WorldWideScience

Sample records for bacterial iron transport

  1. The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.

    2008-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.

  2. Cellular iron transport.

    Science.gov (United States)

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.

  3. Structure of Stenotrophomonas maltophilia FeoA complexed with zinc: a unique prokaryotic SH3-domain protein that possibly acts as a bacterial ferrous iron-transport activating factor

    International Nuclear Information System (INIS)

    Su, Yi-Che; Chin, Ko-Hsin; Hung, Hui-Chih; Shen, Gwan-Han; Wang, Andrew H.-J.; Chou, Shan-Ho

    2010-01-01

    The crystal structure of FeoA from Stenotrophomonas maltophilia has been determined to a resolution of 1.7 Å using an Se single-wavelength anomalous dispersion (Se-SAD) approach and revealed a unique dimer cross-linked by two zinc ions and six chloride ions. Iron is vital to the majority of prokaryotes, with ferrous iron believed to be the preferred form for iron uptake owing to its much better solubility. The major route for bacterial ferrous iron uptake is found to be via an Feo (ferrous iron-transport) system comprising the three proteins FeoA, FeoB and FeoC. Although the structure and function of FeoB have received much attention recently, the roles played by FeoA and FeoC have been little investigated to date. Here, the tertiary structure of FeoA from Stenotrophomonas maltophilia (Sm), a vital opportunistic pathogen in immunodepressed hosts, is reported. The crystal structure of SmFeoA has been determined to a resolution of 1.7 Å using an Se single-wavelength anomalous dispersion (Se-SAD) approach. Although SmFeoA bears low sequence identity to eukaryotic proteins, its structure is found to adopt a eukaryotic SH3-domain-like fold. It also bears weak similarity to the C-terminal SH3 domain of bacterial DtxR (diphtheria toxin regulator), with some unique characteristics. Intriguingly, SmFeoA is found to adopt a unique dimer cross-linked by two zinc ions and six anions (chloride ions). Since FeoB has been found to contain a G-protein-like domain with low GTPase activity, FeoA may interact with FeoB through the SH3–G-protein domain interaction to act as a ferrous iron-transport activating factor

  4. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  5. Iron transport and storage in the coccolithophore: Emiliania huxleyi.

    Science.gov (United States)

    Hartnett, Andrej; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-11-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving soil acidification and induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the coccolithophore Emiliania huxleyi. Short term radio-iron uptake studies indicate that iron is taken up by Emiliania in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor studies it appears that iron is taken up directly as Fe(iii). However if a reductive step is involved the Fe(II) must not be accessible to the external environment. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and XAS spectroscopies, to identify a single metabolite which displays spectral features similar to the phosphorus-rich mineral core of bacterial and plant ferritins.

  6. Amorphous structure of iron oxide of bacterial origin

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki; Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Asaoka, Hiroshi [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kusano, Yoshihiro [Department of Fine and Applied Arts, Kurashiki University of Science and the Arts, Kurashiki, Okayama 712-8505 (Japan); Ikeda, Yasunori [Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805 (Japan); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Benino, Yasuhiko; Nanba, Tokuro [Graduate School of Environmental Science, Okayama University, Okayama 700-8530 (Japan); Takada, Jun, E-mail: jtakada@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2012-12-14

    In nature, there are various iron oxides produced by the water-habitant bacterial group called 'iron-oxidizing bacteria'. These iron oxides have been studied mainly from biological and geochemical perspectives. Today, attempts are made to use such iron oxides as novel functional materials in several applications. However, their quantitative structural characteristics are still unclear. We studied the structure of iron oxide of microtubular form consisting of amorphous nanoparticles formed by an iron-oxidizing bacterium, Leptothrix ochracea, using a combination of high-energy X-ray diffraction and reverse Monte Carlo simulation. We found that its structure consists of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units, while SiO{sub 4} tetrahedral units are isolated in the framework. The results reveal the atomic arrangement of iron oxide of bacterial origin, which is essential for investigating its potential as a functional material. -- Highlights: Black-Right-Pointing-Pointer The amorphous structure of bacterial iron oxide was investigated. Black-Right-Pointing-Pointer The structure was simulated by high-energy X-ray diffraction and reverse Monte Carlo simulation. Black-Right-Pointing-Pointer The structure was constructed of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units. Black-Right-Pointing-Pointer SiO{sub 4} tetrahedral units were distributed isolatedly in the framework of FeO{sub 6} octahedral units.

  7. Structural transformations of heat-treated bacterial iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki, E-mail: hideki-h@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan); Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Nakanishi, Koji [Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011 (Japan); Yogi, Chihiro [SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Peterlik, Herwig [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Takada, Jun [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2015-04-01

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe{sub 2}O{sub 3}·8SiO{sub 2}·P{sub 2}O{sub 5}·30H{sub 2}O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO{sub 6} octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe{sub 2}O{sub 3}/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe{sub 2}O{sub 3} >700 °C. • FeO{sub 6} octahedra were highly distorted <500 °C. • Formation of face-sharing FeO{sub 6} was promoted >500 °C, releasing the local strain of FeO{sub 6}.

  8. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    Science.gov (United States)

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  9. Bacterial transport in heterogeneous porous media: Observations from laboratory experiments

    Science.gov (United States)

    Silliman, S. E.; Dunlap, R.; Fletcher, M.; Schneegurt, M. A.

    2001-11-01

    Transport of bacteria through heterogeneous porous media was investigated in small-scale columns packed with sand and in a tank designed to allow the hydraulic conductivity to vary as a two-dimensional, lognormally distributed, second-order stationary, exponentially correlated random field. The bacteria were Pseudomonas ftuorescens R8, a strain demonstrating appreciable attachment to surfaces, and strain Ml, a transposon mutant of strain R8 with reduced attachment ability. In bench top, sand-filled columns, transport was determined by measuring intensity of fluorescence of stained cells in the effluent or by measuring radiolabeled cells that were retained in the sand columns. Results demonstrated that strain Ml was transported more efficiently than strain R8 through columns packed with either a homogeneous silica sand or a more heterogeneous sand with iron oxide coatings. Two experiments conducted in the tank involved monitoring transport of bacteria to wells via sampling from wells and sample ports in the tank. Bacterial numbers were determined by direct plate count. At the end of the first experiment, the distribution of the bacteria in the sediment was determined by destructive sampling and plating. The two experiments produced bacterial breakthrough curves that were quite similar even though the similarity between the two porous media was limited to first- and second-order statistical moments. This result appears consistent with the concept of large-scale, average behavior such as has been observed for the transport of conservative chemical tracers. The transported bacteria arrived simultaneously with a conservative chemical tracer (although at significantly lower normalized concentration than the tracer). However, the bacterial breakthrough curves showed significant late time tailing. The concentrations of bacteria attached to the sediment surfaces showed considerably more spatial variation than did the concentrations of bacteria in the fluid phase. This

  10. Iron uptake and transport at the blood-brain barrier

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    The mechanism by which iron is transported across the blood-brain barrier (BBB) remains controversial, and in this study we aimed to further clarify mechanisms by which iron is transported into the brain. We analyzed and compared the mRNA and protein expression of a variety of proteins involved...... in the transport of iron (transferrin receptor, divalent metal transporter I (DMT1), steap 2, steap 3, ceruloplasmin, hephaestin and ferroportin) in both primary rat brain capillary endothelial cells (BCEC) and immortalized rat brain capillary endothelial cell line (RBE4) grown in co-culture with defined polarity....... The mRNA expression of the iron-related molecules was also investigated in isolated brain capillaries from iron deficiency, iron reversible and normal rats. We also performed iron transport studies to analyze the routes by which iron is transported through the brain capillary endothelial cells: i) We...

  11. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to estimate the effects of liposomal ...

  12. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    Science.gov (United States)

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  13. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    Science.gov (United States)

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  14. Iron-clay reactivity in radioactive waste disposal - Impacts of bacterial activities and heterogeneities

    International Nuclear Information System (INIS)

    Chautard, C.

    2013-01-01

    This study focuses on the interactions between two materials that may be introduced in a geological disposal of radioactive waste: metallic materials such as the high-level waste overpack, and clay materials such as the clay host rock. Indeed, the interactions between these two materials in such conditions could induce a change of their initial confinement properties. This work aimed at determining the influence of heterogeneities (technological gaps and fractures) and bacterial activities on these interactions, in terms of evolution of chemical and hydraulic properties of clayey materials. To this end, two percolation cells have been conducted during 13 months: the first one with two bacteria (SRB, IRB), the second one without bacteria. These experiments, carried out at 60 C, involved circulating synthetic water representative of the Tournemire pore water through iron powder and through Toarcian artificially cracked argillite from Tournemire. An iron rod was also placed into the argillite. Thus, solid characterizations (SEM, SEM/EDS, Raman, XRD, X-ray tomography) allowed the study of both interfaces: the iron powder/argillite interface and the iron rod/argillite interface. The water probably circulated into the crack during the entire test, which was confirmed by reactive transport modeling with the HYTEC reactive transport code. However, no secondary phase was identified in the crack. In addition, bacteria survival in the biotic cell was confirmed during the experiment by monitoring their population and by analyzing their genetic diversity at the end of the experiment. A strong decrease in sulfate concentration was measured in the output, which confirms the SRB activity. Solid characterization conducted at the end of the experiments have highlighted, with and without bacteria, the occurrence of magnetite and chukanovite in the iron powder, the latter being mainly located close to the argillite interface. In the argillite, a Fe-enriched zone (10 μm) was

  15. Intestinal Bacterial Flora that Compete on the Haem Precursor Iron Fumarate in Iron Deficiency Anemia Cases

    Directory of Open Access Journals (Sweden)

    Selim, S. A. H.

    2012-06-01

    Full Text Available Aims: The study focused on finding if there is any possible relation between the intestinal bacterial population quantitative and qualitative and the deficiency of the most important iron compounds as haem precursors. Methodology and Results: Blood complete picture and stool analyses were done to 750 volunteer cases whom were asked for these analyses by their physicians. Analyses proved that 560 cases representing 75.2 % were anemic as the RBC(s based on counts of the total studied cases of less than 263 x 104 and the haemoglobin amount ranged between 7.2 and 11.3 g/dl, while the remainder 24.8 % of the volunteer sample was not anemic. A high male/female ratio ofanemic cases, 1:27 was also documented. Considering that all the studied stool samples should be completely free from any parasites or any other anemia-related diseases was a priority. Bacteriological analysis of stool samples of the anemic cases resulted in the detection of high counts of total viable bacteria, exceeded 42 x 109 cfu/g, while it was never more than 26 x 106 cfu/g and decreased to 4 x 106 cfu/g in many cases in this study. Identifying of the 361 bacterial isolates, were found to belong to 12 genera and 19 species, 6 of them; Pseudomonas putrefaciens, Micrococcus luteus, Erysipelothrix rhusiopathiae, Bacillus megaterium, Bacillus pumilus and Bacillus coagulans , were found and in high counts in the stool samples of only anemic cases. The ability of these isolates to compete for iron compounds such as ferrous fumarate alone or with glucose and phytate as activators or inhibitors to these abilities was investigated. Results proved 11 species out of the 19 identified species are capable to use and compete on ferrous fumarate as a haemprecursor. Sensitivity test for the representatives of the 19 species and 6 of the most commonly used antibiotics in the Egyptian pharmacy, using standard disc method, revealed variable susceptibilities of almost all of them to more than one of

  16. Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    2016-09-01

    Full Text Available Iron toxicity is a major nutrient disorder that severely affects crop development and yield. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT members are involved in this process and play essential roles in iron storage and transport. In this study, a rapeseed VIT gene BnMEB2 (BnaC07g30170D was identified. BnMEB2 is a homolog to Arabidopsis MEB2 (At5g24290 and acts as a detoxifier in vacuolar sequestration of divalent metal. Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other vacuolar iron transporter genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.

  17. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.

    Science.gov (United States)

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., Fe(II) release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens.

    Science.gov (United States)

    Tako, Elad; Glahn, Raymond P; Knez, Marija; Stangoulis, James Cr

    2014-06-13

    Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. In this study we showed that prebiotics naturally found in wheat grains/bread products

  19. Bacterial Transport in Heterogeneous Porous Media: Laboratory and Field Experiments

    Science.gov (United States)

    Fuller, M. E.

    2001-12-01

    A fully instrumented research site for examining field-scale bacterial transport has been established on the eastern shore of Virginia. Studies employing intact sediment cores from the South Oyster site have been performed to examine the effects of physical and chemical heterogeneity, to derive transport parameters, and to aid in the selection of bacterial strains for use in field experiments. A variety of innovative methods for tracking bacteria were developed and evaluated under both laboratory and field conditions, providing the tools to detect target cell concentrations in groundwater down to effects of physical and chemical heterogeneity on field-scale bacterial transport. The results of this research not only contribute to the development of more effective bioremediation strategies, but also have implications for a better understanding of bacterial movement in the subsurface as it relates to public health microbiology and general microbial ecology.

  20. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    Science.gov (United States)

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  1. Hydrogen transport in iron and steel

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Derrick, R.G.; Donovan, J.A.; Caskey, G.R. Jr.

    1975-01-01

    The permeabilities of protium, deuterium, and tritium in iron and T-1 steel at temperatures as low as 260 0 K are in agreement with the equation proposed by Gonzalez. However, the permeabilities of HP-9-4-20 and 4130 steel to hydrogen are typically lower than predicted. The present data also show that, within experimental accuracy, the isotope effect on the permeability of hydrogen in HP-9-4-20, 4130 and T-1 steel, and high purity iron can be estimated by an inverse square root of mass correction. Trapping effects prevent the development of diffusivity and solubility equations. (auth)

  2. Geochemical investigation of iron transport into bentonite as steel corrodes

    International Nuclear Information System (INIS)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew

    2007-09-01

    some experiments. Using the experimental data as a guide, a modelling investigation has been carried out. The objectives of the modelling investigation were: To develop a geochemical model of the transport of iron into bentonite based on the clear experimental evidence of the penetration of iron into bentonite. To improve our understanding of the desaturation of the bentonite as water is consumed during the corrosion process and the resultant gas(es) escapes. The production of iron from the corroding source was modelled using a rate of gas evolution that had been fitted. It was shown that ion exchange and surface complexation processes do not provide sufficient sorption to predict the high amount of iron observed in the solid phase. Therefore alternative processes, such as iron-containing mineral formation or mineral transformations, were also suggested to account for the amount of iron observed within the bentonite phase. Magnetite was identified as the most thermodynamically stable solubility limiting phase under the experimental conditions. A one-dimensional transport model was constructed to include all relevant processes. The simulations considered the diffusive transport of Fe 2+ ions away from a corroding source, using the rate of gas evolution resulting from the corrosion process. Ion exchange and surface complexation processes were allowed within the bentonite which would provide sorption of iron onto and within the bentonite solid. The pH was buffered by allowing protonation and deprotonation of the surface sites of the bentonite solid. In addition, saturation of iron-containing minerals was permitted. The base case model suggests that about 4.4 wt % of iron could form in the bentonite if the formation of magnetite was allowed. However, the maximum theoretical amount of iron available from the source term is limited to 4.5 wt % of iron by the cumulative gas evolution rate, which is lower than the observed amount of iron in the bulk bentonite (6.6 wt %). A

  3. Geochemical investigation of iron transport into bentonite as steel corrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew [Serco Assurance, Harwe ll (United Kingdom)

    2007-09-15

    some experiments. Using the experimental data as a guide, a modelling investigation has been carried out. The objectives of the modelling investigation were: To develop a geochemical model of the transport of iron into bentonite based on the clear experimental evidence of the penetration of iron into bentonite. To improve our understanding of the desaturation of the bentonite as water is consumed during the corrosion process and the resultant gas(es) escapes. The production of iron from the corroding source was modelled using a rate of gas evolution that had been fitted. It was shown that ion exchange and surface complexation processes do not provide sufficient sorption to predict the high amount of iron observed in the solid phase. Therefore alternative processes, such as iron-containing mineral formation or mineral transformations, were also suggested to account for the amount of iron observed within the bentonite phase. Magnetite was identified as the most thermodynamically stable solubility limiting phase under the experimental conditions. A one-dimensional transport model was constructed to include all relevant processes. The simulations considered the diffusive transport of Fe{sup 2+} ions away from a corroding source, using the rate of gas evolution resulting from the corrosion process. Ion exchange and surface complexation processes were allowed within the bentonite which would provide sorption of iron onto and within the bentonite solid. The pH was buffered by allowing protonation and deprotonation of the surface sites of the bentonite solid. In addition, saturation of iron-containing minerals was permitted. The base case model suggests that about 4.4 wt % of iron could form in the bentonite if the formation of magnetite was allowed. However, the maximum theoretical amount of iron available from the source term is limited to 4.5 wt % of iron by the cumulative gas evolution rate, which is lower than the observed amount of iron in the bulk bentonite (6.6 wt

  4. Molecular properties of bacterial multidrug transporters

    NARCIS (Netherlands)

    Putman, M; van Veen, HW; Konings, WN

    2000-01-01

    One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria

  5. The Heterotrophic Bacterial Response During the Meso-scale Southern Ocean Iron Experiment (SOFeX)

    Science.gov (United States)

    Oliver, J. L.; Barber, R. T.; Ducklow, H. W.

    2002-12-01

    Previous meso-scale iron enrichments have demonstrated the stimulatory effect of iron on primary productivity and the accelerated flow of carbon into the surface ocean foodweb. In stratified waters, heterotrophic activity can work against carbon export by remineralizing POC and/or DOC back to CO2, effectively slowing the biological pump. To assess the response of heterotrophic activity to iron enrichment, we measured heterotrophic bacterial production and abundance during the Southern Ocean Iron Experiment (SOFeX). Heterotrophic bacterial processes primarily affect the latter of the two carbon export mechanisms, removal of DOC to the deep ocean. Heterotrophic bacterial production (BP), measured via tritiated thymidine (3H-TdR) and leucine (3H-Leu) incorporation, increased ~40% over the 18-d observation period in iron fertilized waters south of the Polar Front (South Patch). Also, South Patch BP was 61% higher than in the surrounding unfertilized waters. Abundance, measured by flow cytometry (FCM) and acridine orange direct counts (AODC), also increased in the South Patch from 3 to 5 x 108 cells liter-1, a 70% increase. Bacterial biomass increased from ~3.6 to 6.3 μg C liter-1, a clear indication that production rates exceeded removal rates (bactivory, viral lysis) over the course of 18 days. Biomass within the fertilized patch was 11% higher than in surrounding unfertilized waters reflecting a similar trend. This pattern is in contrast to SOIREE where no accumulation of biomass was observed. High DNA-containing (HDNA) cells detected by FCM also increased over time in iron fertilized waters from 20% to 46% relative to the total population suggesting an active subpopulation of cells that were growing faster than the removal rates. In iron fertilized waters north of the Polar Front (North Patch), BP and abundance were ~90% and 80% higher, respectively, than in unfertilized waters. Our results suggest an active bacterial population that responded to iron fertilization

  6. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  7. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species

    Science.gov (United States)

    Merino, Enrique; Bonomi, Hernán Ruy; Goldbaum, Fernando Alberto; García-Angulo, Víctor Antonio

    2015-01-01

    Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP) genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria. PMID:25938806

  8. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Science.gov (United States)

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  9. Transgenic petunia with the iron(III-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Directory of Open Access Journals (Sweden)

    Yoshiko Murata

    Full Text Available Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III to iron(II and the uptake of iron(II by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III. Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems

  10. Regulation of transepithelial transport of iron by hepcidin

    Directory of Open Access Journals (Sweden)

    NATALIA P MENA

    2006-01-01

    Full Text Available Hepcidin (Hepc is a 25 amino acid cationic peptide with broad antibacterial and antifungal actions. A likely role for Hepc in iron metabolism was suggested by the observation that mice having disruption of the gene encoding the transcription factor USF2 failed to produce Hepc mRNA and developed spontaneous visceral iron overload. Lately, Hepc has been considered the "stores regulator," a putative factor that signals the iron content of the body to intestinal cells. In this work, we characterized the effect of Hepc produced by hepatoma cells on iron absorption by intestinal cells. To that end, human Hepc cDNA was cloned and overexpressed in HepG2 cells and conditioned media from Hepc-overexpressing cells was used to study the effects of Hepc on intestinal Caco-2 cells grown in bicameral inserts. The results indicate that Hepc released by HepG2 inhibited apical iron uptake by Caco-2 cells, probably by inhibiting the expression of the apical transporter DMT1. These results support a model in which Hepc released by the liver negatively regulates the expression of transporter DMT1 in the enterocyte

  11. Transport of Magnesium by a Bacterial Nramp-Related Gene

    Science.gov (United States)

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  12. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  13. Regulatory mechanisms for iron transport across the blood-brain barrier.

    Science.gov (United States)

    Duck, Kari A; Simpson, Ian A; Connor, James R

    2017-12-09

    Many critical metabolic functions in the brain require adequate and timely delivery of iron. However, most studies when considering brain iron uptake have ignored the iron requirements of the endothelial cells that form the blood-brain barrier (BBB). Moreover, current models of BBB iron transport do not address regional regulation of brain iron uptake or how neurons, when adapting to metabolic demands, can acquire more iron. In this study, we demonstrate that both iron-poor transferrin (apo-Tf) and the iron chelator, deferoxamine, stimulate release of iron from iron-loaded endothelial cells in an in vitro BBB model. The role of the endosomal divalent metal transporter 1 (DMT1) in BBB iron acquisition and transport has been questioned. Here, we show that inhibition of DMT1 alters the transport of iron and Tf across the endothelial cells. These data support an endosome-mediated model of Tf-bound iron uptake into the brain and identifies mechanisms for local regional regulation of brain iron uptake. Moreover, our data provide an explanation for the disparity in the ratio of Tf to iron transport into the brain that has confounded the field. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Expression of Duodenal Iron Transporter Proteins in Diabetic Patients with and without Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Efrat Broide

    2018-01-01

    Full Text Available The role of iron transport proteins in the pathogenesis of anemia in patients with diabetes mellitus (T2DM is still unclear. We investigated the expression of duodenal transporter proteins in diabetic patients with and without iron deficiency anemia (IDA. Methods. Overall, 39 patients were included: 16 with T2DM and IDA (group A, 11 with T2DM without IDA (group B, and 12 controls (group C. Duodenal mucosal expression of divalent metal transporter 1 (DMT1, ferroportin 1 (FPN, hephaestin (HEPH, and transferrin receptor 1 (TfR was evaluated by Western blotting. Chronic disease activity markers were measured as well. Results. FPN expression was increased in group A compared to group B and controls: 1.17 (0.72–1.46, 0.76 (0.53–1.04, and 0.71 (0.64–0.86, respectively (p=0.011. TfR levels were over expressed in groups A and B compared to controls: 0.39 (0.26–0.61, 0.36 (0.24–0.43, and 0.18 (0.16–0.24, respectively, (p=0.004. The three groups did not differ significantly with regard to cellular HEPH and DMT1 expression. The normal CRP and serum ferritin levels, accompanied with normal FPN among diabetic patients without IDA, do not support the association of IDA with chronic inflammatory state. Conclusion. In patients with T2DM and IDA, duodenal iron transport protein expression might be dependent on body iron stores rather than by chronic inflammation or diabetes per se.

  15. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei (China); Zhao, Xin [Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei (China); Chang, Yanzhong [Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei (China); Zhang, Yuanyuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Xi [Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei (China); Zhang, Xuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Liu, Zhenyi; Guo, Hui [Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Wang, Na [Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Gao, Yonggang [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Zhang, Jianping, E-mail: zhangjianping14@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Li, E-mail: chuli0614@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei (China)

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and

  16. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    Science.gov (United States)

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

  17. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  18. Combining Inverse and Transport Modeling to Estimate Bacterial Loading and Transport in a Tidal Embayment

    Directory of Open Access Journals (Sweden)

    Mac Sisson

    2016-11-01

    Full Text Available Poquoson River is a tidal coastal embayment located along the Western Shore of the Chesapeake Bay about 4 km south of the York River mouth in the City of Poquoson and in York County, Virginia. Its drainage area has diversified land uses, including high densities of residence, agricultural, salt marsh land uses, as well as a National Wildlife Refuge. This embayment experiences elevated bacterial concentration due to excess bacterial inputs from storm water runoff, nonpoint sources, and wash off from marshes due to tide and wind-induced set-up and set-down. Bacteria can also grow in the marsh and small tributaries. It is difficult to use a traditional watershed model to simulate bacterial loading, especially in this low-lying marsh area with abundant wildlife, while runoff is not solely driven by precipitation. An inverse approach is introduced to estimate loading from unknown sources based on observations in the embayment. The estimated loadings were combined with loadings estimated from different sources (human, wildlife, agriculture, pets, etc. and input to the watershed model. The watershed model simulated long-term flow and bacterial loading and discharged to a three-dimensional transport model driven by tide, wind, and freshwater discharge. The transport model efficiently simulates the transport and fate of the bacterial concentration in the embayment and is capable of determining the loading reduction needed to improve the water quality condition of the embayment. Combining inverse, watershed, and transport models is a sound approach for simulating bacterial transport correctly in the coastal embayment with complex unknown bacterial sources, which are not solely driven by precipitation.

  19. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.

    Science.gov (United States)

    Senoura, Takeshi; Sakashita, Emi; Kobayashi, Takanori; Takahashi, Michiko; Aung, May Sann; Masuda, Hiroshi; Nakanishi, Hiromi; Nishizawa, Naoko K

    2017-11-01

    Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.

  20. Magnetic resonance microscopy of iron transport in methanogenic granules

    Science.gov (United States)

    Bartacek, Jan; Vergeldt, Frank J.; Gerkema, Edo; Jenicek, Pavel; Lens, Piet N. L.; Van As, Henk

    2009-10-01

    Interactions between anaerobic biofilms and heavy metals such as iron, cobalt or nickel are largely unknown. Magnetic resonance imaging (MRI) is a non-invasive method that allows in situ studies of metal transport within biofilm matrixes. The present study investigates quantitatively the penetration of iron (1.75 mM) bound to ethylenediaminetetraacetate (EDTA) into the methanogenic granules (spherical biofilm). A spatial resolution of 109 × 109 × 218 μm 3 and a temporal resolution of 11 min are achieved with 3D Turbo Spin Echo (TSE) measurements. The longitudinal relaxivity, i.e. the slope the dependence of the relaxation rate (1/ T1) on the concentration of paramagnetic metal ions, was used to measure temporal changes in iron concentration in the methanogenic granules. It took up to 300 min for the iron-EDTA complex ([FeEDTA] 2-) to penetrate into the methanogenic granules (3-4 mm in diameter). The diffusion was equally fast in all directions with irregularities such as diffusion-facilitating channels and diffusion-resistant zones. Despite these irregularities, the overall process could be modeled using Fick's equations for diffusion in a sphere, because immobilization of [FeEDTA] 2- in the granular matrix (or the presence of a reactive barrier) was not observed. The effective diffusion coefficient ( D ejf) of [FeEDTA] 2- was found to be 2.8 × 10 -11 m 2 s -1, i.e. approximately 4% of D ejf of [FeEDTA] 2- in water. The Fickian model did not correspond to the processes taking place in the core of the granule (3-5% of the total volume of the granule), where up to 25% over-saturation by iron (compare to the concentration in the bulk solution) occurred.

  1. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles.

    Science.gov (United States)

    Arias, Sandra L; Shetty, Akshath R; Senpan, Angana; Echeverry-Rendón, Mónica; Reece, Lisa M; Allain, Jean Paul

    2016-05-26

    In this study, bacterial nanocellulose (BNC) produced by the bacteria Gluconacetobacter xylinus is synthesized and impregnated in situ with iron oxide nanoparticles (IONP) (Fe3O4) to yield a magnetic bacterial nanocellulose (MBNC). The synthesis of MBNC is a precise and specifically designed multi-step process. Briefly, bacterial nanocellulose (BNC) pellicles are formed from preserved G. xylinus strain according to our experimental requirements of size and morphology. A solution of iron(III) chloride hexahydrate (FeCl3·6H2O) and iron(II) chloride tetrahydrate (FeCl2·4H2O) with a 2:1 molar ratio is prepared and diluted in deoxygenated high purity water. A BNC pellicle is then introduced in the vessel with the reactants. This mixture is stirred and heated at 80 °C in a silicon oil bath and ammonium hydroxide (14%) is then added by dropping to precipitate the ferrous ions into the BNC mesh. This last step allows forming in situ magnetite nanoparticles (Fe3O4) inside the bacterial nanocellulose mesh to confer magnetic properties to BNC pellicle. A toxicological assay was used to evaluate the biocompatibility of the BNC-IONP pellicle. Polyethylene glycol (PEG) was used to cover the IONPs in order to improve their biocompatibility. Scanning electron microscopy (SEM) images showed that the IONP were located preferentially in the fibril interlacing spaces of the BNC matrix, but some of them were also found along the BNC ribbons. Magnetic force microscope measurements performed on the MBNC detected the presence magnetic domains with high and weak intensity magnetic field, confirming the magnetic nature of the MBNC pellicle. Young's modulus values obtained in this work are also in a reasonable agreement with those reported for several blood vessels in previous studies.

  2. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation.

    Science.gov (United States)

    Seifan, Mostafa; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-04-01

    Recently, magnetic iron oxide nanoparticles (IONs) have been used to control and modify the characteristics of concrete and mortar. Concrete is one of the most used materials in the world; however, it is susceptible to cracking. Over recent years, a sustainable biotechnological approach has emerged as an alternative approach to conventional techniques to heal the concrete cracks by the incorporation of bacterial cells and nutrients into the concrete matrix. Once cracking occurs, CaCO 3 is induced and the crack is healed. Considering the positive effects of IONs on the concrete properties, the effect of these nanoparticles on bacterial growth and CaCO 3 biosynthesis needs to be evaluated for their possible application in bio self-healing concrete. In the present work, IONs were successfully synthesized and characterized using various techniques. The presence of IONs showed a significant effect on both bacterial growth and CaCO 3 precipitation. The highest bacterial growth was observed in the presence of 150 μg/mL IONs. The highest concentration of induced CaCO 3 (34.54 g/L) was achieved when the bacterial cells were immobilized with 300 μg/mL of IONs. This study provides new data and supports the possibility of using IONs as a new tool in designing the next generation of bio self-healing concrete.

  3. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress.

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-12-01

    Full Text Available Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR, detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular

  4. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  5. Bacterial assimilation reduction of iron in the treatment of non-metallics

    Directory of Open Access Journals (Sweden)

    Peter Malachovský

    2005-11-01

    Full Text Available Natural non-metallics, including granitoide and quartz sands, often contain iron which decreases the whiteness of these raw materials. Insoluble Fe3+ in these samples could be reduced to soluble Fe2+ by bacteria of Bacillus spp. and Saccharomyces spp. The leaching effect, observed by the measurement of Fe2+concentration in a solution, showed higher activities of a bacterial kind isolated from the Bajkal lake and also by using of yeast Saccharomyces sp. during bioleaching of quartz sands. However, allkinds of Bacillus spp. isolated from the Slovak deposit and from Bajkal lake were very active in the iron reduction during bioleaching of the feldspar raw material. This metal was efficiently removed from quartz sands as documented by the Fe2O3 decrease (from 0,317 % to 0,126 % and from feldpars raw materials by the Fe2O3 decrease (from 0,288 % to 0,115 % after bioleaching. The whiteness of these non-metallics was increased during a visual comparison of samples before and after bioleaching but samples contain selected magnetic particles. A removal of iron as well as a release of iron minerals from silicate matrix should increase the effect of the magnetic separation and should give a product which is suitable for industrial applications.

  6. Bacterial Iron Uptake Pathways: Gates for the Import of Bactericide Compounds.

    Science.gov (United States)

    Schalk, Isabelle J; Mislin, Gaëtan L A

    2017-06-08

    Bacterial resistance to most antibiotics in clinical use has reached alarming proportions. A challenge for modern medicine will be to discover new antibiotics or strategies to combat multidrug resistant bacteria, especially Gram-negative bacteria for which the situation is particularly critical. Vectorization of bactericide compounds by siderophores (iron chelators produced by bacteria) is a promising strategy able to considerably increase the efficacy of drugs. Such a Trojan horse strategy can also extend activity of specific Gram-positive antibiotics to Gram-negative bacteria.

  7. Iron-hydroxamate transport in Escherichia coli K12

    International Nuclear Information System (INIS)

    Prody, C.A.

    1984-01-01

    FhuB mutants, which are deficient in ferrichrome transport, were isolated and characterized. They were found to be deficient in the utilization of all hydroxamate-type siderophores. They were, however, able to transport enterobactin. A number of analogs of hydroxamate-type siderophores were tested for biological activity in E. coli, and about half of these were active. In addition, two rhodotorulic acid analogs were able to supply iron to fhuB mutants. A search for the fhuB gene product, using one and two-dimensional polyacrylamide gels of proteins from fhuB and wild type strains proved fruitless, and it appeared that the fhuB gene product is expressed at a very low level. Therefore, the fhuB gene was subcloned from a plasmid in the Carbon bank onto plasmid vectors containing the E. coli lac UV-5 and tacI promoters as a device to amplify the fhuB gene. One of these recombinant plasmids carried an 8Kb insert which contained both the tonA and fhuB genes. This plasmid synthesized five proteins of molecular weights 78,000, 40,000, 30,000, 24,000, and 13,700 in maxicell strain CSR603. By use of deletions, the approximate order of the genes for these proteins was determined. Although 3 He-ferrichrome is transported into E. coli cells and vesicles, 3 He-ferric rhodotorulate is not, and so the mechanism of transport for these two siderophores must be different. To examine this further, mutants were obtained that could transport ferrichrome but not rhodotorulic acid. These map in the region between tonA and fhuB, and most are able to transport aerobactin, when carrying the ColV plasmid, but not schizokinen

  8. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Insufficient dietary intake and low iron bio- availability in foods ... pared with common iron supplements, iron liposomes can obviously ... to inhibit iron absorption in humans and in cell culture models11. ..... ical nutrition issues. The effects of .... of approximately 2-100 nm could play an active role in mediating ...

  9. Bacterial PerO Permeases Transport Sulfate and Related Oxyanions.

    Science.gov (United States)

    Hoffmann, Marie-Christine; Pfänder, Yvonne; Tintel, Marc; Masepohl, Bernd

    2017-07-15

    Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens , Dinoroseobacter shibae , Rhodobacter sphaeroides , and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens , R. sphaeroides , and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides , to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family. IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions. Copyright © 2017 American Society for Microbiology.

  10. SQCRAMscope imaging of transport in an iron-pnictide superconductor

    Science.gov (United States)

    Yang, Fan; Kollar, Alicia; Taylor, Stephen; Palmstrom, Johanna; Chu, Jiun-Haw; Fisher, Ian; Lev, Benjamin

    2017-04-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We have recently introduced a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. We will report on the first use of the SQCRAMscope for imaging a strongly correlated material. Specifically, we will present measurements of electron transport in iron-pnictide superconductors across the electron nematic phase transition at T = 135 K.

  11. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; Norde, Willem; Sjollema, Jelmer

    2011-01-01

    In order to investigate bacterium-substratum interactions, understanding of bacterial mass transport is necessary. Comparisons of experimentally observed initial deposition rates with mass transport rates in parallel-plate-flow-chambers (PPFC) predicted by convective-diffusion yielded deposition

  12. Controls on radium transport by adsorption to iron minerals

    Science.gov (United States)

    Chen, M.; Wang, T.; Kocar, B. D.

    2015-12-01

    Radium is a naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are generated by uranium and thorium decay, and are particularly abundant within groundwaters where minimal porewater flux leads to accumulation. These isotopes are used as natural tracers for estimating submarine groundwater discharge (SGD) [1], allowing for large scale estimation of GW fluxes into and out of the ocean [2]. They also represent a substantial hazard in wastewater produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release to surface and near-surface waters, and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a dominant pathway of radium retention in subsurface environments. For SGD studies, adsorption processes impact estimates of GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids mediates wastewater radium activities. Analysis of past sorption studies revealed large variability in partition coefficients [4], while examination of radium adsorption kinetics and surface complexation have only recently started [5]. Accordingly, we present the results of sorption and column experiments of radium with a suite of iron minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through artificial waters. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the transport and retention of radium. These results will provide critical information on the mineralogical controls on radium retention in subsurface environments, and will therefore improve predictions of radium groundwater transport in natural and contaminated systems. [1] Charette, M.A., Buesseler, K.O. & Andrews, J.E., Limnol. Oceanogr. (2001). [2] Moore, W.S., Ann. Rev. Mar. Sci. (2010). [3] Vengosh, A

  13. Iron/argillite interactions in radioactive waste disposal context: Oxidising transient and bacterial activities influence

    International Nuclear Information System (INIS)

    Chautard, Camille; Dauzeres, Alexandre; Maillet, Anais

    2014-01-01

    The design of a high-level radioactive waste (HLW) disposal facility developed by Andra (2005) in France involves emplacing metallic materials (containers, overpacks, liner) into a geological argillaceous formation. During the operational phase, ventilation of handling drifts will keep oxidising conditions at the front of disposal tunnels. Therefore, an oxidising transient may take place in parts of these tunnels in the post-closure phase possibly over several years. During this transient period, the environment of the disposal cell will evolve towards reducing and saturated conditions close to the equilibrium state of the original underground argillaceous formation. Moreover, high temperature conditions above 50 deg. C may be encountered in this environment over a few hundred years. Uniform corrosion represents the main type of degradation of metallic materials for the long term. The oxidising transient will be characterised by high corrosion rates (e.g. localised corrosion) due to the presence of oxygen whereas during the following anoxic stage, the main alteration factor will originate from the pore water associated with lower corrosion rates. In any case, metallic materials corrosion will lead to the release of aqueous iron, which may induce alteration of the favourable confining properties of the clayey materials. In this context, reactive pathways related to the metal corrosion under oxidising conditions and then followed by reducing conditions remain to be further understood (evolution of pH, redox and influence of temperature). Furthermore, some other significant issues remain open, in particular the dissolution/precipitation processes, the argillite perturbation extent and the effects of these transformations on the confining properties of materials. The presence of micro-organisms in deep argillaceous environment and the introduction of new bacterial species in the repository during the operational phase raise the question of their survival under real

  14. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    Science.gov (United States)

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment

  16. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing

    DEFF Research Database (Denmark)

    Reyes, Carlen; Dellwig, Olaf; Dähnke, K.

    2016-01-01

    To gain insight into the bacterial communities involved in iron-(Fe) cycling under marine conditions, we analysed sediments with Fe-contents (0.5-1.5 wt %) from the suboxic zone at a marine site in the Skagerrak (SK) and a brackish site in the Bothnian Bay (BB) using 16S rRNA gene pyrosequencing....

  17. Kinetics of Transferrin and Transferrin-Receptor during Iron Transport through Blood Brain Barrier

    Science.gov (United States)

    Khan, Aminul; Liu, Jin; Dutta, Prashanta

    2017-11-01

    Transferrin and its receptors play an important role during the uptake and transcytosis of iron by blood brain barrier (BBB) endothelial cells to maintain iron homeostasis in BBB endothelium and brain. In the blood side of BBB, ferric iron binds with the apo-transferrin to form holo-transferrin which enters the endothelial cell via transferrin receptor mediated endocytosis. Depending on the initial concentration of iron inside the cell endocytosed holo-transferrin can either be acidified in the endosome or exocytosed through the basolateral membrane. Acidification of holo-transferrin in the endosome releases ferrous irons which may either be stored and used by the cell or transported into brain side. Exocytosis of the holo-transferrin through basolateral membrane leads to transport of iron bound to transferrin into brain side. In this work, kinetics of internalization, recycling and exocytosis of transferrin and its receptors are modeled by laws of mass action during iron transport in BBB endothelial cell. Kinetic parameters for the model are determined by least square analysis. Our results suggest that the cell's initial iron content determines the extent of the two possible iron transport pathways, which will be presented in this talk Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  18. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.

    Science.gov (United States)

    Roxas, Jennifer Lising; Viswanathan, V K

    2018-03-25

    The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  19. Water transport by the bacterial channel alpha-hemolysin

    Science.gov (United States)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  20. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    DEFF Research Database (Denmark)

    Scholz, Florian; Löscher, Carolin; Fiskal, Annika

    2016-01-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface...

  1. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese

    Science.gov (United States)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler; Bak, Friedhelm

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments. PMID:16348835

  2. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  3. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  4. Prion Protein Regulates Iron Transport by Functioning as a Ferrireductase

    Science.gov (United States)

    Singh, Ajay; Haldar, Swati; Horback, Katharine; Tom, Cynthia; Zhou, Lan; Meyerson, Howard; Singh, Neena

    2017-01-01

    Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP−/−). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP−/− mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP−/− mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP−/− mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP−/− BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates. PMID:23478311

  5. Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification

    Science.gov (United States)

    Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer

    2016-01-01

    Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448

  6. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  7. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    Science.gov (United States)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  8. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  9. Structural and sequence analysis of imelysin-like proteins implicated in bacterial iron uptake.

    Directory of Open Access Journals (Sweden)

    Qingping Xu

    Full Text Available Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution, have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function.

  10. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  11. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  12. Mechanism and developmental changes in iron transport across the blood-brain barrier.

    Science.gov (United States)

    Morgan, Evan H; Moos, Torben

    2002-01-01

    Transferrin and iron uptake by the brain were measured using [(59)Fe-(125)I]transferrin injected intravenously in rats aged from 15 days to 22 weeks. The values for both decreased with age. In rats aged 18 and 70 days the uptake was measured at short time intervals after the injection. When expressed as the volume of distribution (Vd), which represents the volume of plasma from which the transferrin and iron were derived, the results for iron were greater than those of transferrin as early as 7 min after injection and the difference increased rapidly with time, especially in the younger animals. A very similar time course was found for uptake by bone marrow (femurs) where iron uptake involves receptor-mediated endocytosis of Fe-transferrin, release of iron in the cell and recycling of apo-transferrin to the blood. It is concluded that, during transport of transferrin-bound plasma iron into the brain, a similar process occurs in brain capillary endothelial cells (BCECs) and that transcytosis of transferrin into the brain interstitium is only a minor pathway. Also, the high rate of iron transport into the brain in young animals, when iron requirements are high due to rapid growth of the brain, is a consequence of the level of expression and rate of recycling of transferrin receptors on BCECs. As the animal and brain mature both decrease. Copyright 2002 S. Karger AG, Basel

  13. Use of Electrophoresis for Transporting Nano-Iron in Porous Media

    Science.gov (United States)

    Research was conducted to evaluate if electrophoresis could transport surface stabilized nanoscale zero-valent iron (nZVI) through fine grained sand with the intent of remediating a contaminant in situ. The experimental procedure involved determining the transport rates of poly...

  14. Evaluating the effects of variable water chemistry on bacterial transport during infiltration.

    Science.gov (United States)

    Zhang, Haibo; Nordin, Nahjan Amer; Olson, Mira S

    2013-07-01

    Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater. Mixing of stormwater runoff with groundwater during infiltration results in changes in local solution chemistry, which may lead to changes in both bacterial and collector surface properties and subsequent bacterial attachment rates. This study focuses on quantifying changes in bacterial transport behavior under variable solution chemistry, and on comparing the influences of chemical variability and physical variability on bacterial attachment rates. Bacterial attachment rate at the soil-water interface was predicted analytically using a combined rate equation, which varies temporally and spatially with respect to changes in solution chemistry. Two-phase Monte Carlo analysis was conducted and an overall input-output correlation coefficient was calculated to quantitatively describe the importance of physiochemical variation on the estimates of attachment rate. Among physical variables, soil particle size has the highest correlation coefficient, followed by porosity of the soil media, bacterial size and flow velocity. Among chemical variables, ionic strength has the highest correlation coefficient. A semi-reactive microbial transport model was developed within HP1 (HYDRUS1D-PHREEQC) and applied to column transport experiments with constant and variable solution chemistries. Bacterial attachment rates varied from 9.10×10(-3)min(-1) to 3.71×10(-3)min(-1) due to mixing of synthetic stormwater (SSW) with artificial groundwater (AGW), while bacterial attachment remained constant at 9.10×10(-3)min(-1) in a constant

  15. The ferrous iron transporter FtrABCD is required for the virulence of Brucella abortus 2308 in mice.

    Science.gov (United States)

    Elhassanny, Ahmed E M; Anderson, Eric S; Menscher, Evan A; Roop, R Martin

    2013-06-01

    Iron transport has been linked to the virulence of Brucella strains in both natural and experimental hosts. The genes designated BAB2_0837-0840 in the Brucella abortus 2308 genome sequence are predicted to encode a CupII-type ferrous iron transporter homologous to the FtrABCD transporter recently described in Bordetella. To study the role of the Brucella FtrABCD in iron transport, an isogenic ftrA mutant was constructed from B. abortus 2308. Compared with the parental strain, the B. abortus ftrA mutant displays a decreased capacity to use non-haem iron sources in vitro, a growth defect in a low iron medium that is enhanced at pH 6, and studies employing radiolabelled FeCl3 confirmed that FtrABCD transports ferrous iron. Transcription of the ftrA gene is induced in B. abortus 2308 in response to iron deprivation and exposure to acid pH, and similar to other Brucella iron acquisition genes that have been examined the iron-responsiveness of ftrA is dependent upon the iron response regulator Irr. The B. abortus ftrA mutant exhibits significant attenuation in both cultured murine macrophages and experimentally infected mice, supporting the proposition that ferrous iron is a critical iron source for these bacteria in the mammalian host. © 2013 John Wiley & Sons Ltd.

  16. Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection.

    Science.gov (United States)

    Singh, Renu; Verma, Rachna; Sumana, G; Srivastava, Avanish Kumar; Sood, Seema; Gupta, Rajinder K; Malhotra, B D

    2012-08-01

    The nanocomposite based on polyaniline (PANI)-iron oxide nanoparticles (nFe(3)O(4)) and multi walled carbon-nanotubes (CNT) has been fabricated onto indium tin oxide (ITO) coated glass plate via facile electrochemical synthesis of polyaniline in presence of nFe(3)O(4) (~20 nm) and CNT (20-80 nm in diameter). The results of transmission electron microscopic studies show evidence of coating of PANI and nFe(3)O(4) onto the CNT. The PANI-nFe(3)O(4)-CNT/ITO nanoelectrode has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy studies. The biotinylated nucleic acid probe sequence consisting of 20 bases has been immobilized onto PANI-nFe(3)O(4)-CNT/ITO nanoelectrode using biotin-avidin coupling. It is shown that the PANI-nFe(3)O(4)-CNT platform based biosensor can be used to specifically detect bacteria (N. gonorrhoeae) at minute concentration as low as (1×10(-19) M) indicating high sensitivity within 45 s of hybridization time at 298 K by differential pulse voltammetry using methylene blue as electroactive indicator. This bacterial sensor has also been tested with 4 positive and 4 negative PCR amplicons of gonorrhoea affected patient samples. The results of these studies have implications towards the fabrication of a handheld device for Neisseria gonorrhoeae detection that may perhaps result in a decrease in the human immunodeficiency virus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Structure, mechanism and cooperation of bacterial multidrug transporters.

    Science.gov (United States)

    Du, Dijun; van Veen, Hendrik W; Murakami, Satoshi; Pos, Klaas M; Luisi, Ben F

    2015-08-01

    Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  19. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation

    International Nuclear Information System (INIS)

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-01-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg"−"1 of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg"−"1 nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg"−"1 nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI. - Highlights: • Higher concentrations of nZVI induced iron deficiency in rice seedlings visibly. • nZVI was taken in rice seedlings and transported form root to shoot. • The pathway of active iron transport from root to shoot was inhibited. • The cortex tissues

  20. Lessons learned from bacterial transport research at the South Oyster Site

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, T.; Hubbard, S.S.; Onstott, T.C.; DeFlaun, M.F.

    2011-04-01

    This paper provides a review of bacterial transport experiments conducted by a multi-investigator, multi-institution, multi-disciplinary team of researchers under the auspices of the U. S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators.

  1. Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean

    Science.gov (United States)

    Obernosterer, Ingrid; Christaki, Urania; Lefèvre, Dominique; Catala, Philippe; Van Wambeke, France; Lebaron, Philippe

    2008-03-01

    The response of heterotrophic bacteria ( Bacteria and Archaea) to the spring phytoplankton bloom that occurs annually above the Kerguelen Plateau (Southern Ocean) due to natural iron fertilization was investigated during the KErguelen Ocean and Plateau compared Study (KEOPS) cruise in January-February 2005. In surface waters (upper 100 m) in the core of the phytoplankton bloom, heterotrophic bacteria were, on an average, 3-fold more abundant and revealed rates of production ([ 3H] leucine incorporation) and respiration (bacterial metabolic activities were attributable to high-nucleic-acid-containing cells that dominated (≈80% of total cell abundance) the heterotrophic bacterial community associated with the phytoplankton bloom. Bacterial growth efficiencies varied between 14% and 20% inside the bloom and were bacterial activity, due to the stimulation by phytoplankton-derived dissolved organic matter. Within the Kerguelen bloom, bacterial carbon demand accounted for roughly 45% of gross community production. These results indicate that heterotrophic bacteria processed a significant portion of primary production, with most of it being rapidly respired.

  2. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions

    International Nuclear Information System (INIS)

    Shah, Vishal; Collins, Daniel; Shah, Shreya; Walker, Virginia K

    2014-01-01

    Our understanding of how engineered nanoparticles (NPs) migrate through soil and affect microbial communities is scarce. In the current study we examined how metal NPs, including those from the iron triad (iron, cobalt and nickel), moved through pots of soil maintained under winter field conditions for 50 days, when mesophilic bacteria may not be dividing. Based on total metal analysis, cobalt and nickel were localized in the top layer of soil, even after exposure to high precipitation and freeze–thaw cycles. In contrast, a bimodal distribution of silver was observed. Due to high endogenous levels of iron, the migration pattern of these NPs could not be determined. Pyrosequence analysis of the bacterial communities revealed that there was no significant engineered NP-mediated decline in microbial richness. However, analysis of individual genera showed that Sphingomonas and Lysobacter were represented by fewer sequences in horizons containing elevated metal levels whereas there was an increase in the numbers of Flavobacterium and Niastella. Collectively, the results indicate that along with the differential migration behavior of NPs in the soil matrix, their impact on soil bacterial diversity appears to be dependent on environmental parameters. (paper)

  3. Draft ASME code case on ductile cast iron for transport packaging

    International Nuclear Information System (INIS)

    Saegusa, T.; Arai, T.; Hirose, M.; Kobayashi, T.; Tezuka, Y.; Urabe, N.; Hueggenberg, R.

    2004-01-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required

  4. Adherence of amino acids functionalized iron oxide nanoparticles on bacterial models E. Coli and B. subtilis

    Science.gov (United States)

    Trujillo, W.; Zarria, J.; Pino, J.; Menacho, L.; Coca, M.; Bustamante, A.

    2018-03-01

    Magnetic iron oxides nanoparticles (NPs) functionalized with lysine (Lys) and arginine (Arg) was obtained by following chemical co-precipitation route in basic medium. The synthesis was performed by mixing ferrous chloride (FeCl2•4H2O), ferric chloride (FeCl3•6H2O) and the specific amino acid in a molar ratio of 1: 2: 0.5, respectively. High pH sample was washed several times with distilled water to reach a pH similar to distilled water (Ph=7) after the synthesis process, part of the NPs obtained was dried. Of the measurements of XRD and MS was obtained that the samples are magnetic nanoparticles of maghemite of about 9 nm in diameter. Of the FTIR and zeta potential measures was obtained that the amino acids Lys and Arg were correctly functionalized at magnetic nanoparticles, referred to herein as M@Lys and M@Arg. In order to demonstrate the capture and adhesion of the nanoparticles to the bacteria, scanning electron microscopy (SEM) was performed. The obtained visualization of both bacteria shows that they are coated by the magnetic particles. In addition, M@Lys (B. sutilis) were cultured to verify the inhibition of growth measured by colony forming units (CFU), the concentrations of M@Lys were 1.75x102 g/mL and 0.875x102 g/mL. After the confrontation obtained efficiencies of 75.63% and 98.75% respectively for the third dilution. While for the fourth dilution were 90% and 98.57% respectively were obtained for each concentration of nanoparticles. Hinting that a high efficiency of bacterial capture at very low concentrations of NPs, which gives us a tool to capture nanobiotechnology bacteria in liquid cultures with application to capture them in wastewater. Based on our results we concluded that NPS functionalized with the amino acids Lys and Arg adhere to the bacteria efficiently in low concentrations.

  5. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  6. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Singh, S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  7. Interdependence between iron ore production and maritime transport

    Directory of Open Access Journals (Sweden)

    A. V. Todorut

    2016-10-01

    Full Text Available The maritime industry plays an important role in international trade, transporting a total of 10,1 billion tons of merchandise in 2015, representing over 80% of all global trade, with dry cargo estimated to account for over two thirds of the total seaborne trade. Bulk carriers supply the raw materials needed by the steel industry and container ships transport the steel products. Demand and supply for seaborne transport is influenced by trends in global economy and worldwide demand for commodities. The paper analyzes the most important economic determinants in the supply of metallurgical raw materials, highlighting the importance of the shipping sector.

  8. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.

    Science.gov (United States)

    Sankari, Siva; O'Brian, Mark R

    2016-07-22

    The bacterium Bradyrhizobium japonicum USDA110 does not synthesize siderophores for iron utilization in aerobic environments, and the mechanism of iron uptake within symbiotic soybean root nodules is unknown. An mbfA bfr double mutant defective in iron export and storage activities cannot grow aerobically in very high iron medium. Here, we found that this phenotype was suppressed by loss of function mutations in the feoAB operon encoding ferrous (Fe(2+)) iron uptake proteins. Expression of the feoAB operon genes was elevated under iron limitation, but mutants defective in either gene were unable to grow aerobically over a wide external ferric (Fe(3+)) iron (FeCl3) concentration range. Thus, FeoAB accommodates iron acquisition under iron limited and iron replete conditions. Incorporation of radiolabel from either (55)Fe(2+) or (59)Fe(3+) into cells was severely defective in the feoA and feoB strains, suggesting Fe(3+) reduction to Fe(2+) prior to traversal across the cytoplasmic membrane by FeoAB. The feoA or feoB deletion strains elicited small, ineffective nodules on soybean roots, containing few bacteria and lacking nitrogen fixation activity. A feoA(E40K) mutant contained partial iron uptake activity in culture that supported normal growth and established an effective symbiosis. The feoA(E40K) strain had partial iron uptake activity in situ within nodules and in isolated cells, indicating that FeoAB is the iron transporter in symbiosis. We conclude that FeoAB supports iron acquisition under limited conditions of soil and in the iron-rich environment of a symbiotic nodule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Iron bacterial phylogeny and their execution towards iron availability in Equatorial Indian Ocean and Coastal Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasabapathy, R.; Mohandass, C.; VijayRaj, A.S.; Madival, V.V.; Meena, R.M.

    -264. Edwards K.J., W. Bach, T.M. McCollom and D.R. Rogers. 2004. Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea. Geomicrobiol. J. 21: 393...-404. Edwards K.J., D.R. Rogers, C.O. Wirsen and T.M. McCollom. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing chemolitho-autotrophic α- and γ -Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69: 2906...

  10. Study of methods for the improvement of bacterial transport media

    Science.gov (United States)

    Gardner, R. L.; Beakley, J. W.

    1973-01-01

    A series of 500 transport media recipes was tested for ability to hold pure cultures of Streptococcus equisimilus, Corynebacterium equi, Neisseria perflava, and Haemophilus parainfluenzae for 21 days. Stuart Medium Base with 0.4% agar was used as the control medium for this and the other experiments in the investigation. At the end of the holding period inoculated transport media were quantitatively assayed, and the control media were assayed immediately after inoculation. Three vials of each medium were inoculated with an organism, and each vial's medium was diluted and spread on duplicate plates. Assay media for this experiment included Brain Heart Infusion,(BHIA) Tryptic Soy Agar, and BHIA with 1% Isovitalex enrichment.

  11. Impact of Bacterial NO>3- Transport on Sediment Biogeochemistry

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2005-01-01

    Experiments demonstrated that Beggiatoa could induce a H2S-depleted suboxic zone of more than 10 mm in marine sediments and cause a divergence in sediment NO3- reduction from denitrification to dissimilatory NO3- reduction to ammonium. pH, O2, and H2S profiles indicated that the bacteria oxidized H......2S with NO3- and transported S0 to the sediment surface for aerobic oxidation....

  12. Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron

    Science.gov (United States)

    Wu, Jingfeng; Wells, Mark L.; Rember, Robert

    2011-01-01

    Dissolved iron profiles along a north-south transect along 158°W in the tropical Pacific show evidence of two deepwater anomalies. The first extends from Station ALOHA (22.78°N) to the equator at ˜1000-1500 m and lies below the maximum apparent oxygen utilization and nutrient (N, P) concentrations. The feature is not supported by vertical export processes, but instead corresponds with the lateral dilution field of δ 3He derived from the Loihi seamount, Hawaii, though a sediment source associated with the Hawaiian Island Chain cannot be entirely ruled out. The second, deeper (2000-3000 m) anomaly occurs in tropical South Pacific waters (7°S) and also does not correlate with the depths of maximum nutrient concentrations or apparent oxygen utilization, but it does coincide closely with δ 3He emanating from the East Pacific Rise, more than 5000 km to the east. We hypothesize that these anomalies represent the long-range (>2000 km) transport of hydrothermal iron residuals, stabilized against scavenging by complexation with excess organic ligands in the plume source regions. Such trace leakage of hydrothermal iron to distal plume regions would have been difficult to identify in most hydrothermal vent mapping studies because low analytical detection limits were not needed for the proximal plume regions. These findings suggest that hydrothermal activity may represent a major source of dissolved iron throughout the South Pacific deep basin today, as well as other regions having high mid-ocean spreading rates in the geologic past. In particular, we hypothesize that high spreading rates along the South Atlantic and Southern Ocean mid-oceanic ridges, combined with the upwelling ventilation of these distal hydrothermal plumes, may have increased ocean productivity and carbon export in the Southern Ocean. Assessing the magnitude and persistence of dissolved hydrothermal iron in basin scale deep waters will be important for understanding the marine biogeochemistry of iron

  13. Assessment of Two Alternative Sample Transport and Fixation Methods in the Microbiological Diagnosis of Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Erica Eason

    2003-01-01

    Full Text Available BACKGROUND: The standard method for specimen collection and transport for microbiological diagnosis of bacterial vaginosis is an air-dried smear of vaginal secretions, promptly heat- or alcohol-fixed, Gram-stained and scored by Nugent's criteria.

  14. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan

    Directory of Open Access Journals (Sweden)

    Y. Takahashi

    2011-11-01

    Full Text Available In the North Pacific, transport and deposition of mineral dust from Asia appear to be one of major sources of iron which can regulate growth of phytoplankton in the ocean. In this process, it is essential to identify chemical species of iron contained in Asian dust, because bioavailability of iron in the ocean is strongly influenced by the solubility of iron, which in turn is dependent on iron species in the dust. Here, we report that clay minerals (illite and chlorite in the dusts near the source collected at Aksu (western China can be transformed into ferrihydrite by atmospheric chemical processes during their long-range transport to eastern China (Qingdao and Japan (Tsukuba based on the speciation by X-ray absorption fine structure (XAFS and other methods such as X-ray diffraction and chemical extraction. As a result, Fe molar ratio in Aksu (illite : chlorite : ferrihydrite = 70 : 25 : 5 was changed to that in Tsukuba (illite : chlorite : ferrihydrite = 65 : 10 : 25. Moreover, leaching experiments were conducted to study the change of iron solubility. It was found that the iron solubility for the dust in Tsukuba (soluble iron fraction: 11.8 % and 1.10 % for synthetic rain water and seawater, respectively was larger than that in Aksu (4.1 % and 0.28 %, respectively, showing that iron in the dust after the transport becomes more soluble possibly due to the formation of ferrihydrite in the atmosphere. Our findings suggested that secondary formation of ferrihydrite during the transport should be considered as one of important processes in evaluating the supply of soluble iron to seawater.

  15. Bacterial clay release and iron dissolution during the quality 3 improvement of quartz sands

    Czech Academy of Sciences Publication Activity Database

    Štyriaková, I.; Štyriak, I.; Malachovský, P.; Večeřa, Zbyněk; Koloušek, D.

    2007-01-01

    Roč. 89, - (2007), s. 99-106 ISSN 0304-386X Institutional research plan: CEZ:AV0Z40310501 Keywords : Bacillus * bioleaching * iron Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.324, year: 2007

  16. SAXS and stability studies of iron-induced oligomers of bacterial frataxin CyaY.

    Directory of Open Access Journals (Sweden)

    Mostafa Fekry

    Full Text Available Frataxin is a highly conserved protein found in both prokaryotes and eukaryotes. It is involved in several central functions in cells, which include iron delivery to biochemical processes, such as heme synthesis, assembly of iron-sulfur clusters (ISC, storage of surplus iron in conditions of iron overload, and repair of ISC in aconitase. Frataxin from different organisms has been shown to undergo iron-dependent oligomerization. At least two different classes of oligomers, with different modes of oligomer packing and stabilization, have been identified. Here, we continue our efforts to explore the factors that control the oligomerization of frataxin from different organisms, and focus on E. coli frataxin CyaY. Using small-angle X-ray scattering (SAXS, we show that higher iron-to-protein ratios lead to larger oligomeric species, and that oligomerization proceeds in a linear fashion as a results of iron oxidation. Native mass spectrometry and online size-exclusion chromatography combined with SAXS show that a dimer is the most common form of CyaY in the presence of iron at atmospheric conditions. Modeling of the dimer using the SAXS data confirms the earlier proposed head-to-tail packing arrangement of monomers. This packing mode brings several conserved acidic residues into close proximity to each other, creating an environment for metal ion binding and possibly even mineralization. Together with negative-stain electron microscopy, the experiments also show that trimers, tetramers, pentamers, and presumably higher-order oligomers may exist in solution. Nano-differential scanning fluorimetry shows that the oligomers have limited stability and may easily dissociate at elevated temperatures. The factors affecting the possible oligomerization mode are discussed.

  17. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    Science.gov (United States)

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  18. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum

    International Nuclear Information System (INIS)

    Tiraferri, Alberto; Sethi, Rajandrea

    2009-01-01

    In order to ensure adequate mobility of zerovalent iron nanoparticles in natural aquifers, the use of a stabilizing agent is necessary. Polymers adsorbed on the nanoparticle surface will give rise to electrosteric stabilization and will decrease attachment to the surface soil grains. Water saturated sand-packed columns were used in this study to investigate the transport of iron nanoparticle suspensions, bare or modified with the green polymer guar gum. The suspensions were prepared at 154 mg/L particle concentration and 0.5 g/L polymer concentration. Transport experiments were conducted by varying the ionic strength, ionic composition, and approach velocity of the fluid. Nanoparticle deposition rates, attachment efficiencies, and travel distances were subsequently calculated based on the classical particle filtration theory. It was found that bare iron nanoparticles are basically immobile in sandy porous media. In contrast, guar gum is able to ensure significant nanoparticle transport at the tested conditions, regardless of the chemistry of the solution. Attachment efficiency values for guar gum-coated nanoparticles under the various conditions tested were smaller than 0.066. Although the calculated travel distances may not prove satisfactory for field application, the investigation attested the promising role of guar gum to ensure mobility of iron nanoparticles in the subsurface environment.

  19. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J

    2016-10-15

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Iron transport, deposition and bioavailability in the wheat and barley grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2009-01-01

    will briefly review existing knowledge on the distribution and transport pathways of iron in the two small grained cereals, barley and wheat, and focus on the efforts made to increase the iron content in cereals in general. However, mineral content is not the only factor of relevance for improving......). The nutritional impact of increasing mineral content accordingly has to be seen in the context of mineral bioavailability. Finally, we will briefly report on recent data from barley, where laser capture microdissection of the different grain tissues combined with gene expression profiling has provided some...

  1. A solute-binding protein for iron transport in Streptococcus iniae

    Directory of Open Access Journals (Sweden)

    Li Anxing

    2010-12-01

    Full Text Available Abstract Background Streptococcus iniae (S. iniae is a major pathogen that causes considerable morbidity and mortality in cultured fish worldwide. The pathogen's ability to adapt to the host affects the extent of infection, hence understanding the mechanisms by which S. iniae overcomes physiological stresses during infection will help to identify potential virulence determinants of streptococcal infection. Grow S. iniae under iron-restricted conditions is one approach for identifying host-specific protein expression. Iron plays an important role in many biological processes but it has low solubility under physiological condition. Many microorganisms have been shown to be able to circumvent this nutritional limitation by forming direct contacts with iron-containing proteins through ATP-binding cassette (ABC transporters. The ABC transporter superfamilies constitute many different systems that are widespread among living organisms with different functions, such as ligands translocation, mRNA translation, and DNA repair. Results An ABC transporter system, named as mtsABC (metal transport system was cloned from S. iniae HD-1, and was found to be involved in heme utilization. mtsABC is cotranscribed by three downstream genes, i.e., mtsA, mtsB, and mtsC. In this study, we cloned the first gene of the mtsABC transporter system (mtsA, and purified the corresponding recombinant protein MtsA. The analysis indicated that MtsA is a putative lipoprotein which binds to heme that can serve as an iron source for the microorganism, and is expressed in vivo during Kunming mice infection by S. iniae HD-1. Conclusions This is believed to be the first report on the cloning the ABC transporter lipoprotein from S. iniae genomic DNA. Together, our data suggested that MtsA is associated with heme, and is expressed in vivo during Kunming mice infection by S. iniae HD-1 which indicated that it can be a potential candidate for S. iniae subunit vaccine.

  2. Iron transport in a confined high-temperature plasma

    International Nuclear Information System (INIS)

    Demokan, O.; Waelbroeck, F.

    1981-06-01

    The neo-classical flux, GAMMAsub(n.c), of Fe XXIII is calculated for the experimental conditions produced in PLT by using the data on the iron density profiles and the plasma parameters. The actual flux of Fe XXIII, GAMMAsub(c.e), is then evaluated from the continuity equation, by using the same data. GAMMAsub(c.e) is on the average two orders of magnitude larger than GAMMAsub(n.c), the neo-classical prediction. These results are further tested by introducing the neo-classical coefficients which are multiplied by various anomaly factors into the continuity equation and solving for the density profile of Fe XXIII, using the experimental profiles of Fe XXII and Fe XXIV as given. The results of this section indicate that the first and the second terms in the neo-classical flux expression, GAMMAsub(n.c) = -D 1 (dn/dr) + D 2 n, should be multiplied approximately by the factors (100) and (25), respectively in order to yield the experimentally observed profile of Fe XXIII. (orig./HT)

  3. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology.

    Science.gov (United States)

    Skjørringe, Tina; Burkhart, Annette; Johnsen, Kasper Bendix; Moos, Torben

    2015-01-01

    Iron is required in a variety of essential processes in the body. In this review, we focus on iron transport in the brain and the role of the divalent metal transporter 1 (DMT1) vital for iron uptake in most cells. DMT1 locates to cellular membranes and endosomal membranes, where it is a key player in non-transferrin bound iron uptake and transferrin-bound iron uptake, respectively. Four isoforms of DMT1 exist, and their respective characteristics involve a complex cell-specific regulatory machinery all controlling iron transport across these membranes. This complexity reflects the fine balance required in iron homeostasis, as this metal is indispensable in many cell functions but highly toxic when appearing in excess. DMT1 expression in the brain is prominent in neurons. Of serious dispute is the expression of DMT1 in non-neuronal cells. Recent studies imply that DMT1 does exist in endosomes of brain capillary endothelial cells denoting the blood-brain barrier. This supports existing evidence that iron uptake at the BBB occurs by means of transferrin-receptor mediated endocytosis followed by detachment of iron from transferrin inside the acidic compartment of the endosome and DMT1-mediated pumping iron into the cytosol. The subsequent iron transport across the abluminal membrane into the brain likely occurs by ferroportin. The virtual absent expression of transferrin receptors and DMT1 in glial cells, i.e., astrocytes, microglia and oligodendrocytes, suggest that the steady state uptake of iron in glia is much lower than in neurons and/or other mechanisms for iron uptake in these cell types prevail.

  4. The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley

    DEFF Research Database (Denmark)

    Long, Lizhi; Persson, Daniel Olaf; Duan, Fengying

    2018-01-01

    Transporters involved in manganese (Mn) uptake and intracellular Mn homeostasis in Arabidopsis and rice are well characterized, while much less is known for barley, which is particularly prone to Mn deficiency. In this study we have investigated the role of the iron-regulated transporter 1 (IRT1...

  5. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  6. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil

    International Nuclear Information System (INIS)

    Tilston, Emma L.; Collins, Chris D.; Mitchell, Geoffrey R.; Princivalle, Jessica; Shaw, Liz J.

    2013-01-01

    Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg −1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation. Highlights: ► Impact of nano-sized zerovalent iron on microbes was investigated in soil microcosms. ► Zerovalent iron had short-lived effects on redox potential and Aroclor dechlorination. ► Microbial populations also showed short-lived perturbations in their size. ► The activity of chloroaromatic degrading microbes did not recover within 28 days. ► Zerovalent iron application inhibits ensuing PCB bioremediative microbial functions. - nZVI inhibits microbial functions of potential importance for remediation strategies combining nZVI treatment and biodegradation.

  7. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8.

    Science.gov (United States)

    Kamoshida, Go; Tansho-Nagakawa, Shigeru; Kikuchi-Ueda, Takane; Nakano, Ryuichi; Hikosaka, Kenji; Nishida, Satoshi; Ubagai, Tsuneyuki; Higashi, Shouichi; Ono, Yasuo

    2016-12-01

    Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target. © Society for Leukocyte Biology.

  8. Integrity of the iron transport process in mice with X-linked anaemia

    International Nuclear Information System (INIS)

    Thomson, A.B.R.; Valberg, L.S.

    1975-01-01

    The defect in iron (Fe) absorption in X-linked anaemia (sla) remains an enigma; absorption of a tracer dose of Fe is impaired in mice raised on an iron-containing cube diet but not in those raised on an iron-deficient diet. Because cobalt (Co) shares a similar intestinal transport pathway with Fe, a study was made of the effect of iron deficient diet on Co absorption. The duodenum of sla and genetically normal mice was perfused for 30 min with labelled solutions containing Co or Fe. Co uptake and transfer were similar in sla and normals fed cubes whereas Fe uptake and transfer were less in sla than in normals. The iron deficient diet caused an increase in the uptake and transfer of Co and Fe in sla and normals. When Co and Fe were perfused together in sla fed deficient diet, the uptake and transfer of each metal was less than when perfused alone. The distribution of Fe and Co in subcellular mucosal fractions was determined by a differential centrifugation technique. Deficient diet resulted in a directionally similar change in the subcellular distribution of Co and Fe in sla and normals. The increase in Co as well as Fe absorption in the sla on an iron deficient diet to the same high level found in genetically normal animals, and the inhibitory effect of each metal on the absorption of the other suggests that the absorption defect in sla is unlikely to be due to a primary defect in the function of the transport carrier. (author)

  9. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis.

    Science.gov (United States)

    Lei, Gui Jie; Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Dong, Ning Yu; Zheng, Shao Jian

    2014-04-01

    Abscisic acid (ABA) has been demonstrated to be involved in iron (Fe) homeostasis, but the underlying mechanism is largely unknown. Here, we found that Fe deficiency induced ABA accumulation rapidly (within 6 h) in the roots of Arabidopsis. Exogenous ABA at 0.5 μM decreased the amount of root apoplastic Fe bound to pectin and hemicellulose, and increased the shoot Fe content significantly, thus alleviating Fe deficiency-induced chlorosis. Exogenous ABA promoted the secretion of phenolics to release apoplastic Fe and up-regulated the expression of AtNRAMP3 to enhance reutilization of Fe stored in the vacuoles, leading to a higher level of soluble Fe and lower ferric-chelate reductase (FCR) activity in roots. Treatment with ABA also led to increased Fe concentrations in the xylem sap, partially because of the up-regulation of AtFRD3, AtYSL2 and AtNAS1, genes related to long-distance transport of Fe. Exogenous ABA could not alleviate the chlorosis of abi5 mutant resulting from the significantly low expression of AtYSL2 and low transport of Fe from root to shoot. Taken together, our data support the conclusion that ABA is involved in the reutilization and transport of Fe from root to shoot under Fe deficiency conditions in Arabidopsis. © 2013 John Wiley & Sons Ltd.

  10. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).

    Science.gov (United States)

    Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao

    2017-04-01

    Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  12. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  13. The effect of bacterial generation on the transport of radionuclide in porous media

    International Nuclear Information System (INIS)

    Han, B.S.; Lee, K.J.

    1997-01-01

    The purpose of this paper is to provide a methodology to develop a predictive model based on a conceptual three-phase system and to investigate the influence of bacteria and their generation on the radionuclide transport in porous media. The mass balance equations for bacteria, substrate and radionuclide were formulated. To illustrate the model simply, an equilibrium condition was assumed to partition the substrate, bacteria and radionuclide concentrations, between the solid soil matrix, aqueous phase and bacterial surface. From the numerical calculation of radionuclide transport in the presence of bacteria, it was found that the growth of bacterial and supplied primary substrate as a limiting or stimulating growth factor of bacteria are the most important factors of the radionuclide transport. It was also found that, depending on the transport of bacteria, the temporal and spatial distribution of the radionuclide concentration was significantly affected. The model proposed in this study will improve the evaluation of the role of the bacteria to the transport of radionuclide in groundwater systems. Furthermore, this model can be usefully utilized in analyzing the important role of colloidal particulate on the overall performance of radioactive waste safety. (Author)

  14. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese

    DEFF Research Database (Denmark)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide an...

  15. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  16. Role of the Fur regulon in iron transport in Bacillus subtilis.

    Science.gov (United States)

    Ollinger, Juliane; Song, Kyung-Bok; Antelmann, Haike; Hecker, Michael; Helmann, John D

    2006-05-01

    The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding approximately 40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.

  17. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    Science.gov (United States)

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.

  18. Interspecies modulation of bacterial development through iron competition and siderophore piracy.

    Science.gov (United States)

    Traxler, Matthew F; Seyedsayamdost, Mohammad R; Clardy, Jon; Kolter, Roberto

    2012-11-01

    While soil-dwelling actinomycetes are renowned for secreting natural products, little is known about the roles of these molecules in mediating actinomycete interactions. In a previous co-culture screen, we found that one actinomycete, Amycolatopsis sp. AA4, inhibited aerial hyphae formation in adjacent colonies of Streptomyces coelicolor. A siderophore, amychelin, mediated this developmental arrest. Here we present genetic evidence that confirms the role of the amc locus in the production of amychelin and in the inhibition of S. coelicolor development. We further characterize the Amycolatopsis sp. AA4 - S. coelicolor interaction by examining expression of developmental and iron acquisition genes over time in co-culture. Manipulation of iron availability and/or growth near Amycolatopsis sp. AA4 led to alterations in expression of the critical developmental gene bldN, and other key downstream genes in the S. coelicolor transcriptional cascade. In Amycolatopsis sp. AA4, siderophore genes were downregulated when grown near S. coelicolor, leading us to find that deferrioxamine E, produced by S. coelicolor, could be readily utilized by Amycolatopsis sp. AA4. Collectively these results suggest that competition for iron via siderophore piracy and species-specific siderophores can alter patterns of gene expression and morphological differentiation during actinomycete interactions. © 2012 Blackwell Publishing Ltd.

  19. ASME codification of ductile cast iron cask for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Arai, Taku

    2012-01-01

    The CRIEPI has been executing research and development on ductile cast iron cask for transport and storage of spent nuclear fuel in order to diversify options of the casks. Based on the research results, the CRIEPI proposed materials standards (Section II) and structural design standards (Section III) for the ductile cast iron cask to the authoritative and international ASME (American Society of Mechanical Engineers) Codes. For the Section II, the CRIEPI proposed the JIS G 5504 material with additional requirement prohibiting repair of cast body by welding, etc. as well as the ASTM A874 material to the Part A. In addition, the CRIEPI proposed design stress allowables, physical properties (thermal conductivity, modulus of elasticity, etc.), and external pressure chart to the Part D. For the Section III, the CRIEPI proposed a fracture toughness requirement of the ductile cast iron cask at -40degC to WB and WC of Division 3. Additionally, the CRIEPI proposed a design fatigue curve of the ductile cast iron cask to Appendix of Division 1. This report describes the outline of the proposed standards, their bases, and the deliberation process in order to promote proper usage of the code, future improvement, etc. (author)

  20. Biosorption phenomena of chromium, copper, iron and zink by dispersed bacterial extracellular polymeric substance

    International Nuclear Information System (INIS)

    Zainus Salimin; Endang Nuraeni; Mirawaty

    2015-01-01

    Heavy metals removing is generally performed using chemical coagulant that generates the chemical pollutant, so it is necessary to replace it by another alternative material as the Extracellular Polymeric Substance (EPS) resulting from the extraction of bacteria. The EPS contains the negatively functional groups (RCOOH, ROPO 3 H, ROPO 3 Na, ROSO 3 H, ROSO 3 Na, etc) as the cation sorbent and the positively functional groups (ROH, RC(NH 2 )HCOOH, etc) as the anion sorbent. The EPS absorbs the ion pollutants, then EPS containing the loaded metals be settled by gravitation. The utilization of EPS for removing of chromium, copper, iron, and zink was performed for biosorption phenomena study. Two hundred mg of EPS is mixed with 300 ml of the liquid waste having the pH of 2,4 containing 3,06 ppm of chromium; 4,83 ppm of copper; 1,6 ppm of iron and 15,07 ppm of zink. The solution is then agitated on 150 rpm and the pH of 7. The separated water supernatant is then sampled every 2 hours for its analysis of metals content. The experiment is repeated again for the solution pH of 4 and 8. The results of experiment indicates that the EPS composition are 11% of polysaccharides, 77% of protein, and 11% of fat ,and EPS contains the chemical bounding of C-H, OH, NH, and C=O. Indicating that EPS contains RCOOH, ROH and (RC(NH 2 )HCOOH. The best condition for metals biosorption is pH 8, and on the 6 hours of process time, the metal concentration on the water supernatant for chromium, copper, iron and zinc are 0,99 ppm; 0,51 ppm; 0,17 ppm; and 4,61 ppm respectively. Its selectivities are Fe 3+ > Cr 3+ >Cu 2+ >Fe 2+ >Zn 2+ , on the 6 hours of process time the location of cations functional groups was filled by the cations of Cr 3+ ,Cu 2+ , dan Fe 2+ . The cation of Zn 2+ enters to that location on the end of period so on the 6 hours of process time its concentration of 4,61 ppm not conforms to its concentration of regulation value of 2 ppm. On the process time of 6 hours the removing

  1. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.

    Science.gov (United States)

    Momonoi, Kazumi; Yoshida, Kumi; Mano, Shoji; Takahashi, Hideyuki; Nakamori, Chihiro; Shoji, Kazuaki; Nitta, Akira; Nishimura, Mikio

    2009-08-01

    Blue color in flowers is due mainly to anthocyanins, and a considerable part of blue coloration can be attributed to metal-complexed anthocyanins. However, the mechanism of metal ion transport into vacuoles and subsequent flower color development has yet to be fully explored. Previously, we studied the mechanism of blue color development specifically at the bottom of the inner perianth in purple tulip petals of Tulipa gesneriana cv. Murasakizuisho. We found that differences in iron content were associated with the development of blue- and purple-colored cells. Here, we identify a vacuolar iron transporter in T. gesneriana (TgVit1), and characterize the localization and function of this transporter protein in tulip petals. The amino acid sequence of TgVit1 is 85% similar that of the Arabidopsis thaliana vacuolar iron transporter AtVIT1, and also showed similarity to the AtVIT1 homolog in yeast, Ca(2+)-sensitive cross-complementer 1 (CCC1). The gene TgVit1 was expressed exclusively in blue-colored epidermal cells, and protein levels increased with increasing mRNA expression and blue coloration. Transient expression experiments revealed that TgVit1 localizes to the vacuolar membrane, and is responsible for the development of the blue color in purple cells. Expression of TgVit1 in yeast rescued the growth defect of ccc1 mutant cells in the presence of high concentrations of FeSO(4). Our results indicate that TgVit1 plays an essential role in blue coloration as a vacuolar iron transporter in tulip petals. These results suggest a new role for involvement of a vacuolar iron transporter in blue flower color development.

  2. Specific expression of the vacuolar iron transporter, TgVit, causes iron accumulation in blue-colored inner bottom segments of various tulip petals.

    Science.gov (United States)

    Momonoi, Kazumi; Tsuji, Toshiaki; Kazuma, Kohei; Yoshida, Kumi

    2012-01-01

    Several flowers of Tulipa gesneriana exhibit a blue color in the bottom segments of the inner perianth. We have previously reported the inner-bottom tissue-specific iron accumulation and expression of the vacuolar iron transporter, TgVit1, in tulip cv. Murasakizuisho. To clarify whether the TgVit1-dependent iron accumulation and blue-color development in tulip petals are universal, we analyzed anthocyanin, its co-pigment components, iron contents and the expression of TgVit1 mRNA in 13 cultivars which show a blue color in the bottom segments of the inner perianth accompanying yellow- and white-colored inner-bottom petals. All of the blue bottom segments contained the same anthocyanin component, delphinidin 3-rutinoside. The flavonol composition varied with cultivar and tissue part. The major flavonol in the bottom segments of the inner perianth was rutin. The iron content in the upper part was less than that in the bottom segments of the inner perianth. The iron content in the yellow and white petals was higher in the bottom segment of the inner perianth than in the upper tissues. TgVit1 mRNA expression was apparent in all of the bottom tissues of the inner perianth. The result of a reproduction experiment by mixing the constituents suggests that the blue coloration in tulip petals is generally caused by iron complexation to delphinidin 3-rutinoside and that the iron complex is solubilized and stabilized by flavonol glycosides. TgVit1-dependent iron accumulation in the bottom segments of the inner perianth might be controlled by an unknown system that differentiated the upper parts and bottom segments of the inner perianth.

  3. Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.

    Science.gov (United States)

    Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M

    1999-04-01

    In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.

  4. Effect of flow on bacterial transport and biofilm formation in saturated porous media

    Science.gov (United States)

    Rusconi, R.

    2016-12-01

    Understanding the transport of bacteria in saturated porous media is crucial for many applications ranging from the management of pumping wells subject to bio-clogging to the design of new bioremediation schemes for subsurface contamination. However, little is known about the spatial distribution of bacteria at the pore scale, particularly when small-scale heterogeneities - always present even in seemingly homogeneous aquifers - lead to preferential pathways for groundwater flow. In particular, the coupling of flow and motility has recently been shown to strongly affect bacterial transport1, and this leads us to predict that subsurface flow may strongly affect the dispersal of bacteria and the formation of biofilms in saturated aquifers. I present here microfluidic experiments combined with numerical simulations to show how the topological features of the flow correlate with bacterial concentration and promote the attachment of bacteria to specific regions of the pore network, which will ultimately influence the formations of biofilms. These results highlight the intimate link between small-scale biological processes and transport in porous media.

  5. Possible evidence for transport of an iron cyanide complex by plants

    International Nuclear Information System (INIS)

    Samiotakis, M.; Ebbs, S.D.

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to 15 N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots (δ 15 N%o=1000-1500) and shoots (δ 15 N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater 15 N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane

  6. Possible evidence for transport of an iron cyanide complex by plants

    Energy Technology Data Exchange (ETDEWEB)

    Samiotakis, M.; Ebbs, S.D

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to {sup 15}N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots ({delta} {sup 15}N%o=1000-1500) and shoots ({delta} {sup 15}N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater {sup 15}N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane.

  7. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    Science.gov (United States)

    Harvey, Ronald W.; Metge, David W.; Barber, Larry B.; Aiken, George R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  8. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotenecarotenoids react more quickly than reference carotenoids with Fe(III), but much more slowly than the reference carotenoids with Fe(II). This reaction is correlated with the structure of the carotenoids, which can have opposite effects in a micellar system: bacterial carotenoids with electro-attracting terminal groups have a lower reducing capacity than β-carotene and lycopene. However, their polar head favours their location close to the interface of micelles, in closer contact with oxidative species. Kinetic analyses of the iron-induced autoxidation of astaxanthin and HU36 carotenoids has been performed and gives insights in the underlying mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2008-01-01

    (majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling. We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction......We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance...

  10. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  11. The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Aduri, Nanda G; Sharma, Neha

    2018-01-01

    . However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial...

  12. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    International Nuclear Information System (INIS)

    T.C. Onstott

    2005-01-01

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions

  13. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese

    DEFF Research Database (Denmark)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler

    1993-01-01

    and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S was microbially disproportionated to sulfate and sulfide, as follows: 4S + 4H(2)O --> SO(4) + 3H(2)S + 2H. Subsequent chemical reactions between...... reduction of MnO(2) to Mn. Growth of small rod-shaped bacteria was observed. When incubated without MnO(2), the culture did not grow but produced small amounts of SO(4) and H(2)S at a ratio of 1:3, indicating again a disproportionation of S. The observed microbial disproportionation of S only proceeds...... significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S disproportionation in the presence of FeOOH or MnO(2) was high, > 10 cm in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic...

  14. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekar, Aruliah; Ting, Yen-Peng [National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering; Anandkumar, Balakrishnan [Sourashtra Coll., Madurai (India). Dept. of Biotechnology; Maruthamuthu, Sundaram [Central Electrochemical Research Inst., Karaikudi (India). Biocorrosion Group; Rahman, Pattanathu K.S.M. [Teesside Univ., Tees Valley (United Kingdom). Chemical and Bioprocess Engineering Group

    2010-01-15

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed. (orig.)

  15. Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline.

    Science.gov (United States)

    Lane, Darius J R; Richardson, Des R

    2014-08-15

    How is cellular iron (Fe) uptake and efflux regulated in mammalian cells? In this issue of the Biochemical Journal, Yanatori et al. report for the first time that a member of the emerging PCBP [poly(rC)-binding protein] Fe-chaperone family, PCBP2, physically interacts with the major Fe importer DMT1 (divalent metal transporter 1) and the Fe exporter FPN1 (ferroportin 1). In both cases, the interaction of the Fe transporter with PCBP2 is Fe-dependent. Interestingly, another PCBP Fe-chaperone, PCBP1, does not appear to bind to DMT1. Strikingly, the PCBP2-DMT1 interaction is required for DMT1-dependent cellular Fe uptake, suggesting that, in addition to functioning as an intracellular Fe chaperone, PCBP2 may be a molecular 'gate- keeper' for transmembrane Fe transport. These new data hint at the possibility that PCBP2 may be a component of a yet-to-be-described Fe-transport metabolon that engages in Fe channelling to and from Fe transporters and intracellular sites.

  16. Mechanical properties of ductile cast iron and cast steel for intermediate level waste transport containers

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Egid, B.; Ajayi, F.; Donelan, P.

    1994-01-01

    UK Nirex Ltd is developing Type B re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses to transport intermediate level radioactive waste (ILW) to a deep repository. The designs are of an essentially monolithic construction and rely principally on the plastic flow of their material to absorb the energies involved in impact events. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. However, cast materials are perceived to lack toughness and ductility and it is necessary to show that sufficient fracture toughness can be obtained to preclude brittle failure modes, particularly at low temperatures. The mechanical testing carried out as part of that programme is described. It shows how the measured properties have been used to demonstrate avoidance of brittle fracture and provide input to computer modelling of the drop tests. (author)

  17. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Sun

    2016-08-01

    Full Text Available Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii displayed no apparent flagella and motility, (iii was defective in the attachment to host cells and unable to form self-aggregation, (iv displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.

  18. The Molecular Bases of the Dual Regulation of Bacterial Iron Sulfur Cluster Biogenesis by CyaY and IscX

    Directory of Open Access Journals (Sweden)

    Salvatore Adinolfi

    2018-02-01

    Full Text Available IscX (or YfhJ is a protein of unknown function which takes part in the iron-sulfur cluster assembly machinery, a highly specialized and essential metabolic pathway. IscX binds to iron with low affinity and interacts with IscS, the desulfurase central to cluster assembly. Previous studies have suggested a competition between IscX and CyaY, the bacterial ortholog of frataxin, for the same binding surface of IscS. This competition could suggest a link between the two proteins with a functional significance. Using a hybrid approach based on nuclear magnetic resonance, small angle scattering and biochemical methods, we show here that IscX is a modulator of the inhibitory properties of CyaY: by competing for the same site on IscS, the presence of IscX rescues the rates of enzymatic cluster formation which are inhibited by CyaY. The effect is stronger at low iron concentrations, whereas it becomes negligible at high iron concentrations. These results strongly suggest the mechanism of the dual regulation of iron sulfur cluster assembly under the control of iron as the effector.

  19. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic ß cell fate in response to cytokines

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Tonnesen, Morten Fog; Madsen, Andreas Nygaard

    2012-01-01

    Reactive oxygen species (ROS) contribute to target-cell damage in inflammatory and iron-overload diseases. Little is known about iron transport regulation during inflammatory attack. Through a combination of in vitro and in vivo studies, we show that the proinflammatory cytokine IL-1ß induces...... knockout islets is defective, highlighting a physiological role of iron and ROS in the regulation of insulin secretion. Dmt1 knockout mice are protected against multiple low-dose streptozotocin and high-fat diet-induced glucose intolerance, models of type 1 and type 2 diabetes, respectively. Thus, ß cells...

  20. Influence of food tannins on certain aspects of iron metabolism : Part 2 -- Storage and transport in normal and anemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S N [Albert Einstein Coll. of Medicine, Bronx, NY (USA); Mukherjee, S [Calcutta Univ. (India). Dept. of Applied Chemistry

    1979-04-01

    Administration of tannin (0.5 mg/kg body wt/day) from fruits and vegetables lowers the iron content in liver, spleen and bone marrow with an elevation in Total Iron Binding Capacity (TIBC) of serum and serum iron concentration in normal rats. The same dose of tannin increases the iron content in storage tissues, particularly bone marrow of hemolytic anemic rats. In anemic rats, TIBC is decreased and serum iron concentration is raised from anemic level to approximately normal value due to ingestion of tannin. Radioiron administration, either by oral or by intravenous route, also elicits similar results. Recovery of iron storage and transport values from the anemic to the normal condition by tannin (0.5 mg/kg) varies with the source of tannin used. Thus more iron required for compensating the anemic conditions is retained within their body by tannin (0.5 mg/kg) which appears to reduce the loss of peripheral iron probably by protecting the lysis of red cells.

  1. Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method - Version 2

    CERN Document Server

    Žukauskaite, A; Plukiene, R; Plukis, A

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.

  2. Effect of transportation on fecal bacterial communities and fermentative activities in horses: impact of Saccharomyces cerevisiae CNCM I-1077 supplementation.

    Science.gov (United States)

    Faubladier, C; Chaucheyras-Durand, F; da Veiga, L; Julliand, V

    2013-04-01

    This study evaluated the effect of transportation on fecal bacterial communities and activities in horses with or without supplementation of live yeast and attempted to link those effects with changes in blood stress markers. Four mature horses were assigned to a crossover design and fed a basal diet (60:40 forage to concentrate; 1.45% BW on a DM basis), with or without supplementation, of 2 × 10(10) cfu/d of Saccharomyces cerevisiae CNCM I-1077. After a 14-d adaptation to dietary treatments, the 5-d experiment started 1 d before transportation (d -1). At d 0, horses were simultaneously transported in a truck for 2 h. Feces were sampled 4 h after the morning meal of concentrate at d -1, 0 (immediately after transportation), and 3 for enumeration of the main functional bacterial groups and determination of fermentative variables. Within each dietary treatment, feces were pooled before DNA extraction and molecular analysis of the bacterial communities, using temporal temperature gradient electrophoreses (TTGE). Blood samples were collected at the same time for determination of white blood cells (WBC) counts and glucose and total protein concentrations. Regardless of dietary treatment, the neutrophil to lymphocyte ratio increased during transportation (P transportation, and the percentage of similarity between profiles at d -1 and 3 was greater in supplemented horses compared with the controls. From d 0 to 3, the molar percentage of propionate increased and total concentration of VFA and the acetate + butyrate to propionate ratio decreased, regardless of dietary treatment (P transportation for 2 h disturbed the fecal bacterial ecosystem in horses that could increase the risk of triggering microbial dysbiosis on a longer term in the equine large intestine. Supplementing Saccharomyces cerevisiae CNCM I-1077 could help reduce the negative impact of transportation on the fecal bacterial ecosystem.

  3. Iron is a substrate of the Plasmodium falciparum chloroquine resistance transporter PfCRT in Xenopus oocytes.

    Science.gov (United States)

    Bakouh, Naziha; Bellanca, Sebastiano; Nyboer, Britta; Moliner Cubel, Sonia; Karim, Zoubida; Sanchez, Cecilia P; Stein, Wilfred D; Planelles, Gabrielle; Lanzer, Michael

    2017-09-29

    The chloroquine resistance transporter of the human malaria parasite Plasmodium falciparum , PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear. Using electrophysiological and flux experiments conducted on PfCRT-expressing Xenopus laevis oocytes, we show here that both wild-type PfCRT and a PfCRT variant associated with chloroquine resistance transport both ferrous and ferric iron, albeit with different kinetics. In particular, we found that the ability to transport ferrous iron is reduced by the specific polymorphisms acquired by the PfCRT variant as a result of chloroquine selection. We further show that iron and chloroquine transport via PfCRT is electrogenic. If these findings in the Xenopus model extend to P. falciparum in vivo , our data suggest that PfCRT might play a role in iron homeostasis, which is essential for the parasite's development in erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Heme Synthesis and Acquisition in Bacterial Pathogens

    OpenAIRE

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  5. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    Science.gov (United States)

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  6. Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study

    Science.gov (United States)

    Emerson, Hilary P.; Hart, Ashley E.; Baldwin, Jonathon A.; Waterhouse, Tyler C.; Kitchens, Christopher L.; Mefford, O. Thompson; Powell, Brian A.

    2014-02-01

    In recent years, there has been increasing concern regarding the fate and transport of engineered nanoparticles (NPs) in environmental systems and the potential impacts on human and environmental health due to the exponential increase in commercial and industrial use worldwide. To date, there have been relatively few field-scale studies or laboratory-based studies on environmentally relevant soils examining the chemical/physical behavior of the NPs following release into natural systems. The objective of this research is to demonstrate the behavior and transformations of iron oxide and silver NPs with different capping ligands within the unsaturated zone. Here, we show that NP transport within the vadose zone is minimal primarily due to heteroaggregation with soil surface coatings with results that >99 % of the NPs remained within 5 cm of the original source after 1 year in intermediate-scale field lysimeters. These results suggest that transport may be overestimated when compared to previous laboratory-scale studies on pristine soils and pure minerals and that future work must incorporate more environmentally relevant parameters.

  7. Cast iron transport, storage and disposal containers for use in UK nuclear licensed sites - 59412

    International Nuclear Information System (INIS)

    Viermann, Joerg; Messer, Matthias P.

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Ductile Cast Iron Containers of the types GCVI (UK trademark -GNS YELLOW BOX R ) and MOSAIK R have been in use in Germany for transport, storage and disposal of intermediate level radioactive waste (ILW) for more than two decades. In 2009 a number of containers of these types were delivered to various Magnox sites as so called pathfinders to test their suitability for Magnox waste streams. The results were encouraging. Therefore the Letter of Compliance (LoC) procedure was started to prove the suitability of packages using these types of containers for the future UK Geological Disposal Facility (GDF) and a conceptual Letter of Compliance (cLoC) was obtained from RWMD in 2010. Waste stream specific applications for Interim Stage Letters of Compliance (ILoC) for a number of waste streams from different Magnox sites and from the UK's only pressurised water reactor, Sizewell B are currently being prepared and discussed with RWMD. In order to achieve a package suitable for interim storage and disposal the contents of a Ductile Cast Iron Container only has to be dried. Mobile drying facilities are readily available. Containers and drying facilities form a concerted system

  8. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    Science.gov (United States)

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  9. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  10. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  11. Inactivation of the Ecs ABC Transporter of Staphylococcus aureus Attenuates Virulence by Altering Composition and Function of Bacterial Wall

    NARCIS (Netherlands)

    Jonsson, Ing-Marie; Juuti, Jarmo T.; Francois, Patrice; AlMajidi, Rana; Pietiainen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J.; Driessen, Arnold J. M.; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P.

    2010-01-01

    Background: Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic Gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s)

  12. Using Bacterial Surrogates to Assess Pathogen Transport in the Subsurface: Laboratory and Field Indications of Co-Transport Considerations

    Science.gov (United States)

    Emelko, M.; Stimson, J. R.; McLellan, N. L.; Mesquita, M.

    2009-12-01

    Prediction of the transport and fate of colloids and nanoparticles in porous media environments remains challenging because factors such as experimental scale, subsurface heterogeneity, and variable flow paths and fluxes have made it difficult to relate laboratory outcomes to field performance. Moreover, field studies have been plagued with inadequate consideration of ground water flow, reliance on unproven “surrogate” parameters, non-detects at the extraction well, and limited sampling. Riverbank filtration (RBF) is an example of an application for which some predictive capacity regarding colloid transport is desirable. RBF is a relatively low-cost, natural water treatment technology in which surface water contaminants are removed or degraded as the infiltrating water flows from a surface source to abstraction wells. RBF has been used for water treatment for at least 200 years and its potential to provide a significant barrier to microorganisms has been demonstrated. Assignment of microbial treatment credits for RBF remains a regulatory challenge because strategies for demonstrating effective subsurface filtration of organisms are not standardized. The potential passage of Giardia lamblia and Cryptosporidium parvum through RBF systems is of particular regulatory concern because these pathogens are known to be resistant to conventional disinfection processes. The transport or relatively small, pathogenic viruses through RBF systems is also a common concern. To comply with the U.S. Long Term 2 Enhanced Surface Water Treatment Rule, utilities with sufficiently high levels of Cryptosporidium oocysts in their source water must amend existing treatment by choosing from a ‘‘toolbox’’ of technologies, including RBF. Aerobic bacterial spores have been evaluated and proposed by some as surrogates for evaluating drinking water treatment plant performance; they also have been proposed as potential surrogates for Cryptosporidium removal during subsurface filtration

  13. Does a voltage-sensitive outer envelope transport mechanism contributes to the chloroplast iron uptake?

    Science.gov (United States)

    Solti, Ádám; Kovács, Krisztina; Müller, Brigitta; Vázquez, Saúl; Hamar, Éva; Pham, Hong Diep; Tóth, Brigitta; Abadía, Javier; Fodor, Ferenc

    2016-12-01

    Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope. Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd 2+ , Zn 2+ , and Mn 2+ ) enhanced, whereas oxoanions (NO 3 - , SO 4 2- , and BO 3 3- ) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe 2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.

  14. Transport measurements on superconducting iron pnictides and Heusler compounds; Transportmessungen an Supraleitenden Eisenpniktiden und Heusler-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Bombor, Dirk

    2014-09-05

    In this work, results of electronic transport measurements are discussed for superconducting iron pnictides as well as for ferromagnetic Heusler compounds. The iron pnictides are a recently discovered class of high temperature superconductors where magnetism might play a crucial role. While the 122-pnictides show antiferromagnetism and migrate to the superconducting state upon doping, ferromagnetism has been observed in doped LiFeAs. On the other hand, in the undoped state this material shows interesting superconducting properties. Among other properties, Heusler compounds are well known due to their ferromagnetism. Co{sub 2}FeSi, which was investigated in this work, is one of the strongest ferromagnets. Beside this, one predicts this compound to be a half-metallic ferromagnet with completely spin polarized electronic transport where all conducting electrons have the same spin. The here addressed properties can well be investigated with the method of electronic transport measurements, whose results on single crystals are discussed in this work.

  15. porewater chemistry experiment at Mont Terri rock laboratory. Reactive transport modelling including bacterial activity

    International Nuclear Information System (INIS)

    Tournassat, Christophe; Gaucher, Eric C.; Leupin, Olivier X.; Wersin, Paul

    2010-01-01

    Document available in extended abstract form only. An in-situ test in the Opalinus Clay formation, termed pore water Chemistry (PC) experiment, was run for a period of five years. It was based on the concept of diffusive equilibration whereby traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 of the pore water, but because of unexpected microbially- induced redox reactions, the objective was then changed to elucidate the biogeochemical processes happening in the borehole and to understand their impact on pH/pCO 2 and pH in the low permeability clay formation. The biologically perturbed chemical evolution of the PC experiment was simulated with reactive transport models. The aim of this modelling exercise was to develop a 'minimal-' model able to reproduce the chemical evolution of the PC experiment, i.e. the chemical evolution of solute inorganic and organic compounds (organic carbon, dissolved inorganic carbon etc...) that are coupled with each other through the simultaneous occurrence of biological transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and precipitation/dissolution of minerals (in the borehole and in the formation). An accurate description of the initial chemical conditions in the surrounding formation together with simplified kinetics rule mimicking the different phases of bacterial activities allowed reproducing the evolution of all main measured parameters (e.g. pH, TOC). Analyses from the overcoring and these simulations evidence the high buffer capacity of Opalinus clay regarding chemical perturbations due to bacterial activity. This pH buffering capacity is mainly attributed to the carbonate system as well as to the clay surfaces reactivity. Glycerol leaching from the pH-electrode might be the primary organic source responsible for

  16. Cytotoxicity, Intestinal Transport, and Bioavailability of Dispersible Iron and Zinc Supplements

    Directory of Open Access Journals (Sweden)

    Jae-Min Oh

    2017-04-01

    Full Text Available Iron or zinc deficiency is one of the most important nutritional disorders which causes health problem. However, food fortification with minerals often induces unacceptable organoleptic changes during preparation process and storage, has low bioavailability and solubility, and is expensive. Nanotechnology surface modification to obtain novel characteristics can be a useful tool to overcome these problems. In this study, the efficacy and potential toxicity of dispersible Fe or Zn supplement coated in dextrin and glycerides (SunActive FeTM and SunActive ZnTM were evaluated in terms of cytotoxicity, intestinal transport, and bioavailability, as compared with each counterpart without coating, ferric pyrophosphate (FePP and zinc oxide (ZnO nanoparticles (NPs, respectively. The results demonstrate that the cytotoxicity of FePP was not significantly affected by surface modification (SunActive FeTM, while SunActive ZnTM was more cytotoxic than ZnO-NPs. Cellular uptake and intestinal transport efficiency of SunActive FeTM were significantly higher than those of its counterpart material, which was in good agreement with enhanced oral absorption efficacy after a single-dose oral administration to rats. These results seem to be related to dissolution, particle dispersibility, and coating stability of materials depending on suspending media. Both SunActiveTM products and their counterpart materials were determined to be primarily transported by microfold (M cells through the intestinal epithelium. It was, therefore, concluded that surface modification of food fortification will be a useful strategy to enhance oral absorption efficiency at safe levels.

  17. Effects of processing delay, temperature, and transport tube type on results of quantitative bacterial culture of canine urine.

    Science.gov (United States)

    Patterson, Carly A; Bishop, Micah A; Pack, Julie D; Cook, Audrey K; Lawhon, Sara D

    2016-01-15

    To determine the impact of processing delay, temperature, and transport tube type on results of quantitative bacterial culture (QBC) of canine urine. Diagnostic test evaluation. 60 mL of pooled urine from 4 dogs, divided into six 10-mL aliquots. Urine aliquots were spiked with bacteria from 1 of 6 independent Escherichia coli cultures to achieve a target bacterial concentration of 10(5) CFUs/mL. One milliliter from each aliquot was transferred into 5 silicone-coated clot tubes (SCTs) and 5 urine transport tubes (UTTs). Samples were stored at 4°C (39°F) and 25°C (77°F) for 0, 8, and 24 hours, and then standard QBCs were performed. Median bacterial concentration for urine samples stored in a UTT for 24 hours at 4°C was lower than that for samples stored in an SCT under the same conditions. Conversely, a substantial decrease in median bacterial concentration was identified for samples stored for 24 hours in an SCT at 25°C, compared with the median concentration for samples stored in a UTT under the same conditions. Median bacterial concentration in samples stored in an SCT at 25°C for 24 hours (275 CFUs/mL) was less than the cutoff typically used to define clinically important bacteriuria by use of urine samples obtained via cystocentesis (ie, > 1,000 CFUs/mL). Canine urine samples submitted for immediate QBC should be transported in plain sterile tubes such as SCTs. When prolonged (24-hour) storage at room temperature is anticipated, urine samples should be transported in UTTs.

  18. The solubility of iron sulfides and their role in mass transport in Girdler-Sulfide heavy water plants

    International Nuclear Information System (INIS)

    Tewari, P.H.; Wallace, G.; Campbell, A.B.

    1978-04-01

    The solubilities of several iron sulfides, mackinawite FeSsub((1-x)), troilite FeS, pyrrhotite Fesub((1-x))S (monoclinic and hexagonal), and pyrite FeS 2 have been determined in aqueous H 2 S solution at 0.1 MPa and 1.8 MPa H 2 S pressures between 25 deg and 125 deg C. The dependence of solubility on the pH of the medium has also been studied. It is concluded that since mackinawite is the most soluble of the iron sulfides, and has the highest dissolution rate and the steepest decline in solubility with temperature, its prolonged formation during plant operation should be avoided to minimize iron transport from lower to higher temperature areas in Girdler-Sulfide (G.S.) heavy water plants. This can be achieved by a preconditioning of carbon steel surfaces to convert mackinawite to pyrrhotite and pyrite

  19. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    Science.gov (United States)

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.

    Science.gov (United States)

    Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H

    2010-03-01

    The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.

  1. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K

    2005-01-01

    Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important in ...... by surface plasmon resonance analysis. Furthermore, a rat yolk sac cell line known to express high levels of megalin, endocytosed NGAL by a mechanism completely blocked by an antibody against megalin.......Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important...

  2. Refolding, purification and crystallization of the FrpB outer membrane iron transporter from Neisseria meningitidis

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Prince, Stephen M.; Patel, Hema; Chan, Hannah; Feavers, Ian M.; Derrick, Jeremy P.

    2012-01-01

    The refolding, purification and crystallization of FrpB from the meningitis pathogen Neisseria meningitidis is described. FrpB is an integral outer membrane protein from the human pathogen Neisseria meningitidis. It is a member of the TonB-dependent transporter family and promotes the uptake of iron across the outer membrane. There is also evidence that FrpB is an antigen and hence a potential component of a vaccine against meningococcal meningitis. FrpB incorporating a polyhistidine tag was overexpressed in Escherichia coli into inclusion bodies. The protein was then solubilized in urea, refolded and purified to homogeneity. Two separate antigenic variants of FrpB were crystallized by sitting-drop vapour diffusion. Crystals of the F5-1 variant diffracted to 2.4 Å resolution and belonged to space group C2, with unit-cell parameters a = 176.5, b = 79.4, c = 75.9 Å, β = 98.3°. Crystal-packing calculations suggested the presence of a monomer in the asymmetric unit. Crystals of the F3-3 variant also diffracted to 2.4 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 85.3, b = 104.6, c = 269.1 Å. Preliminary analysis suggested the presence of an FrpB trimer in the asymmetric unit

  3. Modeling of neutron and photon transport in iron and concrete radiation shields by using Monte Carlo method

    CERN Document Server

    Žukauskaitėa, A; Plukienė, R; Ridikas, D

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.

  4. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    Science.gov (United States)

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0–10 mg L–1), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0–0.75), and pH (6.0–10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L–1, greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.

  5. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring tuff

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.I.; Meike, A.; Chuu, Y.J.; Sawvel, A.; Lin, W.

    1999-07-01

    Transport of bacteria is investigated as part of the Large-Block Test (LBT), a thermally perturbed block of Topopah Spring tuff. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain Tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures, cultured, and injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly over a matter of months to a maximum of 142 C and to 60 C at the top and bottom of the block. Samples were collected from boreholes located approximately 5 ft below the injection points. Double-drug-resistant microbes also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time until the heater was deactivated. Negative indications in the collection holes after the heater was deactivated support the supposition that these bacteria were the species that were injected. An apparent homogeneous distribution among the collection boreholes suggests no pattern to the migration of bacteria through the block. The relationship between bacterial migration and the movement of water is not yet understood. These observations indicate the possibility of rapid bacterial transport in a thermally perturbed geologic setting. The implications for colloid transport need to be reviewed.

  6. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring tuff

    International Nuclear Information System (INIS)

    Chen, C.I.; Meike, A.; Chuu, Y.J.; Sawvel, A.; Lin, W.

    1999-01-01

    Transport of bacteria is investigated as part of the Large-Block Test (LBT), a thermally perturbed block of Topopah Spring tuff. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain Tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures, cultured, and injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly over a matter of months to a maximum of 142 C and to 60 C at the top and bottom of the block. Samples were collected from boreholes located approximately 5 ft below the injection points. Double-drug-resistant microbes also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time until the heater was deactivated. Negative indications in the collection holes after the heater was deactivated support the supposition that these bacteria were the species that were injected. An apparent homogeneous distribution among the collection boreholes suggests no pattern to the migration of bacteria through the block. The relationship between bacterial migration and the movement of water is not yet understood. These observations indicate the possibility of rapid bacterial transport in a thermally perturbed geologic setting. The implications for colloid transport need to be reviewed

  7. Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals.

    Science.gov (United States)

    Bar-Or, Itay; Elvert, Marcus; Eckert, Werner; Kushmaro, Ariel; Vigderovich, Hanni; Zhu, Qingzeng; Ben-Dov, Eitan; Sivan, Orit

    2017-11-07

    Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13 C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13 C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13 C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13 C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.

  8. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    Science.gov (United States)

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    Science.gov (United States)

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  10. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.

    Science.gov (United States)

    Su, Yan; Zhao, Yong S; Li, Lu L; Qin, Chuan Y; Wu, Fan; Geng, Nan N; Lei, Jian S

    2014-01-01

    This study investigated the transport properties of nanoscale zero-valent iron (Fe(0)) (nZVI) carried by three vehicles: water, sodium dodecyl sulfate (SDS) solution, and SDS foam. Batch experiments were conducted to assess the sedimentation capability of nZVI particles in these three vehicles. Column experiments were conducted to investigate the transport properties of nZVI in porous media formed with different sizes of sand (0.25 mm to 0.5 mm, 0.5 mm to 0.9 mm, and 0.9 mm to 1.4 mm). Three main results were obtained. First, the batch experiments revealed that the stabilities of nZVI particles in SDS solution and SDS foam were improved, compared with that of nZVI particles in water. Moreover, the sedimentation of nZVI in foam was closely associated with the foam drainage volume. The nZVI content in foam was similar to that in the original foaming suspension, and the nZVI particle distribution in foam became significantly more uniform at a stirring speed of 3000 r/min. Second, the transport of nZVI was enhanced by foam compared with water and SDS solution for 0.25 mm to 0.5 mm diameter sand. For sand with diameters of 0.5 mm to 0.9 mm and 0.9 mm to 1.4 mm, the mobility of nZVI carried by SDS solution was optimal, followed by that of nZVI carried by foam and water. Thus, the mobility of nZVI in finer sand was significantly enhanced by foam, compared with that in coarse sand. In contrast, compared with the bare nZVI suspension and nZVI-laden foam, the spatial distribution of nZVI particles carried by SDS solution was significantly uniform along the column length. Third, the SDS concentration significantly influenced the migration of nZVI in porous media. The enhancement in the migration of nZVI carried by SDS solution was greater at an SDS dose of 0.25% compared with that at the other three doses (0.2%, 0.5%, and 1%) for sand with a 0.25 mm to 0.5 mm diameter. Increased SDS concentrations positively affected the transport of nZVI by foam for sand with a

  12. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    Science.gov (United States)

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  13. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    Directory of Open Access Journals (Sweden)

    Nina Schuback

    Full Text Available Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII, mol e- mol RCII(-1 s(-1 increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  14. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    Science.gov (United States)

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  15. Uptake of biotin by Chlamydia Spp. through the use of a bacterial transporter (BioY and a host-cell transporter (SMVT.

    Directory of Open Access Journals (Sweden)

    Derek J Fisher

    Full Text Available Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB and/or transport (bioY. Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613 from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF. Type II ECFs are typically composed of a transport specific component (S and a chromosomally unlinked energy module (AT. Intriguingly, Chlamydia lack recognizable AT modules. Using (3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module and capacity (apparent K(m of 3.35 nM and V(max of 55.1 pmol×min(-1×mg(-1. Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT, which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin

  16. Uptake of Biotin by Chlamydia Spp. through the Use of a Bacterial Transporter (BioY) and a Host-Cell Transporter (SMVT)

    Science.gov (United States)

    Fisher, Derek J.; Fernández, Reinaldo E.; Adams, Nancy E.; Maurelli, Anthony T.

    2012-01-01

    Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB) and/or transport (bioY). Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613) from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF). Type II ECFs are typically composed of a transport specific component (S) and a chromosomally unlinked energy module (AT). Intriguingly, Chlamydia lack recognizable AT modules. Using 3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module) and capacity (apparent K(m) of 3.35 nM and V(max) of 55.1 pmol×min−1×mg−1). Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT), which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s) would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin from the

  17. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.

    Directory of Open Access Journals (Sweden)

    Anahí Capmany

    2010-11-01

    Full Text Available Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation.

  18. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.

    Science.gov (United States)

    Capmany, Anahí; Damiani, María Teresa

    2010-11-22

    Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation.

  19. Effect of different iron levels on 65Zn uptake and transport in maize seedlings

    International Nuclear Information System (INIS)

    Rathore, V.S.; Sharma, D.; Kandala, J.C.

    1974-01-01

    Uptake and translocation of 65 Zn was studied in two week old maize seedlings at 0.01, 0.1, 1 and 5 ppm iron levels in half-strength Hoagland's solution. Four different zinc levels viz., 0.04, 0.4, 4 and 8 ppm were taken. Total 65 Zn uptake and translocation to shoots at 2, 4, 6 and 12 hours showed that increasing iron levels in the uptake medium reduced Zn-uptake in all combinations and at all uptake hours studied. This antagnnistic effect of iron on zinc uptake was more pronounced at the initial stages and could be partly inhibited by increasing zinc concentration in the uptake medium. Translocation of 65 Zn to shoots increased with increase in uptake time. Increasing iron levels in the medium decreased zinc dislocation to shoots at all zinc levels. (author)

  20. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    Directory of Open Access Journals (Sweden)

    Ing-Marie Jonsson

    2010-12-01

    Full Text Available Ecs is an ATP-binding cassette (ABC transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s transported by Ecs is (are still unknown.In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine.Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  1. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    Science.gov (United States)

    Jonsson, Ing-Marie; Juuti, Jarmo T; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J; Driessen, Arnold J M; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P

    2010-12-02

    Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  2. Anemia of the Belgrade rat: evidence for defective membrane transport of iron

    International Nuclear Information System (INIS)

    Bowen, B.J.; Morgan, E.H.

    1987-01-01

    The mechanisms underlying the impaired utilization of transferrin-bound iron by erythroid cells in the anemia of the Belgrade laboratory rat were investigated using reticulocytes from homozygous anemic animals and transferrin labeled with 59 Fe and 125 I. The results were compared with those obtained using reticulocytes from phenylhydrazine-treated rats and iron-deficient rats. Each step in the iron uptake mechanism was investigated, ie, transferrin-receptor interaction, transferrin endocytosis, iron release from transferrin, and transferrin exocytosis. Although there were quantitative differences, no fundamental difference was found in any of the abovementioned aspects of cellular function when the reticulocytes from Belgrade rats were compared with those from iron-deficient animals. The basic defect in the Belgrade reticulocytes must therefore reside in subsequent steps in iron uptake, after it is released from transferrin within endocytotic vesicles, ie, in the mechanism by which it is transferred across the lining membrane of the vesicles into the cell cytosol. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of reticulocyte ghosts extracts demonstrated a prominent protein band of mol wt 69,000 that was absent or present only in low concentration extracts from the other two types of reticulocytes. This may be a result of the genetic defect

  3. Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant.

    Science.gov (United States)

    Saygili, Yasemin; Turren-Cruz, Silver-Hamill; Olthof, Selina; Saes, Bartholomeus Wilhelmus Henricus; Pehlivan, Ilknur Bayrak; Saliba, Michael; Meerholz, Klaus; Edvinsson, Tomas; Zakeeruddin, Shaik M; Grätzel, Michael; Correa-Baena, Juan-Pablo; Hagfeldt, Anders; Freitag, Marina; Tress, Wolfgang

    2018-04-26

    In perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5'-methyl-2,2'-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm -2 ) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    Science.gov (United States)

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Application of a discrete-energy, discrete-ordinates technique to the study of neutron transport in iron

    International Nuclear Information System (INIS)

    Ching, J.T.

    1975-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated which allows the development of a discrete-energy, discrete-ordinates method for the solution of radiation transport problems. The method utilizes a modified version of a cross section processing scheme devised for the moments method code BMT and the transport equation solution algorithm from the one-dimensional discrete-ordinates transport code ANISN. The combined system, identified as MOMANS, computes fluxes directly from point cross sections in a single operation. In the cross-section processing, the group averaging required for multigroup calculations is replaced by a fast numerical scheme capable of generating a set of transfer cross sections containing all the physical features of interest, thereby increasing the detail in the calculated results. Test calculations in which the discrete-energy method was compared with the multigroup method have shown that for the same energy grid (number of points = number of groups), the discrete-energy method is faster but somewhat less accurate than the multigroup method. However, the accuracy of the discrete-energy method increases rapidly as the spacing between energy points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum the discrete-energy method has therefore proven to be as accurate as, and more economical than, the multigroup technique. This was demonstrated by the application of the method to the study of the transport of neutrons in an iron sphere. Using the capability of the discrete-energy method for rapidly treating changes in cross-section sets, the propagation of neutrons from a 14 MeV source in a 22 cm radius sphere of iron was analyzed for sensitivity to changes in the microscopic scattering mechanisms

  7. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    Science.gov (United States)

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  8. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  9. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Directory of Open Access Journals (Sweden)

    Nora Adriana Hernández-Cuevas

    Full Text Available Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron, low-iron medium (around 123 µM iron, iron-deficient medium (around 91 µM iron, and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  10. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Science.gov (United States)

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  11. Staphylococcus aureus redirects central metabolism to increase iron availability.

    Directory of Open Access Journals (Sweden)

    David B Friedman

    2006-08-01

    Full Text Available Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment or genetic (Deltafur alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB, a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.

  12. ATR-FTIR Spectroscopic Evidence for Biomolecular Phosphorus and Carboxyl Groups Facilitating Bacterial Adhesion to Iron Oxides

    Science.gov (United States)

    Parikh, Sanjai J.; Mukome, Fungai N.D.; Zhang, Xiaoming

    2014-01-01

    Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (α-Fe2O3) and goethite (α-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, P. aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm−1) and inner-sphere (1310-1320 cm−1) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with α-Fe2O3 and α-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ~1043 cm−1, corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on α-FeOOH, as compared to α-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052

  13. A program to qualify ductile cast iron for use as a containment material for type B transport cask

    International Nuclear Information System (INIS)

    Golliher, K.G.; Sorenson, K.B.; Witt, C.R.

    1990-01-01

    This paper reports on the Department of Energy (DOE) investigations for the use of ductile cast iron (DCI) as a candidate material for radioactive material transportation cask construction. The investigation will include materials testing and full-scale cask testing. The major effort will focus on materials qualification and cask evaluation of the 9 meter and puncture drop test events. Interaction by contract with the private industry, the American Society for Testing and Materials (ASTM) Committee A4.04, and the Electric Power Research Institute (EPRI) will be actively pursued to establish material specification acceptance criteria for ductile iron use as a cask material in the United States of America (USA). All test results will be documented in the safety analysis report for packaging for submission to the U.S. Nuclear Regulatory Commission (NRC). The goal of this program is a certificate of compliance for DCI from the NRC to transport high-level radioactive materials. The acceptance of DCI within the USA cask design community will offer an alternative to present-day materials for cask construction, and its entry has the potential of providing significant cost-savings

  14. Structure and Mechanism of the S Component of a Bacterial ECF Transporter

    Energy Technology Data Exchange (ETDEWEB)

    P Zhang; J Wang; Y Shi

    2011-12-31

    The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-{angstrom} resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.

  15. KBS-3H. Reactive transport modelling of iron-bentonite interactions, an update for the Olkiluoto case

    International Nuclear Information System (INIS)

    Birgersson, M.; Wersin, P.

    2014-03-01

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated cylinder. The originally planned material for the perforated steel cylinder shell has been carbon steel. After emplacement, the steel material will corrode anaerobically in contact with water and generate hydrogen, iron species and hydroxyl ions. Iron corrosion products will be formed at the steel surface, but in addition, the released species may interact with the clay and lead to undesirable effects, such as montmorillonite transformation and cementation. The impact of corrosion and iron-bentonite interactions has been assessed for Olkiluoto-specific conditions by reactive transport modelling using the CrunchFlow code. The main focus of this modelling exercise was to update the previous modelling study of Wersin et al. (2007). by accounting for new thermodynamic data on clays and uncertainties in precipitation rates of iron reaction products. The modelling strategy was first to select appropriate thermodynamic and kinetic mineral by review of current data, in particular of the THERMODDEM database, and by chemical equilibrium modelling. Second, a 1D reactive transport model which includes a corroding iron source from which solutes can diffuse into the buffer and interact with the clay and accessory minerals was set up in a similar way as that applied in Wersin et al. (2007). A number of test cases were defined, including a Base Case and various less likely as well as bounding cases. The modelling results largely confirmed previous findings in that the zone of alteration was predicted to remain spatially limited for very long times. However, they highlighted that under unfavourable conditions during the initial corrosion phase (before complete corrosion of the shell), pronounced increase in pH might occur, which would lead to enhanced dissolution of the montmorillonite clay. Factors favouring pH increase were found to be slow

  16. KBS-3H. Reactive transport modelling of iron-bentonite interactions, an update for the Olkiluoto case

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, M. [Clay Technology AB, Lund (Sweden); Wersin, P. [Bern Univ. (Switzerland)

    2014-03-15

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated cylinder. The originally planned material for the perforated steel cylinder shell has been carbon steel. After emplacement, the steel material will corrode anaerobically in contact with water and generate hydrogen, iron species and hydroxyl ions. Iron corrosion products will be formed at the steel surface, but in addition, the released species may interact with the clay and lead to undesirable effects, such as montmorillonite transformation and cementation. The impact of corrosion and iron-bentonite interactions has been assessed for Olkiluoto-specific conditions by reactive transport modelling using the CrunchFlow code. The main focus of this modelling exercise was to update the previous modelling study of Wersin et al. (2007). by accounting for new thermodynamic data on clays and uncertainties in precipitation rates of iron reaction products. The modelling strategy was first to select appropriate thermodynamic and kinetic mineral by review of current data, in particular of the THERMODDEM database, and by chemical equilibrium modelling. Second, a 1D reactive transport model which includes a corroding iron source from which solutes can diffuse into the buffer and interact with the clay and accessory minerals was set up in a similar way as that applied in Wersin et al. (2007). A number of test cases were defined, including a Base Case and various less likely as well as bounding cases. The modelling results largely confirmed previous findings in that the zone of alteration was predicted to remain spatially limited for very long times. However, they highlighted that under unfavourable conditions during the initial corrosion phase (before complete corrosion of the shell), pronounced increase in pH might occur, which would lead to enhanced dissolution of the montmorillonite clay. Factors favouring pH increase were found to be slow

  17. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  18. Nonlocal magnon spin transport in yttrium iron garnet with tantalum and platinum spin injection/detection electrodes

    Science.gov (United States)

    Liu, J.; Cornelissen, L. J.; Shan, J.; van Wees, B. J.; Kuschel, T.

    2018-06-01

    We study the magnon spin transport in the magnetic insulator yttrium iron garnet (YIG) in a nonlocal experiment and compare the magnon spin excitation and detection for the heavy metal paramagnetic electrodes platinum (Pt|YIG|Pt) and tantalum (Ta|YIG|Ta). The electrical injection and detection processes rely on the (inverse) spin Hall effect in the heavy metals and the conversion between the electron spin and magnon spin at the heavy metal|YIG interface. Pt and Ta possess opposite signs of the spin Hall angle. Furthermore, their heterostructures with YIG have different interface properties, i.e. spin mixing conductances. By varying the distance between injector and detector, the magnon spin transport is studied. Using a circuit model based on the diffusion-relaxation transport theory, a similar magnon relaxation length of  ∼10 μm was extracted from both Pt and Ta devices. By changing the injector and detector material from Pt to Ta, the influence of interface properties on the magnon spin transport has been observed. For Ta devices on YIG the spin mixing conductance is reduced compared with Pt devices, which is quantitatively consistent when comparing the dependence of the nonlocal signal on the injector-detector distance with the prediction from the circuit model.

  19. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  20. "Conjugate channeling" effect in dislocation core diffusion: carbon transport in dislocated BCC iron.

    Science.gov (United States)

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.

  1. Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming; Shi, Zhi; Shi, Liang; White, Gaye F.; Richardson, David J.; Clarke, Thomas A.; Fredrickson, Jim K.; Zachara, John M.

    2015-08-25

    Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, some evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin that are proposed to mediate electron transfer (Marsili et al., 2008). In this work, we used methyl viologen (MV•+)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of secreted flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 µM) by MELs ([MV•+] ~ 42 µM and MtrABC ≤ 1 nM) were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MV•+ and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 seconds. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (≤ 1 µM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. However, at higher FMN concentrations (> 1 µM), the reaction rates for both steps decreased and varied inversely with FMN concentration, indicating that FMN inhibited the MEL to Fe(III)-oxide electron transfer

  2. Iron transport across the skin and gut epithelia of Pacific hagfish: Kinetic characterisation and effect of hypoxia.

    Science.gov (United States)

    Glover, Chris N; Niyogi, Som; Blewett, Tamzin A; Wood, Chris M

    2016-09-01

    In most animals, the acquisition of the essential trace metal iron (Fe) is achieved by the gut, but in hagfishes, the skin is a nutrient absorbing epithelium, and thus may also play a role in Fe uptake. In the current study, the absorption of Fe, as Fe(II), across the intestinal and cutaneous epithelia of Pacific hagfish (Eptatretus cirrhatus) was investigated. Both epithelia absorbed Fe, with saturation at lower tested concentrations, superseded by a diffusive component at higher Fe exposure concentrations. Affinity constants (Km) of 9.4 and 137μM, and maximal Fe transport rates (Jmax) of 0.81 and 0.57nmolcm(-2)h(-1) were determined for the skin and the gut, respectively. This characterises the skin as a relatively high-affinity Fe transport epithelium. The majority of the absorbed Fe in the skin remained in the tissue, whereas in the gut, most absorbed Fe was found in the serosal fluid, suggesting distinct mechanisms of Fe handling between the two epithelia. To determine if reduced dissolved oxygen altered Fe transport, hagfish were subjected to hypoxia for 24h, before Fe transport was again assessed. Hypoxia had no effect on Fe transport across gut or skin, likely owing to the relative lack of change in haematological variables, and thus an unaltered Fe demand under such conditions. These data are the first to kinetically characterise the absorption of a nutritive trace metal across the epithelia of hagfish and add to the growing understanding of the role of the skin in nutritive transport in this group. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism.

    Science.gov (United States)

    Mulligan, Christopher; Fenollar-Ferrer, Cristina; Fitzgerald, Gabriel A; Vergara-Jaque, Ariela; Kaufmann, Desirée; Li, Yan; Forrest, Lucy R; Mindell, Joseph A

    2016-03-01

    Secondary transporters use alternating-access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters use a 'rocking bundle' motion, wherein the protein moves around an immobile substrate-binding site. However, the glutamate-transporter homolog GltPh translocates its substrate-binding site vertically across the membrane, through an 'elevator' mechanism. Here, we used the 'repeat swap' approach to computationally predict the outward-facing state of the Na(+)/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial elevator-like movement of VcINDY's substrate-binding site, with a vertical translation of ~15 Å and a rotation of ~43°. Our observation that multiple disulfide cross-links completely inhibit transport provides experimental confirmation of the model and demonstrates that such movement is essential. In contrast, cross-links across the VcINDY dimer interface preserve transport, thus revealing an absence of large-scale coupling between protomers.

  4. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring Tuff

    International Nuclear Information System (INIS)

    Chen, C. I.; Chuu, Y. J.; Lin, W.; Meike, A.; Sawvel, A.

    1998-01-01

    This study investigates the transport of bacteria in a large, thermally perturbed block of Topopah Spring tuff. The study was part of the Large-Block Test (LBT), thermochemical and physical studies conducted on a 10 ft x 10 ft x 14 ft block of volcanic tuff excavated on 5 of 6 sides out of Fran Ridge, Nevada. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures. The double-drug-resistant mutants, which could be thus distinguished from the indigenous species, were injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly and steadily over a matter of months to a maximum of 142 C. Samples (cotton cloths inserted the length of the hole, glass fiber swabs, and filter papers) were collected from the boreholes that were approximately 5 ft below the injection points. Double-drug-resistant bacteria were found in the collection boreholes nine months after injection. Surprisingly, they also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. These bacteria appear to be the species that were injected. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time. An apparent homogeneous distribution among the observation boreholes and heater boreholes suggests that a random motion could be the pattern that the bacteria migrated in the block. These observations indicated the possibility of rapid bacterial transport in a thermally perturbed geologic setting

  5. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.

    Science.gov (United States)

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malvacio, Ivana; Malloci, Giuliano; Kleinekathöfer, Ulrich; Ruggerone, Paolo

    2018-04-01

    Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Heng-Hsuan; Car, Suzana; Socha, Amanda L.; Hindt, Maria N.; Punshon, Tracy; Guerinot, Mary Lou

    2017-09-08

    Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value. We have uncovered unique patterns of micronutrient localization in seeds using synchrotron X-ray fluorescence (SXRF). Although all four members of the Arabidopsis thaliana Mn-CDF family can transport Mn, here we show that only mtp8-2 has an altered Mn distribution pattern in seeds. In an mtp8-2 mutant, Mn no longer accumulates in hypocotyl cortex cells and sub-epidermal cells of the embryonic cotyledons, but rather accumulates with Fe in the cells surrounding the vasculature, a pattern previously shown to be determined by the vacuolar transporter VIT1. We also show that MTP8, unlike the other three Mn-CDF family members, can transport Fe and is responsible for localization of Fe to the same cells that store Mn. When both the VIT1 and MTP8 transporters are non-functional, there is no accumulation of Fe or Mn in specific cell types; rather these elements are distributed amongst all cell types in the seed. Disruption of the putative Fe binding sites in MTP8 resulted in loss of ability to transport Fe but did not affect the ability to transport Mn.

  7. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  8. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    International Nuclear Information System (INIS)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T.

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  9. The Properties Of And Transport Phenomena In Oxide Films On Iron, Nickel, Chromium And Their Alloys In Aqueous Environments

    International Nuclear Information System (INIS)

    Saario, T.; Laitinen, T.; Maekelae, K.; Bojinov, M.; Betova, I.

    1998-07-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown, pitting, stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more dense structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  10. Dansyl-Galactoside, a Fluorescent Probe of Active Transport in Bacterial Membrane Vesicles*

    Science.gov (United States)

    Reeves, John P.; Shechter, Emanuel; Weil, Rudolf; Kaback, H. R.

    1973-01-01

    A fluorescent galactoside, 2-(N-dansyl)-aminoethyl β-D-thiogalactoside (dansyl-galactoside), competitively inhibits lactose transport by membrane vesicles of Escherichia coli, but is not actively transported. An increase in dansyl-galactoside fluorescence is observed upon addition of D-lactate. The fluorescence increase is not observed in membrane vesicles lacking the β-galactoside transport system, and is blocked or rapidly reversed by addition of β-galactosides, sulfhydryl reagents, inhibitors of D-lactate oxidation, or uncoupling agents. The fluorescence increase exhibits an emission maximum at 500 nm and excitation maxima at 345 nm and at 292 nm. The latter excitation maximum is absent unless D-lactate is added, indicating that the bound dansyl-galactoside molecules are excited by energy transfer from the membrane proteins. Titration of vesicles with dansyl-galactoside in the presence of D-lactate demonstrates that the β-galactoside carrier protein represents about 3.3% of the total membrane protein. The data indicate that D-lactate oxidation leads to binding of the fluorescent galactoside to the β-galactoside carrier protein in such a manner that the dansyl group is transferred to a hydrophobic environment within the membrane. PMID:4583021

  11. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.

    Science.gov (United States)

    Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2015-09-01

    The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... ductile iron mains. (a) Each service line connected to a cast iron or ductile iron main must be connected...

  13. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    Science.gov (United States)

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  14. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  15. Test facilities for radioactive materials transport packages (Chicago Bridge and Iron, USA)

    International Nuclear Information System (INIS)

    Gallagher, T.A.

    1991-01-01

    Chicago Bridge and Iron, Research and Development Center located in Plainfield, Illinois offers the total capabilities required to perform design verification testing of hazardous waste shipping containers. The tests, defined in the United States Code of Federal Regulations, Title 10, Part 71 (10CFR71), include vertical drop tests, puncture tests, crush tests, immersion tests, thermal tests, and container leak rate tests. Container structural design analysis, container manufacturing analysis, materials development testing plus dimensional analysis of individual components is also available. The test facilities meet or exceed the requirements given in the International Atomic Energy Agency (IAEA) Safety Guide, Safety Series No. 37, 1987. Additional capabilities for the design and fabrication of scale models and components for the test programme are also presented. (author)

  16. Physical models of mass transport of iron and nickel in liquid sodium systems

    International Nuclear Information System (INIS)

    Davies, B.S.J.; Polley, M.V.; Skyrme, G.

    1975-12-01

    Experimental observations on corrosion of pure iron and nickel specimens in non-isothermal loops containing flowing sodium have been used to derive values of the concentration of dissolved material at the entrance to the test section and diffusion coefficients of the test material in sodium. The former values differ from the saturation value by only 10 -3 ppm, which is small compared to currently recommended solubility values. The phenomenon cannot be explained in terms of circulating particles. Two other possible explanations are also dismissed. The diffusion coefficient values are consistent with the corroding species being atoms, or molecules containing a few atoms. It is also shown that the observations are better explained in terms of boundary layer controlled mass transfer, rather than a surface controlled process. A computer model based on an alternative solubility relationship is shown to produce results which describe well the observed variation of corrosion rate with oxygen concentration, sodium velocity and downstream position. (author)

  17. Poly-N-acetylglucosamine matrix polysaccharide impedes fluid convection and transport of the cationic surfactant cetylpyridinium chloride through bacterial biofilms.

    Science.gov (United States)

    Ganeshnarayan, Krishnaraj; Shah, Suhagi M; Libera, Matthew R; Santostefano, Anthony; Kaplan, Jeffrey B

    2009-03-01

    Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix. Poly-beta(1,6)-N-acetyl-d-glucosamine (PNAG) is a major biofilm matrix component in phylogenetically diverse bacteria. In this study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced in vitro by the gram-negative porcine respiratory pathogen Actinobacillus pleuropneumoniae and the gram-positive device-associated pathogen Staphylococcus epidermidis. The effect of PNAG on bulk fluid flow was determined by measuring the rate of fluid convection through biofilms cultured in centrifugal filter devices. The rate of fluid convection was significantly higher in biofilms cultured in the presence of the PNAG-degrading enzyme dispersin B than in biofilms cultured without the enzyme, indicating that PNAG decreases bulk fluid flow. PNAG also blocked transport of the quaternary ammonium compound cetylpyridinium chloride (CPC) through the biofilms. Binding of CPC to biofilms further impeded fluid convection and blocked transport of the azo dye Allura red. Bioactive CPC was efficiently eluted from biofilms by treatment with 1 M sodium chloride. Taken together, these findings suggest that CPC reacts directly with the PNAG matrix and alters its physical and chemical properties. Our results indicate that PNAG plays an important role in controlling the physiological state of biofilms and may contribute to additional biofilm-associated processes such as biocide resistance.

  18. Distribution and disinfection of bacterial loadings associated with particulate matter fractions transported in urban wet weather flows.

    Science.gov (United States)

    Dickenson, Joshua A; Sansalone, John J

    2012-12-15

    Urban runoff is a resource for reuse water. However, runoff transports indicator and pathogenic organisms which are mobilized from sources of fecal contamination. These organisms are entrained with particulate matter (PM) that can serve as a mobile substrate for these organisms. Within a framework of additional treatment for reuse of treated runoff which requires the management of PM inventories in unit operations and drainage systems there is a need to characterize organism distributions on PM and the disinfection potential thereof. This study quantifies total coliform, Escherichia coli, fecal streptococcus, and enterococcus generated from 25 runoff events. With the ubiquity and hetero-dispersivity of PM in urban runoff this study examines organism distributions for suspended, settleable and sediment PM fractions differentiated based on PM size and transport functionality. Hypochlorite is applied in batch to elaborate inactivation of PM-associated organisms for each PM fraction. Results indicate that urban runoff bacterial loadings of indicator organisms exceed U.S. wastewater reuse, recreational contact, and Australian runoff reuse criteria as comparative metrics. All monitored events exceeded the Australian runoff reuse criteria for E. coli in non-potable residential and unrestricted access systems. In PM-differentiated events, bacteriological mobilization primarily occurred in the suspended PM fraction. However, sediment PM shielded PM-associated coliforms at all hypochlorite doses, whereas suspended and settleable PM fractions provide less shielding resulting in higher inactivation by hypochlorite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Elad [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2012-05-07

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  20. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    International Nuclear Information System (INIS)

    Harel, Elad

    2012-01-01

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  1. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    Science.gov (United States)

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  2. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.

    Science.gov (United States)

    Sun, Linfeng; Zeng, Xin; Yan, Chuangye; Sun, Xiuyun; Gong, Xinqi; Rao, Yu; Yan, Nieng

    2012-10-18

    Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1-4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1-4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-D-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of D-xylose or d-glucose are invariant in GLUT1-4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1-4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.

  3. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor

    Science.gov (United States)

    Kong, Lingbing; Harrington, Leon; Li, Qiuhong; Cheley, Stephen; Davis, Benjamin G.; Bayley, Hagan

    2013-08-01

    Capsular polysaccharides form the outermost protective layer around many Gram-negative bacteria. Antibiotics aimed directly at weakening this layer are not yet available. In pathogenic Escherichia coli E69, a protein, Wza, forms a pore in the outer membrane that transports K30 capsular polysaccharide from its site of synthesis to the outside of the cell. This therefore represents a prospective antibiotic target. Here we test a variety of grommet-like mimics of K30 capsular polysaccharide on wild-type Wza and on mutant open forms of the pore by electrical recording in planar lipid bilayers. The most effective glycomimetic was the unnatural cyclic octasaccharide octakis(6-deoxy-6-amino)cyclomaltooctaose (am8γCD), which blocks the α-helix barrel of Wza, a site that is directly accessible from the external medium. This glycomimetic inhibited K30 polysaccharide transport in live E. coli E69. With the protective outer membrane disrupted, the bacteria can be recognized and killed by the human immune system.

  4. Comparing Methods of Separating Bacterial Biofilms on the Surface of Water Transportation Pipes and Equipment of Milking in the Farms

    Directory of Open Access Journals (Sweden)

    setareh nabizadeh

    2016-08-01

    Full Text Available Introduction Bacterial biofilms can be both useful and harmful based on their combination and locations. Biofilm formation occurs as a stepwise process. Their formation in liquid transportation pipes used for milking system and drinking water in animal farms may create some problems and is a potential source of pollution. Speed of biofilm formation depends on many factors including: construction and functional characteristics of bacteria, the composition and culture conditions such as temperature and substratum. In this research the Bacillus subtillis bacteria with special characteristics was selected due to its capability for biofilm creation. Bacillus subtillis bacteria is mobility and a stronger connection than other bacteria levels are created. In the research conducted in the biofilm there are many resources on biofilm formation by Bacillus subtillis bacteria. Bacillus subtillis is saprophytic in the soil, water and air. There is also the ability to form spores of Bacillus subtillis. Materials and Methods Firstly the possibility of creating biofilms on different Plastic (polyvinilchlorid, polypropylene, polyethylengelycole, alluminum and glass surfaces in three temperatures of 4°C, 30°C and 37°C were studied. Two different methods of biofilms separation including separating swap and vortex were tested and their efficienceies were calculated. After biofilm formation on parts of the vortex separation method after washing parts in sterile conditions in a tube containing normal saline for 4 minutes was vortex. The bacterial suspension decreasing dilution series was created. Pour plate in medium using agar plate count agar and was cultured at 30°C for 24-48 hours. Numbers of colonies were counted. The numbers of biofilm cells were calculated. In swap method after biofilm formation on parts using a cotton swap was isolated biofilms. The swap was transferred to tube containing normal saline and the bacterial suspension decreasing dilution

  5. Liver ischemia and ischemia-reperfusion induces and trafficks the multi-specific metal transporter Atp7b to bile duct canaliculi: possible preferential transport of iron into bile.

    Science.gov (United States)

    Goss, John A; Barshes, Neal R; Karpen, Saul J; Gao, Feng-Qin; Wyllie, Samuel

    2008-04-01

    Both Atp7b (Wilson disease gene) and Atp7a (Menkes disease gene) have been reported to be trafficked by copper. Atp7b is trafficked to the bile duct canaliculi and Atp7a to the plasma membrane. Whether or not liver ischemia or ischemia-reperfusion modulates Atp7b expression and trafficking has not been reported. In this study, we report for the first time that the multi-specific metal transporter Atp7b is significantly induced and trafficked by both liver ischemia alone and liver ischemia-reperfusion, as judged by immunohistochemistry and Western blot analyses. Although hepatocytes also stained for Atp7b, localized intense staining of Atp7b was found on bile duct canaliculi. Inductive coupled plasma-mass spectrometry analysis of bile copper, iron, zinc, and manganese found a corresponding significant increase in biliary iron. In our attempt to determine if the increased biliary iron transport observed may be a result of altered bile flow, lysosomal trafficking, or glutathione biliary transport, we measured bile flow, bile acid phosphatase activity, and glutathione content. No significant difference was found in bile flow, bile acid phosphatase activity, and glutathione, between control livers and livers subjected to ischemia-reperfusion. Thus, we conclude that liver ischemia and ischemia-reperfusion induction and trafficking Atp7b to the bile duct canaliculi may contribute to preferential iron transport into bile.

  6. Platinum/yttrium iron garnet inverted structures for spin current transport

    Energy Technology Data Exchange (ETDEWEB)

    Aldosary, Mohammed; Li, Junxue; Tang, Chi; Xu, Yadong; Shi, Jing [Department of Physics and Astronomy and SHINES Energy Frontier Research Center, University of California, Riverside, California 92521 (United States); Zheng, Jian-Guo [Irvine Materials Research Institute, University of California, Irvine, California 92697 (United States); Bozhilov, Krassimir N. [Central Facility for Advanced Microscopy and Microanalysis, University of California, Riverside, California 92521 (United States)

    2016-06-13

    30-80 nm thick yttrium iron garnet (YIG) films are grown by pulsed laser deposition on a 5 nm thick sputtered Pt atop gadolinium gallium garnet substrate (GGG) (110). Upon post-growth rapid thermal annealing, single crystal YIG(110) emerges as if it were epitaxially grown on GGG(110) despite the presence of the intermediate Pt film. The YIG surface shows atomic steps with the root-mean-square roughness of 0.12 nm on flat terraces. Both Pt/YIG and GGG/Pt interfaces are atomically sharp. The resulting YIG(110) films show clear in-plane uniaxial magnetic anisotropy with a well-defined easy axis along 〈001〉 and a peak-to-peak ferromagnetic resonance linewidth of 7.5 Oe at 9.32 GHz, similar to YIG epitaxially grown on GGG. Both spin Hall magnetoresistance and longitudinal spin Seebeck effects in the inverted bilayers indicate excellent Pt/YIG interface quality.

  7. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Science.gov (United States)

    2010-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile iron...

  8. Electronic transport in tungsten and iron-doped tungsten below 1 K

    International Nuclear Information System (INIS)

    Uher, C.; Khoshnevisan, M.; Pratt, W.P. Jr.; Bass, J.

    1979-01-01

    The electric resistivity rho and the thermoelectric ratio G have been measured for zone-refined single crystals of both tungsten and iron-doped tungsten from 5 K down to 40 mK. The samples had residual resistance ratios RRR ranging from 1750 to 90,000. The observed behavior is conveniently divided into two classes, ''normal'' and ''anomalous.'' Completely normal behavior was displayed by only three W samples with high RRRs. The Fe-doped W and the remaining W samples contained one or more anomalies. Normal behavior is that which would be expected for W containing impurities with no internal degrees of freedom. In normal behavior rho decreased monotonically with decreasing temperature and was consistent with the equation rho=rho 0 +AT 2 below about 1.5K. In normal behavior, G was positive and constant below about 0.5 K, increased in magnitude as T rose to 4 or 5 K, and then began to decrease, becoming negative above about 7 K. The anomalous class displayed at least one of three anomalies: (1) a minimum in the electrical resistivity, with an approximately logarithmic variation with T at temperatures below the minimum; (2) a positive contribution to G which increased in magnitude with decreasing temperature approximately at T/sup -1/2/ from about 4 K down to at least 0.5 K; and (3) a negative contribution to G which set in at about 0.5 K, varied approximately as log T, and dominated G at the lowest temperatures

  9. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Placental iron uptake and its regulation

    NARCIS (Netherlands)

    M. Bierings (Marc)

    1989-01-01

    textabstractIron transport in pregnancy is an active one-way process, from mother to fetus. Early in gestation fetal iron needs are low, and so is trans-placental transport, but as erythropoiesis develops, rising fetal iron needs are met by trans-placental iron transport. Apparently, the fetus

  11. [Cloning and expression analysis of a zinc-regulated transporters (ZRT), iron-regulated transporter (IRT)-like protein encoding gene in Dendrobium officinale].

    Science.gov (United States)

    Zhang, Gang; Li, Yi-Min; Li, Biao; Zhang, Da-Wei; Guo, Shun-Xing

    2015-01-01

    The zinc-regulated transporters (ZRT), iron-regulated transporter (IRT)-like protein (ZIP) plays an important role in the growth and development of plant. In this study, a full length cDNA of ZIP encoding gene, designed as DoZIP1 (GenBank accession KJ946203), was identified from Dendrobium officinale using RT-PCR and RACE. Bioinformatics analysis showed that DoZIP1 consisted of a 1,056 bp open reading frame (ORF) encoded a 351-aa protein with a molecular weight of 37.57 kDa and an isoelectric point (pI) of 6.09. The deduced DoZIP1 protein contained the conserved ZIP domain, and its secondary structure was composed of 50.71% alpha helix, 11.11% extended strand, 36.18% random coil, and beta turn 1.99%. DoZIP1 protein exhibited a signal peptide and eight transmembrane domains, presumably locating in cell membrane. The amino acid sequence had high homology with ZIP proteins from Arabidopsis, alfalfa and rice. A phylogenetic tree analysis demonstrated that DoZIP1 was closely related to AtZIP10 and OsZIP3, and they were clustered into one clade. Real time quantitative PCR analysis demonstrated that the transcription level of DoZIP1 in D. officinale roots was the highest (4.19 fold higher than that of stems), followed by that of leaves (1.12 fold). Molecular characters of DoZIP1 will be useful for further functional determination of the gene involving in the growth and development of D. officinale.

  12. Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London.

    Science.gov (United States)

    Otter, J A; French, G L

    2009-12-01

    To investigate bacterial contamination on hand-touch surfaces in the public transport system and in public areas of a hospital in central London. Dipslides were used to sample 118 hand-touch surfaces in buses, trains, stations, hotels and public areas of a hospital in central London. Total aerobic counts were determined, and Staphylococcus aureus isolates were identified and characterized. Bacteria were cultured from 112 (95%) of sites at a median concentration of 12 CFU cm(-2). Methicillin-susceptible Staph. aureus (MSSA) was cultured from nine (8%) of sites; no sites grew methicillin-resistant Staph. aureus (MRSA). Hand-touch sites in London are frequently contaminated with bacteria and can harbour MSSA, but none of the sites tested were contaminated with MRSA. Hand-touch sites can become contaminated with staphylococci and may be fomites for the transmission of bacteria between humans. Such sites could provide a reservoir for community-associated MRSA (CA-MRSA) in high prevalence areas but were not present in London, a geographical area with a low incidence of CA-MRSA.

  13. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  14. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  15. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films

    Science.gov (United States)

    Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.

  16. Dinitrosyl iron complexes and S-nitrosothiols are two possible forms for stabilization and transport of nitric oxide in biological systems.

    Science.gov (United States)

    Vanin, A F

    1998-07-01

    The physicochemical properties, mechanisms of synthesis and decomposition of dinitrosyl iron complexes (DNICs) with thiol-containing ligands and of S-nitrosothiols (RS-NO), and the potential role of these compounds in storage and transport of NO in biological systems are reviewed. Special attention is given to the phenomenon of mutual transformation of DNIC and RS-NO catalyzed by Fe2+. Each Fe2+ binds two neutral NO molecules in the DNICs, catalyzes their mutual oxidation--reduction with formation of nitrous oxide and nitrosonium ions appearing in the DNICs. These ions S-nitrosate thiol-compounds with RS-NO formation. Fe2+ binds two RS-NO molecules and catalyzes their mutual oxidation--reduction followed by decomposition of the resulting molecules. Mutual conversion of DNICs and RS-NO regulated by iron, thiol, and NO levels is suggested to provide NO transport in cells and tissues.

  17. Effect of sulfur addition on the transport properties of semiconducting iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M. [Physics Department, Faculty of Science, Suez Canal University, Suez (Egypt); Ibrahim, F.A. [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish (Egypt); Hassaan, M.Y. [Department of Physics, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo (Egypt)

    2011-08-15

    The present paper focuses on a quantitative analysis of the metallic and semiconducting behavior of electrical resistivity in La{sub 0.91}Rb{sub 0.06}Mn{sub 0.94}O{sub 3} manganites. The contribution of inherent low-frequency acoustic phonons as well as high-frequency optical phonons, to the electron-phonon resistivity is estimated following Bloch-Gruneisen model. The computed phonon resistivity is compared with that of reported metallic resistivity, accordingly {rho}diff. [{rho}exp. - {l_brace}{rho}0 + {rho}e-ph (={rho}ac + {rho}op){r_brace}] have been analysed through electron-electron scattering. Also, the difference can be varies linearly with T{sup 4.5} in accordance with the electron-magnon scattering in the double exchange process. The results reveal important aspects transport mechanism as well as point out that it is not only dominated by electron-phonon scattering, but also by electron-electron and electron-magnon scattering process. Alternatively, in high temperature regime (T {>=} T{sub P}) the semiconducting nature is discussed with Mott's variable range hopping (VRH) and small polaron conduction (SPC) model. (authors)

  18. Effect of sulfur addition on the transport properties of semiconducting iron phosphate glasses

    International Nuclear Information System (INIS)

    El-Desoky, M.M.; Ibrahim, F.A.; Hassaan, M.Y.

    2011-01-01

    The present paper focuses on a quantitative analysis of the metallic and semiconducting behavior of electrical resistivity in La 0.91 Rb 0.06 Mn 0.94 O 3 manganites. The contribution of inherent low-frequency acoustic phonons as well as high-frequency optical phonons, to the electron-phonon resistivity is estimated following Bloch-Gruneisen model. The computed phonon resistivity is compared with that of reported metallic resistivity, accordingly ρdiff. [ρexp. - {ρ0 + ρe-ph (=ρac + ρop)}] have been analysed through electron-electron scattering. Also, the difference can be varies linearly with T 4.5 in accordance with the electron-magnon scattering in the double exchange process. The results reveal important aspects transport mechanism as well as point out that it is not only dominated by electron-phonon scattering, but also by electron-electron and electron-magnon scattering process. Alternatively, in high temperature regime (T ≥ T P ) the semiconducting nature is discussed with Mott's variable range hopping (VRH) and small polaron conduction (SPC) model. (authors)

  19. Thermally driven magnon transport in the magnetic insulator Yttrium Iron Garnet

    International Nuclear Information System (INIS)

    Agrawal, Milan

    2014-01-01

    The research work presented in this thesis covers the investigation of spin-caloric phenomena in ferromagnetic-normal metal heterostructures. These phenomena explore the interaction of heat with spin systems and mainly deal with the generation and the manipulation of spin currents by means of heat currents (phonons). The significance of spin currents is widely seen in developing new fundamental concepts of physics as well as in the industry of magnetic memories. Analogous to the classical Seebeck effect, the generation of a spin current in a spin system by the application of heat currents is known as the spin Seebeck effect (SSE). This mode of spin current generation has recently attracted much scientific attention due to the existence of the spin Seebeck effect in a wide variety of magnetic materials (spin systems), considering from insulators to metals. The potential applications of this effect, in particular to generate electricity out of waste heat, make the effect even more attractive. Generally, spin systems can be classified into either a system constituting the traveling spins carried by free electrons or into a system of spin waves, collective excitations of magnetic moments in the wavevector space. Having the advantage of being free from free-electronic charges, an electrical-insulating-ferromagnetic system of spin waves overcomes the limitation of short propagation lengths of pure spin currents in metals. The long propagation length of spin currents carried by propagating spin waves is crucial for building-up spin-electronic (spintronic) circuits and spin logics for fast computation. For such purposes, the ferrimagnetic insulator Yttrium Iron Garnet (YIG) is a promising material candidate due to its lowest known magnetic damping which offers macroscopic propagation lengths of spin currents. In the framework of this thesis, a detailed investigation of the interaction of phonons with magnons, the quanta of spin waves, in single crystalline YIG films are

  20. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean.

    Science.gov (United States)

    Fitzsimmons, Jessica N; Boyle, Edward A; Jenkins, William J

    2014-11-25

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209-212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (Pacific Ocean, where dFe of 1.0-1.5 nmol/kg near 2,000 m depth (0.4-0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial (3)He and dissolved Mn (dFe:(3)He of 0.9-2.7 × 10(6)). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (Pacific Rise only leaks 0.02-1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (≥3% of global aerosol dFe input).

  1. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  2. Activity and Phylogenetic Diversity of Bacterial Cells with High and Low Nucleic Acid Content and Electron Transport System Activity in an Upwelling Ecosystem

    OpenAIRE

    Longnecker, K.; Sherr, B. F.; Sherr, E. B.

    2005-01-01

    We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters...

  3. Intestinal Iron Homeostasis and Colon Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yatrik M. Shah

    2013-06-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.

  4. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  5. Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect.

    Science.gov (United States)

    Renaud, Stéphanie; Corcé, Vincent; Cannie, Isabelle; Ropert, Martine; Lepage, Sylvie; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2015-08-01

    Tumor cell growth requires large iron quantities and the deprivation of this metal induced by synthetic metal chelators is therefore an attractive method for limiting the cancer cell proliferation. The antiproliferative effect of the Quilamine HQ1-44, a new iron chelator vectorized toward tumor cells by a polyamine chain, is related to its high selectivity for the Polyamine Transport System (PTS), allowing its preferential uptake by tumoral cells. The difference in PTS activation between healthy cells and tumor cells enables tumor cells to be targeted, whereas the strong dependence of these cells on iron ensures a secondary targeting. Here, we demonstrated in vitro that HQ1-44 inhibits DNA synthesis and cell proliferation of HCT116 cells by modulating the intracellular metabolism of both iron and polyamines. Moreover, in vivo, in xenografted athymic nude mice, we found that HQ1-44 was as effective as cis-platin in reducing HCT116 tumor growth, without its side effects. Furthermore, as suggested by in vitro data, the depletion in exogenous or endogenous polyamines, known to activate the PTS, dramatically enhanced the antitumor efficiency of HQ1-44. These data support the need for further studies to assess the value of HQ1-44 as an adjuvant treatment in cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain

    DEFF Research Database (Denmark)

    Neal, Andrew L; Geraki, Kalotina; Borg, Søren

    2013-01-01

    of modified complexation of both metals in transgenic grain overexpressing wheat ferritin. For zinc, there is a consistent doubling of the number of complexing phosphorus atoms. Although there is some EXAFS evidence for iron phytate in ferritin-expressing grain, there is also evidence of a structure lacking......We have used synchrotron-based X-ray fluorescence and absorption techniques to establish both metal distribution and complexation in mature wheat grains. In planta, extended X-ray absorption fine structure (EXAFS) spectroscopy reveals iron phytate and zinc phytate structures in aleurone cells...... of ferritin-expressing grains is quite different from that in wild-type grain. This may explain why the raised levels of minerals transported to the developing grain accumulate within the crease region of the transgenic grain....

  7. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation

    International Nuclear Information System (INIS)

    Kanel, Sushil Raj; Nepal, Dhriti; Manning, Bruce; Choi, Heechul

    2007-01-01

    The surface-modified iron nanoparticles (S-INP) were synthesized, characterized and tested for the remediation of arsenite (As(III)), a well known toxic groundwater contaminant of concern. The S-INP material was fully dispersed in the aqueous phase with a particle size distribution of 2-10 nm estimated from high-resolution transmission electron microscopy (HR-TEM). X-ray photoelectron spectroscopy (XPS) revealed that an Fe(III) oxide surface film was present on S-INP in addition to the bulk zero-valent Fe 0 oxidation state. Transport of S-INP through porous media packed in 10 cm length column showed particle breakthroughs of 22.1, 47.4 and 60 pore volumes in glass beads, unbaked sand, and baked sand, respectively. Un-modified INP was immobile and aggregated on porous media surfaces in the column inlet area. Results using S-INP pretreated 10 cm sand-packed columns containing ∼2 g of S-INP showed that 100 % of As(III) was removed from influent solutions (flow rate 1.8 mL min -1 ) containing 0.2, 0.5 and 1.0 mg L -1 As(III) for 9, 7 and 4 days providing 23.3, 20.7 and 10.4 L of arsenic free water, respectively. In addition, it was found that 100% of As(III) in 0.5 mg/L solution (flow rate 1.8 mL min -1 ) was removed by S-INP pretreated 50 cm sand packed column containing 12 g of S-INP for more than 2.5 months providing 194.4 L of arsenic free water. Field emission scanning electron microscopy (FE-SEM) showed S-INP had transformed to elongated, rod-like shaped corrosion product particles after reaction with As(III) in the presence of sand. These results suggest that S-INP has great potential to be used as a mobile, injectable reactive material for in-situ sandy groundwater aquifer treatment of As(III)

  8. Iron deficiency in childhood

    NARCIS (Netherlands)

    Uijterschout, L.

    2015-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  9. Altered biodistribution of gallium-67 in a patient with multiple factors influencing iron-transport protein saturation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeon Young; Kim, Sang Eun; Lee, Kyung Han; Kim, Byung Tae [College of Medicine, Samsung Medical Center, Seoul (Korea, Republic of)

    1998-01-01

    We present a case of a young female patient with fulminant hepatitis who showed an altered biodistribution of Ga-67, after being scanned twice at 10 month intervals. On initial scan, uptake of Ga-67 was increased in the liver, kidneys, and skeletons. Increased hepatic Ga-67 uptake may be explained by increased transferrin unbound Ga-67 that was taken up by the inflamed liver. The saturation of iron-binding proteins due to multiple transfusions may lead to increased renal and skeletal Ga-67 uptake. On follow-up scan hepatic Ga-67 uptake was markedly increased. Also increased Ga-67 uptake in the axial skeleton and normalized renal uptake were shown. The findings were consistent with iron deficiency anemia. This case demonstrates altered Ga-67 biodistribution associated with multiple transfusions, fulminant hepatitis, and iron deficiency anemia.

  10. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  11. Electron transport chain dysfunction by H(2)O (2) is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria.

    Science.gov (United States)

    Cortés-Rojo, Christian; Estrada-Villagómez, Mirella; Calderón-Cortés, Elizabeth; Clemente-Guerrero, Mónica; Mejía-Zepeda, Ricardo; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    The mitochondrial electron transport chain (ETC) contains thiol groups (-SH) which are reversibly oxidized to modulate ETC function during H(2)O(2) overproduction. Since deleterious effects of H(2)O(2) are not limited to -SH oxidation, due to the formation of other H(2)O(2)-derived species, some processes like lipoperoxidation could enhance the effects of H(2)O(2) over ETC enzymes, disrupt their modulation by -SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H(2)O(2) on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H(2)O(2) and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

  12. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    Science.gov (United States)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  13. Transport of iron particles generated during milling operations in multilateral wells; Transporte de particulas de aco geradas pela abertura de janelas em pocos multilaterais

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre Leibsohn; Rezende, Carla Leonor Teixeira; Leal, Rafael Amorim Ferreira; Lourenco, Fabio Gustavo Fernandes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: aleibsohn@cenpes.petrobras.com.br; rezenc@hotmail.com; ramorim@cenpes.petrobras.com.br; fabiolou@urbi.com.br

    2000-07-01

    This paper presents a series of numerical simulations aimng the definition of requirements (flow rate and fluid properties) to remove iron particles both in the inclined sections and in the riser annulus. Additionally, experimental work was developed in a pilot scale flow loop in order tocompare the behavior of water and sinthetic oil baed fluids in milling operations. (author)

  14. Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Mohan B [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Mitchell, Sue A; Gibson, Trevor M [Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Hussain, Rohanah; Siligardi, Giuliano [Circular Dichroism Group, Diamond Light Source, Chiltern, Oxfordshire,OX11 0DE (United Kingdom); Andrews, Simon C [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Watson, Kimberly A, E-mail: k.a.watson@reading.ac.uk [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom)

    2010-07-30

    Research highlights: {yields} Bioinformatic analysis reveals EfeM is a metallopeptidase with conserved HXXE motif. {yields} Mass spectrometry confirms EfeM consists of 251 residues, molecular weight 27,772Da. {yields} SRCD spectroscopy shows an {alpha}-helical secondary structure. {yields} Single crystals of EfeM are orthorhombic and diffract to 1.6A resolution. {yields} Space group is P22{sub 1}2{sub 1} with cell dimensions a = 46.74, b = 95.17 and c = 152.61 A. -- Abstract: The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signal peptide of 34 amino acid residues and a C-terminal 'Peptidase{sub M}75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr{sub 3}370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M{sub W} 27,772 Da). Circular dichroism spectroscopy of EfeM indicated a mainly {alpha}-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6 A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.

  15. Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor.

    Science.gov (United States)

    Hernández-Calderón, Erasto; Aviles-Garcia, Maria Elizabeth; Castulo-Rubio, Diana Yazmín; Macías-Rodríguez, Lourdes; Ramírez, Vicente Montejano; Santoyo, Gustavo; López-Bucio, José; Valencia-Cantero, Eduardo

    2018-02-01

    Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits. Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.

  16. Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem.

    Science.gov (United States)

    Longnecker, K; Sherr, B F; Sherr, E B

    2005-12-01

    We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.

  17. Spray washing, absorbent cornstarch powder, and dry time to reduce bacterial numbers on soiled transport cage flooring

    Science.gov (United States)

    Broiler transport cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Allowing feces to dry is an effective but slow and logistically impractical means to kill Campylobacter in soiled transport cages. ...

  18. 49 CFR 192.277 - Ductile iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  19. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  20. Monte Carlo transport model comparison with 1A GeV accelerated iron experiment: heavy-ion shielding evaluation of NASA space flight-crew foodstuff

    Science.gov (United States)

    Stephens, D. L. Jr; Townsend, L. W.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    2002-01-01

    Deep-space manned flight as a reality depends on a viable solution to the radiation problem. Both acute and chronic radiation health threats are known to exist, with solar particle events as an example of the former and galactic cosmic rays (GCR) of the latter. In this experiment Iron ions of 1A GeV are used to simulate GCR and to determine the secondary radiation field created as the GCR-like particles interact with a thick target. A NASA prepared food pantry locker was subjected to the iron beam and the secondary fluence recorded. A modified version of the Monte Carlo heavy ion transport code developed by Zeitlin at LBNL is compared with experimental fluence. The foodstuff is modeled as mixed nuts as defined by the 71st edition of the Chemical Rubber Company (CRC) Handbook of Physics and Chemistry. The results indicate a good agreement between the experimental data and the model. The agreement between model and experiment is determined using a linear fit to ordered pairs of data. The intercept is forced to zero. The slope fit is 0.825 and the R2 value is 0.429 over the resolved fluence region. The removal of an outlier, Z=14, gives values of 0.888 and 0.705 for slope and R2 respectively. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  1. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  2. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut

    DEFF Research Database (Denmark)

    Leth, Maria Louise; Ejby, Morten; Workman, Christopher

    2018-01-01

    Metabolism of dietary glycans is pivotal in shaping the human gut microbiota. However, the mechanisms that promote competition for glycans among gut commensals remain unclear. Roseburia intestinalis, an abundant butyrate-producing Firmicute, is a key degrader of the major dietary fibre xylan...... of capture and transport preferences as a possible strategy to facilitate co-growth on abundant dietary fibres and may offer a unique route to manipulate the microbiota based on glycan transport preferences in therapeutic interventions to boost distinct taxa....

  3. Spray washing, absorbent corn starch powder and dry time to reduce bacterial numbers on soiled boiler transport cage flooring

    Science.gov (United States)

    Most broilers in the U.S. are transported live to slaughter facilities in cages with fiberglass floors. Cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Drying feces out between uses is an effectiv...

  4. Importance of Ekman transport and gyre circulation change on seasonal variation of surface dissolved iron in the western subarctic North Pacific

    Science.gov (United States)

    Nakanowatari, Takuya; Nakamura, Tomohiro; Uchimoto, Keisuke; Nishioka, Jun; Mitsudera, Humio; Wakatsuchi, Masaaki

    2017-05-01

    Iron (Fe) is an essential nutrient for marine phytoplankton and it constitutes an important element in the marine carbon cycle in the ocean. This study examined the mechanisms controlling seasonal variation of dissolved Fe (dFe) in the western subarctic North Pacific (WSNP), using an ocean general circulation model coupled with a simple biogeochemical model incorporating a dFe cycle fed by two major sources (atmospheric dust and continental shelf sediment). The model reproduced the seasonal cycle of observed concentrations of dFe and macronutrients at the surface in the Oyashio region with maxima in winter (February-March) and minima in summer (July-September), although the simulated seasonal amplitudes are a half of the observed values. Analysis of the mixed-layer dFe budget indicated that both local vertical entrainment and lateral advection are primary contributors to the wintertime increase in dFe concentration. In early winter, strengthened northwesterly winds excite southward Ekman transport and Ekman upwelling over the western subarctic gyre, transporting dFe-rich water southward. In mid to late winter, the southward western boundary current of the subarctic gyre and the outflow from the Sea of Okhotsk also bring dFe-rich water to the Oyashio region. The contribution of atmospheric dust to the dFe budget is several times smaller than these ocean transport processes in winter. These results suggest that the westerly wind-induced Ekman transport and gyre circulation systematically influence the seasonal cycle of WSNP surface dFe concentration.

  5. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis.

    Science.gov (United States)

    Perry, Robert D; Bobrov, Alexander G; Fetherston, Jacqueline D

    2015-06-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.

  6. Investigation into the use of ductile cast iron and cast steel for transport containers with plastic flow shock absorbers

    International Nuclear Information System (INIS)

    Smith, M.J.S.; Gray, I.L.S.; Sievwright, R.W.T.; Miles, J.C.; Egid, B.; Donelan, P.

    1993-01-01

    UK Nirex Ltd is responsible for the development of facilities for the disposal of low and intermediate level waste in the United Kingdom, including the development of the transport facilities for this waste. As part of the development programme Nirex is examining the feasibility of manufacturing these transport containers by means of casting instead of the more usual forging process, as this would bring advantages of lower cost and shorter manufacturing time. This paper describes the programme of work to date which has been aimed at establishing the feasibility of utilizing casting as the manufacturing method for the ILW transport containers and selecting one of the materials for further development work. (J.P.N.)

  7. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    Science.gov (United States)

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...

  8. Shigella Iron Acquisition Systems and their Regulation.

    Science.gov (United States)

    Wei, Yahan; Murphy, Erin R

    2016-01-01

    Survival of Shigella within the host is strictly dependent on the ability of the pathogen to acquire essential nutrients, such as iron. As an innate immune defense against invading pathogens, the level of bio-available iron within the human host is maintained at exceeding low levels, by sequestration of the element within heme and other host iron-binding compounds. In response to sequestration mediated iron limitation, Shigella produce multiple iron-uptake systems that each function to facilitate the utilization of a specific host-associated source of nutrient iron. As a mechanism to balance the essential need for iron and the toxicity of the element when in excess, the production of bacterial iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This review summarizes the current state of knowledge on the iron-uptake systems produced by Shigella species, their distribution within the genus, and the molecular mechanisms that regulate their production.

  9. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  10. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    Science.gov (United States)

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  11. Within-host evolution of Pseudomonas aeruginosa toward iron acquisition from hemoglobin in polymicrobial CF infections

    DEFF Research Database (Denmark)

    Khademi, Seyed Mohammad Hossein; Marvig, Rasmus Lykke; Pedersen, Søren Damkiær

    2014-01-01

    Bacterial pathogens require iron to survive and colonize a human host but their access to free iron is often limited by iron-withholding process where free iron is bound by proteins such as hemoglobin. Although most pathogens have developed tactics to acquire iron from host proteins, little is kn...

  12. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Science.gov (United States)

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  13. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  14. Microbial Community Composition Impacts Pathogen Iron Availability during Polymicrobial Infection.

    Directory of Open Access Journals (Sweden)

    Apollo Stacy

    2016-12-01

    Full Text Available Iron is an essential nutrient for bacterial pathogenesis, but in the host, iron is tightly sequestered, limiting its availability for bacterial growth. Although this is an important arm of host immunity, most studies examine how bacteria respond to iron restriction in laboratory rather than host settings, where the microbiome can potentially alter pathogen strategies for acquiring iron. One of the most important transcriptional regulators controlling bacterial iron homeostasis is Fur. Here we used a combination of RNA-seq and chromatin immunoprecipitation (ChIP-seq to characterize the iron-restricted and Fur regulons of the biofilm-forming opportunistic pathogen Aggregatibacter actinomycetemcomitans. We discovered that iron restriction and Fur regulate 4% and 3.5% of the genome, respectively. While most genes in these regulons were related to iron uptake and metabolism, we found that Fur also directly regulates the biofilm-dispersing enzyme Dispersin B, allowing A. actinomycetemcomitans to escape from iron-scarce environments. We then leveraged these datasets to assess the availability of iron to A. actinomycetemcomitans in its primary infection sites, abscesses and the oral cavity. We found that A. actinomycetemcomitans is not restricted for iron in a murine abscess mono-infection, but becomes restricted for iron upon co-infection with the oral commensal Streptococcus gordonii. Furthermore, in the transition from health to disease in human gum infection, A. actinomycetemcomitans also becomes restricted for iron. These results suggest that host iron availability is heterogeneous and dependent on the infecting bacterial community.

  15. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. 'Murasakizuisho'.

    Science.gov (United States)

    Shoji, Kazuaki; Momonoi, Kazumi; Tsuji, Tosiaki

    2010-02-01

    Flowers of tulip cv. 'Murasakizuisho' have a purple perianth except for the bottom region, which is blue in color even though it has the same anthocyanin, delphinidin 3-O-rutinoside, as the entire perianth. The development of the blue coloration in the perianth bottom is due to complexation by anthocyanin, flavonol and iron (Fe), as well as a vacuolar iron transporter, TgVit1. Although transient expression of TgVit1 in the purple cells led to a color change to light blue, the coloration of the transformed cells did not coincide with the dark blue color of the cells of the perianth bottom. We thought that another factor is required for the blue coloration of the cells of perianth bottom. To examine the effect of ferritin (FER), an Fe storage protein, on blue color development, we cloned an FER gene (TgFER1) and performed expression analyses. TgFER1 transcripts were found in the cells located in the upper region of the petals along with purple color development by anthocyanin and were not found in the blue cells of the perianth bottom. This gene expression is in contrast to that of TgVit1, expressed only in the cells of the perianth bottom. Co-expression of TgVIT1 and TgFER-RNAi, constructed for suppressing endogenous TgFER1 by RNA interference (RNAi), changed the purple petal cells to a dark blue color similar to that of the natural perianth bottom. These results strongly suggest that TgVit1 expression and TgFER1 suppression are critical for the development of blue color in the perianth bottom.

  16. A lower isoelectric point increases signal sequence-mediated secretion of recombinant proteins through a bacterial ABC transporter.

    Science.gov (United States)

    Byun, Hyunjong; Park, Jiyeon; Kim, Sun Chang; Ahn, Jung Hoon

    2017-12-01

    Efficient protein production for industrial and academic purposes often involves engineering microorganisms to produce and secrete target proteins into the culture. Pseudomonas fluorescens has a TliDEF ATP-binding cassette transporter, a type I secretion system, which recognizes C-terminal LARD3 signal sequence of thermostable lipase TliA. Many proteins are secreted by TliDEF in vivo when recombined with LARD3, but there are still others that cannot be secreted by TliDEF even when LARD3 is attached. However, the factors that determine whether or not a recombinant protein can be secreted through TliDEF are still unknown. Here, we recombined LARD3 with several proteins and examined their secretion through TliDEF. We found that the proteins secreted via LARD3 are highly negatively charged with highly-acidic isoelectric points (pI) lower than 5.5. Attaching oligo-aspartate to lower the pI of negatively-charged recombinant proteins improved their secretion, and attaching oligo-arginine to negatively-charged proteins blocked their secretion by LARD3. In addition, negatively supercharged green fluorescent protein (GFP) showed improved secretion, whereas positively supercharged GFP did not secrete. These results disclosed that proteins' acidic pI and net negative charge are major factors that determine their secretion through TliDEF. Homology modeling for TliDEF revealed that TliD dimer forms evolutionarily-conserved positively-charged clusters in its pore and substrate entrance site, which also partially explains the pI dependence of the TliDEF-dependent secretions. In conclusion, lowering the isoelectric point improved LARD3-mediated protein secretion, both widening the range of protein targets for efficient production via secretion and signifying an important aspect of ABC transporter-mediated secretions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination

    International Nuclear Information System (INIS)

    Erdim, Esra; Badireddy, Appala Raju; Wiesner, Mark R.

    2015-01-01

    Highlights: • We synthesized a novel ZVI/nC 60 nano-composite device for multi-ROS generation. • O 2 · − (UV-A independent) and 1 O 2 (UV-A dependent) are generated at neutral pH. • At low Fe concentration, ZVI/nC 60 device is a better ROS generator than ZVI alone. • C 60 mediates electron transfer from ZVI surface to dissolved O 2 to produce O 2 · − . • Bacteria are rapidly inactivated by O 2 · − even at low ZVI/nC 60 ratio. - Abstract: A nano-composite device composed of nano-scale zerovalent iron (ZVI) and C 60 fullerene aggregates (ZVI/nC 60 ) was produced via a rapid nucleation method. The device was conceived to deliver reactive oxygen species (ROS) generated by photosensitization and/or electron transfer to targeted contaminants, including waterborne pathogens under neutral pH conditions. Certain variations of the nano-composite were fabricated differing in the amounts of (1) ZVI (0.1 mM and 2 mM) but not nC 60 (2.5 mg-C/L), and (2) nC 60 (0–25 mg-C/L) but not ZVI (0.1 mM). The generation of ROS by the ZVI/nC 60 nano-composites and ZVI nanoparticles was quantified using organic probe compounds. 0.1 mM ZVI/2.5 mg-C/L C 60 generated 3.74-fold higher O 2 · − concentration and also resulted in an additional 2-log inactivation of Pseudomonas aeruginosa when compared to 0.1 mM ZVI (3-log inactivation). 2 mM ZVI/2.5 mg-C/L nC 60 showed negligible improvement over 2 mM ZVI in terms of O 2 · − generation or inactivation. Further, incremental amounts of nC 60 in the range of 0–25 mg-C/L in 0.1 mM ZVI/nC 60 led to increased O 2 · − concentration, independent of UV-A. This study demonstrates that ZVI/nC 60 device delivers (1) enhanced O 2 · − with nC 60 as a mediator for electron transfer, and (2) 1 O 2 (only under UV-A illumination) at neutral pH conditions

  18. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  19. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination

    Energy Technology Data Exchange (ETDEWEB)

    Erdim, Esra [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Environmental Engineering Department, Marmara University, Istanbul 34469 (Turkey); Badireddy, Appala Raju [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States); Wiesner, Mark R., E-mail: wiesner@duke.edu [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States)

    2015-02-11

    Highlights: • We synthesized a novel ZVI/nC{sub 60} nano-composite device for multi-ROS generation. • O{sub 2}·{sup −} (UV-A independent) and {sup 1}O{sub 2} (UV-A dependent) are generated at neutral pH. • At low Fe concentration, ZVI/nC{sub 60} device is a better ROS generator than ZVI alone. • C{sub 60} mediates electron transfer from ZVI surface to dissolved O{sub 2} to produce O{sub 2}·{sup −}. • Bacteria are rapidly inactivated by O{sub 2}·{sup −} even at low ZVI/nC{sub 60} ratio. - Abstract: A nano-composite device composed of nano-scale zerovalent iron (ZVI) and C{sub 60} fullerene aggregates (ZVI/nC{sub 60}) was produced via a rapid nucleation method. The device was conceived to deliver reactive oxygen species (ROS) generated by photosensitization and/or electron transfer to targeted contaminants, including waterborne pathogens under neutral pH conditions. Certain variations of the nano-composite were fabricated differing in the amounts of (1) ZVI (0.1 mM and 2 mM) but not nC{sub 60} (2.5 mg-C/L), and (2) nC{sub 60} (0–25 mg-C/L) but not ZVI (0.1 mM). The generation of ROS by the ZVI/nC{sub 60} nano-composites and ZVI nanoparticles was quantified using organic probe compounds. 0.1 mM ZVI/2.5 mg-C/L C{sub 60} generated 3.74-fold higher O{sub 2}·{sup −} concentration and also resulted in an additional 2-log inactivation of Pseudomonas aeruginosa when compared to 0.1 mM ZVI (3-log inactivation). 2 mM ZVI/2.5 mg-C/L nC{sub 60} showed negligible improvement over 2 mM ZVI in terms of O{sub 2}·{sup −} generation or inactivation. Further, incremental amounts of nC{sub 60} in the range of 0–25 mg-C/L in 0.1 mM ZVI/nC{sub 60} led to increased O{sub 2}·{sup −} concentration, independent of UV-A. This study demonstrates that ZVI/nC{sub 60} device delivers (1) enhanced O{sub 2}·{sup −} with nC{sub 60} as a mediator for electron transfer, and (2) {sup 1}O{sub 2} (only under UV-A illumination) at neutral pH conditions.

  20. Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog.

    Science.gov (United States)

    Lo, Miranda; Murray, Gerald L; Khoo, Chen Ai; Haake, David A; Zuerner, Richard L; Adler, Ben

    2010-11-01

    Leptospirosis is a globally significant zoonosis caused by Leptospira spp. Iron is essential for growth of most bacterial species. Since iron availability is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In many bacteria, expression of iron uptake and storage proteins is regulated by Fur. L. interrogans encodes four predicted Fur homologs; we have constructed a mutation in one of these, la1857. We conducted microarray analysis to identify iron-responsive genes and to study the effects of la1857 mutation on gene expression. Under iron-limiting conditions, 43 genes were upregulated and 49 genes were downregulated in the wild type. Genes encoding proteins with predicted involvement in inorganic ion transport and metabolism (including TonB-dependent proteins and outer membrane transport proteins) were overrepresented in the upregulated list, while 54% of differentially expressed genes had no known function. There were 16 upregulated genes of unknown function which are absent from the saprophyte L. biflexa and which therefore may encode virulence-associated factors. Expression of iron-responsive genes was not significantly affected by mutagenesis of la1857, indicating that LA1857 is not a global regulator of iron homeostasis. Upregulation of heme biosynthetic genes and a putative catalase in the mutant suggested that LA1857 is more similar to PerR, a regulator of the oxidative stress response. Indeed, the la1857 mutant was more resistant to peroxide stress than the wild type. Our results provide insights into the role of iron in leptospiral metabolism and regulation of the oxidative stress response, including genes likely to be important for virulence.

  1. Iron and iron-related proteins in asbestosis.

    Science.gov (United States)

    ABSTRACT: We tested the postulate that iron homeostasis is altered among patients diagnosed to have asbestosis. Lung tissue from six individuals diagnosed to have had asbestosis at autopsy was stained for iron, ferritin, divalent metal transporter 1 (DMT1), and ferroportin 1 (FP...

  2. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  3. Les effets des interfaces sur les proprietes magnetiques et de transport des multicouches nickel/iron et cobalt/silver

    Science.gov (United States)

    Veres, Teodor

    Cette these est consacree a l'etude de l'evolution structurale des proprietes magnetiques et de transport des multicouches Ni/Fe et nanostructures a base de Co et de l'Ag. Dans une premiere partie, essentiellement bibliographique, nous introduisons quelques concepts de base relies aux proprietes magnetiques et de transport des multicouches metalliques. Ensuite, nous presentons une breve description des methodes d'analyse des resultats. La deuxieme partie est consacree a l'etude des proprietes magnetiques et de transport des multicouches ferromagnetiques/ferromagnetiques Ni/Fe. Nous montrerons qu'une interpretation coherente de ces proprietes necessite la prise en consideration des effets des interfaces. Nous nous attacherons a mettre en evidence, a evaluer et a etudier les effets de ces interfaces ainsi que leur evolution, et ce, suite a des traitements thermiques tel que le depot a temperature elevee et l'irradiation ionique. Les analyses correlees de la structure et de la magnetoresistance nous permettront d'emettre des conclusions sur l'influence des couches tampons entre l'interface et le substrat ainsi qu'entre les couches elles-memes sur le comportement magnetique des couches F/F. La troisieme partie est consacree aux systemes a Magneto-Resistance Geante (MRG) a base de Co et Ag. Nous allons etudier l'evolution de la microstructure suite a l'irradiation avec des ions Si+ ayant une energie de 1 MeV, ainsi que les effets de ces changements sur le comportement magnetique. Cette partie debutera par l'analyse des proprietes d'une multicouche hybride, intermediaire entre les multicouches et les materiaux granulaires. Nous analyserons a l'aide des mesures de diffraction, de relaxation superparamagnetique et de magnetoresistance, les evolutions structurales produites par l'irradiation ionique. Nous etablirons des modeles qui nous aideront a interpreter les resultats pour une serie des multicouches qui couvrent un large eventail de differents comportements magnetiques

  4. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs

    Directory of Open Access Journals (Sweden)

    Simon Ipcho

    2016-06-01

    Full Text Available Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals.

  5. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  6. Growth performance, haematological traits, meat variables, and effects of treadmill and transport stress in veal calves supplied different amounts of iron.

    Science.gov (United States)

    Lindt, F; Blum, J W

    1994-06-01

    Effects of serum iron (Fe), haematological variables and on blood lactate levels before and after treadmill exercise or transport to the slaughterhouse, on meat traits, and on growth performance of feeding milk replacer (MR), planned to contain 10, 20, 30, 40, 50 or 80 mg Fe/kg, were studied in veal calves. If supplied less than 50 mg Fe/kg MR, calves developed hypoferraemia and anaemia, the degree of which was dependent on Fe intake. Serum Fe concentration, saturation of transferrin with Fe and the degree of anaemia in calves fed 20 or 10 mg Fe/kg MR were nearly identical. Serum Fe concentration and haematological traits barely changed in calves fed 50 mg Fe/kg MR during the growth trail, but serum Fe concentration increased when MR contained 80 mg Fe/kg in calves fed 50 or more Fe/kg MR. Growth performance was smaller in calves fed 10 mg Fe/kg MR than in those fed greater amounts of Fe/kg MR. Carcass taxation was inversely related to Fe intake. In conclusion, MR containing only 10 mg Fe/kg caused marked anaemia and reduced growth performance. Feeding MR with only 20 mg Fe/kg is not necessarily sufficient to prevent development of severe anaemia. Feeding MR with 50 mg Fe/kg would seem to be physiologically the most appropriate amount of Fe for veal calves, but was too high for acceptable carcass taxation.

  7. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  8. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  9. Transportation Safety of Lithium Iron Phosphate Batteries - A Feasibility Study of Storing at Very Low States of Charge.

    Science.gov (United States)

    Barai, Anup; Uddin, Kotub; Chevalier, Julie; Chouchelamane, Gael H; McGordon, Andrew; Low, John; Jennings, Paul

    2017-07-11

    In freight classification, lithium-ion batteries are classed as dangerous goods and are therefore subject to stringent regulations and guidelines for certification for safe transport. One such guideline is the requirement for batteries to be at a state of charge of 30%. Under such conditions, a significant amount of the battery's energy is stored; in the event of mismanagement, or indeed an airside incident, this energy can lead to ignition and a fire. In this work, we investigate the effect on the battery of removing 99.1% of the total stored energy. The performance of 8Ah C 6 /LiFePO 4 pouch cells were measured following periods of calendar ageing at low voltages, at and well below the manufacturer's recommended value. Battery degradation was monitored using impedance spectroscopy and capacity tests; the results show that the cells stored at 2.3 V exhibited no change in cell capacity after 90 days; resistance rise was negligible. Energy-dispersive X-ray spectroscopy results indicate that there was no significant copper dissolution. To test the safety of the batteries at low voltages, external short-circuit tests were performed on the cells. While the cells discharged to 2.3 V only exhibited a surface temperature rise of 6 °C, cells at higher voltages exhibited sparks, fumes and fire.

  10. [Iron and invasive fungal infection].

    Science.gov (United States)

    Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María

    2013-01-01

    Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  11. Formation of nitrosyl non-heme iron-sulphur complexes of a mitrochondria electron-transport chain in a liver and kidneys under prolonged permanent action of radiation contamination in the Chernobyl region

    International Nuclear Information System (INIS)

    Sidorik, E.P.; Burlaka, A.P.; Druzhina, N.A.

    1995-01-01

    No-complexes with iron-sulfur protein of the N-type (EPR signal g=2.03 at 77 K) have been revealed in a mitochondria electron transport chain in a liver and kidneys of animals which were hold for 1.5 years in the Chernobyl area under action of low intensity ionizing radiation as a result of incorporated radionuclides. These alterations in protein give evidence of changes in oxidation and phosphorylation in tissues

  12. Severe bacterial infections in patients with non-transfusion-dependent thalassemia: prevalence and clinical risk factors

    Directory of Open Access Journals (Sweden)

    Nattiya Teawtrakul

    2015-10-01

    Conclusion: The prevalence of bacterial infection in patients with NTDT was found to be moderate. Time after splenectomy >10 years, deferoxamine therapy, and iron overload may be clinical risk factors for severe bacterial infection in patients with NTDT. Bacterial infection should be recognized in splenectomized patients with NTDT, particularly those who have an iron overload.

  13. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  14. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    International Nuclear Information System (INIS)

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P.

    2007-01-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin

  15. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Directory of Open Access Journals (Sweden)

    T. Maki

    2018-06-01

    Full Text Available The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols, that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation and upper (spring accumulation parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia, northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which

  16. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Science.gov (United States)

    Maki, Teruya; Furumoto, Shogo; Asahi, Yuya; Lee, Kevin C.; Watanabe, Koichi; Aoki, Kazuma; Murakami, Masataka; Tajiri, Takuya; Hasegawa, Hiroshi; Mashio, Asami; Iwasaka, Yasunobu

    2018-06-01

    The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice

  17. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  18. Neurotransmitter transporters

    DEFF Research Database (Denmark)

    Gether, Ulrik; Andersen, Peter H; Larsson, Orla M

    2006-01-01

    The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and....... Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters...

  19. Direct Biohydrometallurgical Extraction of Iron from Ore

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  20. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  2. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  4. A dual component heme biosensor that integrates heme transport and synthesis in bacteria.

    Science.gov (United States)

    Nobles, Christopher L; Clark, Justin R; Green, Sabrina I; Maresso, Anthony W

    2015-11-01

    Bacterial pathogens acquire host iron to power cellular processes and replication. Heme, an iron-containing cofactor bound to hemoglobin, is scavenged by bacterial proteins to attain iron. Methods to measure intracellular heme are laborious, involve complex chemistry, or require radioactivity. Such drawbacks limit the study of the mechanistic steps of heme transport and breakdown. Hypothesizing heme homeostasis could be measured with fluorescent methods, we coupled the conversion of heme to biliverdin IXα (a product of heme catabolism) by heme oxygenase 1 (HO1) with the production of near-infrared light upon binding this verdin by infrared fluorescent protein (IFP1.4). The resultant heme sensor, IFP-HO1, was fluorescent in pathogenic E. coli exposed to heme but not in the absence of the heme transporter ChuA and membrane coupling protein TonB, thereby validating their long-standing proposed role in heme uptake. Fluorescence was abolished in a strain lacking hemE, the central gene in the heme biosynthetic pathway, but stimulated by iron, signifying the sensor reports on intracellular heme production. Finally, an invasive strain of E. coli harboring the sensor was fluorescent during an active infection. This work will allow researchers to expand the molecular toolbox used to study heme and iron acquisition in culture and during infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  6. IRON DOME

    African Journals Online (AJOL)

    6 Israeli Navy 'First Arm of the Sea: The Successful Interception of the Iron Dome Rocket .... sky to destroy them whilst in flight to minimise civilian casualties. ..... Including The Moon and Celestial Bodies.53 Demeyere further emphasises the.

  7. Iron overdose

    Science.gov (United States)

    ... tracing) X-ray to detect and track iron tablets through the stomach and intestines Treatment may include: ... BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  8. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  9. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  10. Iron, transferrin and myelinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H.; Deves, G.; Baron, B.; Guillou, F

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5{sup '} and 3{sup '} untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  11. Iron, transferrin and myelinogenesis

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Baron, B.; Guillou, F.

    2003-01-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport

  12. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  13. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  14. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  15. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  16. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park.

    Science.gov (United States)

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron-oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicates that the replicate assemblies represent a new candidate phylum within the domain Archaea referred to here as 'Geoarchaeota' or 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I carbon monoxide dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in the metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen-sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron-oxide mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogs active in YNP today.

  17. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan; Jay, Z.; Tringe, Susannah G.; Rusch, Douglas B.; Beam, Jake; McCue, Lee Ann; Inskeep, William P.

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a new phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.

  18. Hydrogen and deuterium trapping in iron

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H H; Lin, R W

    1981-02-01

    The research described is directed at present almost exclusively to hydrogen transport, including both chemical and physical trapping, in iron and iron-base alloys. Some attention is directed to isotope effects. Efforts are made to clarify and understand hydrogen-related phenomena which are believed to be of direct importance to practical performance.

  19. Modelling the long-term evolution of groundwater's quality in a flooded iron-ore mine using a reactive transport pipe network model

    OpenAIRE

    Vaute , Laurent; Le Pape , Pierre; Collon-Drouaillet , Pauline; Fabriol , Robert

    2010-01-01

    International audience; Over the past 25 years, underground mine flooding in the lorraine iron Basin (France) has resulted in a high concentration of dissolved sulphate and have made the water unsuitable for human consumption. this problematic issue has led to the development of numerical tools to support waterresource management in mining contexts. as water flows mainly in galleries and collapsed zones, we consider the flooded mine as a network of pipes and tanks. the software used for simul...

  20. Statin-induced inhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms.

    Science.gov (United States)

    Kanugula, Anantha Koteswararao; Gollavilli, Paradesi Naidu; Vasamsetti, Sathish Babu; Karnewar, Santosh; Gopoju, Raja; Ummanni, Ramesh; Kotamraju, Srigiridhar

    2014-08-01

    Accumulating evidence from in vitro, in vivo, clinical and epidemiological studies shows promising results for the use of statins against many cancers including breast carcinoma. However, the molecular mechanisms responsible for the anti-proliferative and anti-invasive properties of statins still remain elusive. In this study, we investigated the involvement of nitric oxide, iron homeostasis and antioxidant defence mechanisms in mediating the anti-proliferative and anti-invasive properties of hydrophobic statins in MDA-MB-231, MDA-MB-453 and BT-549 metastatic triple negative breast cancer cells. Fluvastatin and simvastatin significantly increased cytotoxicity which was reversed with mevalonate. Interestingly, fluvastatin downregulated transferrin receptor (TfR1), with a concomitant depletion of intracellular iron levels in these cells. Statin-induced effects were mimicked by geranylgeranyl transferase inhibitor (GGTI-298) but not farnesyl transferase inhibitor (FTI-277). Further, it was observed that TfR1 downregulation is mediated by increased nitric oxide levels via inducible nitric oxide synthase (iNOS) expression. NOS inhibitors (asymmetric dimethylarginine and 1400W) counteracted and sepiapterin, a precursor of tetrahydrobiopterin, exacerbated statin-induced depletion of intracellular iron levels. Notably, fluvastatin increased manganese superoxide dismutase (by repressing the transcription factor DNA damage-binding protein 2), catalase and glutathione which, in turn, diminished H2 O2 levels. Fluvastatin-induced downregulation of TfR1, matrix metalloproteinase-2, -9 and inhibition of invasion were reversed in the presence of aminotriazole, a specific inhibitor of catalase. Finally, we conclude that fluvastatin, by altering iron homeostasis, nitric oxide generation and antioxidant defence mechanisms, induces triple negative breast cancer cell death. © 2014 FEBS.

  1. Iron-Tolerant Cyanobacteria: Ecophysiology and Fingerprinting

    Science.gov (United States)

    Brown, I. I.; Mummey, D.; Lindsey, J.; McKay, D. S.

    2006-01-01

    Although the iron-dependent physiology of marine and freshwater cyanobacterial strains has been the focus of extensive study, very few studies dedicated to the physiology and diversity of cyanobacteria inhabiting iron-depositing hot springs have been conducted. One of the few studies that have been conducted [B. Pierson, 1999] found that cyanobacterial members of iron depositing bacterial mat communities might increase the rate of iron oxidation in situ and that ferrous iron concentrations up to 1 mM significantly stimulated light dependent consumption of bicarbonate, suggesting a specific role for elevated iron in photosynthesis of cyanobacteria inhabiting iron-depositing hot springs. Our recent studies pertaining to the diversity and physiology of cyanobacteria populating iron-depositing hot springs in Great Yellowstone area (Western USA) indicated a number of different isolates exhibiting elevated tolerance to Fe(3+) (up to 1 mM). Moreover, stimulation of growth was observed with increased Fe(3+) (0.02-0.4 mM). Molecular fingerprinting of unialgal isolates revealed a new cyanobacterial genus and species Chroogloeocystis siderophila, an unicellular cyanobacterium with significant EPS sheath harboring colloidal Fe(3+) from iron enriched media. Our preliminary data suggest that some filamentous species of iron-tolerant cyanobacteria are capable of exocytosis of iron precipitated in cytoplasm. Prior to 2.4 Ga global oceans were likely significantly enriched in soluble iron [Lindsay et al, 2003], conditions which are not conducive to growth of most contemporary oxygenic cyanobacteria. Thus, iron-tolerant CB may have played important physiological and evolutionary roles in Earths history.

  2. Intramolecular cross-linking in a bacterial homolog of mammalian SLC6 neurotransmitter transporters suggests an evolutionary conserved role of transmembrane segments 7 and 8

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Loland, Claus Juul; Goldberg, Naomi

    2005-01-01

    The extracellular concentration of the neurotransmitters dopamine, serotonin, norepinephrine, GABA and glycine is tightly controlled by plasma membrane transporters belonging to the SLC6 gene family. A very large number of putative transport proteins with a remarkable homology to the SLC6...... proximity between TM 7 and 8 in the tertiary structure of TnaT as previously suggested for the mammalian counterparts. Furthermore, the inhibition of uptake upon cross-linking the two cysteines provides indirect support for a conserved conformational role of these transmembrane domains in the transport...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, salmon, iron- ... of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  5. Iron in diet

    Science.gov (United States)

    ... Reasonable amounts of iron are also found in lamb, pork, and shellfish. Iron from vegetables, fruits, grains, ... strawberries, tomatoes, and potatoes) also increase iron absorption. Cooking foods in a cast-iron skillet can also ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body is low. For this reason, other iron tests are also done. Ferritin measure ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  13. Iron Dextran Injection

    Science.gov (United States)

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and severity. Treatments may include iron supplements, procedures, surgery, and dietary ... iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  16. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  17. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    Science.gov (United States)

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  18. Structure of the bacterial plant-ferredoxin receptor FusA

    NARCIS (Netherlands)

    Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Bonvin, Alexandre M J J; Milner, Joel J.; Kelly, Sharon M.; Byron, Olwyn; Smith, Brian O.; Walker, Daniel

    2016-01-01

    Iron is a limiting nutrient in bacterial infection putting it at the centre of an evolutionary arms race between host and pathogen. Gram-negative bacteria utilize TonB-dependent outer membrane receptors to obtain iron during infection. These receptors acquire iron either in concert with soluble

  19. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.

    Science.gov (United States)

    Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena

    2015-10-01

    What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane

  20. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  1. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    Science.gov (United States)

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  3. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  5. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  6. Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog

    Science.gov (United States)

    Leptospira interrogans is the causative agent of leptospirosis, a zoonosis of global significance. Iron is essential for growth of most bacterial species. Since availability of iron is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In ...

  7. Subcellular Iron Localization Mechanisms in Plants

    Directory of Open Access Journals (Sweden)

    Emre Aksoy

    2017-12-01

    Full Text Available The basic micro-nutrient element iron (Fe is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

  8. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia

    Directory of Open Access Journals (Sweden)

    Nick D. Pokorzynski

    2017-09-01

    Full Text Available The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed “persistence.” This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.

  9. Computational modeling and analysis of iron release from macrophages.

    Directory of Open Access Journals (Sweden)

    Alka A Potdar

    2014-07-01

    Full Text Available A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+ through ferroportin (FPN, the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp, oxidizes ferrous to ferric ion. Apo-transferrin (Tf, the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can

  10. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber Part II : Use of fluorescence imaging

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem; Krom, Bastiaan P.; Sjollema, Jelmer

    2011-01-01

    Using a new phase-contrast microscopy-based method of analysis, sedimentation has recently been demonstrated to be the major mass transport mechanism of bacteria towards substratum surfaces in a parallel plate flow chamber (J. Li, H.J. Busscher, W. Norde, J. Sjollema, Colloid Surf. B. 84 (2011)76).

  11. Uncovering iron regulation with species-specific transcriptome patterns in Atlantic and coho salmon during a Caligus rogercresseyi infestation.

    Science.gov (United States)

    Valenzuela-Muñoz, V; Boltaña, S; Gallardo-Escárate, C

    2017-09-01

    Salmon species cultured in Chile evidence different levels of susceptibility to the sea louse Caligus rogercresseyi. These differences have mainly been associated with specific immune responses. Moreover, iron regulation seems to be an important mechanism to confer immunity during the host infestation. This response called nutritional immunity has been described in bacterial infections, despite that no comprehensive studies involving in marine ectoparasites infestation have been reported. With this aim, we analysed the transcriptome profiles of Atlantic and coho salmon infected with C. rogercresseyi to evidence modulation of the iron metabolism as a proxy of nutritional immune responses. Whole transcriptome sequencing was performed in samples of skin and head kidney from Atlantic and coho salmon infected with sea lice. RNA-seq analyses revealed significant upregulation of transcripts in both salmon species at 7 and 14 dpi in skin and head kidney, respectively. However, iron regulation transcripts were differentially modulated, evidencing species-specific expression profiles. Genes related to heme degradation and iron transport such as hepcidin, transferrin and haptoglobin were primary upregulated in Atlantic salmon; meanwhile, in coho salmon, genes associated with heme biosynthesis were strongly transcribed. In summary, Atlantic salmon, which are more susceptible to infestation, presented molecular mechanisms to deplete cellular iron availability, suggesting putative mechanisms of nutritional immunity. In contrast, resistant coho salmon were less affected by sea lice, mainly activating pro-inflammatory mechanisms to cope with infestation. © 2017 John Wiley & Sons Ltd.

  12. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  13. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Jeong, Jaehak; Pachepsky, Yakov A

    2018-02-15

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and in streams with the APEX model. The bacteria model utilizes manure erosion rates to estimate the amount of edge-of-field bacteria export. Bacteria survival in manure is simulated as a two-stage process separately for each manure application event. In-stream microbial fate and transport processes include bacteria release from streambeds due to sediment resuspension during high flow events, active release from the streambed sediment during low flow periods, bacteria settling with sediment, and survival. Default parameter values were selected from published databases and evaluated based on field observations. The APEX model with the newly developed microbial fate and transport module was applied to simulate fate and transport of the fecal indicator bacterium Escherichia coli in the Toenepi watershed, New Zealand that was monitored for seven years. The stream network of the watershed ran through grazing lands with daily bovine waste deposition. Results show that the APEX with the bacteria module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water as affected by various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Published by Elsevier B.V.

  14. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid...

  15. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods

    Science.gov (United States)

    Whiten, Shavonn R.; Eggleston, Heather; Adelman, Zach N.

    2018-01-01

    Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests. PMID:29387018

  16. Iron Acquisition in Bacillus cereus: The Roles of IlsA and Bacillibactin in Exogenous Ferritin Iron Mobilization

    Science.gov (United States)

    Buisson, Christophe; Daou, Nadine; Kallassy, Mireille; Lereclus, Didier; Arosio, Paolo; Bou-Abdallah, Fadi; Nielsen Le Roux, Christina

    2014-01-01

    In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis. PMID:24550730

  17. Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization.

    Directory of Open Access Journals (Sweden)

    Diego Segond

    2014-02-01

    Full Text Available In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis.

  18. Importance of boreal rivers in providing iron to marine waters.

    Directory of Open Access Journals (Sweden)

    Emma S Kritzberg

    Full Text Available This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters--the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.

  19. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    Science.gov (United States)

    Schuback, Nina; Flecken, Mirkko; Maldonado, Maria T.; Tortell, Philippe D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at an unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in reaction center II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5-fold changes in the conversion factor between ETRRCII and carbon fixation (Kc / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light and correlates with the increased expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and Kc / nPSII requires further validation but has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  20. Direct Biohydrometallurgical Extraction of Iron from Ore. Final Technical Report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  1. Direct Biohydrometallurgical Extraction of Iron from Ore. Final technical report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency anemia is a ... address the cause of your iron deficiency, such as any underlying bleeding. If undiagnosed or untreated, iron- ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  4. Iron-Deficiency Anemia

    Science.gov (United States)

    ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  5. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    Science.gov (United States)

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  6. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Sheo Shankar Pandey

    2016-11-01

    Full Text Available Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc. Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon's involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in

  7. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    compounds these must first be undergo extracellular hydrolysis. Bacteria have a great diversity with respect to types of metabolism that far exceeds the metabolic repertoire of eukaryotic organisms. Bacteria play a fundamental role in the biosphere and certain key processes such as, for example......, the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  8. A virtual high-throughput screening approach to the discovery of novel inhibitors of the bacterial leucine transporter, LeuT

    DEFF Research Database (Denmark)

    Simmons, Katie J; Gotfryd, Kamil; Billesbølle, Christian B

    2013-01-01

    Abstract Membrane proteins are intrinsically involved in both human and pathogen physiology, and are the target of 60% of all marketed drugs. During the past decade, advances in the studies of membrane proteins using X-ray crystallography, electron microscopy and NMR-based techniques led to the e...... this is a virtual high-throughput screening (vHTS) technique initially developed for soluble proteins. This paper describes application of this technique to the discovery of inhibitors of the leucine transporter (LeuT), a member of the neurotransmitter:sodium symporter (NSS) family....

  9. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa.

    Science.gov (United States)

    Mislin, Gaëtan L A; Schalk, Isabelle J

    2014-03-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates.

  10. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... making new blood cells. Visit our Aplastic Anemia Health Topic to learn more. ... recommend that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy vegetables. ... stored iron has been used. Ferritin is a protein that helps store iron in your body. Reticulocyte ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ... and lifestyle changes to avoid complications. Follow your treatment plan Do not stop taking your prescribed iron ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... diagnoses you with iron-deficiency anemia, your treatment will depend on the cause and severity of the ... of iron. The recommended daily amounts of iron will depend on your age, sex, and whether you ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... iron-deficiency anemia may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... because your body’s intake of iron is too low. Low intake of iron can happen because of blood ... delivery or giving birth to a baby with low birth weight In people with chronic conditions, iron- ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, ... increased need for iron during growth spurts. Older adults, especially those over age 65. Unhealthy environments Children ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up ... screen blood donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency ...

  20. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... amount of iron, and medical conditions that make it hard for your body to absorb iron from ... hepcidin. Hepcidin prevents iron from leaving cells where it is stored or from being absorbed in the ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... bleeding. If undiagnosed or untreated, iron-deficiency anemia can cause serious complications, including heart failure and development ... iron is too low. Low intake of iron can happen because of blood loss, consuming less than ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ... Anemia in Chronic Kidney Disease (National Institute of Diabetes and Digestive and Kidney Diseases) Avoiding Anemia (National ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy ... sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... starch. Restless legs syndrome Shortness of breath Weakness Complications Undiagnosed or untreated iron-deficiency anemia may cause ... as complete blood count and iron studies. Prevent complications over your lifetime To prevent complications from iron- ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you do not have enough iron in your body. People with mild or moderate iron-deficiency anemia ... and where to find more information. Causes Your body needs iron to make healthy red blood cells. ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, ... signs of iron-deficiency anemia include: Brittle nails ...

  8. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark ... choose nonmeat sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... ESAs are usually used with iron therapy or IV iron, or when iron therapy alone is not enough. Look for Living With will discuss what your doctor may recommend, including lifelong lifestyle changes ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron ... Anemia Restless Legs Syndrome Von Willebrand Disease Other Resources NHLBI resources Your Guide to Anemia [PDF, 1. ...

  12. High-rate behaviour of iron ore pellet

    Science.gov (United States)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  13. Sorption of PAHs to humic acid- and iron(III)carbon ate particles by using passive dosing vials for investigating the transport of organic contamination in stormwater runoff

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Mikkelsen, Peter Steen; Baun, Anders

    2013-01-01

    ) has been foun d to facilitate transport of organic contaminants and metals in stormwater runoff system s, but little is known about the role of the colloidal fraction including nano-sized particl es (0.001-1 μm). Based on the large specific surface area of colloids and nanosized particles, t heir...... abundance, and knowledge about their facilitated transport of persistent organic polluti on in natural waters, they are likely to diminish the efficiency of engineered treatment sys tems unless appropriately accounted for. In this work organic and inorganic nanosized partic les were investigated......(III)carbo nate particles (22 nm) sorption experiments are ongoing. Based on these results and a literature review, the importance of including particulate fractions for surface water q uality assessment in relation to the WFD will be discussed....

  14. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... increased need for iron during growth spurts. Older adults, especially those over age ... athletes. Athletes, especially young females, are at risk for iron deficiency. Endurance ...

  16. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, Satish C. [Princeton Univ., NJ (United States); Mishra, Bhoopesh [Princeton Univ., NJ (United States); Fein, Jeremy [Princeton Univ., NJ (United States)

    2009-04-01

    The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specifically in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested exhibit

  17. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  18. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.

  19. Genetic/metabolic effect of iron metabolism and rare anemias

    Directory of Open Access Journals (Sweden)

    Clara Camaschella

    2013-03-01

    Full Text Available Advances in iron metabolism have allowed a novel classification of iron disorders and to identify previously unknown diseases. These disorders include genetic iron overload (hemochromatosis and inherited iron-related anemias, in some cases accompanied by iron overload. Rare inherited anemias may affect the hepcidin pathway, iron absorption, transport, utilization and recycling. Among the genetic iron-related anemias the most common form is likely the iron-refractory iron-deficiency anemia (IRIDA, due to mutations of the hepcidin inhibitor TMPRSS6 encoding the serine protease matriptase-2. IRIDA is characterized by hepcidin up-regulation, decrease iron absorption and macrophage recycling and by microcytic- hypochromic anemia, unresponsive to oral iron. High serum hepcidin levels may suggest the diagnosis, which requires demonstrating the causal TMPRSS6 mutations by gene sequencing. Other rare microcytic hypochromic anemias associated with defects of iron transport-uptake are the rare hypotransferrinemia, and DMT1 and STEAP3 mutations. The degree of anemia is variable and accompanied by secondary iron overload even in the absence of blood transfusions. This is due to the iron-deficient or expanded erythropoiesis that inhibits hepcidin transcription, increases iron absorption, through the erythroid regulator, as in untransfused beta-thalassemia. Sideroblastic anemias are due to decreased mitochondrial iron utilization for heme or sulfur cluster synthesis. Their diagnosis requires demonstrating ringed sideroblasts by Perl’s staining of the bone marrow smears. The commonest X-linked form is due to deltaamino- levulinic-synthase-2-acid (ALAS2 mutations. The recessive, more severe form, affects SLC25A38, which encodes a potential mitochondrial importer of glycine, an amino acid essential for ALA synthesis and thus results in heme deficiency. Two disorders affect iron/sulfur cluster biogenesis: deficiency of the ATP-binding cassette B7 (ABCB7 causes X

  20. The ABC transporters in Candidatus Liberibacter asiaticus.

    Science.gov (United States)

    Li, Wenlin; Cong, Qian; Pei, Jimin; Kinch, Lisa N; Grishin, Nick V

    2012-11-01

    Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram-negative bacterium and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we analyzed all the ABC transporter-related proteins in Ca. L. asiaticus. We identified 14 ABC transporter systems and predicted their structures and substrate specificities. In-depth sequence and structure analysis including multiple sequence alignment, phylogenetic tree reconstruction, and structure comparison further support their function predictions. Our study shows that this bacterium could use these ABC transporters to import metabolites (amino acids and phosphates) and enzyme cofactors (choline, thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid-like drugs, maintain the composition of the outer membrane (OM), and secrete virulence factors. Although the features of most ABC systems could be deduced from the abundant experimental data on their orthologs, we reported several novel observations within ABC system proteins. Moreover, we identified seven nontransport ABC systems that are likely involved in virulence gene expression regulation, transposon excision regulation, and DNA repair. Our analysis reveals several candidates for further studies to understand and control the disease, including the type I virulence factor secretion system and its substrate that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems responsible for bacterial OM biosynthesis that are good drug targets. Copyright © 2012 Wiley Periodicals, Inc.

  1. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  2. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost......We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar...

  3. Electric transport of a single-crystal iron chalcogenide FeSe superconductor: Evidence of symmetry-breakdown nematicity and additional ultrafast Dirac cone-like carriers

    Science.gov (United States)

    Huynh, K. K.; Tanabe, Y.; Urata, T.; Oguro, H.; Heguri, S.; Watanabe, K.; Tanigaki, K.

    2014-10-01

    An SDW antiferromagnetic (SDW-AF) low-temperature phase transition is generally observed and the AF spin fluctuations are considered to play an important role for the superconductivity pairing mechanism in FeAs superconductors. However, a similar magnetic phase transition is not observed in FeSe superconductors, which has caused considerable discussion. We report on the intrinsic electronic states of FeSe as elucidated by electric transport measurements under magnetic fields using a high quality single crystal. A mobility spectrum analysis, an ab initio method that does not make assumptions on the transport parameters in a multicarrier system, provides very important and clear evidence that another hidden order, most likely the symmetry broken from the tetragonal C4 symmetry to the C2 symmetry nematicity associated with the selective d -orbital splitting, exists in the case of superconducting FeSe other than the AF magnetic order spin fluctuations. The intrinsic low-temperature phase in FeSe is in the almost compensated semimetallic states but is additionally accompanied by Dirac cone-like ultrafast electrons ˜104cm2(VS) -1 as minority carriers.

  4. Microstructure and transport properties of [0 0 1]-tilt bicrystal grain boundaries in iron pnictide superconductor, cobalt-doped BaFe2As2

    International Nuclear Information System (INIS)

    Hiramatsu, Hidenori; Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2012-01-01

    Relationships between microstructure and transport properties of bicrystal grain boundary (BGB) junctions were studied in cobalt-doped BaFe 2 As 2 (BaFe 2 As 2 :Co) epitaxial films grown on [0 0 1]-tilt bicrystal substrates of MgO and (La, Sr)(Al, Ta)O 3 with misorientation angles θ GB = 3–45°. The θ GB of BaFe 2 As 2 :Co BGBs were exactly transferred from those of the bicrystal substrates. No segregation of impurities was detected at the BGB junction interfaces, and the chemical compositions of the BGBs were uniform and the same as those in the bulk film regions. A transition from a strongly-coupled GB behavior to a weak-link behavior was observed in current density–voltage characteristics under self-field around θ GB ∼ 9°. The critical current density decreased from (1.2–1.6) × 10 6 A/cm 2 of the intragrain transport to (0.7–1.1) × 10 5 A/cm 2 of θ GB = 45° because supercurrent becomes more governed by Josephson current with increasing θ GB .

  5. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI. Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT and dopamine receptor D(1 (D1R levels were reduced and dopamine receptor D(2 (D2R levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.

  6. Basin scale survey of marine humic fluorescence in the Atlantic: relationship to iron solubility and H2O2

    OpenAIRE

    Heller, Maija; Gaiero, Diego; Croot, Peter

    2013-01-01

    Iron (Fe) is a limiting nutrient for phytoplankton productivity in many different oceanic regions. A critical aspect underlying iron limitation is its low solubility in seawater as this controls the distribution and transport of iron through the ocean. Processes which enhance the solubility of iron in seawater, either through redox reactions or organic complexation, are central to understanding the biogeochemical cycling of iron. In this work we combined iron solubility measurements with para...

  7. Natural resources sustainability: iron ore mining

    International Nuclear Information System (INIS)

    De La Torre de Palacios, Luis

    2011-01-01

    In the present article, a new tool to determine environmental sustainability, the energy impact index (EII) was developed to classify different iron mine projects according to two main parameters including energy consumption and CO 2 emissions. The EII considers the characteristics of the mineral (such as the quality, size, hardness, iron ore grade, reducibility, mineral/waste rate, and type of deposit), mining processes (type of exploitation, ore processing, available technology), and transportation (distance to cover).

  8. Development of iron homeostasis in infants and young children.

    Science.gov (United States)

    Lönnerdal, Bo

    2017-12-01

    Healthy, term, breastfed infants usually have adequate iron stores that, together with the small amount of iron that is contributed by breast milk, make them iron sufficient until ≥6 mo of age. The appropriate concentration of iron in infant formula to achieve iron sufficiency is more controversial. Infants who are fed formula with varying concentrations of iron generally achieve sufficiency with iron concentrations of 2 mg/L (i.e., with iron status that is similar to that of breastfed infants at 6 mo of age). Regardless of the feeding choice, infants' capacity to regulate iron homeostasis is important but less well understood than the regulation of iron absorption in adults, which is inverse to iron status and strongly upregulated or downregulated. Infants who were given daily iron drops compared with a placebo from 4 to 6 mo of age had similar increases in hemoglobin concentrations. In addition, isotope studies have shown no difference in iron absorption between infants with high or low hemoglobin concentrations at 6 mo of age. Together, these findings suggest a lack of homeostatic regulation of iron homeostasis in young infants. However, at 9 mo of age, homeostatic regulatory capacity has developed although, to our knowledge, its extent is not known. Studies in suckling rat pups showed similar results with no capacity to regulate iron homeostasis at 10 d of age when fully nursing, but such capacity occurred at 20 d of age when pups were partially weaned. The major iron transporters in the small intestine divalent metal-ion transporter 1 (DMT1) and ferroportin were not affected by pup iron status at 10 d of age but were strongly affected by iron status at 20 d of age. Thus, mechanisms that regulate iron homeostasis are developed at the time of weaning. Overall, studies in human infants and experimental animals suggest that iron homeostasis is absent or limited early in infancy largely because of a lack of regulation of the iron transporters DMT1 and ferroportin

  9. A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth.

    Science.gov (United States)

    Khun, H H; Kirby, S D; Lee, B C

    1998-05-01

    The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway.

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blocks the intestine from taking up iron. Other medical conditions Other medical conditions that may lead to iron-deficiency anemia ... daily amount of iron. If you have other medical conditions that cause iron-deficiency anemia , such as ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  12. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  13. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who do not consume the daily recommended amount of iron. Read less Participate in NHLBI Clinical Trials We lead or sponsor many studies related to iron-deficiency anemia. See if you ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... peas, tofu, dried fruits, and dark green leafy vegetables. Foods rich in vitamin C, such as oranges, strawberries, ... iron are meat, poultry, fish, and iron-fortified foods that have iron ... green leafy vegetables. You can also take an iron supplement. Follow ...

  16. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  17. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center, Subproject to Co-PI Eric E. Roden. Final Report

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2011-01-01

    This report summarizes research conducted in conjunction with a project entitled 'Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center', which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  18. Preliminary X-ray diffraction analysis of YcdB from Escherichia coli: a novel haem-containing and Tat-secreted periplasmic protein with a potential role in iron transport

    International Nuclear Information System (INIS)

    Cartron, Michaël L.; Mitchell, Sue A.; Woodhall, Mark R.; Andrews, Simon C.; Watson, Kimberly A.

    2006-01-01

    The crystallization and structure determination of the apo form of a novel haem-containing Tat substrate, YcdB from E. coli, has been solved to 2.0 Å resolution. The preliminary structure shows similarity to other haem-dependent peroxidases, despite low sequence homology. YcdB is a periplasmic haem-containing protein from Escherichia coli that has a potential role in iron transport. It is currently the only reported haem-containing Tat-secreted substrate. Here, the overexpression, purification, crystallization and structure determination at 2.0 Å resolution are reported for the apo form of the protein. The apo-YcdB structure resembles those of members of the haem-dependent peroxidase family and thus confirms that YcdB is also a member of this family. Haem-soaking experiments with preformed apo-YcdB crystals have been optimized to successfully generate haem-containing YcdB crystals that diffract to 2.9 Å. Completion of model building and structure refinement are under way

  19. Functional microdomains in bacterial membranes.

    Science.gov (United States)

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  20. Siderophore-mediated iron trafficking in humans is regulated by iron

    Science.gov (United States)

    Liu, Zhuoming; Lanford, Robert; Mueller, Sebastian; Gerhard, Glenn S.; Luscieti, Sara; Sanchez, Mayka; Devireddy, L.

    2013-01-01

    Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-OH butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3′-untranslated region (3′-UTR) of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking. PMID:22527885

  1. Nutritional Immunity Triggers the Modulation of Iron Metabolism Genes in the Sub-Antarctic Notothenioid Eleginops maclovinus in Response to Piscirickettsia salmonis

    Directory of Open Access Journals (Sweden)

    Danixa Martínez

    2017-09-01

    Full Text Available Iron deprivation is a nutritional immunity mechanism through which fish can limit the amount of iron available to invading bacteria. The aim of this study was to evaluate the modulation of iron metabolism genes in the liver and brain of sub-Antarctic notothenioid Eleginops maclovinus challenged with Piscirickettsia salmonis. The specimens were inoculated with two P. salmonis strains: LF-89 (ATCC® VR-1361™ and Austral-005 (antibiotic resistant. Hepatic and brain samples were collected at intervals over a period of 35 days. Gene expression (by RT-qPCR of proteins involved in iron storage, transport, and binding were statistically modulated in infected fish when compared with control counterparts. Specifically, the expression profiles of the transferrin and hemopexin genes in the liver, as well as the expression profiles of ferritin-M, ferritin-L, and transferrin in the brain, were similar for both experimental groups. Nevertheless, the remaining genes such as ferritin-H, ceruloplasmin, hepcidin, and haptoglobin presented tissue-specific expression profiles that varied in relation to the injected bacterial strain and sampling time-point. These results suggest that nutritional immunity could be an important immune defense mechanism for E. maclovinus against P. salmonis injection. This study provides relevant information for understanding iron metabolism of a sub-Antarctic notothenioid fish.

  2. Iron and genome stability: An update

    International Nuclear Information System (INIS)

    Prá, Daniel; Franke, Silvia Isabel Rech; Henriques, João Antonio Pêgas; Fenech, Michael

    2012-01-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  3. Iron and genome stability: An update

    Energy Technology Data Exchange (ETDEWEB)

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  4. Obesity Promotes Alterations in Iron Recycling

    Directory of Open Access Journals (Sweden)

    Marta Citelli

    2015-01-01

    Full Text Available Hepcidin is a key hormone that induces the degradation of ferroportin (FPN, a protein that exports iron from reticuloendothelial macrophages and enterocytes. The aim of the present study was to experimentally evaluate if the obesity induced by a high-fat diet (HFD modifies the expression of FPN in macrophages and enterocytes, thus altering the iron bioavailability. In order to directly examine changes associated with iron metabolism in vivo, C57BL/6J mice were fed either a control or a HFD. Serum leptin levels were evaluated. The hepcidin, divalent metal transporter-1 (DMT1, FPN and ferritin genes were analyzed by real-time polymerase chain reaction. The amount of iron present in both the liver and spleen was determined by flame atomic absorption spectrometry. Ferroportin localization within reticuloendothelial macrophages was observed by immunofluorescence microscopy. Obese animals were found to exhibit increased hepcidin gene expression, while iron accumulated in the spleen and liver. They also exhibited changes in the sublocation of splenic cellular FPN and a reduction in the FPN expression in the liver and the spleen, while no changes were observed in enterocytes. Possible explanations for the increased hepcidin expression observed in HFD animals may include: increased leptin levels, the liver iron accumulation or endoplasmic reticulum (ER stress. Together, the results indicated that obesity promotes changes in iron bioavailability, since it altered the iron recycling function.

  5. Emergence of high-mobility minority holes in the electrical transport of the Ba (Fe1 -xMnxAs )2 iron pnictides

    Science.gov (United States)

    Urata, T.; Tanabe, Y.; Huynh, K. K.; Heguri, S.; Oguro, H.; Watanabe, K.; Tanigaki, K.

    2015-05-01

    In Fe pnictide (Pn) superconducting materials, neither Mn nor Cr doping to the Fe site induces superconductivity, even though hole carriers are generated. This is in strong contrast with the superconductivity appearing when holes are introduced by alkali-metal substitution on the insulating blocking layers. We investigate in detail the effects of Mn doping on magnetotransport properties in Ba (Fe1 -xMnxAs )2 for elucidating the intrinsic reason. The negative Hall coefficient for x =0 estimated in the low magnetic field (B ) regime gradually increases as x increases, and its sign changes to a positive one at x =0.020 . Hall resistivities as well as simultaneous interpretation using the magnetoconductivity tensor including both longitudinal and transverse transport components clarify that minority holes with high mobility are generated by the Mn doping via spin-density wave transition at low temperatures, while original majority electrons and holes residing in the paraboliclike Fermi surfaces of the semimetallic Ba (FeAs )2 are negligibly affected. Present results indicate that the mechanism of hole doping in Ba (Fe1 -xMnxAs )2 is greatly different from that of the other superconducting FePn family.

  6. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  7. The Battle for Iron between Humans and Microbes.

    Science.gov (United States)

    Carver, Peggy L

    2018-01-01

    Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Identification of iron-regulated genes of Bifidobacterium breve UCC2003 as a basis for controlled gene expression.

    NARCIS (Netherlands)

    Cronin, M.; Zomer, A.L.; Fitzgerald, G.F.; Sinderen, D. van

    2012-01-01

    Iron is an essential growth factor for virtually all organisms. However, iron is not readily available in most environments and microorganisms have evolved specialized mechanisms, such as the use of siderophores and high-affinity transport systems, to acquire iron when confronted with iron-limiting

  9. Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni)

    Science.gov (United States)

    Molenda, Janina; Kulka, Andrzej; Milewska, Anna; Zając, Wojciech; Świerczek, Konrad

    2013-01-01

    LiFePO4 is considered to be one of the most promising cathode materials for lithium ion batteries for electric vehicle (EV) application. However, there are still a number of unsolved issues regarding the influence of Li and Fe-site substitution on the physicochemical properties of LiFePO4. This is a review-type article, presenting results of our group, related to the possibility of the chemical modification of phosphoolivine by introduction of cation dopants in Li and Fe sublattices. Along with a synthetic review of previous papers, a large number of new results are included. The possibility of substitution of Li+ by Al3+, Zr4+, W6+ and its influence on the physicochemical properties of LiFePO4 was investigated by means of XRD, SEM/EDS, electrical conductivity and Seebeck coefficient measurements. The range of solid solution formation in Li1−3xAlxFePO4, Li1−4xZrxFePO4 and Li1−6xWxFePO4 materials was found to be very narrow. Transport properties of the synthesized materials were found to be rather weakly dependent on the chemical composition. The battery performance of selected olivines was tested by cyclic voltammetry (CV). In the case of LiFe1−yMyPO4 (M = Mn, Co and Ni), solid solution formation was observed over a large range of y (0 0.25 leads to considerably lower values of σ. The activated character of electrical conductivity with a rather weak temperature dependence of the Seebeck coefficient suggests a small polaron-type conduction mechanism. The electrochemical properties of LiFe1−yMyPO4 strongly depend on the Fe substitution level. PMID:28809235

  10. Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni

    Directory of Open Access Journals (Sweden)

    Konrad Świerczek

    2013-04-01

    Full Text Available LiFePO4 is considered to be one of the most promising cathode materials for lithium ion batteries for electric vehicle (EV application. However, there are still a number of unsolved issues regarding the influence of Li and Fe-site substitution on the physicochemical properties of LiFePO4. This is a review-type article, presenting results of our group, related to the possibility of the chemical modification of phosphoolivine by introduction of cation dopants in Li and Fe sublattices. Along with a synthetic review of previous papers, a large number of new results are included. The possibility of substitution of Li+ by Al3+, Zr4+, W6+ and its influence on the physicochemical properties of LiFePO4 was investigated by means of XRD, SEM/EDS, electrical conductivity and Seebeck coefficient measurements. The range of solid solution formation in Li1−3xAlxFePO4, Li1−4xZrxFePO4 and Li1−6xWxFePO4 materials was found to be very narrow. Transport properties of the synthesized materials were found to be rather weakly dependent on the chemical composition. The battery performance of selected olivines was tested by cyclic voltammetry (CV. In the case of LiFe1−yMyPO4 (M = Mn, Co and Ni, solid solution formation was observed over a large range of y (0 0.25 leads to considerably lower values of σ. The activated character of electrical conductivity with a rather weak temperature dependence of the Seebeck coefficient suggests a small polaron-type conduction mechanism. The electrochemical properties of LiFe1−yMyPO4 strongly depend on the Fe substitution level.

  11. Cast iron - a predictable material

    Directory of Open Access Journals (Sweden)

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  12. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Assessing the utility of ultraviolet irradiation to reduce bacterial biofilms in fish hatchery well water supplies

    Science.gov (United States)

    The accumulation of bacterial biofilms and consequent clogging of screens, pipes, and heat exchanger equipment is problematic for water supply systems contaminated with iron bacteria and other slime forming bacteria. Despite the ubiquitous threat posed by iron bacteria contamination in groundwater s...

  14. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway.

    Directory of Open Access Journals (Sweden)

    Jun Hai

    Full Text Available Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes. In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0 x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies.

  15. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    Science.gov (United States)

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Iron overload impact on P-ATPases.

    Science.gov (United States)

    Sousa, Leilismara; Pessoa, Marco Tulio C; Costa, Tamara G F; Cortes, Vanessa F; Santos, Herica L; Barbosa, Leandro Augusto

    2018-03-01

    Iron is a chemical element that is active in the fundamental physiological processes for human life, but its burden can be toxic to the body, mainly because of the stimulation of membrane lipid peroxidation. For this reason, the action of iron on many ATPases has been studied, especially on P-ATPases, such as the Na + ,K + -ATPase and the Ca 2+ -ATPase. On the Fe 2+ -ATPase activity, the free iron acts as an activator, decreasing the intracellular Fe 2+ and playing a protection role for the cell. On the Ca 2+ -ATPase activity, the iron overload decreases the enzyme activity, raising the cytoplasmic Ca 2+ and decreasing the sarco/endoplasmic reticulum and the Golgi apparatus Ca 2+ concentrations, which could promote an enzyme oxidation, nitration, and fragmentation. However, the iron overload effect on the Na + ,K + -ATPase may change according to the tissue expressions. On the renal cells, as well as on the brain and the heart, iron promotes an enzyme inactivation, whereas its effect on the erythrocytes seems to be the opposite, directly stimulating the ATPase activity, or stimulating it by signaling pathways involving ROS and PKC. Modulations in the ATPase activity may impair the ionic transportation, which is essential for cell viability maintenance, inducing irreversible damage to the cell homeostasis. Here, we will discuss about the iron overload effect on the P-ATPases, such as the Na + ,K + -ATPase, the Ca 2+ -ATPase, and the Fe 2+ -ATPase.

  17. Roles of iron in the survival, growth, and pathogenesis of Legionella pneumophila

    International Nuclear Information System (INIS)

    Quinn, F.D.

    1985-01-01

    The essentially of iron for living cells has long been recognized, and the availability of host-iron has been proposed as a contributing factor to virulence in bacterial, fungal, and protozoan infections. The mechanism by which legionella pneumophila causes disease is unknown. Growth of fresh clinical or environmental isolates in pure culture requires 20 times more iron than is needed for most other bacteria. Thus, increased plasma iron levels may be needed for multiplication within human hosts. It was observed that: (1) this organism can be more readily deprived of iron by iron binding agents than all other bacteria studied, and this inhibition can be reversed by the addition of iron; (2) normal human blood serum kills L. pneumophila and the bactericidal action is decreased when complement is inactivated or enough iron to saturate serum transferrin is added to the system; (3) in assays with a radioactive isotope of iron ( 55 Fe), no specific iron sequestering system was detected; (4) in analysis of outer membrane proteins with 55 Fe, SDS-polyacrylamide gel electrophoresis, and autoradiography, no specific outer membrane proteins responsible for iron acquisition were observed; and (5) in assays for protease, iron does not stimulate production of extracellular proteases. These observations indicate that L. pneumophila has no specific iron uptake mechanism, but instead relies on passive diffusion and/or non-specific mechanisms to obtain its iron

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fatigue or tiredness, shortness of breath, or chest pain. If your doctor diagnoses you with iron-deficiency ... Common symptoms of iron-deficiency anemia include: Chest pain Coldness in the hands and feet Difficulty concentrating ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you ... to iron-deficiency anemia include: Bleeding in your GI tract, from an ulcer, colon cancer, or regular ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... complications, including heart failure and development delays in children. Explore this Health ... red blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. ... are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend changes to help you meet the recommended daily amount of iron. If you ... stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron levels, your doctor may ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... an MCV of less than 80 femtoliters (fL). Prevention strategies If you have certain risk factors , such ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... same for boys and girls. From birth to 6 months, babies need 0.27 mg of iron. ... for iron deficiency at certain ages: Infants between 6 and 12 months, especially if they are fed ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your blood may be normal even if the total amount of iron in your body is low. ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of the condition. Your doctor may recommend healthy eating changes, iron supplements, intravenous iron therapy for mild ... less Look for Treatment will discuss medicines and eating pattern changes that your doctors may recommend if ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Disorders Lung Diseases Heart and Vascular Diseases Precision Medicine Activities Obesity, Nutrition, and Physical Activity Population and ... lose blood, you lose iron. Certain conditions or medicines can cause blood loss and lead to iron- ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... absorb iron and lead to iron-deficiency anemia. These conditions include: Intestinal and digestive conditions, such as ... tract. Inflammation from congestive heart failure or obesity . These chronic conditions can lead to inflammation that may ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... C to help your body absorb iron. Avoid drinking black tea, which reduces iron absorption. Other treatments ... improve health through research and scientific discovery. Improving health with current research Learn about the following ways ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... higher risk, as most of a newborn’s iron stores are developed during the third trimester of pregnancy. ... red blood cells on hand, their bodies can store iron to prepare for blood loss during delivery. ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may be diagnosed with iron-deficiency anemia if you have low iron or ferritin levels in your blood. More testing may be needed to rule out other types of anemia. Tests for gastrointestinal ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... were born prematurely may be at an even higher risk, as most of a newborn’s iron stores ... men of the same age. Women are at higher risk for iron-deficiency anemia under some circumstances, ...

  14. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  15. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor may recommend that you ... Anemia Aplastic Anemia Arrhythmia Blood Donation Blood Tests Blood Transfusion Heart-Healthy Lifestyle Changes Heart Failure Hemolytic Anemia ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you lose iron. Certain ... domestic small businesses that have strong potential for technology commercialization through the Small Business Innovation Research (SBIR) ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as ... to advancing science and translating discoveries into clinical practice to promote ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also often take other medicines—such as proton pump inhibitors, anticoagulants, or blood thinners—that may cause iron-deficiency anemia. Proton pump inhibitors interfere with iron absorption, and blood thinners ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Look for Treatment will discuss medicines and eating pattern changes that your doctors may recommend if you ... iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... striking the ground, such as with marathon runners. Sex Girls and women between the ages of 14 ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron- ... factors , such as if you are following a vegetarian eating pattern, your doctor may recommend changes to ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia. Proton pump inhibitors interfere with iron absorption, and blood thinners increase the likelihood of bleeding ... oranges, strawberries, and tomatoes, may help increase your absorption of iron. If you are pregnant, talk to ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Not eating enough iron-rich foods, such as meat and fish, may result in you getting less ... include dried beans, dried fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... mg and women need 18 mg. After age 51, both men and women need 8 mg. Pregnant ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia. These conditions include: Intestinal and digestive conditions, such as celiac disease; inflammatory bowel diseases, ... iron-deficiency anemia , such as bleeding in the digestive or urinary tract or heavy menstrual bleeding, your ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... prevent complications such as abnormal heart rhythms and depression. Learn the warning signs of serious complications and ... donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency before potentially ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding women older than 18 need 9 mg. Problems absorbing iron Even if you consume the recommended ... interested in learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ... the size of your liver and spleen. Blood tests Based on results from blood tests to screen ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... as most of a newborn’s iron stores are developed during the third trimester of pregnancy. Children between ... This makes it harder to stop bleeding and can increase the risk of iron-deficiency anemia from ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have less hemoglobin than normal. Hemoglobin is a protein inside red blood cells that carries oxygen from ... stored iron has been used. Ferritin is a protein that helps store iron in your body. Reticulocyte ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and Strategic Vision Leadership Scientific Divisions Operations and Administration Advisory Committees Budget and Legislative Information Jobs and ... blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron is too ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in ... be hard to get the recommended amount from food alone. Pregnant women need more iron to support ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ... Cells From Iron-deficient Donors: Recovery and Storage Quality. Learn more about participating in a clinical trial . ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... endoscopy or colonoscopy, to stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron ... iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. Treating anemia in ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... family history and genetics , lifestyle habits, or sex. Age You may be at increased risk for iron ... Signs, Symptoms, and Complications Iron-deficiency anemia can range from mild to severe. People with mild or ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... leaving cells where it is stored or from being absorbed in the duodenum, the first part of ... treatments for iron-deficiency anemia. Living With After being diagnosed with iron-deficiency anemia, it is important ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron to prepare for blood loss during delivery. Screening and Prevention Your doctor may screen you for ... and symptoms of iron-deficiency anemia. Return to Screening and Prevention to review tests to screen for ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Teens, who have increased need for iron during growth spurts. Older adults, especially those over age 65. ... need for iron increases during these periods of growth and development, and it may be hard to ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... endoscopy or colonoscopy, to stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron ... tofu, dried fruits, and spinach and other dark green leafy vegetables. You can also take an iron ...

  3. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  4. Biological iron(II) oxidation as pre-treatment to limestone neutralisation of acid water

    CSIR Research Space (South Africa)

    Maree

    1998-01-01

    Full Text Available at investigating the effect of surface area of the medium that supports bacterial growth on the rate of biological iron (II) oxidation. The study showed that the biological iron (II) oxidation rate is directly proportional to the square root of the medium specific...

  5. Iron absorption studies

    International Nuclear Information System (INIS)

    Ekenved, G.

    1976-01-01

    The main objective of the present work was to study iron absorption from different iron preparations in different types of subjects and under varying therapeutic conditions. The studies were performed with different radioiron isotope techniques and with a serum iron technique. The preparations used were solutions of ferrous sulphate and rapidly-disintegrating tablets containing ferrous sulphate, ferrous fumarate and ferrous carbonate and a slow-release ferrous sulphate tablet of an insoluble matrix type (Duroferon Durules). The serum iron method was evaluated and good correlation was found between the serum iron response and the total amount of iron absorbed after an oral dose of iron given in solution or in tablet form. New technique for studying the in-vivo release properties of tablets was presented. Iron tablets labelled with a radio-isotope were given to healthy subjects. The decline of the radioactivity in the tablets was followed by a profile scanning technique applied to different types of iron tablets. The release of iron from the two types of tablets was shown to be slower in vivo than in vitro. It was found that co-administration of antacids and iron tablets led to a marked reduction in the iron absorption and that these drugs should not be administered sumultaneously. A standardized meal markedly decreased the absorbability of iron from iron tablets. The influence of the meal was more marked with rapidly-disintegrating than with slow-release ferrous sulphate tablets. The absorption from rapidly-disintegrating and slow-release ferrous sulphate tablets was compared under practical clinical conditions during an extended treatment period. The studies were performed in healthy subjects, blood donors and patients with iron deficiency anaemia and it was found that the absorption of iron from the slow-release tablets was significantly better than from the rapidly-disintegrating tablets in all three groups of subjects. (author)

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron, in milligrams (mg) at different ages and stages of life. Until the teen years, the recommended amount of ... and choosing iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy vegetables. Foods rich in vitamin C, such as oranges, ... iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark green leafy vegetables. You can also take an iron supplement. Follow ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... because your body’s intake of iron is too low. Low intake of iron can happen because of blood ... a lot of cow’s milk. Cow’s milk is low in iron. Teens, who have increased need for ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This is sometimes used to deliver iron through a blood vessel to increase iron levels in the blood. One benefit of IV iron ... over 65 years of age had low hemoglobin levels. This was associated with a greater risk of death even with mild anemia. ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Heart and Vascular Diseases Precision Medicine Activities Obesity, Nutrition, and Physical Activity Population and Epidemiology Studies Women’s ... making new blood cells. Visit our Aplastic Anemia Health Topic to learn more. ... recommend that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... supplements. Iron supplements can change how certain medicines work. Your doctor may suggest check-ups to make sure your ... To prevent complications from iron-deficiency anemia, your doctor may ... during certain stages of life when more iron is needed, such as childhood ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... if you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron-deficiency anemia because of your age, ... or sex. Age You may be at increased risk for iron deficiency at certain ages: Infants between ...

  13. Iron and Immunity

    NARCIS (Netherlands)

    Verbon, E.H.|info:eu-repo/dai/nl/413534049; Trapet, P.L.; Stringlis, I.|info:eu-repo/dai/nl/41185206X; Kruijs, Sophie; Bakker, P.A.H.M.|info:eu-repo/dai/nl/074744623; Pieterse, C.M.J.|info:eu-repo/dai/nl/113115113

    2017-01-01

    Iron is an essential nutrient for most life on Earth because it functions as a crucial redox catalyst in many cellular processes. However, when present in excess iron can lead to the formation of harmful hydroxyl radicals. Hence, the cellular iron balance must be tightly controlled. Perturbation of

  14. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  15. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... amounts of iron, in milligrams (mg) at different ages and stages of life. Until the teen years, the recommended amount of iron is the same for boys and girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up to 11 mg for children ages 7 to 12 months, and down to 7 ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... bleeding or other abnormalities, such as growths or cancer of the lining of the colon. For this test, a ... that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  18. Iron homeostasis during pregnancy.

    Science.gov (United States)

    Fisher, Allison L; Nemeth, Elizabeta

    2017-12-01

    During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and thir