target amplification and is highly specific against other common pathogens. Its applicability toward clinical diagnostics is demonstrated by directly identifying bacterial pathogens in urine samples from patients with urinary tract infections.

  5. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik

    2004-01-01

    A total of 569 different bacterial isolates (156 Salmonella, 202 E. coli, 43 S. aureus, 38 S. hyicus, 52 E. faecalis, 78 E faecium) were tested for susceptibility to copper sulphate, benzalkonium chloride, hydrogen peroxide and chlorhexidine using MIC determinations. A total of 442 isolates were ...... bacterial species to these compounds, and Salmonella especially seems intrinsically less susceptible than the other bacterial species, which might have human health implications. (C) 2004 Elsevier B.V. All rights reserved....

  6. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    Science.gov (United States)

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  7. Microbial interactions chapter: binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1977-01-01

    Genetic transformation of bacteria by DNA released from cells of a related strain is discussed. The mechanism by which the giant information-bearing molecules of DNA are transported into the bacterial cell was investigated. It was concluded that the overall process of DNA uptake consists of two main steps, binding of donor DNA to the outside of the cell and entry of the bound DNA into the cell. Each step is discussed in detail. Inasmuch as these phenomena occur at the cell surface, they are related to structures and functions of the cell wall and membrane. In addition, the development of competence, that is the formation of cell surface structures allowing DNA uptake, is examined from both a physiological and evolutionary point of view. Genetic transfer mediated by free DNA is an obvious and important form of cellular interaction. The development of competence involves another, quite distinct system of interaction between bacterial cells. Streptococcus pneumoniae, Bacillus subtilis, and Hemophilus influenzae were used as the test organisms. 259 references.

  8. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils

    Directory of Open Access Journals (Sweden)

    Palmira De Bellis

    2015-11-01

    Full Text Available Ochratoxin A (OTA is a mycotoxin with a main nephrotoxic activity contaminating several foodstuffs. In the present report, five soil samples collected from OTA-contaminated vineyards were screened to isolate microorganisms able to biodegrade OTA. When cultivated in OTA-supplemented medium, OTA was converted in OTα by 225 bacterial isolates. To reveal clonal relationships between isolates, molecular typing by using an automated rep-PCR system was carried out, thus showing the presence of 27 different strains (rep-PCR profiles. The 16S-rRNA gene sequence analysis of an isolate representative of each rep-PCR profiles indicated that they belonged to five bacterial genera, namely Pseudomonas, Leclercia, Pantoea, Enterobacter, and Acinetobacter. However, further evaluation of OTA-degrading activity by the 27 strains revealed that only Acinetobacter calcoaceticus strain 396.1 and Acinetobacter sp. strain neg1, consistently conserved the above property; their further characterization showed that they were able to convert 82% and 91% OTA into OTα in six days at 24 °C, respectively. The presence of OTα, as the unique OTA-degradation product was confirmed by LC-HRMS. This is the first report on OTA biodegradation by bacterial strains isolated from agricultural soils and carried out under aerobic conditions and moderate temperatures. These microorganisms might be used to detoxify OTA-contaminated feed and could be a new source of gene(s for the development of a novel enzymatic detoxification system.

  9. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates

    Science.gov (United States)

    Kali, Arunava; Bhuvaneshwar, Devaraj; Charles, Pravin M. V.; Seetha, Kunigal Srinivasaiah

    2016-01-01

    Introduction: The role of natural bioactive substances in treating infections has been rediscovered as bacterial resistance become common to most of the antibiotics. Curcumin is a bioactive substance from turmeric. Owing to antimicrobial properties, its prospect as an antibacterial agent is currently under focus. Materials and Methods: We have evaluated the in vitro synergy of curcumin with antibiotics against sixty biofilm producing bacterial isolates. Congo red agar method was used to identify the biofilm producing isolates. Curcumin minimum inhibitory concentration (MIC) was determined by agar dilution method. Its antibiotic synergy was identified by the increase in disc diffusion zone size on Mueller-Hinton agar with 32 mg/L curcumin. Results: The mean MICs of curcumin against Gram-positive and Gram-negative isolates were 126.9 mg/L and 117.4 mg/L, respectively. Maximum synergy was observed with ciprofloxacin among Gram-positive and amikacin, gentamicin, and cefepime among Gram-negative isolates. Conclusions: Curcumin per se as well as in combination with other antibiotics has a demonstrable antibacterial action against biofilm producing bacterial isolates. It may have a beneficial role in supplementing antibiotic therapy. PMID:27330262

  10. Isolation and identification of bacterial causes of clinical mastitis in cattle in Sulaimania region

    Directory of Open Access Journals (Sweden)

    S. A. Hussein

    2008-01-01

    Full Text Available A total of 51 cases of bovine clinical mastitis in Sulaimani district were investigated for their bacteriological causative agents; 76 milk samples were cultured on primary and selective media and the isolated bacteria were tested for their susceptibility to antimicrobial agents used in commercial intramammary infusion products. Eighty two bacterial isolates were obtained and further identified using biochemical tests. Escherichia coli was the most common bacteria followed by Staphylococcus aureus, Streptococcus agalactia and coagulase–negative staphylococci. Two other bacterial species (Pseudomonas aeruginosa and Streptococcucs uberis were also isolated but in a lower proportion. Antibacterial susceptibility testing showed that the use of florfenicol, cephalexin and gentamicin may be useful for the treatment of clinical mastitis cases in cows.

  11. Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates.

    Science.gov (United States)

    Sursal, Tolga; Stearns-Kurosawa, Deborah J; Itagaki, Kiyoshi; Oh, Sun-Young; Sun, Shiqin; Kurosawa, Shinichiro; Hauser, Carl J

    2013-01-01

    Systemic inflammatory response syndrome (SIRS) is a fundamental host response common to bacterial infection and sterile tissue injury. Systemic inflammatory response syndrome can cause organ dysfunction and death, but its mechanisms are incompletely understood. Moreover, SIRS can progress to organ failure or death despite being sterile or after control of the inciting infection. Biomarkers discriminating between sepsis, sterile SIRS, and postinfective SIRS would therefore help direct care. Circulating mitochondrial DNA (mtDNA) is a damage-associated molecular pattern reflecting cellular injury. Circulating bacterial 16S DNA (bDNA) is a pathogen-associated pattern (PAMP) reflecting ongoing infection. We developed quantitative polymerase chain reaction assays to quantify these markers, and predicting their plasma levels might help distinguish sterile injury from infection. To study these events in primates, we assayed banked serum from Papio baboons that had undergone a brief challenge of intravenous Bacillus anthracis delta Sterne (modified to remove toxins) followed by antibiotics (anthrax) that causes organ failure and death. To investigate the progression of sepsis to "severe" sepsis and death, we studied animals where anthrax was pretreated with drotrecogin alfa (activated protein C), which attenuates sepsis in baboons. We also contrasted lethal anthrax bacteremia against nonlethal E. coli bacteremia and against sterile tissue injury from Shiga-like toxin 1. Bacterial DNA and mtDNA levels in timed samples were correlated with blood culture results and assays of organ function. Sterile injury by Shiga-like toxin 1 increased mtDNA, but bDNA was undetectable: consistent with the absence of infection. The bacterial challenges caused parallel early bDNA and mtDNA increases, but bDNA detected pathogens even after bacteria were undetectable by culture. Sublethal E. coli challenge only caused transient rises in mtDNA consistent with a self-limited injury. In lethal

  12. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    Science.gov (United States)

    Xu, Shoutao

    Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors

  13. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  14. Reconstruction of a Bacterial Genome from DNA Cassettes

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Dupont; John Glass; Laura Sheahan; Shibu Yooseph; Lisa Zeigler Allen; Mathangi Thiagarajan; Andrew Allen; Robert Friedman; J. Craig Venter

    2011-12-31

    This basic research program comprised two major areas: (1) acquisition and analysis of marine microbial metagenomic data and development of genomic analysis tools for broad, external community use; (2) development of a minimal bacterial genome. Our Marine Metagenomic Diversity effort generated and analyzed shotgun sequencing data from microbial communities sampled from over 250 sites around the world. About 40% of the 26 Gbp of sequence data has been made publicly available to date with a complete release anticipated in six months. Our results and those mining the deposited data have revealed a vast diversity of genes coding for critical metabolic processes whose phylogenetic and geographic distributions will enable a deeper understanding of carbon and nutrient cycling, microbial ecology, and rapid rate evolutionary processes such as horizontal gene transfer by viruses and plasmids. A global assembly of the generated dataset resulted in a massive set (5Gbp) of genome fragments that provide context to the majority of the generated data that originated from uncultivated organisms. Our Synthetic Biology team has made significant progress towards the goal of synthesizing a minimal mycoplasma genome that will have all of the machinery for independent life. This project, once completed, will provide fundamentally new knowledge about requirements for microbial life and help to lay a basic research foundation for developing microbiological approaches to bioenergy.

  15. Bacterial-mediated DNA delivery to tumour associated phagocytic cells.

    Science.gov (United States)

    Byrne, W L; Murphy, C T; Cronin, M; Wirth, T; Tangney, M

    2014-12-28

    Phagocytic cells including macrophages, dendritic cells and neutrophils are now recognised as playing a negative role in many disease settings including cancer. In particular, macrophages are known to play a pathophysiological role in multiple diseases and present a valid and ubiquitous therapeutic target. The technology to target these phagocytic cells in situ, both selectively and efficiently, is required in order to translate novel therapeutic modalities into clinical reality. We present a novel delivery strategy using non-pathogenic bacteria to effect gene delivery specifically to tumour-associated phagocytic cells. Non-invasive bacteria lack the ability to actively enter host cells, except for phagocytic cells. We exploit this natural property to effect 'passive transfection' of tumour-associated phagocytic cells following direct administration of transgene-loaded bacteria to tumour regions. Using an in vitro-differentiated human monocyte cell line and two in vivo mouse models (an ovarian cancer ascites and a solid colon tumour model) proof of delivery is demonstrated with bacteria carrying reporter constructs. The results confirm that the delivery strategy is specific for phagocytic cells and that the bacterial vector itself recruits more phagocytic cells to the tumour. While proof of delivery to phagocytic cells is demonstrated in vivo for solid and ascites tumour models, this strategy may be applied to other settings, including non-cancer related disease. PMID:25466954

  16. Inhibitory Effect of Lactobacillus reuteri on Some Pathogenic Bacteria Isolated From Women With Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Eslami

    2014-08-01

    Full Text Available Background Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. Objectives The purpose of this study was to investigate the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria isolated from women with bacterial vaginosis. Materials and Methods Ninety-six samples were obtained from vaginal discharge of women with bacterial vaginosis by a gynecologist with a Dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth. Then were immediately sent to the laboratory in cold chain for further assessment. Afterward, culture was transferred on blood agar, EMB, Palcam and differential diagnosis environments. Then cultures were incubated for 24 hours at 37 °C. Lactobacillus reuteri strains were cultured in MRS environment and transferred to laboratory. After purification of pathogenic bacteria, Lactobacillus reuteri inhibitory effect on pathogenic bacteria was evaluated by minimum inhibitory concentration (MIC and antibiogram. Statistical analysis was performed using SPSS software v.16. Results The results of this study demonstrated the inhibitory effect of Lactobacillus reuteri on some pathogenic bacteria that cause bacterial, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Enterococcus, Listeria monocytogenes and E. coli. Microscopic examination of stained smears of most Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use, contraceptive methods and douching were 61%, 55%, 42% and 13%, respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial. Conclusions Our findings indicated the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria that

  17. Pathogenicity testing of shellfish hatchery bacterial isolates on Pacific oyster Crassostrea gigas larvae.

    Science.gov (United States)

    Estes, Robyn M; Friedman, Carolyn S; Elston, Ralph A; Herwig, Russell P

    2004-03-10

    Bacterial diseases are a major cause of larval mortality in shellfish hatcheries. Even with proper sanitation measures, bacterial pathogens cannot be eliminated in all cases. The pathogenicity of bacteria isolated from Pacific Northwest shellfish hatcheries to Pacific oyster Crassostrea gigas larvae was investigated. We found 3 highly pathogenic strains and 1 mildly pathogenic strain among 33 isolates tested. These strains appear to be members of the genus Vibrio. Although there have been many studies of bivalve bacterial pathogens, a standard method to assess bacterial pathogenicity in bivalve larvae is needed. Thus, we developed 2 methods using either 15 ml conical tubes or tissue culture plates that were employed for rapidly screening bacterial strains for pathogenicity to Pacific oyster larvae. The tissue culture plates worked well for screening both mildly pathogenic strains and LD50 (lethal dose) assays. This method allowed for non-intrusive and non-destructive observation of the oyster larvae with a dissecting microscope. The LD50 for the 3 highly pathogenic strains ranged between 1.6 and 3.6 x 10(4) colony forming units (CFU) ml(-1) after 24 h and between 3.2 x 102 and 1.9 x 10(3) CFU ml(-1) after 48 h.

  18. In-vitro efficacy of antibacterials against bacterial isolates from corneal ulcers.

    Directory of Open Access Journals (Sweden)

    Bharathi Jayahar

    2002-01-01

    Full Text Available PURPOSE: To analyse the in-vitro efficacy of commonly used antibacterials against bacterial pathogens from corneal ulcers. METHODS: We evaluated 596 patients seen over 18 months, period, September 1999 through March 2001. Corneal scrapings were subjected to microscopy and cultures using standard protocols. Antibacterial susceptibility of isolated bacteria were determined by the Kirby-Bauer disc-diffusion method. RESULTS: 626 bacterial pathogens were isolated from 596 corneal ulcer cases. 411(65.65% were gram positive cocci Streptococcus pneumoniae (41.85% was the predominant bacterial species. The antibacterial susceptibility was: 451(72.04% to cefazolin, 471(75.24% to chloramphenicol; 321(51.28% to cephaloridine; 430(68.69% to vancomycin; 564(90.09% to ciprofloxacin; 429(68.53% to norfloxacin; 464(74.12% to gentamicin and 202(32.27% to co.trimoxazole. CONCLUSION: This study provides information on the efficacy of ocular antibacterials commonly used against bacterial pathogens of keratitis. It is hoped that this information will help decision-making in empiric initial treatment of bacterial keratitis.

  19. Inflammatory Bowel Diseases: When Natural Friends Turn into Enemies—The Importance of CpG Motifs of Bacterial DNA in Intestinal Homeostasis and Chronic Intestinal Inflammation

    OpenAIRE

    Florian Obermeier; Claudia Hofmann; Werner Falk

    2010-01-01

    From numerous studies during the last years it became evident that bacteria and bacterial constituents play a decisive role both in the maintenance of intestinal immune homeostasis as well as in the development and perpetuation of chronic intestinal inflammation. In this review we focus on the role of bacterial DNA which is a potent immunomodulatory component of the bacterial flora. Bacterial DNA has been shown to be protective against experimental colitis. In contrast bacterial DNA essential...

  20. Protocol for Evaluating the Permissiveness of Bacterial Communities Toward Conjugal Plasmids by Quantification and Isolation of Transconjugants

    DEFF Research Database (Denmark)

    Klümper, Uli; Dechesne, Arnaud; Smets, Barth F.

    2014-01-01

    may encode catabolic pathways, virulence factors, and antibiotic or metal resistances, it is of environmental, evolutionary, and medical relevance to track and monitor the fate of plasmids in mixed microbial community. When assessing the short-term and long-term implications of conjugal plasmid......The transfer of conjugal plasmids is the main bacterial process of horizontal gene transfer to potentially distantly related bacteria. These extrachromosomal, circular DNA molecules host genes that code for their own replication and transfer to other organisms. Because additional accessory genes...... a gfp-tagged plasmid in a mCherry red fluorescently tagged donor strain repressing gfp expression. We take advantage of fluorescent marker genes to microscopically detect plasmid transfer events and use subsequent high-throughput fluorescence-activated cell sorting (FACS) to isolate...

  1. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing.

    Science.gov (United States)

    Riba, J; Gleichmann, T; Zimmermann, S; Zengerle, R; Koltay, P

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry. PMID:27596612

  2. Application of Oligonucleotide Microarrays for Bacterial Source Tracking of Environmental Enterococcus sp. Isolates

    Directory of Open Access Journals (Sweden)

    John S. Furey

    2005-04-01

    Full Text Available In an effort towards adapting new and defensible methods for assessing and managing the risk posed by microbial pollution, we evaluated the utility of oligonucleotide microarrays for bacterial source tracking (BST of environmental Enterococcus sp. isolates derived from various host sources. Current bacterial source tracking approaches rely on various phenotypic and genotypic methods to identify sources of bacterial contamination resulting from point or non-point pollution. For this study Enterococcus sp. isolates originating from deer, bovine, gull, and human sources were examined using microarrays. Isolates were subjected to Box PCR amplification and the resulting amplification products labeled with Cy5. Fluorescent-labeled templates were hybridized to in-house constructed nonamer oligonucleotide microarrays consisting of 198 probes. Microarray hybridization profiles were obtained using the ArrayPro image analysis software. Principal Components Analysis (PCA and Hierarchical Cluster Analysis (HCA were compared for their ability to visually cluster microarray hybridization profiles based on the environmental source from which the Enterococcus sp. isolates originated. The PCA was visually superior at separating origin-specific clusters, even for as few as 3 factors. A Soft Independent Modeling (SIM classification confirmed the PCA, resulting in zero misclassifications using 5 factors for each class. The implication of these results for the application of random oligonucleotide microarrays for BST is that, given the reproducibility issues, factor-based variable selection such as in PCA and SIM greatly outperforms dendrogram-based similarity measures such as in HCA and K-Nearest Neighbor KNN.

  3. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    Science.gov (United States)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1972-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended duration to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine sporeforming and three nonsporeforming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2-, 12-, and 25-MeV electrons at different doses with simultaneous exposure to a vacuum of 0.0013 N/sqm at 20 and -20 C. The radioresistance of the subpopulation was dependent on the isolate, dose, and energy of electrons. Temperature affected the radioresistance of only the sporeforming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J/kg, while nonsporeforming isolates (micrococci) were reduced 1.5 to 2 logs/1500 J/kg with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons.

  4. Identification of a nanovirus-like DNA molecule associated with Tobacco curly shoot virus isolates containing satellite DNA

    Institute of Scientific and Technical Information of China (English)

    XIE Yan; WU Peijun; TAO Xiaorong; ZHOU Xueping

    2004-01-01

    A circular single-stranded DNA molecule, designated DNA1, was identified from Tobacco curly shoot virus (TbCSV) isolates Y35 and Y115 containing satellite DNAβ using abutting primers based on the two reported DNA1 sequences of whitefly-transmitted geminiviruses, while DNA1 molecule was not found in TbCSV isolates Y1 and Y121 without DNAβ. The immunotrapping PCR test showed that DNA1 could be encapsidated in virus particles. Southern blot further confirmed that DNA1 molecules were only associated with TbCSV isolates (Y35 and Y115) containing DNAβ. Sequences of Y35 and Y115 DNA1 comprise 1367 and 1368 nucleotides, respectively, each having a conserved ORF encoding nanovirus-like replication-associated protein (Rep). A low nucleotide sequence identity was found between DNA1 molecules and their cognate DNA-As. Y35 and Y115 DNA1 shared 92% overall nucleotide sequence identity and 96% amino acid sequence identity for Rep, while 69%~79% overall nucleotide sequence identity and 87%~90% amino acid sequence identity were found when compared with two reported DNA1 molecules associated with Ageratum yellow vein virus and Cotton leaf curl Multon virus. Sequence analysis showed that DNA1 was less related to nanovirus DNA.

  5. Noninvasive method of DNA isolation from fecal epithelial tissue of dairy animals.

    Science.gov (United States)

    Chandra De, Bidhan; Patra, Mahesh Chandra; Kumar, Sushil; Brahma, Biswajit; Goutam, Devika; Jaiswal, Latika; Sharma, Ashutosh; De, Sachinandan

    2015-01-01

    A novel noninvasive genomic DNA isolation protocol from fecal tissue, by the proteinase K digestion and guanidine hydrochloride extraction method, was assessed for the genotyping of cattle and buffalo. The epithelial tissues present on the surface of the feces were used as source for isolation of genomic DNA. The DNA isolated from fecal tissue was found to be similar as those obtained from other body tissues such as skin, brain, liver, kidney, and muscle. The quality of DNA was checked by agarose gel electrophoresis and polymerase chain reaction (PCR). We successfully amplified a 320 bp MHC class II DRB gene and a 125 bp mt-DNA D-loop region from isolated genomic DNA of cattle. Thus, the DNA isolated using this method was suitable for common molecular biology methods, such as restriction enzyme digestion and genotyping of dairy animals through PCR.

  6. A model of H-NS mediated compaction of bacterial DNA

    CERN Document Server

    Joyeux, Marc; 10.1016/j.bpj.2013.02.043

    2013-01-01

    The Histone-like Nucleoid Structuring protein (H-NS) is a nucleoid-associated protein, which is involved in both gene regulation and DNA compaction. H-NS can bind to DNA in two different ways: in trans, by binding to two separate DNA duplexes, or in cis, by binding to different sites on the same duplex. Based on scanning force microscopy imaging and optical trap-driven unzipping assays, it has recently been suggested that DNA compaction may result from the antagonistic effects of H-NS binding to DNA in trans and cis configurations. In order to get more insight into the compaction mechanism, we constructed a coarse-grained model description of the compaction of bacterial DNA by H-NS. These simulations highlight the fact that DNA compaction indeed results from the subtle equilibrium between several competing factors, which include the deformation dynamics of the plasmid and the several binding modes of protein dimers to DNA, i.e. dangling configurations, cis- and trans-binding. In particular, the degree of comp...

  7. Isolation of Bacterial Strain for Biodegradation of Fats, Oil and Grease

    International Nuclear Information System (INIS)

    Fat, oil and grease (FOG) deposition is one of the major problems that harm the environment and cause dissatisfaction for human. Uncontrolled and un-pre-treated FOG removal from the kitchen could lead to its accumulation in the piping system. Problems include the interference of fat with the aerobic microorganisms that are responsible in treating the wastewater by reducing oxygen transfer rates and for anaerobic microorganisms; their efficiency could also be reduced due to the reduction of the transport of soluble substrates to the bacterial biomass. Biodegradation could be one of the effective means to treat FOG. The main objective of this study is to isolate bacterial strains from the FOG waste and identify the strains that are capable in biodegrading FOG waste. FOG sample was collected from a sewer manhole. Enrichment technique was applied, followed by isolation of bacterial strains to determine which strain is able to degrade the FOG deposition. Some morphology for the bacterial strain was done to determine its characteristics. (author)

  8. [Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems]: Final report

    International Nuclear Information System (INIS)

    This study sought to exploit the use of uv radiation as a source of genomic damage. We explored the molecular mechanism of the repair of DNA damage at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian cells. Not only have observations obtained in one biological system suggested specific experimental approaches in others, but we have also learned that some biochemical pathways for DNA repair are unique to specific organisms. Our studies are summarized in terms of 4 major areas of research activity that span the past 16 years. 86 refs

  9. Bacterial isolates from burn wound infections and their antibiograms: A eight-year study

    Directory of Open Access Journals (Sweden)

    Mehta Manjula

    2007-01-01

    Full Text Available Background: Infection is an important cause of mortality in burns. Rapidly emerging nosocomial pathogens and the problem of multi-drug resistance necessitates periodic review of isolation patterns and antibiogram in the burn ward. Aim: Keeping this in mind, the present retrospective study from wounds of patients admitted to burns unit was undertaken to determine the bacteriological profile and the resistance pattern from the burn ward over a period of three years (June 2002 to May 2005 and was compared with the results obtained during the previous five years (June 1997-May 2002, to ascertain any change in the bacteriological profile and antimicrobial resistance pattern. Materials and Methods: Bacterial isolates from 268 wound swabs taken from burn patients were identified by conventional biochemical methods and antimicrobial susceptibility was performed. Statistical comparison of bacterial isolates and their resistance pattern with previous five years data was done using c2 test. Results and Conclusions: During the period from 2002 to 2005 Pseudomonas species was the commonest pathogen isolated (51.5% followed by Acinetobacter species (14.28%, Staph. aureus (11.15%, Klebsiella species (9.23% and Proteus species (2.3%. When compared with the results of the previous five years i.e., 1997 to 2002, Pseudomonas species was still the commonest pathogen in the burns unit. However, the isolation of this organism and other gram-negative organisms had decreased in comparison to previous years. Newer drugs were found to be effective.

  10. The action of the bacterial toxin, microcin B17, on DNA gyrase.

    Science.gov (United States)

    Parks, William M; Bottrill, Andrew R; Pierrat, Olivier A; Durrant, Marcus C; Maxwell, Anthony

    2007-04-01

    Microcin B17 (MccB17) is a peptide-based bacterial toxin that targets DNA gyrase, the bacterial enzyme that introduces supercoils into DNA. The site and mode of action of MccB17 on gyrase are unclear. We review what is currently known about MccB17-gyrase interactions and summarise approaches to understanding its mode of action that involve modification of the toxin. We describe experiments in which treatment of the toxin at high pH leads to the deamidation of two asparagine residues to aspartates. The modified toxin was found to be inactive in vivo and in vitro, suggesting that the Asn residues are essential for activity. Following on from these studies we have used molecular modelling to suggest a 3D structure for microcin B17. We discuss the implications of this model for MccB17 action and investigate the possibility that it binds metal ions.

  11. Cloning of cDNA Encoding GRA1 Protein of Tachyzoite Toxoplasma Gondii Local Isolate

    OpenAIRE

    Erma Sulistyaningsih; Sukarti Moeljopawiro; Jarot Subandono; Wayan T. Artama

    2015-01-01

    Gene encoding GRA1 protein is potent DNA-vaccine candidate against toxoplasmosis. The aim of the researchwas to clone the gene encoding GRA1 protein of tachyzoite Toxoplasma gondii local isolate by DNA recombinanttechnology. Tachyzoite was grown in Balb/c mice in vivo. Messenger RNA was isolated from total RNA and itwas used to synthesis cDNA. Complementary DNA encoding GRA1 protein of tachyzoite Toxoplasma gondii localisolate was amplified and cloned in a prokaryote cloning vector. The recom...

  12. Phenol-stacked carbon nanotubes: A new approach to genomic DNA isolation from plants

    Directory of Open Access Journals (Sweden)

    Farhad Nazarian-Firouzabadi

    2014-09-01

    Full Text Available Extraction of intact quality DNA from plant tissues, especially those rich in secondary metabolites, is often challenging. Literally, hundreds of different DNA isolation protocols from various plant species have been published over the last decades. Although many commercial DNA isolation kits are convenient and designed to be safe, their cost and availability cause limitations in small molecular labs in many developing countries. In nearly all protocols and DNA isolation kits, phenol and chloroform are used to precipitate various classes of impurities. However, phenol is partially soluble in water, resulting in the co-existence of proteins in upper (aqueous phases. This phenomenon results in the contamination of the nucleic acids and low quality DNA. Nanotechnology advances have helped many areas of molecular biology such as the development of new diagnosis and purification kits. In this study, for the first time, we report a different approach to isolate DNA from plants based on carbon nanotubes (CNTs. The results show that the phenol reagent stack on CNTs can effectively remove proteins, polysaccharides and other polyphenol constituents. The A260/A280nm absorbance ratios of isolated DNA samples were 1.9 and 1.8 for chamomile and opium plants, respectively, indicating the high purity of the isolated DNA. DNA yield was more than two times the standard Doyle and Doyle method. Furthermore, the isolated DNA proved amenable to PCR amplification, using Random Amplified Polymorphic DNA (RAPD analysis.

  13. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    Directory of Open Access Journals (Sweden)

    Summaiya A Mulla

    2011-01-01

    Full Text Available Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The study was carried out on 100 positive bacteriological cultures of medical devices, which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate method with tryptic soya broth alone and with varying concentrations of glucose and were observed in response to time. Results: Majority of catheter cultures were positive. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. Incubation period of 16-20 h was found to be optimum for biofilm development. Conclusions: Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Biofilm formation depends on adherence of bacteria to various surfaces. Time and availability of glucose are important factors for assessment of biofilm progress.

  14. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    Science.gov (United States)

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  15. Characterization of CCN and IN activity of bacterial isolates collected in Atlanta, GA

    Science.gov (United States)

    Purdue, Sara; Waters, Samantha; Karthikeyan, Smruthi; Konstantinidis, Kostas; Nenes, Athanasios

    2016-04-01

    Characterization of CCN activity of bacteria, other than a few select types such as Pseudomonas syringae, is limited, especially when looked at in conjunction with corresponding IN activity. The link between these two points is especially important for bacteria as those that have high CCN activity are likely to form an aqueous phase required for immersion freezing. Given the high ice nucleation temperature of bacterial cells, especially in immersion mode, it is important to characterize the CCN and IN activity of many different bacterial strains. To this effect, we developed a droplet freezing assay (DFA) which consists of an aluminum cold plate, cooled by a continuous flow of an ethylene glycol-water mixture, in order to observe immersion freezing of the collected bacteria. Here, we present the initial results on the CCN and IN activities of bacterial samples we have collected in Atlanta, GA. Bacterial strains were collected and isolated from rainwater samples taken from different storms throughout the year. We then characterized the CCN activity of each strain using a DMT Continuous Flow Streamwise Thermal Gradient CCN Counter by exposing the aerosolized bacteria to supersaturations ranging from 0.05% to 0.6%. Additionally, using our new DFA, we characterized the IN activity of each bacterial strain at temperatures ranging from -20oC to 0oC. The combined CCN and IN activity gives us valuable information on how some uncharacterized bacteria contribute to warm and mixed-phase cloud formation in the atmosphere.

  16. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation.

    Directory of Open Access Journals (Sweden)

    Zeynep Baharoglu

    2010-10-01

    Full Text Available Conjugation is one mechanism for intra- and inter-species horizontal gene transfer among bacteria. Conjugative elements have been instrumental in many bacterial species to face the threat of antibiotics, by allowing them to evolve and adapt to these hostile conditions. Conjugative plasmids are transferred to plasmidless recipient cells as single-stranded DNA. We used lacZ and gfp fusions to address whether conjugation induces the SOS response and the integron integrase. The SOS response controls a series of genes responsible for DNA damage repair, which can lead to recombination and mutagenesis. In this manuscript, we show that conjugative transfer of ssDNA induces the bacterial SOS stress response, unless an anti-SOS factor is present to alleviate this response. We also show that integron integrases are up-regulated during this process, resulting in increased cassette rearrangements. Moreover, the data we obtained using broad and narrow host range plasmids strongly suggests that plasmid transfer, even abortive, can trigger chromosomal gene rearrangements and transcriptional switches in the recipient cell. Our results highlight the importance of environments concentrating disparate bacterial communities as reactors for extensive genetic adaptation of bacteria.

  17. Linguistic isolates in Portugal: insights from the mitochondrial DNA pattern.

    Science.gov (United States)

    Mairal, Quim; Santos, Cristina; Silva, Marina; Marques, Sofia L; Ramos, Amanda; Aluja, Maria Pilar; Amorim, Antonio; Prata, Maria João; Alvarez, Luis

    2013-12-01

    Miranda do Douro, located in the northeastern region of Portugal, has notable characteristics not only from a geographic or naturalistic point of view, but also from a cultural perspective. A remarkable one is the coexistence of two different languages: Portuguese and Mirandese, the second being an Astur-Leonese dialect. The current persistence of the Astur-Leonese dialect in this population falls on the singularity of the region: relative isolation, implying difficulties to communicate with other Portuguese regions, while the same location facilitated the establishment of social and commercial relationships with adjacent Spanish territories, origin of the Astur-Leonese language. The objective of this study was to characterize the population from Miranda through the analysis of maternal lineages in order to evaluate whether its mitochondrial DNA diversity fitted the patterns previously reported for other populations from the Iberian Peninsula. Viewing that, the entire control region of mitochondrial DNA from 121 individuals was examined. Miranda showed a haplogroup composition usual for a Western European population, in the sense that as high as 63.6% of sequences belonged to macro-haplogroup R0. Lineages ascribed to have an African (L2a and L1b) origin, were detected, but reaching an amount commonly found in Portugal. Miranda also presented a few haplogroups typically found in Jewish populations, while rarely observed in other Iberian populations. The finding can be explained by gene flow with crypto-Jew communities that since long are known to be established in the region where Miranda is located. In Miranda, both genetic and nucleotide diversities presented low values (0.9292 ± 0.0180 and 0.01101 ± 0.00614 respectively) when compared to populations from its micro-geographical framework, which constitute a sign of population isolation that certainly provided conditions for the survival of the Astur-Leonese dialect in the region. PMID:24041913

  18. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  19. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters.

    Science.gov (United States)

    Hadi, Sámed I I A; Santana, Hugo; Brunale, Patrícia P M; Gomes, Taísa G; Oliveira, Márcia D; Matthiensen, Alexandre; Oliveira, Marcos E C; Silva, Flávia C P; Brasil, Bruno S A F

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker. PMID:26900844

  20. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters.

    Directory of Open Access Journals (Sweden)

    Sámed I I A Hadi

    Full Text Available This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2 markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92% of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker.

  1. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    Science.gov (United States)

    He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai

    2016-01-01

    Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10) and temperatures (20–37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation. PMID:27669304

  2. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment.

    Science.gov (United States)

    He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai

    2016-01-01

    Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation. PMID:27669304

  3. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    Directory of Open Access Journals (Sweden)

    Wei-Jie He

    2016-09-01

    Full Text Available Globally, the trichothecene mycotoxins deoxynivalenol (DON and nivalenol (NIV are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON. Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10 and temperatures (20–37 °C values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase, as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.

  4. Survival and transfer ability of phylogenetically diverse bacterial endosymbionts in environmental Acanthamoeba isolates.

    Science.gov (United States)

    Matsuo, Junji; Kawaguchi, Kouhei; Nakamura, Shinji; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Takahashi, Kaori; Mizutani, Yoshihiko; Yao, Takashi; Yamaguchi, Hiroyuki

    2010-08-01

    Obligate intracellular bacteria are commonly found as endosymbionts of acanthamoebae; however, their survival in and ability to transfer to amoebae are currently uncharacterized. In this study, six bacterial endosymbionts, found in five environmental Acanthamoeba isolates (S13, R18, S23, S31, S40) from different locations of Sapporo city, Japan, were characterized. Phylogenetic analysis revealed that three bacterial endosymbionts (eS23, eS31, eS40a) belonged to α- and β-Proteobacteria phyla and the remaining endosymbionts (eS13, eR18, eS40b) belonged to the order Chlamydiales. The Acanthamoeba isolate (S40) contained two phylogenetically different bacterial endosymbionts (eS40a, eS40b). Fluorescent in situ hybridization analysis showed that all bacterial endosymbionts were diffusely localized within amoebae. Transmission electron microscopy also showed that the endosymbionts were rod-shaped (eS23, eS31, eS40a) or sphere- or crescent-shaped (eS13, eR18, eS40b). No successful culture of these bacteria was achieved using conventional culture methods, but the viability of endosymbionts was confirmed by live/dead staining and RT-PCR methods. However, endosymbionts (except eR18) derived from original host cells lost the ability to be transferred to another Acanthamoebae strains [ATCC strain (C3), environmental strains (S14, R23, S24)]. Thus, our data demonstrate that phylogenetically diverse bacterial endosymbionts found in amoebae maintain a stable interaction with amoebae, but the transferability is limited.

  5. Quantitative analysis of resistance in cotton to three new isolates of the bacterial blight pathogen.

    Science.gov (United States)

    Wallace, T P; El-Zik, K M

    1990-04-01

    Genetic variability for virulence of the bacterial blight pathogen [Xanthomonas campestris pv malvacearum (Smith) Dye] on cotton (Gossypium hirsutum L.) has been shown by the identification of 19 races of the pathogen based on disease reactions of a set of ten host differentials. This study was conducted to determine the inheritance of host resistance to three recently identified isolates of X. campestris pv malvacearum, which are virulent on the entire set of differentials. True leaves of Tamcot CAMD-E, LEBOCAS-3-80, Stoneville 825, and their f1, F2, and backcross progenies were wound-inoculated in the field with separate bacterial suspensions of the virulent HV3, HV7, and Sudan isolates of the pathogen. LEBOCAS-3-80 was replaced with S295, a new immune cultivar, for a greenhouse study in which both cotyledons and true leaves were inoculated. Disease reactions were rated on a scale of 1-10, and genetic models were proposed utilizing generation means analysis. Dominance, when significant, was in the direction of resistance in all but one cross-isolate combination. Digenic interaction components indicated a duplicate type. Narrow-sense heritability for resistance ranged from 0.59 to 0.68; therefore, primarily additive-genetic variability among the selected cutlivars was detected, indicating that breeding for improved resistance to these isolates is a practical goal.

  6. Bacterial Agents Isolated from Wards’ Environment and Staff’s Hands in Yahyanejad Hospital, Babol

    Directory of Open Access Journals (Sweden)

    Sadighian, F. (BSc

    2013-01-01

    Full Text Available Background and Objective: Nowadays, nosocomial infection is one of the greatest problems in hospitals. Normal flora of staff’s hands and the bacterial agents on the surface of medical equipment can become progressively colonized with potential pathogens during patient care. This study was carried out to determine the bacterial agents existed on staff’s hands and in the wards of hospital to step in to control nosocomial infection. Material and Methods: In this descriptive study, during 17 months (22.mar.2010- 30.aug.2011, 403 samples, using sterile swab , were randomly obtained from the staff’s hands and medical equipment of emergency departments , ICU, male operation room and female surgical unit . The samples were cultured on Blood agar (BA and Eosin methylene blue (EMB. Then, identification of isolated bacteria was done with diagnostic tests. Results: Of 430 samples, 530 bacteria were isolated from staff’s hands (N= 291 and medical equipment (N= 234. The most common bacterium from personnel’s hands (144; 49.5% and medical equipment (24; 10% is Staphylococcus aureus. Also, three isolates of pseudomonas aeruginosa from staff’s hands of male surgical ward and medical equipment of ICU, and two isolates of Acinetobacter.spp from ICU’s medical equipment were identified. Conclusion: With regard to the findings, it seems that applying the appropriate disinfectant agents by using standard procedures is necessary. Keywords: Medical Equipment; Staff’s Hand; Nosocomial Infection; Staphylococcus Aureus

  7. Physiological and Molecular Characteristics of Bacterial Isolates from Bandealit Coastal Area Jember, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    DINA FITRIYAH

    2013-06-01

    Full Text Available Bacteria are the most dominant group of microorganisms in aquatic environments due to their role in organic matter decomposition. Decomposition activity is related to the type and dominance of bacteria in the communities. Therefore, study of bacterial diversity is an important step to understand their role in aquatic ecosystems. This study was to determine bacterial diversity and their physiological characters of bacteria from Bandealit Coast in Jember East Java Indonesia. The bacteria were confirmed by BOX-PCR profile for their genetic polymorphisms. Identification of potential isolate was conducted based on 16S rRNA gene sequence. The result showed that BA011109 isolate was able to utilize D-cellobiose as a sole substrate, indicating its ability to hydrolyse -glucoside bond. This isolate was a potential decomposer in the area considering that most of organic pollutants were from plants that cointain high cellulose. Based on its 16S rRNA gene sequence, this isolate was closely related to Microbacterium esteraromaticum with 100% homology. Further study on quantitative hydrolytic activities is needed to elucidate its role as an organic matter decomposer in aquatic environment.

  8. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2016-06-01

    Bacillus subtilis is a well-characterized model bacterium frequently used for a number of biotechnology and synthetic biology applications. Novel strategies combining the advantages of B. subtilis with the DNA assembly and editing tools of Escherichia coli are crucial for B. subtilis engineering efforts. We combined Gibson Assembly and λ red recombineering in E. coli with RecA-mediated homologous recombination in B. subtilis for bacterial artificial chromosome-mediated DNA integration into the well-characterized amyE target locus of the B. subtilis chromosome. The engineered integrative bacterial artificial chromosome iBAC(cav) can accept any DNA fragment for integration into B. subtilis chromosome and allows rapid selection of transformants by B. subtilis-specific antibiotic resistance and the yellow fluorescent protein (mVenus) expression. We used the developed iBAC(cav)-mediated system to integrate 10kb DNA fragment from E. coli K12 MG1655 into B. subtilis chromosome. iBAC(cav)-mediated chromosomal integration approach will facilitate rational design of synthetic biology applications in B. subtilis.

  9. ‘Olegusella massiliensis’ strain KHD7, a new bacterial genus isolated from the female genital tract

    OpenAIRE

    Diop, K.; Diop, A.; Raoult, D.; P.-E. Fournier; Fenollar, F.

    2016-01-01

    We report the main characteristics of ‘Olegusella massiliensis’ gen. nov., sp. nov., strain KHD7 (= CSUR P2268=DSM 101849), a new member of the Coriobacteriaceae family isolated from the vaginal flora of a patient with bacterial vaginosis.

  10. Therapeutic efficacy of Lactobacillus acidophilus against bacterial isolates from burn wounds

    Directory of Open Access Journals (Sweden)

    Mohammed Sh. Jebur

    2010-12-01

    Full Text Available Background: Probiotics are live microorganisms which are mainly strains of Lactobacillus spp., Bifidobacterium spp. When administered in adequate amounts, these microorganisms offer a health benefit for the host. Probiotic organisms are also available commercially in milk, sour milk, ice cream and other foods. Aims: To identify bacterial species isolated from burn wounds, and also to evaluate (In-vitro the therapeutic efficacy of Lacto. acidophilus against these bacterial isolates. To compare this activity to other antibacterial agents which are used medically in the treatment of burn wound cases. Materials and Methods: Burn wound swabs were obtained from 50 patients who had been admitted to hospitals in Baghdad during August to November 2009. These swabs were inoculated onto enriched and differential culture media. Subcultures were performed on selective media. The necessary biochemical tests were conducted and the organisms identified using standard procedures. Susceptibility of isolated pathogens to local isolates Lacto. Acidophilus (with 1х108 cells/mL and 10 commonly used burn wounds antibiotics was examined using standard susceptibility testing. Results: Ninety different organisms were isolated. Gram-positive cocci accounted for 16 (17.7% and gram-negative bacilli for 74 (82.2% bacterial isolates. Pseudomonas aeruginosa 30(33.3% were the most commonly isolated organisms, followed by Escherichia coli, Enterobacter spp., Klebsiella spp., Proteus spp.(22.2,20,4.4,2.2%, respectively. Staphylococcus aureus isolates were performed in 8(8.8%. However, the incidence of Staphylococcus epidermidis was 2 (2.2%, while ß-haemolytic Streptococci was 4(4.4%. In susceptibility testing, Lacto. acidophilus had coverage against 90 (100% of 74 gram-negative and 16 of gram-positive bacteria tested. The coverage of the remaining 10 antibacterial agents used was different in their activity (resistance or sensitivity, which ranged between 50-100%. Conclusion

  11. Therapeutic efficacy of Lactobacillus acidophilus against bacterial isolates from burn wounds

    Directory of Open Access Journals (Sweden)

    Mohammed Sh. Jebur

    2010-01-01

    Full Text Available Background : Probiotics are live microorganisms which are mainly strains of Lactobacillus spp., Bifidobacterium spp. When administered in adequate amounts, these microorganisms offer a health benefit for the host. Probiotic organisms are also available commercially in milk, sour milk, ice cream and other foods. Aims : To identify bacterial species isolated from burn wounds, and also to evaluate (In-vitro the therapeutic efficacy of Lacto. acidophilus against these bacterial isolates. To compare this activity to other antibacterial agents which are used medically in the treatment of burn wound cases. Materials and Methods : Burn wound swabs were obtained from 50 patients who had been admitted to hospitals in Baghdad during August to November 2009. These swabs were inoculated onto enriched and differential culture media. Subcultures were performed on selective media. The necessary biochemical tests were conducted and the organisms identified using standard procedures. Susceptibility of isolated pathogens to local isolates Lacto. Acidophilus (with 1υ108 cells/mL and 10 commonly used burn wounds antibiotics was examined using standard susceptibility testing. Results : Ninety different organisms were isolated. Gram-positive cocci accounted for 16 (17.7% and gram-negative bacilli for 74 (82.2% bacterial isolates. Pseudomonas aeruginosa 30(33.3% were the most commonly isolated organisms, followed by Escherichia coli, Enterobacter spp., Klebsiella spp., Proteus spp.(22.2,20,4.4,2.2%, respectively. Staphylococcus aureus isolates were performed in 8(8.8%. However, the incidence of Staphylococcus epidermidis was 2 (2.2%, while ί-haemolytic Streptococci was 4(4.4%. In susceptibility testing, Lacto. acidophilus had coverage against 90 (100% of 74 gram-negative and 16 of gram-positive bacteria tested. The coverage of the remaining 10 antibacterial agents used was different in their activity (resistance or sensitivity, which ranged between 50

  12. In search of alternative antibiotic drugs: Quorum-quenching activity in sponges and their bacterial isolates

    Directory of Open Access Journals (Sweden)

    Kumar eSaurav

    2016-04-01

    Full Text Available Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS, because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of fourteen sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that approximately 20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not co-relate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts, and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater and marine sediments. Most isolates were found not to be enriched in sponges, and may simply have been trapped in the

  13. In Search of Alternative Antibiotic Drugs: Quorum-Quenching Activity in Sponges and their Bacterial Isolates.

    Science.gov (United States)

    Saurav, Kumar; Bar-Shalom, Rinat; Haber, Markus; Burgsdorf, Ilia; Oliviero, Giorgia; Costantino, Valeria; Morgenstern, David; Steindler, Laura

    2016-01-01

    Owing to the extensive development of drug resistance in pathogens against the available antibiotic arsenal, antimicrobial resistance is now an emerging major threat to public healthcare. Anti-virulence drugs are a new type of therapeutic agent aiming at virulence factors rather than killing the pathogen, thus providing less selective pressure for evolution of resistance. One promising example of this therapeutic concept targets bacterial quorum sensing (QS), because QS controls many virulence factors responsible for bacterial infections. Marine sponges and their associated bacteria are considered a still untapped source for unique chemical leads with a wide range of biological activities. In the present study, we screened extracts of 14 sponge species collected from the Red and Mediterranean Sea for their quorum-quenching (QQ) potential. Half of the species showed QQ activity in at least 2 out of 3 replicates. Six out of the 14 species were selected for bacteria isolation, to test for QQ activity also in isolates, which, once cultured, represent an unlimited source of compounds. We show that ≈20% of the isolates showed QQ activity based on a Chromobacterium violaceum CV026 screen, and that the presence or absence of QQ activity in a sponge extract did not correlate with the abundance of isolates with the same activity from the same sponge species. This can be explained by the unknown source of QQ compounds in sponge-holobionts (host or symbionts), and further by the possible non-symbiotic nature of bacteria isolated from sponges. The potential symbiotic nature of the isolates showing QQ activity was tested according to the distribution and abundance of taxonomically close bacterial Operational Taxonomic Units (OTUs) in a dataset including 97 sponge species and 178 environmental samples (i.e., seawater, freshwater, and marine sediments). Most isolates were found not to be enriched in sponges and may simply have been trapped in the filtration channels of the

  14. A modified Phenol-chloroform extraction method for isolating circulating cell free DNA of tumor patients

    Directory of Open Access Journals (Sweden)

    Clemens Hufnagl

    2013-03-01

    Full Text Available Searching for new cancer biomarkers, circulating cell-free DNA (cfDNA has become an appealing target of interest as an elevated level of cfDNA has been detected in the circulation of cancer patients in comparison with healthy controls. Since cfDNA can be isolated from the circulation and other body fluids of patients without harming their physical condition, cfDNA is becoming a promising candidate as a novel non-invasive biomarker for cancer. The challenge in the diagnostic analysis of cfDNA is its very low presence in human plasma/serum and its partially strong fragmentation. Here we evaluated a modified phenol/chloroform extraction method for the isolation of cfDNA and compared it with published standard methods for cfDNA isolation.

  15. Inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Gita Eslami

    2014-06-01

    Full Text Available Background: Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. The purpose of this study is to investigate the inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis, respectively.Materials and Methods: 96 samples from women with bacterial vaginosis discharge referred to health centers dependent Shahid Beheshti University in 91-92 were taken by a gynecologist with a dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth and were immediately sent to the lab location in cold chain for the next stages of investigation. From Thioglycollate and TSB medium was cultured on blood agar and EMB and Palkam and Differential diagnosis environments, and then incubated for 24 h at 37°C. Strains of Lactobacillus rhamnosus were cultured in MRSA environment and were transfered to the lab. After purification of pathogenic bacteria, MIC methods and antibiogram, Lactobacillus rhamnosus inhibitory effect on pathogenic bacteria is checked. Statistical analysis was done by SPSS software v.16.Results: The results of this study show the inhibitory effect of Lactobacillus rhamnosus on some pathogenic bacteria that cause bacterial vaginosis, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Entrococcus, Listeria monocytogenes and E.Coli. Microscopic examination of stained smears of the large number of Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use means of preventing pregnancy and douching, respectively, 61%, 55%, 42% and 13% respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial vaginosis infection

  16. Scalable DNA-Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples

    DEFF Research Database (Denmark)

    Mezger, Anja; Fock, Jeppe; Antunes, Paula Soares Martins;

    2015-01-01

    We demonstrate a nanoparticle-based assay for the detection of bacteria causing urinary tract infections in patient samples with a total assay time of 4 h. This time is significantly shorter than the current gold standard, plate culture, which can take several days depending on the pathogen....... The assay is based on padlock probe recognition followed by two cycles of rolling circle amplification (RCA) to form DNA coils corresponding to the target bacterial DNA. The readout of the RCA products is based on optomagnetic measurements of the specific agglutination of DNA-bound magnetic nanoparticles...... (MNPs) using low-cost optoelectronic components from Blu-ray drives. We implement a detection approach, which relies on the monomerization of the RCA products, the use of the monomers to link and agglutinate two populations of MNPs functionalized with universal nontarget specific detection probes...

  17. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining.

    Directory of Open Access Journals (Sweden)

    Richard Bowater

    2006-02-01

    Full Text Available DNA double-strand breaks (DSBs are one of the most dangerous forms of DNA lesion that can result in genomic instability and cell death. Therefore cells have developed elaborate DSB-repair pathways to maintain the integrity of genomic DNA. There are two major pathways for the repair of DSBs in eukaryotes: homologous recombination and non-homologous end-joining (NHEJ. Until very recently, the NHEJ pathway had been thought to be restricted to the eukarya. However, an evolutionarily related NHEJ apparatus has now been identified and characterized in the prokarya. Here we review the recent discoveries concerning bacterial NHEJ and discuss the possible origins of this repair system. We also examine the insights gained from the recent cellular and biochemical studies of this DSB-repair process and discuss the possible cellular roles of an NHEJ pathway in the life-cycle of prokaryotes and phages.

  18. Gardnerella vaginalis isolated from patients with bacterial vaginosis and from patients with healthy vaginal ecosystems.

    Science.gov (United States)

    Aroutcheva, A A; Simoes, J A; Behbakht, K; Faro, S

    2001-10-01

    The differences in the phenotype and genotype of Gardnerella vaginalis isolates from patients with bacterial vaginosis (BV) and from patients without BV are unknown. In our study, 43 isolates of G. vaginalis were examined for biotype (hippurate hydrolysis, lipase, and beta-galactosidase activity), sensitivity to metronidazole, and genotype. Of the 117 women visiting the gynecology clinic at Rush-Presbyterian-St. Luke's Medical Center who were included in the study, 27.4% were found to have BV. G. vaginalis was found in samples from 87.5% of women with BV, from 34.0% of women with intermediate BV, and from 26.4% of women with healthy vaginal ecosystems. Among patients with G. vaginalis, biotypes 7 and 8 were isolated from 32% and 20% of patients, respectively. Biotype 5 was predominantly associated with a healthy vaginal ecosystem (P=.0004). Biotypes 5 and 7 were the most resistant to metronidazole. No specific phenotype or genotype of G. vaginalis causes BV.

  19. Genome Sequences of 15 Gardnerella vaginalis Strains Isolated from the Vaginas of Women with and without Bacterial Vaginosis.

    Science.gov (United States)

    Robinson, Lloyd S; Perry, Justin; Lek, Sai; Wollam, Aye; Sodergren, Erica; Weinstock, George; Lewis, Warren G; Lewis, Amanda L

    2016-01-01

    Gardnerella vaginalis is a predominant species in bacterial vaginosis, a dysbiosis of the vagina that is associated with adverse health outcomes, including preterm birth. Here, we present the draft genome sequences of 15 Gardnerella vaginalis strains (now available through BEI Resources) isolated from women with and without bacterial vaginosis. PMID:27688326

  20. Detection of ureolytic activity of bacterial strains isolated from entomopathogenic nematodes using infrared spectroscopy.

    Science.gov (United States)

    Lechowicz, Lukasz; Chrapek, Magdalena; Czerwonka, Grzegorz; Korzeniowska-Kowal, Agnieszka; Tobiasz, Anna; Urbaniak, Mariusz; Matuska-Lyzwa, Joanna; Kaca, Wieslaw

    2016-08-01

    The pathogenicity of entomopathogenic nematodes (EPNs) depends directly on the presence of bacteria in the nematode digestive tracts. Based on 16S rRNA and MALDI-TOF analyses 20 isolated bacteria were assigned to 10 species with 10 isolates classified as Pseudomonas ssp. Six strains (30%) show ureolytic activity on Christensen medium. Spectroscopic analysis of the strains showed that the ureolytic activity is strongly correlated with the following wavenumbers: 935 cm(-1) in window W4, which carries information about the bacterial cell wall construction and 1158 cm(-1) in window W3 which corresponds to proteins in bacterial cell. A logistic regression model designed on the basis of the selected wavenumbers differentiates ureolytic from non-ureolytic bacterial strains with an accuracy of 100%. Spectroscopic studies and mathematical analyses made it possible to differentiate EPN-associated Pseudomonas sp. strains from clinical Pseudomonas aeruginosa PAO1. These results suggest, that infrared spectra of EPN-associated Pseudomonas sp. strains may reflect its adaptation to the host. PMID:26972384

  1. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings.

    Science.gov (United States)

    Chimwamurombe, Percy Maruwa; Grönemeyer, Jann Lasse; Reinhold-Hurek, Barbara

    2016-06-01

    Marama bean (Tylosema esculentum) is an indigenous non-nodulating legume to the arid agro-ecological parts of Southern Africa. It is a staple food for the Khoisan and Bantu people from these areas. It is intriguing how it is able to synthesize the high-protein content in the seeds since its natural habitat is nitrogen deficient. The aim of the study was to determine the presence of seed transmittable bacterial endophytes that may have growth promoting effects, which may be particularly important for the harsh conditions. Marama bean seeds were surface sterilized and gnotobiotically grown to 2 weeks old seedlings. From surface-sterilized shoots and roots, 123 distinct bacterial isolates were cultured using three media, and identified by BOX-PCR fingerprinting and sequence analyses of the 16S rRNA and nifH genes. Phylogenetic analyses of 73 putative endophytes assigned them to bacterial species from 14 genera including Proteobacteria (Rhizobium, Massilia, Kosakonia, Pseudorhodoferax, Caulobacter, Pantoea, Sphingomonas, Burkholderia, Methylobacterium), Firmicutes (Bacillus), Actinobacteria (Curtobacterium, Microbacterium) and Bacteroidetes (Mucilaginibacter, Chitinophaga). Screening for plant growth-promoting activities revealed that the isolates showed production of IAA, ACC deaminase, siderophores, endoglucanase, protease, AHLs and capacities to solubilize phosphate and fix nitrogen. This is the first report that marama bean seeds may harbor endophytes that can be cultivated from seedlings; in this community of bacteria, physiological characteristics that are potentially plant growth promoting are widespread. PMID:27118727

  2. Characterization of Bacterial Strains Isolated Through Microbial Profiling of Urine Samples

    Directory of Open Access Journals (Sweden)

    Poulomi Nandy

    2007-01-01

    Full Text Available The present study was conducted to determine the microbial profile in urine samples. Differential and selective chromogenic culture media were used for the rapid detection, identification and enumeration of urinary tract pathogens namely, E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, Enterococcus faecalis, Proteus mirabilis. Urine samples of normal healthy individuals as well as patients with Urinary Tract Infection (UTI were screened on hicrome agar plates. The cultivable bacteria present in urine were isolated based on chromogenic detection. Antibiotic sensitivity assay, morphological characterization and biochemical tests, namely protease, oxidase, catalase, lipase, DNase and lecithinase assay were performed with the 15 isolates obtained from urine samples. The molecular analyses of the isolates were done through partial sequencing of the 16SrDNA gene; six of them were found to be novel and submitted in GenBank under the accession numbers EF644491-96. Phylogenetic tree of the isolates were constructed by neighbour joining method.

  3. Bacterial DNA of Ocean and Land on the Surface of the International Space Station.

    Science.gov (United States)

    Grebennikova, Tatiana

    A.V. Syroeshkin2, T.V. Grebennikova1, E.V. Shubralova3, V.A. Shuvalov3, O.S. Tsygankov4, V.B. Lapshin2 1D. I. Ivanovsky Virology Institute, Moscow, Russia 2 Academician E. K. Fedorov Institute of Applied Geophysics, Moscow, Russia 3S.P. Korolev Rocket and Space Corporation «Energia» Korolev, Russia 4Central Research Institute of Machine Building, Korolev, Russia Existence of biological molecules as markers of microorganisms in the space environment has always attracted attention of researchers. There is great attention to the search for extraterrestrial life forms [Nicholson W.L. 2009, Kawaguchi Y. et al 2013], and as well as the coping mechanisms of living organisms in the interplanetary space [Hotchin J. et al 1965, Baranov V.M. 2009, Horneck G. et al 2010]. Experiments on American and Japanese segments of the International Space Station (ISS) over the different nature of resistance during prolonged stay in space were conducted [Scalzi G et al 2012, Wassmann M. et al 2012]. As a result of these experiments confirmed the possibility of preserving the viability of organisms in an open space for a long time. Consequence, became interested in the transfer of living matter from the stratosphere to near-Earth space [Smith D.J. 2013]. We hypothesized that viable forms, or at least, intact DNA can be transferred to the orbit of the ISS with the ascending branch of the global electric circuit. Samples of cosmic dust collected from the surface of the window of the ISS during the exit of an astronaut in space. Samples (washes with material of tampons and tampons) which were in vacuo, were analyzed for the presence of bacterial DNA by nested PCR using primers specific DNA genus Mycobacterium, the DNA of the strain of the genus Bacillus anthracis and DNA encoding the bacterial 16S ribosomal RNA after transportation of the samples to Earth. The results of amplification, followed by sequencing and phylogenetic analysis showed the presence in samples of cosmic dust DNA

  4. Isolation and Synthesis of a Bacterially Produced Inhibitor of Rosette Development in Choanoflagellates.

    Science.gov (United States)

    Cantley, Alexandra M; Woznica, Arielle; Beemelmanns, Christine; King, Nicole; Clardy, Jon

    2016-04-01

    The choanoflagellate Salpingoeca rosetta is a microbial marine eukaryote that can switch between unicellular and multicellular states. As one of the closest living relatives of animals, this organism has become a model for understanding how multicellularity evolved in the animal lineage. Previously our laboratories isolated and synthesized a bacterially produced sulfonolipid that induces S. rosetta to form multicellular "rosettes." In this study, we report the identification of a bacterially produced inhibitor of rosettes (IOR-1) as well as the total synthesis of this molecule and all of its stereoisomers. Our results confirm the previously noted specificity and potency of rosette-modulating molecules, expand our understanding of the complex chemical ecology between choanoflagellates and rosette-inducing bacteria, and provide a synthetic probe template for conducting further mechanistic studies on the emergence of multicellularity. PMID:26998963

  5. NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES.

    Science.gov (United States)

    Yang, Xin; Yang, Jiang; Wang, Hongning; Li, Caiwu; He, Yongguo; Jin, SenYan; Zhang, Hemin; Li, Desheng; Wang, Pengyan; Xu, Yuesong; Xu, Changwen; Fan, Chengyun; Xu, Lulai; Huang, Shan; Qu, Chunmao; Li, Guo

    2016-06-01

    To study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13/24), followed by Staphylococcus epidermidis (41.7%, 10/24) and Escherichia coli (33.3%, 8/24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae , and Proteus mirabilis , were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with the disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), whereas 7.2% were multidrug resistant. This is the first report of the normal culturable vaginal bacterial flora of giant pandas and the antimicrobial susceptibility patterns of the isolates. PMID:27468049

  6. Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis

    Directory of Open Access Journals (Sweden)

    Abdjad Asih Nawangsih

    2011-04-01

    Full Text Available Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis. X. oryzae pv. oryzae (Xoo causes bacterial leaf blight (BLB of rice (Oryza sativa L., a major disease that constrains production of the staple crop in many countries of the world. Identification of X. oryzae pv. oryzae (Xoo was conducted based on the disease symptoms, pathogenicity, morphological, physiological, and genetic characteristics of bacterial cultures isolated from the infected plants. Fifty bacterial isolates predicted as Xoo have been successfully isolated. They are aerobic, rod shaped, and Gram negative bacteria. The isolates were evaluated for their hypersensitivity in tobacco and pathogenicity in rice plant. Fifty isolates induced hypersensitive reaction in tobacco and showed pathogenicity symptom in rice in different length. Based on physiological test, hypersensitivity and pathogenicity reactions, three bacterial isolates strongly predicted as Xoo, i.e. STG21, STG42, and STG46, were non indole formation, non pigment fluorescent, hydrolyzed casein, catalase activity positive, but negative oxidase. Partial sequencing of 16S rRNA genes of STG21 and STG42 showed 80% and 82% homology with X. oryzae, respectively, while STG46 showed 84% homology with X. campestris. Mini-Tn5 transposon mutagenesis of STG21 generated one of the mutants (M5 lossed it’s ability to induce hypersensitive reaction in tobacco plant and deficient in pathogenicity on rice. The lesion length of rice leaf caused by the mutant M5 decreased up to 80%.

  7. Isolation of bacteria causing secondary bacterial infection in the lesions of cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ziaie Hengameh

    2008-01-01

    Full Text Available Background: Cutaneous Leishmaniasis (CL is a parasitic disease characterized by single or multiple ulcerations. Secondary bacterial infection is one of the complications of the disease that can increase the tissue destruction and the resulting scar. Objective: To effectively determine the incidence of real secondary bacteria infection in cutaneous leishmaniasis, we designed the current study. Methods and Materials: This was a cross-sectional study performed in Skin Diseases and Leishmaniasis Research Centre, Isfahan, Iran. In this study, 854 patients with confirmed CL were enrolled. Samples were taken from all the patients. Sterile swaps were achieved for the ulcer exudates and scraping was used for nonulcerated lesions. All the samples were transferred to tryptic soy broth medium. After 24 h of incubation in 37°C, they were transferred to eosin methylene blue agar (EBM and blood agar. Laboratory tests were used to determine the species of bacteria. All of the collected data were analyzed by SPSS software and chi-square. Results: Among 854 patients with confirmed cutaneous leishmaniasis, 177 patients (20.7% had positive cultures for secondary bacterial infection. Bacteria isolated from the lesions were as follows: Staphylococcus aureus - 123 cases (69.4%, coagulase negative Staphylococcus - 41 cases (23.1%, E. coil - 7 cases (3.9%, Proteus - 3 cases (1.7% and Klebsiella - 3 cases (1.7%. Conclusions: The incidence of secondary bacterial infection in lesions of CL was 20.7%. The most common isolated pathogen was Staphylococcus aureus . The incidence of secondary bacterial infection was significantly more in the ulcerated lesions as compared with nonulcerated lesions ( P = 0.00001.

  8. Characterization of Borrelia burgdorferi isolates by restriction endonuclease analysis and DNA hybridization.

    OpenAIRE

    LeFebvre, R B; Perng, G C; Johnson, R C

    1989-01-01

    Genomes of several Borrelia burgdorferi isolates from North America and Europe were characterized by restriction endonuclease analysis and DNA hybridization using labeled B. burgdorferi whole-cell DNA (strain ATCC 35210). Several different restriction and homology patterns were observed among these isolates, indicating genotypic heterogeneity within this genus and species. It was concluded from this study that restriction endonuclease analysis of B. burgdorferi whole-cell DNA may be a reliabl...

  9. Protocol for Optimal Quality and Quantity Pollen DNA Isolation from Honey Samples

    OpenAIRE

    Lalhmangaihi, Ralte; Ghatak, Souvik; Laha, Ramachandra; Gurusubramanian, Guruswami; Kumar, Nachimuthu Senthil

    2014-01-01

    The present study illustrates an optimized sample preparation method for an efficient DNA isolation from low quantities of honey samples. A conventional PCR-based method was validated, which potentially enables characterization of plant species from as low as 3 ml bee-honey samples. In the present study, an anionic detergent was used to lyse the hard outer pollen shell, and DTT was used for isolation of thiolated DNA, as it might facilitate protein digestion and assists in releasing the DNA i...

  10. Protocol for optimal quality and quantity pollen DNA isolation from honey samples.

    Science.gov (United States)

    Lalhmangaihi, Ralte; Ghatak, Souvik; Laha, Ramachandra; Gurusubramanian, Guruswami; Kumar, Nachimuthu Senthil

    2014-12-01

    The present study illustrates an optimized sample preparation method for an efficient DNA isolation from low quantities of honey samples. A conventional PCR-based method was validated, which potentially enables characterization of plant species from as low as 3 ml bee-honey samples. In the present study, an anionic detergent was used to lyse the hard outer pollen shell, and DTT was used for isolation of thiolated DNA, as it might facilitate protein digestion and assists in releasing the DNA into solution, as well as reduce cross-links between DNA and other biomolecules. Optimization of both the quantity of honey sample and time duration for DNA isolation was done during development of this method. With the use of this method, chloroplast DNA was successfully PCR amplified and sequenced from honey DNA samples. PMID:25365793

  11. The Extraction and Partial Purification of Bacterial DNA as a Practical Exercise for GCE Advanced Level Students.

    Science.gov (United States)

    Falconer, A. C.; Hayes, L. J.

    1986-01-01

    Describes a relatively simple method of extraction and purification of bacterial DNA. This technique permits advanced secondary-level science students to obtain adequate amounts of DNA from very small pellets of bacteria and to observe some of its polymer properties. (ML)

  12. Prevalence and antibiogram of bacterial isolates from urinary tract infections at Dessie Health Research Laboratory, Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Mulugeta Kibret; Bayeh Abera

    2014-01-01

    Objective: To determine the prevalence and antimicrobial susceptibility of bacteria from suspected urinary tract infections.Methods:A retrospective analysis of bacterial pathogens and their antimicrobial susceptibility was done on urine samples at Dessie Regional Laboratory in the period 2003 to 2010. Antimicrobial susceptibility tests were done using disc diffusion technique as per the standard of Kirby-Bauer method.Results:The male to female ratio of the patients was 1:1.96. Of the total 1404 samples, 319 (22.7%) were culture positive. Escherichia coli was the dominant isolate (63.6%) followed by Klebsiella spp. (8.5%) and Proteus spp. (8.2%). The overall resistance rates to erythromycin, amoxycillin, and tetracycline were 85.6%, 88.9% and 76.7%, respectively. The three most frequently isolated bacteria had resistance rates of 80.1%-90.0% to, amoxycillin, and tetracycline and sensitivity rates of 0 to 25% to nitrofurantoin, ciprofloxacin and gentamicin. Antibiogram of isolates showed that 152 (47.85%) isolates were resistance to two and more antimicrobials.Conclusions:In the study area resistance rates to erythromycin, amoxycillin and tetracycline were high. Since most isolates were sensitive to nitrofurantoin and gentamicin, they are considered as appropriate antimicrobials for empirical treatment urinary tract infections.

  13. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles.

    Science.gov (United States)

    El-Sheshtawy, H S; Khalil, N M; Ahmed, W; Abdallah, R I

    2014-10-15

    Fifteen crude oil-degrading bacterial isolates were isolated from an oil-polluted area in Gemsa Bay, Red Sea, Egypt. Two bacterial species showed the highest growth rate on crude oil hydrocarbons. From an analysis of 16S rRNA sequences, these isolates were identified as Pseudomonas xanthomarina KMM 1447 and Pseudomonas stutzeri ATCC 17588. Gas Chromatographic (GC) analysis of the crude oil remaining in the culture medium after one week at 30°C showed that the optimum biodegradation of crude petroleum oil was demonstrated at 50% in medium containing biosurfactant with two types of nanoparticles separately and two bacterial species. The complete degradation of some different members of polyaromatics and the percentage biodegradation of other polyaromatics increased in microcosm containing two different types of nanoparticles with biosurfactant after 7 days. In conclusion, these bacterial strains may be useful for the bioremediation process in the Gemsa Bay, Red Sea decreasing oil pollution in this marine ecosystem.

  14. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    Science.gov (United States)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  15. Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners.

    Science.gov (United States)

    Goga, Haruhisa

    2012-09-01

    It is crucial to identify the owner of unattended footwear left at a crime scene. However, retrieving enough DNA for DNA profiling from the owner's foot skin (plantar skin) cells from inside the footwear is often unsuccessful. This is sometimes because footwear that is used on a daily basis contains an abundance of bacteria that degrade DNA. Further, numerous other factors related to the inside of the shoe, such as high humidity and temperature, can encourage bacterial growth inside the footwear and enhance DNA degradation. This project sought to determine if bacteria from inside footwear could be used for footwear trace evidence. The plantar skins and insoles of shoes of volunteers were swabbed for bacteria, and their bacterial community profiles were compared using bacterial 16S rRNA terminal restriction fragment length polymorphism analysis. Sufficient bacteria were recovered from both footwear insoles and the plantar skins of the volunteers. The profiling identified that each volunteer's plantar skins harbored unique bacterial communities, as did the individuals' footwear insoles. In most cases, a significant similarity in the bacterial community was identified for the matched foot/insole swabs from each volunteer, as compared with those profiles from different volunteers. These observations indicate the probability to discriminate the owner of footwear by comparing the microbial DNA fingerprint from inside footwear with that of the skin from the soles of the feet of the suspected owner. This novel strategy will offer auxiliary forensic footwear evidence for human DNA identification, although further investigations into this technique are required.

  16. DNA isolation by Chelex-100:an efficient approach to consider in leptospirosis early stages

    Institute of Scientific and Technical Information of China (English)

    Angel Alberto Noda; Islay Rodríguez

    2014-01-01

    Objective:To compare the value of leptospiral DNA extraction procedures from clinical samples for the early diagnosis of leptospirosis. Methods:Three DNA extraction procedures were applied for microbiological analysis, results of QIAmp DNA mini kit (QIAGEN, Germany), CLART HPV kit (GENOMICA, Spain) and Chelex-100 assay were compared concerning extraction efficiency, DNA purity and DNA suitability for amplification by specific polymerase chain reaction for pathogenic leptospires from blood, plasma and serum artificially infected. Results: The comparison of extraction methods highlighted the efficiency of Chelex-100 and QIAmp DNA mini kit. Chelex-100 achieved the isolation of the highest concentration of leptospiral DNA from the culture and the spiked samples, with acceptable purities and without inhibitors to PCR. Conclusions: Chelex-100 assay is a rapid and effective approach for DNA isolation in clinical samples having pathogenic leptospires and it could be useful in the early diagnosis of leptospirosis.

  17. DNA isolation by Chelex-100: an efficient approach to consider in leptospirosis early stages

    Directory of Open Access Journals (Sweden)

    Angel Alberto Noda

    2014-06-01

    Full Text Available Objective: To compare the value of leptospiral DNA extraction procedures from clinical samples for the early diagnosis of leptospirosis. Methods: Three DNA extraction procedures were applied for microbiological analysis, results of QIAmp DNA mini kit (QIAGEN, Germany, CLART HPV kit (GENOMICA, Spain and Chelex-100 assay were compared concerning extraction efficiency, DNA purity and DNA suitability for amplification by specific polymerase chain reaction for pathogenic leptospires from blood, plasma and serum artificially infected. Results: The comparison of extraction methods highlighted the efficiency of Chelex-100 and QIAmp DNA mini kit. Chelex-100 achieved the isolation of the highest concentration of leptospiral DNA from the culture and the spiked samples, with acceptable purities and without inhibitors to PCR. Conclusions: Chelex-100 assay is a rapid and effective approach for DNA isolation in clinical samples having pathogenic leptospires and it could be useful in the early diagnosis of leptospirosis.

  18. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    OpenAIRE

    Solanky, Dipesh; Shelley E Haydel

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicro...

  19. In vitro antimicrobial activity of marbofloxacin and enrofloxacin against bacterial strains isolated from companion animals.

    Science.gov (United States)

    Farca, A M; Cavana, P; Robino, P; Nebbia, P

    2007-06-01

    Fluoroquinolones were originally developed for the Gram-negative aerobic spectrum, but the newer generation agents are also highly effective against some Gram-positive pathogens and cause few adverse effects. Owing to these characteristics, fluoroquinolones are often used in first line therapy in small animal practice. However, their widespread use has raised concern over emerging bacterial resistance. In this study we evaluated the in vitro efficacy of two fluoroquinolones, marbofloxacin and enrofloxacin, on field strains isolated from clinical infections between 2002 and 2005. Our data show that most of the isolates are still sensitive to both antimicrobials and marbofloxacin was more effective than enrofloxacin, especially against P. aeruginosa and beta-Streptococci (P < 0.01). beta-Streptococci demonstrated the greatest resistance to the two study drugs.

  20. Isolation and Identification of a New Tetrodotoxin-Producing Bacterial Species, Raoultella terrigena, from Hong Kong Marine Puffer Fish Takifugu niphobles

    Directory of Open Access Journals (Sweden)

    Fred Wang-Fat Lee

    2011-11-01

    Full Text Available Puffer fish, Takifugu niphobles, collected from the Hong Kong coastal waters were screened for tetrodotoxin-producing bacteria. A Gram-negative, non-acid-fast, non-sporing and rod shaped bacterial strain (designated as gutB01 was isolated from the intestine of the puffer fish and was shown to produce tetrodotoxin (TTX. Based on the Microbial Identification (MIDI and 16S-23S rDNA internal transcribed spacer (ITS phylogenetic analysis, the strain was identified as Raoultella terrigena. The TTX production ability of the strain was confirmed by mouse bioassay, ELISA and mass spectrometry (MALDI-TOF. Our results reiterate that the TTX found in puffer fish was likely produced by the associated bacteria and TTX are widely produced amongst a diversity of bacterial species.

  1. Isolation and identification of a new tetrodotoxin-producing bacterial species, Raoultella terrigena, from Hong Kong marine puffer fish Takifugu niphobles.

    Science.gov (United States)

    Yu, Vincent Chung-Him; Yu, Peter Hoi-Fu; Ho, Kin-Chung; Lee, Fred Wang-Fat

    2011-01-01

    Puffer fish, Takifugu niphobles, collected from the Hong Kong coastal waters were screened for tetrodotoxin-producing bacteria. A Gram-negative, non-acid-fast, non-sporing and rod shaped bacterial strain (designated as gutB01) was isolated from the intestine of the puffer fish and was shown to produce tetrodotoxin (TTX). Based on the Microbial Identification (MIDI) and 16S-23S rDNA internal transcribed spacer (ITS) phylogenetic analysis, the strain was identified as Raoultella terrigena. The TTX production ability of the strain was confirmed by mouse bioassay, ELISA and mass spectrometry (MALDI-TOF). Our results reiterate that the TTX found in puffer fish was likely produced by the associated bacteria and TTX are widely produced amongst a diversity of bacterial species.

  2. Isolation of T—DNA flanking plant DNA from T—DNA insertional embryo—lethal mutants of Arabidopsis thaliana by plasmid rescue technique

    Institute of Scientific and Technical Information of China (English)

    YAOXIAOLI; JIANGESUN; 等

    1996-01-01

    Three T-DNA insertional embryonic lethal mutants from NASC(The Nottingham Arabidopsis Stock Center) were first checked with their segregation ratio of abortive and normal seeds and the copy number of T-DNA insertion.The N4081 mutant has a segregation ratio of 1:3.04 in average and one T-DNA insertion site according to our assay.It was therefore chosen for further analysis.To isolate the joint fragment of T-DNA and plant DNA,the plasmid rescue technique was used.pEL-7,one of plasmids from left border of T-DNA,which contained pBR322 was selected from ampicillin plate.The T-DNA fragment of pEL-7 was checked by restriction enzyme analysis and Southern Blot.Restriction analysis confirmed the presence of known sites of EcoRI,PstI and PvuII on it.For confirming the presence of flanking plant DNA in this plasmid,pEL-7 DNA was labeled and hybridized with wild type and mutant plant DNA.The Southern Blot indicated the hybridization band in both of them.Furthermore,the junction of T-DNA/plant DNA was subcloned into bluescript SK+ and sequenced by Applied Biosystem 373A sequencer.The results showed the 822 bp fragment contained a 274 bp sequence,which is 99.6%homolog(273bp/274bp) to Ti plasmid pTi 15955,DNA.The bp of left 25 bp border repeat were also found in the juction of T-DNA and Plant DNA. Taken together,pEL-7 should coutain a joint fragment of T-DNA and flanking plant DNA.This plasmid DNA could be used for the isolation of plant gene,which will be helpful to elucidate the relationship between gene function and plant embryo development.

  3. Genotyping of DNA Samples Isolated from Formalin-Fixed Paraffin-Embedded Tissues Using Preamplification

    OpenAIRE

    Baak-Pablo, Renee; Dezentje, Vincent; GUCHELAAR, Henk-Jan; van der Straaten, Tahar

    2010-01-01

    DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissue is often fragmented and cross-linked and is therefore difficult to genotype. To enable this source of DNA for genotyping analysis using Taqman probes, we tested whether enrichment of the target genes would increase the amount of available DNA. For enrichment of the target genes, we used preamplification by means of diluted Taqman assays. To establish the appropriateness of preamplification, we used DNA extracted from paraffin-em...

  4. Isolation and 16S DNA characterization of soil microorganisms from tropical soils capable of utilizing the herbicides hexazinone and tebuthiuron.

    Science.gov (United States)

    Mostafa, Fadwa I Y; Helling, Charles S

    2003-11-01

    Six non-fermentative bacteria were isolated from Colombian (South America) and Hawaiian (USA) soils after enrichment with minimal medium supplemented with two herbicides, hexazinone (Hex) and tebuthiuron (Teb). Microscopic examination and physiological tests were followed by partial 16S DNA sequence analysis, using the first 527 bp of the 16S rRNA gene for bacterial identification. The isolated microorganisms (and in brackets, the herbicide that each degraded) were identified as: from Colombia. Methylobacterium organophilum [Teb], Paenibacillus pabuli [Teb], and Micrmbacterium foliorum [Hex]; and from Hawaii, Methylobacterium radiotolerans [Teb], Paenibacillus illinoisensis [Hex], and Rhodococcus equi [Hex]. The findings further explain how these herbicides, which have potential for illicit coca (Erythroxylum sp.) control, dissipate following their application to tropical soils. PMID:14649709

  5. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  6. An improved method of mitochondrial DNA isolation for XL-PCR

    Institute of Scientific and Technical Information of China (English)

    SHI Duo; ZHU Ke-jun; WANG Xue-min; WANG Zhen-cheng; ZHENG Jian-ming; MIAO Ming-yong; JIAO Bing-hua

    2006-01-01

    Objective: To obtain high quality of mitochondrial DNA (mtDNA) and carry out extra-long PCR (XL-PCR). Methods: Mitochondria were isolated by differential centrifugation, and membranes were disrupted using 10%SDS (pH 7.0). mtDNA was then extracted using phenol and chloroform. Results: The mtDNA obtained by using our improved method can be used as effective template for XL-PCR,and total mtDNA (16 kb) can be amplified easily. Conclusion: Our improved method is effective in preparing high quality of mtDNA, which can be used as template for XL-PCR.

  7. Cloning of cDNA Encoding GRA1 Protein of Tachyzoite Toxoplasma Gondii Local Isolate

    Directory of Open Access Journals (Sweden)

    Erma Sulistyaningsih

    2015-10-01

    Full Text Available Gene encoding GRA1 protein is potent DNA-vaccine candidate against toxoplasmosis. The aim of the researchwas to clone the gene encoding GRA1 protein of tachyzoite Toxoplasma gondii local isolate by DNA recombinanttechnology. Tachyzoite was grown in Balb/c mice in vivo. Messenger RNA was isolated from total RNA and itwas used to synthesis cDNA. Complementary DNA encoding GRA1 protein of tachyzoite Toxoplasma gondii localisolate was amplified and cloned in a prokaryote cloning vector. The recombinant GRA1-encoding gene was thendigesting using EcoRI restriction endonuclease and sequencing. The result showed that the recombinant GRA1-encoding gene consisted of DNA sequences encoding all signal peptide and mature peptide of GRA1 protein.Alignment of recombinant GRA1 sequence to gene encoding GRA1 protein of Toxoplasma gondii RH isolate showed100% homologous.Keywords: GRA1 protein, Toxoplasma gondii, tachyzoite, cloning, cDNA

  8. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI by an indigenously isolated bacterial strain

    Directory of Open Access Journals (Sweden)

    Das Alok

    2010-01-01

    Full Text Available Background : Hexavalent chromium [Cr(VI], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter. Materials and Methods: Our investigation involved microbial remediation of Cr(VI without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30oC. At about 50 mg/L initial Cr(VI concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI.

  9. Comparison of DNA extraction methods in analysis of salivary bacterial communities.

    Science.gov (United States)

    Lazarevic, Vladimir; Gaïa, Nadia; Girard, Myriam; François, Patrice; Schrenzel, Jacques

    2013-01-01

    Culture-independent high-throughput sequencing-based methods are widely used to study bacterial communities. Although these approaches are superior to traditional culture-based methods, they introduce bias at the experimental and bioinformatics levels. We assessed the diversity of the human salivary microbiome by pyrosequencing of the 16S rDNA V1-3 amplicons using metagenomic DNA extracted by two different protocols: a simple proteinase K digestion without a subsequent DNA clean-up step, and a bead-beating mechanical lysis protocol followed by column DNA purification. A high degree of congruence was found between the two extraction methods, most notably in regard to the microbial community composition. The results showed that for a given bioinformatics pipeline, all the taxa with an average proportion >0.12% in samples processed using one extraction method were also detected in samples extracted using the other method. The same taxa tended to be abundant and frequent for both extraction methods. The relative abundance of sequence reads assigned to the phyla Actinobacteria, Spirochaetes, TM7, Synergistetes, and Tenericutes was significantly higher in the mechanically-treated samples than in the enzymatically-treated samples, whereas the phylum Firmicutes showed the opposite pattern. No significant differences in diversity indices were found between the extraction methods, although the mechanical lysis method revealed higher operational taxonomic unit richness. Differences between the extraction procedures outweighed the variations due to the bioinformatics analysis pipelines used.

  10. Comparison of DNA extraction methods in analysis of salivary bacterial communities.

    Directory of Open Access Journals (Sweden)

    Vladimir Lazarevic

    Full Text Available Culture-independent high-throughput sequencing-based methods are widely used to study bacterial communities. Although these approaches are superior to traditional culture-based methods, they introduce bias at the experimental and bioinformatics levels. We assessed the diversity of the human salivary microbiome by pyrosequencing of the 16S rDNA V1-3 amplicons using metagenomic DNA extracted by two different protocols: a simple proteinase K digestion without a subsequent DNA clean-up step, and a bead-beating mechanical lysis protocol followed by column DNA purification. A high degree of congruence was found between the two extraction methods, most notably in regard to the microbial community composition. The results showed that for a given bioinformatics pipeline, all the taxa with an average proportion >0.12% in samples processed using one extraction method were also detected in samples extracted using the other method. The same taxa tended to be abundant and frequent for both extraction methods. The relative abundance of sequence reads assigned to the phyla Actinobacteria, Spirochaetes, TM7, Synergistetes, and Tenericutes was significantly higher in the mechanically-treated samples than in the enzymatically-treated samples, whereas the phylum Firmicutes showed the opposite pattern. No significant differences in diversity indices were found between the extraction methods, although the mechanical lysis method revealed higher operational taxonomic unit richness. Differences between the extraction procedures outweighed the variations due to the bioinformatics analysis pipelines used.

  11. Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils.

    Science.gov (United States)

    Lathwal, Priyanka; Nehra, Kiran; Singh, Manpreet; Jamdagni, Pragati; Rana, Jogender S

    2015-01-01

    The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation. PMID:26638531

  12. In vitro evaluation of Pseudomonas bacterial isolates from rice phylloplane for biocontrol of Rhizoctonia solani and plant growth promoting traits.

    Science.gov (United States)

    Akter, Shamima; Kadir, Jugah; Juraimi, Abdul Shukor; Saud, Halimi Mohd

    2016-07-01

    The ability for biocontrol and plant growth promotion of three Pseudomonas bacterial isolates namely Pseudomonas fluorescens (UMB20), Pseudomonas aeruginosa (KMB25) and Pseudomonas asplenii (BMB42) obtained from rice plants was investigated. Fungal growth inhibition by the isolates ranged from 86.85 to 93.15% in volatile and 100% in diffusible metabolites test. Among the isolates, BMB42 showed fungal growth inhibition significantly in the volatile metabolite test. Isolates UMB20 and BMB42 were able to synthesis chitinase with chitinolytic indices of 13.66 and 13.50, respectively. In case of -1,3-glucanase, all the isolates showed activity to produce this enzyme at varied levels and isolate KMB25 showed significantly highest activity (53.53 ppm). Among the three isolates, KMB25 showed positive response to protease production and all of them were negative to pectinase and lipase and positive to the production of siderophore, and HCN, and were able to solubilize tricalcium phosphate. All the three bacterial isolates were capable of forming biofilm at different levels. Above results suggest that phylloplane Pseudomonas bacterial isolates have potential for antifungal activities and plant growth promotion. PMID:27498507

  13. Epidemiological Aspect and common Bacterial and Fungal isolates from Suppurative Corneal Ulcer in Mymensingh Region.

    Science.gov (United States)

    Moid, M A; Akhanda, A H; Islam, S; Halder, S K; Islam, R

    2015-04-01

    This prospective study was done to find out the epidemiological factors of suppurative corneal ulcer and the common causative bacterial and fungal isolates from the, patients with suppurative corneal ulcer in secondary and tertiary level hospital at Mymensingh region. A total 100 samples of corneal scrapings were collected purposively from clinically diagnosed suppurative corneal ulcer patients from March 18, 2012 to March 17, 2013. Out of the total 100 samples, bacterial species were 29(29%) cases and the fungal spacies were 71(71%) identified by the culture in blood agar, chocolate agar and sabouraud's agar media and also by microscopic examination. The bacterial species were streptococcus pneumonae 12 cases (12%), Staphylococcus aureus 9 cases (9%), pseudomonas in 6 cases (6%), and Streptococcus pyoganes 2 cases (2%). Fungal species were aspergillus fumigatus 61 cases (61%), aspergillus niger 10 cases (10%). Out of the study populations, most of the populations were from the age group of 41 to 60 years (39 %), followed 21 to 40 years (34%) age group. Considering the sex, male were 67%, female were 33%. The majority of patients came from the rural area of Mymensingh region; occupationally they were farmers (44%). Ocular trauma due to agricultural materials was the most common associated factor (71%). The etiological and epidemiological pattern of suppurative corneal ulcer varies significantly with geographical region, patient population and health of the cornea. The present study was carried out to explore the epidemiological pattern, causative bacterial and fungal specie by laboratory procedure from corneal scraping and to invent a prospective guide line for the management of corneal ulcer in the community.

  14. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    International Nuclear Information System (INIS)

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture

  15. Ambient UV-B exposure reduces the binding of ofloxacin with bacterial DNA gyrase and induces DNA damage mediated apoptosis.

    Science.gov (United States)

    Singh, Jyoti; Dwivedi, Ashish; Mujtaba, Syed Faiz; Singh, Krishna P; Pal, Manish Kumar; Chopra, Deepti; Goyal, Shruti; Srivastav, Ajeet K; Dubey, Divya; Gupta, Shailendra K; Haldar, Chandana; Ray, Ratan Singh

    2016-04-01

    Ofloxacin (OFLX) is a broad spectrum antibiotic, which generates photo-products under sunlight exposure. Previous studies have failed to explain the attenuated anti-bacterial activity of OFLX. The study was extended to explore the unknown molecular mechanism of photogenotoxicity on human skin cell line (HaCaT) under environmental UV-B irradiation. Photochemically OFLX generates ROS and caused 2'-dGuO photodegradation. We have addressed the binding affinity of OFLX and its photo-products against DNA gyrase. Significant free radical generation such as (1)O2, O2(•-) and (•)OH reduces antioxidants and demonstrated the ROS mediated OFLX phototoxicity. However, the formation of micronuclei and CPDs showed photogenotoxic potential of OFLX. OFLX induced cell cycle arrest in sub-G1 peak. OFLX triggers apoptosis via permeabilization of mitochondrial membrane with the downregulation of anti-apoptotic Bcl-2 and caspase-3 whereas, upregulation of pro-apoptotic Bax and Cyto-C proteins. Our study illustrated that binding affinity of OFLX photo-products with DNA gyrase was mainly responsible for the attenuated antimicrobial activity. It was proved through molecular docking study. Thus, study suggests that sunlight exposure should avoid by drug users especially during peak hours for their safety from photosensitivity. Clinicians may guide patients regarding the safer use of photosensitive drugs during treatment. PMID:26812543

  16. DNA microarray analysis of Staphylococcus aureus causing bloodstream infection: bacterial genes associated with mortality?

    Science.gov (United States)

    Blomfeldt, A; Aamot, H V; Eskesen, A N; Monecke, S; White, R A; Leegaard, T M; Bjørnholt, J V

    2016-08-01

    Providing evidence for microbial genetic determinants' impact on outcome in Staphylococcus aureus bloodstream infections (SABSI) is challenging due to the complex and dynamic microbe-host interaction. Our recent population-based prospective study reported an association between the S. aureus clonal complex (CC) 30 genotype and mortality in SABSI patients. This follow-up investigation aimed to examine the genetic profiles of the SABSI isolates and test the hypothesis that specific genetic characteristics in S. aureus are associated with mortality. SABSI isolates (n = 305) and S. aureus CC30 isolates from asymptomatic nasal carriers (n = 38) were characterised by DNA microarray analysis and spa typing. Fisher's exact test, least absolute shrinkage and selection operator (LASSO) and elastic net regressions were performed to discern within four groups defined by patient outcome and characteristics. No specific S. aureus genetic determinants were found to be associated with mortality in SABSI patients. By applying LASSO and elastic net regressions, we found evidence suggesting that agrIII and cna were positively and setC (=selX) and seh were negatively associated with S. aureus CC30 versus non-CC30 isolates. The genes chp and sak, encoding immune evasion molecules, were found in higher frequencies in CC30 SABSI isolates compared to CC30 carrier isolates, indicating a higher virulence potential. In conclusion, no specific S. aureus genes were found to be associated with mortality by DNA microarray analysis and state-of-the-art statistical analyses. The next natural step is to test the hypothesis in larger samples with higher resolution methods, like whole genome sequencing. PMID:27177754

  17. ISOLATION AND CHARACTERIZATION OF BIFENTHRIN CATABOLIZING BACTERIAL STRAIN BACILLUS CIBI FROM SOIL FOR PYRETHROIDS BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    Preeti Pandey

    2014-01-01

    Full Text Available Pyrethroids are commonly used in most parts of the world and are reported to have potential health risks. Bifenthrin, a third generation pyrethroid used as insecticide has caused potential effect on aquatic life and human health. Bioremediation is a practical approach to reduce pesticide in the environment and reports of microbial degradation of bifenthrin are meagre. This study was aimed at isolating and characterizing bacterial isolates for the efficient removal of bifenthrin residues in the environment. A bacterial strain PGS-4 isolated from sewage of pesticide industry was tested for growth at higher concentration of bifenthrin (800 mg L-1 and the optimum pH and temperature were determined. The strain utilized bifenthrin as sole carbon source for growth over a wide range of pH (4.0-9.0 and temperatures (16-37°C. On the basis of growth kinetics studies, the optimal conditions were determined to be pH 7.0-8.0 and 30°C. 16S rRNA gene sequence analysis showed that strain PGS-4 forms a distinct phylogenetic lineage within the evolutionary radiation encompassed by the genus Bacillus and showed 99% similarity to that of Bacillus cibi. This study depicts the ability of B. cibi to utilize bifenthrin at higher concentration under in vitro thereby can be used in eliminating bifenthrin from contaminated soils as a practical approach to reduce pyrethroid toxicity in the environment.

  18. Routine phenotypic identification of bacterial species of the family Pasteurellaceae isolated from animals.

    Science.gov (United States)

    Dousse, Florence; Thomann, Andreas; Brodard, Isabelle; Korczak, Bozena M; Schlatter, Yvonne; Kuhnert, Peter; Miserez, Raymond; Frey, Joachim

    2008-11-01

    Pasteurellaceae are bacteria with an important role as primary or opportunistic, mainly respiratory, pathogens in domestic and wild animals. Some species of Pasteurellaceae cause severe diseases with high economic losses in commercial animal husbandry and are of great diagnostic concern. Because of new data on the phylogeny of Pasteurellaceae, their taxonomy has recently been revised profoundly, thus requiring an improved phenotypic differentiation procedure to identify the individual species of this family. A new and simplified procedure to identify species of Actinobacillus, Avibacterium, Gallibacterium, Haemophilus, Mannheimia, Nicoletella, and Pasteurella, which are most commonly isolated from clinical samples of diseased animals in veterinary diagnostic laboratories, is presented in the current study. The identification procedure was evaluated with 40 type and reference strains and with 267 strains from routine diagnostic analysis of various animal species, including 28 different bacterial species. Type, reference, and field strains were analyzed by 16S ribosomal RNA (rrs) and rpoB gene sequencing for unambiguous species determination as a basis to evaluate the phenotypic differentiation schema. Primary phenotypic differentiation is based on beta-nicotinamide adenine dinucleotide (beta-NAD) dependence and hemolysis, which are readily determined on the isolation medium. The procedure divides the 28 species into 4 groups for which particular biochemical reactions were chosen to identify the bacterial species. The phenotypic identification procedure allowed researchers to determine the species of 240 out of 267 field strains. The procedure is an easy and cost-effective system for the rapid identification of species of the Pasteurellaceae family isolated from clinical specimens of animals. PMID:18987220

  19. Accurate episomal HIV 2-LTR circles quantification using optimized DNA isolation and droplet digital PCR

    Directory of Open Access Journals (Sweden)

    Eva Malatinkova

    2014-11-01

    Full Text Available Introduction: In HIV-infected patients on combination antiretroviral therapy (cART, the detection of episomal HIV 2-LTR circles is a potential marker for ongoing viral replication. Quantification of 2-LTR circles is based on quantitative PCR or more recently on digital PCR assessment, but is hampered due to its low abundance. Sample pre-PCR processing is a critical step for 2-LTR circles quantification, which has not yet been sufficiently evaluated in patient derived samples. Materials and Methods: We compared two sample processing procedures to more accurately quantify 2-LTR circles using droplet digital PCR (ddPCR. Episomal HIV 2-LTR circles were either isolated by genomic DNA isolation or by a modified plasmid DNA isolation, to separate the small episomal circular DNA from chromosomal DNA. This was performed in a dilution series of HIV-infected cells and HIV-1 infected patient derived samples (n=59. Samples for the plasmid DNA isolation method were spiked with an internal control plasmid. Results: Genomic DNA isolation enables robust 2-LTR circles quantification. However, in the lower ranges of detection, PCR inhibition caused by high genomic DNA load substantially limits the amount of sample input and this impacts sensitivity and accuracy. Moreover, total genomic DNA isolation resulted in a lower recovery of 2-LTR templates per isolate, further reducing its sensitivity. The modified plasmid DNA isolation with a spiked reference for normalization was more accurate in these low ranges compared to genomic DNA isolation. A linear correlation of both methods was observed in the dilution series (R2=0.974 and in the patient derived samples with 2-LTR numbers above 10 copies per million peripheral blood mononuclear cells (PBMCs, (R2=0.671. Furthermore, Bland–Altman analysis revealed an average agreement between the methods within the 27 samples in which 2-LTR circles were detectable with both methods (bias: 0.3875±1.2657 log10. Conclusions: 2-LTR

  20. Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Directory of Open Access Journals (Sweden)

    Huneau Cecile

    2009-09-01

    Full Text Available Abstract Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs, 8.2% Spelt52 (namely, the subfamily Spelt52.2 and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0. Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat

  1. Early-onset sepsis in a neonatal intensive care unit in Beni Suef, Egypt: bacterial isolates and antibiotic resistance pattern

    OpenAIRE

    Fahmey, Sameh Samir

    2013-01-01

    Purpose To identify the frequency of bacterial isolates in early-onset neonatal sepsis (EONS) and their antimicrobial resistance pattern. Methods A retrospective study of EONS was conducted at the Beni Suef University Hospital from September 2008 to September 2012. A case of EONS was defined as an infant who had clinical signs of infection or who was born to a mother with risk factors for infection, and in whom blood culture obtained within 72 hours of life grew a bacterial pathogen. Results ...

  2. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    Science.gov (United States)

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates

  3. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation.

    OpenAIRE

    Pizarro, J.; Jedlicki, E; Orellana, O; J. Romero; Espejo, R T

    1996-01-01

    The composition of bacterial populations in copper bioleaching systems was investigated by analysis of DNA obtained either directly from ores or leaching solutions or after laboratory cultures. This analysis consisted of the characterization of the spacer regions between the 16 and 23S genes in the bacterial rRNA genetic loci after PCR amplification. The sizes of the spacer regions, amplified from DNAs obtained from samples, were compared with the sizes of those obtained from cultures of the ...

  4. Evaluation of DNA microarray for detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolates

    Institute of Scientific and Technical Information of China (English)

    王峰

    2013-01-01

    Objective To evaluate the performance of DNA microarray for rapid detection resistance to rifampin and isoniazid in Mycobacterium tuberculosis clinical isolates and identify suitable target sites for molecular genetic test. Methods Twenty-four clinical Mycobacterium

  5. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group.

  6. Disinfectant and antibiotic activities: a comparative analysis in Brazilian hospital bacterial isolates

    Directory of Open Access Journals (Sweden)

    Guimarães Márcia Aparecida

    2000-01-01

    Full Text Available Nosocomial infections are an important cause of morbidity and mortality all over the world. It has been shown that appropriate environmental hygienic and disinfection practices can be very helpful to hospital infection control. The purpose of this study was to evaluate the bactericidal activity of some disinfectants against antibiotic-susceptible and antibiotic-resistant hospital bacterial isolates. The susceptibility of 27 clinical isolates to disinfectants and antibiotics was determined by the Association of Official Analytical Chemist?s (AOAC Use-Dilution method and by the Kirby-Bauer method, respectively. All strains tested were susceptible to sodium hypochlorite, glutaraldehyde and to the association quaternary ammonium - formaldehyde - ethyl alcohol disinfectants. However, the susceptibility of strains to phenol and to one quaternary ammonium compound was variable. Among twenty-one antibiotic-multiresistant strains (methicillin-resistant staphylococci, Enterococcus spp, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens and Escherichia coli eleven (52% and eight (38% strains were resistant to the quaternary ammonium and phenol compounds, respectively. Among six isolates that demonstrated susceptibility to antibiotics (staphylococci, Enterococcus spp, P. mirabilis, E. cloacae and E. coli two strains (33% showed resistance to these disinfectants. The results demonstrated the lack of correlation between antibiotic-susceptibility and susceptibility to disinfectants in hospital strains.

  7. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26.

    Science.gov (United States)

    Yang, Ying; Jia, Jingjing; Xing, Jianrong; Chen, Jianbing; Lu, Shengmin

    2013-02-15

    A strain producing bacterial cellulose (BC) screened from rotten mandarin fruit was identified as Gluconacetobacter intermedius CIs26 by the examination of general taxonomical characteristics and 16S rDNA sequence analysis. Furthermore, Fourier transform infrared (FT-IR) spectrum showed that pellicle produced by strain CIs26 was composed of glucan, and had the same functional group as a typical BC. X-ray diffractometry (XRD) analysis indicated that the BC was type I in structure with crystallinity index of 75%. BC yields of strain CIs26 in Hestrin-Schramn (HS), citrus waste modified HS (CMHS) and citrus waste solution (CWS) mediums were 2.1 g/L, 5.7 g/L, and 7.2 g/L, respectively. It was shown that citrus waste could stimulate BC production of strain CIs26 efficiently. Based on the ability of utilization of citrus waste, this strain appeared to have potential in BC manufacture on an industrial scale.

  8. Isolation and Characterization of Gut Bacterial Proteases Involved in Inducing Pathogenicity of Bacillus thuringiensis Toxin in Cotton Bollworm, Helicoverpa armigera

    Science.gov (United States)

    Regode, Visweshwar; Kuruba, Sreeramulu; Mohammad, Akbar S.; Sharma, Hari C.

    2016-01-01

    Bacillus thuringiensis toxin proteins are deployed in transgenic plants for pest management. The present studies were aimed at characterization of gut bacterial proteases involved in activation of inactive Cry1Ac protoxin (pro-Cry1Ac) to active toxin in Helicoverpa armigera. Bacterial strains were isolated from H. armigera midgut and screened for their proteolytic activation toward pro-Cry1Ac. Among 12 gut bacterial isolates seven isolates showed proteolytic activity, and proteases from three isolates (IVS1, IVS2, and IVS3) were found to be involved in the proteolytic conversion of pro-Cry1Ac into active toxin. The proteases from IVS1, IVS2, and IVS3 isolates were purified to 11.90-, 15.50-, and 17.20-fold, respectively. The optimum pH and temperature for gut bacterial protease activity was 8.0 and 40°C. Maximum inhibition of total proteolytic activity was exerted by phenylmethane sulfonyl fluoride followed by EDTA. Fluorescence zymography revealed that proteases from IVS1, IVS2, and IVS3 were chymotrypsin-like and showing protease band at ~15, 65, and 15 kDa, respectively. Active Cry1Ac formed from processing pro-Cry1Ac by gut bacterial proteases exhibited toxicity toward H. armigera. The gut bacterial isolates IVS1, IVS2, and IVS3 showed homology with B. thuringiensis (CP003763.1), Vibrio fischeri (CP000020.2), and Escherichia coli (CP011342.1), respectively. Proteases produced by midgut bacteria are involved in proteolytic processing of B. thuringiensis protoxin and play a major role in inducing pathogenicity of B. thuringiensis toxins in H. armigera. PMID:27766093

  9. Quantitative field testing Rotylenchulus reniformis DNA from metagenomic samples isolated directly from soil.

    Directory of Open Access Journals (Sweden)

    Kurt Showmaker

    Full Text Available A quantitative PCR procedure targeting the β-tubulin gene determined the number of Rotylenchulus reniformis Linford & Oliveira 1940 in metagenomic DNA samples isolated from soil. Of note, this outcome was in the presence of other soil-dwelling plant parasitic nematodes including its sister genus Helicotylenchus Steiner, 1945. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from soil.

  10. Influence of DNA isolation method on the investigation of archaeal diversity and abundance in biogas plants.

    Science.gov (United States)

    Theiss, Juliane; Rother, Michael; Röske, Kerstin

    2016-09-01

    Various methods are available for DNA isolation from environmental samples. Because the chemical and biological composition of samples such as soil, sludge, or plant material is different, the effectiveness of DNA isolation can vary depending on the method applied and thus, have a substantial effect on the results of downstream analysis of the microbial community. Although the process of biogas formation is being intensely investigated, a systematic evaluation of kits for DNA isolation from material of biogas plants is still lacking. Since no DNA isolation kit specifically tailored for DNA isolation from sludge of biogas plants is available, this study compares five commercially available kits regarding their influence on downstream analyses such denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR). The results show that not all kits are equally suited for the DNA isolation from samples of different biogas plants, but highly reproducible DGGE fingerprints as well as qPCR results across the tested samples from biogas reactors using different substrate compositions could be produced using selected kits. PMID:27089887

  11. A comparative study of two methods for the isolation of human leucocytes for DNA extraction.

    Science.gov (United States)

    Lim, L H; Ton, S H; Cheong, S K

    1990-06-01

    The 'Dextran' and the 'Buffy-coat' methods for isolation of human leucocytes for DNA extraction were compared on the basis of DNA yield from the same amounts (10 ml) of blood. Human leucocytes from a total of 11 samples were isolated using both methods for each sample after which DNA was extracted. Extracted DNA samples were treated with ribonucleases and proteinase K after which the yields were quantitated by measuring absorbance at 260 nm. The 'Buffy-coat' method yielded a mean concentration of DNA of 476.7 micrograms/ml (range: 212 to 700 micrograms/ml) while the 'Dextran' method yielded 188.4 micrograms/ml (range: 64 to 340 micrograms/ml). The difference was confirmed by subjecting the extracted DNA samples to agarose gel electrophoresis.

  12. Isolation and characterization of a bacterial strain that efficiently degrades sex steroid hormones

    Institute of Scientific and Technical Information of China (English)

    JI Shulan; LIU Zhipei; LIU Zhipeng; REN Haiyan

    2007-01-01

    A bacterial strain,ZY3,growing on sex steroid hormones as the sole source of carbon and energy was isolated from the sewage treatment plant of a prophylactic steroids factory.ZY3 degrades the 3-methoxy-17β-hyclroxy-1,3,5(10),8(9)-δ-4-estren (MHE).This strain was preliminarily identified as Raoultella sp.ZY3 according to its morphology and its 16S rRNA gene sequence.During the experimental period (72 h),the optimum temperature,pH and 3-MHE concentration for the degradation of hydride by the strain ZY3 were 35℃,10 and 10 mg/L,respectively.The degradation rate of the sex steroid hormones increased to 87% and 85% after the addition of maltose and peptone,respectively.

  13. Comparative Antibacterial Efficacy of Vitellaria paradoxa (Shea Butter Tree Extracts Against Some Clinical Bacterial Isolates

    Directory of Open Access Journals (Sweden)

    Kamoldeen Abiodun AJIJOLAKEWU

    2015-09-01

    Full Text Available The antibacterial activities of the ethanolic extracts of seed, leaf and stem bark of Vitellaria paradoxa were investigated. The extracts were tested against three clinical bacterial pathogens, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae using the agar diffusion and the broth dilution techniques. Ethanolic extracts of the plant parts showed activity against all the bacterial pathogens tested. At the highest extract concentration (200 mg/ml, the leaf extract exhibited the highest antimicrobial activity, while no activity was detected at the lowest concentration (3.13 mg/ml against the tested isolates. Escherichia coli and Staphylococcus aureus were more susceptible to all extracts of V. paradoxa, while Klebsiella pneumoniae showed the least sensitivity. The efficacy of ethanolic extracts of Vitellaria paradoxa was compared to a commercial antibiotic streptomycin. There were differences in the minimum inhibitory concentration (MIC of all the Vitellaria paradoxa ethanolic extracts with respect to the type of organism. All extracts exhibited bacteriostatic effects against the tested organisms at the experimented concentrations. Qualitative phytochemical screening of the extracts revealed the presence of saponins, tannins and alkaloids as the active principles of Vitellaria paradoxa's antimicrobial activity. V. paradoxa could be used as a potential source of antibiotic substance for a drug development.

  14. Bacterial Agents Andantibiogram of Most Common Isolated Organisms from Hands of Surgical Team Members after Scrubbing

    Directory of Open Access Journals (Sweden)

    PS Mohseni- Meybodi

    2008-04-01

    Full Text Available Introduction: Many post-surgical wound infections in hospitals cause morbidity and morality of patients and these are usually transmitted via hands of surgical personnel. The aim of the present study was to detect and antibiogram the bacterial agents following scrubbing of hands of surgical personnel before operation. Methods: Hands of 134 personnels of operation room were swabbed following scrubbing with antiseptic Betadine solution. Swab samples were inoculated on selective and differential media such as blood ager, McConky and manitol salt agar(MSA. Following incubation of media at 37c° for 24hr, bacterial species were identified using differential related tests. The isolated species were than antibiogramed and the results together with other data was analysed by SPSS software program. Results: Of the total of 134 cases, 81(60.4% were male and 53(39.6% female. The mean scrub time for each person was (206.1+/-103.2 seconds; 6 to 60 seconds base change. Increasing time of scrub was significantly correlated with decreasing rate of bacteria (P=0.003, (R=-0.254. Contamination was present in 129(96.3% cases following scrubbing. Maximum contamination was observed in nails (92.5%. Average number of bacteria for each individual was between 0 and 159. 62.6% of isolated bacteria were non- staphylococci and 7.7% were S. aureus. Vancomycin and ceftizoxim were the most sensitive, while penicillin was the least sensitive antibiotic. Conclusion: Results revealed that hand contamination was more than the expected standard level. Therefore, regarding the critical task of surgical personnel, training of all operation room staff is highly recommended to minimize the rate of contamination.

  15. NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection.

    Science.gov (United States)

    Zhang, Min; Li, Mo-fei; Sun, Li

    2014-01-01

    NK-lysin is an antimicrobial protein produced by cytotoxic T lymphocytes and natural killer cells. In this study, we examined the biological property of a peptide, NKLP27, derived from tongue sole (Cynoglossus semilaevis) NK-lysin. NKLP27 is composed of 27 amino acids and shares little sequence identity with known NK-lysin peptides. NKLP27 possesses bactericidal activity against both Gram-negative and Gram-positive bacteria including common aquaculture pathogens. The bactericidal activity of NKLP27 was dependent on the C-terminal five residues, deletion of which dramatically reduced the activity of NKLP27. During its interaction with the target bacterial cells, NKLP27 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA. In vivo study showed that administration of tongue sole with NKLP27 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. Further study revealed that fish administered with NKLP27 exhibited significantly upregulated expression of the immune genes including those that are known to be involved in antibacterial and antiviral defense. These results indicate that NKLP27 is a novel antimicrobial against bacterial and viral pathogens, and that the observed effect of NKLP27 on bacterial DNA and host gene expression adds new insights to the action mechanism of fish antimicrobial peptides.

  16. NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available NK-lysin is an antimicrobial protein produced by cytotoxic T lymphocytes and natural killer cells. In this study, we examined the biological property of a peptide, NKLP27, derived from tongue sole (Cynoglossus semilaevis NK-lysin. NKLP27 is composed of 27 amino acids and shares little sequence identity with known NK-lysin peptides. NKLP27 possesses bactericidal activity against both Gram-negative and Gram-positive bacteria including common aquaculture pathogens. The bactericidal activity of NKLP27 was dependent on the C-terminal five residues, deletion of which dramatically reduced the activity of NKLP27. During its interaction with the target bacterial cells, NKLP27 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA. In vivo study showed that administration of tongue sole with NKLP27 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. Further study revealed that fish administered with NKLP27 exhibited significantly upregulated expression of the immune genes including those that are known to be involved in antibacterial and antiviral defense. These results indicate that NKLP27 is a novel antimicrobial against bacterial and viral pathogens, and that the observed effect of NKLP27 on bacterial DNA and host gene expression adds new insights to the action mechanism of fish antimicrobial peptides.

  17. Cloning human herpes virus 6A genome into bacterial artificial chromosomes and study of DNA replication intermediates

    OpenAIRE

    Borenstein, Ronen; Frenkel, Niza

    2009-01-01

    Cloning of large viral genomes into bacterial artificial chromosomes (BACs) facilitates analyses of viral functions and molecular mutagenesis. Previous derivations of viral BACs involved laborious recombinations within infected cells. We describe a single-step production of viral BACs by direct cloning of unit length genomes, derived from circular or head-to-tail concatemeric DNA replication intermediates. The BAC cloning is independent of intracellular recombinations and DNA packaging constr...

  18. Isolation and Purification of Bacterial Strains from Treatment Plants for Effective and Efficient Bioconversion of Domestic Wastewater Sludge

    Directory of Open Access Journals (Sweden)

    K. C.A. Jalal

    2006-01-01

    Full Text Available Forty six bacterial strains were isolated from nine different sources in four treatment plants namely Indah Water Konsortium (IWK sewage treatment plant, International Islamic University Malaysia (IIUM treatment plant-1,-2 and –3 to evaluate the bioconversion process in terms of efficient biodegradation and bioseparation. The bacterial strains isolated were found to be 52.2% (24 isolates and 47.8% (22 isolates in the IWK and IIUM treatment plants respectively. The results showed that the higher microbial population (9-10x104 cfu mLˉ1 was observed in the secondary clarifier of IWK treatment plant. Only the gram-staining identification was done in the strains isolated from IWK treatment plant not to be determined from IIUM. Among the isolates from IWK, 10 isolates of gram-positive bacillus (GPB and gram-positive cocci (GPC, 10 isolates of gram-negative bacillus (GNB and rest were both or undetermined. Gram-negative cocci (GNC were not found in the isolates from IWK.

  19. Isolation of chromatin DNA tightly bound to the nuclear envelope of HeLa cells.

    Science.gov (United States)

    Kuvichkin, Vasily Vladimirovich

    2012-11-01

    Recent discovery of the role of nuclear pores in transcription, predicted by our early DNA-membrane complex (DMC) model, makes membrane-bound DNA (MBD) isolation from the cell nucleus and analysis of the MBD actual. The method of MBD isolation proposed by us retains DMC integrity during isolation. We used HeLa cells for DMC extraction. Changing the ionic composition of the isolation medium and replacing DNase I, used commonly for chromatin destruction, with a set of restriction enzymes allowed us to isolate the MBD. Treatment of a nuclear membrane with proteinase K and ultrasound has been used to increase the yield of MBD. Electron microscopic analysis of the purified fraction of isolated DMC supports our previous model of nuclear envelope lipid-chromatin interaction in the nuclear pore assembly.

  20. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp.

    Science.gov (United States)

    Aakre, Christopher D; Phung, Tuyen N; Huang, David; Laub, Michael T

    2013-12-12

    Toxin-antitoxin (TA) systems are ubiquitous on bacterial chromosomes, yet the mechanisms regulating their activity and the molecular targets of toxins remain incompletely defined. Here, we identify SocAB, an atypical TA system in Caulobacter crescentus. Unlike canonical TA systems, the toxin SocB is unstable and constitutively degraded by the protease ClpXP; this degradation requires the antitoxin, SocA, as a proteolytic adaptor. We find that the toxin, SocB, blocks replication elongation through an interaction with the sliding clamp, driving replication fork collapse. Mutations that suppress SocB toxicity map to either the hydrophobic cleft on the clamp that binds DNA polymerase III or a clamp-binding motif in SocB. Our findings suggest that SocB disrupts replication by outcompeting other clamp-binding proteins. Collectively, our results expand the diversity of mechanisms employed by TA systems to regulate toxin activity and inhibit bacterial growth, and they suggest that inhibiting clamp function may be a generalizable antibacterial strategy. PMID:24239291

  1. Nε-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity.

    Directory of Open Access Journals (Sweden)

    Sandy Thao

    Full Text Available Evidence suggesting that eukaryotes and archaea use reversible N(ε-lysine (N(ε-Lys acetylation to modulate gene expression has been reported, but evidence for bacterial use of N(ε-Lys acetylation for this purpose is lacking. Here, we report data in support of the notion that bacteria can control gene expression by modulating the acetylation state of transcription factors (TFs. We screened the E. coli proteome for substrates of the bacterial Gcn5-like protein acetyltransferase (Pat. Pat acetylated four TFs, including the RcsB global regulatory protein, which controls cell division, and capsule and flagellum biosynthesis in many bacteria. Pat acetylated residue Lys180 of RcsB, and the NAD(+-dependent Sir2 (sirtuin-like protein deacetylase (CobB deacetylated acetylated RcsB (RcsB(Ac, demonstrating that N(ε-Lys acetylation of RcsB is reversible. Analysis of RcsB(Ac and variant RcsB proteins carrying substitutions at Lys180 provided biochemical and physiological evidence implicating Lys180 as a critical residue for RcsB DNA-binding activity. These findings further the likelihood that reversible N(ε-Lys acetylation of transcription factors is a mode of regulation of gene expression used by all cells.

  2. Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories

    DEFF Research Database (Denmark)

    Godschalk, Roger W L; Ersson, Clara; Stępnik, Maciej;

    2014-01-01

    collected in the same way and processed using the same blood isolation procedure. The inter-laboratory variation was the prominent contributor to the overall variation. The inter-laboratory coefficient of variation decreased for both DNA strand breaks (from 68 to 26%) and FPG sensitive sites (from 57 to 12...... to as 'centre') collected and cryopreserved PBMC samples from three donors, using a standardised cell isolation protocol. The samples were analysed in 13 different laboratories for DNA damage, which is measured by the comet assay. The study aim was to assess variation in DNA damage in PBMC samples that were...

  3. DNA Hybridization of Escherichia coli Strains Isolated from Uteri and Fecal Samples of Bitches with Pyometra

    OpenAIRE

    SANCAK, Aziz Arda

    2004-01-01

    Escherichia coli is the most common bacterium that has been isolated from the bacterial culture of uterine and fecal samples of dogs with pyometra. The aim of the present study was to determine whether this organism could be relevant to the pathogenesis of pyometra in dogs. Fecal and uterine samples were collected from 17 bitches with pyometra. E. coli strains were isolated in all samples. Representative colonies of E. coli from each sample were analyzed for pathogenicity determinants by h...

  4. Bacterial Profile of Blood Stream Infection and Antibiotic Resistance Pattern of Isolates.

    Directory of Open Access Journals (Sweden)

    Usha Arora, Pushpa Devi

    2007-10-01

    Full Text Available Blood samples from 2542 clinically diagnosed cases of septicemia were processed. Out of these 946(76.55% were from Pediatric Department and rest from other Departments. Growth was obtained in509(20.02% cases . Candida spp were isolated from 23 (4.57 cases Out of 486 bacterial isolates 52.67% were gram positive bacteria whereas 47.33% were gram negative bacilli . Staph aureus 133 (27.37%wasthe predominant organisms followed by CONS 98 (20.1%. Amongst gram negative organismsEnterobacter 69 (14.19 % was the most predominant followed by Esch coli 45 (9.27 % Pseudomonas 37(7.62 % and Acinetobacter spp 34 (6.69 %. Amongst gram positive organisms maximum resistancewas seen with ampicillin (74.61% and erythromycin (69.67 %. Most of the gram negative bacilli wereMDR (71%. Maximum resistance was observed with ampicillin (86.1% cephalexin (68.07% andpiperacillin (57.71%. Most successful drugs were amikacin,gentamicin and cefotaxime. 34.35% of theisolates were ESBL producers.

  5. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils.

    Science.gov (United States)

    Barua, Shilajit; Tripathi, Sudipta; Chakraborty, Ashis; Ghosh, Sagarmoy; Chakrabarti, Kalyan

    2012-01-20

    Use of eco-friendly area specific salt tolerant bioinoculants is better alternatives to chemical fertilizer for sustainable agriculture in coastal saline soils. We isolated diverse groups of diazotrophic bacteria from coastal saline soils of different forest and agricultural lands in the Sundarbans, West Bengal, India, to study their effect on crop productivity in saline soils. Phenotypic, biochemical and molecular identifications of the isolates were performed. The isolates produced indole acetic acid, phosphatase, and solubilized insoluble phosphates. Sequence analysis of 16S rDNA identified the SUND_BDU1 strain as Agrobacterium and the strains SUND_LM2, Can4 and Can6 belonging to the genus Bacillus. The ARA activity, dinitrogen fixation and presence of nifH genes indicated they were diazotrophs. Field trials with these strains as bioinoculants were carried out during 2007-2009, with rice during August-December followed by Lady's finger during April-June. Microplots, amended with FYM inoculated with four bioinoculants individually were compared against sole FYM (5 t ha(-1)) and a sole chemical fertilizer (60:30:30 kg ha(-1) NPK) treated plot. The strain Can6 was by far the best performer in respect of yield attributes and productivity of studied crops. PMID:21596539

  6. Transgenic Rice Plants Harboring Genomic DNA from Zizania latifolia Confer Bacterial Blight Resistance

    Institute of Scientific and Technical Information of China (English)

    SHEN Wei-wei; SONG Cheng-li; CHEN Jie; Fu Ya-ping; Wu Jian-li; JIANG Shao-mei

    2011-01-01

    Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb.),a pair of specific PCR primers FZ14P1/FZ14P2 was designed to isolate candidate disease resistance gene.The pooled-PCR approach was adopted using the primer pair to screen a genomic transformation-competent artificial chromosome (TAC) library derived from Z.latifolia.A positive TAC clone (ZR1) was obtained and confirmed by sequence analysis.The results indicated that ZR1 consisted of conserved motifs similar to P-loop (kinase 1a),kinase 2,kinase 3a and GLPL (Gly-Leu-Pro-Leu),suggesting that it could be a portion of NBS-LRR type of resistance gene.Using Agrobacterium-mediated transformation of Nipponbare mature embryo,a total of 48 independent transgenic T0 plants were obtained.Among them,36 plants were highly resistant to the virulent bacterial blight strain P×O71.The results indicate that ZR1 contains at least one functional bacterial blight resistance gene.

  7. A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection

    Institute of Scientific and Technical Information of China (English)

    Jin-Long Yang; Ming-Shu Wang; An-Chun Cheng; Kang-Cheng Pan; Chuan-Feng Li; Shu-Xuan Deng

    2008-01-01

    AIM: To develop a simple and convenient method for extracting genomic DNA from intestinal microflora for enterobacterial repetitive intergenic consensus (ERIC)-PCR detection.METHODS: Five methods of extracting bacterial DNA,including Tris-EDTA buffer, chelex-100, ultrapure water,2% sodium dodecyl sulfate and 10% Triton-100 with and without sonication, were compared with the commercial fecal DNA extraction kit method, which is considered as the gold standard for DNA extraction. The comparison was based on the yield and purity of DNA and the indexes of the structure and property of micro-organisms that were reflected by ERIC-PCR.RESULTS: The yield and purity of DNA obtained by the chelex method was similar to that obtained with the fecal DNA kit. The ERIC-PCR results obtained for the DNA extracted by the chelex method and those obtained for DNA extracted with the fecal DNA kit were basically the same.CONCLUSION: The chelex method is recommended for ERIC-PCR experiments in view of its simplicity and costeffectiveness; and it is suitable for extracting total DNA from intestinal micro-organisms, particularly for handling a large number of samples.

  8. Isolation of 24 novel cDNA fragments from microdis—sected human chromosome band

    Institute of Scientific and Technical Information of China (English)

    ZHANGMIN; LONGYU; 等

    1998-01-01

    The strategy of isolating the band0specific expression fragments from a probe pool generated by human chromosome microdissection was reported.A chromosome 14q 24.3 band-specific single copy DNA pool was constructed based on this probe pool.Using total DNA of the pool as probe to hybridize the human marrow cDNA library,68 primary positive clones were selected from 5×105 cDNA clones.Among these primary clones,32 secondary clones were obtained after second-round screening and designed as cFD14-1-32.Finally,24 band-specific expression fragments were identified from these 32 positive clones by DNA hybridization.Those band-specific clones can hybridize to both 14q24.3 DNA and human genomic DNA but cann't hybridize to 17q11-12 DNA,Partial sequences of 13 fragments of them were sequenced and idenfified as novel cDNA sequences,and these sequences were proved to have some homology with known genes in NCBI database.Analysis of expression spectrum of cFD 14-1 suggested that the cDNA fragments thus obtained should be used to isolate the genes can not been cloned in 14q24.3 region.

  9. Bacterial Mitosis: ParM of Plasmid R1 Moves Plasmid DNA by an Actin-like Insertional Polymerization Mechanism

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette;

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...

  10. A hybrid DNA extraction method for the qualitative and quantitative assessment of bacterial communities from poultry production samples

    Science.gov (United States)

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in th...

  11. ‘Olegusella massiliensis’ strain KHD7, a new bacterial genus isolated from the female genital tract

    Directory of Open Access Journals (Sweden)

    K. Diop

    2016-07-01

    Full Text Available We report the main characteristics of ‘Olegusella massiliensis’ gen. nov., sp. nov., strain KHD7 (= CSUR P2268=DSM 101849, a new member of the Coriobacteriaceae family isolated from the vaginal flora of a patient with bacterial vaginosis.

  12. Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain.

    Science.gov (United States)

    Dorman, Charles J; Colgan, Aoife; Dorman, Matthew J

    2016-07-01

    The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process. PMID:27252403

  13. Identification of novel bacterial DNA gyrase inhibitors: An in silico study.

    Science.gov (United States)

    Rahimi, Hamzeh; Najafi, Ali; Eslami, Habib; Negahdari, Babak; Moghaddam, Mehrdad Moosazadeh

    2016-01-01

    Owing to essential role in bacterial survival, DNA gyrase has been exploited as a validated drug target. However, rapidly emerging resistance to gyrase-targeted drugs such as widely utilized fluoroquinolones reveals the necessity to develop novel compounds with new mechanism of actions against this enzyme. Here, an attempt has been made to identify new drug-like molecules for Shigella flexneri DNA gyrase inhibition through in silico approaches. The structural similarity search was carried out using the natural product simocyclinone D8, a unique gyrase inhibitor, to virtually screen ZINC database. A total of 11830 retrieved hits were further screened for selection of high-affinity compounds by implementing molecular docking followed by investigation of druggability according to Lipinski's rule, biological activity and physiochemical properties. Among the hits initially identified, three molecules were then confirmed to have reasonable gyrase-binding affinity and to follow Lipinski's rule. Based on these in silico findings, three compounds with different chemical structures from previously identified gyrase inhibitors were proposed as potential candidates for the treatment of fluoroquinolone-resistant strains and deserve further investigations. PMID:27499795

  14. In vitro activity of rifaximin against isolates from patients with small intestinal bacterial overgrowth.

    Science.gov (United States)

    Pistiki, Aikaterini; Galani, Irene; Pyleris, Emmanouel; Barbatzas, Charalambos; Pimentel, Mark; Giamarellos-Bourboulis, Evangelos J

    2014-03-01

    Rifaximin, a non-absorbable rifamycin derivative, has published clinical efficacy in the alleviation of symptoms in patients with irritable bowel syndrome (IBS). Small intestinal bacterial overgrowth (SIBO) is associated with the pathogenesis of IBS. This study describes for the first time the antimicrobial effect of rifaximin against SIBO micro-organisms from humans. Fluid was aspirated from the third part of the duodenum from 567 consecutive patients; quantitative cultures diagnosed SIBO in 117 patients (20.6%). A total of 170 aerobic micro-organisms were isolated and the in vitro efficacy of rifaximin was studied by (i) minimum inhibitory concentration (MIC) testing by a microdilution technique and (ii) time-kill assays using bile to simulate the small intestinal environment. At a breakpoint of 32 μg/mL, rifaximin inhibited in vitro 85.4% of Escherichia coli, 43.6% of Klebsiella spp., 34.8% of Enterobacter spp., 54.5% of other Enterobacteriaceae spp., 82.6% of non-Enterobacteriaceae Gram-negative spp., 100% of Enterococcus faecalis, 100% of Enterococcus faecium and 100% of Staphylococcus aureus. For the time-kill assays, 11 E. coli, 15 non-E. coli Gram-negative enterobacteria and three E. faecalis isolates were studied. Rifaximin produced a >3 log10 decrease in the starting inoculum against most of the tested isolates at 500 μg/mL after 24h of growth. The results indicate that rifaximin has a potent effect on specific small bowel flora associated with SIBO. This conclusion should be regarded in light of the considerable time-kill effect at concentrations lower than those achieved in the bowel lumen after administration of conventional doses in humans. PMID:24461710

  15. 60Co-γ-irradiation of dried DNA and isolated cell nuclei of chicken erythrocytes

    International Nuclear Information System (INIS)

    In this work low molecular products, which resulted from γ-irradiation of dried DNA, were isolated and quantitatively determined. Unchanged nucleic bases were released. The irradiation was successful in a vacuum as well as in oxygen. In the case of the drily irradiated DNA, the base release made up 30% of the total strand breaks. The release of DNA bases was also first studied in cell nuclei of eucaryotic cells, the erythrocyte nuclei of chicken blood. The second part of this work dealt with the isolation and identification of radiation induced changes in the 2-dioxyribose unit of DNA. In the third part it was investigated, whether as a result of γ-irradiation of DNA malonic dialdehyde was formed. It could be shown that neither malonic aldehyde nor basic propenal were formed, but instead products, which were still bound to the DNA and formed a chromophore with 2-thio barbituric acid. In this work the direct irradiation effect was investigated in DNA systems as well as in erythrocyte nuclei. By the isolation of low molecular irradiation products this work offers a contribution to the understanding of the irradiation chemistry in an eucaryotic cell, in which the direct effect on the DNA and the resulting radiation damage were given a deciding role for genetic information. (orig./MG)

  16. A one-step miniprep for the isolation of plasmid DNA and lambda phage particles.

    Directory of Open Access Journals (Sweden)

    George Lezin

    Full Text Available Plasmid DNA minipreps are fundamental techniques in molecular biology. Current plasmid DNA minipreps use alkali and the anionic detergent SDS in a three-solution format. In addition, alkali minipreps usually require additional column-based purification steps and cannot isolate other extra-chromosomal elements, such as bacteriophages. Non-ionic detergents (NIDs have been used occasionally as components of multiple-solution plasmid DNA minipreps, but a one-step approach has not been developed. Here, we have established a one-tube, one-solution NID plasmid DNA miniprep, and we show that this approach also isolates bacteriophage lambda particles. NID minipreps are more time-efficient than alkali minipreps, and NID plasmid DNA performs better than alkali DNA in many downstream applications. In fact, NID crude lysate DNA is sufficiently pure to be used in digestion and sequencing reactions. Microscopic analysis showed that the NID procedure fragments E. coli cells into small protoplast-like components, which may, at least in part, explain the effectiveness of this approach. This work demonstrates that one-step NID minipreps are a robust method to generate high quality plasmid DNA, and NID approaches can also isolate bacteriophage lambda particles, outperforming current standard alkali-based minipreps.

  17. An economical and combined method for rapid and efficient isolation of fungal DNA.

    Science.gov (United States)

    Lech, T; Syguła-Cholewinska, J; Szostak-Kot, J

    2014-12-18

    DNA isolation is a crucial step of conducting genetic studies in any organism. However, this process is quite difficult when studying fungi because of the need to damage the fungal cell walls of specific structures. In this study, we developed a method for the rapid and efficient isolation of fungal DNA based on simultaneous mechanical and enzymatic cell wall degradation. There are several typical modifications of the standard phenol-chloroform DNA extraction method. This method can be modified to degrade the fungal cell wall. The first step of the presented DNA extraction included manual homogenization in modified lysis buffer. Next, enzymatic digestion using 2 enzymes was conducted, including lyticase and proteinase K. To carefully select the most favorable conditions, we developed an economical, rapid, and reliable method for fungal DNA extraction that ensures both high efficiency and proper purity, which are essential for further analyses.

  18. Human cultured cells are capable to incorporate isolated plant mitochondria loaded with exogenous DNA

    Directory of Open Access Journals (Sweden)

    Laktionov P. P.

    2012-07-01

    Full Text Available Aim. To investigate the possibility of human cultured cells to incorporate isolated mitochondria together with exogenous DNA introduced into organelles. Methods. Two approaches were used for this purpose, fluorescent labelling of mitochondria and/or DNA with subsequent analysis of the cells subjected to incubation by microscopy or by quantitative PCR. Results. We have shown that human cultured cells lines, HeLa and HUVEC, are capable to uptake isolated plant mitochondria and that this process depends on the incubation time and concentration of organelles present in medium. The incorporated mitochondria can serve as vehicles to deliver exogenous DNA into human cells, this DNA is then distributed in different cell compartments. Conclusions. These results are preliminary and need further investigations, including testing the possibility of human cells to incorporate the mitochondria of human or animal origin and creating genetic construction which could provide certain selectivity or stability of the transferred exogenous DNA upon cell uptake of the mitochondria as vectors.

  19. Prevalence and antimicrobial susceptibility of bacterial isolates from horses with synovial sepsis: A cross-sectional study of 95 cases.

    Science.gov (United States)

    Robinson, C S; Timofte, D; Singer, E R; Rimmington, L; Rubio-Martínez, L M

    2016-10-01

    Bacterial culture and antimicrobial susceptibility testing of septic synovial samples allows instigation of targeted antimicrobial therapy; however, bacterial culture takes more than 24 h and has low sensitivity. This study aimed to identify the most frequently cultured bacteria and their antimicrobial susceptibility profile from septic synovial samples in our referral equine hospital, to allow recommendations regarding appropriate initial antimicrobial therapy prior to culture results. Hospital records for all horses with synovial sepsis and a synovial sample submitted to the microbiology laboratory between 2004 and 2013 were retrieved (n= 379 samples). One horse had positive cultures from more than one synovial structure, and two horses had positive cultures obtained from repeat samples. Overall, 114 bacterial isolates were obtained. Gram-positive bacteria were isolated in 75% of cases, of which 22% were haemolytic Staphylococcus spp., and 52% were Staphylococcus aureus including two multidrug-resistant isolates. Gram-negative bacteria were isolated from 25% of cases. Anaerobic Clostridium spp. was isolated in 3% of cases. Of the first line antimicrobials, oxytetracycline and doxycycline were effective against 70-100% of the Gram-positive bacteria and 20-100% of the Gram-negative organisms, whilst trimethoprim-sulphamethoxazole and gentamicin efficacy ranged between 50% and 88% for both Gram-positive and Gram-negative bacteria. Of the equine protected antimicrobials, ceftiofur was effective against 70-90% of all bacterial isolates whilst 80% of isolates were susceptible to enrofloxacin. These results indicate that tetracyclines, trimethoprim-sulphamethoxazole or gentamicin may be suitable first-line antimicrobials for treatment of synovial sepsis cases while awaiting laboratory results, findings which support current recommendations for antimicrobial stewardship in equine medicine. PMID:27687937

  20. Crystal Structure of a Bacterial Topoisomerase IB in Complex with DNA Reveals a Secondary DNA Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Asmita; Yakovleva, Lyudmila; Shuman, Stewart; Mondragón, Alfonso (NWU); (SKI)

    2010-10-22

    Type IB DNA topoisomerases (TopIB) are monomeric enzymes that relax supercoils by cleaving and resealing one strand of duplex DNA within a protein clamp that embraces a {approx}21 DNA segment. A longstanding conundrum concerns the capacity of TopIB enzymes to stabilize intramolecular duplex DNA crossovers and form protein-DNA synaptic filaments. Here we report a structure of Deinococcus radiodurans TopIB in complex with a 12 bp duplex DNA that demonstrates a secondary DNA binding site located on the surface of the C-terminal domain. It comprises a distinctive interface with one strand of the DNA duplex and is conserved in all TopIB enzymes. Modeling of a TopIB with both DNA sites suggests that the secondary site could account for DNA crossover binding, nucleation of DNA synapsis, and generation of a filamentous plectoneme. Mutations of the secondary site eliminate synaptic plectoneme formation without affecting DNA cleavage or supercoil relaxation.

  1. Loss of the DNA Damage Repair Kinase ATM Impairs Inflammasome-Dependent Anti-Bacterial Innate Immunity.

    Science.gov (United States)

    Erttmann, Saskia F; Härtlova, Anetta; Sloniecka, Marta; Raffi, Faizal A M; Hosseinzadeh, Ava; Edgren, Tomas; Rofougaran, Reza; Resch, Ulrike; Fällman, Maria; Ek, Torben; Gekara, Nelson O

    2016-07-19

    The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1β (IL-1β) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection. PMID:27421701

  2. Cloning and Sequencing cDNA Encoding for Rhoptry-2 Toxoplasma Gondii Tachyzoite Local Isolate

    Directory of Open Access Journals (Sweden)

    Murwantoko M

    2015-11-01

    Full Text Available Rhoptry protein belongs to an excretory and secretory antigens (ESAs that play an important role during active penetration of parasite into the cell target. This protein an able Toxoplasma gondii to actively penetrate targeted cell, meanwhile ESAs protein stimulates intracellular vacuole modification. It is, therefore, after the parasite successfully enter the cell target then Granule (GRA proteins are responsible for the formation of parasitophorus vacuole, which is protect the fusion with other intracellular compartments such as lysosomal vacuole. Consequently, this parasite is being able to survive and multiply at the cell target. The current study was aimed to clone and sequens cDNA encoding for ROP-2 of local isolated T. gondii tachizoite through DNA recombinant technique. Total ribonucleic acid (RNA was isolated from tachyzoites of local isolated T. gondii that were grown up in Balb/c mice. Messenger RNA was isolated from total RNA using PolyAtract mRNA Isolation System. Messenger RNA was used as a template for synthesis cDNA using Riboclone cDNA Synthesis System AMV-RT. EcoRI adaptor from Riboclone EcoRI Adaptor Ligation System was added to Complementary DNA and than ligated to pUC19. Recombinant plasmid was transformed into E. coli (XL1-Blue. The transformed E. coli XL-1 Blue were plated on LB agar containing X-Gal, IPTG and ampicillin. Recombinant clones (white colony were picked up and grown up in the LB medium at 37oC overnight. Expression of recombinant protein was analysed by immunoblotting in order to identify cDNA recombinant wich is express ESA of T. gondii local isolate. Recombinant plasmid were isolated using alkalilysis method and were elektroforated in 1% agarose gel. The isolated DNA recombinant plasmid was cut using Eco RI and then sequenced through Big Dye Terminator Mix AB1 377A Sequencer using M13 Forward and M13 Reverse primers. The conclusion of this results showed that the recombinant clone was coding for excretory

  3. Isolation and Characterization of a Thermophilic Oil-Degrading Bacterial Consortium

    Institute of Scientific and Technical Information of China (English)

    Gu Guizhou; Li Zheng; Zhao Dongfeng; Zhao Chaocheng

    2013-01-01

    In this study, a thermophilic oil-degrading bacterial consortium KO8-2 growing within the temperature range of 45-65℃(with 55℃being the optimum temperature) was isolated from oil-contaminated soil of Karamay in Xinjiang, China. Denaturing gradient gel electrophoresis (DGGE) showed that there were nine strains included in KO8-2, which originated from the genera of Bacillus, Geobacillus and Clostridium. They all belonged to thermophilic bacteria, and had been previously proved as degraders of at least one petroleum fraction. The crude oil degraded by KO8-2 was analyzed by infrared spectrophotometry, hydrocarbon group type analysis and gas chromatography. The results indicated that the bacterial consortium KO8-2 was able to utilize 64.33%of saturates, 27.06%of aromatics, 13.24%of resins and the oil removal efifciency reached up to 58.73%at 55℃when the oil concentration was 10 g/L. Detailed analysis showed that KO8-2 was able to utilize the hydrocarbon components before C19, and the n-alkanes ranging from C20-C33 were signiif-cantly degraded. The ratios of nC17/Pr and nC18/Ph were 3.12 and 3.87, respectively, before degradation, whereas after degradation the ratios reduced to 0.21 and 0.38, respectively. Compared with the control sample, the oil removal efifciency in KO8-2 composting reactor reached 50.12%after a degradation duration of 60 days.

  4. Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

    Directory of Open Access Journals (Sweden)

    Tess V Clendenen

    Full Text Available Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA.We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison.We observed that 60 of the 81 SNPs (74% had high call frequencies (≥95% using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95% had highly concordant (>98% genotype calls across all three sample types. High purity was not a critical factor to successful genotyping.Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

  5. Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis Diversidade bacteriana de solo sob eucaliptos obtida por seqüenciamento do 16S rDNA

    Directory of Open Access Journals (Sweden)

    Érico Leandro da Silveira

    2006-10-01

    Full Text Available Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversity of sympatric communities within soils from two areas, a native forest (NFA and an eucalyptus arboretum (EAA. PCR primers, whose target soil metagenomic 16S rDNA were used to amplify soil DNA, were cloned using pGEM-T and sequenced to determine bacterial diversity. From the NFA soil 134 clones were analyzed, while 116 clones were analyzed from the EAA soil samples. The sequences were compared with those online at the GenBank. Phylogenetic analyses revealed differences between the soil types and high diversity in both communities. Soil from the Eucalyptus spp. arboretum was found to have a greater bacterial diversity than the soil investigated from the native forest area.Estudos sobre impacto do Eucalyptus spp. em solos brasileiros têm focalizado propriedades químicas do solo e isolamento de microrganismos de interesse. No Brasil há pouco enfoque em ecologia e diversidade microbiana, devido às limitações dos métodos tradicionais de cultivo e isolamento. A utilização de métodos moleculares no estudo da ecologia microbiana baseados na amplificação por PCR do 16S rDNA têm enriquecido o conhecimento da biodiversidade microbiana dos solos. O objetivo deste trabalho foi comparar e estimar a diversidade bacteriana de comunidades simpátricas em solos de duas áreas: uma floresta nativa (NFA e outra adjacente com arboreto de eucaliptos (EAA. Oligonucleotídeos iniciadores foram utilizados para amplificar o 16S rDNA metagenômico do solo, o qual foi

  6. Binding of DNA with Abf2p Increases Efficiency of DNA Uptake by Isolated Mitochondria.

    Science.gov (United States)

    Samoilova, E O; Krasheninnikov, I A; Vinogradova, E N; Kamenski, P A; Levitskii, S A

    2016-07-01

    Mutations in mitochondrial DNA often lead to severe hereditary diseases that are virtually resistant to symptomatic treatment. During the recent decades, many efforts were made to develop gene therapy approaches for treatment of such diseases using nucleic acid delivery into the organelles. The possibility of DNA import into mitochondria has been shown, but this process has low efficiency. In the present work, we demonstrate that the efficiency of DNA import can be significantly increased by preforming its complex with a mitochondria-targeted protein nonspecifically binding with DNA. As a model protein, we used the yeast protein Abf2p. In addition, we measured the length of the DNA site for binding this protein and the dissociation constant of the corresponding DNA-protein complex. Our data can serve as a basis for development of novel, highly efficient approaches for suppressing mutations in the mitochondrial genome. PMID:27449618

  7. Frequency of bacterial isolates and pattern of antimicrobial resistance in patients with hematological malignancies: A snapshot from tertiary cancer center

    Directory of Open Access Journals (Sweden)

    M Sengar

    2015-01-01

    Full Text Available BACKGROUND: Infections are the most important cause of mortality in patients with high-risk febrile neutropenia. Emergence of multi-drug resistant organisms (MDROs has become a major challenge for hemato-oncologists. Knowledge of the prevalent organisms and their antimicrobial sensitivity can help deciding the empirical therapy at individual centers and allows timely measures to reduce the risk of antimicrobial resistance. AIMS: To evaluate the frequency of bacterial isolates from all the samples and the pattern of bacterial bloodstream infections and incidence of MDROs. SETTINGS AND DESIGN: This is a retrospective analysis from a tertiary care cancer center. MATERIALS AND METHODS: From January to June 2014 information on all the samples received in Department of Microbiology was collected retrospectively. The data from samples collected from patients with hematological cancers were analyzed for types of bacterial isolates and antimicrobial sensitivity. RESULTS: A total of 739 isolates were identified with 67.9% of isolates being Gram-negative. The predominant Gram-negative organisms were Escherichia coli, Psuedomonas spp. and Klebsiella spp. Among the bacterial bloodstream infections, 66% were Gram-negative isolates. MDROs constituted 22% of all isolates in blood cultures. Incidence of resistant Gram-positive organisms was low in the present dataset (methicillin resistant Staphylococcus aureus and vancomycin-resistant enterococci-1.3%. CONCLUSIONS: The analysis reconfirms the Gram-negative organisms as the predominant pathogens in bacteremia seen in patients with hematological cancers. The high frequency of multi-drug resistance in the dataset calls for the need of emergency measures to curtail further development and propagation of resistant organisms.

  8. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry.

    Science.gov (United States)

    Dingley, Karen H; Ubick, Esther A; Vogel, John S; Ognibene, Ted J; Malfatti, Michael A; Kulp, Kristen; Haack, Kurt W

    2014-01-01

    Accelerator mass spectrometry (AMS) is a highly sensitive technique used for the quantification of adducts following exposure to carbon-14- or tritium-labeled chemicals, with detection limits in the range of one adduct per 10(11)-10(12) nucleotides. The protocol described in this chapter provides an optimal method for isolating and preparing DNA samples to measure isotope-labeled DNA adducts by AMS. When preparing samples, special precautions must be taken to avoid cross-contamination of isotope among samples and produce a sample that is compatible with AMS. The DNA isolation method described is based upon digestion of tissue with proteinase K, followed by extraction of DNA using Qiagen isolation columns. The extracted DNA is precipitated with isopropanol, washed repeatedly with 70 % ethanol to remove salt, and then dissolved in water. DNA samples are then converted to graphite or titanium hydride and the isotope content measured by AMS to quantify adduct levels. This method has been used to reliably generate good yields of uncontaminated, pure DNA from animal and human tissues for analysis of adduct levels.

  9. Variation in Ribosomal DNA among Isolates of the Mycorrhizal Fungus Cenococcum Geophilum FR.

    Science.gov (United States)

    Lobuglio, Katherine Frances

    1990-01-01

    Cenococcum geophilum Fr., a cosmopolitan mycorrhizal fungus, is well-known for its extremely wide host and habitat range. The ecological diversity of C. geophilum sharply contrasts its present taxonomic status as a monotypic form -genus. Restriction fragment length polymorphisms (RFLPs) in nuclear ribosomal DNA (rDNA) was used to assess the degree of genetic variation among 72 isolates of C. geophilum. The probe used in this study was the rDNA repeat cloned from C. geophilum isolate A145 (pCG15). Length of the rDNA repeat was approximately 9 kb. The rDNA clone was mapped for 5 restriction endonucleases. Hybridization with cloned Saccharomyces cerevisiae rDNA (pSR118, and pSR125 containing the 18S, and 5.8-25S rRNA genes respectively), and alignment of restriction endonuclease sites conserved in the rDNA genes of other fungi, were used to position the corresponding rDNAs of C. geophilum. Southern hybridizations with EcoRI, HindIII, XhoI, and PstI digested DNAs indicated extensive variation among the C. geophilum isolates, greater than has been previously reported to occur within a fungal species. Most of the rDNA polymorphisms occurred in the IGS region. Restriction endonuclease site and length polymorphisms were also observed in the 5.8S-26S genic regions. Sixteen size categories of length mutations, 6 restriction endonuclease site additions, and 4 restriction endonuclease site deletions were determined using isolate A145 as a reference. The rDNA repeat length among the isolates varied from approximately 8.5 to 10.2 kb. RFLPs were also observed in the mitochondrial (mt) 24S rRNA gene and flanking regions of HindIII digested DNAs of C. geophilum isolates representing both geographically distinct and similar origins. Among the C. geophilum isolates analyzed there were fewer RFLPs in mt-DNA than in nuclear rDNA. EcoRI rDNA phenotypes between C. geophilum and Elaphomyces anthracinus, its proposed teleomorph or sexual state, did not correspond. In addition, the four

  10. DNA Content in Extracellular Vesicles Isolated from Porcine Coronary Venous Blood Directly after Myocardial Ischemic Preconditioning.

    Directory of Open Access Journals (Sweden)

    Kristina Svennerholm

    Full Text Available Extracellular vesicles (EV are nano-sized membranous structures released from most cells. They have the capacity to carry bioactive molecules and gene expression signals between cells, thus mediating intercellular communication. It is believed that EV confer protection after ischemic preconditioning (IPC. We hypothesize that myocardial ischemic preconditioning will lead to rapid alteration of EV DNA content in EV collected from coronary venous effluent.In a porcine myocardial ischemic preconditioning model, EV were isolated from coronary venous blood before and after IPC by differential centrifugation steps culminating in preparative ultracentrifugation combined with density gradient ultracentrifugation. The EV preparation was validated, the DNA was extracted and further characterized by DNA sequencing followed by bioinformatics analysis.Porcine genomic DNA fragments representing each chromosome, including mitochondrial DNA sequences, were detected in EV isolated before and after IPC. There was no difference detected in the number of sequenced gene fragments (reads or in the genomic coverage of the sequenced DNA fragments in EV isolated before and after IPC. Gene ontology analysis showed an enrichment of genes coding for ion channels, enzymes and proteins for basal metabolism and vesicle biogenesis and specific cardiac proteins.This study demonstrates that porcine EV isolated from coronary venous blood plasma contain fragments of DNA from the entire genome, including the mitochondria. In this model we did not find specific qualitative or quantitative changes of the DNA content in EV collected immediately after an in vivo myocardial IPC provocation. This does not rule out the possibility that EV DNA content changes in response to myocardial IPC which could occur in a later time frame.

  11. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA

    OpenAIRE

    Smith, Janet L.; Grossman, Alan D.

    2015-01-01

    DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep ...

  12. Isolation, characterization and phylogenetic analysis of a bacterial strain capable of degrading acetamiprid

    Institute of Scientific and Technical Information of China (English)

    YAO Xiao-hua; MIN Hang

    2006-01-01

    An aerobic bacterium, capable of degrading the new chloronicotine pesticide acetamiprid, was isolated from the sludge of pesticide factory after successive enrichment cultures and named strain FH2 which is a Gram-negative, rod-shaped, obligate aerobic organism with ((0.5-0.7) ×(1.5-3.0))μm of cell size and with monotrichous flagellum. It was identified as a member of Pseudomonas sp. based on morphology, physio-biochemical properties, Biolog GN2, 16S rDNA sequence and phylogenetic characteristic analysis. The isolate could grow optimally at pH 7.0 and 30℃ in acetamiprid-mineral medium with 800 mg/L concentration. About 53.3% acetamiprid was degraded by strain FH2 after incubation for 14 d in acetamiprid-mineral medium and nearly 96.7% degraded when incubated in acetamiprid-yeast mineral medium at 30℃ for 14 d. This paper describes phylogenetic and degradation characterization of a pure bacterium being able to mineralize acetamiprid for the first time.

  13. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.

    Science.gov (United States)

    Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen

    2015-01-01

    Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.

  14. Cloning and Sequencing cDNA Encoding for Rhoptry-2 Toxoplasma Gondii Tachyzoite Local Isolate

    Directory of Open Access Journals (Sweden)

    Wayan T. Artama

    2015-10-01

    Full Text Available Rhoptry protein belongs to an excretory and secretory antigens (ESAs that play an important role during activepenetration of parasite into the cell target. This protein an able Toxoplasma gondii to actively penetrate targetedcell, meanwhile ESAs protein stimulates intracellular vacuole modification. It is, therefore, after the parasitesuccessfully enter the cell target then Granule (GRA proteins are responsible for the formation of parasitophorusvacuole, which is protect the fusion with other intracellular compartments such as lysosomal vacuole. Consequently,this parasite is being able to survive and multiply at the cell target. The current study was aimed to clone andsequens cDNA encoding for ROP-2 of local isolated T. gondii tachizoite through DNA recombinant technique.Total ribonucleic acid (RNA was isolated from tachyzoites of local isolated T. gondii that were grown up in Balb/c mice. Messenger RNA was isolated from total RNA using PolyAtract mRNA Isolation System. Messenger RNA wasused as a template for synthesis cDNA using Riboclone cDNA Synthesis System AMV-RT. EcoRI adaptor fromRiboclone EcoRI Adaptor Ligation System was added to Complementary DNA and than ligated to pUC19. Recombinantplasmid was transformed into E. coli (XL1-Blue. The transformed E. coli XL-1 Blue were plated on LB agarcontaining X-Gal, IPTG and ampicillin. Recombinant clones (white colony were picked up and grown up in theLB medium at 37oC overnight. Expression of recombinant protein was analysed by immunoblotting in order toidentify cDNA recombinant wich is express ESA of T. gondii local isolate. Recombinant plasmid were isolatedusing alkalilysis method and were elektroforated in 1% agarose gel. The isolated DNA recombinant plasmid wascut using Eco RI and then sequenced through Big Dye Terminator Mix AB1 377A Sequencer using M13 Forward andM13 Reverse primers. The conclusion of this results showed that the recombinant clone was coding for excretoryand secretory

  15. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  16. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung Chung [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Huang, Chi-Yu.; Fu, Tzu-Ning [Department of Environmental Engineering and Science, Tunghai University, Taichung 407 (China); Chen, Chun-Yen; Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-08-15

    Hydrogen gas was produced via dark fermentation from natural cellulosic materials and {alpha}-cellulose via a two-step process, in which the cellulosic substrates were first hydrolyzed by an isolated cellulolytic bacterium Clostridium strain TCW1, and the resulting hydrolysates were then used as substrate for fermentative H{sub 2} production. The TCW1 strain was able to hydrolyze all the cellulosic materials examined to produce reducing sugars (RS), attaining the best reducing sugar production yield of 0.65 g reducing sugar/g substrate from hydrolysis of {alpha}-cellulose. The hydrolysates of those cellulosic materials were successfully converted to H{sub 2} via dark fermentation using seven H{sub 2}-producing bacterial isolates. The bioH{sub 2} production performance was highly dependent on the type of cellulosic feedstock used, the initial reducing sugar concentration (C{sub RS,o}) (ranging from 0.7 to 4.5 mg/l), as well as the composition of sugar and soluble metabolites present in the cellulosic hydrolysates. It was found that Clostridium butyricum CGS5 displayed the highest H{sub 2}-producing efficiency with a cumulative H{sub 2} production of 270 ml/l from {alpha}-cellulose hydrolysate (C{sub RS,o} = 4.52 mg/l) and a H{sub 2} yield of 7.40 mmol/g RS (or 6.66 mmol/g substrate) from napier grass hydrolysate (C{sub RS,o} = 1.22 g/l). (author)

  17. Intraspecific variability of Bipolaris sorokiniana isolates determined by random-amplified polymorphic DNA (RAPD).

    Science.gov (United States)

    de Oliveira, Andréia M R; Matsumura, Aida T S; Prestes, Ariano M; Van Der Sand, Sueli T

    2002-01-01

    Isolates of Bipolaris sorokiniana were analyzed by random-amplified polymorphic DNA (RAPD) techniques to determine the amount of intraspecific genetic variability and to study host-pathogen interactions. Ten isolates originated from different regions of Brazil were examined. Plants of the wheat cultivars BR8, BH1146 (original host) and IAC-5 Maringá, classified as resistant, moderately resistant or susceptible to B. sorokiniana, respectively, were inoculated with these 10 isolates. Twenty-seven isolates were recovered from these cultivars and were analyzed by RAPD assay and compared to the RAPD of the original 10 isolates. According to the RAPD profiles there was a high level of genetic variability among the isolates. We detected 69 polymorphic fragments, ranging from 1.6 to 0.54 kb, in the original 10 isolates; 57 fragments with sizes between 1.98 and 0.38 kb from the isolates recovered from BH1146; 47 polymorphic bands, ranging from 1.96-0.54 kb, were detected in the isolates from BR8 and 32 fragments between 1.98 and 0.42 kb in isolates were recovered from IAC-5 Maringá. The number of polymorphic fragments varied, even for the same isolate, when the isolates were recovered from different cultivar hosts.

  18. The crystal structure of Neisseria gonorrhoeae PriB reveals mechanistic differences among bacterial DNA replication restart pathways

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jinlan; George, Nicholas P.; Duckett, Katrina L.; DeBeer, Madeleine A.P.; Lopper, Matthew E. (UDRI); (UW-MED)

    2010-05-25

    Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 {angstrom} resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeae and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.

  19. A hybrid DNA extraction method for the qualitative and quantitative assessment of bacterial communities from poultry production samples.

    Science.gov (United States)

    Rothrock, Michael J; Hiett, Kelli L; Gamble, John; Caudill, Andrew C; Cicconi-Hogan, Kellie M; Caporaso, J Gregory

    2014-01-01

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the "gold standard" enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples. PMID:25548939

  20. Bacterial diversity associated with wild caught Anopheles mosquitoes from Dak Nong Province, Vietnam using culture and DNA fingerprint.

    Directory of Open Access Journals (Sweden)

    Chung Thuy Ngo

    Full Text Available Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study.The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR - TTGE method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota.The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes.Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes.

  1. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    Science.gov (United States)

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  2. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates.

    Science.gov (United States)

    Buthelezi, Simphiwe P; Olaniran, Ademola O; Pillay, Balakrishna

    2012-11-30

    Bioflocculant-producing bacteria were isolated from activated sludge of a wastewater treatment plant located in Durban, South Africa, and identified using standard biochemical tests as well as the analysis of their 16S rRNA gene sequences. The bioflocculants produced by these organisms were ethanol precipitated, purified using 2% (w/v) cetylpyridinium chloride solution and evaluated for removal of wastewater dyes under different pH, temperature and nutritional conditions. Bioflocculants from these indigenous bacteria were very effective for decolourizing the different dyes tested in this study, with a removal rate of up to 97.04%. The decolourization efficiency was largely influenced by the type of dye, pH, temperature, and flocculant concentration. A pH of 7 was found to be optimum for the removal of both whale and mediblue dyes, while the optimum pH for fawn and mixed dye removal was found to be between 9 and 10. Optimum temperature for whale and mediblue dye removal was 35 °C, and that for fawn and mixed dye varied between 40–45 °C and 35–40 °C, respectively. These bacterial bioflocculants may provide an economical and cleaner alternative to replace or supplement present treatment processes for the removal of dyes from wastewater effluents, since they are biodegradable and easily sustainable.

  3. Textile Dye Removal from Wastewater Effluents Using Bioflocculants Produced by Indigenous Bacterial Isolates

    Directory of Open Access Journals (Sweden)

    Balakrishna Pillay

    2012-11-01

    Full Text Available Bioflocculant-producing bacteria were isolated from activated sludge of a wastewater treatment plant located in Durban, South Africa, and identified using standard biochemical tests as well as the analysis of their 16S rRNA gene sequences. The bioflocculants produced by these organisms were ethanol precipitated, purified using 2% (w/v cetylpyridinium chloride solution and evaluated for removal of wastewater dyes under different pH, temperature and nutritional conditions. Bioflocculants from these indigenous bacteria were very effective for decolourizing the different dyes tested in this study, with a removal rate of up to 97.04%. The decolourization efficiency was largely influenced by the type of dye, pH, temperature, and flocculant concentration. A pH of 7 was found to be optimum for the removal of both whale and mediblue dyes, while the optimum pH for fawn and mixed dye removal was found to be between 9 and 10. Optimum temperature for whale and mediblue dye removal was 35 °C, and that for fawn and mixed dye varied between 40–45 °C and 35–40 °C, respectively. These bacterial bioflocculants may provide an economical and cleaner alternative to replace or supplement present treatment processes for the removal of dyes from wastewater effluents, since they are biodegradable and easily sustainable.

  4. Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens

    Science.gov (United States)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram; Manikandan, Nachiappan

    2011-12-01

    The silver nanoparticles were synthesized by chemical reduction method and the nanoparticles were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy and X-ray diffraction (XRD) studies. The synthesized silver nanoparticles were investigated to evaluate the antibacterial activity against urinary tract infectious (UTIs) bacterial pathogens. Thirty-two bacteria were isolated from mid urine samples of 25 male and 25 female patients from Thondi, Ramanathapuram District, Tamil Nadu, India and identified by conventional methods. Escherichia coli was predominant (47%) followed by Pseudomonas aeruginosa (22%), Klebsiella pneumoniae (19%), Enterobacter sp. (6%), Proteus morganii (3%) and Staphylococcus aureus (3%). The antibacterial activity of silver nanoparticles was evaluated by disc diffusion assay. P. aeruginosa showed maximum sensitivity (11 ± 0.58 mm) followed by Enterobacter sp. (8 ± 0.49 mm) at a concentration of 20 μg disc-1 and the sensitivity was highly comparable with the positive control kanamycin and tetracycline. K. pneumoniae, E. coli, P. morganii and S. aureus showed no sensitivity against all the tested concentrations of silver nanoparticles. The results provided evidence that, the silver nanoparticles might indeed be the potential sources to treat urinary tract infections caused by P. aeruginosa and Enterobacter sp.

  5. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium

    Science.gov (United States)

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-12-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.

  6. Bacterial Contamination and Antibiotic Resistance of Staphylococcus Aureus Isolated from Automated Teller Machine

    Directory of Open Access Journals (Sweden)

    Moshtaghi, H. (PhD

    2015-05-01

    Full Text Available Background and Objective: Automated Teller Machine (ATMs is likely to be contaminated with various microorganisms specially pathogen germs. This may be due to their exposure to dust and their vast dermal contact with multiple users. This study investigated the bacterial contamination on the keyboard of ATMs and drug resistance of the bacteria isolated from them. Material and Methods: the keyboards of 50 ATMs in Shahrekord city, Iran, were examined from October 2012 to February 2013. The sterile swab sticks moistened with Triptose soy broth were used for sampling. The bacteriological tests used were culture, biochemical test and agar disk diffusion method for antibiogram. Results: All the samples were found to be contaminated with Coagulase negative staphylococci (57.54%, Bacillus species (21.92%, Staphylococcus aureus (19.18% and coliform bacteria (1.36%. The resistance of Staphylococcus aureus was 92.8% to penicillin, 85.7% to amoxicilin، 71.4% to ampicillin, 57.1% to nytrofuran, 50% to tetracycline, 42.8% to erythromycin, 42.8% to gentamycin, 14.2 % to ciprofloxacin, 7.1% to trimethoprim and sulfamtuksazul. All species were susceptible to, ofloxacine, chloramphenicol, clindamycin, tobramycin, vancomycin and cefotaxime. Conclusion: given the presence of pathogens on ATMs and their role in transferring the contamination, we recommend considering personal hygiene and periodically disinfecting the keyboards to reduce contamination

  7. Cloning of Thermostable DNA Polymerase Gene from a Thermophilic Brevibacillus sp. Isolated from Sikidang Crater, Dieng Plateu, Central Java

    Directory of Open Access Journals (Sweden)

    Lucia Dhiantika Witasari

    2015-11-01

    Full Text Available Thermostable DNA polymerase has an important role for amplifying small amount of DNA through polymerase chain reaction (PCR. Thermophillic bacteria Brevibacillus sp. was isolated from Sikidang Crater, Dieng Plateu, Central Java. Previous study showed that crude protein of the isolate could be used in PCR. Unfortunately, like most native thermostable enzymes, the thermostable DNA polymerase of the isolate is synthesized in a very low level and therefore is cumbersome to purify. The purpose of this research is to clone thermostable DNA polymerase gene of the isolate. The DNA polymerase gene was amplified by means of PCR using spesific primers. The amplified fragment was then isolated, purified, and ligated into the pGEM-T cloning vector. The recombinant plasmid was then transformed to competent E. coli JM109 cells using heat shock method. The cloned thermostable DNA polymerase gene from the thermophilic isolate was then characterized for its nucleotide base sequence. The result showed that the DNA Pol I gene was successfully be amplified from the isolate DNA genom, resulting in ± 2,7 kb DNA fragment in length. Sequence analysis of segment of targeted gene showed high similarity to that of thermostable DNA polymerase genes from other Bacillus.Key words : Thermostable DNA Pol I, Brevibacillus sp., PCR, cloning

  8. Quantitative field testing Heterodera glycines from metagenomic DNA samples isolated directly from soil under agronomic production.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available A quantitative PCR procedure targeting the Heterodera glycines ortholog of the Caenorhabditis elegans uncoordinated-78 gene was developed. The procedure estimated the quantity of H. glycines from metagenomic DNA samples isolated directly from field soil under agronomic production. The estimation of H. glycines quantity was determined in soil samples having other soil dwelling plant parasitic nematodes including Hoplolaimus, predatory nematodes including Mononchus, free-living nematodes and biomass. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from field soil.

  9. Single-stranded DNA bound to bacterial cold-shock proteins: preliminary crystallographic and Raman analysis.

    Science.gov (United States)

    Bienert, Ralf; Zeeb, Markus; Dostál, Lubomir; Feske, Anette; Magg, Christine; Max, Klaas; Welfle, Heinz; Balbach, Jochen; Heinemann, Udo

    2004-04-01

    The cold-shock response has been described for several bacterial species. It is characterized by distinct changes in intracellular protein patterns whereby a set of cold-shock-inducible proteins become abundant. The major cold-shock proteins of Bacillus subtilis (Bs-CspB) and Bacillus caldolyticus (Bc-Csp) are small oligonucleotide/oligosaccharide-binding (OB) fold proteins that have been described as binding single-stranded nucleic acids. Bs-CspB (Mr = 7365) and Bc-Csp (Mr = 7333) were crystallized in the presence of the deoxyhexanucleotide (dT)6. Crystals of (dT)6 with Bs-CspB grew in the orthorhombic space group C222(1), with unit-cell parameters a = 49.0, b = 53.2, c = 77.0 A. Crystals with Bc-Csp grew in the primitive orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 74.3, b = 64.9, c = 31.2 A. These crystals diffract to maximal resolutions of 1.78 and 1.29 A, respectively. The presence of protein and DNA in the crystals was demonstrated by Raman spectroscopy.

  10. DNA fingerprinting of Mycobacterium Tuberculosis isolates from Agra region by is 6110 probe

    Directory of Open Access Journals (Sweden)

    Chauhan A

    2004-01-01

    Full Text Available DNA fingerprinting using IS 6110 probe has been used all over the world quite successfully to characterize M. tuberculosis strains. The present study has been carried out to study the polymorphism among isolates of M.tuberculosis from Agra region from patients attending the clinics at SN Medical College and TBDTC, Agra. Sputa were collected in sterilized containers and brought to CJIL, Agra. Samples were processed and cultured on Lowenstein Jensen (LJ slants. M. tuberculosis isolates were identified by standard biochemical tests. DNA from these isolates were purified by a physicochemical procedure, restricted with Pvu II enzyme and hybridized with PCR amplified and DIG labeled 245 bp IS 6110 probe. With a view to study IS 6110 polymorphism, M. tuberculosis isolates obtained from different geographical areas of Agra region were analyzed. Among the 60 isolates taken in study, 5 had no copy of IS 6110, 8 had 1-4 copies and 47 had multiple copies of IS 6110. DNA fingerprinting using this probe was found to be quite discriminating for typing of most of the strains (80% which had multiple copies. RFLP profiles did not correlate with geographical areas, contacts or the resistance pattern of the strains. While this data shows the potential of IS 6110 based RFLP for strain characterization of M.tuberculosis in Agra, to understand the molecular epidemiology of tuberculosis in this region, a larger number of isolates from defined geographical areas need to be studied.

  11. Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae.

    LENUS (Irish Health Repository)

    Walsh, Fiona

    2010-06-01

    A DNA microarray was developed to detect plasmid-mediated antimicrobial resistance (AR) and virulence factor (VF) genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. The array was validated with the following bacterial species: Escherichiacoli (n=17); Klebsiellapneumoniae (n=3); Enterobacter spp. (n=6); Acinetobacter genospecies 3 (n=1); Acinetobacterbaumannii (n=1); Pseudomonasaeruginosa (n=2); and Stenotrophomonasmaltophilia (n=2). The AR gene profiles of these isolates were identified by polymerase chain reaction (PCR). The DNA microarray consisted of 155 and 133 AR and VF gene probes, respectively. Results were compared with the commercially available Identibac AMR-ve Array Tube. Hybridisation results indicated that there was excellent correlation between PCR and array results for AR and VF genes. Genes conferring resistance to each antibiotic class were identified by the DNA array. Unusual resistance genes were also identified, such as bla(SHV-5) in a bla(OXA-23)-positive carbapenem-resistant A. baumannii. The phylogenetic group of each E. coli isolate was verified by the array. These data demonstrate that it is possible to screen simultaneously for all important classes of mobile AR and VF genes in Enterobacteriaceae and non-Enterobacteriaceae whilst also assigning a correct phylogenetic group to E. coli isolates. Therefore, it is feasible to test clinical Gram-negative bacteria for all known AR genes and to provide important information regarding pathogenicity simultaneously.

  12. Application of isolated bacterial consortium in UMBR for detoxification of textile effluent: comparative analysis of resultant oxidative stress and genotoxicity in catfish (Heteropneustes fossilis) exposed to raw and treated effluents.

    Science.gov (United States)

    Banerjee, Priya; Sarkar, Sandeep; Dey, Tanmoy Kumar; Bakshi, Madhurima; Swarnakar, Snehasikta; Mukhopadhayay, Aniruddha; Ghosh, Sourja

    2014-08-01

    A bacterial consortium isolated from activated sludge was identified to be Bacillus sp., Pseudomonas sp., Shigella sp. and E. coli. and was found capable of 98.62 % decolourization of highly toxic textile effluent, when applied in an ultrafiltration (UF) membrane bioreactor (UMBR). Ceramic capillary UF membranes prepared over low cost support proved to be highly efficient in adverse experimental conditions. The UMBR permeate and untreated textile effluent (40 % (v/v)) was then used to treat Heteropneustes fossilis for a comparative assessment of their toxicity. Micronucleus count in peripheral blood erythrocytes and comet assay carried out in liver and gill cells showed significantly lower nuclear and tissue specific DNA damage respectively in organisms exposed to membrane permeate and was further supported by considerably lower oxidative stress response enzyme activities in comparison to raw effluent treated individuals. The results indicate efficient detoxification of textile effluent by the UMBR treatment using the isolated bacterial consortium. PMID:24804625

  13. Molecular mechanism of immune cells activated by bacterial DNA%细菌DNA激活免疫细胞的分子机制

    Institute of Scientific and Technical Information of China (English)

    王良喜; 周红

    2003-01-01

    Bacterial DNA taken up by immune cells in a CpG motif- independent manner is translo-cated into endosome. Endosomal maturation is essential for subsequent bacterial DNA - mediated signal trans-duction. TLR9 is recruited into endosome to recognize bacterial DNA and initiate the TLB/IL- 1R signal transduction pathway. As a result , transcription factors NF - κB and AP- 1 are activated, which, in tum,leads to proinflammatory cytokine expression and induces a strong acute Th1 - like inflammatory response.

  14. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    Science.gov (United States)

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number. PMID:27451195

  15. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    Science.gov (United States)

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number.

  16. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    Science.gov (United States)

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection. PMID:24983508

  17. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC)

    OpenAIRE

    Roth Swaantje J; Höper Dirk; Beer Martin; Feineis Silke; Tischer B Karsten; Osterrieder Nikolaus

    2011-01-01

    Abstract Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV). We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR) as a bacterial artificial chromosome (BAC) in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows mainte...

  18. Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean

    Directory of Open Access Journals (Sweden)

    Rachana Fulzele

    2011-12-01

    Full Text Available Out of the vast pool of enzymes, proteolytic enzymes from microorganisms are the most widely used in different industries such as detergent, food, peptide production etc. Several marine microorganisms are known to produce proteases with commercially desirable characteristics. We have isolated nine different cultures from marine samples of the Indian Ocean. All of them were i motile ii rod shaped iii non spore forming iv catalase and amylase positive v able to grow in presence of 10 % NaCl. They produced acid from glucose, fructose and maltose and grew optimally at 30 0C temperature and pH 7.0-8.0. None of them could grow above 45 0C and below 15 0C. Only one of them (MBRI 7 exhibited extracellular protease activity on skim milk agar plates. Based on 16S rDNA sequencing, it belonged to the genus Marinobacter (98% sequence similarity, 1201 bp. The cell free extract was used to study effects of temperature and pH on protease activity. The optimum temperature and pH for activity were found to be 40 0C and 7.0 respectively. The crude enzyme was stable at temperature range of 30-80 0C and pH 5.0-9.0. It retained 60 % activity at 80 0C after 4 h and more than 70 % activity at 70 0C after 1 h. D value was found to be 342 minutes and 78 minutes for 40 0C and 80 0C respectively. Interestingly the enzyme remained 50 % active at pH 9.0 after 1 h. Comparison with other proteases from different microbial sources indicated that the neutral protease from the halotolerant marine isolate MBRI 7 is a novel enzyme with high thermostability.

  19. Monoclonal antibodies against DNA-binding tips of DNABII proteins disrupt biofilms in vitro and induce bacterial clearance in vivo

    Directory of Open Access Journals (Sweden)

    Laura A. Novotny

    2016-08-01

    Full Text Available The vast majority of chronic and recurrent bacterial diseases are attributed to the presence of a recalcitrant biofilm that contributes significantly to pathogenesis. As such, these diseases will require an innovative therapeutic approach. We targeted DNABII proteins, an integral component of extracellular DNA (eDNA which is universally found as part of the pathogenic biofilm matrix to develop a biofilm disrupting therapeutic. We show that a cocktail of monoclonal antibodies directed against specific epitopes of a DNABII protein is highly effective to disrupt diverse biofilms in vitro as well as resolve experimental infection in vivo, in both a chinchilla and murine model. Combining this monoclonal antibody cocktail with a traditional antibiotic to kill bacteria newly released from the biofilm due to the action of the antibody cocktail was highly effective. Our results strongly support these monoclonal antibodies as attractive candidates for lead optimization as a therapeutic for resolution of bacterial biofilm diseases.

  20. Reliable genotyping of the koala (Phascolarctos cinereus) using DNA isolated from a single faecal pellet.

    Science.gov (United States)

    Wedrowicz, Faye; Karsa, Mawar; Mosse, Jennifer; Hogan, Fiona E

    2013-07-01

    The koala, an Australian icon, has been added to the threatened species list. Rationale for the listing includes proposed declines in population size, threats to populations (e.g. disease) and loss and fragmentation of habitat. There is now an urgent need to obtain accurate data to assess the status of koala populations in Australia, to ensure the long-term viability of this species. Advances in genetic techniques have enabled DNA analysis to study and inform the management of wild populations; however, sampling of individual koalas is difficult in tall, often remote, eucalypt forest. The collection of faecal pellets (scats) from the forest floor presents an opportunistic sampling strategy, where DNA can be collected without capturing or even sighting an individual. Obtaining DNA via noninvasive sampling can be used to rapidly sample a large proportion of a population; however, DNA from noninvasively collected samples is often degraded. Factors influencing DNA quality and quantity include environmental exposure, diet and methods of sample collection, storage and DNA isolation. Reduced DNA quality and quantity can introduce genotyping errors and provide inaccurate DNA profiles, reducing confidence in the ability of such data to inform management/conservation strategies. Here, we present a protocol that produces a reliable individual koala genotype from a single faecal pellet and highlight the importance of optimizing DNA isolation and analysis for the species of interest. This method could readily be adapted for genetic studies of mammals other than koalas, particularly those whose diet contains high proportions of volatile materials that are likely to induce DNA damage.

  1. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  2. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    International Nuclear Information System (INIS)

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  3. Bacterial Plasmids in Antarctic Natural Microbial Assemblages

    OpenAIRE

    Kobori, Hiromi; Sullivan, Cornelius W.; Shizuya, Hiroaki

    1984-01-01

    Samples of psychrophilic and psychrotrophic bacteria were collected from sea ice, seawater, sediments, and benthic or ice-associated animals in McMurdo Sound, Antarctica. A total of 155 strains were isolated and tested for the presence of plasmids by DNA agarose gel electrophoresis. Thirty-one percent of the isolates carried at least one kind of plasmid. Bacterial isolates taken from sediments showed the highest plasmid incidence (42%), and isolates from seawater showed the lowest plasmid inc...

  4. Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus.

    Directory of Open Access Journals (Sweden)

    Sandra V Flechas

    Full Text Available In the Neotropics, almost every species of the stream-dwelling harlequin toads (genus Atelopus have experienced catastrophic declines. The persistence of lowland species of Atelopus could be explained by the lower growth rate of Batrachochytrium dendrobatidis (Bd at temperatures above 25 °C. We tested the complementary hypothesis that the toads' skin bacterial microbiota acts as a protective barrier against the pathogen, perhaps delaying or impeding the symptomatic phase of chytridiomycosis. We isolated 148 cultivable bacterial strains from three lowland Atelopus species and quantified the anti-Bd activity through antagonism assays. Twenty-six percent (38 strains representing 12 species of the bacteria inhibited Bd growth and just two of them were shared among the toad species sampled in different localities. Interestingly, the strongest anti-Bd activity was measured in bacteria isolated from A. elegans, the only species that tested positive for the pathogen. The cutaneous bacterial microbiota is thus likely a fitness-enhancing trait that may (adaptation or not (exaptation have appeared because of natural selection mediated by chytridiomycosis. Our findings reveal bacterial strains for development of local probiotic treatments against chytridiomycosis and also shed light on the mechanisms behind the frog-bacteria-pathogen interaction.

  5. Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus.

    Science.gov (United States)

    Flechas, Sandra V; Sarmiento, Carolina; Cárdenas, Martha E; Medina, Edgar M; Restrepo, Silvia; Amézquita, Adolfo

    2012-01-01

    In the Neotropics, almost every species of the stream-dwelling harlequin toads (genus Atelopus) have experienced catastrophic declines. The persistence of lowland species of Atelopus could be explained by the lower growth rate of Batrachochytrium dendrobatidis (Bd) at temperatures above 25 °C. We tested the complementary hypothesis that the toads' skin bacterial microbiota acts as a protective barrier against the pathogen, perhaps delaying or impeding the symptomatic phase of chytridiomycosis. We isolated 148 cultivable bacterial strains from three lowland Atelopus species and quantified the anti-Bd activity through antagonism assays. Twenty-six percent (38 strains representing 12 species) of the bacteria inhibited Bd growth and just two of them were shared among the toad species sampled in different localities. Interestingly, the strongest anti-Bd activity was measured in bacteria isolated from A. elegans, the only species that tested positive for the pathogen. The cutaneous bacterial microbiota is thus likely a fitness-enhancing trait that may (adaptation) or not (exaptation) have appeared because of natural selection mediated by chytridiomycosis. Our findings reveal bacterial strains for development of local probiotic treatments against chytridiomycosis and also shed light on the mechanisms behind the frog-bacteria-pathogen interaction. PMID:22970314

  6. Pattern of Bacterial Pathogens and Their Susceptibility Isolated from Surgical Site Infections at Selected Referral Hospitals, Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    Walelign Dessie

    2016-01-01

    Full Text Available Background. The emergence of multidrug resistant bacterial pathogens in hospitals is becoming a challenge for surgeons to treat hospital acquired infections. Objective. To determine bacterial pathogens and drug susceptibility isolated from surgical site infections at St. Paul Specialized Hospital Millennium Medical College and Yekatit 12 Referral Hospital Medical College, Addis Ababa, Ethiopia. Methods. A cross-sectional study was conducted between October 2013 and March 2014 on 107 surgical site infected patients. Wound specimens were collected using sterile cotton swab and processed as per standard operative procedures in appropriate culture media; and susceptibility testing was done using Kirby-Bauer disc diffusion technique. The data were analyzed by using SPSS version 20. Result. From a total of 107 swabs collected, 90 (84.1% were culture positive and 104 organisms were isolated. E. coli (24 (23.1% was the most common organism isolated followed by multidrug resistant Acinetobacter species (23 (22.1%. More than 58 (75% of the Gram negative isolates showed multiple antibiotic resistance (resistance ≥ 5 drugs. Pan-antibiotic resistance was noted among 8 (34.8% Acinetobacter species and 3 (12.5% E. coli. This calls for abstinence from antibiotic abuse. Conclusion. Gram negative bacteria were the most important isolates accounting for 76 (73.1%. Ampicillin, amoxicillin, penicillin, cephazoline, and tetracycline showed resistance while gentamicin and ciprofloxacin were relatively effective antimicrobials.

  7. Discrimination of Arcobacter butzleri isolates by polymerase chain reaction-mediated DNA fingerprinting

    DEFF Research Database (Denmark)

    Atabay, H. I.; Bang, Dang Duong; Aydin, F.;

    2002-01-01

    Aims: The objective of this study was to subtype Arcobacter butzleri isolates using RAPD-PCR. Methods and Results: Thirty-five A. butzleri isolates obtained from chicken carcasses were examined. PCR-mediated DNA fingerprinting technique with primers of the variable sequence motifs was used...... found to be contaminated with several different strains of A. butzleri . RAPD-PCR technique was found to be a useful technique for distinguishing A. butzleri isolates. Significance and Impact of the Study: The presence of several different A. butzleri strains on chicken carcasses may indicate multiple...

  8. Influence of the Diversity of Bacterial Isolates from Drinking Water on Resistance of Biofilms to Disinfection ▿

    OpenAIRE

    Simões, Lúcia C; Simões, M; Vieira, M. J.

    2010-01-01

    Single- and multispecies biofilms formed by six drinking water-isolated bacterial species were used to assess their susceptibilities to sodium hypochlorite (SHC). In general, multispecies biofilms were more resistant to inactivation and removal than single biofilms. Total biofilm inactivation was achieved only for Acinetobacter calcoaceticus single-species biofilms and for those multispecies biofilms without A. calcoaceticus. Biofilms with all bacteria had the highest resistance t...

  9. Bacterial microflora isolated from the bark surface of poplars growing in areas where air pollution is very high

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2015-05-01

    Full Text Available In the autumn of 1976 bacteria of the genera Bacillus, Pseudomonas, Flavobacterium, Erwinia and Cellulomonas were isolated from the bark surface of poplars growing in protective belts around several industrial plants. It was found that the qualitative and quantitative composition of the surface bacterial microflora changes in dependence on the degree of resistance of the poplars to the action of the dust emitted by the industrial establishment and containing high amounts of heavy metals.

  10. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies.

    Science.gov (United States)

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  11. Comparison of field-collected ascovirus isolates by DNA hybridization, host range, and histopathology.

    Science.gov (United States)

    Hamm, J J; Styer, E L; Federici, B A

    1998-09-01

    Six field-collected ascovirus isolates obtained from five noctuid species in the continental United States were compared with respect to the general relatedness of their DNA, host range, and histopathology. Two isolates were from Spodoptera frugiperda, and the other four were from Autographa precationis, Heliothis virescens, Helicoverpa zea, and Trichoplusia ni. DNA-DNA hybridization studies showed that the six isolates belonged to three distinct viral species, with the isolates from S. frugiperda composing one species, those from A. precationis and H. virescens a second species, and those from H. zea and T. ni a third species. The host range and histopathology of each isolate was studied in eight noctuid species, S. frugiperda, Spodoptera ornithogalli, Spodoptera exigua, Spodoptera eridania, H. virescens, H. zea, A. precationis, and Feltia subterranea. Though some variation existed between the different isolates of each viral species, distinct patterns were apparent for each. The viral species from S. frugiperda had a host range that was limited primarily to Spodoptera species and both isolates of this virus only replicated and caused significant pathology in the fat body, whereas the viral species from A. precationis and H. virescens had a much broader host range that included most of the species tested, but also had a tissue tropism primarily restricted to the fat body. The viral species from T. ni and H. zea readily infected all the hosts tested, where the principal site of replication and significant pathology was the epidermis. In many test hosts, however, this viral species also replicated and caused significant pathology in the tracheal epithelium and to a lesser extent in the fat body. Aside from contributing to knowledge of ascovirus biology, these studies indicate that DNA hybridization profiles combined with studies of host range and tissue tropism can be used as characters for defining ascovirus species. PMID:9709014

  12. Photodynamic effect of proflavine on 0X174 bacteriophage, its DNA replicative form and its isolated single-stranded DNA

    International Nuclear Information System (INIS)

    In contrast to that what is observed with most inactivating agents, proflavine-mediated photoinactivation is about 10 times more efficient on double-stranded 0X174 replicative form DNA (RFI) than on isolated single-stranded 0X174 DNA. Both 0XRFI DNA and encapsidated DNA have similar sensitivities to proflavine and light treatment. With the three substrates studied, reactivation can occur through high multiplicity of infection and depends upon the cellular rec A gene product. No effect of the pol A, uvr A or lex A gene mutations has been found on either phage of DNA inactivation rates. The photodynamically induced lesions can be repaired, at least in part, by the SOS repair system induced in the host-cells by a 100 J x m-2 UV irradiation. SOS repair does not occur with bacteria (or spheroplasts) irradiated in the presence of chloramphenicol. Reversion frequency of the 0X174 amber mutations indicates that 1) photodynamically induced lesions are mutagenic whether the rec A gene product is present or not in the indicator bacteria; 2) induction of the SOS repair system is accompanied by a mutagenic process which results in a almost twofold increase of the reversion frequency; and 3) multiplicity reactivation occurs through a re ombinational process and is not mutagenic per se. (orig./AJ)

  13. A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination

    OpenAIRE

    Holmberg, Mats A.; Gowda, Naveen Kumar Chandappa; Andréasson, Claes

    2014-01-01

    Production of recombinant proteins is the starting point for biochemical and biophysical analyses and requires methodology to efficiently proceed from gene sequence to purified protein. While optimized strategies for the efficient cloning of single-gene fragments for bacterial expression is available, efficient multiple DNA fragment cloning still presents a challenge. To facilitate this step, we have developed an efficient cloning strategy based on yeast homologous recombination cloning (YHRC...

  14. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis

    Directory of Open Access Journals (Sweden)

    Zahra Armingohar

    2014-05-01

    Full Text Available Background: Several studies have reported an association between chronic periodontitis (CP and cardiovascular diseases. Detection of periodontopathogens, including red complex bacteria (RCB, in vascular lesions has suggested these bacteria to be involved in the pathogenesis of atherosclerosis and abdominal aortic aneurysms. Objective: In this study, we investigate bacteria and their DNA in vascular biopsies from patients with vascular diseases (VD; i.e. abdominal aortic aneurysms, atherosclerotic carotid, and common femoral arteries, with and without CP. Methods: DNA was extracted from vascular biopsies selected from 40 VD patients: 30 with CP and 10 without CP. The V3-V5 region of the 16S rDNA (V3-V5 was polymerase chain reaction (PCR-amplified, and the amplicons were cloned into Escherichia coli, sequenced, and classified (GenBank and the Human Oral Microbiome database. Species-specific primers were used for the detection of Porphyromonas gingivalis. In addition, 10 randomly selected vascular biopsies from the CP group were subjected to scanning electron microscopy (SEM for visualization of bacteria. Checkerboard DNA–DNA hybridization was performed to assess the presence of RCB in 10 randomly selected subgingival plaque samples from CP patients. Results: A higher load and mean diversity of bacteria were detected in vascular biopsies from VD patients with CP compared to those without CP. Enterobacteriaceae were frequently detected in vascular biopsies together with cultivable, commensal oral, and not-yet-cultured bacterial species. While 70% of the subgingival plaque samples from CP patients showed presence of RCB, only P. gingivalis was detected in one vascular biopsy. Bacterial cells were seen in all 10 vascular biopsies examined by SEM. Conclusions: A higher bacterial load and more diverse colonization were detected in VD lesions of CP patients as compared to patients without CP. This indicated that a multitude of bacterial species both

  15. In vitro anti-proliferative, anti-bacterial potential and induction of DNA strand break of partially purified Cuscuta reflexa Roxb.

    Directory of Open Access Journals (Sweden)

    Madhulika Bhagat

    2011-01-01

    Full Text Available Cuscuta reflexa is an important medicinal plant, mentioned in Ayurveda, an ancient Indian system of medicine. The plant is selected to evaluate the possibility for novel pharmaceuticals for anticancer and antibiotics drugs. Since most of these drugs had developed resisitance against currently used chemotherapeutics. This study describes the in vitro anti-proliferative, anti-bacterial and single stand DNA break of the holoprasitic plant Cuscuta reflexa. Bioassay-guided fractionation and partial purification of the plant were done and evaluated for antiproliferative activity against human cancer cell lines by SRB assay and single strand DNA break by comet assay. Further antibacterial activity was also performed by agar well diffusion assay. The alcoholic extract, chloroform fraction and partially purified ethylacetate-methanol (1:1 sub-fraction of C. reflexa showed anti-proliferative potential against IMR-32 and 502713 human cancer cell lines. Alcoholic extract exhibited anti-proliferative activity of 74% and 72%, chloroform fraction demonstrated 91% and 95% against neuroblastoma (IMR-32 and colon (502713 cancer cell lines at 100 μg/ml. Single strand DNA break of the chloroform fraction was also demonstrated using comet assay, indicating that possible mode of cell death may be apoptosis. Anti-microbial properties were evaluated against eight species of pathogenic and non-pathogenic microorganisms and maximum zone of inhibition for anti-bacterial activity was found against Staphylococcus aureus (22 mm by alcoholic extract, 21 mm by chloroform fraction and 12 mm by ethylacetate-methanol (1:1 sub-fraction. Minimum inhibitory concentration (MIC of the chloroform fraction was 1500 μg/ml for S. aureus. The plant was found to be equally effective against gram-positive and negative bacteria. Studies are well underway to isolate and identify active compounds from chloroform fraction and ethyl acetate:methanol (1:1 sub-fraction, which can be used as

  16. Efficiency of silver nanoparticles against bacterial contaminants isolated from surface and ground water in Egypt

    Directory of Open Access Journals (Sweden)

    Reem Dosoky

    2015-06-01

    Full Text Available The bactericidal efficiency of silver nanoparticles (AgNP was evaluated against bacteria isolated from surface and ground water samples in Egypt. The AgNP were synthesized by typical one-step synthesis protocol, and were characterized using transmission electron microscopy and atomic absorption spectrophotometer. The bactericidal efficiency of AgNP was evaluated by its application in three concentrations i.e., 0.1, 0.05 and 0.01 ppm to water sample, and allowed to interact with bacteria for different duration e.g., 5 min 15 min, 30 min, 1 h and 2 h. Then, the bactericidal efficiency of AgNPs was determined by comparing the counted bacteria before and after the treatments. Higher mean values of total bacterial count (TBC, total coliform count (TCC, and total streptococcal count (TFS were detected in surface water than in ground water. Also, the results showed that TBC, TCC and TFS exceeded permissible limits. Application of AgNP at different concentration, the number of bacteria in TBC was significantly reduced in all AgNP-exposed samples as compared to the control group (p<0.05. The highest concentration of AgNP exhibited highest bactericidal efficiency in TBC, where, after two hours, 0.1, 0.05 and 0.01 mg/L AgNP was found to be sufficient to inhibit 91.85, 89.14 and 74.92%, and 92.33, 85.23 and 53.17% in TBC of surface and ground water, respectively. Moreover, the inhibition efficiency of the highest concentration (0.1 ppm against TCC reached to 98.10 and 99.88% in surface water and 95.54 and 99.20% in ground water after 1 h and 2 h, respectively. Similar results were found against TFS count. The AgNPs were found to be effective against bacteria of water origin.

  17. Metabolomic characterization of halophilic bacterial isolates reveals strains synthesizing rare diaminoacids under salt stress.

    Science.gov (United States)

    Joghee, Nidhya Nadarajan; Jayaraman, Gurunathan

    2014-07-01

    Metabolomics-based approaches to study stress responses in bacteria have received much attention in recent years. In the present study, a metabolomic analysis of the representative halophilic bacterial isolates (Halomonas hydrothermalis VITP9, Bacillus aquimaris VITP4, Planococcus maritimus VITP21 and Virgibacillus dokdonensis VITP14) from a saltern region in India was performed using nuclear magnetic resonance spectroscopy. Chemometric analysis of (1)H NMR spectra revealed salt-dependent increase in the levels of metabolites, mainly from the aspartate and glutamate family, that are directed from the glycolytic pathway, pentose phosphate pathway and citric acid cycle. The composition of the metabolites was found to be different with respect to the species and the type of growth medium. Analysis of the two dimensional NMR data revealed accumulation of two rare diaminoacids, Nε-acetyl-α-lysine and Nδ-acetylornithine (by VITP21 and VITP4 strains respectively) apart from other well known solutes such as ectoine, proline, glutamate and glycine betaine. Metabolite profiles of strains capable of synthesizing Nε-acetyl-α-lysine and Nδ-acetylornithine suggested their biosynthesis from lysine and ornithine using aspartate and glutamate as their precursors, respectively. Further, the cells in moderate salinity (5% w/v NaCl) showed an increase in growth rate along with increase in the levels of nucleotides, whereas at higher salinity (10% w/v NaCl), the levels of aromatic and hydrophobic metabolites dropped, accompanied with a decrease in growth rate, rightly suggesting that at any salt-stress condition provided, cellular homeostasis was favored over growth. PMID:24636996

  18. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005-2014.

    Science.gov (United States)

    Hu, F-P; Guo, Y; Zhu, D-M; Wang, F; Jiang, X-F; Xu, Y-C; Zhang, X-J; Zhang, C-X; Ji, P; Xie, Y; Kang, M; Wang, C-Q; Wang, A-M; Xu, Y-H; Shen, J-L; Sun, Z-Y; Chen, Z-J; Ni, Y-X; Sun, J-Y; Chu, Y-Z; Tian, S-F; Hu, Z-D; Li, J; Yu, Y-S; Lin, J; Shan, B; Du, Y; Han, Y; Guo, S; Wei, L-H; Wu, L; Zhang, H; Kong, J; Hu, Y-J; Ai, X-M; Zhuo, C; Su, D-H; Yang, Q; Jia, B; Huang, W

    2016-03-01

    With the aim of gathering temporal trends on bacterial epidemiology and resistance from multiple laboratories in China, the CHINET surveillance system was organized in 2005. Antimicrobial susceptibility testing was carried out according to a unified protocol using the Kirby-Bauer method or automated systems. Results were analyzed according to Clinical and Laboratory Standards Institute (CLSI) 2014 definitions. Between 2005 and 2014, the number of bacterial isolates ranged between 22,774 and 84,572 annually. Rates of extended-spectrum β-lactamase production among Escherichia coli isolates were stable, between 51.7 and 55.8%. Resistance of E. coli and Klebsiella pneumoniae to amikacin, ciprofloxacin, piperacillin/tazobactam and cefoperazone/sulbactam decreased with time. Carbapenem resistance among K. pneumoniae isolates increased from 2.4 to 13.4%. Resistance of Pseudomonas aeruginosa strains against all of antimicrobial agents tested including imipenem and meropenem decreased with time. On the contrary, resistance of Acinetobacter baumannii strains to carbapenems increased from 31 to 66.7%. A marked decrease of methicillin resistance from 69% in 2005 to 44.6% in 2014 was observed for Staphylococcus aureus. Carbapenem resistance rates in K. pneumoniae and A. baumannii in China are high. Our results indicate the importance of bacterial surveillance studies.

  19. Qualitative toxicity assessment of silver nanoparticles on the fresh water bacterial isolates and consortium at low level of exposure concentration.

    Science.gov (United States)

    Kumar, Deepak; Kumari, Jyoti; Pakrashi, Sunandan; Dalai, Swayamprava; Raichur, Ashok M; Sastry, T P; Mandal, A B; Chandrasekaran, N; Mukherjee, Amitava

    2014-10-01

    Silver nanoparticles (AgNPs) pose a high risk of exposure to the natural environment owing to their extensive usage in various consumer products. In the present study we attempted to understand the harmful effect of AgNPs at environmentally relevant low concentration levels (≤1ppm) towards two different freshwater bacterial isolates and their consortium. The standard plate count assay suggested that the AgNPs were toxic towards the fresh water bacterial isolates as well as the consortium, though toxicity was significantly reduced for the cells in the consortium. The oxidative stress assessment and membrane permeability studies corroborated with the toxicity data. The detailed electron microscopic studies suggested the cell degrading potential of the AgNPs, and the FT-IR studies confirmed the involvement of the surface groups in the toxic effects. No significant ion leaching from the AgNPs was observed at the applied concentration levels signifying the dominant role of the particle size, and size distribution in bacterial toxicity. The reduced toxicity for the cells in the consortium than the individual isolates has major significance in further studies on the ecotoxicity of the AgNPs.

  20. Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support

    International Nuclear Information System (INIS)

    In recent years, techniques employing magnetizable solid-phase supports (MSPS) have found application in numerous biological fields. This magnetic separation procedure offers several advantages in terms of subjecting the analyte to very little mechanical stress compared to other methods. Secondly, these methods are non-laborious, cheap, and often highly scalable. The current paper details a genomic DNA isolation method optimized in our laboratory using magnetic nanoparticles as a solid-phase support. The quality and yields of the isolated DNA from all the samples using magnetic nanoparticles were higher or equivalent to the traditional DNA extraction procedures. Additionally, the magnetic method takes less than 15 min to extract polymerase chain reaction (PCR) ready genomic DNA as against several hours taken by traditional phenol-chloroform extraction protocols. Moreover, the isolated DNA was found to be compatible in PCR amplification and restriction endonuclease digestion. The developed procedure is quick, inexpensive, robust, and it does not require the use of organic solvents or sophisticated instruments, which makes it more amenable to automation and miniaturization

  1. Bacterial diversity in the Uranium mill-tailings Gittersee as estimated via a 16S rDNA approach

    International Nuclear Information System (INIS)

    Bacterial diversity in a soil sample collected from uranium mill-tailings called Gittersee and situated near the city of Dresden, Germany, was analysed by using a culture-independent 16S rDNA approach exploiting PCR amplification primers 7F and 1513R. The results were compared with those obtained earlier analysing the same sample by using another primer pair, namely 43F-1404R. The two 16S rDNA approaches demonstrated that Proteobacteria were the most predominant group in the sample, followed by Cytophaga/Flavobacterium/ Bacteroidesand by Gram positive bacteria with low and also with high G+C content too. A large number of 16S rDNA sequences from two libraries were identical or almost identical. However, the ratio between the bacterial groups represented in them significantly differed. 7F-1513R primer set retrieved in addition to the above mentioned sequences, also 16S rRNA of green non-sulphur bacteria and representatives of the AD1 and the OP11 divisions. The latter indicates that the 7F-1513R primer set seems to be more reliable in analyses of bacterial diversity. (authors)

  2. Identification of a Cryptic Bacterial Promoter in Mouse (mdr1a P-Glycoprotein cDNA.

    Directory of Open Access Journals (Sweden)

    Kristen M Pluchino

    Full Text Available The efflux transporter P-glycoprotein (P-gp is an important mediator of various pharmacokinetic parameters, being expressed at numerous physiological barriers and also in multidrug-resistant cancer cells. Molecular cloning of homologous cDNAs is an important tool for the characterization of functional differences in P-gp between species. However, plasmids containing mouse mdr1a cDNA display significant genetic instability during cloning in bacteria, indicating that mdr1a cDNA may be somehow toxic to bacteria, allowing only clones containing mutations that abrogate this toxicity to survive transformation. We demonstrate here the presence of a cryptic promoter in mouse mdr1a cDNA that causes mouse P-gp expression in bacteria. This expression may account for the observed toxicity of mdr1a DNA to bacteria. Sigma 70 binding site analysis and GFP reporter plasmids were used to identify sequences in the first 321 bps of mdr1a cDNA capable of initiating bacterial protein expression. An mdr1a M107L cDNA containing a single residue mutation at the proposed translational start site was shown to allow sub-cloning of mdr1a in E. coli while retaining transport properties similar to wild-type P-gp. This mutant mdr1a cDNA may prove useful for efficient cloning of mdr1a in E. coli.

  3. Isolation of subtelomeric DNA sequences labelling sheep and goat chromosome ends

    Directory of Open Access Journals (Sweden)

    Cribiu Edmond P

    2000-11-01

    Full Text Available Abstract Two techniques that make it possible to isolate telomere DNA are presented, using sheep as an example. The first technique is based upon the screening of a sheep BAC library with PCR amplified DNA segments preserved from high-power laser beam irradiation. Twenty-three BACs hybridising to 13 subtelomeric regions in sheep and goats were obtained (out of 27 in the sheep complement, of which 13 recognised more than one region, telomeric or not. Twenty-three microsatellites were isolated from these BACs and 22 were genetically mapped on the sheep international genetic map, always consistently with the cytogenetical localisation in 17 cases out of 22. These results are discussed. The second technique is based upon the selective cloning of subtelomeric enriched DNA. Preliminary results were obtained by this approach.

  4. Isolate extended state in the DNA molecular transistor with surface interaction

    Science.gov (United States)

    Wang, Le; Qin, Zhi-Jie

    2016-02-01

    The field effect characteristic of a DNA molecular device is investigated in a tight binding model with binary disorder and side site correlation. Using the transfer-matrix method and Landauer-Büttiker theory, we find that the system has isolated extended state that is irrespective of the DNA sequence and can be modulated by the gate voltage. When the gate voltage reaches some proper value, the isolated extended state appears at the Fermi level of the system and the long range charge transport is greatly enhanced. We attribute this phenomenon to the combination of the external field, the surface interaction, and the intrinsic disorder of DNA. The result is a generic feature of the nanowire with binary disorder and surface interaction.

  5. Mitochondrial DNA assessment of Phytophthora infestans isolates from potato and tomato in Ethiopia reveals unexpected diversity.

    Science.gov (United States)

    Shimelash, Daniel; Hussien, Temam; Fininsa, Chemeda; Forbes, Greg; Yuen, Jonathan

    2016-08-01

    Mitochondrial DNA (mtDNA) haplotypes were determined using restriction fragment length polymorphism (RFLP) for P. infestans sampled from 513 foliar lesions of late blight found on potato and tomato in different regions of Ethiopia. Among the four reported mitochondrial haplotypes of Phytophthora infestans, Ia, Ib and IIb were detected in 93 % of the samples analyzed but the vast majority of these were Ia. The remaining 7 % represented a previously unreported haplotype. DNA sequencing of this new haplotype also confirmed a single base nucleotide substitution that resulted in loss of EcoRI restriction site and gain of two additional MspI sites in cox1 and atp1 genes, respectively. There were 28 polymorphic sites among all nucleotide sequences including five reference isolates. Sites with alignment gaps were observed in P4 with one nucleotide deletion in 11 Ethiopian isolates. None of the reference sequence produced frame-shifts, with the exception of the 3-nucleotide deletion in the P4 region by Phytophthora andina, a feature that can be used to distinguish the new Ethiopian isolates from P. andina. While a distinguishing molecular data presented here clearly separated them from P. infestans, 7 % of the isolates that share this feature formed an important component of the late blight pathogen causing disease on Solanum tuberosum in Ethiopia. Thus, these Ethiopian isolates could represent a novel Phytophthora species reported for the first time here. PMID:26873223

  6. Antimicrobial susceptibility pattern of bacterial isolates from surgical wound infections in Tertiary Care Hospital in Allahabad, India

    Directory of Open Access Journals (Sweden)

    A K Kapoor

    2012-01-01

    Full Text Available The aim of present study to analyze the occurrence and in-vitro antimicrobial susceptibility of bacterial pathogens isolated from surgical wound infections. Specimens from a total of 129 patients undergoing either emergency or elective surgery were collected from infected sites or stitch lines and inoculated onto appropriate media. The bacterial cultures were identified utilizing standard microbiological and biochemical methods. Isolates were tested for susceptibility to antimicrobials using the Kirby Bauer disk diffusion method. Statistical analysis was performed using the chi-square test. Of 129 patients investigated (62 emergency and 67 elective surgery cases, bacterial isolates were isolated with almost equal frequency both from emergency and elective surgery cases. Of 108 (83.72% culture positive samples, 62 (57.41% were Gram negative, 39 (36.11% Gram positive, and 7 (6.48% showed multiple organisms. Of total 115 bacteria isolated (101 single and 7 double organisms culture positive, 33 (28.69% were Escherichia coli and were also the commonest; followed by Staphylococcus aureus, 30 (26.09% cases. S. aureus and Streptococcus spp. showed maximum susceptibility (100% to linezolid and vancomycin. Maximum susceptibility of E. coli was observed to ciprofloxacin (75.7%, followed by gentamicin (54.5%; of Klebsiella spp. to ceftriaxone and gentamicin (66.6% each, of Proteus spp. to gentamicin (70% followed by ciprofloxacin (60%, and of Pseudomonas aeruginosa to piperacillin (100% and tobramycin (71.4%. E. coli and S. aureus were the most common and Salmonella spp. and Acinetobacter spp. were the least common organism causing surgical site infections. The definitive therapy included ciprofloxacin and gentamicin for E. coli; linezolid and vancomycin for S. aureus and Streptococcus spp; ceftriaxone and ciprofloxacin for Klebsiella spp., Citrobacter spp., acinetobacter spp and Salmonella spp.

  7. Isolation of "Caenorhabditis elegans" Genomic DNA and Detection of Deletions in the "unc-93" Gene Using PCR

    Science.gov (United States)

    Lissemore, James L.; Lackner, Laura L.; Fedoriw, George D.; De Stasio, Elizabeth A.

    2005-01-01

    PCR, genomic DNA isolation, and agarose gel electrophoresis are common molecular biology techniques with a wide range of applications. Therefore, we have developed a series of exercises employing these techniques for an intermediate level undergraduate molecular biology laboratory course. In these exercises, students isolate genomic DNA from the…

  8. The presence of Mycoplasma hominis in isolates of Trichomonas vaginalis impacts significantly on DNA fingerprinting results.

    Science.gov (United States)

    Xiao, J C; Xie, L F; Zhao, L; Fang, S L; Lun, Z R

    2008-03-01

    The genetic characterization of Trichomonas vaginalis (Protista: Trichomonadidae), the causative agent of trichomoniasis in humans, is central to understanding the epidemiology, treatment, drug resistance, and virulence as well as the diagnosis and control of this parasite. Various molecular approaches, including DNA fingerprinting, have been employed for this purpose, and random amplification of polymorphic DNA (RAPD) continues to be utilized. However, little attention has been paid to the fact that some T. vaginalis populations can harbor symbiotic Mycoplasma hominis and/or other agents, which could cause artifacts in the RAPD results. In the present study, we demonstrate clearly that the presence of M. hominis from T. vaginalis isolates impacts significantly on RAPD results and on the subsequent analyses and interpretation of data sets. Moreover, symbiotic M. hominis displays an isolate-to-isolate variability in RAPD profile before elimination, suggesting a variability of M. hominis infection. PMID:18058131

  9. DNA repair in Haemophilus influenzae: isolation and characterization of an ultraviolet sensitive mutator mutant

    Energy Technology Data Exchange (ETDEWEB)

    Walter, R.B.

    1985-01-01

    DNA repair in Haemophilus influenzae appears to be quite different from that seen in Escherichia coli in that H. influenzae shows neither SOS nor adaptation phenomena. Repair of DNA lesions in H. influenzae has been seen to occur via recombinational, excision, and mismatch repair pathways acting independently of one another. The author has isolated an ultraviolet (UV)-sensitive mutator mutant (mutB1) of H. influenzae Rd which shows deficiencies in both recombinational and mismatch repair pathways. This mutant is sensitive to a variety of DNA damaging agents as well as being hypermutable by alkylating agents and base analogues. MutB1 cells do not show post-UV DNA breakdown but do begin excision after UV irradiation. Genetic transformation with UV-irradiated DNA on mut B1 recipients shows that high (HE) and low (LE) efficiency markers are transformed at a ratio of 1.0 as in the mismatch repair deficient hex 1 mutant; however, kinetics of UV-inactivation experiments indicate that HE markers are sensitized and act as LE markers do on wild type recipients. Thus, the mutB gene product appears to play a role in both DNA repair and genetic transformation. A model is outlined which presents a role for a DNA helicase in both DNA repair and genetic transformation of H. influenzae.

  10. A robust and cost-effective method for DNA isolation from Satureja species (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Dodoš Tanja

    2014-01-01

    Full Text Available Aromatic species of the genus Satureja are rich in secondary metabolites that interfere with DNA isolation procedures. Four protocols based on the standard CTDNA extraction protocol of Doyle and Doyle (1987 were tested in six savory taxa. The polyphenol adsorbents activated charcoal and/or polyvinylpyrrolidone 10 were employed in three procedures (B, C and D; for the elimination of polysaccharides, 4M NaCl was applied in the latter two. The highest DNA yield was obtained with Protocol D and averaged 1420.7±398.3 μg DNA/g of dry leaf tissue. Optimal values of the absorbance ratio 260/280 of all DNA solutions revealed the absence or only negligible contamination by proteins. Contamination by polysaccharides inferred from the absorbance ratio 260/230 showed that Protocol C provided the least contaminated material (average of 1.7±0.4. Enzymatic reactions of DNA solutions obtained by Protocol D showed amplification of both loci in all individuals. In conclusion, Protocol D is suitable for the isolation of high quantities of pure DNA from Satureja spp. [Projekat Ministarstva nauke Republike Srbije, br. 173029 i br. 173005

  11. Autochthonous Bacterial Isolates Successfully Stimulate In vitro Peripheral Blood Leukocytes of the European Sea Bass (Dicentrarchus labrax).

    Science.gov (United States)

    Mladineo, Ivona; Bušelić, Ivana; Hrabar, Jerko; Radonić, Ivana; Vrbatović, Anamarija; Jozić, Slaven; Trumbić, Željka

    2016-01-01

    Commercially available probiotics are routinely administered as feed supplements in aquaculture important species. Among them, the European sea bass (Dicentrarchus labrax) is the most widely reared fish in the Mediterranean, whose rearing systems are highly variable between countries, affecting at some level the sustainability of production. After random isolation of autochthonous gut bacteria of the sea bass, their identification and pathogenicity testing, we have selected three potentially probiotic isolates; Pseudoalteromonas sp., Alteromonas sp., and Enterovibrio coralii. Selected isolates were tested and their immunostimulative efficiency was compared with a commercially available Lactobacillus casei isolate, inferring inflammatory, apoptotic and anti-pathogen response of sea bass' peripheral blood leukocytes. Phagocytic activity, respiratory burst, and expression of lysozyme, Mx protein, caspase 3, TNF-α, IL-10 genes was measured 1, 3, 5, and 12 h post-stimulation by four bacterial isolates to evaluate early kinetics of the responses. Best immunostimulative properties were observed in Pseudoalteromonas-stimulated leukocytes, followed by Alteromonas sp. and L. casei, while Enterovibrio coralii failed to induce significant stimulation. Based on such in vitro assay intestinal autochthonous bacterial isolates showed to have better immunostimulative effect in sea bass compared to aquaculture-widely used L. casei, and further steps need to engage tank and field feeding trials to evaluate long-term prophylactic suitability of the chosen isolates. A panel of biomarkers that represent pro-/anti-inflammatory, pro-/anti-apoptotic, and anti-bacteria/viral responses of the fish should be taken into consideration when evaluating the usefulness of the potential probiotic in aquaculture. PMID:27551281

  12. Feline cholecystitis and acute neutrophilic cholangitis: clinical findings, bacterial isolates and response to treatment in six cases.

    Science.gov (United States)

    Brain, Philip H; Barrs, Vanessa R; Martin, Patricia; Baral, Randolph; White, Joanna D; Beatty, Julia A

    2006-04-01

    Clinicopathological findings from six cats with confirmed cholecystitis or acute neutrophilic cholangitis are presented. Historical findings included lethargy and anorexia or inappetence of up to five days duration. On physical examination all cats were pyrexic and four out of six were jaundiced and had cranial abdominal pain. Bile samples were obtained by cholecystocentesis at exploratory coeliotomy (two cases) or by percutaneous, ultrasound-guided cholecystocentesis (four cases). Gall bladder rupture and bile peritonitis occurred subsequent to ultrasound-guided cholecystocentesis in one case. The most common bacterial isolate was Escherichia coli (four cases); E coli was isolated alone in two cases, in combination with a Streptococcus species (one case) and in combination with a Clostridium species (one case). Streptococcus species alone was isolated from one case, as was Salmonella enterica serovar Typhimurium. The latter is the first reported case of Salmonella-associated cholecystitis in a cat. Concurrent pancreatic or intestinal disease was detected histologically in three cases. All cases were treated with antimicrobials based on in vitro susceptibility results. Treatment was successful in five cases. One cat with concurrent diffuse epitheliotropic intestinal lymphoma was euthanased. Percutaneous ultrasound-guided cholecystocentesis is an effective, minimally-invasive technique enabling identification of bacterial isolates in cats with inflammatory hepatobiliary disease.

  13. Direct DNA isolation from solid biological sources without pretreatments with proteinase-K and/or homogenization through automated DNA extraction.

    Science.gov (United States)

    Ki, Jang-Seu; Chang, Ki Byum; Roh, Hee June; Lee, Bong Youb; Yoon, Joon Yong; Jang, Gi Young

    2007-03-01

    Genomic DNA from solid biomaterials was directly isolated with an automated DNA extractor, which was based on magnetic bead technology with a bore-mediated grinding (BMG) system. The movement of the bore broke down the solid biomaterials, mixed crude lysates thoroughly with reagents to isolate the DNA, and carried the beads to the next step. The BMG system was suitable for the mechanical homogenization of the solid biomaterials and valid as an automated system for purifying the DNA from the solid biomaterials without the need for pretreatment or disruption procedures prior to the application of the solid biomaterials.

  14. Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing

    OpenAIRE

    Siala, Mariam; Jaulhac, Benoit; Gdoura, Radhouane; Sibilia, Jean; Fourati, Hela; Younes, Mohamed; Baklouti, Sofien; Bargaoui, Naceur; Sellami, Slaheddine; Znazen, Abir; Barthel, Cathy; Collin, Elody; Hammami, Adnane; Sghir, Abdelghani

    2008-01-01

    Introduction Bacteria and/or their antigens have been implicated in the pathogenesis of reactive arthritis (ReA). Several studies have reported the presence of bacterial antigens and nucleic acids of bacteria other than those specified by diagnostic criteria for ReA in joint specimens from patients with ReA and various arthritides. The present study was conducted to detect any bacterial DNA and identify bacterial species that are present in the synovial tissue of Tunisian patients with reacti...

  15. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    Directory of Open Access Journals (Sweden)

    Zuiter Afnan

    2012-08-01

    Full Text Available Abstract Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  16. A simple and efficient method for isolation of DNA in high mucilaginous plant tissues.

    Science.gov (United States)

    Echevarría-Machado, Ileana; Sánchez-Cach, Lucila A; Hernández-Zepeda, Cecilia; Rivera-Madrid, Renata; Moreno-Valenzuela, Oscar A

    2005-10-01

    A protocol is described for rapid DNA isolation from Malvaceae plant species and different tissues of Bixaceae that contain large amounts of polysaccharides, polyphenols, and pigments that interfere with DNA extractions. The method is a modification of Dellaporta et al. The current protocol is simple, and no phenol-chloroform extraction, ethanol, or isopropranol precipitation is required. The method is based in the incubation of soluble DNA with silica, mix in batch during the extraction. The procedure can be completed in 2 h and many samples can be processed at the same time. DNA of excellent quality was recovered and used for polymerase chain reaction (PCR) amplification, restriction enzyme digestion, and Southern blot analysis. The method was used with healthy Bixa orellana and virus-infected Malvaceae plants. PMID:16170213

  17. Plasmid DNA Analysis of Pasteurella multocida Serotype B isolated from Haemorrhagic Septicaemia outbreaks in Malaysia

    Directory of Open Access Journals (Sweden)

    Jamal, H.

    2005-01-01

    Full Text Available A total of 150 purified isolates of Pasteurella multocida serotype B were used (Salmah, 2004 for plasmid DNA curing experiment to determine hyaluronidase activity, antibiotic resistance pattern (ARP and mice lethality test (LD50 for their role of pathogenicity. A plasmid curing experiment was carried out by using the intercalating agent; ethidium bromide and rifampicin, where it was found all the plasmids had been cured (plasmidless from Pasteurella multocida. All of these plasmidless isolates maintained their phenotypic characteristics. They showed the same antibiotic resistancepattern as before curing, produced hyaluronidase and possessed lethality activity in mice when injected intraperitoneally(i.p. Based on this observation, the antibiotic resistance, hyaluronidase activity and mice virulence could probably be chromosomal-mediated. Plasmids were detected 100% in all P. multocida isolates with identical profile of 2 plasmids size 3.0 and 5.5 kb. No large plasmids could be detected in all isolates. Since all the isolates appeared to have identicalplasmid profiles, they were subjected to restriction enzyme(RE analysis. From RE analysis results obtained, it can be concluded that the plasmid DNA in serotype B isolates are identical. Only 4 of 32 REs were found to cleave these plasmids with identical restriction fingerprints; BglII, HaeIII, RsaI and SspI. From RE analysis results, it can be concluded that the plasmid DNA isolates are identical. This plasmid might not played any role in pathogenicity of Pasteurella multocida serotype B, however this information is important for the construction of shuttle vectors in genetic studies of the pathogenicity of haemorrhagic septicaemia(HS.

  18. Effect of vanadium toxicity at its different oxidation states on selected bacterial and protozoan isolates in wastewater systems.

    Science.gov (United States)

    Kamika, Ilunga; Momba, Maggy N B

    2014-08-01

    This study assesses and compares vanadium toxicity in its different oxidation states towards bacterial isolates (Pseudomonas putida and Bacillus licheniformis) and protozoan isolates (Peranema sp. and Trachelophyllum sp.). The isolates were exposed to various concentrations of V in mixed liquors and their tolerance to V was assessed at 30 degrees C at a pH of 4. The results revealed that the increase in V oxidation state increased its toxicity to bacterial isolates, whereas its toxicity decreased for protozoan isolates. Among the bacterial isolates, P putida was found to be more tolerant to V3+(24h-median lethal concentration (LC50): 390mg/l), V4+(24h-LC50: 230-250mg/l) and V5+(24h-LC50: 180-200mg/l), whereas for the protozoan isolates, Peranema sp. appeared to be more tolerant to V3+(24 h-LC50: 110-120 mg/l), V4+(24 h-LC50: 160-170 mg/l) and V5+(24 h-LC50: 160-200 mg/l). A comparison of both groups of organisms revealed Trachelophyllum sp. as the most sensitive organism to V at its various oxidation states. The visual and spectrophotometric methods used to assess V reduction revealed that P. putida was the only isolate able to reduce V5+, V4+ and V3+ to V2+ in mixed liquor media. Vanadium (+2) in concentrations of approximately 46.46 mg/l, 29.57 m mg/l and 38.01 mg/l found in the media was treated with V3+, V4+ and V5+, respectively, and inoculated with P. putida. This study revealed that the ability of V reduction, adopted with P putida, can be an effective strategy to remove V from polluted environments. This study also showed that the toxicity of V, in terms of its oxidation states, differs from one species to another and in kingdoms. PMID:24956802

  19. Antibiotic Resistance Pattern Of Bacterial Pathogens Isolated From Poultry Manure Used To Fertilize Fish Ponds In New Bussa, Nigeria

    Directory of Open Access Journals (Sweden)

    Funso Omojowo

    2013-02-01

    Full Text Available This study was carried out to isolate and identify antibiotic resistant bacteria from poultry manure usually used for pond fertilization. Poultry manure from 120 Chickens in National Institute for Freshwater Fisheries Research (NIFFR integrated fish farms, New-Bussa, Nigeria was collected. Five bacterial pathogens; Salmonella typhi, Escherichia coli, Shigella dysenteriae, Staphylococcus aureus and Aeromonas hydrophila were isolated. Antibiotic susceptibility testing carried out using the disk diffusion technique. Antibiotics used were; ofloxacin, amoxicillin, tetracycline, ampicillin, erythromycin, gentamicin, nalidixic acid and chloramphenicol. All the isolated organisms were 100% sensitive to ofloxacin. The multiple resistance pattern revealed that 100% were resistant to tetracycline, 84.34% resistant to ampicillin, 76.68% resistant to amoxicillin, 66% resistant to chloramphenicol, 66% resistant to gentamicin, 29% resistant to erythromycin, 28.34% resistant to nalidixic acid. The risk posed by untreated poultry manure used in fish pond fertilization and the public health implications of these results were discussed.

  20. Antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to antibiotic agents at super specialty hospital, Amravati city, India

    Directory of Open Access Journals (Sweden)

    Hrishikesh Sawdekar

    2015-02-01

    Full Text Available Background: Wound infection is one of the health problems that is caused and aggravated by the invasion of pathogenic organisms. Information on local pathogens and sensitivity to antimicrobial agent is crucial for successful treatment of wounds. So the present study was conducted to determine antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to antimicrobial agents. Methods: A retrospective study was conducted among patients with wound infection in Suyash super speciality hospital, from January 2012 to December 2013. Wound swab was collected using sterile cotton swabs and processed for bacterial isolation and susceptibility testing to Systemic antimicrobial agents. Results: In this study 78 bacterial isolates were recovered from 258 specimens showing an isolation rate of 31.2%. The predominant bacteria isolated from wounds were gram positive staphylococci 36 (46.2%, followed by gram negative streptococci 18 (23.1% gram negative pseudomonas 12 (15.4 % and gram negative proteus 8 (10.4%. The gram positive and gram negative bacteria constituted 68 (87.2% and 10 (12.8% of bacterial isolates; respectively. Conclusion: In the present study most of the pathogens isolated from wound isolates showed high rate of resistance to most commonly used newer antibiotics used to treat bacterial infections. Therefore, rational use of antibiotics should be practiced. [Int J Res Med Sci 2015; 3(2.000: 433-439

  1. Exploring the Medicinal Potential of the Fruit Bodies of Oyster Mushroom, Pleurotus ostreatus (Agaricomycetes), against Multidrug-Resistant Bacterial Isolates.

    Science.gov (United States)

    Skariyachan, Sinosh; Prasanna, Apoorva; Manjunath, Sirisha P; Karanth, Soujanya S; Nazre, Ambika

    2016-01-01

    Bacterial resistance to present-generation antibiotics is increasing drastically, which has become a major public health concern. The present study focuses on demonstrating the antimicrobial potential of fruit bodies of the culinary/medicinal oyster mushroom Pleurotus ostreatus against clinical pathogens. Five bacterial isolates were collected from Sagar Hospital in Bangalore, India. The collected strains were grown on selective and differential media and antibiotic susceptibility testing was applied using 48 antibiotics by disc diffusion assay. The antibacterial efficiency of the mushroom extract against clinical pathogens, which were found to be multidrug resistant (MDR) to most of the tested antibiotics, was studied. The yield of cultivated mushrooms was evident at moist, cooler, and humid conditions. The clinical isolates of Staphylococcus aureus, Salmonella typhi, Acinetobacter sp., Proteus mirabilis, and Proteus spp. were found to be MDR to β-lactam, fluoroquinolones, sulfonamides, third- and fourth-generation cephalosporins, aminoglycosides, macrolides, tetracyclines, and carbapenems. The methanolic extracts of mushroom fruit bodies were found to be more effective than present-generation antibiotics against methicillin- and vancomycin- resistant S. aureus, S. typhi, Acinetobacter sp., and P. mirabilis at a concentration ranging from 50 to 100 µg/disc or 50 to 100 µL/well. The current study suggests that the methanolic extract of P. ostreatus can be used as a promising antibacterial agent against MDR bacterial pathogens. PMID:27481158

  2. A potent fish pathogenic bacterial killer Streptomyces sp. isolated from the soils of east coast region, South India

    Institute of Scientific and Technical Information of China (English)

    Durairaj Thirumurugan; Ramasamy Vijayakumar

    2013-01-01

    Objective: To investigate the potentiality of the marine actinobacteria isolated from marine soil against fish pathogenic bacteria.Methods:east coast region (ECR) of Tamilnadu, South India. Then they were used for the isolation of actinobacteria by using conventional serial dilution technique on starch casein agar medium. The antibacterial activities of the actinobacteria were screened primarily by using cross streak plate method against fish pathogenic bacteria namely Vibrio alginolyticus, Vibrio parahaemolyticus,Vibrio cholera, Aeromonas sp. and Pseudomonas sp. The antimicrobial efficacy of the selected isolates was carried out with various organic solvents, and finally the active compound was subjected to chromatographic techniques including TLC and GC-MS.Results:In the present study, a total of 33 soil samples were collected from the Bay of Bengal, against fish pathogenic bacteria. Out of 21 antibacterial isolates, the isolate ECR77 was selected for further study based on its potential activity against fish pathogenic bacteria. Of the various solvents tested, the ethyl acetate extract had good antibacterial activity against the tested bacterial pathogens. The isolate ECR77 grew well on oat meal agar medium with 2% salt level at 35 °C. GC-MS study found that the presence of bioactive compounds namely tetradecanoic acid,n-hexadecanoic acid and octadecanoic acid. The morphological, physiological, biochemical and cultural characteristics of the potential isolate were supported the identity up to generic level asStreptomyces sp. ECR77. Conclusions: The results obtained from this study concludes that the ECR soils of South India is a hot spot of novel bioactive compound producing marine actinobacteria with great pharmaceutical values. Of the 82 actinobacteria isolated, 21 (26%) isolates were possessed antibacterial activity.

  3. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China

    Science.gov (United States)

    Gao, Peike; Tian, Huimei; Wang, Yansen; Li, Yanshu; Li, Yan; Xie, Jinxia; Zeng, Bing; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2016-02-01

    To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs.

  4. Chromatin Isolation and DNA Sequence Analysis in Large Undergraduate Laboratory Sections

    Science.gov (United States)

    Hagerman, Ann E.

    1999-10-01

    A pair of exercises that introduce undergraduate students to basic techniques and concepts of molecular biology and that are appropriate for classes with large enrollments are described. One exercise is a simple laboratory experiment in which chromatin is isolated from chicken liver and is resolved into histone proteins and DNA by ion-exchange chromatography. The other is a series of computer simulations that introduce DNA sequencing, mapping, and sequence analysis to the students. The final step of the simulation is submission of a sequence to a database on the World Wide Web for identification of the protein product of the gene.

  5. Isolation, sequencing and overexpression of the gene encoding the theta subunit of DNA polymerase III holoenzyme.

    OpenAIRE

    J.R. Carter; Franden, M A; Aebersold, R.; Kim, D.R.; McHenry, C S

    1993-01-01

    The gene encoding the theta subunit of DNA polymerase III holoenzyme, designated holE, was isolated using a strategy in which peptide sequence was used to derive a DNA hybridization probe. Sequencing of the gene, which maps to 41.43 centisomes of the chromosome, revealed a 76-codon open reading frame predicted to produce a protein of 8,846 Da. When placed in a tac promoter expression vector, the open reading frame directed expression of a protein, that comigrated with authentic theta subunit ...

  6. Isolation of cDNA for an NADP-malic enzyme from Aloe arborescens.

    Science.gov (United States)

    Honda, H; Shimada, H; Akagi, H

    1997-12-31

    NADP-malic enzyme catalyzes the reaction of decarboxylation from malate. In CAM plants, functions of this enzyme diverged to include both photosynthetic and non-photosynthetic roles. A full length cDNA for an NADP-malic enzyme was isolated from an 'obligate' CAM plant aloe (Aloe arborescens). The cDNA contains an ORF encoding 592 amino acid residues, whose sequence is highly homologous to the known plant NADP-malic enzymes. This gene is constitutively expressed in all organs in a low level. The amount of the transcript exhibited no diurnal variation, suggesting that this gene is not involved in photosynthetic functions. PMID:9501996

  7. Phytochemical Screening and In Vitro Anti-Bacterial Studies of the Ethanolic Extract of Citrus Senensis (Linn. Peel against some Clinical Bacterial Isolates

    Directory of Open Access Journals (Sweden)

    D. Lawal

    2013-02-01

    Full Text Available Citrus senensis peel has many medicinal properties and is widely used against various ailments, such as colic, upset stomach, cancer, diuretic, cormunative, immuno – enhancing, stomachic, tonic to digestive system, immune system and skin. It is also used to treat and prevent vitamin deficiencies, colds, flu, and scurvy and helping to fight viral and bacterial infections. The aim of the study is to verify the ethnomedicinal use of the peel as anti-bacterial. The peels were air-dried and ground to powder using mortar and pestle, extracted with 95% ethanol. The extract was subjected to phytochemical screening using standard procedures. Agar diffusion method was employed to test the antibacterial activity of the extract and the MIC and MBC of the extract were determined by broth dilution technique. The results of the phytochemical screening indicated the presence of flavonoids, alkaloids, saponins, tannins, triterpenoids, phytosterols and steroids. The results of the antibacterial activity showed that the isolates were sensitive to the extract, with MIC of 0.25-2.5mg/ml and MBC of 0.5-5.0mg/ml. The antibacterial effects of the extracts suggest their possible use for the treatment of infections caused by the test bacteria. The chemotherapeutic potential of the fruit peel could be due to the presence of flavonoids, alkaloids, saponins, tannins, triterpenoids, phytosterols and steroids. The success of this study could lead to the development of cheap, easily available and relatively safe bactericides from a tropical plant.

  8. Use of Repetitive DNA Sequences and the PCR To Differentiate Escherichia coli Isolates from Human and Animal Sources

    OpenAIRE

    Dombek, Priscilla E.; Johnson, LeeAnn K.; Zimmerley, Sara T.; Michael J Sadowsky

    2000-01-01

    The rep-PCR DNA fingerprint technique, which uses repetitive intergenic DNA sequences, was investigated as a way to differentiate between human and animal sources of fecal pollution. BOX and REP primers were used to generate DNA fingerprints from Escherichia coli strains isolated from human and animal sources (geese, ducks, cows, pigs, chickens, and sheep). Our initial studies revealed that the DNA fingerprints obtained with the BOX primer were more effective for grouping E. coli strains than...

  9. [Isolation of endophytic bacteria in potato and test of antagonistic action to bacterial ring rot of potato].

    Science.gov (United States)

    Cui, Lin; Sun, Zhen; Tian, Hong Xian; Wang, Li Qin; Xu, Huei Yuen; Sun, Fu Zai; Yuan, Jun

    2002-12-01

    In this study, two hundred and forty bacterial strains were isolated from inner tissue of potato tubers collected from DaTong, TaiYuan and Inner Mongolia Autonomous regions. On the basis of antagonistic examination in vitro, fifty and five bacteria strains were characterized for antagonistic bacteria to ring rot of potato. It was 22.9 percentage of all bacteria strains. The biggest radius of suppression circle was 13 mm. Nine strains were chosen for their suppression of bacterial ring rot, blackleg and dry rot of potato. These strains were bacteriologically ideatified. Strain 118 was Pseudomonas fluorescens biovar V. Strain 110 was Bacillus pumilus. Strain 085 was Bacillus stearothermophilus. Strain 069 was Erwinia herbicola. Strain 043 was Xanthomomas fragariae. Strain 116 was Curtobacterium. Strains A-10' and T3 were Bacillus. Strain H1-6 was Pseudomonas fluorescens. PMID:15346992

  10. Characteristics of Bacterial Strains from Pseudomonas Genera Isolated from Diseased Plum Trees

    Directory of Open Access Journals (Sweden)

    Veljko Gavrilović

    2008-01-01

    Full Text Available Characteristics of Pseudomonas syringae strains isolated from diseased plum trees are presented is this paper. Based on pathogenic, biochemical and physiological characteristics, isolated starins were divided into two groups: First group of strains, isolated from diseased plum branches with symptoms of suden decay, was simillar to Pseudomonas syringae pv. syringae; second group of strains, isolated from necrotic flower buds on plum trees, exhibited characteristics simillar to Pseudomonas syringae pv. morsprunorum. In addition, phytopathogenic fungi belonging to genera Phomopsis, Botryosphaeria and Leucostoma, were also isolated from diseased plum trees. Further study of these pathogens and their role in the epidemiology of suden plum trees decay is in progress.

  11. Structure Elucidation of Procyanidins Isolated from Rhododendron formosanum and Their Anti-Oxidative and Anti-Bacterial Activities

    Directory of Open Access Journals (Sweden)

    Chao-Min Wang

    2015-07-01

    Full Text Available Rhododendron formosanum is an endemic species distributed in the central mountains of Taiwan. In this study, the biological activities of major procyanidins isolated from the leaf extract of R. formosanum were investigated. Four compounds, including two procyanidin dimers, procyanidin A1 (1 and B3 (2, and two procyanidin trimmers, procyanidin C4 (4 and cinnamtannin D1 (5, were isolated and identified on the basis of spectroscopic data. The structure of a new procyanidin dimer, rhodonidin A (3, was elucidated by 2D-NMR, CD spectrum and MS. The procyanidin trimmers and rhodonidin A are reported for the first time in Ericaceae. The biological activities of these procyanidins were evaluated using anti-bacterial and anti-oxidative assays. Only the new compound 3 demonstrated strong anti-bacterial activity against Staphylococcus aureus at an MIC value of 4 μg/mL. All compounds showed pronounced antioxidant activities and the activities are enhanced as the amount of OH groups in procyanidins increased. In conclusion, the pleiotropic effects of procyanidins isolated from the leaves of R. formosanum can be a source of promising compounds for the development of future pharmacological applications.

  12. A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination.

    Science.gov (United States)

    Holmberg, Mats A; Gowda, Naveen Kumar Chandappa; Andréasson, Claes

    2014-06-01

    Production of recombinant proteins is the starting point for biochemical and biophysical analyses and requires methodology to efficiently proceed from gene sequence to purified protein. While optimized strategies for the efficient cloning of single-gene fragments for bacterial expression is available, efficient multiple DNA fragment cloning still presents a challenge. To facilitate this step, we have developed an efficient cloning strategy based on yeast homologous recombination cloning (YHRC) into the new pET-based bacterial expression vector pSUMO-YHRC. The vector supports cloning for untagged expression as well as fusions to His6-SUMO or His6 tags. We demonstrate that YHRC from single PCR products of 6 independent genes into the vector results in virtually no background. Importantly, in a quantitative assay for functional expression we find that single-step YHRC of 7 DNA fragments can be performed with very high cloning efficiencies. The method and reagents described in this paper significantly simplifies the construction of expression plasmids from multiple DNA fragments, including complex gene fusions, chimeric genes and polycistronic constructs. PMID:24631626

  13. Comparison of 16S rDNA-PCR Amplification and Culture of Cerebrospinal Fluid for Diagnosis of Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    Farshad Foroughi

    2010-12-01

    Full Text Available Objective:Early and accurate diagnosis of bacterial meningitis is of critical concern. Optimum and rapid laboratory facilities are not routinely available for detecting the etiologic agents of meningitis. The objective of this study was to compare polymerase chain reaction (PCR assay with culture for detection of bacteria in central nervous system (CNS samples from patients suspected to have meningitis. Methods: One-hundred CSF samples were obtained and divided into two parts. One part of samples was used for standard bacterial culture and gram staining. The remaining was used for DNA extraction. PCR assay was performed with universal primers for 16S rDNA gene of bacteria. Performance characteristics of the test were determined. Findings:The PCR method was able to detect bacteria in all 36 culture-positive and in 38 of 64 culture-negative cases showing sensitivity and specificity of 100% and 40.6% respectively. Positive predictive value was 48.6% and negative predictive value 100%, however, Kappa coefficient showed the correlation of the 2 methods to be at 0.33. Conclusion:There are advantages and disadvantages in performance characteristics of the conventional CSF culture and universal CSF 16S rDNA PCR. Therefore, it is recommended to use both methods in clinical practice, particularly in suspicious contaminated samples, with presumable presence of fastidious or slow growing bacteria because of antibiotic consumption.

  14. Mutational Analysis of Bacterial NAD+-dependent DNA Ligase:Role of Motif Ⅳ in Ligation Catalysis

    Institute of Scientific and Technical Information of China (English)

    Hong FENG

    2007-01-01

    The bacterial DNA ligase as a multiple domain protein is involved in DNA replication, repair and recombination. Its catalysis of ligation can be divided into three steps. To delineate the roles of amino acid residues in motif Ⅳ in ligation catalysis, site-directed mutants were constructed in a bacterial NAD+-dependent DNA ligase from Thermus sp. TAK16D. It was shown that four conserved residues (D286, G287, V289 and K291) in motif Ⅳ had significant roles on the overall ligation. Under single turnover conditions, the observed apparent rates of D286E, G287A, V289I and K291R mutants were clearly reduced compared with that of WT ligase on both match and mismatch nicked substrates. The effects of D286E mutation on overall ligation may not only be ascribed to the third step. The G287A mutation has a major effect on the second step. The effects of V289I and K291R mutation on overall ligation are not on the third step, perhaps other aspects, such as conformation change of ligase protein in ligation catalysis, are involved. Moreover, the amino acid substitutions of above four residues were more sensitive on mismatch nicked substrate, indicating an enhanced ligation fidelity.

  15. Kinetics of kill of bacterial conjunctivitis isolates with moxifloxacin, a fluoroquinolone, compared with the aminoglycosides tobramycin and gentamicin

    Directory of Open Access Journals (Sweden)

    Rudolph S Wagner

    2010-01-01

    Full Text Available Rudolph S Wagner1, David B Granet2, Steven J Lichtenstein3, Tiffany Jamison4, Joseph J Dajcs4, Robert D Gross5, Paul Cockrum41New Jersey Medical School, Newark, NJ, USA; 2Ratner Children’s Eye Center, University of California – San Diego, La Jolla, CA, USA; 3University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA; 4Alcon Research, Ltd, Fort Worth, TX, USA; 5Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USAPurpose: To compare the kinetics and speed of kill of Streptococcus pneumoniae and Haemophilus influenzae on exposure to three topical ophthalmic antibiotic solutions.Materials and methods: Bacterial conjunctivitis isolates of S. pneumoniae and H. influenzae were exposed to 1:1000 dilutions of moxifloxacin 0.5%, tobramycin 0.3%, gentamicin 0.3%, and water (control. At 15, 30, 60, 120, and 180 minutes after exposure, aliquots were collected, cells were cultured, and viable cell counts were determined using standard microbiological methods.Results: Moxifloxacin achieved 99.9% kill (3-log reduction at approximately 2 hours for S. pneumoniae and at 15 minutes for H. influenzae. Tobramycin and gentamicin did not achieve 3-log reduction of S. pneumoniae during the 180-minute study period. An increase in bacterial growth was noted for these isolates. Gentamicin took more than 120 minutes to achieve the 3-log reduction of H. influenzae and tobramycin did not reach the 3-log reduction of this pathogen during the 180-minute study period.Conclusion: Moxifloxacin killed S. pneumoniae and H. influenzae in vitro faster than tobramycin and gentamicin, suggesting its potential clinical benefit as a first-line treatment for bacterial conjunctivitis to minimize patient symptoms and to limit the contagiousness of the disease.Keywords: kinetics of kill, bacterial conjunctivitis, in vitro, Streptococcus pneumoniae, Haemophilus influenzae, fluoroquinolones, aminoglycosides

  16. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    International Nuclear Information System (INIS)

    Magnetite nanoparticles about 14nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1μm in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO4. The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification

  17. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    Science.gov (United States)

    Horák, Daniel; Rittich, Bohuslav; Španová, Alena

    2007-04-01

    Magnetite nanoparticles about 14 nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1 μm in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO4. The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification.

  18. Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Sq. 2, 162 06 Prague 6 (Czech Republic)]. E-mail: horak@imc.cas.cz; Rittich, Bohuslav [Masaryk University Brno, Tvrdeho 14, 602 00 Brno (Czech Republic)]. E-mail: rittich@sci.muni.cz; Spanova, Alena [Masaryk University Brno, Tvrdeho 14, 602 00 Brno (Czech Republic)]. E-mail: spanova@sci.muni.cz

    2007-04-15

    Magnetite nanoparticles about 14nm in diameter were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts with aqueous ammonia in the presence of poly(ethylene glycol) (PEG). Magnetic poly(glycidyl methacrylate) (PGMA) microspheres about 1{mu}m in diameter were prepared by dispersion polymerization of GMA in aqueous ethanol in the presence of PEG-coated magnetite nanoparticles. The microspheres were hydrolyzed and carboxyl groups introduced by oxidation with KMnO{sub 4}. The particles reversibly bound bacterial DNA of Bifidobacterium and Lactobacillus genera in the presence of high concentrations of PEG 6000 and sodium chloride from crude cell lysates of various dairy products (butter milk, cheese, yoghurt, probiotic tablets) or from cell lyophilisates. The presence of Bifidobacterium and Lactobacillus DNA in samples was confirmed by PCR amplification.

  19. DistAMo: A web-based tool to characterize DNA-motif distribution on bacterial chromosomes

    Directory of Open Access Journals (Sweden)

    Patrick eSobetzko

    2016-03-01

    Full Text Available Short DNA motifs are involved in a multitude of functions such as for example chromosome segregation, DNA replication or mismatch repair. Distribution of such motifs is often not random and the specific chromosomal pattern relates to the respective motif function. Computational approaches which quantitatively assess such chromosomal motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution Analysis of DNA Motifs. The algorithm uses codon redundancy to calculate the relative abundance of short DNA motifs from single genes to entire chromosomes. Comparative genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using DistAMo revealed that (i genes beside the replication origin are enriched in GATCs, (ii genome-wide GATC distribution follows a distinct pattern and (iii genes involved in DNA replication and repair are enriched in GATCs. These features are specific for bacterial chromosomes encoding a Dam methyltransferase. The new software is available as a stand-alone or as an easy-to-use web-based server version at http://www.computational.bio.uni-giessen.de/distamo.

  20. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    Directory of Open Access Journals (Sweden)

    Stärk Katharina

    2008-07-01

    Full Text Available Abstract Background The project "Antibiotic resistance in bacteria of animal origin – II" (ARBAO-II was funded by the European Union (FAIR5-QLK2-2002-01146 for the period 2003–2005, with the aim to establish a continuous monitoring of antimicrobial susceptibility among veterinary laboratories in European countries based on validated and harmonised methodologies. Available summary data of the susceptibility testing of the bacterial pathogens from the different laboratories were collected. Method Antimicrobial susceptibility data for several bovine pathogens were obtained over a three year period (2002–2004. Each year the participating laboratories were requested to fill in excel-file templates with national summary data on the occurrence of antimicrobial resistance from different bacterial species. A proficiency test (EQAS – external quality assurance system for antimicrobial susceptibility testing was conducted each year to test the accuracy of antimicrobial susceptibility testing in the participating laboratories. The data from this testing demonstrated that for the species included in the EQAS the results are comparable between countries. Results Data from 25,241 isolates were collected from 13 European countries. For Staphylococcus aureus from bovine mastitis major differences were apparent in the occurrence of resistance between countries and between the different antimicrobial agents tested. The highest frequency of resistance was observed for penicillin. For Mannheimia haemolytica resistance to ampicillin, tetracycline and trimethoprim/sulphonamide were observed in France, the Netherlands and Portugal. All isolates of Pasteurella multocida isolated in Finland and most of those from Denmark, England (and Wales, Italy and Sweden were susceptible to the majority of the antimicrobials. Streptococcus dysgalactiae and Streptococcus uberis isolates from Sweden were fully susceptible. For the other countries some resistance was observed to

  1. Construction of infectious cDNA clone derived from a classical swine fever virus field isolate in BAC vector using in vitro overlap extension PCR and recombination.

    Science.gov (United States)

    Kamboj, Aman; Saini, Mohini; Rajan, Lekshmi S; Patel, Chhabi Lal; Chaturvedi, V K; Gupta, Praveen K

    2015-12-15

    To develop reverse genetics system of RNA viruses, cloning of full-length viral genome is required which is often challenging due to many steps involved. In this study, we report cloning of full-length cDNA from an Indian field isolate (CSFV/IVRI/VB-131) of classical swine fever virus (CSFV) using in vitro overlap extension PCR and recombination which drastically reduced the number of cloning steps. The genome of CSFV was amplified in six overlapping cDNA fragments, linked by overlap extension PCR and cloned in a bacterial artificial chromosome (BAC) vector using in vitro recombination method to generate full-length cDNA clone. The full-length CSFV cDNA clone was found stable in E. coli Stellar and DH10B cells. The full-length RNA was transcribed in vitro using T7 RNA polymerase and transfected in PK15 cells using Neon-tip electroporator to rescue infectious CSFV. The progeny CSFV was propagated in PK15 cells and found indistinguishable from the parent virus. The expression of CSFV proteins were detected in cytoplasm of PK15 cells infected with progeny CSFV at 72 h post-infection. We concluded that the in vitro overlap extension PCR and recombination method is useful to construct stable full-length cDNA clone of RNA virus in BAC vector. PMID:26478540

  2. Isolation and amplification of genomic DNA from barks of Cinnamomum spp.

    OpenAIRE

    SWETHA, Valya Parambil; PARVATHY, Viswanath Alambath; SHEEJA, Thotten Elampillay; Bhaskaran SASIKUMAR

    2014-01-01

    Cinnamomum verum Presl (syn. C. zeylanicum Blume), the cinnamon of commerce, is an important aromatic tree spice having wide applications in perfumery, flavoring, beverages, and medicine. Adulteration of cinnamon with the cheaper and inferior barks of C. aromaticum and C. malabatrum is a problem. Morphological distinction of the barks is difficult; in the case of powdered barks, the situation is even worse. DNA-based molecular tools are preferred under these circumstances. Isolation of high q...

  3. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.

    Science.gov (United States)

    Kennedy, Edward M; Cullen, Bryan R

    2015-05-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  4. Human Mitochondrial DNA and Endogenous Bacterial Surrogates for Risk Assessment of Graywater Reuse

    Science.gov (United States)

    Previous graywater risk assessment studies have focused on fecal contamination, yet the low density of fecal indicators may not provide the most useful approach to assess pathogen removal during graywater treatment. In this study, we employed high throughput bacterial sequencing ...

  5. Recovery of infectious virus from full-length cowpox virus (CPXV DNA cloned as a bacterial artificial chromosome (BAC

    Directory of Open Access Journals (Sweden)

    Roth Swaantje J

    2011-01-01

    Full Text Available Abstract Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV. We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR as a bacterial artificial chromosome (BAC in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows maintenance of large circular DNA in E. coli, into the thymidine kinase locus of CPXV by homologous recombination. Circular replication intermediates were then electroporated into E. coli DH10B cells. Upon successful establishment of the infectious BR clone, we modified the full-length clone such that recombination-mediated excision of bacterial sequences can occur upon transfection in eukaryotic cells. This self-excision of the bacterial replicon is made possible by a sequence duplication within mini-F sequences and allows recovery of recombinant virus progeny without remaining marker or vector sequences. The in vitro growth properties of viruses derived from both BAC clones were determined and found to be virtually indistinguishable from those of parental, wild-type BR. Finally, the complete genomic sequence of the infectious clone was determined and the cloned viral genome was shown to be identical to that of the parental virus. In summary, the generated infectious clone will greatly facilitate studies on individual genes and pathogenesis of CPXV. Moreover, the vector potential of CPXV can now be more systematically explored using this newly generated tool.

  6. Isolated and clustered DNA lesions induced by high-energy iron and carbon ions

    Science.gov (United States)

    Ide, H.; Tanaka, R.; Nakaarai, Y.; Terato, H.; Furusawa, Y.

    During space flight astronauts are exposed to various types of radiation from sun and galactic cosmic rays, the latter of which contain high-energy charged particles such as Fe and C ions. The radiation risk to astronauts toward such high-energy charged particles has been assessed by ground-based experiments. When irradiated by ionizing radiation, DNA molecules suffer from oxidation of bases and strand breaks. The distribution of these lesions along the DNA strand may differ significantly between densely ionizing high-energy Fe and C ions and sparsely ionizing radiation like 60Co gamma-rays. Among various types of DNA damage, bistranded clustered lesions comprised of multiple oxidized bases or strand breaks on opposite strands within a few helical turns are of particular interest since they are assumed to be resistant to repair or induce faulty repair, hence resulting in cell killing and mutations. In the present study, we have analyzed isolated and clustered DNA lesions generated by high-energy Fe and C ions to elucidate the nature of DNA lesions. Plasmid DNA (pDEL19) was irradiated in 10 mM Tris buffer (pH 7.5) by Fe (500 MeV/amu) and C (290 MeV/amu) ions and 60Co gamma-rays. Single-strand breaks (SSB) and double-strand breaks (DSB) were quantified by analysis of conformational changes using agarose gel electrophoresis. For quantification of isolated and bistranded clustered base lesions, irradiated plasmid was exhaustively digested prior to agarose gel analysis by Endo III and Fpg that preferentially incise DNA at oxidative pyrimidine and purine lesions, respectively. The yield (site/Gy/nucleotide) of isolated damages (SSB and bases lesions) tended to decrease with increasing LET [gamma (0.2 keV/μ m) 0.77 (C) > 0.69 (Fe)]. This result is in contrast to the higher biological effectiveness (e.g. cell killing) of high-energy Fe and C ions than gamma-rays, suggesting a role of more complex damage clusters that cannot be distinguished by simple analysis of direct

  7. Isolation and Characterization of Phytoene Desaturase cDNA from Stigma of Crocus sativus

    Institute of Scientific and Technical Information of China (English)

    Bai Jie(白洁); Xu Ying; Tang Lin; Zeng Yu; Feng Yun; Wang Shenghua; Chen Fang

    2004-01-01

    Phytoene desaturase (PDS) has recently been identified as an important enzyme in carotenoid biosynthesis pathway. A cDNA clone encoding phytoene desaturase gene is isolated from stigma of saffron (Crocus sativus L.) using RT-PCR technique. Sequence analysis shows 83% similarity to Narcissus pseudonarcissus, 79% to Zea mays, 78% to Arabidopsis thaliana, 77% to Lycopersicon esculentum. A new full-length cDNA is obtained by 5'-RACE and 3' -RACE techniques. The cDNA is 2149bp long with an open reading frame of 1697bp, which encodes a polypeptide of 565 amino acids. Southern analysis shows that the PDS gene is a single copy in saffron. Northern blot analysis shows higher expression level of PDS gene in stigma and anther than in leaves and stem.

  8. Priming the immune system of Penaeid shrimp by bacterial HSP70 (DnaK).

    Science.gov (United States)

    Phuoc, L H; Hu, B; Wille, M; Hien, N T; Phuong, V H; Tinh, N T N; Loc, N H; Sorgeloos, P; Bossier, P

    2016-05-01

    This study was conducted to test the effect of DnaK on priming immune responses in Penaeid shrimp. Juvenile-specific pathogen-free (SPF) P. vannamei shrimp were injected with 0.05 μg recombinant DnaK. One hour post-DnaK priming, a non-lethal dose of Vibrio campbellii (10(5) CFU shrimp(-1)) was injected. Other treatments include only DnaK or V. campbellii injection or control with blank inocula. The haemolymph of three shrimp from each treatment was collected at 1.5, 6, 9 and 12 h post-DnaK priming (hpp). It was verified that injection with DnaK and V. campbellii challenge affected the transcription of 3 immune genes, transglutaminase-1 (TGase-1), prophenoloxidase-2 (proPO-2) and endogenous HSP70 (lvHSP70). In P. monodon, shrimp were first injected with DnaK at a dose of 10 μg shrimp(-1) and one hour later with 10(6) CFU of V. harveyi (BB120) shrimp(-1). Shrimp injected with DnaK showed a significant increase in proPO expression compared to the control (P < 0.05). Yet a double injection (DnaK and Vibrio) seemed to cause an antagonistic response at the level of expression, which was not equalled at the level of PO activity. Those results suggest that DnaK is able to modulate immune responses in P. vannamei and P. monodon.

  9. Isolation and cDNA cloning of somatolactin in rabbitfish (Siganus guttatus).

    Science.gov (United States)

    Ayson, F G; de Jesus, E G; Amemiya, Y; Moriyama, S; Hirano, T; Kawauchi, H

    1999-08-01

    We report the isolation and cDNA cloning of somatolactin (SL) from rabbitfish, Siganus guttatus. Rabbitfish SL was isolated from an alkaline extract of the pituitary glands by gel filtration chromatography on Sephadex G-100 and reversed-phase high-performance liquid chromatography. SL was monitored by immunoblotting with flounder SL antiserum. The preparation (yield: 0.86 mg/g wet tissues) contained two immunoreactive bands of 24 and 28 kDa on SDS-PAGE. Overlapping partial cDNA clones corresponding to teleost SLs were amplified by PCR from single-strand cDNA from pituitary glands. Excluding the poly(A) tail, rabbitfish SL cDNA is 1605 bp long. It contains a 693-bp open reading frame encoding a signal peptide of 24 amino acids (aa) and a mature protein of 207 aa. Rabbitfish SL has two possible N-glycosylation sites at positions 11 and 121 and seven half Cys residues. The deduced amino acid sequence shows over 80% identity with those of advanced teleosts like sea bream, red drum, and flounder, 76% with the salmonids, 57% with the eel, and 46% with the goldfish SL.

  10. Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA.

    Science.gov (United States)

    Marcussi, Silvana; Stábeli, Rodrigo G; Santos-Filho, Norival A; Menaldo, Danilo L; Silva Pereira, Luciana L; Zuliani, Juliana P; Calderon, Leonardo A; da Silva, Saulo L; Antunes, Lusânia M Greggi; Soares, Andreimar M

    2013-04-01

    In the present study, micronucleus with cytokinesis blocking and comet assays were used to evaluate the genotoxic potential of Bothrops jararacussu, Bothrops atrox, Bothrops moojeni, Bothrops alternatus (Rhinocerophis alternatus) and Bothrops brazili snake venoms, and also of some isolated toxins (MjTX-I, BthTX-I and II myotoxins, BjussuMP-II metalloprotease, and BatxLAAO l-amino acid oxidase) on human lymphocytes. Significant DNA damages were observed, indicating genotoxic potential after exposure of the lymphocytes to the toxins BthTX-I, II and BatxLAAO compared to untreated and Cisplatin-treated controls, which were able to induce greater formation of micronuclei. B. brazili, B. jararacussu and B. atrox crude venoms also presented genotoxic potential, and the latter two induced DNA breakage 5 times more often than in normal environmental conditions (control without treatment). B. jararacussu venom and its isolated toxins, as well as an LAAO from B. atrox, were able to cause lymphocyte DNA breakage in the comet test with more than 85% damage levels. The DNA damage evaluation allows a widening of the toxic-pharmacological characterization of snake venoms and their toxins and also contributes to the understanding of the mechanisms of action of these molecules in several human pathologies. PMID:23333649

  11. In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA.

    Science.gov (United States)

    Niki, Hironori; Yano, Koichi

    2016-01-01

    Condensin is the major driving force in the segregation of daughter chromosomes in prokaryotes. Core subunits of condensin belong to the SMC protein family, whose members are characterized by a unique ATPase activity and dimers with a V-shaped structure. The V-shaped dimers might close between head domains, forming a ring structure that can encircle DNA. Indeed, cohesin, which is a subfamily of SMC proteins, encircles double-stranded DNA to hold sister chromatids in eukaryotes. However, the question of whether or not condensin encircles the chromosomal DNA remains highly controversial. Here we report that MukB binds topologically to DNA in vitro, and this binding is preferentially single-stranded DNA (ssDNA) rather than double-stranded DNA. The binding of MukB to ssDNA does not require ATP. In fact, thermal energy enhances the binding. The non-SMC subunits MukF and MukE did stimulate the topological binding of MukB, although they hindered DNA-binding of MukB. Recent reports on the distribution of condensin in genomes reveal that actively transcribed genes in yeast and humans are enriched in condensin. In consideration of all these results, we propose that the binding specificity of condensin to chromosome is provided not by the DNA sequence but by the DNA structure, which is ssDNA. PMID:27387439

  12. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs.

    OpenAIRE

    Sternberg, N

    1990-01-01

    The development of a bacteriophage P1 cloning system capable of accepting DNA fragments as large as 100 kilobase pairs (kbp) is described. The vectors used in this system contain a P1 packaging site (pac) to package vector and cloned DNA into phage particles, two P1 loxP recombination sites to cyclize the packaged DNA once it has been injected into a strain of Escherichia coli containing the P1 Cre recombinase, a kanr gene to select bacterial clones containing the cyclized DNA, a P1 plasmid r...

  13. Enzymatic Screening and Molecular Characterization of Thermophilic Bacterial Strains Isolated from Hotspring of Tatopani, Bhurung, Nepal

    Directory of Open Access Journals (Sweden)

    Hriush Adhikari

    2015-09-01

    Full Text Available Background and Aim: In Nepal not much of study of Thermophilic area and Thermophiles have been done. Thermophilic bacteria are less studied but are important group of microorganisms due to their ability to produce industrially important enzymes. Methods: In this study, thermophilic bacteria were isolated from hot spring of Bhurung, Nepal. Wide range of bacteria that could grow at high temperatures and tolerate extreme temperature were characterized by morphology, biochemistry and sequencing of its 16S rRNA gene sequence. The isolates were screened for production of extracellular enzymes like protease, amylase, lipase, cellulase, caseinase, pectinase and xylanase activity. Phylogenetic tree construction and G+C content evaluation of the isolate was also studied. Results: 15 isolates with ability to tolerate high temperatures were identified as Bacillus sp. by morphology, biochemistry and sequencing of its 16S rRNA gene sequence. BLAST search analysis of the sequence was performed and result showed maximum identity (99% similarity with Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus. Isolated strains exhibited considerable amount of extracellular exozymes activity. Phylogenetic analysis of the isolates revealed the relatedness among the species. The G+C content of each species was also evaluated and was found to be in range of 54.87 to 55.54%. Conclusion: The study of isolates confirmed that the isolated Bacillus sp. to be a true thermophile and could be a source of various thermostable exozymes which can be exploited for pharmaceutical and industrials applications. Much detailed study of the isolates can

  14. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA.

    Science.gov (United States)

    Aps, Luana R M M; Tavares, Milene B; Rozenfeld, Julio H K; Lamy, M Teresa; Ferreira, Luís C S; Diniz, Mariana O

    2016-06-20

    Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology.

  15. Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting.

    Science.gov (United States)

    Pérez-Brito, Daisy; Magaña-Alvarez, Anuar; Lappe-Oliveras, Patricia; Cortes-Velazquez, Alberto; Torres-Calzada, Claudia; Herrera-Suarez, Teófilo; Larqué-Saavedra, Alfonso; Tapia-Tussell, Raul

    2015-01-01

    This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing olymorphisms between isolates of this species. PMID:25557477

  16. Christensenella timonensis, a new bacterial species isolated from the human gut.

    Science.gov (United States)

    Ndongo, S; Dubourg, G; Khelaifia, S; Fournier, P-E; Raoult, D

    2016-09-01

    We propose a new species, Christensenella timonensis, strain Marseille-P2437(T) (CSUR P2437(T)), which was isolated from gut microbiota of a 66-year-old patient as a part of culturomics study. C. timonensis represents the second species isolated within the Christensenella genus. PMID:27408737

  17. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility

    Science.gov (United States)

    Chirima, George Johannes

    2016-01-01

    Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection. PMID:27774456

  18. INVESTIGATION OF ANTIMICROBIAL ACTIVITY COMBINED PREPARATIONS FOR CLINICAL STRAINS OF MICROORGANISMS ISOLATED FROM PATIENTS WITH BACTERIAL VAGINIT

    Directory of Open Access Journals (Sweden)

    Aslanian M. A.

    2015-12-01

    Full Text Available The problem of bacterial vaginit in some cases the cause of severe infectious diseases genitalia of the fetus and newborn, which can impair the health of future generations. It is noted that the treatment of antibacterial agents observed numerous negative side effects- reducing the biochemical activity of the intestinal microflora, abuse microbiota, leading to the development of dysbiosis, increasing the number of resistant strains of pathogens, the risk of allergic reaction sand immunological disorders. A study was conducted towards finding effective combinations of drugs from different pharmacological groups means to create a combination of drugs. The aim of the study was to develop and explore and Flamini combination of miramistin combined medicines to treat bacterial vaginit. As a result of studies in patients with bacterial vaginit pathological material was isolated and identified 72 strains of microorganisms (Staphylococcus spp, Streptococcus spp, Enterococcus spp, Escherichia coli, Haemophillu sssp, Candida albican sand various strains of anaerobic microorganisms. For the combined treatment of infectious and in flammatory diseases (mixed infections in humans the combined drugin tablet form. All clinical strains of microorganisms isolated from patients with bacterial vaginit were tested for sensitivity to the combined preparation in tablet form with Flamini and miramistin. The greatest sensitivity to the drugs found clinical strains of microorganisms: Staphylococcu saureus, Staphylococcus epidermidis, Peptococcus niger (diameter zone growth retardation is 25,5-23,5 mm. composition tablets number 1 (0.05 g Flamini, miramistini 0.02 g, which was selected for further study shows bacteriostatic effect against a wide range of microorganisms and fungi Rod Candida. IPC for Staphylococcus sp was 20-25 pg / mL for Streptococcus sp 35,0-40,0 mg / ml, for intestinal group 35,0-40,0 for fungi 30,0 mg / ml unlike pills number 2 and number 3, where the

  19. DnaK as Antibiotic Target: Hot Spot Residues Analysis for Differential Inhibition of the Bacterial Protein in Comparison with the Human HSP70.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available DnaK, the bacterial homolog of human Hsp70, plays an important role in pathogens survival under stress conditions, like antibiotic therapies. This chaperone sequesters protein aggregates accumulated in bacteria during antibiotic treatment reducing the effect of the cure. Although different classes of DnaK inhibitors have been already designed, they present low specificity. DnaK is highly conserved in prokaryotes (identity 50-70%, which encourages the development of a unique inhibitor for many different bacterial strains. We used the DnaK of Acinetobacter baumannii as representative for our analysis, since it is one of the most important opportunistic human pathogens, exhibits a significant drug resistance and it has the ability to survive in hospital environments. The E.coli DnaK was also included in the analysis as reference structure due to its wide diffusion. Unfortunately, bacterial DnaK and human Hsp70 have an elevated sequence similarity. Therefore, we performed a differential analysis of DnaK and Hsp70 residues to identify hot spots in bacterial proteins that are not present in the human homolog, with the aim of characterizing the key pharmacological features necessary to design selective inhibitors for DnaK. Different conformations of DnaK and Hsp70 bound to known inhibitor-peptides for DnaK, and ineffective for Hsp70, have been analysed by molecular dynamics simulations to identify residues displaying stable and selective interactions with these peptides. Results achieved in this work show that there are some residues that can be used to build selective inhibitors for DnaK, which should be ineffective for the human Hsp70.

  20. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    Science.gov (United States)

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  1. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates.

    Directory of Open Access Journals (Sweden)

    Pedro Beschoren da Costa

    Full Text Available Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling.

  2. The uptake of Ni2+ and Ag+ by bacterial strains isolated from a boreal nutrient-poor bog

    Directory of Open Access Journals (Sweden)

    Merja Lusa

    2016-05-01

    Full Text Available We studied the uptake of Ni2+ and Ag+ by bacterial strains of Paenibacillus, Pseudomonas, Burkholderia and Rhodococcus isolated from an acidic nutrient-poor boreal bog. The tests were run in two different growth media at two temperatures; +4 °C and +20 °C. All bacterial strains removed Ni2+ and Ag+ from the solution with highest efficiencies shown by one of the Pseudomonas sp. and one of the Paenibacillus sp. strains. Highest Ni2+ uptake was found in 1% Tryptone solution, whereas the highest removal of Ag+ was obtained using 1% Yeast extract. Temperature affected the uptake of Ni2+ and Ag+, but statistically significant difference was found only for Ni2+. Based on tests carried out for the bacteria in nutrient broths and for fresh samples taken from varying depth up to seven meters from the ombrotrophic bog, from which the bacteria were isolated, we estimated that in in situ conditions of the bog the uptake of Ni2+ by bacteria accounts for approximately 0.02% of the total sorption in the uppermost moss layer, 0.01% in the peat layer, 0.02% in the gyttja layer and 0.1% in the bottom clay layer of the bog. For Ag+ the corresponding values were 2.3% in the moss layer, 0.04% in the peat layer, 0.2% in the gyttja and 0.03% in the clay layer.

  3. A role for the weak DnaA binding sites in bacterial replication origins

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Løbner-Olesen, Anders

    2011-01-01

    between species. In the study by Taylor et al. (2011), new and unexpectedly weak DnaA-boxes were identified within the Caulobacter crescentus origin of replication (Cori). The position of weak and stronger DnaA-boxes follows a pattern seen in Escherichia coli oriC. This raises the possibility...

  4. Robust properties of membrane-embedded connector channel of bacterial virus phi29 DNA packaging motor.

    Science.gov (United States)

    Jing, Peng; Haque, Farzin; Vonderheide, Anne P; Montemagno, Carlo; Guo, Peixuan

    2010-10-01

    Biological systems contain highly-ordered macromolecular structures with diverse functions, inspiring their utilization in nanotechnology. A motor allows linear dsDNA viruses to package their genome into a preformed procapsid. The central component of the motor is the portal connector that acts as a pathway for the translocation of dsDNA. The elegant design of the connector and its channel motivates its application as an artificial nanopore (Nature Nanotechnology, 4, 765-772). Herein, we demonstrate the robust characteristics of the connector of the bacteriophage phi29 DNA packaging motor by single pore electrophysiological assays. The conductance of each pore is almost identical and is perfectly linear with respect to the applied voltage. Numerous transient current blockade events induced by dsDNA are consistent with the dimensions of the channel and dsDNA. Furthermore, the connector channel is stable under a wide range of experimental conditions including high salt and pH 2-12. The robust properties of the connector nanopore made it possible to develop a simple reproducible approach for connector quantification. The precise number of connectors in each sheet of the membrane was simply derived from the slopes of the plot of voltage against current. Such quantifications led to a reliable real time counting of DNA passing through the channel. The fingerprint of DNA translocation in this system has provided a new tool for future biophysical and physicochemical characterizations of DNA transportation, motion, and packaging. PMID:20523933

  5. Structure and partitioning of bacterial DNA: determined by a balance of competion and expansion forces?

    DEFF Research Database (Denmark)

    Woldringh, C. L.; Jensen, Peter Ruhdal; Westerhoff, H. V.

    1995-01-01

    The mechanisms that determine chromosome structure and chromosome partitioning in bacteria are largely unknown. Here we discuss two hypotheses: (i) the structure of the Escherichia coli nucleoid is determined by DNA binding proteins and DNA supercoiling, representing a compaction force on the one...

  6. Interplay between the bacterial nucleoid protein H-NS and macromolecular crowding in compacting DNA

    NARCIS (Netherlands)

    Wintraecken, C.H.J.M.

    2012-01-01

      In this dissertation we discuss H-NS and its connection to nucleoid compaction and organization. Nucleoid formation involves a dramatic reduction in coil volume of the genomic DNA. Four factors are thought to influence coil volume: supercoiling, DNA charge neutralization, macromolecular crow

  7. The action of the bacterial toxin microcin B17. Insight into the cleavage-religation reaction of DNA gyrase.

    Science.gov (United States)

    Pierrat, Olivier A; Maxwell, Anthony

    2003-09-12

    We have examined the effects of the bacterial toxin microcin B17 (MccB17) on the reactions of Escherichia coli DNA gyrase. MccB17 slows down but does not completely inhibit the DNA supercoiling and relaxation reactions of gyrase. A kinetic analysis of the cleavage-religation equilibrium of gyrase was performed to determine the effect of the toxin on the forward (cleavage) and reverse (religation) reactions. A simple mechanism of two consecutive reversible reactions with a nicked DNA intermediate was used to simulate the kinetics of cleavage and religation. The action of MccB17 on the kinetics of cleavage and religation was compared with that of the quinolones ciprofloxacin and oxolinic acid. With relaxed DNA as substrate, only a small amount of gyrase cleavage complex is observed with MccB17 in the absence of ATP, whereas the presence of the nucleotide significantly enhances the effect of the toxin on both the cleavage and religation reactions. In contrast, ciprofloxacin, oxolinic acid, and Ca2+ show lesser dependence on ATP to stabilize the cleavage complex. MccB17 enhances the overall rate of DNA cleavage by increasing the forward rate constant (k2) of the second equilibrium. In contrast, ciprofloxacin increases the amount of cleaved DNA by a combined effect on the forward and reverse rate constants of both equilibria. Based on these results and on the observations that MccB17 only slowly inhibits the supercoiling and relaxation reactions, we suggest a model of the interaction of MccB17 with gyrase.

  8. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility

    Directory of Open Access Journals (Sweden)

    Maryam Bello-Akinosho

    2016-01-01

    Full Text Available Restoration of polycyclic aromatic hydrocarbon- (PAH- polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates’ partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection.

  9. [Algicidal activity against red-tide algaes by marine bacterial strain N3 isolated from a HABs area, southern China].

    Science.gov (United States)

    Shi, Rong-jun; Huang, Hong-hui; Qi, Zhan-hui; Hu, Wei-an; Tian, Zi-yang; Dai, Ming

    2013-05-01

    A marine algicidal bacterium N3 was isolated from a HABs area in Mirs Bay, a subtropical bay, in southern China. Algicidal activity and algicidal mode against Phaeodactylum tricornutum, Scrippsiella trochoidea, Prorocentrum micans and Skeletonema costatum were observed by the liquid infection method. The results showed that there were no algicidal activities against P. tricornutum and S. costatum. However, when the bacterial volume fractions were 2% and 10% , S. trochoidea and P. micans could be killed, respectively. S. trochoidea cells which were exposed to strain N3 became irregular in shape and the cellular components lost their integrity and were decomposed. While, the P. micans cells became inflated and the cellular components aggregated, followed by cell lysis. Strain N3 killed S. trochoidea and P. micans directly, and the algicidal activities of the bacterial strain N3 was concentration-dependent. To S. trochoidea, 2% (V/V) of bacteria in algae showed the strongest algicidal activity, all of the S. trochoidea cells were killed within 120 h. But the growth rates of cells, in the 1% and 0. 1% treatment groups, were only slightly lower than that in the control group. In all treatment groups, the densities of strain N3 were in declining trends. While, to P. micans, 10% and 5% of bacteria in algae showed strong algicidal activities, 78% and 70% of the S. trochoidea were killed within 120 h, respectively. However, the number of S. trochoidea after exposure to 1% of bacterial cultures still increased up to 5 incubation days. And in the three treatment groups, the densities of strain N3 experienced a decrease process. The isolated strain N3 was identified as Bacillus sp. by morphological observation, physiological and biochemical characterization, and homology comparisons based on 16S rRNA sequences. PMID:23914549

  10. TREHALOSE-BASED ADDITIVE IMPROVED INTER-PRIMER BINDING SITE REACTIONS FOR DNA ISOLATED FROM RECALCITRANT PLANTS

    OpenAIRE

    Veronika Lancíková; Jana Žiarovská; Milan Bežo; Katarína Ražná; Rashydov, Namik M.; Martin Hajduch

    2014-01-01

    Trehalose-based (TBT-PAR) additive was tested in order to optimize PCR amplification for DNA isolated from recalcitrant plants. Retrotransposon-based inter-primer binding site reactions were significantly improved with TBT-PAR solution using genomic DNA isolated from flax (Linum usitatissimum L., genotypes Kyivskyi, Bethune) grown in radio-contaminated and non-radioactive remediated Chernobyl experimental fields. Additionally, similar improvements were observed using 19 recalcitrant genotypes...

  11. Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1.

    Science.gov (United States)

    Wang, Hui; Laughinghouse, Haywood D; Anderson, Matthew A; Chen, Feng; Willliams, Ernest; Place, Allen R; Zmora, Odi; Zohar, Yonathan; Zheng, Tianling; Hill, Russell T

    2012-03-01

    Increasing petroleum costs and climate change have resulted in microalgae receiving attention as potential biofuel producers. Little information is available on the diversity and functions of bacterial communities associated with biofuel-producing algae. A potential biofuel-producing microalgal strain, Nannochloropsis oceanica IMET1, was grown in Permian groundwater. Changes in the bacterial community structure at three temperatures were monitored by two culture-independent methods, and culturable bacteria were characterized. After 9 days of incubation, N. oceanica IMET1 began to aggregate and precipitate in cultures grown at 30°C, whereas cells remained uniformly distributed at 15°C and 25°C. The bacterial communities in cultures at 30°C changed markedly. Some bacteria isolated only at 30°C were tested for their potential for aggregating microalgae. A novel bacterium designated HW001 showed a remarkable ability to aggregate N. oceanica IMET1, causing microalgal cells to aggregate after 3 days of incubation, while the total lipid content of the microalgal cells was not affected. Direct interaction of HW001 and N. oceanica is necessary for aggregation. HW001 can also aggregate the microalgae N. oceanica CT-1, Tetraselmis suecica, and T. chuii as well as the cyanobacterium Synechococcus WH8007. 16S rRNA gene sequence comparisons indicated the great novelty of this strain, which exhibited only 89% sequence similarity with any previously cultured bacteria. Specific primers targeted to HW001 revealed that the strain originated from the Permian groundwater. This study of the bacterial communities associated with potential biofuel-producing microalgae addresses a little-investigated area of microalgal biofuel research and provides a novel approach to harvest biofuel-producing microalgae by using the novel bacterium strain HW001.

  12. The construction and use of bacterial DNA microarrays based on an optimized two-stage PCR strategy

    Directory of Open Access Journals (Sweden)

    Pesta David

    2003-06-01

    Full Text Available Abstract Background DNA microarrays are a powerful tool with important applications such as global gene expression profiling. Construction of bacterial DNA microarrays from genomic sequence data using a two-stage PCR amplification approach for the production of arrayed DNA is attractive because it allows, in principal, the continued re-amplification of DNA fragments and facilitates further utilization of the DNA fragments for additional uses (e.g. over-expression of protein. We describe the successful construction and use of DNA microarrays by the two-stage amplification approach and discuss the technical challenges that were met and resolved during the project. Results Chimeric primers that contained both gene-specific and shared, universal sequence allowed the two-stage amplification of the 3,168 genes identified on the genome of Synechocystis sp. PCC6803, an important prokaryotic model organism for the study of oxygenic photosynthesis. The gene-specific component of the primer was of variable length to maintain uniform annealing temperatures during the 1st round of PCR synthesis, and situated to preserve full-length ORFs. Genes were truncated at 2 kb for efficient amplification, so that about 92% of the PCR fragments were full-length genes. The two-stage amplification had the additional advantage of normalizing the yield of PCR products and this improved the uniformity of DNA features robotically deposited onto the microarray surface. We also describe the techniques utilized to optimize hybridization conditions and signal-to-noise ratio of the transcription profile. The inter-lab transportability was demonstrated by the virtual error-free amplification of the entire genome complement of 3,168 genes using the universal primers in partner labs. The printed slides have been successfully used to identify differentially expressed genes in response to a number of environmental conditions, including salt stress. Conclusions The technique detailed

  13. The in vitro activity of 15 antimicrobial agents against bacterial isolates from dogs.

    Science.gov (United States)

    Awji, Elias Gebru; Damte, Dereje; Lee, Seung-Jin; Lee, Joong-Su; Kim, Young-Hoan; Park, Seung-Chun

    2012-08-01

    The in vitro activity of 15 antimicrobial agents against clinical isolates of Staphylococcus pseudintermedius, Staphylococcus aureus, Escherichia coli, Pasteurella spp. and Streptococcus canis from dogs was investigated. For Staphylococcus spp., the highest frequency of resistance was observed for penicillin, followed by ampicillin, tetracycline and chloramphenicol. The highest frequency of resistance in E. coli isolates was recorded for tetracycline and streptomycin. Pasteurella spp. and S. canis had the highest resistance rate for tetracycline and chloramphenicol. Most isolates showed full susceptibility to low-level resistance to colistin, florfenicol and fluoroquinolones. Further studies using larger number of isolates from both healthy and diseased dogs would provide a broader picture of antimicrobial resistance at a national level and promote prudent use of antimicrobial agents in companion animals. PMID:22516694

  14. DNA sequence analysis of the triose phosphate isomerase gene from isolates of Giardia lamblia

    Institute of Scientific and Technical Information of China (English)

    卢思奇; 文建凡; 李继红; 王凤云

    2002-01-01

    Objective To confirm the genetic relation between Giardia lamblia (G. lamblia) isolates from different geographic regions of China and other countries. Methods Genomic DNA were extracted from the trophozoites or cysts of Giardia lamblia. The triose phosphate isomerase (tim) gene was amplified using polymerase chain reaction (PCR) technique. PCR products were digested with endonuclease and sequenced. The data of sequencing were analyzed with the DNAstar software and compared with that of the isolates acquired from GenBank. Results Of nine isolates of Giardia lamblia from China (C1, C2, CH2 and CH3), Cambodia (CAM), Australia (A1 and A2) and America (BP and CDC), respectively, 3 (A1, A2 and CAM) fit into Group 1 (WB), 2 (CH2 and CH3)) into Group 2, and 4 (C1, C2, BP and CDC) into Group 3 (GS). The results confirmed the genetic relatedness of G. lamblia isolates from all over the world. Conclusion Genotyping isolates of G. Lamblia provides important information for establishing the phylogenetic relationship or for the epidemiological evaluation of the spreading of this organism.

  15. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil

    OpenAIRE

    Palanisamy, Nandhini; Ramya, Jayaprakash; Kumar, Srilakshman; Vasanthi, NS; Chandran, Preethy; Khan, Sudheer

    2014-01-01

    Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel...

  16. Y chromosome and mitochondrial DNA characterization of Pasiegos, a human isolate from Cantabria (Spain).

    Science.gov (United States)

    Maca-Meyer, N; Sánchez-Velasco, P; Flores, C; Larruga, J-M; González, A-M; Oterino, A; Leyva-Cobián, F

    2003-07-01

    Mitochondrial DNA sequences and Y chromosome haplotypes were characterized in Pasiegos, a human isolate from Cantabria, and compared with those of other Cantabrian and neighbouring Northern Spain populations. Cantabria appears to be a genetically heterogeneous community. Whereas Lebaniegos do not differ from their eastern Basque and western Asturian and Galician neighbours, Pasiegos and other non-Lebaniego Cantabrians show significant differences with all of them. Pasiegos are peculiar for their high frequencies of Y chromosomal markers (E-M81) with North African assignation, and Y chromosomal (R-SRY2627) and mtDNA (V, I, U5) markers related to northern European populations. This dual geographic contribution is more in agreement with the complex demographic history of this isolate, as opposed to recent drift effects. The high incidence in Cantabrians with pre-V and V mtDNA haplotypes, considered as a signal of Postglacial recolonization in Europe from south-western refugees, points to such refugees as a better candidate population than Basques for this expansion. However, this does not discount a conjoint recolonization. PMID:12914567

  17. Isolation of Alcohol Dehydrogenase cDNA and Basal Regulatory Region from Metroxylon sagu.

    Science.gov (United States)

    Wee, Ching Ching; Roslan, Hairul Azman

    2012-01-01

    Alcohol dehydrogenase (Adh) is a versatile enzyme involved in many biochemical pathways in plants such as in germination and stress tolerance. Sago palm is plant with much importance to the state of Sarawak as one of the most important crops that bring revenue with the advantage of being able to withstand various biotic and abiotic stresses such as heat, pathogens, and water logging. Here we report the isolation of sago palm Adh cDNA and its putative promoter region via the use of rapid amplification of cDNA ends (RACE) and genomic walking. The isolated cDNA was characterized and determined to be 1464 bp long encoding for 380 amino acids. BLAST analysis showed that the Adh is similar to the Adh1 group with 91% and 85% homology with Elaeis guineensis and Washingtonia robusta, respectively. The putative basal msAdh1 regulatory region was further determined to contain promoter signals of TATA and AGGA boxes and predicted amino acids analyses showed several Adh-specific motifs such as the two zinc-binding domains that bind to the adenosine ribose of the coenzyme and binding to alcohol substrate. A phylogenetic tree was also constructed using the predicted amino acid showed clear separation of Adh from bacteria and clustered within the plant Adh group.

  18. Physiological and DNA fingerprinting of the bacterial community of Meloidogyne fallax egg masses

    NARCIS (Netherlands)

    Papert, A; Kok, CJ; van Elsas, JD

    2004-01-01

    Bacterial communities associated with the plant-parasitic nematode Meloidogyne fallax egg masses were compared with those present in the rhizoplane. Two agricultural soils with different nematode population dynamics were used in a glasshouse study, with either potato or tomato as host plant for the

  19. Using DNA Technology to Explore Marine Bacterial Diversity in a Coastal Georgia Salt Marsh

    Science.gov (United States)

    Dong, Yihe; Guerrero, Stella; Moran, Mary Ann

    2008-01-01

    An important aspect of teaching biology is to expose students to the concept of biodiversity. For this purpose, bacteria are excellent examples. The advanced placement (AP) biology class at Cedar Shoals High School in Athens, Georgia, learned how to explore bacterial biodiversity using molecular fingerprinting. They collected marine water samples,…

  20. High-fat nutrition reduces hepatic damage following exposure to bacterial DNA and hemorrhagic shock.

    NARCIS (Netherlands)

    Luyer, M.D.; Derikx, J.P.; Beyaert, R.; Hadfoune, M.; Kuppevelt, A.H.M.S.M. van; Dejong, C.H.; Heineman, E.; Buurman, W.A.; Greve, J.W.

    2009-01-01

    BACKGROUND/AIMS: Bacterial infection combined with hypotension results in exacerbation of the inflammatory response with release of interferon (IFN) gamma. This excessive inflammation may lead to development of hepatic damage and liver failure. This study investigates the effect of dietary lipids on

  1. 18S-rDNA SEQUENCING, ENZYME PATTERNS AND MORPHOLOGICAL CHARACTERIZATION OF TRICHOPHYTON ISOLATES

    Directory of Open Access Journals (Sweden)

    Nascimento Adriana Mendes do

    2001-01-01

    Full Text Available Dermatophytes, capable to use keratin of the host for nutrition, belong to one of the major groups of pathogenic fungi. Since dermatophytes are a closely related group they share various common features, and the morphology of isolates of a given species can be atypical, making species identification and differentiation even more difficult. Many methods have been explored in attempts to distinguish dermatophytes, but the combined use of different approaches for the investigation of the intraspecific and interspecific variability of Trichophyton continues to be scarce. Some studies have shown that amplified fragments of the small ribosomal DNA subunit 18S contains variable regions which can be used to discriminate between medically relevant yeast species, indicating that these regions could also be used for differentiation between dermatophytes. In our study, sequence analysis of the 18S-rDNA gene was combined with morphological and biochemical criteria in order to detect genetic differences between seven Trichophyton isolates and estimate their phylogenetic relationships. The results show that the isolates investigated belong to the Trichophyton group, which potentially contains the Trichophyton rubrum cluster.

  2. Identification of Bacterial DNA Markers for the Detection of Human and Cattle Fecal Pollution - SLIDES

    Science.gov (United States)

    Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...

  3. IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN AND CATTLE FECAL POLLUTION

    Science.gov (United States)

    Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...

  4. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology

    Directory of Open Access Journals (Sweden)

    Nguyen-Hieu Tung

    2012-09-01

    Full Text Available Abstract Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p  Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

  5. The Most Favourable Procedure for the Isolation of Cell-free DNA from the Plasma of Iso-immunized RHD-negative Pregnant Women

    OpenAIRE

    Riyaz Ahmad Rather; Subhas Chandra Saha; Veena Dhawan

    2015-01-01

    Background: The ability to achieve quality recovery of cell- free foetal DNA is important for making non-invasive prenatal diagnoses. In this study, we performed quantita‐ tive and qualitative analyses of isolated DNA from mater‐ nal plasma, using different DNA-isolation methods. Method: DNA was isolated from 30 iso-immunized women via the QIAamp column-based method, using four differ‐ ent elution volumes and two conventionally based meth‐ ods. Real-time polymerase chain-reaction quantific...

  6. Robust Properties of Membrane-Embedded Connector Channel of Bacterial Virus Phi29 DNA Packaging Motor

    OpenAIRE

    Jing, Peng; Haque, Farzin; Vonderheide, Anne P.; Montemagno, Carlo; Guo, Peixuan

    2010-01-01

    Biological systems contain highly-ordered macromolecular structures with diverse functions, inspiring their utilization in nanotechnology. A motor allows linear dsDNA viruses to package their genome into a preformed procapsid. The central component of the motor is the portal connector that acts as a pathway for the translocation of dsDNA. The elegant design of the connector and its channel motivates its application as an artificial nanopore. Herein, we demonstrate the robust characteristics o...

  7. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA.

    Science.gov (United States)

    Aps, Luana R M M; Tavares, Milene B; Rozenfeld, Julio H K; Lamy, M Teresa; Ferreira, Luís C S; Diniz, Mariana O

    2016-06-20

    Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology. PMID:27130499

  8. [Biotypes and antibiotic resistance patterns of Gardnerella vaginalis strains isolated from healthy women and women with bacterial vaginosis].

    Science.gov (United States)

    Tosun, Ilknur; Alpay Karaoğlu, Sengül; Ciftçi, Hasan; Buruk, Celal Kurtuluş; Aydin, Faruk; Kiliç, Ali Osman; Ertürk, Murat

    2007-01-01

    As Gardnerella vaginalis is accepted as a member of normal vaginal flora, it is one of the dominant species which has been related to bacterial vaginosis (BV). The aim of this study was to determine the isolation rate, biotypes and antibiotic resistance patterns of G.vaginalis from the vaginal swab samples of 408 women who were admitted to the outpatient clinics of Family Planning Center. Hippurate hydrolysis, lipase and beta-galactosidase tests were performed for biotyping the isolates, and agar dilution (for metronidazole) and disk diffusion (for clindamycin) tests were used for the detection of antibiotic resistance patterns. As a result, by Nugent's BV scoring protocol, 122 (29.9%), 20 (29.4%), 137 (33.6%), and 18 (4.4%) of the women were diagnosed as BV, intermediate form, normal vaginal flora (NVF) and mycotic vaginosis, respectively. The overall isolation rate of G.vaginalis was found as 23% (94/408). Of them, 56.4% (53/94) and 8.5% (8/94) were isolated from samples of BV cases and subjects with NVF, respectively, and the difference was statistically significant (pbiotyping results showed that the most frequently detected types were biotype 1 (44%), 5 (20%) and 4 (18%). There was no statistically significant difference between the biotype distribution of BV patients and the subjects who have NVF (p=0.687). The results of antibiotic susceptibility tests indicated that 70% and 53% of the isolates were resistant to metronidazole and clindamycin, respectively. It was of interest that MIC values for metronidazole was > or =128 microg/ml in 57% of resistant strains. The data of this study has emphasized that the metronidazole resistance is very high in our population, and the large scale studies are needed to clarify the relationship between BV and G.vaginalis biotypes, which can be found in the normal vaginal flora.

  9. Measuring the CCN and IN ability of bacterial isolates: implications for the southeastern United States and Puerto Rico

    Science.gov (United States)

    Purdue, S.; Waters, S.; Konstantinidis, K.; Nenes, A.; DeLeon-Rodriguez, N.

    2015-12-01

    Ice nucleation is an important process in the climate system as it influences global precipitation processes, and can affect the vertical distribution of clouds with effects that both cool and warm the atmosphere. Of the pathways to ice nucleation, immersion mode, which occurs when ice nuclei (IN) particles are surrounded by an aqueous phase that subsequently freezes, dominates primary ice production in mixed-phase clouds. A simple but effective method to study immersion freezing is to utilize a droplet freezing assay (DFA) that consists of an aluminum plate, precisely cooled by a continuous flow of an ethylene glycol-water mixture. Using such a system we study the immersion IN characteristics of bacterial isolates (for temperatures ranging from -15oC to 0oC) isolated from rainwater and air collected in Atlanta, GA and Puerto Rico, over storms throughout the year. Despite their relatively large size and the presence of hydrophilic groups on the outer membranes of many bacteria, it is unclear if bacteria possess an inherent ability to nucleate an aqueous phase (a requirement for immersion freezing) for the wide range of supersaturations found in clouds. For this, we measure the cloud condensation nucleation (CCN) activity of each isolate (over the 0.05% to 0.6% supersaturation range) using a Continuous Flow Streamwise Thermal Gradient CCN Counter. Initial results have shown certain isolates to be very efficient CCN, allowing them to form droplets even for the very low supersaturations found in radiation fogs. In combination, these experiments provide insight into the potential dual-ability of some bacteria, isolated from the southeastern United States and Puerto Rico, to act as both efficient CCN and IN.

  10. Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation and functional analysis of four monoterpene synthases

    NARCIS (Netherlands)

    Lücker, J.; El Tamer, M.K.; Schwab, W.; Verstappen, F.W.A.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2002-01-01

    Citrus limon possesses a high content and large variety of monoterpenoids, especially in the glands of the fruit flavedo. The genes responsible for the production of these monoterpenes have never been isolated. By applying a random sequencing approach to a cDNA library from mRNA isolated from the pe

  11. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  12. Methodological variations in the isolation of genomic DNA from Streptococcus bacteria

    Directory of Open Access Journals (Sweden)

    Mônica Moreira

    2010-08-01

    Full Text Available In this work, genomic DNA of Streptococcus pyogenes, S. mutans and S. sobrinus was isolated using two methods: either using the detergent cetyltrimethylammonium bromide (CTAB at 65ºC; or by applying ultrasound to a mixture of silica and celite in CTAB. The composite method that used ultrasound was the more efficient, allowing the straightforward extraction of genomic DNA from Gram-positive bacteria with good quality and reproducibility.O gênero Streptococcus encontra-se amplamente distribuído na natureza e algumas espécies constituem a microbiota humana da cavidade bucal, como Streptococcus pyogenes, que pode estar associado a importantes doenças humanas, Streptococcus mutans e Streptococcus sobrinus, relacionados à cárie dental. O DNA genômico destas três espécies foi isolado utilizando-se dois métodos, o primeiro utilizando o detergente brometo de cetiltrimetilamônio (CTAB à 65ºC e outro associando ultra-som a uma mistura de sílica e celite em CTAB. O método que possibilitou a extração do DNA genômico das bactérias Gram positivas, com qualidade, boa reprodutibilidade fácil execução foi aquele que utilizou ultra-som associado à sílica e celite em CTAB.

  13. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  14. ISOLATION OF PHYTOPLASMA DNA FROM THE COCONUT PALMS (Cocos nucifera L. COLLECTED FROM GHANA

    Directory of Open Access Journals (Sweden)

    Oulo Alla-N'Nan

    2014-10-01

    Full Text Available This study aimed to verify the presence of the causative agent of Lethal Yellowing which is phytoplasma in samples provided from infected coconut trees. Study was carried out by using various samples like zygotic embryo, young leaves and immature & mature inflorescences. These materials were collected from trees at the stage 1 and 2 of the disease development.. Stage 1 of disease development is characterized by leaf yellowing and the start of the falling nuts while at the stage 2 of disease development, the trees has not bear nuts longer. From infected material, DNA was extracted by three different processes and isolated DNA was amplified by PCR. 16S rRNA gene was amplified by two specific primers of phytoplama viz P1/P2 and Ghana 813/AKSR. Among the various tested materials presence of phytoplasma was reported from the mature inflorescences while the presence of the phytoplasma was not reported from the leaves and embryos of the coconut.

  15. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Science.gov (United States)

    Fiore, Emmanuelle; Dausse, Eric; Dubouchaud, Hervé; Peyrin, Eric; Ravelet, Corinne

    2015-08-01

    Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR) amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization) of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s) was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  16. Fluorescence-PCR Assays and Isolation of Luminescent Bacterial Clones Using an Automated Plate Reader

    Science.gov (United States)

    Crowley, Thomas E.

    2011-01-01

    The genes responsible for luminescence in various species of the marine microorganism "Photobacterium", have been used for many years as a tool by researchers and instructors. In particular, the "lux" operon of "Photobacterium fischeri" has been used by many instructors to teach recombinant DNA techniques. Two methods using an automated plate…

  17. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Energy Technology Data Exchange (ETDEWEB)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Baelum, Jacob; Tas, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Phillip; Prieme, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  18. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    Directory of Open Access Journals (Sweden)

    Claudia Coronel-Olivares

    2013-08-01

    Full Text Available The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains, Enterobacter cloacae, Kluyvera cryocrescens (three strains, Kluyvera intermedia, Citrobacter freundii (two strains, Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1, contact time (0, 15 and 30 min and water temperature (20, 25 and 30 °C. The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min. The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  19. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten;

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood and......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  20. Purification and functional analysis of the recombinant protein isolated from E. coli by employing three different methods of bacterial lysis

    Directory of Open Access Journals (Sweden)

    MARIJA MOJSIN

    2005-07-01

    Full Text Available In this paper, the purification of the human recombinant protein expressed in E. coli using the GSTGene Fusion System, by applying various methods of bacterial lysis: sonication, freeze/thaw and beadbeating, is presented. The study was an attempt to compare the properties of the proteins obtained by the sonication method, recommended by manufacturers but inaccessible for many researchers, with those obtained using two other readily available lysis methods. The data show that all purified proteins were soluble and intact with the highest protein yield being obtained via the freeze/thaw method. The results of functional analysis indicate that the proteins purified using the sonication and freeze/thaw methods of lysis exhibited similar DNA binding affinity, while the protein purified by beadbeating was also functional but with a lower binding affinity. The conclusion of this study is that all three lysis methods could be successfully employed for protein purification.

  1. MicroRNA expression in lung tissue and blood isolated from pigs suffering from bacterial pneumonia

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Wendt, Karin Tarp; Heegaard, Peter M. H.

    , where also studied using miRCURY™ LNA arrays (Exiqon, Denmark). Piglets were inoculated by dripping 1ml bacterial suspension, into each nostril during inhalation. Each time group is a different set of 4-6 pigs. Most of the inoculated pigs revealed characteristic, well demarcated, lung lesions...... all miRNAs for human, mouse and rat. The miRCURY™ LNA array microarray slides were scanned, and image analysis was carried out using the ImaGene 8.0 software (BioDiscovery, Inc., USA). A two-tailed T-test calculated between infected and control identified 10 of 1263 miRNA to be differentially...

  2. Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Owsianiak, Mikolaj; Szczepaniak, Zuzanna;

    2016-01-01

    kinetics on individual hydrocarbons. However, despite this low resistance, structural and functional resilience were high, as verified by re-exposing the hydrocarbon-perturbed consortium to diesel fuel. The high resilience is either due to the short exposure time, insufficient for permanent changes...... structural resistance. The structural resistance was low, with changes in relative abundances of up to four orders of magnitude, depending on hydrocarbon type and bacterial taxon. This low resistance is explained by the presence of hydrocarbon-degrading specialists in the consortium and differences in growth...

  3. Preparation and Characterization of Super-paramagnetic Nano-beads for DNA Isolation

    Institute of Scientific and Technical Information of China (English)

    Xin XIE; Xu ZHANG; Bing Bin YU; wei Yang FE

    2004-01-01

    Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With this method, the thickness of the coating layer and the functional group contents on the nano-beads could be controlled by changing the quantity of the coated monomers. The nanobeads were characterized by means of transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR). The carboxyl-modified magnetic nano-beads were employed to streamline the protocol of isolation of genomic DNA from the human whole blood.

  4. Genetic diversity of Colombian sylvatic Trypanosoma cruzi isolates revealed by the ribosomal DNA

    Directory of Open Access Journals (Sweden)

    Cuervo Patricia

    2002-01-01

    Full Text Available American trypanosomiasis is a common zoonosis in Colombia and Trypanosoma cruzi presents a wide distribution throughout the country. Although some studies based on enzyme electrophoresis profiles have described the population structure of the parasite, very few molecular analyses of genotipic markers have been conducted using Colombian strains. In this study, we amplified the non-transcribed spacer of the mini-gene by PCR, typing the isolates as T. cruzi I, T. cruzi zymodeme 3 or T. rangeli. In addition, the internal transcribed spacers of the ribosomal gene concomitant with the 5.8S rDNA were amplified and submitted to restriction fragment polymorphism analysis. The profiles were analyzed by a numerical methodology generating a phenetic dendrogram that shows heterogeneity among the T. cruzi isolates. This finding suggests a relationship between the complexity of the sylvatic transmission cycle in Colombia and the diversity of the sylvan parasites.

  5. Sequence analysis of the rDNA intergenic spacer of Metarhizium strains isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Fabiana Y. Yanaka-Schäfer

    2008-01-01

    Full Text Available To assess the extent of genetic variability of rDNA intergenic spacer (IGS in Metarhizium sp., 34 strains (27 isolated in Brazil were sequenced and analyzed together with an additional 20 Metarhizium anisopliae var. anisopliae sequences retrieved from GenBank. Overall, the global nucleotide diversity for the region under study was of 0.090, while for the Brazilian isolates it was only 0.016. Phylogenetic analyses showed four well-supported groups (A, B, C, and D, one of which (D has not been previously identified. All but one of the Brazilian strains cluster in this novel D phylogroup, suggesting that the genetic variation found in Brazil is a subset of the worldwide M. anisopiliae var. anisopliae variation.

  6. Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus.

    Science.gov (United States)

    Gamboa, Maria C; Rasmussen-Poblete, Susana; Valenzuela, Pablo D T; Krauskopf, Erwin

    2007-01-01

    The transcription factors CBF/DREB play an important role during low temperature, drought and high-salt stress in higher plants. In this work, we isolated one full-length CBF cDNA clone from the angiosperm Eucalyptus globulus. The derived peptide sequence reveals that it encodes a transcriptional activator that has all the characteristic motifs present in CBF proteins previously described in Arabidopsis and tomato. RT-PCR analysis shows that EgCBF1 is transiently induced in E. globulus seedlings that had been exposed to low temperature within the first 15 min. These results suggest that the isolated CBF gene participates in the cold responsive pathway of E. globulus.

  7. Bacterial Intoxication Evokes Cellular Senescence with Persistent DNA Damage and Cytokine Signaling

    DEFF Research Database (Denmark)

    Blazkova, Hana; Krejcikova, Katerina; Moudry, Pavel;

    2009-01-01

    Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram-negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type-dependent cell-cycle arrest or apoptosis; however the cell fate responses to suc...... of this group of bacterial toxins, and warrant further investigation of their role(s) in human disease.......Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram-negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type-dependent cell-cycle arrest or apoptosis; however the cell fate responses...... features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may...

  8. Using DNA Microarrays To Identify Library-Independent Markers for Bacterial Source Tracking

    OpenAIRE

    Soule, Marilyn; Kuhn, Edward; Loge, Frank; Gay, John; Call, Douglas R.

    2006-01-01

    Bacterial source tracking is used to apportion fecal pollution among putative sources. Within this context, library-independent markers are genetic or phenotypic traits that can be used to identify the host origin without a need for library-dependent classification functions. The objective of this project was to use mixed-genome Enterococcus microarrays to identify library-independent markers. Separate shotgun libraries were prepared for five host groups (cow, dog, elk/deer, human, and waterf...

  9. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis.

    Directory of Open Access Journals (Sweden)

    Robert E Tyx

    Full Text Available The bacterial communities present in smokeless tobacco (ST products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae. The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products.

  10. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis.

    Science.gov (United States)

    Tyx, Robert E; Stanfill, Stephen B; Keong, Lisa M; Rivera, Angel J; Satten, Glen A; Watson, Clifford H

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products.

  11. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity.

    Science.gov (United States)

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection - induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone's antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  12. Detection of cytomegalovirus in urine of HIV-infected patients by DNA-DNA hybridization comparison with virus isolation, immunofluorescence and immunoperoxidase

    Directory of Open Access Journals (Sweden)

    Angel Valdivia

    1992-03-01

    Full Text Available Immunofluorescence and immunoperoxidase test directed against early viral antigens, and DNA-DNA hybridization were compared with viral isolation for their abilities to detect Cytomegalovirus (CVM in the urine of 89 HIV infected patients. From the 100 urine samples collected, 70 were found positive by at least one method. Considering viral isolation as the "gold standard" technique, immunofluorescence and immunoperoxidase had a sensitivity of 92.3% and88% respectively, with a specificity in both cases of 95%. DNA-DNA hybridization showed a sensitivity of 90% but with lower (60% specificity. All of the three assays were effective in detecting CVM from urine and the technical advantage of each is discussed.

  13. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS).

    Science.gov (United States)

    Coil, David A; Neches, Russell Y; Lang, Jenna M; Brown, Wendy E; Severance, Mark; Cavalier, Darlene; Eisen, Jonathan A

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  14. “Bacillus mediterraneensis,” a new bacterial species isolated from human gut microbiota

    OpenAIRE

    Alou, M.T.; P.-E. Fournier; Raoult, D.

    2016-01-01

    We present a brief description of “Bacillus mediterraneensis” strain Marseille-P2366T (= CSUR P2366 = DSM 102091), a new species isolated from the gastrointestinal tract of a healthy 13-month-old boy from Senegal.

  15. Genome Sequences of 12 Bacterial Isolates Obtained from the Urine of Pregnant Women

    Science.gov (United States)

    Weimer, Cory M.; Deitzler, Grace E.; Robinson, Lloyd S.; Park, SoEun; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The presence of bacteria in urine can pose significant risks during pregnancy. However, there are few reference genome strains for many common urinary bacteria. We isolated 12 urinary strains of Streptococcus, Staphylococcus, Citrobacter, Gardnerella, and Lactobacillus. These strains and their genomes are now available to the research community. PMID:27688327

  16. Genome Sequences of 12 Bacterial Isolates Obtained from the Urine of Pregnant Women.

    Science.gov (United States)

    Weimer, Cory M; Deitzler, Grace E; Robinson, Lloyd S; Park, SoEun; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Warren G; Lewis, Amanda L

    2016-01-01

    The presence of bacteria in urine can pose significant risks during pregnancy. However, there are few reference genome strains for many common urinary bacteria. We isolated 12 urinary strains of Streptococcus, Staphylococcus, Citrobacter, Gardnerella, and Lactobacillus These strains and their genomes are now available to the research community. PMID:27688327

  17. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  18. Molecular Cloning and Bacterial Expression of Germacrene A Synthase cDNA from Crepidiastrum sonchifolium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Germacrene A synthase(GAS) catalyzes the biosynthesis of germacrene A, which is a key precursor for sesquiterpene lactones. Cloning of a novel full-length cDNA encoding GAS from the medicinal plant Crepidiastrum sonchifolium(designated CsGAS) is reported in this study. The cDNA is 1837 bp long and contains a 1680-bp open reading frame encoding a 559 amino-acid protein. The functional expression of the cDNA in Escherichia coli, as an N-terminal thioredoxin fusion protein, with the pET32a vector yielding a recombinant enzyme. Sequence analysis was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco, and the effect of possible involvement of a number of amino acids in sesquiterpene synthase on product specificity was also discussed.

  19. Development of a Competent and Trouble Free DNA Isolation Protocol for Downstream Genetic Analyses in Glycine Species

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Nawaz

    2016-08-01

    Full Text Available Extraction of deoxyribose nucleic acid (DNA from plants is preliminary step in molecular biology. Fast and cost effective genomic DNA isolation from Glycine species for downstream application is a major bottleneck. Here we report a high throughput and trouble free method for genomic DNA extraction from leaf and seeds of Glycine species with high quality and quantity. Protocol reports the optimization by employing different concentrations of CTAB and PVP in extraction buffer. Efficiency of optimized protocol was compared with frequently used DNA extraction methods. Wide adoptability and utility of this protocol was confirmed by DNA extraction from leaves as well as seeds of G. max, G. soja, G. tomentella and G. latifolia. Extracted DNA was successfully subjected to PCR amplification of five microsatellite markers and four putative glycosyltransferase genes. DNA extraction protocol is reproducible, trouble free, rapid and can be adopted for plant molecular biology applications.

  20. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains

    Institute of Scientific and Technical Information of China (English)

    Abdul Viqar Khan; Qamar Uddin Ahmed; M Ramzan Mir; Indu Shukla; Athar Ali Khan

    2011-01-01

    To investigate the antibacterial potential of the polar and non-polar extracts of the seeds of Melia azedarach (M. azedarach) L. (Meliaceae) against eighteen hospital isolated human pathogenic bacterial strains. Methods: Petrol, benzene, ethyl acetate, methanol, and aqueous extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were evaluated. Disk diffusion method was followed to evaluate the antibacterial efficacy. Results: All extracts of the seeds demonstrated significant antibacterial activity against tested pathogens. Among all extracts, ethyl acetate extract revealed the highest inhibition comparatively. The present study also favored the traditional uses reported earlier. Conclusions: Results of this study strongly confirm that the seed extracts of M. azedarach could be effective antibiotics, both in controlling gram-positive and gram-negative human pathogenic infections.

  1. Effect of PGR producing bacterial strains isolated from vermisources on germination and growth of Vigna unguiculata (L. Walp.

    Directory of Open Access Journals (Sweden)

    Anandharaj Marimuthu

    2014-12-01

    Full Text Available Nineteen bacterial strains were isolated from vermisources andscreened for Indole-3-acetic acid (IAA production among themonly nine strains produce IAA and they were identified asStreptococcus spp., Micrococcus spp., Klebsiella spp., Bacillus spp., Enterobacter spp., Escherichia spp., Alcaligenes spp., Erwinia spp., and Pseudomonas spp. Among all other strains Bacillus sp. showed the higher IAA production hence selected for further molecular analysis and confirmed as Bacillus cereus. The B. cereus was grown in nutrient broth supplemented with different concentrations (1, 2, 3, 4 and 5mg/ml of tryptophan for seven days at pH 7 and at 37ºC. Crude IAA was used for in vitro phytostimulatory studies using Vigna unguiculata (L. Walp. The plant growth parameters were analyzed at different day intervals (5, 10 and 15 days. Supplementation of 5 ml crude IAA (2mg/ml of tryptophan dynamically enhances the plant growth parameters after 15 days.

  2. Identification of nif genes in N2-fixing bacterial strains isolated from rice fields along the Yangtze River Plain.

    Science.gov (United States)

    Xie, Guang Hui; Cui, Zongjun; Yu, Jun; Yan, Jing; Hai, Weili; Steinberger, Yosef

    2006-01-01

    The aim of this research was to identify nifH and nifHDKYE ' genes in twenty strains of N2-fixing heterotrophic bacteria isolated from rice fields in the Yangtze River Plain. Southern hybridization of the total DNA from each strain was performed with the Klebsiella pneumoniae nifHDKYE ' gene probe (6.2 kb Eco RI fragment from pSA30) and the Azospirillum brasilense nifH gene probe (0.6 kb Eco RI-Hin dIII fragment from pHU8). We found that Eco RI fragments of total DNA from Aeromonas hydrophila HY2, Bacillus azotoformans FD, Bacillus licheniformis NCH1, NCH5, WH4, Bacillus brevis NC2, Bacillus pumilus NC12, Bacillus cereus NCH2, Citrobacter freundii HY5, HY9, Derxia gummosa HZ5, Pseudomonas mendocina HZ1 and Pseudomonas pseudoalcaligenes WH3 were positively hybridized with both of the probes. Agrobacterium radiobacter HY17, Corynebacterium sp. HY12, YZ and Pseudomonas sp. HY11 had Eco RI fragments hybridized with the K. pneumoniae nifHDKYE ' gene probe. An Eco RI fragment of total DNA from Bacillus megaterium YY4 was positively hybridized to the A. brasilense nifH gene probe. No hybridization sign was found in the total DNA fragments from Alcaligenes cupidus YY6 and Corynebacterium sp. NC11 hybridized with either of the gene probes. The data provide the number and size of EcoRI fragments of the total DNA hybridized with the nif gene probes for these strains of rarely studied species, suggesting additional evidence for N2 fixing and nif gene diversity of N2-fixing bacteria in rice fields along the Yangtze River Plain.

  3. Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China.

    Science.gov (United States)

    Li, Xinfei; Zhao, Lin; Adam, Mohamed

    2016-04-15

    This study aims at constructing an efficient bacterial consortium to biodegrade crude oil spilled in China's Bohai Sea. In this study, TCOB-1 (Ochrobactrum), TCOB-2 (Brevundimonas), TCOB-3 (Brevundimonas), TCOB-4 (Bacillus) and TCOB-5 (Castellaniella) were isolated from Bohai Bay. Through the analysis of hydrocarbon biodegradation, TCOB-4 was found to biodegrade more middle-chain n-alkanes (from C17 to C23) and long-chain n-alkanes (C31-C36). TCOB-5 capable to degrade more n-alkanes including C24-C30 and aromatics. On the basis of complementary advantages, TCOB-4 and TCOB-5 were chosen to construct a consortium which was capable of degrading about 51.87% of crude oil (2% w/v) after 1week of incubation in saline MSM (3% NaCl). It is more efficient compared with single strain. In order to biodegrade crude oil, the construction of bacterial consortia is essential and the principle of complementary advantages could reduce competition between microbes.

  4. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B;

    2006-01-01

    by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  5. Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett-Burman design.

    Science.gov (United States)

    Hassan, Mariam; Essam, Tamer; Yassin, Aymen S; Salama, Aisha

    2016-01-01

    Biosurfactants are biological surfactants produced by microorganisms. Pseudomonas species are well known for the production of the rhamnolipid biosurfactant. In this work, the production of rhamnolipid biosurfactant by Pseudomonas spp. was investigated and further optimized. Two Plackett-Burman designs to study the effect of carbon source, nitrogen source, C/N ratio, iron concentration, magnesium concentration, phenol toxicity, pH, temperature, agitation and sampling time were tested. The first design revealed an optimization that increased biosurfactant productivity by almost two to fivefolds for the tested isolates. However, using the second design showed no remarkable increase in biosurfactant productivity. An additional validation run was adopted using the predicted optimal medium with predicted optimal conditions. The validation run showed remarkable increase in the productivity of the tested isolates. The use of microorganisms with biodegradation ability coupled with optimization of the parameters affecting productivity provides an efficient strategy for biosurfactant production.

  6. Isolation of non-sulphur photosynthetic bacterial strains efficient in hydrogen production at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1991-01-01

    Four strains of non-sulphur photosynthetic bacteria were isolated from root zone associations of aquatic plants like Azolla, Salvinia and Eichhornia, as well as the deep-water rice. Based on the gross cell morphology and pigmentation, the isolates resembled Rhodopseudomonas sp. and have been designated as BHU strains 1 to 4, respectively. When subjected to elevated temperature (from 33-45{sup o}C), substantial growth/hydrogen production could be observed only in strains 1 and 4. Strains 2 and 3 on the other hand, showed diminished growth and negligible hydrogen photoproduction. The BHU strains 1 and 4 have been selected as the most active (thermostable) hydrogen producing strains of local origin as far as the Indian tropical climate is concerned. (author).

  7. Isolation and Structural Determination of an Anti Bacterial Constituent from the Leaves of Cassia alata Linn.

    Directory of Open Access Journals (Sweden)

    Barnali Paul

    2013-05-01

    Full Text Available By different solvent extractions and chromatographic techniques an antibacterial constituent was isolated from leaves of Cassia alata Linn. Infra red spectroscopy, mass spectroscopy and nuclear magnetic resonance studies showed that the isolated compound was chemically 3,4 dihydroxy cinnamic acid. In vitro antibacterial activity of 3,4 dihydroxy cinnamic acid was studied against four Gram-positive and four Gram-negative bacteria using disc diffusion method. Minimum inhibitory concentration (MIC of 3,4 dihydroxy cinnamic acid was also recorded against those bacteria by serial dilution technique. Kanamycin was used as positive control. Results showed that 3,4 dihydroxy cinnamic acid had antibacterial activity against the tested bacteria.

  8. Increasing Ciprofloxacin Resistance Among Prevalent Urinary Tract Bacterial Isolates in Gaza Strip, Palestine

    Directory of Open Access Journals (Sweden)

    Zakaria El Astal

    2005-01-01

    Full Text Available This article presents the incidence of ciprofloxacin resistance among 480 clinical isolates obtained from patients with urinary tract infection (UTI during January to June 2004 in Gaza Strip, Palestine. The resistance rates observed were 15.0% to ciprofloxacin, 82.5% to amoxycillin, 64.4% to cotrimoxazole, 63.1% to doxycycline, 32.5% to cephalexin, 31.9% to nalidixic acid, and 10.0% to amikacin. High resistance to ciprofloxacin was detected among Acinetobacter haemolyticus (28.6%, Staphylococcus saprophyticus (25.0%,Pseudomonas aeruginosa (20.0%, Klebsiella pneumonia (17.6%, and Escherichia coli (12.0%. Minimal inhibitory concentration (MIC of ciprofloxacin evenly ranged from 4 to 32 μg/mL with a mean of 25.0 μg/mL. This study indicates emerging ciprofloxacin resistance among urinary tract infection isolates. Increasing resistance against ciprofloxacin demands coordinated monitoring of its activity and rational use of the antibiotics.

  9. Method for isolating chromosomal DNA in preparation for hybridization in suspension

    Science.gov (United States)

    Lucas, Joe N.

    2000-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. Chromosomal DNA in a sample containing cell debris is prepared for hybridization in suspension by treating the mixture with RNase. The treated DNA can also be fixed prior to hybridization.

  10. Interactions of Antibiotics and Methanolic Crude Extracts of Afzelia Africana (Smith. Against Drug Resistance Bacterial Isolates

    Directory of Open Access Journals (Sweden)

    Anthony Okoh

    2011-07-01

    Full Text Available Infection due to multidrug resistance pathogens is difficult to manage due to bacterial virulence factors and because of a relatively limited choice of antimicrobial agents. Thus, it is imperative to discover fresh antimicrobials or new practices that are effective for the treatment of infectious diseases caused by drug-resistant microorganisms. The objective of this experiment is to investigate for synergistic outcomes when crude methanolic extract of the stem bark of Afzelia africana and antibiotics were combined against a panel of antibiotic resistant bacterial strains that have been implicated in infections. Standard microbiological protocols were used to determine the minimum inhibitory concentrations (MICs of the extract and antibiotics, as well as to investigate the effect of combinations of the methanolic extract of A. africana stem bark and selected antibiotics using the time-kill assay method. The extract of Afzelia africana exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria made up of environmental and standard strains at a screening concentration of 5 mg/mL. The MICs of the crude extracts and the antibiotics varied between 1 μg/mL and 5.0 mg/mL. Overall, synergistic response constituted about 63.79% of all manner of combinations of extract and antibiotics against all test organisms; antagonism was not detected among the 176 tests carried out. The extract from A. africana stem bark showed potentials of synergy in combination with antibiotics against strains of pathogenic bacteria. The detection of synergy between the extract and antibiotics demonstrates the potential of this plant as a source of antibiotic resistance modulating compounds.

  11. Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae.

    Science.gov (United States)

    Schröder, Gunnar; Schuelein, Ralf; Quebatte, Maxime; Dehio, Christoph

    2011-08-30

    Bacterial type IV secretion systems (T4SS) mediate interbacterial conjugative DNA transfer and transkingdom protein transfer into eukaryotic host cells in bacterial pathogenesis. The sole bacterium known to naturally transfer DNA into eukaryotic host cells via a T4SS is the plant pathogen Agrobacterium tumefaciens. Here we demonstrate T4SS-mediated DNA transfer from a human bacterial pathogen into human cells. We show that the zoonotic pathogen Bartonella henselae can transfer a cryptic plasmid occurring in the bartonellae into the human endothelial cell line EA.hy926 via its T4SS VirB/VirD4. DNA transfer into EA.hy926 cells was demonstrated by using a reporter derivative of this Bartonella-specific mobilizable plasmid generated by insertion of a eukaryotic egfp-expression cassette. Fusion of the C-terminal secretion signal of the endogenous VirB/VirD4 protein substrate BepD with the plasmid-encoded DNA-transport protein Mob resulted in a 100-fold increased DNA transfer rate. Expression of the delivered egfp gene in EA.hy926 cells required cell division, suggesting that nuclear envelope breakdown may facilitate passive entry of the transferred ssDNA into the nucleus as prerequisite for complementary strand synthesis and transcription of the egfp gene. Addition of an eukaryotic neomycin phosphotransferase expression cassette to the reporter plasmid facilitated selection of stable transgenic EA.hy926 cell lines that display chromosomal integration of the transferred plasmid DNA. Our data suggest that T4SS-dependent DNA transfer into host cells may occur naturally during human infection with Bartonella and that these chronically infecting pathogens have potential for the engineering of in vivo gene-delivery vectors with applications in DNA vaccination and therapeutic gene therapy. PMID:21844337

  12. Physico-chemical surface characterization of a bacterial population isolated from a milking machine

    OpenAIRE

    Teixeira, P.; Lopes, Zulmira; Azeredo, Joana; Oliveira, Rosário; Vieira, M. J.

    2005-01-01

    The hydrophobicity of 26 species of bacteria representative of the main genera isolated from a rubber short milk tube, which is a constituent of a cluster from a milking machine, was determined. The materials forming the cluster namely rubber, stainless steel (SS) 316, stainless steel (SS) 304, glass and polymethylmethacrylate (PMMA) were also assayed in terms of hydrophobicity. In relation with the hydrophobicity of bacteria, all the strains of Lactobacillus lactis lactis as well as...

  13. Enzymatic Screening and Molecular Characterization of Thermophilic Bacterial Strains Isolated from Hotspring of Tatopani, Bhurung, Nepal

    OpenAIRE

    Hriush Adhikari; Sangam Ghimire; Binod Khatri; Yuvraj K.C.

    2015-01-01

    Background and Aim: In Nepal not much of study of Thermophilic area and Thermophiles have been done. Thermophilic bacteria are less studied but are important group of microorganisms due to their ability to produce industrially important enzymes. Methods: In this study, thermophilic bacteria were isolated from hot spring of Bhurung, Nepal. Wide range of bacteria that could grow at high temperatures and tolerate extreme temperature were characterized by morphology, biochemistry and sequencing o...

  14. Textile Dye Removal from Wastewater Effluents Using Bioflocculants Produced by Indigenous Bacterial Isolates

    OpenAIRE

    Balakrishna Pillay; Ademola O Olaniran; Simphiwe P. Buthelezi

    2012-01-01

    Bioflocculant-producing bacteria were isolated from activated sludge of a wastewater treatment plant located in Durban, South Africa, and identified using standard biochemical tests as well as the analysis of their 16S rRNA gene sequences. The bioflocculants produced by these organisms were ethanol precipitated, purified using 2% (w/v) cetylpyridinium chloride solution and evaluated for removal of wastewater dyes under different pH, temperature and nutritional conditions. Bioflocculants from ...

  15. Isolation and Screening of Hydrocarbon Degrading Bacterial Strains for Bioremediation of Petroleum Pollution in Qatar

    OpenAIRE

    Al Disi, Zulfa Ali

    2013-01-01

    Pollution, due to activities related to the oil industry, represents a serious threat to the natural environment. The application of biotechnological methods provides much safer and sustainable alternatives for bioremediation of polluted areas, using microorganisms. Several techniques for the isolation of hydrocarbon degrading bacteria have been investigated and published worldwide. A wide range of bilogical activities was shown. However, local hydrocarbon degrading strains and the factors af...

  16. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media.

    Science.gov (United States)

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-07-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001-1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media.

  17. QUANTITATIVE ESTIMATION OF DNA ISOLATED FROM VARIOUS PARTS OF ANNONA SQUAMOSA

    Directory of Open Access Journals (Sweden)

    Soni Himesh

    2011-12-01

    Full Text Available Plants have been one of the important sources of medicines since the beginning of human civilization. There is a growing demand for plant based medicines, health products, pharmaceuticals, food supplements, cosmetics etc. Annona squamosa Linn is a multipurpose tree with edible fruits & is a source one of the medicinal & industrial products. Annona squamosa Linn is used as an antioxidant, antidiabetics, hepatoprotective, cytotoxicactivity, genetoxicity, antitumor activity, antilice agent. It is related to contain alkaloids, flavonoids, carbohydrates, fixed oils, tannins & phenolic. Genetic variation is essential for long term survival of species and it is a critical feature in conservation. For efficient conservation and management, the genetic composition of the species in different geographic locations needs to be assessed. Plants are attracting more attention among contemporary pharmacy scientists because some human diseases resulting from antibiotic resistance have gained worldwide concern. A number of methods are available and are being developed for the isolation of nucleic acids from plants. The different parts of Annona squamosa were studied for their nucleic acid content by using spectrophotometric analysis. In order to measure DNA content of the Leaves,friuts and stems of Annona squamosa, Spectrophotometry serves various advantages i.e. non-destructive and allows the sample to be recovered for further analysis or manipulation. Spectrophotometry uses the fact that there is a relationship between the absorption of ultraviolet light by DNA/RNA and its concentration in a sample. This article deals with modern approaches to develop a simple, efficient, reliable and cost-effective method for isolation, separation and estimation of total genomic DNA from various parts of the same species.

  18. A Study of PCR with DNA Extracted from Single Cell Isolated from Histological Sections

    Institute of Scientific and Technical Information of China (English)

    Deng Fei; L(u) GN; Li GD; Yang GH

    2001-01-01

    Aim To use and modify the molecular histology technique that was first introduced by Hansmann et al and to investigate the cell origin and the clonality of Hodgkin/Reed-Sternberg (H/R-S) cell. Method Single H/R-S cells were isolated by micromanipulation frcm frozen histological sections of tissues affected by Hoclgkins disease. After DNA was extracted from these cells, PCR was performed with primers designed for β-globin gene that exists in any somatic cells.Results The results showed that a special PCR product (268bp) was found in 12 out of 38 H/R-S cells (lositive rate of 31.6% ) with DNA from the cells micropicked from the frozen sections, whereas no any products was found with the DNA from these cells of formalin-fixed and paraffin-embedded sections. Conclusions The molecular histology technique we used is suitable for detecting the immunoglobulin heavy and light chain gene rearrangement in single H/R-S cells.

  19. Isolation, cDNA cloning, and growth promoting activity of rabbitfish (Siganus guttatus) growth hormone.

    Science.gov (United States)

    Ayson, F G; de Jesus, E G; Amemiya, Y; Moriyama, S; Hirano, T; Kawauchi, H

    2000-02-01

    We report the isolation, cDNA cloning, and growth promoting activity of rabbitfish (Siganus guttatus; Teleostei; Perciformes; Siganidae) growth hormone (GH). Rabbitfish GH was extracted from pituitary glands under alkaline conditions, fractionated by gel filtration chromatography on Sephadex G-100, and purified by high-performance liquid chromatography. The fractions containing GH were identified by immunoblotting with bonito GH antiserum. Under nonreducing conditions, the molecular weight of rabbitfish GH is about 19 kDa as estimated by SDS-PAGE. The purified hormone was potent in promoting growth in rabbitfish fry. Weekly intraperitoneal injections of the hormone significantly accelerated growth. This was evident 3 weeks after the start of the treatment, and its effect was still significant 2 weeks after the treatment was terminated. Rabbitfish GH cDNA was cloned to determine its nucleotide sequence. Excluding the poly (A) tail, rabbitfish GH cDNA is 860 base pairs (bp) long. It contained untranslated regions of 94 and 175 bp in the 5' and 3' ends, respectively. It has an open reading frame of 588 bp coding for a signal peptide of 18 amino acids and a mature protein of 178 amino acid residues. Rabbitfish GH has 4 cysteine residues. On the amino acid level, rabbitfish GH shows high identity (71-74%) with GHs of other perciforms, such as tuna, sea bass, yellow tail, bonito, and tilapia, and less (47-49%) identity with salmonid and carp GHs.

  20. Isolation of a cDNA Encoding a Protease from Perinereis aibuhitensis Grube

    Institute of Scientific and Technical Information of China (English)

    Rong-Gui LI; Dong-Meng QIAN; Dao-Sen GUO; Gui-Cai DU; Zhi-Yong YAN; Bin WANG

    2006-01-01

    The cDNA encoding a protease of Perinereis aibuhitensis Grube (PPA) was cloned. The deduced amino acid sequence analysis showed that the protein had 49% identity to the C-terminal amino acid 169-246 of serine protease of Heterodera glycines. Northern blotting analysis indicated that the cDNA could hybridize with mRNA of approximately 260 bases isolated from the marine earthworm. The cDNA was amplified by polymerase chain reaction and cloned into pMAL-p2 to construct expression vector pMALPPA. pMAL-PPA was introduced into Escherichia coli BL21(DE3) and overexpression of PPA fused with maltose binding protein was achieved by isopropyl-β-D-thiogalactopyranoside induction. The fusion protein was purified by affinity chromatography on an amylose resin column and ion-exchange chromatography on a diethylaminoethyl-Sepharose 4B column. Rabbits were immunized with the purified protein and antiserum was prepared. The antibody could react with a protein of approximately 9 kDa extracted from the marine earthworm as shown by Western blotting analysis. The activity analysis of the recombinant PPA suggested that it was probably a plasminogen activator.

  1. Enhancing the Decolorizing and Degradation Ability of Bacterial Consortium Isolated from Textile Effluent Affected Area and Its Application on Seed Germination

    OpenAIRE

    2015-01-01

    A bacterial consortium BMP1/SDSC/01 consisting of six isolates was isolated from textile effected soil, sludge, and textile effluent from Hudiara drain near Nishat Mills Limited, Ferozepur Road, Lahore, Pakistan. It was selected because of being capable of degrading and detoxifying red, green, black, and yellow textile dyes. The pH and supplements were optimized to enhance the decolorization ability of the selected consortium. The results indicated that decolorizing ability of consortium for ...

  2. Use of scintillometric quantitation of unscheduled DNA synthesis in isolated rat hepatocytes for the screening of genotoxic agents

    International Nuclear Information System (INIS)

    The induction of unscheduled DNA synthesis has been considered as a suitable endpoint for the screening of genotoxic agents. Experimentally, unscheduled DNA synthesis is most frequently measured by autoradiography. The purpose of this report was to examine the usefulness of the liquid scintillation counting technique in measuring unscheduled DNA synthesis response in isolated rat hepatocytes. The various liquid scintillation counting-based unscheduled DNA synthesis assay procedures were examined according to the following groupings: (1) procedures based on the acid precipitation of cellular macromolecules, (2) procedures based on isopycnic gradient centrifugation of solubilized cells, (3) procedures based on nuclei isolation in conjunction with other DNA purification methods, and (4) procedures based on the selective retention of hepatocellular DNA. Limited cases in which test chemicals gave positive unscheduled DNA synthesis response in liquid scintillation counting-based assays and negative unscheduled DNA synthesis response in autoradiography-based assays are presented. It is concluded that liquid scintillation counting-based unscheduled DNA synthesis assays represent an appropriate system for inclusion in carcinogenicity and mutagenicity testing programs

  3. Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici

    Directory of Open Access Journals (Sweden)

    Wang Yvonne

    2013-01-01

    Full Text Available Abstract Background Uterine infections in dairy cows lower profitability of dairy operations. Infections of the reproductive tract are related to the overgrowth of pathogenic bacteria during the first three weeks after parturition. However, alterations in the vaginal microbiota composition in the first weeks after parturition remain poorly documented. Results In this study, bacteria isolated from the vagina of healthy pregnant, and infected postpartum cows were characterised by random amplification of polymorphic DNA (RAPD analysis and partial 16S ribosomal RNA (rDNA gene sequencing. Populations of bacilli and lactic acid bacteria of the genera Enterococcus, Lactobacillus, and Pediococcus were present in both healthy and infected cows. Infected cows had a significant increase in the vaginal enteric bacteria population which consisted mainly of Escherichia coli. Three E. coli isolates harboured the gene coding for Shiga-like-toxin (SLT I or II. Several isolates of the Pediococcus acidilactici were found to produce the bacteriocin pediocin AcH/PA-1. Quantitative PCR analyses of vaginal mucus samples collected from ten metritic cows before and after parturition confirmed the presence of the Lactobacillus group (Lactobacillus spp., Pediococcus spp., Leuconostoc spp., and Weissella spp.; Enterobacteriaceae, E. coli, and bacilli. The presence of the pediocin AcH/PA-1 structural gene and SLT genes were also confirmed with qPCR. Conclusions In conclusion, overgrowth of pathogenic bacteria, particularly E. coli, after parturition likely contributes to the development of metritis. Our microbiota analysis extends the information related to the composition of commensal bacteria in the bovine female reproductive tract and may facilitate the development of novel intervention strategies for prevention of uterine infections in dairy cows.

  4. Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, E.K.; Horton, R.; Bloem, L.; Bach, R.; Williams, K.R.; Guha, A.; Kraus, J.; Lin, T.C.; Nemerson, Y.; Konigsberg, W.H.

    1987-08-01

    Tissue factor is a membrane-bound procoagulant protein that activates the extrinsic pathway of blood coagulation in the presence of factor VII and calcium. lambda Phage containing the tissue factor gene were isolated from a human placental cDNA library. The amino acid sequence deduced from the nucleotide sequence of the cDNAs indicates that tissue factor is synthesized as a higher molecular weight precursor with a leader sequence of 32 amino acids, while the mature protein is a single polypeptide chain composed of 263 residues. The derived primary structure of tissue factor has been confirmed by comparison to protein and peptide sequence data. The sequence of the mature protein suggests that there are three distinct domains: extracellular, residues 1-219; hydrophobic, residues 220-242; and cytoplasmic, residues 243-263. Three potential N-linked carbohydrate attachment sites occur in the extracellular domain. The amino acid sequence of tissue factor shows no significant homology with the vitamin K-dependent serine proteases, coagulation cofactors, or any other protein in the National Biomedical Research Foundation sequence data bank (Washington, DC).

  5. Types of variation in DNA-A among isolates of East African cassava mosaic virus from Kenya, Malawi and Tanzania.

    Science.gov (United States)

    Zhou, X; Robinson, D J; Harrison, B D

    1998-11-01

    Complete nucleotide sequences of the DNA-A-like molecules of three East African cassava mosaic virus (EACMV) isolates from Kenya (-K, 2801 nt) and Malawi (-MH and -MK, both 2804 nt) were determined. These sequences were compared with that published for a Tanzanian isolate (-T, 2801 nt) and the partial sequence of a third Malawian isolate. Intergenic region sequences of all isolates, and deduced amino acid sequences of their AC1 (Rep) proteins, each formed a tightly related cluster that was distinct from the comparable components of other begomoviruses. Other complementary-sense genes (AC2, AC3, AC4) differed between EACMV isolates in a way consistent with the accumulation of point mutations. In contrast, virus-sense genes (CP, AV2) of isolates -MH and -MK differed (substantially for AV2) from those of other EACMV isolates but somewhat resembled those of tomato yellow leaf curl virus-Israel, suggesting they had been acquired by recombination with an unidentified begomovirus.

  6. Characterization of Bacterial Community Structure and Diversity in Rhizosphere Soils of Three Plants in Rapidly Changing Salt Marshes Using 16S rDNA

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus mariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of > 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria,Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonparametric diversity estimator coupled with the reciprocal of Simpson's index (1/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragmites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities.

  7. Tanpopo cosmic dust collector: Silica aerogel production and bacterial DNA contamination analysis

    CERN Document Server

    Tabata, Makoto; Yokobori, Shin-ichi; Kawai, Hideyuki; Takahashi, Jun-ichi; Yano, Hajime; Yamagishi, Akihiko

    2011-01-01

    Hydrophobic silica aerogels with ultra-low densities have been designed and developed as cosmic dust capture media for the Tanpopo mission which is proposed to be carried out on the International Space Station. Glass particles as a simulated cosmic dust with 30 \\mu m in diameter and 2.4 g/cm^3 in density were successfully captured by the novel aerogel at a velocity of 6 km/s. Background levels of contaminated DNA in the ultra-low density aerogel were lower than the detection limit of a polymerase chain reaction assay. These results show that the manufactured aerogel has good performance as a cosmic dust collector and sufficient quality in respect of DNA contamination. The aerogel is feasible for the biological analyses of captured cosmic dust particles in the astrobiological studies.

  8. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    Science.gov (United States)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  9. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A.

    Science.gov (United States)

    Aydın, Yasar Andelib; Aksoy, Nuran Deveci

    2014-02-01

    In this study, typical niches of acetic acid bacteria were screened for isolation of cellulose producer strains. Hestrin Schramm broth was used as enrichment and production media. Only nine out of 329 isolates formed thick biofilms on liquid surface and were identified as potential cellulose producers. Physiological and biochemical tests proved that all cellulose producers belonged to Gluconacetobacter genus. Most productive and mutation-resistant strain was subjected to 16S rRNA sequence analysis and identified as Gluconacetobacter hansenii P2A due to 99.8 % sequence similarity. X-ray diffraction analysis proved that the biofilm conformed to Cellulose I crystal structure, rich in Iα mass fraction. Static cultivation of G. hansenii P2A in HS medium resulted with 1.89 ± 0.08 g/l of bacterial cellulose production corresponding to 12.0 ± 0.3 % yield in terms of substrate consumption. Shaking and agitation at 120 rpm aided in enhancement of the amount and yield of produced cellulose. Productivity and yield reached up to 3.25 ± 0.11 g/l and 17.20 ± 0.14 % in agitated culture while a slight decrease from 78.7 % to 77.3 % was observed in the crystallinity index.

  10. Differential proteome analysis of a selected bacterial strain isolated from a high background radiation area in response to radium stress.

    Science.gov (United States)

    Zakeri, Farideh; Sadeghizadeh, Majid; Kardan, Mohammad Reza; Shahbani Zahiri, Hossein; Ahmadian, Gholamreza; Masoumi, Fatemeh; Sharafi, Hakimeh; Rigi, Garshasb; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2012-08-01

    The present study describes the response of a bacterial strain, isolated from a hot spring in an area with the highest levels of natural radiation, under radium ((226)Ra) stress. The bacterium has been characterized as a novel and efficient radium biosorbent and identified as a variant of Serratia marcescens by biochemical tests and molecular recognition. In order to gain insights into key cellular events that allow this strain to survive and undergo (226)Ra adaptation and biosorption, the strain was tested under two experimental conditions of 1000 and 6000 Bq (226)Ra stress. A proteomic approach involving two-dimensional polyacrylamide gel electrophoresis and mass spectrometry was used to identify the differentially expressed proteins under (226)Ra stress. Functional assessment of identified proteins with significantly altered expression levels revealed several mechanisms thought to be involved in (226)Ra adaptation and conferring resistant phenotype to the isolate, including general stress adaptation, anti-oxidative stress, protein and nucleic acid synthesis, energy metabolism, efflux and transport proteins. It suggests that this strain through evolution is particularly well adapted to the high background radiation environment and could represent an alternative source to remove (226)Ra from such areas as well as industrial radionuclide polluted wastewaters.

  11. Isolation and Identification of Bacterial Pathogens from Mobile Phones of Volunteered Technologists in Rufus Giwa Polytechnic, Owo, Ondo State.

    Directory of Open Access Journals (Sweden)

    Ibrahim TA

    2013-12-01

    Full Text Available The bacterial density of mobile phones of volunteered technologies in the Food Science Department of Rufus Giwa Polytechnic, Owo was examined using standard bacteriological methods. A total of 174 colonies belonging to 10 genera were isolated from the mobile phones. The isolated genera were Staphylococcus sp(12(24.14, Klebsiella sp(23(13.22%, Enterococcus sp (08(4.59%. Bacillus sp(14(8.05%, Acinetobacter sp(13(7.47%, Corynebacterium sp(10(5.75%, Pseudomonas sp(24(13.79%, Proteus sp (13(7.47%, Serratia sp(10(5.75% and E.coli (17(9.75% when their morphological, gram staining and biochemical characteristics were compared with known taxa. This study showed that all mobile phones under consideration were infected by several microbes, most of which belong to the natural flora of the human body. This means that it is necessary to sterilize hands after contact with phones since it is a source of disease transmission.

  12. Antimicrobial Evaluation of Bacterial Isolates from Urine Specimen of Patients with Complaints of Urinary Tract Infections in Awka, Nigeria

    Directory of Open Access Journals (Sweden)

    Perpetua A. Ekwealor

    2016-01-01

    Full Text Available Urinary tract infections (UTIs account for one of the major reasons for most hospital visits and the determination of the antimicrobial susceptibility patterns of uropathogens will help to guide physicians on the best choice of antibiotics to recommend to affected patients. This study is designed to isolate, characterize, and determine the antimicrobial susceptibility patterns of the pathogens associated with UTI in Anambra State Teaching Hospital, Amaku, Anambra State, Nigeria. Clean catch urine samples of inpatient and outpatient cases of UTI were collected and bacteriologically analyzed using standard microbiological procedures. Antibiogram was done by the Kirby-Bauer disc diffusion method. The most prevalent isolates were S. aureus (28%, E. coli (24.6%, and S. saprophyticus (20%. The antibacterial activities of the tested agents were in the order of Augmentin < Ceftazidime < Cefuroxime < Cefixime < Gentamicin < Ofloxacin < Ciprofloxacin < Nitrofurantoin. It was found that all the organisms were susceptible in varying degrees to Nitrofurantoin, Ciprofloxacin, and Ofloxacin. It was also observed that all the bacterial species except Streptococcus spp. have a Multiple Antibiotic Resistance Index (MARI greater than 0.2. For empiric treatment of UTIs in Awka locality, Nitrofurantoin, Ciprofloxacin, and Ofloxacin are the first line of choice.

  13. Randomly Amplified Polymorphic DNA of Trichoderma isolates and antagonism against Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Larissa Brandão Góes

    2002-06-01

    Full Text Available Random Amplified Polymorphic DNA (RAPD procedure was used to examine the genetic variability among fourteen isolates of Trichoderma and their ability to antagonize Rhizoctonia solani using a dual-culture assay for correlation among RAPD products and their hardness to R. solani. Seven oligodeoxynucleotide primers were selected for the RAPD assays which resulted in 197 bands for 14 isolates of Trichoderma. The data were entered into a binary matrix and a similarity matrix was constructed using DICE similarity (SD index. A UPGMA cluster based on SD values was generated using NTSYS (Numerical Taxonomy System, Applied Biostatistics computer program. A mean coefficient of similarity obtained for pairwise comparisons among the most antagonics isolates was around 40%. The results presented here showed that the variability among the isolates of Trichoderma was very high. No relationship was found between the polymorphism showed by the isolates and their hardness, origin and substrata.A técnica de RAPD (Random Amplified Polymorphic DNA foi utilizada para examinar a variabilidade genética em quatorze isolados de Trichoderma além de sua capacidade de antagonizar o fungo fitopatogênico Rhizoctonia solani usando pareamento in vitro, e a possível relação entre perfís de RAPD e agressividade dos isolados de Trichoderma a R. solani. Foram selecionados sete primers para os ensaios de RAPD, os quais produziram 197 bandas. Os dados foram introduzidos no programa de computador NTSYS (Numerical Taxonomy System, Applied Biostatisticsna forma de uma matrix binária, sendo construída uma matriz de similaridade utilizando-se o coeficiente de similaridade de DICE (SD e baseado nos valores SD, pelo método de agrupamento UPGMA um dendrograma. Observou-se que o grau de similaridade das amostras que apresentaram melhor desempenho antagônico foi bastante baixo, em torno de 40%. Os resultados demonstraram que a variabilidade entre os isolados de Trichoderma é muito

  14. Investigation of genetic heterogeneity in Mycobacterium tuberculosis isolates from tuberculosis patients using DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Khosravi Azar

    2005-06-01

    Full Text Available BACKGROUND: DNA fingerprinting of Mycobacterium tuberculosis (MTB based on IS6110 has been shown to be a powerful epidemiologic tool. Restriction enzyme analysis (REA is a fingerprinting technique, which is used for differentiation and investigation of genetic diversity among mycobacterial species. AIMS: To investigating the genetic heterogeneity in MTB isolates in Ahvaz, Iran. SETTINGS AND DESIGN: It was a cross-sectional study conducted in Ahvaz, Iran. METHODS AND MATERIAL: One hundred and eighty clinical isolates of MTB were collected from TB reference unit, PHLS, Ahvaz, Iran. The PCR-REA employed uses a simple DNA extraction followed by a PCR step involving a single primer based on the insertion sequence IS6110. Restriction enzyme analysis was performed on the amplification products using HaeIII enzyme. STATISTICAL ANALYSIS: Data was analyzed using SPSS software and chi-square test/Fishers′ exact test was applied wherever applicable. RESULTS: The isolates were divided into four clusters based on their REA patterns. Cluster I contained 71.1% of strains with two fragments of 72 and 118. Cluster II with three fragments of 72, 118, and 194; cluster III with three fragments of 118, 194, and 234; and cluster IV with four fragments of 72, 118, 194, and 234 base pairs. As many as 73.8% of the identical fingerprint patterns were seen in male patients. Accounting the men as the major population in the study, there was no significant difference between REA patterns and sex; similarly, with age, patients′ occupation and degree of smear positivity. However, we found significant correlation between REA patterns and patients′ origin. As many as 61.6% of identical patterns were found in the patients who were lived in the same suburb. CONCLUSIONS: By PCR-based REA typing, the isolates studied were grouped into four clusters each containing between two and four fragments. However, in order to ascertain the level of heterogeneity of MTB isolates in their

  15. Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut

    Directory of Open Access Journals (Sweden)

    M. Tidjiani Alou

    2015-11-01

    Full Text Available Bacillus rubiinfantis sp. nov. strain mt2T is the type strain of B. rubiinfantis sp. nov., isolated from the fecal flora of a child with kwashiorkor in Niger. It is Gram-positive facultative anaerobic rod belonging to the Bacillaceae family. We describe the features of this organism alongside the complete genome sequence and annotation. The 4 311 083 bp long genome (one chromosome but no plasmid contains 4028 protein-coding gene and 121 RNA genes including nine rRNA genes.

  16. Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2015-11-01

    Full Text Available Bacillus niameyensis sp. nov. strain SIT3T (= CSUR P1266 = DSM 29725 is the type strain of B. niameyensis sp. nov. This Gram-positive strain was isolated from the digestive flora of a child with kwashiorkor and is a facultative anaerobic rod and a member of the Bacillaceae family. This organism is hereby described alongside its complete genome sequence and annotation. The 4  286  116 bp long genome (one chromosome but no plasmid contains 4130 protein-coding and 66 RNA genes including five rRNA genes.

  17. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin.

    Science.gov (United States)

    Saxena, Rahul; Vasudevan, Sona; Patil, Digvijay; Ashoura, Norah; Grimwade, Julia E; Crooke, Elliott

    2015-01-01

    DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC) to a replication efficient pre-replication complex (pre-RC) at the E. coli chromosomal origin of replication (oriC). PMID:26610483

  18. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin

    Directory of Open Access Journals (Sweden)

    Rahul Saxena

    2015-11-01

    Full Text Available DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC to a replication efficient pre-replication complex (pre-RC at the E. coli chromosomal origin of replication (oriC.

  19. ISOLATION AND CHARACTERIZATION OF HALOPHILIC BACTERIAL STRAINS FROM SALINE WATERS OF KHEWRA SALT MINES ON THE BASIS OF 16S rRNA GENE SEQUENCE

    Directory of Open Access Journals (Sweden)

    Muhammad Kaleem Sarwar

    2014-02-01

    Full Text Available Halophiles are salt loving microbes optimally growing at high concentrations of salt. Khewra salt mines of Pakistan provide extreme saline conditions where enormous halophilic microbial biota thrives. The present study aimed at isolation and molecular identification of bacterial strains from saline waters of Khewra salt mines. Using halophilic media, nine halophilic bacterial strains from saline water bodies were cultured and studied under optimized growth conditions (NaCl, pH and temperature. Bacterial growth at different NaCl concentrations was measured at 600nm wavelength, showing optimal growth at 1.5M NaCl. 769bp size 16S rRNA gene was amplified for molecular identification of bacterial strains. The amplified genes of the strains FA2.2 and FA3.3 were sequenced and their homology with other bacterial strains was analyzed. The results showed FA2.2 shared maximum homology with Bacillus anthracis strain while FA3.3 showed close resemblance with Staphylococcus saprophyticus subsp. bovis. Isolated halophilic bacterial strains possess potential for various biotechnological applications. They could be manipulated for synthesizing transgenic crops tolerating high salinity boosting the agricultural yield. Moreover extremozymes of these bacteria holds great industrial importance.

  20. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    Science.gov (United States)

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.