WorldWideScience

Sample records for bacterial insecticide sequence

  1. Value of a newly sequenced bacterial genome.

    Science.gov (United States)

    Barbosa, Eudes Gv; Aburjaile, Flavia F; Ramos, Rommel Tj; Carneiro, Adriana R; Le Loir, Yves; Baumbach, Jan; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

    2014-05-26

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information. PMID:24921006

  2. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  3. Transforming clinical microbiology with bacterial genome sequencing

    Science.gov (United States)

    2016-01-01

    Whole genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here we review the current status of clinical microbiology and how it has already begun to be transformed by the use of next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. The application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow. PMID:22868263

  4. Transforming clinical microbiology with bacterial genome sequencing.

    Science.gov (United States)

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  5. Bacterial population succession and adaptation affected by insecticide application and soil spraying history

    Directory of Open Access Journals (Sweden)

    Hideomi eItoh

    2014-08-01

    Full Text Available Although microbial communities have varying degrees of exposure to environmental stresses such as chemical pollution, little is known on how these communities respond to environmental disturbances and how past disturbance history affects these community-level responses. To comprehensively understand the effect of organophosphorus insecticide application on microbiota in soils with or without insecticide-spraying history, we investigated the microbial succession in response to the addition of fenitrothion (O,O-dimethyl O-(3-methyl-p-nitrophenyl phosphorothioate, abbreviated as MEP by culture-dependent experiments and deep sequencing of 16S rRNA genes. Despite similar microbial composition at the initial stage, microbial response to MEP application was remarkably different between soils with and without MEP-spraying history. MEP-degrading microbes more rapidly increased in the soils with MEP-spraying history, suggesting that MEP-degrading bacteria might already exist at a certain level and could quickly respond to MEP re-treatment in the soil. Culture-dependent and -independent evaluations revealed that MEP-degrading Burkholderia bacteria are predominant in soils after MEP application, limited members of which might play a pivotal role in MEP-degradation in soils. Notably, deep sequencing also revealed that some methylotrophs dramatically increased after MEP application, strongly suggesting that these bacteria play a role in the consumption and removal of methanol, a harmful derivative from MEP-degradation, for better growth of MEP-degrading bacteria. This comprehensive study demonstrated the succession and adaptation processes of microbial communities under MEP application, which were critically affected by past experience of insecticide-spraying.

  6. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L. and a possible relationship with insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xia

    Full Text Available BACKGROUND: Insect midgut microbiota is important in host nutrition, development and immune response. Recent studies indicate possible links between insect gut microbiota and resistance to biological and chemical toxins. Studies of this phenomenon and symbionts in general have been hampered by difficulties in culture-based approach. In the present study, DNA sequencing was used to examine the midgut microbiota of diamondback moth (DBM, Plutella xylostella (L., a destructive pest that attacks cruciferous crops worldwide. Its ability to develop resistance to many types of synthetic insecticide and even Bacillus thuringiensis toxins makes it an important species to study. METHODOLOGY/PRINCIPAL FINDINGS: Bacteria of the DBM larval midgut in a susceptible and two insecticide (chlorpyrifos and fipronil resistant lines were examined by Illumina sequencing sampled from an insect generation that was not exposed to insecticide. This revealed that more than 97% of the bacteria were from three orders: Enterobacteriales, Vibrionales and Lactobacillales. Both insecticide-resistant lines had more Lactobacillales and the much scarcer taxa Pseudomonadales and Xanthomonadales with fewer Enterobacteriales compared with the susceptible strain. Consistent with this, a second study observed an increase in the proportion of Lactobacillales in the midgut of DBM individuals from a generation treated with insecticides. CONCLUSIONS/SIGNIFICANCE: This is the first report of high-throughput DNA sequencing of the entire microbiota of DBM. It reveals differences related to inter- and intra-generational exposure to insecticides. Differences in the midgut microbiota among susceptible and insecticide-resistant lines are independent of insecticide exposure in the sampled generations. While this is consistent with the hypothesis that Lactobacillales or other scarcer taxa play a role in conferring DBM insecticide resistance, further studies are necessary to rule out other

  7. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing.

    Science.gov (United States)

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-09-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations.

  8. Insights from twenty years of bacterial genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jun, Se Ran [ORNL; Nookaew, Intawat [ORNL; Leuze, Michael Rex [ORNL; Ahn, Tae-Hyuk [ORNL; Karpinets, Tatiana V [ORNL; Lund, Ole [Technical University of Denmark; Kora, Guruprasad H [ORNL; Wassenaar, Trudy [Molecular Microbiology & Genomics Consultants, Zotzenheim, Germany; Poudel, Suresh [ORNL; Ussery, David W [ORNL

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  9. Draft Genome Sequence of Insecticidal Streptomyces sp. Strain PCS3-D2, Isolated from Mangrove Soil in Philippines

    OpenAIRE

    Bayot-Custodio, Aileen N.; Alcantara, Edwin P.; Zulaybar, Teofila O.

    2014-01-01

    A draft genome sequence of a Streptomyces sp. isolated from mangrove soil in Cebu, Philippines, is described here. This isolate produced compounds with contact insecticidal activity against important corn pests. The genome contains 7,479,793 bp (in 27 scaffolds), 6,297 predicted genes, and 29 secondary metabolite biosynthetic gene clusters.

  10. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata.

    Science.gov (United States)

    Meng, Xiangkun; Zhang, Yixi; Bao, Haibo; Liu, Zewen

    2015-01-01

    The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs), 17 acetylcholinesterases (AChEs), 17 nicotinic acetylcholine receptors (nAChRs), and 17 gamma-aminobutyric acid (GABA) receptors, as well as 12 glutamate-gated chloride channel (GluCl) unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides. PMID:25923714

  11. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata.

    Directory of Open Access Journals (Sweden)

    Xiangkun Meng

    Full Text Available The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs, 17 acetylcholinesterases (AChEs, 17 nicotinic acetylcholine receptors (nAChRs, and 17 gamma-aminobutyric acid (GABA receptors, as well as 12 glutamate-gated chloride channel (GluCl unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides.

  12. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata.

    Science.gov (United States)

    Meng, Xiangkun; Zhang, Yixi; Bao, Haibo; Liu, Zewen

    2015-01-01

    The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs), 17 acetylcholinesterases (AChEs), 17 nicotinic acetylcholine receptors (nAChRs), and 17 gamma-aminobutyric acid (GABA) receptors, as well as 12 glutamate-gated chloride channel (GluCl) unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides.

  13. Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Wen Xie

    Full Text Available BACKGROUND: Bemisia tabaci (Gennadius is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45% unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the

  14. A Markovian analysis of bacterial genome sequence constraints

    Directory of Open Access Journals (Sweden)

    Aaron D. Skewes

    2013-08-01

    Full Text Available The arrangement of nucleotides within a bacterial chromosome is influenced by numerous factors. The degeneracy of the third codon within each reading frame allows some flexibility of nucleotide selection; however, the third nucleotide in the triplet of each codon is at least partly determined by the preceding two. This is most evident in organisms with a strong G + C bias, as the degenerate codon must contribute disproportionately to maintaining that bias. Therefore, a correlation exists between the first two nucleotides and the third in all open reading frames. If the arrangement of nucleotides in a bacterial chromosome is represented as a Markov process, we would expect that the correlation would be completely captured by a second-order Markov model and an increase in the order of the model (e.g., third-, fourth-…order would not capture any additional uncertainty in the process. In this manuscript, we present the results of a comprehensive study of the Markov property that exists in the DNA sequences of 906 bacterial chromosomes. All of the 906 bacterial chromosomes studied exhibit a statistically significant Markov property that extends beyond second-order, and therefore cannot be fully explained by codon usage. An unrooted tree containing all 906 bacterial chromosomes based on their transition probability matrices of third-order shares ∼25% similarity to a tree based on sequence homologies of 16S rRNA sequences. This congruence to the 16S rRNA tree is greater than for trees based on lower-order models (e.g., second-order, and higher-order models result in diminishing improvements in congruence. A nucleotide correlation most likely exists within every bacterial chromosome that extends past three nucleotides. This correlation places significant limits on the number of nucleotide sequences that can represent probable bacterial chromosomes. Transition matrix usage is largely conserved by taxa, indicating that this property is likely

  15. Dynamics of Sequence -Discrete Bacterial Populations Inferred Using Metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Sarah; Bendall, Matthew; Kang, Dongwan; Froula, Jeff; Egan, Rob; Chan, Leong-Keat; Tringe, Susannah; McMahon, Katherine; Malmstrom, Rex

    2014-03-14

    From a multi-year metagenomic time series of two dissimilar Wisconsin lakes we have assembled dozens of genomes using a novel approach that bins contigs into distinct genome based on sequence composition, e.g. kmer frequencies, and contig coverage patterns at various times points. Next, we investigated how these genomes, which represent sequence-discrete bacterial populations, evolved over time and used the time series to discover the population dynamics. For example, we explored changes in single nucleotide polymorphism (SNP) frequencies as well as patterns of gene gain and loss in multiple populations. Interestingly, SNP diversity was purged at nearly every genome position in some populations during the course of this study, suggesting these populations may have experienced genome-wide selective sweeps. This represents the first direct, time-resolved observations of periodic selection in natural populations, a key process predicted by the ecotype model of bacterial diversification.

  16. The Chaotic Structure of Bacterial Virulence Protein Sequences

    Directory of Open Access Journals (Sweden)

    Sevdanur Genc

    2015-01-01

    Full Text Available Bacterial virulence proteins, which have been class ified on structure of virulence, causes several diseases. For instance, Adhesins play an important role in th e host cells. They are inserted DNA sequences for a variety of virulence properties. Several important methods conducted for the prediction of bacterial virulence proteins for finding new drugs or vaccines. In this study, we propose a method for feature sele ction about classification of bacterial virulence protein. The features are constituted dir ectly from the amino acid sequence of a given protein. Amino acids form proteins, which are criti cal to life, and have many important functions in living cells. They occurring with diff erent physicochemical properties by a vector of 20 numerical values, and collected in AAIndex datab ases of known 544 indices. For all that, this approach have two steps. Firstly , the amino acid sequence of a given protein analysed with Lyapunov Exponents that they have a chaotic structure in accordance wi th the chaos theory. After that, if the results show chara cterization over the complete distribution in the phase space from the point of deterministic sys tem, it means related protein will show a chaotic structure. Empirical results revealed that generated feature v ectors give the best performance with chaotic structure of physicochemical features of amino acid s with Adhesins and non-Adhesins data sets.

  17. De novo sequencing-based transcriptome and digital gene expression analysis reveals insecticide resistance-relevant genes in Propylaea japonica (Thunberg (Coleoptea: Coccinellidae.

    Directory of Open Access Journals (Sweden)

    Liang-De Tang

    Full Text Available The ladybird Propylaea japonica (Thunberg is one of most important natural enemies of aphids in China. This species is threatened by the extensive use of insecticides but genomics-based information on the molecular mechanisms underlying insecticide resistance is limited. Hence, we analyzed the transcriptome and expression profile data of P. japonica in order to gain a deeper understanding of insecticide resistance in ladybirds. We performed de novo assembly of a transcriptome using Illumina's Solexa sequencing technology and short reads. A total of 27,243,552 reads were generated. These were assembled into 81,458 contigs and 33,647 unigenes (6,862 clusters and 26,785 singletons. Of the unigenes, 23,965 (71.22% have putative homologues in the non-redundant (nr protein database from NCBI, using BLASTX, with a cut-off E-value of 10(-5. We examined COG, GO and KEGG annotations to better understand the functions of these unigenes. Digital gene expression (DGE libraries showed differences in gene expression profiles between two insecticide resistant strains. When compared with an insecticide susceptible profile, a total of 4,692 genes were significantly up- or down- regulated in a moderately resistant strain. Among these genes, 125 putative insecticide resistance genes were identified. To confirm the DGE results, 16 selected genes were validated using quantitative real time PCR (qRT-PCR. This study is the first to report genetic information on P. japonica and has greatly enriched the sequence data for ladybirds. The large number of gene sequences produced from the transcriptome and DGE sequencing will greatly improve our understanding of this important insect, at the molecular level, and could contribute to the in-depth research into insecticide resistance mechanisms.

  18. Facile, High Quality Sequencing of Bacterial Genomes from Small Amounts of DNA

    OpenAIRE

    Momchilo Vuyisich; Ayesha Arefin; Karen Davenport; Shihai Feng; Cheryl Gleasner; Kim McMurry; Beverly Parson-Quintana; Jennifer Price; Matthew Scholz; Patrick Chain

    2014-01-01

    Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg). There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the util...

  19. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Bellod Cisneros, Jose Luis;

    2016-01-01

    and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the...... web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes...... platform was developed and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely...

  20. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila.

    Directory of Open Access Journals (Sweden)

    Thomas W R Harrop

    Full Text Available Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.

  1. Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two Daphnia magna clones differing in carbaryl sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    De Coninck, Dieter I.M., E-mail: Dieter.DeConinck@UGent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Jansen, Mieke; De Meester, Luc [Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven (Belgium); Janssen, Colin R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

    2013-04-15

    Highlights: ► Interactive effects between a bacterial parasite and an insecticide in Daphnia magna. ► Two D. magna clones differing strongly in their sensitivity to the insecticide. ► Effects studied on various life-history and physiological endpoints. ► Genetic differences in strength and direction of interaction effects. -- Abstract: Natural and chemical stressors occur simultaneously in the aquatic environment. Their combined effects on biota are usually difficult to predict from their individual effects due to interactions between the different stressors. Several recent studies have suggested that synergistic effects of multiple stressors on organisms may be more common at high compared to low overall levels of stress. In this study, we used a three-way full factorial design to investigate whether interactive effects between a natural stressor, the bacterial parasite Pasteuria ramosa, and a chemical stressor, the insecticide carbaryl, were different between two genetically distinct clones of Daphnia magna that strongly differ in their sensitivity to carbaryl. Interactive effects on various life-history and physiological endpoints were assessed as significant deviations from the reference Independent Action (IA) model, which was implemented by testing the significance of the two-way carbaryl × parasite interaction term in two-way ANOVA's on log-transformed observational data for each clone separately. Interactive effects (and thus significant deviations from IA) were detected in both the carbaryl-sensitive clone (on survival, early reproduction and growth) and in the non-sensitive clone (on growth, electron transport activity and prophenoloxidase activity). No interactions were found for maturation rate, filtration rate, and energy reserve fractions (carbohydrate, protein, lipid). Furthermore, only antagonistic interactions were detected in the non-sensitive clone, while only synergistic interactions were observed in the carbaryl sensitive clone

  2. Sequencing of Bacterial Genomes: Principles and Insights into Pathogenesis and Development of Antibiotics

    Directory of Open Access Journals (Sweden)

    Eric S. Donkor

    2013-10-01

    Full Text Available The impact of bacterial diseases on public health has become enormous, and is partly due to the increasing trend of antibiotic resistance displayed by bacterial pathogens. Sequencing of bacterial genomes has significantly improved our understanding about the biology of many bacterial pathogens as well as identification of novel antibiotic targets. Since the advent of genome sequencing two decades ago, about 1,800 bacterial genomes have been fully sequenced and these include important aetiological agents such as Streptococcus pneumoniae, Mycobacterium tuberculosis, Escherichia coli O157:H7, Vibrio cholerae, Clostridium difficile and Staphylococcus aureus. Very recently, there has been an explosion of bacterial genome data and is due to the development of next generation sequencing technologies, which are evolving so rapidly. Indeed, the field of microbial genomics is advancing at a very fast rate and it is difficult for researchers to be abreast with the new developments. This highlights the need for regular updates in microbial genomics through comprehensive reviews. This review paper seeks to provide an update on bacterial genome sequencing generally, and to analyze insights gained from sequencing in two areas, including bacterial pathogenesis and the development of antibiotics.

  3. Draft Genome Sequences of Two Bacillus thuringiensis Strains and Characterization of a Putative 41.9-kDa Insecticidal Toxin

    Directory of Open Access Journals (Sweden)

    Leopoldo Palma

    2014-04-01

    Full Text Available In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS. Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants and a vip3 gene (vip3Aa10. A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900 and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins.

  4. Draft genome sequences of two Bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin.

    Science.gov (United States)

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-04-30

    In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein's target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins.

  5. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Kovendan, Kalimuthu; Murugan, Kadarkarai; Naresh Kumar, Arjunan; Vincent, Savariar; Hwang, Jiang-Shiou

    2012-02-01

    The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC(50) = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC(50) = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.

  6. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    OpenAIRE

    Seung Hak Yang; Joung Soo Lim; Modabber Ahmed Khan; Bong Soo Kim; Dong Yoon Choi; Eun Young Lee; Hee Kwon Ahn

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gen...

  7. Identification of Bacterial Small RNAs by RNA Sequencing

    DEFF Research Database (Denmark)

    Gómez Lozano, María; Marvig, Rasmus Lykke; Molin, Søren;

    2014-01-01

    Small regulatory RNAs (sRNAs) in bacteria are known to modulate gene expression and control a variety of processes including metabolic reactions, stress responses, and pathogenesis in response to environmental signals. A method to identify bacterial sRNAs on a genome-wide scale based on RNA...

  8. Complete Genome Sequence of the Intracellular Bacterial Symbiont TC1 in the Anaerobic Ciliate Trimyema compressum

    Science.gov (United States)

    Aoyama, Hiroaki; Saitoh, Seikoh; Nikoh, Naruo; Shimoji, Makiko; Shinzato, Misuzu; Teruya, Kuniko; Hirano, Takashi; Yamada, Takanori; Nobu, Masaru K.; Tamaki, Hideyuki; Shirai, Yumi; Park, Sanghwa; Narihiro, Takashi; Liu, Wen-Tso; Kamagata, Yoichi

    2016-01-01

    A free-living ciliate, Trimyema compressum, found in anoxic freshwater environments harbors methanogenic archaea and a bacterial symbiont named TC1 in its cytoplasm. Here, we report the complete genome sequence of the TC1 symbiont, consisting of a 1.59-Mb chromosome and a 35.8-kb plasmid, which was determined using the PacBio RSII sequencer. PMID:27660797

  9. Complete Genome Sequence of a Human Cytomegalovirus Strain AD169 Bacterial Artificial Chromosome Clone

    Science.gov (United States)

    Ostermann, Eleonore; Spohn, Michael; Indenbirken, Daniela

    2016-01-01

    The complete sequence of the human cytomegalovirus strain AD169 (variant ATCC) cloned as a bacterial artificial chromosome (AD169-BAC, also known as HB15 or pHB15) was determined. The viral genome has a length of 230,290 bp and shows 52 nucleotide differences compared to a previously sequenced AD169varATCC clone. PMID:27034483

  10. Complete Genome Sequence of the Intracellular Bacterial Symbiont TC1 in the Anaerobic Ciliate Trimyema compressum.

    Science.gov (United States)

    Shinzato, Naoya; Aoyama, Hiroaki; Saitoh, Seikoh; Nikoh, Naruo; Nakano, Kazuma; Shimoji, Makiko; Shinzato, Misuzu; Satou, Kazuhito; Teruya, Kuniko; Hirano, Takashi; Yamada, Takanori; Nobu, Masaru K; Tamaki, Hideyuki; Shirai, Yumi; Park, Sanghwa; Narihiro, Takashi; Liu, Wen-Tso; Kamagata, Yoichi

    2016-01-01

    A free-living ciliate, Trimyema compressum, found in anoxic freshwater environments harbors methanogenic archaea and a bacterial symbiont named TC1 in its cytoplasm. Here, we report the complete genome sequence of the TC1 symbiont, consisting of a 1.59-Mb chromosome and a 35.8-kb plasmid, which was determined using the PacBio RSII sequencer. PMID:27660797

  11. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island.

    Science.gov (United States)

    Ashton, Philip M; Nair, Satheesh; Dallman, Tim; Rubino, Salvatore; Rabsch, Wolfgang; Mwaigwisya, Solomon; Wain, John; O'Grady, Justin

    2015-03-01

    Short-read, high-throughput sequencing technology cannot identify the chromosomal position of repetitive insertion sequences that typically flank horizontally acquired genes such as bacterial virulence genes and antibiotic resistance genes. The MinION nanopore sequencer can produce long sequencing reads on a device similar in size to a USB memory stick. Here we apply a MinION sequencer to resolve the structure and chromosomal insertion site of a composite antibiotic resistance island in Salmonella Typhi Haplotype 58. Nanopore sequencing data from a single 18-h run was used to create a scaffold for an assembly generated from short-read Illumina data. Our results demonstrate the potential of the MinION device in clinical laboratories to fully characterize the epidemic spread of bacterial pathogens. PMID:25485618

  12. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    predictions were made in about 60% of the cases. This project has highlighted the difficulties and challenges in functional annotation and computational analysis of sequence data. It has provided possible solutions for creating reproducible pipelines for comparative genomics as well as constructed a number......In November 2013, there was around 21.000 different prokaryotic genomes sequenced and publicly available, and the number is growing daily with another 20.000 or more genomes expected to be sequenced and deposited by the end of 2014. An important part of the analysis of this data is the functional...... annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...

  13. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  14. Insights from 20 years of bacterial genome sequencing

    DEFF Research Database (Denmark)

    Land, Miriam; Hauser, Loren; Jun, Se-Ran;

    2015-01-01

    in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes...

  15. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates.

    Science.gov (United States)

    Deitzler, Grace E; Ruiz, Maria J; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Warren G; Lewis, Amanda L

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  16. Genomic and Global Approaches to Unravelling How Hypermutable Sequences Influence Bacterial Pathogenesis

    Directory of Open Access Journals (Sweden)

    Fadil A. Bidmos

    2014-02-01

    Full Text Available Rapid adaptation to fluctuations in the host milieu contributes to the host persistence and virulence of bacterial pathogens. Adaptation is frequently mediated by hypermutable sequences in bacterial pathogens. Early bacterial genomic studies identified the multiplicity and virulence-associated functions of these hypermutable sequences. Thus, simple sequence repeat tracts (SSRs and site-specific recombination were found to control capsular type, lipopolysaccharide structure, pilin diversity and the expression of outer membrane proteins. We review how the population diversity inherent in the SSR-mediated mechanism of localised hypermutation is being unlocked by the investigation of whole genome sequences of disease isolates, analysis of clinical samples and use of model systems. A contrast is presented between the problematical nature of analysing simple sequence repeats in next generation sequencing data and in simpler, pragmatic PCR-based approaches. Specific examples are presented of the potential relevance of this localized hypermutation to meningococcal pathogenesis. This leads us to speculate on the future prospects for unravelling how hypermutable mechanisms may contribute to the transmission, spread and persistence of bacterial pathogens.

  17. Bacterial DNA Sequence Compression Models Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Armando J. Pinho

    2013-08-01

    Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.

  18. CISA: contig integrator for sequence assembly of bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Shin-Hung Lin

    Full Text Available A plethora of algorithmic assemblers have been proposed for the de novo assembly of genomes, however, no individual assembler guarantees the optimal assembly for diverse species. Optimizing various parameters in an assembler is often performed in order to generate the most optimal assembly. However, few efforts have been pursued to take advantage of multiple assemblies to yield an assembly of high accuracy. In this study, we employ various state-of-the-art assemblers to generate different sets of contigs for bacterial genomes. A tool, named CISA, has been developed to integrate the assemblies into a hybrid set of contigs, resulting in assemblies of superior contiguity and accuracy, compared with the assemblies generated by the state-of-the-art assemblers and the hybrid assemblies merged by existing tools. This tool is implemented in Python and requires MUMmer and BLAST+ to be installed on the local machine. The source code of CISA and examples of its use are available at http://sb.nhri.org.tw/CISA/.

  19. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    Directory of Open Access Journals (Sweden)

    Seung Hak Yang

    2015-09-01

    Full Text Available The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site.

  20. Bacterial populations on brewery filling hall surfaces as revealed by next-generation sequencing.

    Science.gov (United States)

    Priha, Outi; Raulio, Mari; Maukonen, Johanna; Vehviläinen, Anna-Kaisa; Storgårds, Erna

    2016-01-01

    Due to the presence of moisture and nutrients, brewery filling line surfaces are susceptible to unwanted microbial attachment. Knowledge of the attaching microbes will aid in designing hygienic control of the process. In this study the bacterial diversity present on brewery filling line surfaces was revealed by next generation sequencing. The two filling lines studied maintained their characteristic bacterial community throughout three sampling times (13-163 days). On the glass bottle line, γ-proteobacteria dominated (35-82% of all OTUs), whereas on the canning line α-, β- and γ-proteobacteria and actinobacteria were most common. The most frequently detected genera were Acinetobacter, Propinobacterium and Pseudomonas. The halophilic genus Halomonas was commonly detected, which might be due to its tolerance to alkaline foam cleaners. This study has revealed a detailed overall picture of the bacterial groups present on filling line surfaces. Further effort should be given to determine the efficacy of washing procedures on different bacterial groups. PMID:27064426

  1. Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing.

    Science.gov (United States)

    Fantini, Elio; Gianese, Giulio; Giuliano, Giovanni; Fiore, Alessia

    2015-01-01

    Ion Torrent is a next generation sequencing technology based on the detection of hydrogen ions produced during DNA chain elongation; this technology allows analyzing and characterizing genomes, genes, and species. Here, we describe an Ion Torrent procedure applied to the metagenomic analysis of 16S rRNA gene amplicons to study the bacterial diversity in food and environmental samples. PMID:25343859

  2. Bacterial metabarcoding by 16S rRNA gene ion torrent amplicon sequencing.

    Science.gov (United States)

    Fantini, Elio; Gianese, Giulio; Giuliano, Giovanni; Fiore, Alessia

    2015-01-01

    Ion Torrent is a next generation sequencing technology based on the detection of hydrogen ions produced during DNA chain elongation; this technology allows analyzing and characterizing genomes, genes, and species. Here, we describe an Ion Torrent procedure applied to the metagenomic analysis of 16S rRNA gene amplicons to study the bacterial diversity in food and environmental samples.

  3. Facile, High Quality Sequencing of Bacterial Genomes from Small Amounts of DNA

    Science.gov (United States)

    Vuyisich, Momchilo; Arefin, Ayesha; Davenport, Karen; Feng, Shihai; Gleasner, Cheryl; McMurry, Kim; Parson-Quintana, Beverly; Price, Jennifer; Scholz, Matthew; Chain, Patrick

    2014-01-01

    Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg). There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the utility of NEBNext Ultra for resequencing and de novo assembly of four bacterial genomes and compared its performance with the TruSeq library preparation kit. The NEBNext Ultra reagents enable high quality resequencing and de novo assembly of a variety of bacterial genomes when using 100 ng of input genomic DNA. For the two most challenging genomes (Burkholderia spp.), which have the highest GC content and are the longest, we also show that the quality of both resequencing and de novo assembly is not decreased when only 10 ng of input genomic DNA is used. PMID:25478564

  4. Facile, High Quality Sequencing of Bacterial Genomes from Small Amounts of DNA

    Directory of Open Access Journals (Sweden)

    Momchilo Vuyisich

    2014-01-01

    Full Text Available Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg. There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the utility of NEBNext Ultra for resequencing and de novo assembly of four bacterial genomes and compared its performance with the TruSeq library preparation kit. The NEBNext Ultra reagents enable high quality resequencing and de novo assembly of a variety of bacterial genomes when using 100 ng of input genomic DNA. For the two most challenging genomes (Burkholderia spp., which have the highest GC content and are the longest, we also show that the quality of both resequencing and de novo assembly is not decreased when only 10 ng of input genomic DNA is used.

  5. Complete genome sequence of Japanese erwinia strain ejp617, a bacterial shoot blight pathogen of pear.

    Science.gov (United States)

    Park, Duck Hwan; Thapa, Shree Prasad; Choi, Beom-Soon; Kim, Won-Sik; Hur, Jang Hyun; Cho, Jun Mo; Lim, Jong-Sung; Choi, Ik-Young; Lim, Chun Keun

    2011-01-01

    The Japanese Erwinia strain Ejp617 is a plant pathogen that causes bacterial shoot blight of pear in Japan. Here, we report the complete genome sequence of strain Ejp617 isolated from Nashi pears in Japan to provide further valuable insight among related Erwinia species.

  6. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins.

    Science.gov (United States)

    Croucher, Nicholas J; Page, Andrew J; Connor, Thomas R; Delaney, Aidan J; Keane, Jacqueline A; Bentley, Stephen D; Parkhill, Julian; Harris, Simon R

    2015-02-18

    The emergence of new sequencing technologies has facilitated the use of bacterial whole genome alignments for evolutionary studies and outbreak analyses. These datasets, of increasing size, often include examples of multiple different mechanisms of horizontal sequence transfer resulting in substantial alterations to prokaryotic chromosomes. The impact of these processes demands rapid and flexible approaches able to account for recombination when reconstructing isolates' recent diversification. Gubbins is an iterative algorithm that uses spatial scanning statistics to identify loci containing elevated densities of base substitutions suggestive of horizontal sequence transfer while concurrently constructing a maximum likelihood phylogeny based on the putative point mutations outside these regions of high sequence diversity. Simulations demonstrate the algorithm generates highly accurate reconstructions under realistically parameterized models of bacterial evolution, and achieves convergence in only a few hours on alignments of hundreds of bacterial genome sequences. Gubbins is appropriate for reconstructing the recent evolutionary history of a variety of haploid genotype alignments, as it makes no assumptions about the underlying mechanism of recombination. The software is freely available for download at github.com/sanger-pathogens/Gubbins, implemented in Python and C and supported on Linux and Mac OS X. PMID:25414349

  7. Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes.

    Science.gov (United States)

    Beier, Sebastian; Himmelbach, Axel; Schmutzer, Thomas; Felder, Marius; Taudien, Stefan; Mayer, Klaus F X; Platzer, Matthias; Stein, Nils; Scholz, Uwe; Mascher, Martin

    2016-07-01

    Hierarchical shotgun sequencing remains the method of choice for assembling high-quality reference sequences of complex plant genomes. The efficient exploitation of current high-throughput technologies and powerful computational facilities for large-insert clone sequencing necessitates the sequencing and assembly of a large number of clones in parallel. We developed a multiplexed pipeline for shotgun sequencing and assembling individual bacterial artificial chromosomes (BACs) using the Illumina sequencing platform. We illustrate our approach by sequencing 668 barley BACs (Hordeum vulgare L.) in a single Illumina HiSeq 2000 lane. Using a newly designed parallelized computational pipeline, we obtained sequence assemblies of individual BACs that consist, on average, of eight sequence scaffolds and represent >98% of the genomic inserts. Our BAC assemblies are clearly superior to a whole-genome shotgun assembly regarding contiguity, completeness and the representation of the gene space. Our methods may be employed to rapidly obtain high-quality assemblies of a large number of clones to assemble map-based reference sequences of plant and animal species with complex genomes by sequencing along a minimum tiling path. PMID:26801048

  8. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    OpenAIRE

    Glass John I; Yooseph Shibu; Foecking Mark F; Röske Kerstin; Calcutt Michael J; Wise Kim S

    2010-01-01

    Abstract Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence datab...

  9. Multiple gene sequence analysis using genes of the bacterial DNA repair pathway

    OpenAIRE

    Miguel Rotelok Neto; Carolina Weigert Galvão; Leonardo Magalhães Cruz; Dieval Guizelini; Leilane Caline Silva; Jarem Raul Garcia; Rafael Mazer Etto

    2015-01-01

    The ability to recognize and repair abnormal DNA structures is common to all forms of life. Physiological studies and genomic sequencing of a variety of bacterial species have identified an incredible diversity of DNA repair pathways. Despite the amount of available genes in public database, the usual method to place genomes in a taxonomic context is based mainly on the 16S rRNA or housekeeping genes. Thus, the relationships among genomes remain poorly understood. In this work, an approach of...

  10. Generalized Gap Model for Bacterial Artificial Chromosome Clone Fingerprint Mapping and Shotgun Sequencing

    OpenAIRE

    Wendl, Michael C; Robert H Waterston

    2002-01-01

    We develop an extension to the Lander-Waterman theory for characterizing gaps in bacterial artificial chromosome fingerprint mapping and shotgun sequencing projects. It supports a larger set of descriptive statistics and is applicable to a wider range of project parameters. We show that previous assertions regarding inconsistency of the Lander-Waterman theory at higher coverages are incorrect and that another well-known but ostensibly different model is in fact the same. The apparent paradox ...

  11. PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data

    DEFF Research Database (Denmark)

    Cosentino, Salvatore; Larsen, Mette Voldby; Aarestrup, Frank Møller;

    2013-01-01

    Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human...... approaches. We describe PathogenFinder (http://cge.cbs.dtu.dk/services/PathogenFinder/), a web-server for the prediction of bacterial pathogenicity by analysing the input proteome, genome, or raw reads provided by the user. The method relies on groups of proteins, created without regard to their annotated...

  12. Evolutionary Changes in Gene Expression, Coding Sequence and Copy-Number at the Cyp6g1 Locus Contribute to Resistance to Multiple Insecticides in Drosophila

    OpenAIRE

    Harrop, Thomas W. R.; Tamar Sztal; Christopher Lumb; Good, Robert T.; Daborn, Phillip J.; Philip Batterham; Henry Chung

    2014-01-01

    Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However...

  13. A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife.

    Directory of Open Access Journals (Sweden)

    Maria Razzauti

    Full Text Available Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations.We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq. In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454. In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles.We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each individual reservoir, with subsequent derivation of

  14. BG7: a new approach for bacterial genome annotation designed for next generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Pablo Pareja-Tobes

    Full Text Available BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version - which is developed in Java, takes advantage of Amazon Web Services (AWS cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future.

  15. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors.

  16. Bacterial Genomic Data Analysis in the Next-Generation Sequencing Era.

    Science.gov (United States)

    Orsini, Massimiliano; Cuccuru, Gianmauro; Uva, Paolo; Fotia, Giorgio

    2016-01-01

    Bacterial genome sequencing is now an affordable choice for many laboratories for applications in research, diagnostic, and clinical microbiology. Nowadays, an overabundance of tools is available for genomic data analysis. However, tools differ for algorithms, languages, hardware requirements, and user interface, and combining them as it is necessary for sequence data interpretation often requires (bio)informatics skills which can be difficult to find in many laboratories. In addition, multiple data sources, as well as exceedingly large dataset sizes, and increasingly computational complexity further challenge the accessibility, reproducibility, and transparency of the entire process. In this chapter we will cover the main bioinformatics steps required for a complete bacterial genome analysis using next-generation sequencing data, from the raw sequence data to assembled and annotated genomes. All the tools described are available in the Orione framework ( http://orione.crs4.it ), which uniquely combines in a transparent way the most used open source bioinformatics tools for microbiology, allowing microbiologist without any specific hardware or informatics skill to conduct data-intensive computational analyses from quality control to microbial gene annotation. PMID:27115645

  17. Estimation of long-terminal repeat element content in the Helicoverpa zea genome from next generation sequencing of reduced representation bacterial artificial chromosome (BAC) pools

    Science.gov (United States)

    The lepidopteran pest insect, Helicoverpa zea, feeds on cultivated corn and cotton crops in North America where control remains challenging due to evolution of resistance to chemical and transgenic insecticidal toxins, yet few genomic resources are available for this species. A bacterial artificial...

  18. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Task 1.4.2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lam, M; Lenhoff, R; Vitalis, E

    2010-01-26

    Good progress has been made on both bacterial and viral sequencing by the TMTI centers. While access to appropriate samples is a limiting factor to throughput, excellent progress has been made with respect to getting agreements in place with key sources of relevant materials. Sharing of sequenced genomes funded by TMTI has been extremely limited to date. The April 2010 exercise should force a resolution to this, but additional managerial pressures may be needed to ensure that rapid sharing of TMTI-funded sequencing occurs, regardless of collaborator constraints concerning ultimate publication(s). Policies to permit TMTI-internal rapid sharing of sequenced genomes should be written into all TMTI agreements with collaborators now being negotiated. TMTI needs to establish a Web-based system for tracking samples destined for sequencing. This includes metadata on sample origins and contributor, information on sample shipment/receipt, prioritization by TMTI, assignment to one or more sequencing centers (including possible TMTI-sponsored sequencing at a contributor site), and status history of the sample sequencing effort. While this system could be a component of the AFRL system, it is not part of any current development effort. Policy and standardized procedures are needed to ensure appropriate verification of all TMTI samples prior to the investment in sequencing. PCR, arrays, and classical biochemical tests are examples of potential verification methods. Verification is needed to detect miss-labeled, degraded, mixed or contaminated samples. Regular QC exercises are needed to ensure that the TMTI-funded centers are meeting all standards for producing quality genomic sequence data.

  19. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    OpenAIRE

    Michael Florea; Benjamin Reeve; James Abbott; Freemont, Paul S.; Tom Ellis

    2016-01-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in ...

  20. Solving the problem of comparing whole bacterial genomes across different sequencing platforms.

    Directory of Open Access Journals (Sweden)

    Rolf S Kaas

    Full Text Available Whole genome sequencing (WGS shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent. We show that the methods are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded that the cause of the success of these new procedures is due to a validation of all informative sites that are included in the analysis. The procedures are available as web tools.

  1. Solving the problem of comparing whole bacterial genomes across different sequencing platforms.

    Science.gov (United States)

    Kaas, Rolf S; Leekitcharoenphon, Pimlapas; Aarestrup, Frank M; Lund, Ole

    2014-01-01

    Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent). We show that the methods are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded that the cause of the success of these new procedures is due to a validation of all informative sites that are included in the analysis. The procedures are available as web tools. PMID:25110940

  2. A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole.

    Science.gov (United States)

    Pascault, Noémie; Roux, Simon; Artigas, Joan; Pesce, Stéphane; Leloup, Julie; Tadonleke, Rémy D; Debroas, Didier; Bouchez, Agnès; Humbert, Jean-François

    2014-12-01

    The pollution of lakes and rivers by pesticides is a growing problem worldwide. However, the impacts of these substances on microbial communities are still poorly understood, partly because next-generation sequencing (NGS) has rarely been used in an ecotoxicology context to study bacterial communities despite its interest for accessing rare taxa. Microcosm experiments were carried out to evaluate the effects of tebuconazole (TBZ) on the structure and composition of bacterial communities from two types of freshwater ecosystem (lakes and rivers) with differing histories of pollutant contamination (pristine vs. previously exposed sites). Pyrosequencing revealed that bacterial diversity was higher in the river than in the lakes and in previously exposed sites than in pristine sites. Lakes and river stations shared very few OTUs, and differences at the phylum level were identified between these ecosystems (i.e. the relative importance of Actinobacteria and Gammaproteobacteria). Despite differences between these ecosystems and their contamination history, no significant effect of TBZ on bacterial community structure or composition was observed. Compared to functional parameters that displayed variable responses, we demonstrated that a combination of classical methods and NGS is necessary to investigate the ecotoxicological responses of microbial communities to pollutants.

  3. Genome Sequences of 15 Gardnerella vaginalis Strains Isolated from the Vaginas of Women with and without Bacterial Vaginosis.

    Science.gov (United States)

    Robinson, Lloyd S; Perry, Justin; Lek, Sai; Wollam, Aye; Sodergren, Erica; Weinstock, George; Lewis, Warren G; Lewis, Amanda L

    2016-01-01

    Gardnerella vaginalis is a predominant species in bacterial vaginosis, a dysbiosis of the vagina that is associated with adverse health outcomes, including preterm birth. Here, we present the draft genome sequences of 15 Gardnerella vaginalis strains (now available through BEI Resources) isolated from women with and without bacterial vaginosis. PMID:27688326

  4. A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation

    OpenAIRE

    Wenguang Shao; Min Zhang; Henry Lam; Lau, Stanley C K

    2015-01-01

    Shotgun proteomics is an emerging tool for bacterial identification and differentiation. However, the identification of the mass spectra of peptides to genome-derived peptide sequences remains a key issue that limits the use of shotgun proteomics to bacteria with genome sequences available. In this proof-of-concept study, we report a novel bacterial fingerprinting method that enjoys the resolving power and accuracy of mass spectrometry without the burden of peptide identification (i.e. genome...

  5. Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing

    Directory of Open Access Journals (Sweden)

    Wolcott Benjamin M

    2008-03-01

    Full Text Available Abstract Background Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species. These bacterial populations cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the bacterial populations that occur within different types of chronic wound biofilms. The use of 3 separate16S-based molecular amplifications followed by pyrosequencing, shotgun Sanger sequencing, and denaturing gradient gel electrophoresis were utilized to survey the major populations of bacteria that occur in the pathogenic biofilms of three types of chronic wound types: diabetic foot ulcers (D, venous leg ulcers (V, and pressure ulcers (P. Results There are specific major populations of bacteria that were evident in the biofilms of all chronic wound types, including Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia spp. Each of the wound types reveals marked differences in bacterial populations, such as pressure ulcers in which 62% of the populations were identified as obligate anaerobes. There were also populations of bacteria that were identified but not recognized as wound pathogens, such as Abiotrophia para-adiacens and Rhodopseudomonas spp. Results of molecular analyses were also compared to those obtained using traditional culture-based diagnostics. Only in one wound type did culture methods correctly identify the primary bacterial population indicating the need for improved diagnostic methods. Conclusion If clinicians can gain a better understanding of the wound's microbiota, it will give them a greater understanding of the wound's ecology and will allow them to better manage healing of the wound improving the prognosis of patients. This research highlights the necessity to begin evaluating, studying, and treating chronic wound pathogenic biofilms as multi-species entities in

  6. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lenhoff, R; Vitalis, E

    2009-09-29

    identify key virulence or host range genes. This approach will provide information that can be used by structural biologists to help develop therapeutics and vaccines. We have pointed out such high priority strains of which we are aware, and note that if any such isolates should be discovered, they will rise to the top priority. We anticipate difficulty locating samples with unusual resistance phenotypes, in particular. Sequencing strategies for isolates in queue 1 should aim for as complete finishing status as possible, since high-quality initial annotation (gene-calling) will be necessary for the follow-on protein structure analyses contributing to countermeasure development. Queue 2 for sequencing determination will be more dynamic than queue 1, and samples will be added to it as they become available to the TMTI program. 2. Selection of isolates that will provide broader information about diversity and phylogenetics and aid in specific detection as well as forensics. This approach focuses on sequencing of isolates that will provide better resolution of variants that are (or were) circulating in nature. The finishing strategy for queue 2 does not require complete closing with annotation. This queue is more static, as there is considerable phylogenetic data, and in this report we have sought to reveal gaps and make suggestions to fill them given existing sequence data and strain information. In this report we identify current sequencing gaps in both priority queue categories. Note that this is most applicable to the bacterial pathogens, as most viruses are by default in queue 1. The Phase I focus of this project is on viral hemorrhagic fever viruses and Category A bacterial agents as defined to us by TMTI. We have carried out individual analyses on each species of interest, and these are included as chapters in this report. Viruses and bacteria are biologically very distinct from each other and require different methods of analysis and criteria for sequencing

  7. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lenhoff, R; Vitalis, E

    2009-09-29

    identify key virulence or host range genes. This approach will provide information that can be used by structural biologists to help develop therapeutics and vaccines. We have pointed out such high priority strains of which we are aware, and note that if any such isolates should be discovered, they will rise to the top priority. We anticipate difficulty locating samples with unusual resistance phenotypes, in particular. Sequencing strategies for isolates in queue 1 should aim for as complete finishing status as possible, since high-quality initial annotation (gene-calling) will be necessary for the follow-on protein structure analyses contributing to countermeasure development. Queue 2 for sequencing determination will be more dynamic than queue 1, and samples will be added to it as they become available to the TMTI program. 2. Selection of isolates that will provide broader information about diversity and phylogenetics and aid in specific detection as well as forensics. This approach focuses on sequencing of isolates that will provide better resolution of variants that are (or were) circulating in nature. The finishing strategy for queue 2 does not require complete closing with annotation. This queue is more static, as there is considerable phylogenetic data, and in this report we have sought to reveal gaps and make suggestions to fill them given existing sequence data and strain information. In this report we identify current sequencing gaps in both priority queue categories. Note that this is most applicable to the bacterial pathogens, as most viruses are by default in queue 1. The Phase I focus of this project is on viral hemorrhagic fever viruses and Category A bacterial agents as defined to us by TMTI. We have carried out individual analyses on each species of interest, and these are included as chapters in this report. Viruses and bacteria are biologically very distinct from each other and require different methods of analysis and criteria for sequencing

  8. Inhibitory Effects of Synthetic Peptides Containing Bovine Lactoferrin C-lobe Sequence on Bacterial Growth.

    Science.gov (United States)

    Kim, Woan-Sub; Ohashi, Midori; Shimazaki, Kei-Ichi

    2016-01-01

    Lactoferrin is a glycoprotein with various biological effects, with antibacterial activity being one of the first effects reported. This glycoprotein suppresses bacterial growth through bacteriostatic or bactericidal action. It also stimulates the growth of certain kinds of bacteria such as lactic acid bacteria and bifidobacteria. In this study, Asn-Leu-Asn-Arg was selected and chemically synthesized based on the partial sequences of bovine lactoferrin tryptic fragments. Synthetic Asn-Leu-Asn-Arg suppressed the growth of Pseudomonas fluorescens, P. syringae and Escherichia coli. P. fluorescens is a major psychrotrophic bacteria found in raw and pasteurized milk, which decreases milk quality. P. syringae is a harmful infectious bacterium that damages plants. However, synthetic Asn-Leu-Asn-Arg did not inhibit the growth of Lactobacillus acidophilus. It is expected that this synthetic peptide would be the first peptide sequence from the bovine lactoferrin C-lobe that shows antibacterial activity. PMID:27621684

  9. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    Directory of Open Access Journals (Sweden)

    Glass John I

    2010-07-01

    Full Text Available Abstract Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT. Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the

  10. Viral Bacterial Artificial Chromosomes: Generation, Mutagenesis, and Removal of Mini-F Sequences

    Directory of Open Access Journals (Sweden)

    B. Karsten Tischer

    2012-01-01

    Full Text Available Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process.

  11. Characterization of oral bacterial diversity of irradiated patients by high-throughput sequencing

    Institute of Scientific and Technical Information of China (English)

    Yue-Jian Hu; Qian Wang; Yun-Tao Jiang; Rui Ma; Wen-Wei Xia; Zi-Sheng Tang; Zheng Liu; Jing-Ping Liang; Zheng-Wei Huang

    2013-01-01

    The objective of this study was to investigate the compositional profiles and microbial shifts of oral microbiota during head-and-neck radiotherapy. Bioinformatic analysis based on 16S rRNA gene pyrosequencing was performed to assess the diversity and variation of oral microbiota of irradiated patients. Eight patients with head and neck cancers were involved in this study. For each patient, supragingival plaque samples were collected at seven time points before and during radiotherapy. A total of 147232 qualified sequences were obtained through pyrosequencing and bioinformatic analysis, representing 3460 species level operational taxonomic units (OTUs) and 140 genus level taxa. Temporal variations were observed across different time points and supported by cluster analysis based on weighted UniFrac metrics, Moreover, the low evenness of oral microbial communities in relative abundance was revealed by Lorenz curves. This study contributed to a better understanding of the detailed characterization of oral bacterial diversity of irradiated patients.

  12. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution. PMID:23475937

  13. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.

  14. FN-Identify: Novel Restriction Enzymes-Based Method for Bacterial Identification in Absence of Genome Sequencing

    Directory of Open Access Journals (Sweden)

    Mohamed Awad

    2015-01-01

    Full Text Available Sequencing and restriction analysis of genes like 16S rRNA and HSP60 are intensively used for molecular identification in the microbial communities. With aid of the rapid progress in bioinformatics, genome sequencing became the method of choice for bacterial identification. However, the genome sequencing technology is still out of reach in the developing countries. In this paper, we propose FN-Identify, a sequencing-free method for bacterial identification. FN-Identify exploits the gene sequences data available in GenBank and other databases and the two algorithms that we developed, CreateScheme and GeneIdentify, to create a restriction enzyme-based identification scheme. FN-Identify was tested using three different and diverse bacterial populations (members of Lactobacillus, Pseudomonas, and Mycobacterium groups in an in silico analysis using restriction enzymes and sequences of 16S rRNA gene. The analysis of the restriction maps of the members of three groups using the fragment numbers information only or along with fragments sizes successfully identified all of the members of the three groups using a minimum of four and maximum of eight restriction enzymes. Our results demonstrate the utility and accuracy of FN-Identify method and its two algorithms as an alternative method that uses the standard microbiology laboratories techniques when the genome sequencing is not available.

  15. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.

    Directory of Open Access Journals (Sweden)

    Paweł Błażej

    Full Text Available Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.

  16. antiSMASH : rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

    NARCIS (Netherlands)

    Medema, Marnix H.; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A.; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide var

  17. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis.

  18. Complete Genome Sequence of Japanese Erwinia Strain Ejp617, a Bacterial Shoot Blight Pathogen of Pear ▿

    OpenAIRE

    Park, Duck Hwan; Thapa, Shree Prasad; Choi, Beom-Soon; Kim, Won-Sik; Hur, Jang Hyun; Cho, Jun Mo; Lim, Jong-Sung; Choi, Ik-Young; Lim, Chun Keun

    2010-01-01

    The Japanese Erwinia strain Ejp617 is a plant pathogen that causes bacterial shoot blight of pear in Japan. Here, we report the complete genome sequence of strain Ejp617 isolated from Nashi pears in Japan to provide further valuable insight among related Erwinia species.

  19. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

    NARCIS (Netherlands)

    Medema, M.H.; Blin, K.; Cimermancic, P.; Jager, de V.C.L.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R.

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide var

  20. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.

    NARCIS (Netherlands)

    Medema, M.H.; Blin, K.; Cimermancic, P.; Jager, V.C.L. de; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R.

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide var

  1. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-01-01

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis. PMID:27516505

  2. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    Science.gov (United States)

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences. PMID:26370112

  3. Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains : a web-based resource

    Directory of Open Access Journals (Sweden)

    Vergnaud Gilles

    2004-01-01

    Full Text Available Abstract Background Polymorphic tandem repeat typing is a new generic technology which has been proved to be very efficient for bacterial pathogens such as B. anthracis, M. tuberculosis, P. aeruginosa, L. pneumophila, Y. pestis. The previously developed tandem repeats database takes advantage of the release of genome sequence data for a growing number of bacteria to facilitate the identification of tandem repeats. The development of an assay then requires the evaluation of tandem repeat polymorphism on well-selected sets of isolates. In the case of major human pathogens, such as S. aureus, more than one strain is being sequenced, so that tandem repeats most likely to be polymorphic can now be selected in silico based on genome sequence comparison. Results In addition to the previously described general Tandem Repeats Database, we have developed a tool to automatically identify tandem repeats of a different length in the genome sequence of two (or more closely related bacterial strains. Genome comparisons are pre-computed. The results of the comparisons are parsed in a database, which can be conveniently queried over the internet according to criteria of practical value, including repeat unit length, predicted size difference, etc. Comparisons are available for 16 bacterial species, and the orthopox viruses, including the variola virus and three of its close neighbors. Conclusions We are presenting an internet-based resource to help develop and perform tandem repeats based bacterial strain typing. The tools accessible at http://minisatellites.u-psud.fr now comprise four parts. The Tandem Repeats Database enables the identification of tandem repeats across entire genomes. The Strain Comparison Page identifies tandem repeats differing between different genome sequences from the same species. The "Blast in the Tandem Repeats Database" facilitates the search for a known tandem repeat and the prediction of amplification product sizes. The "Bacterial

  4. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    Science.gov (United States)

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  5. Analysis of the cystic fibrosis lung microbiota via serial Illumina sequencing of bacterial 16S rRNA hypervariable regions.

    Directory of Open Access Journals (Sweden)

    Heather Maughan

    Full Text Available The characterization of bacterial communities using DNA sequencing has revolutionized our ability to study microbes in nature and discover the ways in which microbial communities affect ecosystem functioning and human health. Here we describe Serial Illumina Sequencing (SI-Seq: a method for deep sequencing of the bacterial 16S rRNA gene using next-generation sequencing technology. SI-Seq serially sequences portions of the V5, V6 and V7 hypervariable regions from barcoded 16S rRNA amplicons using an Illumina short-read genome analyzer. SI-Seq obtains taxonomic resolution similar to 454 pyrosequencing for a fraction of the cost, and can produce hundreds of thousands of reads per sample even with very high multiplexing. We validated SI-Seq using single species and mock community controls, and via a comparison to cystic fibrosis lung microbiota sequenced using 454 FLX Titanium. Our control runs show that SI-Seq has a dynamic range of at least five orders of magnitude, can classify >96% of sequences to the genus level, and performs just as well as 454 and paired-end Illumina methods in estimation of standard microbial ecology diversity measurements. We illustrate the utility of SI-Seq in a pilot sample of central airway secretion samples from cystic fibrosis patients.

  6. Global features of sequences of bacterial chromosomes, plasmids and phages revealed by analysis of oligonucleotide usage patterns

    Directory of Open Access Journals (Sweden)

    Tümmler Burkhard

    2004-07-01

    Full Text Available Abstract Background Oligonucleotide frequencies were shown to be conserved signatures for bacterial genomes, however, the underlying constraints have yet not been resolved in detail. In this paper we analyzed oligonucleotide usage (OU biases in a comprehensive collection of 155 completely sequenced bacterial chromosomes, 316 plasmids and 104 phages. Results Two global features were analyzed: pattern skew (PS and variance of OU deviations normalized by mononucleotide content of the sequence (OUV. OUV reflects the strength of OU biases and taxonomic signals. PS denotes asymmetry of OU in direct and reverse DNA strands. A trend towards minimal PS was observed for almost all complete sequences of bacterial chromosomes and plasmids, however, PS was substantially higher in separate genomic loci and several types of plasmids and phages characterized by long stretches of non-coding DNA and/or asymmetric gene distribution on the two DNA strands. Five of the 155 bacterial chromosomes have anomalously high PS, of which the chromosomes of Xylella fastidiosa 9a5c and Prochlorococcus marinus MIT9313 exhibit extreme PS values suggesting an intermediate unstable state of these two genomes. Conclusions Strand symmetry as indicated by minimal PS is a universally conserved feature of complete bacterial genomes that results from the matching mutual compensation of local OU biases on both replichors while OUV is more a taxon specific feature. Local events such as inversions or the incorporation of genome islands are balanced by global changes in genome organization to minimize PS that may represent one of the leading evolutionary forces driving bacterial genome diversification.

  7. Construction of an Americn mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Hallers, Boudewijn ten; Nefedov, Michael;

    2011-01-01

    contigs (184 kb in average) were assembled. Knowing the complete sequences of these candidate genes will enable confirmation of the association with a phenotype and the finding of causative mutations for the targeted phenotypes.Additionally, 1577 BAC clones were end sequenced; 2505 BAC end sequences (80......BACKGROUND: Bacterial artificial chromosome (BAC) libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. RESULTS: Here, we...... consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs), representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library...

  8. A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing.

    Science.gov (United States)

    Huang, Kailong; Zhang, Xu-Xiang; Shi, Peng; Wu, Bing; Ren, Hongqiang

    2014-11-01

    In order to comprehensively investigate bacterial virulence in drinking water, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential pathogenic bacteria and virulence factors (VFs) in a full-scale drinking water treatment and distribution system. 16S rRNA gene pyrosequencing revealed high bacterial diversity in the drinking water (441-586 operational taxonomic units). Bacterial diversity decreased after chlorine disinfection, but increased after pipeline distribution. α-Proteobacteria was the most dominant taxonomic class. Alignment against the established pathogen database showed that several types of putative pathogens were present in the drinking water and Pseudomonas aeruginosa had the highest abundance (over 11‰ of total sequencing reads). Many pathogens disappeared after chlorine disinfection, but P. aeruginosa and Leptospira interrogans were still detected in the tap water. High-throughput sequencing revealed prevalence of various pathogenicity islands and virulence proteins in the drinking water, and translocases, transposons, Clp proteases and flagellar motor switch proteins were the predominant VFs. Both diversity and abundance of the detectable VFs increased after the chlorination, and decreased after the pipeline distribution. This study indicates that joint use of 454 pyrosequencing and Illumina sequencing can comprehensively characterize environmental pathogenesis, and several types of putative pathogens and various VFs are prevalent in drinking water.

  9. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections.

    Directory of Open Access Journals (Sweden)

    Stephen J Salipante

    Full Text Available Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times and inexpensive for routine clinical use.

  10. Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing

    OpenAIRE

    Wolcott Benjamin M; Rhoads Daniel D; Secor Patrick R; Sun Yan; Dowd Scot E; James Garth A; Wolcott Randall D

    2008-01-01

    Abstract Background Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species. These bacterial populations cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the bacterial populations that occur within different types of chronic wound biofilms. The use of 3 separate16S-based molecular amplifications followed by pyrosequencing, shotgun Sanger ...

  11. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    Science.gov (United States)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  12. Phyllosphere Bacterial Community of Floating Macrophytes in Paddy Soil Environments as Revealed by Illumina High-Throughput Sequencing

    OpenAIRE

    Xie, Wan-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored c...

  13. Complete Genome Sequence of Cell Culture-Attenuated Guinea Pig Cytomegalovirus Cloned as an Infectious Bacterial Artificial Chromosome

    OpenAIRE

    Yang, Dongmei; Alam, Zohaib; Cui, Xiaohong; Chen, Michael; Sherrod, Carly J.; McVoy, Michael A.; Schleiss, Mark R.; Dittmer, Dirk P

    2014-01-01

    The complete genome sequence of attenuated guinea pig cytomegalovirus cloned as bacterial artificial chromosome N13R10 was determined. Comparison to pathogenic salivary gland-derived virus revealed 13 differences, 1 of which disrupted overlapping open reading frames encoding GP129 and GP130. Attenuation of N13R10 may arise from an inability to express GP129 and/or GP130.

  14. Estimation of bacterial diversity using next generation sequencing of 16S rDNA: a comparison of different workflows

    Directory of Open Access Journals (Sweden)

    Barriuso Jorge

    2011-12-01

    Full Text Available Abstract Background Next generation sequencing (NGS enables a more comprehensive analysis of bacterial diversity from complex environmental samples. NGS data can be analysed using a variety of workflows. We test several simple and complex workflows, including frequently used as well as recently published tools, and report on their respective accuracy and efficiency under various conditions covering different sequence lengths, number of sequences and real world experimental data from rhizobacterial populations of glyphosate-tolerant maize treated or untreated with two different herbicides representative of differential diversity studies. Results Alignment and distance calculations affect OTU estimations, and multiple sequence alignment exerts a major impact on the computational time needed. Generally speaking, most of the analyses produced consistent results that may be used to assess differential diversity changes, however, dataset characteristics dictate which workflow should be preferred in each case. Conclusions When estimating bacterial diversity, ESPRIT as well as the web-based workflow, RDP pyrosequencing pipeline, produced good results in all circumstances, however, its computational requirements can make method-combination workflows more attractive, depending on sequence variability, number and length.

  15. Repetitive genome elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research.

    Science.gov (United States)

    Coates, Brad S; Sumerford, Douglas V; Hellmich, Richard L; Lewis, Leslie C

    2009-01-01

    The European corn borer, Ostrinia nubilalis, is a serious pest of food, fiber, and biofuel crops in Europe, North America, and Asia and a model system for insect olfaction and speciation. A bacterial artificial chromosome library constructed for O. nubilalis contains 36 864 clones with an estimated average insert size of >or=120 kb and genome coverage of 8.8-fold. Screening OnB1 clones comprising approximately 2.76 genome equivalents determined the physical position of 24 sequence tag site markers, including markers linked to ecologically important and Bacillus thuringiensis toxin resistance traits. OnB1 bacterial artificial chromosome end sequence reads (GenBank dbGSS accessions ET217010 to ET217273) showed homology to annotated genes or expressed sequence tags and identified repetitive genome elements, O. nubilalis miniature subterminal inverted repeat transposable elements (OnMITE01 and OnMITE02), and ezi-like long interspersed nuclear elements. Mobility of OnMITE01 was demonstrated by the presence or absence in O. nubilalis of introns at two different loci. A (GTCT)n tetranucleotide repeat at the 5' ends of OnMITE01 and OnMITE02 are evidence for transposon-mediated movement of lepidopteran microsatellite loci. The number of repetitive elements in lepidopteran genomes will affect genome assembly and marker development. Single-locus sequence tag site markers described here have downstream application for integration within linkage maps and comparative genomic studies. PMID:19132072

  16. Repetitive genome elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research.

    Science.gov (United States)

    Coates, Brad S; Sumerford, Douglas V; Hellmich, Richard L; Lewis, Leslie C

    2009-01-01

    The European corn borer, Ostrinia nubilalis, is a serious pest of food, fiber, and biofuel crops in Europe, North America, and Asia and a model system for insect olfaction and speciation. A bacterial artificial chromosome library constructed for O. nubilalis contains 36 864 clones with an estimated average insert size of >or=120 kb and genome coverage of 8.8-fold. Screening OnB1 clones comprising approximately 2.76 genome equivalents determined the physical position of 24 sequence tag site markers, including markers linked to ecologically important and Bacillus thuringiensis toxin resistance traits. OnB1 bacterial artificial chromosome end sequence reads (GenBank dbGSS accessions ET217010 to ET217273) showed homology to annotated genes or expressed sequence tags and identified repetitive genome elements, O. nubilalis miniature subterminal inverted repeat transposable elements (OnMITE01 and OnMITE02), and ezi-like long interspersed nuclear elements. Mobility of OnMITE01 was demonstrated by the presence or absence in O. nubilalis of introns at two different loci. A (GTCT)n tetranucleotide repeat at the 5' ends of OnMITE01 and OnMITE02 are evidence for transposon-mediated movement of lepidopteran microsatellite loci. The number of repetitive elements in lepidopteran genomes will affect genome assembly and marker development. Single-locus sequence tag site markers described here have downstream application for integration within linkage maps and comparative genomic studies.

  17. Sub-chronic exposure to the insecticide dimethoate induces a proinflammatory status and enhances the neuroinflammatory response to bacterial lypopolysaccharide in the hippocampus and striatum of male mice

    Energy Technology Data Exchange (ETDEWEB)

    Astiz, Mariana, E-mail: marianaastiz@gmail.com; Diz-Chaves, Yolanda, E-mail: ydiz@cajal.csic.es; Garcia-Segura, Luis M., E-mail: lmgs@cajal.csic.es

    2013-10-15

    Dimethoate is an organophosphorus insecticide extensively used in horticulture. Previous studies have shown that the administration of dimethoate to male rats, at a very low dose and during a sub-chronic period, increases the oxidation of lipids and proteins, reduces the levels of antioxidants and impairs mitochondrial function in various brain regions. In this study, we have assessed in C57Bl/6 adult male mice, whether sub-chronic (5 weeks) intoxication with a low dose of dimethoate (1.4 mg/kg) affects the expression of inflammatory molecules and the reactivity of microglia in the hippocampus and striatum under basal conditions and after an immune challenge caused by the systemic administration of lipopolysaccharide. Dimethoate increased mRNA levels of tumor necrosis factor α (TNFα) and interleukin (IL) 6 in the hippocampus, and increased the proportion of Iba1 immunoreactive cells with reactive phenotype in dentate gyrus and striatum. Lipopolysaccharide caused a significant increase in the mRNA levels of IL1β, TNFα, IL6 and interferon-γ-inducible protein 10, and a significant increase in the proportion of microglia with reactive phenotype in the hippocampus and the striatum. Some of the effects of lipopolysaccharide (proportion of Iba1 immunoreactive cells with reactive phenotype and IL6 mRNA levels) were amplified in the animals treated with dimethoate, but only in the striatum. These findings indicate that a sub-chronic period of administration of a low dose of dimethoate, comparable to the levels of the pesticide present as residues in food, causes a proinflammatory status in the brain and enhances the neuroinflammatory response to the lipopolysaccharide challenge with regional specificity. - Highlights: • The dose of pesticide used was comparable to the levels of residues found in food. • Dimethoate administration increased cytokine expression and microglia reactivity. • Hippocampus and striatum were differentially affected by the treatment.

  18. Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing.

    Science.gov (United States)

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence.

  19. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  20. Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution.

    Science.gov (United States)

    Sharma, Poonam; Gupta, Sushim Kumar; Rolain, Jean-Marc

    2014-03-01

    Cystic fibrosis (CF) airways harbor a wide variety of new and/or emerging multidrug resistant bacteria which impose a heavy burden on patients. These bacteria live in close proximity with one another, which increases the frequency of lateral gene transfer. The exchange and movement of mobile genetic elements and genomic islands facilitate the spread of genes between genetically diverse bacteria, which seem to be advantageous to the bacterium as it allows adaptation to the new niches of the CF lungs. Niche adaptation is one of the major evolutionary forces shaping bacterial genome composition and in CF the chronic strains adapt and become less virulent. The purpose of this review is to shed light on CF bacterial genome alterations. Next-generation sequencing technology is an exciting tool that may help us to decipher the genome architecture and the evolution of bacteria colonizing CF lungs. PMID:24502835

  1. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time

    KAUST Repository

    Bagchi, Samik

    2014-10-19

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media.

  2. Insecticide solvents: interference with insecticidal action.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans. PMID:860135

  3. Ultradeep 16S rRNA sequencing analysis of geographically similar but diverse unexplored marine samples reveal varied bacterial community composition.

    Directory of Open Access Journals (Sweden)

    Chairmandurai Aravindraja

    Full Text Available BACKGROUND: Bacterial community composition in the marine environment differs from one geographical location to another. Reports that delineate the bacterial diversity of different marine samples from geographically similar location are limited. The present study aims to understand whether the bacterial community compositions from different marine samples harbour similar bacterial diversity since these are geographically related to each other. METHODS AND PRINCIPAL FINDINGS: In the present study, 16S rRNA deep sequencing analysis targeting V3 region was performed using Illumina bar coded sequencing. A total of 22.44 million paired end reads were obtained from the metagenomic DNA of Marine sediment, Rhizosphere sediment, Seawater and the epibacterial DNA of Seaweed and Seagrass. Diversity index analysis revealed that Marine sediment has the highest bacterial diversity and the least bacterial diversity was observed in Rhizosphere sediment. Proteobacteria, Actinobacteria and Bacteroidetes were the dominant taxa present in all the marine samples. Nearly 62-71% of rare species were identified in all the samples and most of these rare species were unique to a particular sample. Further taxonomic assignment at the phylum and genus level revealed that the bacterial community compositions differ among the samples. CONCLUSION: This is the first report that supports the fact that, bacterial community composition is specific for specific samples irrespective of its similar geographical location. Existence of specific bacterial community for each sample may drive overall difference in bacterial structural composition of each sample. Further studies like whole metagenomic sequencing will throw more insights to the key stone players and its interconnecting metabolic pathways. In addition, this is one of the very few reports that depicts the unexplored bacterial diversity of marine samples (Marine sediment, Rhizosphere sediment, Seawater and the host associated

  4. High-Throughput Sequencing Analysis of the Endophytic Bacterial Diversity and Dynamics in Roots of the Halophyte Salicornia europaea.

    Science.gov (United States)

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Tian, Chang-Yan

    2016-05-01

    Endophytic bacterial communities of halophyte Salicornia europaea roots were analyzed by 16S rRNA gene pyrosequencing. A total of 20,151 partial 16S rRNA gene sequences were obtained. These sequences revealed huge amounts of operational taxonomic units (OTUs), that is, 747-1405 OTUs in a root sample, at 3 % cut-off level. Root endophytes mainly comprised four phyla, among which Proteobacteria was the most represented, followed by Bacteroidetes, Actinobacteria, and Firmicutes. Gammaproteobacteria was the most abundant class of Proteobacteria, followed by Betaproteobacteria and Alphaproteobacteria. Genera Pantoea, Halomonas, Azomonas, Serpens, and Pseudomonas were shared by all growth periods. A marked difference in endophytic bacterial communities was evident in roots from different host life-history stages. Gammaproteobacteria increased during the five periods, while Betaproteobacteria decreased. The richest endophytic bacteria diversity was detected in the seedling stage. Endophytic bacteria diversity was reduced during the flowering stage and fruiting stage. The five libraries contained 2321 different OTUs with 41 OTUs in common. As a whole, this study first surveys communities of endophytic bacteria by tracing crucial stages in the process of halophyte growth using high-throughput sequencing methods. PMID:26787546

  5. Determination of selected pesticides in water samples adjacent to agricultural fields and removal of organophosphorus insecticide chlorpyrifos using soil bacterial isolates

    Science.gov (United States)

    Hossain, M. S.; Chowdhury, M. Alamgir Zaman; Pramanik, Md. Kamruzzaman; Rahman, M. A.; Fakhruddin, A. N. M.; Alam, M. Khorshed

    2015-06-01

    The use of pesticide for crops leads to serious environmental pollution, therefore, it is essential to monitor and develop approaches to remove pesticide from contaminated environment. In this study, water samples were collected to monitor pesticide residues, and degradation of chlorpyrifos was also performed using soil bacteria. Identification of pesticide residues and determination of their levels were performed by high-performance liquid chromatography with photodiode array detector. Among 12 samples, 10 samples were found contaminated with pesticides. Chlorpyrifos was detected in four tested samples and concentrations ranged from 3.27 to 9.31 μg/l whereas fenitrothion ranging from (Below Detection Limit, pesticide residues in water, to protect the aquatic environment. Chlorpyrifos degrading bacterial isolates can be used to clean up environmental samples contaminated with the organophosphate pesticides.

  6. First report on the bacterial diversity in the distal gut of dholes (Cuon alpinus) by using 16S rRNA gene sequences analysis.

    Science.gov (United States)

    Chen, Lei; Zhang, Honghai; Liu, Guangshuai; Sha, Weilai

    2016-05-01

    The aim of this study was to investigate the bacterial community in the distal gut of dholes (Cuon alpinus) based on the analysis of bacterial 16S rRNA gene sequences. Fecal samples were collected from five healthy unrelated dholes captured from Qilian Mountain in Gansu province of China. The diversity of the fecal bacteria community was investigated by constructing a polymerase chain reaction (PCR)-amplified 16S rRNA gene clone library. Bacterial 16S rRNA gene was amplified by using universal bacterial primers 27F and 1492R. A total of 275 chimera-free near full length 16S rRNA gene sequences were collected, and 78 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified according to the 97 % sequence similarity. Forty-two OTUs (53.8 %) showed less than 98 % sequence similarity to 16S rRNA gene sequences reported previously. Phylogenetic analysis demonstrated that dhole bacterial community comprised five different phyla, with the majority of sequences being classified within the phylum Bacteroidetes (64.7 %), followed by Firmicutes (29.8 %), Fusobacteria (4.7 %),Proteobacteria (0.4 %), and Actinobacteria (0.4 %). The only order Bacteroidales in phylum Bacteroidetes was the most abundant bacterial group in the intestinal bacterial community of dholes. Firmicutes and Bacteroidetes were the two most diverse bacterial phyla with 46.2 and 44.9 % of OTUs contained, respectively. Bacteroidales and Clostridiales were the two most diverse bacterial orders that contained 44.9 and 39.7 % of OTUs, respectively.

  7. Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality.

    Directory of Open Access Journals (Sweden)

    Shun-Long Weng

    Full Text Available Some previous studies have identified bacteria in semen as being a potential factor in male infertility. However, only few types of bacteria were taken into consideration while using PCR-based or culturing methods. Here we present an analysis approach using next-generation sequencing technology and bioinformatics analysis to investigate the associations between bacterial communities and semen quality. Ninety-six semen samples collected were examined for bacterial communities, measuring seven clinical criteria for semen quality (semen volume, sperm concentration, motility, Kruger's strict morphology, antisperm antibody (IgA, Atypical, and leukocytes. Computer-assisted semen analysis (CASA was also performed. Results showed that the most abundant genera among all samples were Lactobacillus (19.9%, Pseudomonas (9.85%, Prevotella (8.51% and Gardnerella (4.21%. The proportion of Lactobacillus and Gardnerella was significantly higher in the normal samples, while that of Prevotella was significantly higher in the low quality samples. Unsupervised clustering analysis demonstrated that the seminal bacterial communities were clustered into three main groups: Lactobacillus, Pseudomonas, and Prevotella predominant group. Remarkably, most normal samples (80.6% were clustered in Lactobacillus predominant group. The analysis results showed seminal bacteria community types were highly associated with semen health. Lactobacillus might not only be a potential probiotic for semen quality maintenance, but also might be helpful in countering the negative influence of Prevotella and Pseudomonas. In this study, we investigated whole seminal bacterial communities and provided the most comprehensive analysis of the association between bacterial community and semen quality. The study significantly contributes to the current understanding of the etiology of male fertility.

  8. 16S rRNA gene sequencing is a non-culture method of defining the specific bacterial etiology of ventilator-associated pneumonia.

    Science.gov (United States)

    Xia, Li-Ping; Bian, Long-Yan; Xu, Min; Liu, Ying; Tang, Ai-Ling; Ye, Wen-Qin

    2015-01-01

    Ventilator-associated pneumonia (VAP) is an acquired respiratory tract infection following tracheal intubation. The most common hospital-acquired infection among patients with acute respiratory failure, VAP is associated with a mortality rate of 20-30%. The standard bacterial culture method for identifying the etiology of VAP is not specific, timely, or accurate in identifying the bacterial pathogens. This study used 16S rRNA gene metagenomic sequencing to identify and quantify the pathogenic bacteria in lower respiratory tract and oropharyngeal samples of 55 VAP patients. Sequencing of the 16S rRNA gene has served as a valuable tool in bacterial identification, particularly when other biochemical, molecular, or phenotypic identification techniques fail. In this study, 16S rRNA gene sequencing was performed in parallel with the standard bacterial culture method to identify and quantify bacteria present in the collected patient samples. Sequence analysis showed the colonization of multidrug-resistant strains in VAP secretions. Further, this method identified Prevotella, Proteus, Aquabacter, and Sphingomonas bacterial genera that were not detected by the standard bacterial culture method. Seven categories of bacteria, Streptococcus, Neisseria, Corynebacterium, Acinetobacter, Staphylococcus, Pseudomonas and Klebsiella, were detectable by both 16S rRNA gene sequencing and standard bacterial culture methods. Further, 16S rRNA gene sequencing had a significantly higher sensitivity in detecting Streptococcus and Pseudomonas when compared to standard bacterial culture. Together, these data present 16S rRNA gene sequencing as a novel VAP diagnosis tool that will further enable pathogen-specific treatment of VAP.

  9. Sequencing and bacterial expression of a novel murine alpha interferon gene

    Institute of Scientific and Technical Information of China (English)

    王焱; 王征宇; 周鸣南; 蔡菊娥; 孙兰英; 刘新垣; B.L.Daugherty; S.Pestka

    1997-01-01

    A murine new alpha interferon gene (mIFN-αB) was found by primer-based sequencing method in a murine genomic DNA library. The gene was cloned and its sequence was determined. It was expressed in Escherichia coli under the control of the PL promoter which resulted in antiviral activity on mouse L-cells. The sequence of mlFN-αB has been accepted by GENEBANK.

  10. Semiconductor Sequencing Reveals the Diversity of Bacterial Communities in an Amazon Reservoir Considered as a Methane Source

    Science.gov (United States)

    Graças, D. A.; Ramos, R. T.; Sá, P. G.; Baraúna, R. A.; Schneider, M. C.; Silva, A.

    2013-05-01

    The Amazon region has enormous hydro potential which is used for power generation. In fact, there are several hydroelectric power stations (HPS) already installed and many under construction or designed. It's in the Amazon which the HPS of Tucuruí, fifth largest in the world, is located. The construction of this hydroelectric dam flooded an area of 2,400 km2 of forest that decomposing, releasing greenhouse gases such as methane (CH4). Methane is the most abundant organic gas in the atmosphere and the second most important greenhouse gas. In this study, we use semicondutor sequencing to assess the bacterial diversity along a water column of 70 meters deep in the Tucuruí reservoir. One liter of water was collected every 10 meters along the water column for total DNA extraction. A fragment of approximately 150 base pairs of the 16S rRNA gene was amplified by polymerase chain reaction using universal primers. These fragments were then paralleled sequenced in Ion Torrent® platform using barcodes on the 316 chip. After the quality filters, about 237 thousands reads were obtained, representing more than 300 Mbp. For bacterial diversity analysis, we used only reads longer than 100 base pairs. The taxonomic diversity was obtained from the Ribosomal Database Project Classifier and alpha diversity analysis (diversity indices and rarefaction) was performed using the RDP pyrosequencing pipeline. Although it is recommended for data pyrosequencing, that pipeline is able to process data obtained from semiconductor sequencing once all of them are fasta files. Over 75% of the sequences were not classified in any phylum, which leads us to believe that there is a huge diversity in the bacterial environment whose function is still unclear. Among the sequences that could be classified, there is a predominance of proteobacteria in all layers, but in higher concentrations at the lower layers. Cyanobacteria accounted for about 3% in the layers of 0m and 10m, leading us to conclude that

  11. Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores

    NARCIS (Netherlands)

    Boer, de P.; Caspers, M.; Sanders, J.W.; Kemperman, R.; Wijman, J.; Lommerse, G.; Roeselers, G.; Montijn, R.; Abee, T.; Kort, R.

    2015-01-01

    Background
    Spoilage of food products is frequently caused by bacterial spores and lactic acid bacteria. Identification of these organisms by classic cultivation methods is limited by their ability to form colonies on nutrient agar plates. In this study, we adapted and optimized 16S rRNA amplicon

  12. Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing.

    Science.gov (United States)

    Background: Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species that cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the different populat...

  13. Growth strategy of heterotrophic bacterial population along successional sequence on spoil of brown coal colliery substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kristufek, V.; Elhottova, D.; Chronakova, A.; Dostalkova, I.; Picek, T.; Kalcik, J. [Academy of Science in Czech Republic, Ceske Budejovice (Czech Republic). Inst. of Soil Biology

    2005-07-01

    The bacterial population of brown coal colliery spoil (Sokolov coal mining district, Czech Republic) was characterized by measuring viable bacterial biomass, the culturable to total cell ratio (C:T), colony-forming curve (CFC) analysis and species and/or biotype diversity. Bacterial representatives that differed in colony-forming growth (fast and/or slow growers) were used for growth-strategy investigation of heterotrophic bacteria. Spoil substrates from the surface (0-50 mm) and the mineral (100-150 mm) layers were sampled on 4 sites undergoing spontaneous succession corresponding to 1, 11, 21 and 43 years after deposition (initial, early, mid and late stages). The bacterial biomass of the surface layer increased during the initial and early stages with a maximum at mid stage and stabilized in the late stage while mineral layer biomass increased throughout the succession. The maxima of C:T ratios were at the early stage, minima at the late stage. Depending on the succession stage the C:T ratio was 1.5-2 times higher in the mineral than the surface layer of soil. An increase in the fraction of nonculturable bacteria was associated with the late succession stage. CFC analysis of the surface layer during a 3-d incubation revealed that the early-succession substrate contained more (75%) rapidly colonizing bacteria than successively older substrates. The culturable bacterial community of the mineral layer maintained a high genera and species richness of fast growers along the succession line in contrast to the surface layer community, where there was a maximum in the abundance of fast growers in the early stage. A markedly lower abundance of slow growers was observed in the mineral in contrast to the surface layer.

  14. Draft Genome Sequence of the Shellfish Bacterial Pathogen Vibrio sp. Strain B183.

    Science.gov (United States)

    Schreier, Harold J; Schott, Eric J

    2014-09-18

    We report the draft genome sequence of Vibrio sp. strain B183, a Gram-negative marine bacterium isolated from shellfish that causes mortality in larval mariculture. The availability of this genome sequence will facilitate the study of its virulence mechanisms and add to our knowledge of Vibrio sp. diversity and evolution.

  15. Larvicidal efficacy of Catharanthus roseus Linn. (Family:Apocynaceae) leaf extract and bacterial insecticideBacillus thuringiensis againstAnopheles stephensi Liston

    Institute of Scientific and Technical Information of China (English)

    Chellasamy Panneerselvam; Kadarkarai Murugan; Kalimuthu Kovendan; Palanisamy Mahesh Kumar; Sekar Ponarulselvam; Duraisamy Amerasan; Jayapal Subramaniam; Jiang-Shiou Hwang

    2013-01-01

    Objective:To explore the larvicidal activity ofCatharanthus roseus(C. roseus) leaf extract and Bacillus thuringiensis(B. thuringiensis) against the malarial vectorAnopheles stephensi(An. stephensi), when being used alone or together.Methods:The larvicidal activity was assayed at various concentrations under the laboratory and field conditions.TheLC50 andLC90 values of theC. roseus leaf extract were determined by probit analysis.Results:The plant extract showed larvicidal effects after24 h of exposure;however, the highest larval mortality was found in the petroleum ether extract ofC. roseus against the first to fourth instars larvae withLC50=3.34,4.48, 5.90 and8.17 g/L, respectively;B. thuringiensis against the first to fourth instars larvae with LC50=1.72,1.93,2.17 and2.42 g/L, respectively; and the combined treatment withLC50=2.18,2.41, 2.76 and3.22 g/L, respectively.No mortality was observed in the control.Conclusions:The petroleum ether extract ofC. roseus extract andB. thuringiensis have potential to be used as ideal eco-friendly agents for the control ofAn. stephensi in vector control programs.The combined treatment with this plant crude extract and bacterial toxin has better larvicidal efficacy against An. stephensi.

  16. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    Science.gov (United States)

    Sabree, Zakee L; Hansen, Allison K; Moran, Nancy A

    2012-01-01

    Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3): e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear. PMID:22829932

  17. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    Directory of Open Access Journals (Sweden)

    Zakee L Sabree

    Full Text Available Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012 Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3: e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear.

  18. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase

    Directory of Open Access Journals (Sweden)

    Dugas Sandra L

    2003-07-01

    Full Text Available Abstract Background The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. Results Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the γ-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (γ-Proteobacteria possess similar plasmid-encoded arsC sequences. Conclusion The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms.

  19. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities.

    Science.gov (United States)

    Kittelmann, Sandra; Seedorf, Henning; Walters, William A; Clemente, Jose C; Knight, Rob; Gordon, Jeffrey I; Janssen, Peter H

    2013-01-01

    Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats.

  20. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Leekitcharoenphon, Pimlapas; Aarestrup, Frank Møller;

    2014-01-01

    Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one...... data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent). We show that the methods are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded that the cause of the success of these new procedures is due...

  1. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16S rRNA gene amplicon sequencing.

    Science.gov (United States)

    Lee, Da-Eun; Lee, Jinhwan; Kim, Young-Mog; Myeong, Jeong-In; Kim, Kyoung-Ho

    2016-04-01

    Bacterial diversity in a seawater recirculating aquaculture system (RAS) was investigated using 16S rRNA amplicon sequencing to understand the roles of bacterial communities in the system. The RAS was operated at nine different combinations of temperature (15°C, 20°C, and 25°C) and salinity (20‰, 25‰, and 32.5‰). Samples were collected from five or six RAS tanks (biofilters) for each condition. Fifty samples were analyzed. Proteobacteria and Bacteroidetes were most common (sum of both phyla: 67.2% to 99.4%) and were inversely proportional to each other. Bacteria that were present at an average of ≥ 1% included Actinobacteria (2.9%) Planctomycetes (2.0%), Nitrospirae (1.5%), and Acidobacteria (1.0%); they were preferentially present in packed bed biofilters, mesh biofilters, and maturation biofilters. The three biofilters showed higher diversity than other RAS tanks (aerated biofilters, floating bed biofilters, and fish tanks) from phylum to operational taxonomic unit (OTU) level. Samples were clustered into several groups based on the bacterial communities. Major taxonomic groups related to family Rhodobacteraceae and Flavobacteriaceae were distributed widely in the samples. Several taxonomic groups like [Saprospiraceae], Cytophagaceae, Octadecabacter, and Marivita showed a cluster-oriented distribution. Phaeobacter and Sediminicola-related reads were detected frequently and abundantly at low temperature. Nitrifying bacteria were detected frequently and abundantly in the three biofilters. Phylogenetic analysis of the nitrifying bacteria showed several similar OTUs were observed widely through the biofilters. The diverse bacterial communities and the minor taxonomic groups, except for Proteobacteria and Bacteroidetes, seemed to play important roles and seemed necessary for nitrifying activity in the RAS, especially in packed bed biofilters, mesh biofilters, and maturation biofilters.

  2. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16S rRNA gene amplicon sequencing.

    Science.gov (United States)

    Lee, Da-Eun; Lee, Jinhwan; Kim, Young-Mog; Myeong, Jeong-In; Kim, Kyoung-Ho

    2016-04-01

    Bacterial diversity in a seawater recirculating aquaculture system (RAS) was investigated using 16S rRNA amplicon sequencing to understand the roles of bacterial communities in the system. The RAS was operated at nine different combinations of temperature (15°C, 20°C, and 25°C) and salinity (20‰, 25‰, and 32.5‰). Samples were collected from five or six RAS tanks (biofilters) for each condition. Fifty samples were analyzed. Proteobacteria and Bacteroidetes were most common (sum of both phyla: 67.2% to 99.4%) and were inversely proportional to each other. Bacteria that were present at an average of ≥ 1% included Actinobacteria (2.9%) Planctomycetes (2.0%), Nitrospirae (1.5%), and Acidobacteria (1.0%); they were preferentially present in packed bed biofilters, mesh biofilters, and maturation biofilters. The three biofilters showed higher diversity than other RAS tanks (aerated biofilters, floating bed biofilters, and fish tanks) from phylum to operational taxonomic unit (OTU) level. Samples were clustered into several groups based on the bacterial communities. Major taxonomic groups related to family Rhodobacteraceae and Flavobacteriaceae were distributed widely in the samples. Several taxonomic groups like [Saprospiraceae], Cytophagaceae, Octadecabacter, and Marivita showed a cluster-oriented distribution. Phaeobacter and Sediminicola-related reads were detected frequently and abundantly at low temperature. Nitrifying bacteria were detected frequently and abundantly in the three biofilters. Phylogenetic analysis of the nitrifying bacteria showed several similar OTUs were observed widely through the biofilters. The diverse bacterial communities and the minor taxonomic groups, except for Proteobacteria and Bacteroidetes, seemed to play important roles and seemed necessary for nitrifying activity in the RAS, especially in packed bed biofilters, mesh biofilters, and maturation biofilters. PMID:27033205

  3. Unprecedented High-Resolution View of Bacterial Operon Architecture Revealed by RNA Sequencing

    OpenAIRE

    Conway, Tyrrell; Creecy, James P.; Maddox, Scott M.; Grissom, Joe E; Conkle, Trevor L.; Shadid, Tyler M.; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada; Wanner, Barry L.

    2014-01-01

    ABSTRACT We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely ...

  4. Bacterial community structure in Apis florea larvae analyzed by denaturing gradient gel electrophoresis and 16S rRNA gene sequencing.

    Science.gov (United States)

    Saraithong, Prakaimuk; Li, Yihong; Saenphet, Kanokporn; Chen, Zhou; Chantawannakul, Panuwan

    2015-10-01

    This study characterizes the colonization and composition of bacterial flora in dwarf Asian honeybee (Apis florea) larvae and compares bacterial diversity and distribution among different sampling locations. A. florea larvae were collected from 3 locations in Chiang Mai province, Thailand. Bacterial DNA was extracted from each larva using the phenol-chloroform method. Denaturing gradient gel electrophoresis was performed, and the dominant bands were excised from the gels, cloned, and sequenced for bacterial species identification. The result revealed similarities of bacterial community profiles in each individual colony, but differences between colonies from the same and different locations. A. florea larvae harbor bacteria belonging to 2 phyla (Firmicutes and Proteobacteria), 5 classes (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli, and Clostridia), 6 genera (Clostridium, Gilliamella, Melissococcus, Lactobacillus, Saccharibacter, and Snodgrassella), and an unknown genus from uncultured bacterial species. The classes with the highest abundance of bacteria were Alphaproteobacteria (34%), Bacilli (25%), Betaproteobacteria (11%), Gammaproteobacteria (10%), and Clostridia (8%), respectively. Similarly, uncultured bacterial species were identified (12%). Environmental bacterial species, such as Saccharibacter floricola, were also found. This is the first study in which sequences closely related to Melissococcus plutonius, the causal pathogen responsible for European foulbrood, have been identified in Thai A. florea larvae. PMID:25393530

  5. Tracing the Spread of Clostridium difficile Ribotype 027 in Germany Based on Bacterial Genome Sequences.

    Directory of Open Access Journals (Sweden)

    Matthias Steglich

    Full Text Available We applied whole-genome sequencing to reconstruct the spatial and temporal dynamics underpinning the expansion of Clostridium difficile ribotype 027 in Germany. Based on re-sequencing of genomes from 57 clinical C. difficile isolates, which had been collected from hospitalized patients at 36 locations throughout Germany between 1990 and 2012, we demonstrate that C. difficile genomes have accumulated sequence variation sufficiently fast to document the pathogen's spread at a regional scale. We detected both previously described lineages of fluoroquinolone-resistant C. difficile ribotype 027, FQR1 and FQR2. Using Bayesian phylogeographic analyses, we show that fluoroquinolone-resistant C. difficile 027 was imported into Germany at least four times, that it had been widely disseminated across multiple federal states even before the first outbreak was noted in 2007, and that it has continued to spread since.

  6. Probabilistic Clustering of Sequences Inferring new bacterial regulons by comparative genomics

    CERN Document Server

    Van Nimwegen, E; Rajewsky, N; Siggia, E D; Nimwegen, Erik van; Zavolan, Mihaela; Rajewsky, Nikolaus; Siggia, Eric D.

    2002-01-01

    Genome wide comparisons between enteric bacteria yield large sets of conserved putative regulatory sites on a gene by gene basis that need to be clustered into regulons. Using the assumption that regulatory sites can be represented as samples from weight matrices we derive a unique probability distribution for assignments of sites into clusters. Our algorithm, 'PROCSE' (probabilistic clustering of sequences), uses Monte-Carlo sampling of this distribution to partition and align thousands of short DNA sequences into clusters. The algorithm internally determines the number of clusters from the data, and assigns significance to the resulting clusters. We place theoretical limits on the ability of any algorithm to correctly cluster sequences drawn from weight matrices (WMs) when these WMs are unknown. Our analysis suggests that the set of all putative sites for a single genome (e.g. E. coli) is largely inadequate for clustering. When sites from different genomes are combined and all the homologous sites from the ...

  7. Draft Genome Sequence of Nocardia jinanensis, an Opportunistic Bacterial Pathogen That Causes Cellulitis

    Science.gov (United States)

    Chakrabortti, Alolika; Li, Jinming

    2016-01-01

    The draft genome sequence of Nocardia jinanensis, an opportunistic pathogen that can cause skin infections, reveals genes that may contribute to the lifestyle and pathogenicity of N. jinanensis. The genome also reveals the biosynthetic capacity of N. jinanensis in producing mycolic acids, siderophores, and other polyketide and nonribosomal peptide-derived secondary metabolites. PMID:27445366

  8. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions

    NARCIS (Netherlands)

    Wiedenheft, Blake; van Duijn, Esther; Bultema, Jelle; Waghmare, Sakharam; Zhou, Kaihong; Barendregt, Arjan; Westphal, Wiebke; Heck, Albert; Boekema, Egbert; Dickman, Mark; Doudna, Jennifer A.

    2011-01-01

    Prokaryotes have evolved multiple versions of an RNA-guided adaptive immune system that targets foreign nucleic acids. In each case, transcripts derived from clustered regularly interspaced short palindromic repeats (CRISPRs) are thought to selectively target invading phage and plasmids in a sequenc

  9. Draft Genome Sequence of Nocardia jinanensis, an Opportunistic Bacterial Pathogen That Causes Cellulitis.

    Science.gov (United States)

    Chakrabortti, Alolika; Li, Jinming; Liang, Zhao-Xun

    2016-01-01

    The draft genome sequence of Nocardia jinanensis, an opportunistic pathogen that can cause skin infections, reveals genes that may contribute to the lifestyle and pathogenicity of N. jinanensis The genome also reveals the biosynthetic capacity of N. jinanensis in producing mycolic acids, siderophores, and other polyketide and nonribosomal peptide-derived secondary metabolites. PMID:27445366

  10. Draft genome sequence of Erwinia tracheiphila, an economically important bacterial pathogen of cucurbits

    Science.gov (United States)

    Erwinia tracheiphila is one of the most economically important pathogen of cucumbers, melons, squashes, pumpkins, and gourds, in the Northeastern and Midwestern United States, yet the molecular pathology remains uninvestigated. Here we report the first draft genome sequence of an E. tracheiphila str...

  11. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    Directory of Open Access Journals (Sweden)

    Malihe Masomian

    Full Text Available Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.

  12. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    Science.gov (United States)

    Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+)-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  13. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Kathleen S. Rein

    2008-05-01

    Full Text Available Okadaic acid (OA and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  14. Accuracy and efficiency of algorithms for the demarcation of bacterial ecotypes from DNA sequence data.

    Science.gov (United States)

    Francisco, Juan Carlos; Cohan, Frederick M; Krizanc, Danny

    2014-01-01

    Identification of closely related, ecologically distinct populations of bacteria would benefit microbiologists working in many fields including systematics, epidemiology and biotechnology. Several laboratories have recently developed algorithms aimed at demarcating such 'ecotypes'. We examine the ability of four of these algorithms to correctly identify ecotypes from sequence data. We tested the algorithms on synthetic sequences, with known history and habitat associations, generated under the stable ecotype model and on data from Bacillus strains isolated from Death Valley where previous work has confirmed the existence of multiple ecotypes. We found that one of the algorithms (ecotype simulation) performs significantly better than the others (AdaptML, GMYC, BAPS) in both instances. Unfortunately, it was also shown to be the least efficient of the four. While ecotype simulation is the most accurate, it is by a large margin the slowest of the algorithms tested. Attempts at improving its efficiency are underway.

  15. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis.

    Science.gov (United States)

    Hwang, Ok-Hwa; Raveendar, Sebastian; Kim, Young-Ju; Kim, Ji-Hun; Choi, Jung-Woo; Kim, Tae-Hun; Choi, Dong-Yoon; Jeon, Che Ok; Cho, Sung-Back; Lee, Kyung-Tai

    2014-11-01

    The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05).

  16. Genome sequencing and systems biology analysis of a lipase-producing bacterial strain.

    Science.gov (United States)

    Li, N; Li, D D; Zhang, Y Z; Yuan, Y Z; Geng, H; Xiong, L; Liu, D L

    2016-01-01

    Lipase-producing bacteria are naturally-occurring, industrially-relevant microorganisms that produce lipases, which can be used to synthesize biodiesel from waste oils. The efficiency of lipase expression varies between various microbial strains. Therefore, strains that can produce lipases with high efficiency must be screened, and the conditions of lipase metabolism and optimization of the production process in a given environment must be thoroughly studied. A high efficiency lipase-producing strain was isolated from the sediments of Jinsha River, identified by 16S rRNA sequence analysis as Serratia marcescens, and designated as HS-L5. A schematic diagram of the genome sequence was constructed by high-throughput genome sequencing. A series of genes related to lipid degradation were identified by functional gene annotation through sequence homology analysis. A genome-scale metabolic model of HS-ML5 was constructed using systems biology techniques. The model consisted of 1722 genes and 1567 metabolic reactions. The topological graph of the genome-scale metabolic model was compared to that of conventional metabolic pathways using a visualization software and KEGG database. The basic components and boundaries of the tributyrin degradation subnetwork were determined, and its flux balance analyzed using Matlab and COBRA Toolbox to simulate the effects of different conditions on the catalytic efficiency of lipases produced by HS-ML5. We proved that the catalytic activity of microbial lipases was closely related to the carbon metabolic pathway. As production and catalytic efficiency of lipases varied greatly with the environment, the catalytic efficiency and environmental adaptability of microbial lipases can be improved by proper control of the production conditions. PMID:27050954

  17. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms

    OpenAIRE

    Kaas, Rolf Sommer; Leekitcharoenphon, Pimlapas; Aarestrup, Frank Møller; Lund, Ole

    2014-01-01

    Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites ...

  18. Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing.

    Science.gov (United States)

    Jee, Justin; Rasouly, Aviram; Shamovsky, Ilya; Akivis, Yonatan; Steinman, Susan R; Mishra, Bud; Nudler, Evgeny

    2016-06-30

    In 1943, Luria and Delbrück used a phage-resistance assay to establish spontaneous mutation as a driving force of microbial diversity. Mutation rates are still studied using such assays, but these can only be used to examine the small minority of mutations conferring survival in a particular condition. Newer approaches, such as long-term evolution followed by whole-genome sequencing, may be skewed by mutational ‘hot’ or ‘cold’ spots. Both approaches are affected by numerous caveats. Here we devise a method, maximum-depth sequencing (MDS), to detect extremely rare variants in a population of cells through error-corrected, high-throughput sequencing. We directly measure locus-specific mutation rates in Escherichia coli and show that they vary across the genome by at least an order of magnitude. Our data suggest that certain types of nucleotide misincorporation occur 10(4)-fold more frequently than the basal rate of mutations, but are repaired in vivo. Our data also suggest specific mechanisms of antibiotic-induced mutagenesis, including downregulation of mismatch repair via oxidative stress, transcription–replication conflicts, and, in the case of fluoroquinolones, direct damage to DNA. PMID:27338792

  19. Multidrug-resistant Escherichia coli soft tissue infection investigated with bacterial whole genome sequencing

    Science.gov (United States)

    Buchanan, Ruaridh; Stoesser, Nicole; Crook, Derrick; Bowler, Ian C J W

    2014-01-01

    A 45-year-old man with dilated cardiomyopathy presented with acute leg pain and erythema suggestive of necrotising fasciitis. Initial surgical exploration revealed no necrosis and treatment for a soft tissue infection was started. Blood and tissue cultures unexpectedly grew a Gram-negative bacillus, subsequently identified by an automated broth microdilution phenotyping system as an extended-spectrum β-lactamase producing Escherichia coli. The patient was treated with a 3-week course of antibiotics (ertapenem followed by ciprofloxacin) and debridement for small areas of necrosis, followed by skin grafting. The presence of E. coli triggered investigation of both host and pathogen. The patient was found to have previously undiagnosed liver disease, a risk factor for E. coli soft tissue infection. Whole genome sequencing of isolates from all specimens confirmed they were clonal, of sequence type ST131 and associated with a likely plasmid-associated AmpC (CMY-2), several other resistance genes and a number of virulence factors. PMID:25331151

  20. Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities

    International Nuclear Information System (INIS)

    This study demonstrates the feasibility of using Pseudomonasputida ONBA-17 to bioaugment a sequencing batch reactor (SBR) treating o-nitrobenzaldehyde (ONBA) synthetic wastewater. To monitor its survival, the strain was chromosomally marked with gfp gene. After a transient adaptation, almost 100% degradation of ONBA was obtained within 8 days as compared with 23.47% of the non-inoculated control. The bioaugmented reactor has a better chemical oxygen demand (COD) removal performance (96.28%) than that (79.26%) of the control. The bioaugmentation not only enhanced the removal capability of target compound, but shortened system start-up time. After the increase in ONBA load, performance fluctuation of two reactors was observed, and the final treating effects of them were comparable. What is more, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes via a combination of pattern comparison and sequence phylogenetic analysis was performed to uncover changes in sludge microbial communities. Only the members of alpha, beta and gamma subdivisions of Proteobacteria were identified. To isolate ONBA-degrading relevant microorganisms, spread plate was used and four bacterial strains were obtained. Subsequent systematic studies on these bacteria characterized their traits which to some extent explained why such bacteria could be kept in the system. This study will help future research in better understanding of the bioreactor bioaugmentation.

  1. DNA Sequencing Diagnosis of Off-Season Spirochetemia with Low Bacterial Density in Borrelia burgdorferi and Borrelia miyamotoi Infections

    Directory of Open Access Journals (Sweden)

    Sin Hang Lee

    2014-06-01

    Full Text Available A highly conserved 357-bp segment of the 16S ribosomal RNA gene (16S rDNA of Borrelia burgdorferi sensu lato and the correspondent 358-bp segment of the Borrelia miyamotoi gene were amplified by a single pair of nested polymerase chain reaction (PCR primers for detection, and the amplicons were used as the templates for direct Sanger DNA sequencing. Reliable molecular diagnosis of these borreliae was confirmed by sequence alignment analysis of the hypervariable regions of the PCR amplicon, using the Basic Local Alignment Search Tool (BLAST provided by the GenBank. This methodology can detect and confirm B. burgdorferi and B. miyamotoi in blood samples of patients with off-season spirochetemia of low bacterial density. We found four B. miyamotoi infections among 14 patients with spirochetemia, including one patient co-infected by both B. miyamotoi and B. burgdorferi in a winter month when human exposure to tick bites is very limited in the Northeast of the U.S.A. We conclude that sensitive and reliable tests for these two Borrelia species should be implemented in the microbiology laboratory of hospitals located in the disease-endemic areas, for timely diagnosis and appropriate treatment of the patients at an early stage of the infection to prevent potential tissue damages.

  2. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing.

    Science.gov (United States)

    Conway, Tyrrell; Creecy, James P; Maddox, Scott M; Grissom, Joe E; Conkle, Trevor L; Shadid, Tyler M; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada; Wanner, Barry L

    2014-01-01

    We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3' transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5' ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread. Importance: We precisely mapped the 5' and 3' ends of RNA transcripts across the E. coli K-12 genome by using a single-nucleotide analytical approach. Our resulting high-resolution transcriptome maps show that ca. one-third of E. coli operons are

  3. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  4. Insecticide Compendium. MP-29.

    Science.gov (United States)

    Spackman, Everett W.; And Others

    This document presents information on most of the known insecticides and their general usage, toxicity, formulation, compound type, manufacturers, and the chemical, trade and common names applied to each compound. (CS)

  5. More about Insecticides

    Directory of Open Access Journals (Sweden)

    E.K. Hartwig

    1980-09-01

    Full Text Available An insecticide is a chemical used to kill insects. Insect control can also include other materials such as repellents, oils, antifeedants and attractants. Ideally, an insecticide would effectively control any target insect exposed to it and would be harmless to man and his domestic animals. It would also be readily available in necessary quantitie s , s table chemically, noninflammable, easily prepared and applied, noncorrosive, non-staining, and would have no undesirable odour.

  6. More about Insecticides

    OpenAIRE

    E.K. Hartwig

    1980-01-01

    An insecticide is a chemical used to kill insects. Insect control can also include other materials such as repellents, oils, antifeedants and attractants. Ideally, an insecticide would effectively control any target insect exposed to it and would be harmless to man and his domestic animals. It would also be readily available in necessary quantitie s , s table chemically, noninflammable, easily prepared and applied, noncorrosive, non-staining, and would have no undesirable odour.

  7. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2014-01-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community...... with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature...

  8. Construction of a recombinant bacterial plasmid containing DNA sequences for a mouse embryonic globin chain.

    Science.gov (United States)

    Fantoni, A; Bozzoni, I; Ullu, E; Farace, M G

    1979-08-10

    Messenger RNAs for mouse embryonic globins were purified from yolk sac derived eyrthroid cells in mouse fetuses. Double stranded DNAs complementary to these messengers were synthesized and blunt end ligated to a EcoRI digested and DNA polymerase I repaired pBR322 plasmid. Of the ampicillin resistant transformants, one contained a plasmid with globin-specific cDNA. The inserted sequence is about 350 base pairs long. It contains one restriction site for EcoRI and one restriction site for HinfI about 170 and 80 base pairs from one end. The insert is not cleaved by HindIII, HindII, BamHI, PstI, SalI, AvaI, TaqI, HpaII, BglI. A mixture of purified messengers coding for alpha chains and for x, y and z embryonic chains was incubated with the recombinant plasmid and the hybridized messenger was translated in a mRNA depleted reticulocyte lysate protein synthesizing system. The product of translation was identified as a z chain by carboxymethylcellulose cromatography. The recombinant plasmid is named "pBR322-egz" after embryonic globin z. PMID:493112

  9. Construction of a recombinant bacterial plasmid containing DNA sequences for a mouse embryonic globin chain.

    Science.gov (United States)

    Fantoni, A; Bozzoni, I; Ullu, E; Farace, M G

    1979-01-01

    Messenger RNAs for mouse embryonic globins were purified from yolk sac derived eyrthroid cells in mouse fetuses. Double stranded DNAs complementary to these messengers were synthesized and blunt end ligated to a EcoRI digested and DNA polymerase I repaired pBR322 plasmid. Of the ampicillin resistant transformants, one contained a plasmid with globin-specific cDNA. The inserted sequence is about 350 base pairs long. It contains one restriction site for EcoRI and one restriction site for HinfI about 170 and 80 base pairs from one end. The insert is not cleaved by HindIII, HindII, BamHI, PstI, SalI, AvaI, TaqI, HpaII, BglI. A mixture of purified messengers coding for alpha chains and for x, y and z embryonic chains was incubated with the recombinant plasmid and the hybridized messenger was translated in a mRNA depleted reticulocyte lysate protein synthesizing system. The product of translation was identified as a z chain by carboxymethylcellulose cromatography. The recombinant plasmid is named "pBR322-egz" after embryonic globin z. Images PMID:493112

  10. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources.

    Directory of Open Access Journals (Sweden)

    Alan J Marsh

    Full Text Available Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.

  11. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiemin [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Xuemei; Li, Yuguang [101 Institute, Ministry of Civil Affairs, Beijing 100070 (China); Xing, Jianmin, E-mail: jmxing@ipe.ac.cn [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190 (China)

    2015-09-15

    Highlights: • Bacterial communities of haloalkaliphilic bioreactors were investigated. • MiSeq was first used in analysis of communities of haloalkaliphilic bioreactors. • Electron donors had significant effect on bacterial communities. - Abstract: Biological technology used to treat flue gas is useful to replace conventional treatment, but there is sulfide inhibition. However, no sulfide toxicity effect was observed in haloalkaliphilic bioreactors. The performance of the ethanol-fed bioreactor was better than that of lactate-, glucose-, and formate-fed bioreactor, respectively. To support this result strongly, Illumina MiSeq paired-end sequencing of 16S rRNA gene was applied to investigate the bacterial communities. A total of 389,971 effective sequences were obtained and all of them were assigned to 10,220 operational taxonomic units (OTUs) at a 97% similarity. Bacterial communities in the glucose-fed bioreactor showed the greatest richness and evenness. The highest relative abundance of sulfate-reducing bacteria (SRB) was found in the ethanol-fed bioreactor, which can explain why the performance of the ethanol-fed bioreactor was the best. Different types of SRB, sulfur-oxidizing bacteria, and sulfur-reducing bacteria were detected, indicating that sulfur may be cycled among these microorganisms. Because high-throughput 16S rRNA gene paired-end sequencing has improved resolution of bacterial community analysis, many rare microorganisms were detected, such as Halanaerobium, Halothiobacillus, Desulfonatronum, Syntrophobacter, and Fusibacter. 16S rRNA gene sequencing of these bacteria would provide more functional and phylogenetic information about the bacterial communities.

  12. Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Francesca De Filippis

    Full Text Available Microbial growth on meat to unacceptable levels contributes significantly to change meat structure, color and flavor and to cause meat spoilage. The types of microorganisms initially present in meat depend on several factors and multiple sources of contamination can be identified. The aims of this study were to evaluate the microbial diversity in beefsteaks before and after aerobic storage at 4°C and to investigate the sources of microbial contamination by examining the microbiota of carcasses wherefrom the steaks originated and of the processing environment where the beef was handled. Carcass, environmental (processing plant and meat samples were analyzed by culture-independent high-throughput sequencing of 16S rRNA gene amplicons. The microbiota of carcass swabs was very complex, including more than 600 operational taxonomic units (OTUs belonging to 15 different phyla. A significant association was found between beef microbiota and specific beef cuts (P<0.01 indicating that different cuts of the same carcass can influence the microbial contamination of beef. Despite the initially high complexity of the carcass microbiota, the steaks after aerobic storage at 4°C showed a dramatic decrease in microbial complexity. Pseudomonas sp. and Brochothrix thermosphacta were the main contaminants, and Acinetobacter, Psychrobacter and Enterobacteriaceae were also found. Comparing the relative abundance of OTUs in the different samples it was shown that abundant OTUs in beefsteaks after storage occurred in the corresponding carcass. However, the abundance of these same OTUs clearly increased in environmental samples taken in the processing plant suggesting that spoilage-associated microbial species originate from carcasses, they are carried to the processing environment where the meat is handled and there they become a resident microbiota. Such microbiota is then further spread on meat when it is handled and it represents the starting microbial association

  13. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    Science.gov (United States)

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing. PMID:27338271

  14. The Genomic Sequence of the Oral Pathobiont Strain NI1060 Reveals Unique Strategies for Bacterial Competition and Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Youssef Darzi

    Full Text Available Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is likely to represent a novel species. In addition, we found putative virulence genes involved in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are potentially important for host adaption and for the induction of dysbiosis through bacterial competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an innate immune receptor, but is defective in two peptidoglycan recycling genes due to a frameshift mutation. The in-depth analysis of its genome thus provides critical insights for the development of NI1060 as a prime model system for infectious disease.

  15. ISOLATION AND CHARACTERIZATION OF HALOPHILIC BACTERIAL STRAINS FROM SALINE WATERS OF KHEWRA SALT MINES ON THE BASIS OF 16S rRNA GENE SEQUENCE

    Directory of Open Access Journals (Sweden)

    Muhammad Kaleem Sarwar

    2014-02-01

    Full Text Available Halophiles are salt loving microbes optimally growing at high concentrations of salt. Khewra salt mines of Pakistan provide extreme saline conditions where enormous halophilic microbial biota thrives. The present study aimed at isolation and molecular identification of bacterial strains from saline waters of Khewra salt mines. Using halophilic media, nine halophilic bacterial strains from saline water bodies were cultured and studied under optimized growth conditions (NaCl, pH and temperature. Bacterial growth at different NaCl concentrations was measured at 600nm wavelength, showing optimal growth at 1.5M NaCl. 769bp size 16S rRNA gene was amplified for molecular identification of bacterial strains. The amplified genes of the strains FA2.2 and FA3.3 were sequenced and their homology with other bacterial strains was analyzed. The results showed FA2.2 shared maximum homology with Bacillus anthracis strain while FA3.3 showed close resemblance with Staphylococcus saprophyticus subsp. bovis. Isolated halophilic bacterial strains possess potential for various biotechnological applications. They could be manipulated for synthesizing transgenic crops tolerating high salinity boosting the agricultural yield. Moreover extremozymes of these bacteria holds great industrial importance.

  16. Insecticide Resistance in Fleas.

    Science.gov (United States)

    Rust, Michael K

    2016-01-01

    Fleas are the major ectoparasite of cats, dogs, and rodents worldwide and potential vectors of animal diseases. In the past two decades the majority of new control treatments have been either topically applied or orally administered to the host. Most reports concerning the development of insecticide resistance deal with the cat flea, Ctenocephalides felis felis. Historically, insecticide resistance has developed to many of the insecticides used to control fleas in the environment including carbamates, organophosphates, and pyrethroids. Product failures have been reported with some of the new topical treatments, but actual resistance has not yet been demonstrated. Failures have often been attributed to operational factors such as failure to adequately treat the pet and follow label directions. With the addition of so many new chemistries additional monitoring of flea populations is needed. PMID:26999217

  17. A short history of insecticides

    OpenAIRE

    Oberemok Volodymyr Volodymyrovych; Laikova Kateryna Volodymyrivna; Gninenko Yuri Ivanovich; Zaitsev Aleksei Sergeevich; Nyadar Palmah Mutah; Adeyemi Tajudeen Adesoji

    2015-01-01

    This review contains a brief history of the use of insecticides. The peculiarities, main advantages, and disadvantages of some modern insecticides are described. The names of the discoverers of some of the most popular insecticide preparations on the world market, are listed. The tendencies to find new insecticides to control the quantity of phytophagous insects are discussed. Special attention is paid to the perspective of creating preparations based on nucleic acids, in particular DNA insec...

  18. Botanical Insecticides in Plant Protection

    OpenAIRE

    Martina Grdiša; Kristina Gršić

    2013-01-01

    Botanical insecticides are natural compounds with insecticidal properties and their use in crop protection is as old as agricultural practice. Although they have been in use for over one hundred years, the advent of synthetic insecticides has unfortunately displaced their use today. Due to fast action, low cost, easy application and efficiency against a wide range of harmful species, synthetic insecticides have become an important part of pest management in modern agricultural systems...

  19. Resistance to Insecticides in Insects

    OpenAIRE

    ÇAKIR, Şükran; Şengül YAMANEL

    2005-01-01

    In recent years, the frequent usage of insecticides in struggle aganist insects, has caused development of resistance to those chemicals in insects. The increase in dosage of insecticide used due to development of resistance in insects, causes important problems in terms of environment and human health. This study includes topics such as insecticides which are used frequently in insect struggle, insecticide resistant types, genetic changes posing resistance, enzymes of resistance and resistan...

  20. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri.

    Science.gov (United States)

    Timilsina, Sujan; Jibrin, Mustafa O; Potnis, Neha; Minsavage, Gerald V; Kebede, Misrak; Schwartz, Allison; Bart, Rebecca; Staskawicz, Brian; Boyer, Claudine; Vallad, Gary E; Pruvost, Olivier; Jones, Jeffrey B; Goss, Erica M

    2015-02-01

    Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations. PMID:25527544

  1. A unique DNA repair and recombination gene (recN) sequence for identification and intraspecific molecular typing of bacterial wilt pathogen Ralstonia solanacearum and its comparative analysis with ribosomal DNA sequences

    Indian Academy of Sciences (India)

    Aundy Kumar; Thekkan Puthiyaveedu Prameela; Rajamma Suseelabhai

    2013-06-01

    Ribosomal gene sequences are a popular choice for identification of bacterial species and, often, for making phylogenetic interpretations. Although very popular, the sequences of 16S rDNA and 16-23S intergenic sequences often fail to differentiate closely related species of bacteria. The availability of complete genome sequences of bacteria, in the recent years, has accelerated the search for new genome targets for phylogenetic interpretations. The recently published full genome data of nine strains of R. solanacearum, which causes bacterial wilt of crop plants, has provided enormous genomic choices for phylogenetic analysis in this globally important plant pathogen. We have compared a gene candidate recN, which codes for DNA repair and recombination function, with 16S rDNA/16-23S intergenic ribosomal gene sequences for identification and intraspecific phylogenetic interpretations in R. solanacearum. recN gene sequence analysis of R. solanacearum revealed subgroups within phylotypes (or newly proposed species within plant pathogenic genus, Ralstonia), indicating its usefulness for intraspecific genotyping. The taxonomic discriminatory power of recN gene sequence was found to be superior to ribosomal DNA sequences. In all, the recN-sequence-based phylogenetic tree generated with the Bayesian model depicted 21 haplotypes against 15 and 13 haplotypes obtained with 16S rDNA and 16-23S rDNA intergenic sequences, respectively. Besides this, we have observed high percentage of polymorphic sites (S 23.04%), high rate of mutations (Eta 276) and high codon bias index (CBI 0.60), which makes the recN an ideal gene candidate for intraspecific molecular typing of this important plant pathogen.

  2. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia

    Directory of Open Access Journals (Sweden)

    Stott Matthew B

    2008-07-01

    Full Text Available Abstract Background The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. Results We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely

  3. Botanical Insecticides in Plant Protection

    Directory of Open Access Journals (Sweden)

    Martina Grdiša

    2013-06-01

    Full Text Available Botanical insecticides are natural compounds with insecticidal properties and their use in crop protection is as old as agricultural practice. Although they have been in use for over one hundred years, the advent of synthetic insecticides has unfortunately displaced their use today. Due to fast action, low cost, easy application and efficiency against a wide range of harmful species, synthetic insecticides have become an important part of pest management in modern agricultural systems. However, after decades of use, their negative side effects, such as toxicity to humans and animals, environmental contamination, and toxicity to non-target insects have become apparent and interest in less hazardous alternatives of pest control is therefore being renewed. Plant species with known insecticidal actions are being promoted and research is being conducted to find new sources of botanical insecticides. The most important botanical insecticide is pyrethrin, a secondary metabolite of Dalmatian pyrethrum, neem, followed by insecticides based on the essential oils, rotenone, quassia, ryania and sabadilla. They have various chemical properties and modes of action. However, some general characteristics include fast degradation in sunlight, air and moisture, and selectivity to non-target insects. Unfortunately, neither of these insecticides is widely used as a pest control agent but is recognized by organic crop producers in industrialized countries.

  4. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing.

    Science.gov (United States)

    Wang, Lei; Huang, Xu; Zheng, Tian-Ling

    2016-08-15

    This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (pexplaining less variation, nitrate addition coupled with oil spiking enhanced the growth of hydrocarbon degraders in mangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation. PMID:27262497

  5. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing.

    Science.gov (United States)

    Wang, Lei; Huang, Xu; Zheng, Tian-Ling

    2016-08-15

    This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (poil spiking enhanced the growth of hydrocarbon degraders in mangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation.

  6. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers.

    Science.gov (United States)

    Myer, Phillip R; Kim, MinSeok; Freetly, Harvey C; Smith, Timothy P L

    2016-08-01

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplification primer selection, and read length, which can affect the apparent microbial community. In this study, we compared short read 16S rRNA variable regions, V1-V3, with that of near-full length 16S regions, V1-V8, using highly diverse steer rumen microbial communities, in order to examine the impact of technology selection on phylogenetic profiles. Short paired-end reads from the Illumina MiSeq platform were used to generate V1-V3 sequence, while long "circular consensus" reads from the Pacific Biosciences RSII instrument were used to generate V1-V8 data. The two platforms revealed similar microbial operational taxonomic units (OTUs), as well as similar species richness, Good's coverage, and Shannon diversity metrics. However, the V1-V8 amplified ruminal community resulted in significant increases in several orders of taxa, such as phyla Proteobacteria and Verrucomicrobia (P niche-specific database to use in analyzing data from shorter read technologies when budgetary constraints preclude use of near-full length 16S sequencing. PMID:27282101

  7. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    Directory of Open Access Journals (Sweden)

    Mu Peng

    2015-09-01

    Full Text Available Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.

  8. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes.

    Science.gov (United States)

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-09-24

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.

  9. Evaluation of assembling methods on determination of whole genome sequence of Xylella fastidiosa blueberry bacterial leaf scorch strain

    Science.gov (United States)

    Blueberry bacterial leaf scorch (BBLS) disease, a threat to blueberry production in the Southern USA and potentially elsewhere, is caused by Xylella fastidiosa. Efficient control of BBLS requires knowledge of the pathogen. However, this is challenging because Xylella fastidiosa is difficult to cultu...

  10. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes.

    Science.gov (United States)

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-10-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future. PMID:26404329

  11. Next Generation Sequencing of Classical Swine Fever Virus and Border Disease virus cloned in Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Höper, Dirk; Beer, martin;

    2012-01-01

    be rescued only from some of our BAC constructs whereas others are not replication competent. To further analyze this discrepancy we have completely sequenced selected pestivirus BAC DNAs using a 454 Genome Sequencer FLX to evaluate the number/kind of deviations in the cloned genome sequences. In addition......, we have sequenced the full genome cDNA fragments used for the BACs by the same approach. This enables us to evaluate in more detail the nature of nucleotide changes in the pestivirus BACs that lead to lack of replicationcompetence and/or virus rescue. Additionally, detailed knowledge of the genomic...

  12. A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi.

    Science.gov (United States)

    Xu, Lijian; Liang, Kangkang; Duan, Bensha; Yu, Mengdi; Meng, Wei; Wang, Qinggui; Yu, Qiong

    2016-01-01

    Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008). With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis. PMID:27556442

  13. Insecticide susceptibility of cimex hemipterus

    Directory of Open Access Journals (Sweden)

    S. L. Perti

    1964-10-01

    Full Text Available The susceptibility of the bed bug, cimex hemiptelus fabricius, to certain synthetic contact insecticides, viz., DDT, lindane dieldrin, diazinon and malathion was investigated. The fifth nymphal stage of the insect was found to be more tolerant to insecticides than other nymphal instars or the adult bed bug.

  14. Co-monitoring bacterial and dinoflagellates communities by denaturing gradient gel electrophoresis (DGGE) and SSU rRNA sequencing during a dinoflagellates bloom

    Institute of Scientific and Technical Information of China (English)

    KANJinjun; CHENFeng

    2004-01-01

    Dinoflagellates are unicellular eukaryotic protists that dominate in all coastal waters, and are also present in oceanic waters. Despite the central importance of dinoflagellates in global primary production, the relationship between dinoflagellates and bacteria are still poorly understood. In order to understand the ecological interaction between bacterial and dinoflageUates communities, denaturing gradient gel electrophoresis (DGGE) and SSU rRNA sequencing were applied to monitoring the population dynamics of bacteria and dinoflagellates from the onset to disappearance of a dinoflagellates bloom occurred in Baltimore Inner Harbor, from April 15 to 24, 2002. Although Prorocentrum minimum was the major bloom forming species under the light microscopy, DGGE method with dinoflagellate specific primers demonstrated that Prorocentrum micans, Gymnodinium galatheanum and Gyrodinium uncatenum were also present during the bloom. Population shifts among the minor dinoflagellate groups were observed. DGGE of PCR-amplified 16S rRNA gene fragments indicated that cyanobacteria, α, β, γ-proteobacteria, FlavobacteriumBacteroides-Cytophaga (FBC), and Planctomcetes were the major components of bacterial assemblages during the bloom. DGGE analysis showed that Cytophagales and α-proteobacteria played important roles at different stages of dinoflagellates bloom. DGGE can be used as a rapid tool to simultaneously monitor population dynamics of both bacterial and dinoflagellates communities in aquatic environments, which is demonstrated here.

  15. Eukaryotic gene invasion by a bacterial mobile insertion sequence element IS2 during cloning into a plasmid vector.

    Science.gov (United States)

    Senejani, Alireza G; Sweasy, Joann B

    2010-01-01

    Escherichia coli (E. coli) are commonly used as hosts for DNA cloning and sequencing. Upon transformation of E. coli with recombined vector carrying a gene of interest, the bacteria multiply the gene of interest while maintaining the integrity of its content. During the subcloning of a mouse genomic fragment into a plasmid vector, we noticed that the size of the insert increased significantly upon replication in E. coli. The sequence of the insert was determined and found to contain a novel DNA sequence within the mouse genomic insert. A BLAST search of GenBank revealed the novel sequence to be that of the Insertion Sequence 2 (IS2) element from E. coli that was likely inserted during replication in that organism. Importantly, a detailed search of GenBank shows that the IS2 is present within many eukaryotic nucleotide sequences, and in many cases, has been annotated as being part of the protein. The results of this study suggest that one must perform additional careful analysis of the sequence results using BLAST comparisons, and further verification of gene annotation before submission into the GenBank. PMID:20678256

  16. Eukaryotic gene invasion by a bacterial mobile insertion sequence element IS2 during cloning into a plasmid vector

    Directory of Open Access Journals (Sweden)

    Senejani Alireza G

    2010-05-01

    Full Text Available Abstract Escherichia coli (E. coli are commonly used as hosts for DNA cloning and sequencing. Upon transformation of E. coli with recombined vector carrying a gene of interest, the bacteria multiply the gene of interest while maintaining the integrity of its content. During the subcloning of a mouse genomic fragment into a plasmid vector, we noticed that the size of the insert increased significantly upon replication in E. coli. The sequence of the insert was determined and found to contain a novel DNA sequence within the mouse genomic insert. A BLAST search of GenBank revealed the novel sequence to be that of the Insertion Sequence 2 (IS2 element from E. coli that was likely inserted during replication in that organism. Importantly, a detailed search of GenBank shows that the IS2 is present within many eukaryotic nucleotide sequences, and in many cases, has been annotated as being part of the protein. The results of this study suggest that one must perform additional careful analysis of the sequence results using BLAST comparisons, and further verification of gene annotation before submission into the GenBank.

  17. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes

    OpenAIRE

    Mu Peng; Xiaoxue Zi; Qiuyu Wang

    2015-01-01

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacte...

  18. Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons.

    Science.gov (United States)

    Połka, Justyna; Rebecchi, Annalisa; Pisacane, Vincenza; Morelli, Lorenzo; Puglisi, Edoardo

    2015-04-01

    The bacterial diversity involved in food fermentations is one of the most important factors shaping the final characteristics of traditional foods. Knowledge about this diversity can be greatly improved by the application of high-throughput sequencing technologies (HTS) coupled to the PCR amplification of the 16S rRNA subunit. Here we investigated the bacterial diversity in batches of Salame Piacentino PDO (Protected Designation of Origin), a dry fermented sausage that is typical of a regional area of Northern Italy. Salami samples from 6 different local factories were analysed at 0, 21, 49 and 63 days of ripening; raw meat at time 0 and casing samples at 21 days of ripening where also analysed, and the effect of starter addition was included in the experimental set-up. Culture-based microbiological analyses and PCR-DGGE were carried out in order to be compared with HTS results. A total of 722,196 high quality sequences were obtained after trimming, paired-reads assembly and quality screening of raw reads obtained by Illumina MiSeq sequencing of the two bacterial 16S hypervariable regions V3 and V4; manual curation of 16S database allowed a correct taxonomical classification at the species for 99.5% of these reads. Results confirmed the presence of main bacterial species involved in the fermentation of salami as assessed by PCR-DGGE, but with a greater extent of resolution and quantitative assessments that are not possible by the mere analyses of gel banding patterns. Thirty-two different Staphylococcus and 33 Lactobacillus species where identified in the salami from different producers, while the whole data set obtained accounted for 13 main families and 98 rare ones, 23 of which were present in at least 10% of the investigated samples, with casings being the major sources of the observed diversity. Multivariate analyses also showed that batches from 6 local producers tend to cluster altogether after 21 days of ripening, thus indicating that HTS has the potential

  19. Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters.

    Science.gov (United States)

    Bao, Weichen; Mi, Zhihui; Xu, Haiyan; Zheng, Yi; Kwok, Lai Yu; Zhang, Heping; Zhang, Wenyi

    2016-01-01

    The present study applied the PacBio single molecule, real-time sequencing technology (SMRT) in evaluating the quality of silage production. Specifically, we produced four types of Medicago sativa silages by using four different lactic acid bacteria-based additives (AD-I, AD-II, AD-III and AD-IV). We monitored the changes in pH, organic acids (including butyric acid, the ratio of acetic acid/lactic acid, γ-aminobutyric acid, 4-hyroxy benzoic acid and phenyl lactic acid), mycotoxins, and bacterial microbiota during silage fermentation. Our results showed that the use of the additives was beneficial to the silage fermentation by enhancing a general pH and mycotoxin reduction, while increasing the organic acids content. By SMRT analysis of the microbial composition in eight silage samples, we found that the bacterial species number and relative abundances shifted apparently after fermentation. Such changes were specific to the LAB species in the additives. Particularly, Bacillus megaterium was the initial dominant species in the raw materials; and after the fermentation process, Pediococcus acidilactici and Lactobacillus plantarum became the most prevalent species, both of which were intrinsically present in the LAB additives. Our data have demonstrated that the SMRT sequencing platform is applicable in assessing the quality of silage. PMID:27340760

  20. Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters.

    Science.gov (United States)

    Bao, Weichen; Mi, Zhihui; Xu, Haiyan; Zheng, Yi; Kwok, Lai Yu; Zhang, Heping; Zhang, Wenyi

    2016-06-24

    The present study applied the PacBio single molecule, real-time sequencing technology (SMRT) in evaluating the quality of silage production. Specifically, we produced four types of Medicago sativa silages by using four different lactic acid bacteria-based additives (AD-I, AD-II, AD-III and AD-IV). We monitored the changes in pH, organic acids (including butyric acid, the ratio of acetic acid/lactic acid, γ-aminobutyric acid, 4-hyroxy benzoic acid and phenyl lactic acid), mycotoxins, and bacterial microbiota during silage fermentation. Our results showed that the use of the additives was beneficial to the silage fermentation by enhancing a general pH and mycotoxin reduction, while increasing the organic acids content. By SMRT analysis of the microbial composition in eight silage samples, we found that the bacterial species number and relative abundances shifted apparently after fermentation. Such changes were specific to the LAB species in the additives. Particularly, Bacillus megaterium was the initial dominant species in the raw materials; and after the fermentation process, Pediococcus acidilactici and Lactobacillus plantarum became the most prevalent species, both of which were intrinsically present in the LAB additives. Our data have demonstrated that the SMRT sequencing platform is applicable in assessing the quality of silage.

  1. Assessing quality of Medicago sativa silage by monitoring bacterial composition with single molecule, real-time sequencing technology and various physiological parameters

    Science.gov (United States)

    Bao, Weichen; Mi, Zhihui; Xu, Haiyan; Zheng, Yi; Kwok, Lai Yu; Zhang, Heping; Zhang, Wenyi

    2016-01-01

    The present study applied the PacBio single molecule, real-time sequencing technology (SMRT) in evaluating the quality of silage production. Specifically, we produced four types of Medicago sativa silages by using four different lactic acid bacteria-based additives (AD-I, AD-II, AD-III and AD-IV). We monitored the changes in pH, organic acids (including butyric acid, the ratio of acetic acid/lactic acid, γ-aminobutyric acid, 4-hyroxy benzoic acid and phenyl lactic acid), mycotoxins, and bacterial microbiota during silage fermentation. Our results showed that the use of the additives was beneficial to the silage fermentation by enhancing a general pH and mycotoxin reduction, while increasing the organic acids content. By SMRT analysis of the microbial composition in eight silage samples, we found that the bacterial species number and relative abundances shifted apparently after fermentation. Such changes were specific to the LAB species in the additives. Particularly, Bacillus megaterium was the initial dominant species in the raw materials; and after the fermentation process, Pediococcus acidilactici and Lactobacillus plantarum became the most prevalent species, both of which were intrinsically present in the LAB additives. Our data have demonstrated that the SMRT sequencing platform is applicable in assessing the quality of silage. PMID:27340760

  2. DNA Sequencing Diagnosis of Off-Season Spirochetemia with Low Bacterial Density in Borrelia burgdorferi and Borrelia miyamotoi Infections

    OpenAIRE

    Sin Hang Lee; Vigliotti, Jessica S.; Vigliotti, Veronica S; William Jones; Moorcroft, Thomas A.; Katherine Lantsman

    2014-01-01

    A highly conserved 357-bp segment of the 16S ribosomal RNA gene (16S rDNA) of Borrelia burgdorferi sensu lato and the correspondent 358-bp segment of the Borrelia miyamotoi gene were amplified by a single pair of nested polymerase chain reaction (PCR) primers for detection, and the amplicons were used as the templates for direct Sanger DNA sequencing. Reliable molecular diagnosis of these borreliae was confirmed by sequence alignment analysis of the hypervariable regions of the PCR amplicon,...

  3. Complete metagenome sequencing based bacterial diversity and functional insights from basaltic hot spring of Unkeshwar, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Gajanan T. Mehetre

    2016-03-01

    Full Text Available Unkeshwar hot springs are located at geographical South East Deccan Continental basalt of India. Here, we report the microbial community analysis of this hot spring using whole metagenome shotgun sequencing approach. The analysis revealed a total of 848,096 reads with 212.87 Mbps with 50.87% G + C content. Metagenomic sequences were deposited in SRA database with accession number (SUB1242219. Community analysis revealed 99.98% sequences belonging to bacteria and 0.01% to archaea and 0.01% to Viruses. The data obtained revealed 41 phyla including bacteria and Archaea and including 719 different species. In taxonomic analysis, the dominant phyla were found as, Actinobacteria (56%, Verrucomicrobia (24%, Bacteriodes (13%, Deinococcus-Thermus (3% and firmicutes (2% and Viruses (2%. Furthermore, functional annotation using pathway information revealed dynamic potential of hot spring community in terms of metabolism, environmental information processing, cellular processes and other important aspects. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis of each contig sequence by assigning KEGG Orthology (KO numbers revealed contig sequences that were assigned to metabolism, organismal system, Environmental Information Processing, cellular processes and human diseases with some unclassified sequences. The Unkeshwar hot springs offer rich phylogenetic diversity and metabolic potential for biotechnological applications.

  4. Botanical Insecticides in Plant Protection

    Directory of Open Access Journals (Sweden)

    Martina Grdiša

    2013-07-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Botanical insecticides are natural compounds with insecticidal properties and their use in crop protection is as old as agricultural practice. Although they have been in use for over one hundred years, the advent of synthetic insecticides has unfortunately displaced their use today. Due to fast action, low cost, easy application and efficiency against a wide range of harmful species, synthetic insecticides have become an important part of pest management in modern agricultural systems. However, after decades of use, their negative side effects, such as toxicity to humans and animals, environmental contamination, and toxicity to non-target insects have become apparent and interest in less hazardous alternatives of pest control is therefore being renewed. Plant species with known insecticidal actions are being promoted and research is being conducted to find new sources of botanical insecticides. The most important botanical insecticide is pyrethrin, a secondary metabolite of Dalmatian pyrethrum, neem, followed by insecticides based on the essential oils, rotenone, quassia, ryania and sabadilla. Th ey have various chemical properties and modes of action. However, some general characteristics include fast degradation in sunlight, air and moisture, and selectivity to non-target insects. Unfortunately, neither of these insecticides is widely used as a pest control agent but is recognized by organic crop producers in industrialized countries. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Obična tablica"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  5. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  6. Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis.

    Science.gov (United States)

    Liu, An-Chi; Chou, Chu-Yang; Chen, Ling-Ling; Kuo, Chih-Horng

    2015-01-20

    Anaerobic digestion is a microbiological process of converting organic wastes into digestate and biogas in the absence of oxygen. In practice, disturbance to the system (e.g., organic shock loading) may cause imbalance of the microbial community and lead to digester failure. To examine the bacterial community dynamics after a disturbance, this study simulated an organic shock loading that doubled the chemical oxygen demand (COD) loading using a 4.5L swine wastewater anaerobic completely stirred tank reactor (CSTR). Before the shock (loading rate=0.65gCOD/L/day), biogas production rate was about 1-2L/L/day. After the shock, three periods representing increased biogas production rates were observed during days 1-7 (∼4.0L/L/day), 13 (3.3L/L/day), and 21-23 (∼6.1L/L/day). For culture-independent assessments of the bacterial community composition, the 454 pyrosequencing results indicated that the community contained >2500 operational taxonomic units (OTUs) and was dominated by three phyla: Bacteroidetes, Firmicutes, and Proteobacteria. The shock induced dynamic changes in the community composition, which was re-stabilized after approximately threefold hydraulic retention time (HRT). Intriguingly, upon restabilization, the community composition became similar to that observed before the shock, rather than reaching a new equilibrium.

  7. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon.

    Science.gov (United States)

    Feinauer, Christoph; Szurmant, Hendrik; Weigt, Martin; Pagnani, Andrea

    2016-01-01

    Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data. PMID:26882169

  8. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon.

    Directory of Open Access Journals (Sweden)

    Christoph Feinauer

    Full Text Available Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data.

  9. A renaissance for botanical insecticides?

    Science.gov (United States)

    Isman, Murray B

    2015-12-01

    Botanical insecticides continue to be a subject of keen interest among the international research community, reflected in the steady growth in scientific publications devoted to the subject. Until very recently though, the translation of that theory to practice, i.e. the commercialisation and adoption of new botanical insecticides in the marketplace, has seriously lagged behind. Strict regulatory regimes, long the bane of small pesticide producers, are beginning to relax some of the data requirements for 'low-risk' pesticide products, facilitating movement of more botanicals into the commercial arena. In this paper I discuss some of the jurisdictions where botanicals are increasingly finding favour, some of the newer botanical insecticides in the plant and animal health arsenal and some of the specific sectors where botanicals are most likely to compete effectively with other types of insecticidal product.

  10. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment.

  11. Exon sequence requirements for excision in vivo of the bacterial group II intron RmInt1

    Directory of Open Access Journals (Sweden)

    Toro Nicolás

    2011-05-01

    Full Text Available Abstract Background Group II intron splicing proceeds through two sequential transesterification reactions in which the 5' and 3'-exons are joined together and the lariat intron is released. The intron-encoded protein (IEP assists the splicing of the intron in vivo and remains bound to the excised intron lariat RNA in a ribonucleoprotein particle (RNP that promotes intron mobility. Exon recognition occurs through base-pairing interactions between two guide sequences on the ribozyme domain dI known as EBS1 and EBS2 and two stretches of sequence known as IBS1 and IBS2 on the 5' exon, whereas the 3' exon is recognized through interaction with the sequence immediately upstream from EBS1 [(δ-δ' interaction (subgroup IIA] or with a nucleotide [(EBS3-IBS3 interaction (subgroup IIB and IIC] located in the coordination-loop of dI. The δ nucleotide is involved in base pairing with another intron residue (δ' in subgroup IIB introns and this interaction facilitates base pairing between the 5' exon and the intron. Results In this study, we investigated nucleotide requirements in the distal 5'- and 3' exon regions, EBS-IBS interactions and δ-δ' pairing for excision of the group IIB intron RmInt1 in vivo. We found that the EBS1-IBS1 interaction was required and sufficient for RmInt1 excision. In addition, we provide evidence for the occurrence of canonical δ-δ' pairing and its importance for the intron excision in vivo. Conclusions The excision in vivo of the RmInt1 intron is a favored process, with very few constraints for sequence recognition in both the 5' and 3'-exons. Our results contribute to understand how group II introns spread in nature, and might facilitate the use of RmInt1 in gene targeting.

  12. Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos- insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera: Culicidae).

    Science.gov (United States)

    Li, Chun-xiao; Guo, Xiao-xia; Zhang, Ying-mei; Dong, Yan-de; Xing, Dan; Yan, Ting; Wang, Gang; Zhang, Heng-duan; Zhao, Tong-yan

    2016-05-01

    Culex pipiens pallens and Cx. p. quinquefasciatus are important vectors of many diseases, such as West Nile fever and lymphatic filariasis. The widespread use of insecticides to control these disease vectors and other insect pests has led to insecticide resistance becoming common in these species. In this study, high throughout Illumina sequencing was used to identify hundreds of Cx. p. pallens and Cx. p. quinquefasciatus genes that were differentially expressed in response to insecticide exposure. The identification of these genes is a vital first step for more detailed investigation of the molecular mechanisms involved in insecticide resistance in Culex mosquitoes.

  13. Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos- insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera: Culicidae).

    Science.gov (United States)

    Li, Chun-xiao; Guo, Xiao-xia; Zhang, Ying-mei; Dong, Yan-de; Xing, Dan; Yan, Ting; Wang, Gang; Zhang, Heng-duan; Zhao, Tong-yan

    2016-05-01

    Culex pipiens pallens and Cx. p. quinquefasciatus are important vectors of many diseases, such as West Nile fever and lymphatic filariasis. The widespread use of insecticides to control these disease vectors and other insect pests has led to insecticide resistance becoming common in these species. In this study, high throughout Illumina sequencing was used to identify hundreds of Cx. p. pallens and Cx. p. quinquefasciatus genes that were differentially expressed in response to insecticide exposure. The identification of these genes is a vital first step for more detailed investigation of the molecular mechanisms involved in insecticide resistance in Culex mosquitoes. PMID:26802491

  14. Loop-mediated isothermal amplification of specific endoglucanase gene sequence for detection of the bacterial wilt pathogen Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Rok Lenarčič

    Full Text Available The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes.

  15. Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities

    DEFF Research Database (Denmark)

    Moran-Gilad, Jacob; Sintchenko, Vitali; Karlsmose Pedersen, Susanne;

    2015-01-01

    Group 4 among GMI members in order to ascertain NGS end-use requirements and attitudes towards NGS PT. The survey identified the high professional diversity of laboratories engaged in NGS-based public health projects and the wide range of capabilities within institutions, at a notable range of costs....... The priority pathogens reported by respondents reflected the key drivers for NGS use (high burden disease and 'high profile' pathogens). The performance of and participation in PT was perceived as important by most respondents. The wide range of sequencing and bioinformatics practices reported by end...

  16. Proficiency Testing for Bacterial Whole Genome Sequencing: An End-User Survey of Current Capabilities, Requirements and Priorities

    DEFF Research Database (Denmark)

    Moran-Gilad, Jacob; Sintchenko, Vitali; Karlsmose Pedersen, Susanne;

    2015-01-01

    by Working Group 4 among GMI members in order to ascertain NGS end-use requirements and attitudes towards NGS PT. The survey identified the high professional diversity of laboratories engaged in NGS-based public health projects and the wide range of capabilities within institutions, at a notable range...... of costs. The priority pathogens reported by respondents reflected the key drivers for NGS use (high burden disease and ‘high profile’ pathogens). The performance of and participation in PT was perceived as important by most respondents. The wide range of sequencing and bioinformatics practices reported...

  17. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xufeng Han

    Full Text Available The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host's health and improve animal performance.

  18. Pros and cons of ion-torrent next generation sequencing versus terminal restriction fragment length polymorphism T-RFLP for studying the rumen bacterial community.

    Science.gov (United States)

    de la Fuente, Gabriel; Belanche, Alejandro; Girwood, Susan E; Pinloche, Eric; Wilkinson, Toby; Newbold, C Jamie

    2014-01-01

    The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index, respectively. Dendrograms for both datasets were also highly correlated (Mantel test = 0.742). Eighteen OTUs and ten genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information on the individual members of the microbial population.

  19. Evaluating the efficacy of the new Ion PGM Hi-Q Sequencing Kit applied to bacterial genomes.

    Science.gov (United States)

    Pereira, Felipe L; Soares, Siomar C; Dorella, Fernanda A; Leal, Carlos A G; Figueiredo, Henrique C P

    2016-05-01

    Benchtop NGS platforms are constantly evolving to follow new advances in genomics. Thus, the manufacturers are making improvements, such as the recent Ion PGM Hi-Q chemistry. We evaluate the efficacy of this new Hi-Q approach by comparing it with the former Ion PGM kit and the Illumina MiSEQ Nextera 3rd version. The Hi-Q chemistry showed improvement on mapping reads, with 49 errors for 10kbp mapped; in contrast, the former kit had 89 errors. Additionally, there was a reduction of 80% in erroneous variant detection with the Torrent Variant Caller. Also, an enhancement was observed in de novo assembly with a more confident result in whole-genome MLST, with up to 96% of the alleles assembled correctly for both tested microbial genomes. All of these advantages result in a final genome sequence closer to the performance with MiSEQ and will contribute to turn comparative genomic analysis a reliable task. PMID:27033417

  20. Synthesis of insecticidal sucrose esters

    Institute of Scientific and Technical Information of China (English)

    Song Zi-juan; Li Shu-jun; Chen Xi; Liu Li-mei; Song Zhan-qian

    2006-01-01

    Some synthetic sucrose esters (SE) are a relatively new class of insecticidal compounds produced by reacting sugars with fatty acids, which are safe for the environment. Especially, sucrose esters composed of C6-C12 fatty acids have desirable insecticidal properties against many soft-bodied arthropod pests. In our study, sucrose octanoate which has the highest activity against a range of arthropod species was synthesized by a trans-esterification method and proved its insecticidal property. Under the condition of a homogeneous liquid, sucrose octanoate was prepared by reacting ethyl octanoate with sucrose at reduced pressure; the yield was 79.11%. Sucrose octanoate synthesized was identified and its property analyzed by IR, TLC and spectrophotometric analysis. It was shown that the ratio of monoester to polyester in sucrose octanoate was 1.48:1. The insecticidal activity of the synthetic sucrose octanoate was evaluated at a concentration of 4 and 8 mg·mL-1. The mortality of first-instar larvae ofLymantria dispar from its contact toxicity was 72.5% after 36 hours, the revision insect reduced rate of Aphis glycines reached above 80% at 4 and 8 mg·mL-1 after being treated for 5 days. Since the SE products are nontoxic to humans and higher animals, fully biodegradable and hydrolyzed to readily metabolizable sucrose and fatty acid, they are not harmful to crops and appear to be good insecticide candidates.

  1. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing.

    Science.gov (United States)

    Hong, Youwei; Liao, Dan; Hu, Anyi; Wang, Han; Chen, Jinsheng; Khan, Sardar; Su, Jianqiang; Li, Hu

    2015-10-01

    Root-associated microbial communities are very important for biogeochemical cycles in wetland ecosystems and help to elaborate the mechanisms of plant invasions. In the estuary of Jiulong River (China), Spartina alterniflora has widely invaded Kandelia obovata-dominated habitats, offering an opportunity to study the influence of root-associated bacteria. The community structures of endophytic and rhizosphere bacteria associated with selected plant species were investigated using the barcoded Illumina paired-end sequencing technique. The diversity indices of bacteria associated with the roots of S. alterniflora were higher than those of the transition stands and K. obovata monoculture. Using principal coordinate analysis with UniFrac metrics, the comparison of β-diversity showed that all samples could be significantly clustered into 3 major groups, according to the bacteria communities of origin. Four phyla, namely Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes, were enriched in the rhizoplane of both salt marsh plants, while they shared higher abundances of Cyanobacteria and Proteobacteria among endophytic bacteria. Members of the phyla Spirochaetes and Chloroflexi were found among the endophytic bacteria of S. alterniflora and K. obovata, respectively. One of the interesting findings was that endophytes were more sensitive in response to plant invasion than were rhizosphere bacteria. With linear discriminate analysis, we found some predominant rhizoplane and endophytic bacteria, including Methylococcales, Pseudoalteromonadacea, Clostridium, Vibrio, and Desulfovibrio, which have the potential to affect the carbon, nitrogen, and sulfur cycles. Thus, the results provide clues to the isolation of functional bacteria and the effects of root-associated microbial groups on S. alterniflora invasions. PMID:26223001

  2. The selectivity of DNA insecticides

    OpenAIRE

    Oberemok V.; Nyadar P.

    2014-01-01

    Single-stranded LdMNPV iap3 gene fragments on tobacco hornworm and black cutworm, and a significant effect of single-stranded TnSNPV iap3 gene fragments on the viability of cabbage looper and their harmlessness on black cutworm was found. DNA insecticides based on LdMNPV iap3 and TnSNPV iap3 gene fragments are selective in action. Our findings emphasize the importance of appropriate concentrations of DNA insecticides used to control phyllophagous insects. This article has b...

  3. Ultradeep 16S rRNA Sequencing Analysis of Geographically Similar but Diverse Unexplored Marine Samples Reveal Varied Bacterial Community Composition

    OpenAIRE

    Chairmandurai Aravindraja; Dharmaprakash Viszwapriya; Shunmugiah Karutha Pandian

    2013-01-01

    BACKGROUND: Bacterial community composition in the marine environment differs from one geographical location to another. Reports that delineate the bacterial diversity of different marine samples from geographically similar location are limited. The present study aims to understand whether the bacterial community compositions from different marine samples harbour similar bacterial diversity since these are geographically related to each other. METHODS AND PRINCIPAL FINDINGS: In the present st...

  4. Carbon transformations in deep granitic groundwater by attached bacterial populations characterized with 16S-rRNA gene sequencing technique and scanning electron microscopy

    International Nuclear Information System (INIS)

    This report presents molecular characterization of attached bacterial populations growing in slowly flowing (1-3 mm s-1) artesian groundwater from deep crystalline bed-rock of the Stripa research mine, south central Sweden. The assimilation rate of CO2 and lactate, and the lactate respiration rates were also determined. The bacteria studied grew in anoxic, high pH, 9-10, and low redox artesian groundwater flowing up through tubings from two levels of a borehole designated V2, 812-820 m and 970-1240 m below ground. The major groups of bacteria were found. Signature bases placed them in the appropriate systematic groups. All belonged to the Proteobacterial groups beta and gamma. One group was found only at the 812-820 m level, where it constituted 63% of the sequenced clones, whereas the second group existed almost exclusively and constituted 85% of the sequenced clones at the 970-1240 m level. The third group was equally distributed between the levels. A few other bacteria were also found. None of the 16S-rRNA genes from the dominating bacteria resembled any of the other by more than 90% similarity, and none of them resembled anything in the database by more than 96%. Temperature did not seem to have any effect on species composition at the deeper level. SEM images showed rods appearing in microcolonies. The difference in population diversity between the two levels studied presumably reflect the different environments. The earlier proposed presence of sulphate reducing bacteria could no be confirmed

  5. GABA receptor subunit composition relative to insecticide potency and selectivity.

    Science.gov (United States)

    Ratra, G S; Casida, J E

    2001-07-01

    Three observations on the 4-[(3)H]propyl-4'-ethynylbicycloorthobenzoate ([(3)H]EBOB) binding site in the gamma-aminobutyric acid (GABA) receptor indicate the specific target for insecticide action in human brain and a possible mechanism for selectivity. First, from published data, alpha-endosulfan, lindane and fipronil compete for the [(3)H]EBOB binding site with affinities of 0.3--7 nM in both human recombinant homooligomeric beta 3 receptors and housefly head membranes. Second, from structure-activity studies, including new data, GABAergic insecticide binding potency on the pentameric receptor formed from the beta 3 subunit correlates well with that on the housefly receptor (r=0.88, n=20). This conserved inhibitor specificity is consistent with known sequence homologies in the housefly GABA receptor and the human GABA(A) receptor beta 3 subunit. Third, as mostly new findings, various combinations of alpha 1, alpha 6, and gamma 2 subunits coexpressed with a beta 1 or beta 3 subunit confer differential insecticide binding sensitivity, particularly to fipronil, indicating that subunit composition is a major factor in insecticide selectivity.

  6. Evaluation of PGM sequencing platform using in bacterial genome de novo sequencing%ABIPGM测序平台用于细菌基因组denovo测序的评价

    Institute of Scientific and Technical Information of China (English)

    黄方亮

    2015-01-01

    为了探索加快细菌基因组研究的方法,利用ABI PGM测序平台测定了1株单细胞硫还原地杆菌的基因组序列。测序共获得1.4 Gbp 数据,平均读长为177 bp。通过多个拼接软件并采用合适的组装策略,得到一个完整细菌基因组3.55 Mbp和一条完整质粒序列110 kbp。测定基因组序列与参考基因组kn400序列的相似性达到94%,参考基因组91%的基因能在测定基因组中找到相似基因。通过本研究表明采用ABI PGM测序平台结合灵活的拼接策略可快速构建细菌基因组精细图谱,为进一步的功能注释及深入的信息分析提供准确的数据,大大加快研究进程。%In order to speed up bacterial genome exploration, we performed the genome sequencing of Geobacter sulfurreducens using PGM. Totally, 1. 4 Gbp raw data were obtained with an average read length of 177 bp. 2 contigs were assembled by multiple software calculations using appropriate assembly strategies. The size of whole obtained genome and plasmid was measured to be 3. 55 Mbp and 110 kbp, respectively. The sequenced genome identified 94% of reference genome strain KN400 and 91% genes of KN400 were tested to be orthologous in the sequenced genome. This study proved that the use of ABI PGM sequencing platform with splicing flexible strategy can rapidly build bacteria genome map. By providing accurate data for the functional annotation and in⁃depth information analysis, it will greatly accelerate research progress.

  7. Insecticidal peptides from the theraposid spider Brachypelma albiceps: an NMR-based model of Ba2.

    Science.gov (United States)

    Corzo, Gerardo; Bernard, Cedric; Clement, Herlinda; Villegas, Elba; Bosmans, Frank; Tytgat, Jan; Possani, Lourival D; Darbon, Herve; Alagón, Alejandro

    2009-08-01

    Soluble venom and purified fractions of the theraposid spider Brachypelma albiceps were screened for insecticidal peptides based on toxicity to crickets. Two insecticidal peptides, named Ba1 and Ba2, were obtained after the soluble venom was separated by high performance liquid chromatography and cation exchange chromatography. The two insecticidal peptides contain 39 amino acid residues and three disulfide bonds, and based on their amino acid sequence, they are highly identical to the insecticidal peptides from the theraposid spiders Aphonopelma sp. from the USA and Haplopelma huwenum from China indicating a relationship among these genera. Although Ba1 and Ba2 were not able to modify currents in insect and vertebrate cloned voltage-gated sodium ion channels, they have noteworthy insecticidal activities compared to classical arachnid insecticidal toxins indicating that they might target unknown receptors in insect species. The most abundant insecticidal peptide Ba2 was submitted to NMR spectroscopy to determine its 3-D structure; a remarkable characteristic of Ba2 is a cluster of basic residues, which might be important for receptor recognition. PMID:19374957

  8. Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere

    Institute of Scientific and Technical Information of China (English)

    ZHANG Baoguo; ZHANG Hongxun; JIN Bo; TANG Ling; YANG Jianzhou; LI Baoju; ZHUANG Guoqiang; BAI Zhihui

    2008-01-01

    Cucumber (Cucumis sativus) is one of the most widely used vegetable in the world, and different pesticides have been extensively used for controlling the insects and disease pathogens of this plant. However, little is known about how the pesticides affect the microbial community in cucumber phyllosphere. This study was the first attempt to assess the impact of pyrethroid insecticide cyperemethrin on the microbial communities of cucumber phyllosphere using biochemical and genetic approaches. Phospholipid fatty acid (PLFA) assay indicated that cyperemethrin insecticide treatment led to a significant increase in both total and bacterial biomass and a decrease in fungal biomass and the ratio of Gram-positive (GP) bacteria to Gram-negative (GN) bacteria within the cucumber phyllosphere. Principal-component analyses (PCA) suggested that the number of unsaturated and cyclopropane PLFAs (16:1ω9t,18:1ω7, cy17:0, cy19:0) increased with the insecticide treatment, whereas the saturated PLFA i16:0, i17:0 decreased. The increase of GN bacteria implied that the cypermethrin insecticide might be a nutrient for the growth of these phyllosphere microbes. Terminal restriction fragment length polymorphism (T-RFLP) reinforced the PLFA results. A significant change of bacterial community structure was observed in the separate dendrogram cluster between control and treated samples with the cucumber phyllosphere following cypermethrin insecticide treatment. Moreover, the increased terminal restriction fragments (T-RFs) (58, 62, 89, 99, 119, 195, 239,311,340, and 473 bp) indicated that some bacteria might play a significant role in the insecticide degradation within the cucumber phylosphere, whereas the disappeared T-RFs (44, 51, 96, 223, 306, and 338 bp) implied that some other bacteria might potentially serve as microbial indicator of cyperemethrin insecticide exposure.

  9. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.; Andersen, G.L.; Lu, S.-E.; Wang, N.

    2009-03-01

    The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method. PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates in

  10. Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing

    OpenAIRE

    Siala, Mariam; Jaulhac, Benoit; Gdoura, Radhouane; Sibilia, Jean; Fourati, Hela; Younes, Mohamed; Baklouti, Sofien; Bargaoui, Naceur; Sellami, Slaheddine; Znazen, Abir; Barthel, Cathy; Collin, Elody; Hammami, Adnane; Sghir, Abdelghani

    2008-01-01

    Introduction Bacteria and/or their antigens have been implicated in the pathogenesis of reactive arthritis (ReA). Several studies have reported the presence of bacterial antigens and nucleic acids of bacteria other than those specified by diagnostic criteria for ReA in joint specimens from patients with ReA and various arthritides. The present study was conducted to detect any bacterial DNA and identify bacterial species that are present in the synovial tissue of Tunisian patients with reacti...

  11. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    Science.gov (United States)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-06-01

    Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.

  12. Prenatal Insecticide Exposure and Children's Cognitive Development

    OpenAIRE

    Gaspar, Fraser William

    2014-01-01

    Although approximately 123 million people may be exposed to high levels of insecticides through the use of indoor residual spraying (IRS) for malaria control, very little data exists on exposure levels and risk to residents. In addition, certain populations may be more susceptible to the unintended health effects of insecticide exposure from IRS including the developing fetus. The aims of this dissertation were as follows: 1) build indoor transport and fate models to estimate insecticide expo...

  13. The risk of insecticides to pollinating insects

    OpenAIRE

    Connolly, Christopher N.

    2013-01-01

    A key new risk to our pollinators has been identified as exposure to neonicotinoid insecticides. These discoveries have refuelled the debate over whether or not the neonicotinoid insecticides should be banned and conflicting evidence is used in this battle. However, the issue is not black or white, but gray. It is not an issue of whether the neonicotinoids are toxic to insects or not. Clearly, all insecticides were designed and optimized for this attribute. The real question is, or at least s...

  14. Susceptibility of Bed Bugs to Insecticides

    Directory of Open Access Journals (Sweden)

    P. Damodar

    1964-04-01

    Full Text Available The susceptibility of a normal laboratory strain of the bed bug, cimex hemipterus fabricius to certain synthetic insecticides, viz. dieldrin, diazinon and malathion was investigated in relation to DDT and lindance. The data were subjected to probit analysis. It was found that diazinon was the most effective insecticide, as residual films on filter papers, and was followed by malathion, lindane and DDT/dieldrin. It was also found that c. hemipterus was fairly susceptible to all the insecticides investigated.

  15. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip and 16S rRNA gene clone library sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Shankar Sagaram, U.; DeAngelis, K.M.; Trivedi, P.; Andersen, G.L.; Lu, S.-E.; Wang, N.

    2009-03-01

    The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method. PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates in

  16. Organophosphorus and carbamate insecticide poisoning.

    Science.gov (United States)

    Vale, Allister; Lotti, Marcello

    2015-01-01

    Both organophosphorus (OP) and carbamate insecticides inhibit acetylcholinesterase (AChE), which results in accumulation of acetylcholine (ACh) at autonomic and some central synapses and at autonomic postganglionic and neuromuscular junctions. As a consequence, ACh binds to, and stimulates, muscarinic and nicotinic receptors, thereby producing characteristic features. With OP insecticides (but not carbamates), "aging" may also occur by partial dealkylation of the serine group at the active site of AChE; recovery of AChE activity requires synthesis of new enzyme in the liver. Relapse after apparent resolution of cholinergic symptoms has been reported with OP insecticides and is termed the intermediate syndrome. This involves the onset of muscle paralysis affecting particularly upper-limb muscles, neck flexors, and cranial nerves some 24-96 hours after OP exposure and is often associated with the development of respiratory failure. OP-induced delayed neuropathy results from phosphorylation and subsequent aging of at least 70% of neuropathy target esterase. Cramping muscle pain in the lower limbs, distal numbness, and paresthesiae are followed by progressive weakness, depression of deep tendon reflexes in the lower limbs and, in severe cases, in the upper limbs. The therapeutic combination of oxime, atropine, and diazepam is well established experimentally in the treatment of OP pesticide poisoning. However, there has been controversy as to whether oximes improve morbidity and mortality in human poisoning. The explanation may be that the solvents in many formulations are primarily responsible for the high morbidity and mortality; oximes would not be expected to reduce toxicity in these circumstances. even if given in appropriate dose. PMID:26563788

  17. Pharmacophore model for neonicotinoid insecticides

    Institute of Scientific and Technical Information of China (English)

    Jian Li; Xiu Lian Ju; Feng Chao Jiang

    2008-01-01

    An effective prediction pharmacophore model (RMS = 0.634, Correl = 0.893, Weight = 1.463, Config = 11.940) was success-fully obtained by 3D-QSAR based on a series of nAChR (nicotinic acetylcholine receptors) agonists, which consists of a hydrogen-bonding acceptor, a hydrogen-bond donor, a hydrophobic aliphatic and a hydrophobic aromatic centre. This pharmacophore modelmay provide theoretical basis for designation and development of higher active insecticides.2008 Xiu Lian Ju. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  18. Application of bacterial 16S rDNA amplification and sequencing in the classification and identification of bacteria%16S rDNA扩增及测序在细菌鉴定与分类中的应用

    Institute of Scientific and Technical Information of China (English)

    朱诗应; 戚中田

    2013-01-01

    Bacterial 16S rDNA amplification and sequencing is a new tool which has been widely used to identify bacterial species and perform taxonomic studies . The application of this technology for identification of uncultivable bacteria , differentiating species with high DNA sequence similarity and discovering novel bacterial genus and species are introduced in this paper . Future perspective of the method in clinical microbiology laboratories is also discussed .%16S rDNA扩增及测序技术在细菌的鉴定与分类研究中发挥着越来越重要的作用.本文就16S rDNA结构、可变区和保守区部分序列或全序列在临床上细菌鉴定和新细菌识别等方面的研究进展进行综述,并对其在临床实验室中的应用进行展望.

  19. Insecticidal compounds from Kalanchoe daigremontiana x tubiflora.

    Science.gov (United States)

    Supratman, U; Fujita, T; Akiyama, K; Hayashi, H

    2001-09-01

    Methyl daigremonate, an insecticidal bufadienolide, was isolated from the leaves of Kalanchoe daigremontianaxtubiflora (Crassulaceae) along with four known bufadienolides. Its structure was established by spectroscopic analysis, and insecticidal activities were assessed against the third instar larvae of silkworm (Bombyx mori). The results suggest that the orthoester and alpha-pyrone moieties played an important role in the activity. PMID:11551556

  20. Insecticide Resistance Reducing Effectiveness of Malaria Control

    Centers for Disease Control (CDC) Podcasts

    2007-01-24

    Malaria prevention is increasingly insecticide based. Dr. John Gimnig, an entomologist with the Division of Parasitic Diseases, CDC, discusses evidence that mosquito resistance to insecticides, which is measured in the laboratory, could compromise malaria prevention in the field.  Created: 1/24/2007 by Emerging Infectious Diseases.   Date Released: 3/13/2007.

  1. Insecticide Recommendations for Arkansas. MP 144.

    Science.gov (United States)

    Jones, Bill F.; Barnes, Gordon

    This publication gives, in chart form, insecticides for use on animals, field crops, fruits, flowers, trees and shrubs, household pests, recreation areas, lawn and turf grass, pecans, stored grain, and vegetables. Included in the charts are the insecticides recommended for each insect, formulation to be used, amount, time to apply, and other…

  2. Poisoning by organophosphorus insecticides and sensory neuropathy

    OpenAIRE

    Moretto, A; M. Lotti

    1998-01-01

    OBJECTIVES—Poisoning by organophosphate insecticides causes cholinergic toxicity. Organophosphate induced delayed polyneuropathy (OPIDP) is a sensory-motor distal axonopathy which usually occurs after ingestion of large doses of certain organophosphate insecticides and has so far only been reported in patients with preceding cholinergic toxicity. Surprisingly, it was recently reported by other authors that an exclusively sensory neuropathy developed in eight patients afte...

  3. Genome-wide Screening Reveals the Genetic Determinants of an Antibiotic Insecticide in Bacillus thuringiensis*

    OpenAIRE

    Liu, Xiao-Yan; Ruan, Li-Fang; Hu, Zhen-Fei; Peng, Dong-hai; Cao, Shi-Yun; Yu, Zi-Niu; Liu, Yao; Zheng, Jin-Shui; Sun, Ming

    2010-01-01

    Thuringiensin is a thermostable secondary metabolite in Bacillus thuringiensis and has insecticidal activity against a wide range of insects. Until now, the regulatory mechanisms and genetic determinants involved in thuringiensin production have remained unclear. Here, we successfully used heterologous expression-guided screening in an Escherichia coli–Bacillus thuringiensis shuttle bacterial artificial chromosome library, to clone the intact thuringiensin synthesis (thu) cluster. Then the th...

  4. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    Full Text Available We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant and a new planting site (NewPlant in Beijing. Dwarfing apple nurseries of 'Fuji'/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil and from the new planting site (NewSoil was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant. More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria. The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition.

  5. Identification of the bacterial community responsible for traditional fermentation during sour cassava starch, cachaça and minas cheese production using culture-independent 16s rRNA gene sequence analysis

    Science.gov (United States)

    Lacerda, Inayara C. A.; Gomes, Fátima C. O.; Borelli, Beatriz M.; Faria Jr., César L. L.; Franco, Gloria R.; Mourão, Marina M.; Morais, Paula B.; Rosa, Carlos A.

    2011-01-01

    We used a cultivation-independent, clone library-based 16S rRNA gene sequence analysis to identify bacterial communities present during traditional fermentation in sour cassava starch, cachaça and cheese production in Brazil. Partial 16S rRNA gene clone sequences from sour cassava starch samples collected on day five of the fermentation process indicated that Leuconostoc citreum was the most prevalent species, representing 47.6% of the clones. After 27 days of fermentation, clones (GenBank accession numbers GQ999786 and GQ999788) related to unculturable bacteria were the most prevalent, representing 43.8% of the clones from the bacterial community analyzed. The clone represented by the sequence GQ999786 was the most prevalent at the end of the fermentation period. The majority of clones obtained from cachaça samples during the fermentation of sugar cane juice were from the genus Lactobacillus. Lactobacillus nagelli was the most prevalent at the beginning of the fermentation process, representing 76.9% of the clones analyzed. After 21 days, Lactobacillus harbinensis was the most prevalent species, representing 75% of the total clones. At the end of the fermentation period, Lactobacillus buchneri was the most prevalent species, representing 57.9% of the total clones. In the Minas cheese samples, Lactococcus lactis was the most prevalent species after seven days of ripening. After 60 days of ripening, Streptococcus salivarius was the most prevalent species. Our data show that these three fermentation processes are conducted by a succession of bacterial species, of which lactic acid bacteria are the most prevalent. PMID:24031676

  6. Draft Genome Sequence of Criibacterium bergeronii gen. nov., sp. nov., Strain CCRI-22567T, Isolated from a Vaginal Sample from a Woman with Bacterial Vaginosis.

    Science.gov (United States)

    Maheux, Andrée F; Bérubé, Ève; Boudreau, Dominique K; Raymond, Frédéric; Corbeil, Jacques; Roy, Paul H; Boissinot, Maurice; Omar, Rabeea F

    2016-01-01

    Criibacterium bergeronii gen. nov., sp. nov., CCRI-22567 is the type strain of the new genus Criibacterium The strain was isolated from a woman with bacterial vaginosis. The genome assembly comprised 2,384,460 bp, with 34.4% G+C content. This is the first genome announcement of a strain belonging to the genus Criibacterium. PMID:27587833

  7. Draft Genome Sequence of Pseudomonas stutzeri ODKF13, Isolated from Farmland Soil in Alvin, Texas

    OpenAIRE

    Iyer, Rupa; Damania, Ashish

    2016-01-01

    Pseudomonas stutzeri ODKF13 is a bacterial microorganism isolated from farmland soil in Alvin, Texas. This strain is notable for its naphthalene degradation and nitrogen fixation pathways and for its characterization as an organophosphate degrader of phosphotriester and phosphorothioate insecticides.

  8. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the phen

  9. DESCRIPTIVE ANALYSIS OF HOUSEHOLD INSECTICIDE IN COMMUNITY

    Directory of Open Access Journals (Sweden)

    Aram Sih Joharina

    2014-06-01

    Full Text Available The most popular and effective vector control is the use of insecticides. Surveywas done in the houses and some supermarket to know many kind of insecticides usedby people. The formulation, active ingredients, and concentration were recorded andanalyzed. Based on the results of the survey, household insecticides formulated invarious formulations such as liquid, mosquito coils, aerosol, mat and liquid vaporizer,chalk and paper burn. In addition to formulation, active ingredients and concentrationalso vary. Almost all household insecticide products on the market using the syntheticpyrethroid. Selection of household insecticides should be adapted to the type of insectpests because each type of active ingredients and formulations have advantages anddisadvantages. Efficacy of various active ingredients in various formulations has beenstudied and the results vary widely. Insecticide efficacy is influenced by the type ofactive ingredient, dosage, concentration, formulation, and the susceptibility of insectspecies, temperature, sunlight, wind, and application method.Key word: household insecticide, insecticides formulation, active ingredientsABSTRAKPengendalian serangga vektor penyakit yang paling efektif dan populer adalahpenggunaan insektisida. Survei dilakukan di masyarakat dan supermarket untuk mengetahuijcnis-jenis insektisida yang digunakan oleh masyarakat. Berdasarkan hasil survei, insektisidarumah tangga terkemas dalam berbagai formulasi antara lain liquid, mosquito coil, aerosol, mat& liquid vaporizer, kapur serangga dan kertas bakar. Disamping formulasi, bahan aktif dankonsentrasi yang digunakan juga bermacam-macam. Hampir semua produk insektisida rumahtangga di pasaran menggunakan bahan aktif golongan piretroid sintetik. Pemilihan insektisidarumah tangga hendaknya disesuaikan dengan jenis serangga sasaran karena tiap jenis bahan aktifdan formulasi memiliki kelcbihan dan kekurangan. Efikasi berbagai bahan aktif dalam berbagaiformulasi telah

  10. Management of Insecticide Resistance: Adana Model

    OpenAIRE

    Alptekin, Davut

    2015-01-01

    Many diseases in the world have been transmitted to humans by insects. Chemical substances that are used against pests or insect vectors in agricultural production and public health are called pesticide. Insecticides are chemical substances or a group of substances used to kill Insects which are classified within pesticides forming the class of Insecta including any biological stage of insects (larva, pupa, adult). Insecticides are classified according to their effective biological stage (adu...

  11. Insecticide Resistanca in Maleria Vector An. sacharovi

    OpenAIRE

    Üniversitesi, Çukurova; ABD, Tıp Fakültesi Tıbbi Biyoloji; Balcalı,; Adana-TÜRKİYE,

    2000-01-01

    Susceptibility tests have been successfully used for many years to determine insecticide resistance raised in pest and vector insects, including An. sacharovi,the primary human malaria vector in Turkey. As this method does not provide sufficient information about physiological resistance, an alternative method of enzyme tests based on biochemical and genetic evaluations has been developed. In this study, both methods were used for comparison. First of all, susceptibility to insecticides w...

  12. Inhibition of aflatoxin production by selected insecticides.

    OpenAIRE

    Draughon, F A; Ayres, J. C.

    1981-01-01

    The insecticide naled completed inhibition production of aflatoxins B1, B2, G1, and G2 by and growth of Aspergillus parasiticus at a 100-ppm (100 microgram/ml) concentration. The insecticides dichlorvos, Landrin, pyrethrum, Sevin, malathion, and Diazinon significantly (P = 0.05) inhibited production of aflatoxins at a 100-ppm concentration. However, at a concentration of 10 ppm, significant inhibition in production of aflatoxins was found only with naled, dichlorvos, Sevin, Landrin, and pyret...

  13. Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Jinke Lin

    2011-01-01

    Full Text Available We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%, followed by DNA retrotransposons (11.16%–11.69%. Additionally, we found 25 simple sequence repeats (SSRs that could potentially be used as genetic markers.

  14. Insecticidal sugar baits for adult biting midges.

    Science.gov (United States)

    Snyder, D; Cernicchiaro, N; Allan, S A; Cohnstaedt, L W

    2016-06-01

    The mixing of an insecticide with sugar solution creates an oral toxin or insecticidal sugar bait (ISB) useful for reducing adult insect populations. The ability of ISBs to kill the biting midge Culicoides sonorensis Wirth and Jones (Diptera: Ceratopogonidae), a vector of bluetongue virus, epizootic hemorrhagic disease and vesicular stomatitis viruses, was tested. The commercial insecticide formulations (percentage active ingredient) tested included bifenthrin, cyfluthrin, deltamethrin, permethrin, dinotefuran, imidacloprid, thiamethoxam and spinosad. Mortality rates were determined for various concentrations of commercial formulations (0.01, 0.05, 0.1, 1, 2 and 3%) and observed at 1, 4, 10 and 24 h post-exposure to the ISB. In the first set of assays, laboratory-reared midges were fed sugar ad libitum and then exposed to insecticide-treated sugar solutions to measure mortality. The second assay assessed competitive feeding: midges were provided with a control sugar solution (10% sucrose) in one vial, and a sugar and insecticide solution in another. Pyrethroid treatments resulted in the greatest mortality in the first hour at the lowest concentrations and spinosad consumption resulted in the least mortality. Biting midges were not deterred from feeding on the 1% ISB solutions despite the presence of an insecticide-free alternative source of sugar. PMID:26789534

  15. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Ju-Chun Hsu

    Full Text Available Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS. The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs. A total of 29,067 isotigs have putative homologues in the non-redundant (nr protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also

  16. Genome Sequence of Bacillus thuringiensis subsp. kurstaki Strain HD-1

    OpenAIRE

    Day, Michael; Ibrahim, Mohamed; Dyer, David; Bulla, Lee

    2014-01-01

    We report here the complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD-1, which serves as the primary U.S. reference standard for all commercial insecticidal formulations of B. thuringiensis manufactured around the world.

  17. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  18. Pyrethroid insecticides in municipal wastewater.

    Science.gov (United States)

    Weston, Donald P; Ramil, Heather L; Lydy, Michael J

    2013-11-01

    Pyrethroids are widely used insecticides, but minimal information has been published on their presence in municipal wastewater in the United States. Pyrethroids in wastewater from the Sacramento, California, USA, area consisted of permethrin, bifenthrin, cypermethrin, and cyhalothrin, with a combined concentration of 200 ng/L to 500 ng/L. Sampling within the wastewater collection system leading to the treatment plant suggested pyrethroids did not originate primarily from urban runoff, but could be from any of several drain disposal practices. Wastewater from residential areas was similar in pyrethroid composition and concentration to that from the larger metropolitan area as a whole. Secondary treatment removed approximately 90% of pyrethroids, but those remaining exceeded concentrations acutely toxic to sensitive species. Toxicity to the amphipod, Hyalella azteca, was consistently evident in the final effluent. The large river into which this particular plant discharged provided sufficient dilution such that pyrethroids were undetected in the river, and there was only slight toxicity of unknown cause in 1 river sample, but effects in receiving waters elsewhere will be site-specific. PMID:23893650

  19. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Kumar, Sunil; Park, Jiyeong; Kim, Eunseong; Na, Jahyun; Chun, Yong Shik; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2015-10-01

    A novel fumigant, chlorine dioxide (ClO2) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its mode of action to kill insects is yet to be understood. This study set up a hypothesis that an oxidative stress induced by ClO2 is a main factor to kill insects. The Indian meal moth, Plodia interpunctella, is a lepidopteran insect pest infesting various stored grains. Larvae of P. interpunctella were highly susceptible to ClO2 gas, which exhibited an acute toxicity. Physiological damages by ClO2 were observed in hemocytes. At high doses, the larvae of P. interpunctella suffered significant reduction of total hemocytes. At low doses, ClO2 impaired hemocyte behaviors. The cytotoxicity of ClO2 was further analyzed using two insect cell lines, where Sf9 cells were more susceptible to ClO2 than High Five cells. The cells treated with ClO2 produced reactive oxygen species (ROS). The produced ROS amounts increased with an increase of the treated ClO2 amount. However, the addition of an antioxidant, vitamin E, significantly attenuated the cytotoxicity of ClO2 in a dose-dependent manner. To support the oxidative stress induced by ClO2, two antioxidant genes (superoxide dismutase (SOD) and thioredoxin-peroxidase (Tpx)) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Tpx were expressed in larvae of P. interpunctella especially under oxidative stress induced by bacterial challenge. Exposure to ClO2 gas significantly induced the gene expression of both SOD and Tpx. RNA interference of SOD or Tpx using specific double stranded RNAs significantly enhanced the lethality of P. interpunctella to ClO2 gas treatment as well as to the bacterial challenge. These results suggest that ClO2 induces the production of insecticidal ROS, which results in a fatal oxidative stress in P. interpunctella.

  20. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Kumar, Sunil; Park, Jiyeong; Kim, Eunseong; Na, Jahyun; Chun, Yong Shik; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2015-10-01

    A novel fumigant, chlorine dioxide (ClO2) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its mode of action to kill insects is yet to be understood. This study set up a hypothesis that an oxidative stress induced by ClO2 is a main factor to kill insects. The Indian meal moth, Plodia interpunctella, is a lepidopteran insect pest infesting various stored grains. Larvae of P. interpunctella were highly susceptible to ClO2 gas, which exhibited an acute toxicity. Physiological damages by ClO2 were observed in hemocytes. At high doses, the larvae of P. interpunctella suffered significant reduction of total hemocytes. At low doses, ClO2 impaired hemocyte behaviors. The cytotoxicity of ClO2 was further analyzed using two insect cell lines, where Sf9 cells were more susceptible to ClO2 than High Five cells. The cells treated with ClO2 produced reactive oxygen species (ROS). The produced ROS amounts increased with an increase of the treated ClO2 amount. However, the addition of an antioxidant, vitamin E, significantly attenuated the cytotoxicity of ClO2 in a dose-dependent manner. To support the oxidative stress induced by ClO2, two antioxidant genes (superoxide dismutase (SOD) and thioredoxin-peroxidase (Tpx)) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Tpx were expressed in larvae of P. interpunctella especially under oxidative stress induced by bacterial challenge. Exposure to ClO2 gas significantly induced the gene expression of both SOD and Tpx. RNA interference of SOD or Tpx using specific double stranded RNAs significantly enhanced the lethality of P. interpunctella to ClO2 gas treatment as well as to the bacterial challenge. These results suggest that ClO2 induces the production of insecticidal ROS, which results in a fatal oxidative stress in P. interpunctella. PMID:26453230

  1. Distribution of Triplet Separators in Bacterial Genomes

    Institute of Scientific and Technical Information of China (English)

    HU Rui; ZHENG Wei-Mou

    2001-01-01

    Distributions of triplet separator lengths for two bacterial complete genomes are analyzed. The theoretical distributions for the independent random sequence and the first-order Markov chain are derived and compared with the distributions of the bacterial genomes. A prominent double band structure, which does not exist in the theoretical distributions, is observed in the bacterial distributions for most triplets.``

  2. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants.

    OpenAIRE

    Weinrauch, Y; Guillen, N.; Dubnau, D A

    1989-01-01

    The complete nucleotide sequences of the comA and comB loci of Bacillus subtilis were determined. The products of these genes are required for the development of competence in B. subtilis and for the expression of late-expressing competence genes. The major 5' termini of both the comA and comB transcripts were determined. The inferred promoters of both comA and comB contained sequences that were similar to those found at the -10 and -35 regions of promoters that are used by sigma A-RNA polyme...

  3. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis.

  4. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis

    Science.gov (United States)

    Mehta, Kalpa

    2016-01-01

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis. PMID:27516506

  5. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-01-01

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis. PMID:27516506

  6. Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene.

    Science.gov (United States)

    Liu, Tingting; Kong, Weiwen; Chen, Nan; Zhu, Jing; Wang, Jingqi; He, Xiaoqing; Jin, Yi

    2016-02-01

    Flow cytometry (FCM) and 16S rRNA gene sequencing data are commonly used to monitor and characterize microbial differences in drinking water distribution systems. In this study, to assess microbial differences in drinking water distribution systems, 12 water samples from different sources water (groundwater, GW; surface water, SW) were analyzed by FCM, heterotrophic plate count (HPC), and 16S rRNA gene sequencing. FCM intact cell concentrations varied from 2.2 × 10(3) cells/mL to 1.6 × 10(4) cells/mL in the network. Characteristics of each water sample were also observed by FCM fluorescence fingerprint analysis. 16S rRNA gene sequencing showed that Proteobacteria (76.9-42.3%) or Cyanobacteria (42.0-3.1%) was most abundant among samples. Proteobacteria were abundant in samples containing chlorine, indicating resistance to disinfection. Interestingly, Mycobacterium, Corynebacterium, and Pseudomonas, were detected in drinking water distribution systems. There was no evidence that these microorganisms represented a health concern through water consumption by the general population. However, they provided a health risk for special crowd, such as the elderly or infants, patients with burns and immune-compromised people exposed by drinking. The combined use of FCM to detect total bacteria concentrations and sequencing to determine the relative abundance of pathogenic bacteria resulted in the quantitative evaluation of drinking water distribution systems. Knowledge regarding the concentration of opportunistic pathogenic bacteria will be particularly useful for epidemiological studies.

  7. Composition and Metabolic Activities of the Bacterial Community in Shrimp Sauce at the Flavor-Forming Stage of Fermentation As Revealed by Metatranscriptome and 16S rRNA Gene Sequencings.

    Science.gov (United States)

    Duan, Shan; Hu, Xiaoxi; Li, Mengru; Miao, Jianyin; Du, Jinghe; Wu, Rongli

    2016-03-30

    The bacterial community and the metabolic activities involved at the flavor-forming stage during the fermentation of shrimp sauce were investigated using metatranscriptome and 16S rRNA gene sequencings. Results showed that the abundance of Tetragenococcus was 95.1%. Tetragenococcus halophilus was identified in 520 of 588 transcripts annotated in the Nr database. Activation of the citrate cycle and oxidative phosphorylation, along with the absence of lactate dehydrogenase gene expression, in T. halophilus suggests that T. halophilus probably underwent aerobic metabolism during shrimp sauce fermentation. The metabolism of amino acids, production of peptidase, and degradation of limonene and pinene were very active in T. halophilus. Carnobacterium, Pseudomonas, Escherichia, Staphylococcus, Bacillus, and Clostridium were also metabolically active, although present in very small populations. Enterococcus, Abiotrophia, Streptococcus, and Lactobacillus were detected in metatranscriptome sequencing, but not in 16S rRNA gene sequencing. Many minor taxa showed no gene expression, suggesting that they were in dormant status. PMID:26978261

  8. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  9. Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes.

    Directory of Open Access Journals (Sweden)

    Marit Farenhorst

    Full Text Available BACKGROUND: Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes. METHODOLOGY/FINDINGS: A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3+/-2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days. CONCLUSIONS/SIGNIFICANCE: Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective.

  10. Differentially expressed genes of Coptotermes formosanus (Isoptera: Rhinotermitidae) challenged by chemical insecticides.

    Science.gov (United States)

    Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou

    2013-08-01

    Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity. PMID:24020304

  11. Design, synthesis and bioassay of new mosquito insecticides and repellents

    Science.gov (United States)

    New compounds and classes of compounds are needed to protect deployed military personnel from diseases transmitted by medically important arthropods. Historically, the synthetic insecticides and repellents have been effective tools for mosquito control. To develop new synthetic insecticides and repe...

  12. Draft Genome Sequence of Flavobacterium sp. Strain TAB 87, Able To Inhibit the Growth of Cystic Fibrosis Bacterial Pathogens Belonging to the Burkholderia cepacia Complex.

    Science.gov (United States)

    Presta, Luana; Inzucchi, Ilaria; Bosi, Emanuele; Fondi, Marco; Perrin, Elena; Miceli, Elisangela; Tutino, Maria Luisa; Lo Giudice, Angelina; de Pascale, Donatella; Fani, Renato

    2016-01-01

    We report here the draft genome sequence of the Flavobacterium sp. TAB 87 strain, isolated from Antarctic seawater during a summer campaign near the French Antarctic station Dumont d'Urville (60°40'S, 40°01'E). It will allow for comparative genomics and the fulfillment of both fundamental and application-oriented investigations. It allowed the recognition of genes associated with the production of bioactive compounds and antibiotic resistance. PMID:27198032

  13. Electronic structure of pesticides: 1. Organochlorine insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Kovac, Branka [Physical Chemistry Division, ' R. Boskovic' Institute, HR-10000 Zagreb (Croatia)

    2011-11-15

    Highlights: {yields} Electronic structure of several organochlorine insecticides has been determined by UV photoelectron spectroscopy and high-level ab initio calculations. {yields} The electronic structure obtained from spectra has been related to their biological activity. {yields} The molecular modes of binding to appropriate receptors are rationalized in view of the molecule's electronic structure and conformational flexibility. - Abstract: The electronic structures of six organochlorine insecticides: {gamma}-lindane (I), aldrin (II), dieldrin (III), DDD (IV), DDE (V) and DDT (VI) have been investigated by UV photoelectron spectroscopy (UPS), quantum chemical calculations and comparison with molecular modelling studies. Their electronic and molecular structures are discussed in order to rationalize their biological activity. In this work we relate the biological activity of these insecticides to their experimentally observed electronic and molecular structures.

  14. Inhibition of aflatoxin production by selected insecticides.

    Science.gov (United States)

    Draughon, F A; Ayres, J C

    1981-04-01

    The insecticide naled completed inhibition production of aflatoxins B1, B2, G1, and G2 by and growth of Aspergillus parasiticus at a 100-ppm (100 microgram/ml) concentration. The insecticides dichlorvos, Landrin, pyrethrum, Sevin, malathion, and Diazinon significantly (P = 0.05) inhibited production of aflatoxins at a 100-ppm concentration. However, at a concentration of 10 ppm, significant inhibition in production of aflatoxins was found only with naled, dichlorvos, Sevin, Landrin, and pyrethrum. Dichlorvos, Landrin, Sevin, and naled inhibited growth of A. parasiticus by 28.9 , 18.9, 15.7, and 100%, respectively, at 100 ppm. Stimulation of growth was observed when diazinon was added to cultures. Aflatoxin B1 was most resistant to inhibition by insecticides, followed by G1, G2, and B2, respectively. PMID:6786222

  15. Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis Diversidade bacteriana de solo sob eucaliptos obtida por seqüenciamento do 16S rDNA

    Directory of Open Access Journals (Sweden)

    Érico Leandro da Silveira

    2006-10-01

    Full Text Available Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversity of sympatric communities within soils from two areas, a native forest (NFA and an eucalyptus arboretum (EAA. PCR primers, whose target soil metagenomic 16S rDNA were used to amplify soil DNA, were cloned using pGEM-T and sequenced to determine bacterial diversity. From the NFA soil 134 clones were analyzed, while 116 clones were analyzed from the EAA soil samples. The sequences were compared with those online at the GenBank. Phylogenetic analyses revealed differences between the soil types and high diversity in both communities. Soil from the Eucalyptus spp. arboretum was found to have a greater bacterial diversity than the soil investigated from the native forest area.Estudos sobre impacto do Eucalyptus spp. em solos brasileiros têm focalizado propriedades químicas do solo e isolamento de microrganismos de interesse. No Brasil há pouco enfoque em ecologia e diversidade microbiana, devido às limitações dos métodos tradicionais de cultivo e isolamento. A utilização de métodos moleculares no estudo da ecologia microbiana baseados na amplificação por PCR do 16S rDNA têm enriquecido o conhecimento da biodiversidade microbiana dos solos. O objetivo deste trabalho foi comparar e estimar a diversidade bacteriana de comunidades simpátricas em solos de duas áreas: uma floresta nativa (NFA e outra adjacente com arboreto de eucaliptos (EAA. Oligonucleotídeos iniciadores foram utilizados para amplificar o 16S rDNA metagenômico do solo, o qual foi

  16. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in bronchoalveolar lavage fluid in patients with ventilator-associated pneumonia

    Directory of Open Access Journals (Sweden)

    Yang XJ

    2015-08-01

    Full Text Available Xiao-Jun Yang,1,* Yan-Bo Wang,2,3,* Zhi-Wei Zhou,4,* Guo-Wei Wang,2 Xiao-Hong Wang,1 Qing-Fu Liu,1 Shu-Feng Zhou,4 Zhen-Hai Wang2,3 1Department of Intensive Care Unit, 2Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China; 3Key Laboratory of Brain Diseases of Ningxia, Yinchuan, Ningxia, People’s Republic of China; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA *These authors contributed equally to this work Abstract: Ventilator-associated pneumonia (VAP is a life-threatening disease that is associated with high rates of morbidity and likely mortality, placing a heavy burden on an individual and society. Currently available diagnostic and therapeutic approaches for VAP treatment are limited, and the prognosis of VAP is poor. The present study aimed to reveal and discriminate the identification of the full spectrum of the pathogens in patients with VAP using high-throughput sequencing approach and analyze the species richness and complexity via alpha and beta diversity analysis. The bronchoalveolar lavage fluid samples were collected from 27 patients with VAP in intensive care unit. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 27 samples of VAP were sequenced using the 454 GS FLX system. A total of 103,856 pyrosequencing reads and 638 operational taxonomic units were obtained from these 27 samples. There were four dominant phyla, including Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. There were 90 different genera, of which 12 genera occurred in over ten different samples. The top five dominant genera were Streptococcus, Acinetobacter, Limnohabitans, Neisseria, and Corynebacterium, and the most widely distributed genera were Streptococcus, Limnohabitans, and Acinetobacter in these 27 samples. Of note, the mixed profile of causative pathogens was observed. Taken

  17. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  18. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  19. Insecticide resistance selection in rice planthoppers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Brown planthopper (BPH, Nilaparvata lugens Stal) and white backed planthopper (WBPH, Sogatella furcifera Horvath) are the main insects on rice in China. The insecticide resistance of the two planthoppers have often been reported. Availability of the resistant population is a prerequisite for studying the resistance mechanism. In this paper, one method to select methamidophos resistance of the two planthoppers was recommended.

  20. Oviposition and olfaction responses of Aedes aegypti mosquitoes to insecticides.

    Science.gov (United States)

    Canyon, D V; Muller, R

    2013-12-01

    Insecticide applications are not particularly effective on Aedes aegypti mosquitoes which has been attributed to their 'closet' behaviour, or ability to rest in places that remain unexposed to insecticides. Some researchers have suggested that insecticides repel mosquitoes, which would result in less exposure and increased dispersal. If repellence due to insecticides is a fact, acquiring a vector-borne disease, such as dengue, could legitimately be attributed to local vector control efforts and this would lead to restitution claims. This study thus investigated the effect of insecticide presence on mosquito behaviour indirectly via oviposition and directly via olfactory response. In all experiments, oviposition in each insecticide compared to its water and ethanol controls was not significantly different. This indicates that Ae. aegypti mosquitoes are not affected by insecticide presence and that increased dispersal is unlikely to be caused by vector control spraying.

  1. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  2. Modulation of Membrane Influx and Efflux in Escherichia coli Sequence Type 131 Has an Impact on Bacterial Motility, Biofilm Formation, and Virulence in a Caenorhabditis elegans Model.

    Science.gov (United States)

    Pantel, Alix; Dunyach-Remy, Catherine; Ngba Essebe, Christelle; Mesureur, Jennifer; Sotto, Albert; Pagès, Jean-Marie; Nicolas-Chanoine, Marie-Hélène; Lavigne, Jean-Philippe

    2016-05-01

    Energy-dependent efflux overexpression and altered outer membrane permeability (influx) can promote multidrug resistance (MDR). The present study clarifies the regulatory pathways that control membrane permeability in the pandemic clone Escherichia coli sequence type 131 (ST131) and evaluates the impact of efflux and influx modulations on biofilm formation, motility, and virulence in the Caenorhabditis elegans model. Mutants of two uropathogenic E. coli (UPEC) strains, MECB5 (ST131; H30-Rx) and CFT073 (ST73), as well as a fecal strain, S250 (ST131; H22), were in vitro selected using continuous subculture in subinhibitory concentrations of ertapenem (ETP), chloramphenicol (CMP), and cefoxitin (FOX). Mutations in genes known to control permeability were shown for the two UPEC strains: MECB5-FOX (deletion of 127 bp in marR; deletion of 1 bp and insertion of an IS1 element in acrR) and CFT073-CMP (a 1-bp deletion causing a premature stop in marR). We also demonstrated that efflux phenotypes in the mutants selected with CMP and FOX were related to the AcrAB-TolC pump, but also to other efflux systems. Alteration of membrane permeability, caused by underexpression of the two major porins, OmpF and OmpC, was shown in MECB5-ETP and mutants selected with FOX. Lastly, our findings suggest that efflux pump-overproducing isolates (CMP mutants) pose a serious threat in terms of virulence (significant reduction in worm median survival) and host colonization. Lack of porins (ETP and FOX mutants) led to a high level of antibiotic resistance in an H30-Rx subclone. Nevertheless, this adaptation created a physiological disadvantage (decreased motility and ability to form biofilm) associated with a low potential for virulence. PMID:26926643

  3. Modulation of Membrane Influx and Efflux in Escherichia coli Sequence Type 131 Has an Impact on Bacterial Motility, Biofilm Formation, and Virulence in a Caenorhabditis elegans Model

    Science.gov (United States)

    Pantel, Alix; Dunyach-Remy, Catherine; Ngba Essebe, Christelle; Mesureur, Jennifer; Sotto, Albert; Nicolas-Chanoine, Marie-Hélène

    2016-01-01

    Energy-dependent efflux overexpression and altered outer membrane permeability (influx) can promote multidrug resistance (MDR). The present study clarifies the regulatory pathways that control membrane permeability in the pandemic clone Escherichia coli sequence type 131 (ST131) and evaluates the impact of efflux and influx modulations on biofilm formation, motility, and virulence in the Caenorhabditis elegans model. Mutants of two uropathogenic E. coli (UPEC) strains, MECB5 (ST131; H30-Rx) and CFT073 (ST73), as well as a fecal strain, S250 (ST131; H22), were in vitro selected using continuous subculture in subinhibitory concentrations of ertapenem (ETP), chloramphenicol (CMP), and cefoxitin (FOX). Mutations in genes known to control permeability were shown for the two UPEC strains: MECB5-FOX (deletion of 127 bp in marR; deletion of 1 bp and insertion of an IS1 element in acrR) and CFT073-CMP (a 1-bp deletion causing a premature stop in marR). We also demonstrated that efflux phenotypes in the mutants selected with CMP and FOX were related to the AcrAB-TolC pump, but also to other efflux systems. Alteration of membrane permeability, caused by underexpression of the two major porins, OmpF and OmpC, was shown in MECB5-ETP and mutants selected with FOX. Lastly, our findings suggest that efflux pump-overproducing isolates (CMP mutants) pose a serious threat in terms of virulence (significant reduction in worm median survival) and host colonization. Lack of porins (ETP and FOX mutants) led to a high level of antibiotic resistance in an H30-Rx subclone. Nevertheless, this adaptation created a physiological disadvantage (decreased motility and ability to form biofilm) associated with a low potential for virulence. PMID:26926643

  4. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    Directory of Open Access Journals (Sweden)

    Nicolás Toro

    Full Text Available Much less is known about reverse transcriptases (RTs in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs, Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L, and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  5. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease.

    Directory of Open Access Journals (Sweden)

    Fabio Faria da Mota

    Full Text Available BACKGROUND: Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera. METHODOLOGY/PRINCIPAL FINDINGS: Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster. CONCLUSIONS/SIGNIFICANCE: The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low

  6. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  7. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  8. Insecticide control in a Dengue epidemics model

    CERN Document Server

    Rodrigues, Helena Sofia; Torres, Delfim F M

    2010-01-01

    A model for the transmission of dengue disease is presented. It consists of eight mutually-exclusive compartments representing the human and vector dynamics. It also includes a control parameter (insecticide) in order to fight the mosquitoes. The main goal of this work is to investigate the best way to apply the control in order to effectively reduce the number of infected humans and mosquitoes. A case study, using data of the outbreak that occurred in 2009 in Cape Verde, is presented.

  9. Insecticide tolerance of Culex nigripalpus in Florida.

    Science.gov (United States)

    Boike, A H; Rathburn, C B; Floore, T G; Rodriguez, H M; Coughlin, J S

    1989-12-01

    Larval susceptibility tests of Culex nigripalpus populations from various areas of Florida have shown resistance to several organophosphorus insecticides since 1984. Although the degree of resistance is low (2 to 7 times), it can be termed tolerance and appears to be the greatest for fenthion, followed by temephos, naled and malathion. It is suggested that pesticide runoff from lawns, golf courses and agricultural and urban areas may play a role in developing resistance in Florida mosquito populations. PMID:2614401

  10. Insecticide resistance in Bemisia tabaci from Cyprus

    Institute of Scientific and Technical Information of China (English)

    Vassilis Vassiliou; Maria Emmanouilidou; Andreas Perrakis; Evangelia Morou; John Vontas; Anastasia Tsagkarakou; Emmanouil Roditakis

    2011-01-01

    A comprehensive study on the Bemisia tabaci(biotype B)resistance to neonicotinoid insecticides imidacloprid,acetamiprid and thiamethoxam,and pyrethroid bifenthrin was conducted in Cyprus.The resistance level to eight field-collected B.tabaci populations was investigated.The activities of enzymes involved in metabolic detoxification and the frequencies of pyrethroid and organophosphates target site resistance mutations were determined.Moderate to high levels of resistance were detected for imidacloprid(resistance factor[RF]77-392)and thiamethoxam(RF 50-164)while low resistance levels were observed for acetamiprid(RF 7-12).Uniform responses by the Cypriot whiteflies could be observed against all neonicotinoid insecticides.No cross-resistance between the neonicotinoids was detected as well as no association with the activity of the P450 microsomal oxidases.Only imidacloprid resistance correlated with carboxylesterase activity.Low to extremely high resistance was observed for insecticide bifenthrin(RF 49-1 243)which was associated with the frequency of the resistant allele in the sodium channel gene but not with the activity of the detoxification enzymes.Finally,the F331W mutation in the acetylcholinesterase enzyme ace1 gene was fixed in all B.tabaci populations from Cyprus.

  11. Insecticide Resistance and Management Strategies in Urban Ecosystems

    Directory of Open Access Journals (Sweden)

    Fang Zhu

    2016-01-01

    Full Text Available The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs.

  12. Accepted 15 March 2012Available online 20 May 2012%Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum

    Institute of Scientific and Technical Information of China (English)

    Balaji Meriga; Ramgopal Mopuri; T MuraliKrishna

    2012-01-01

    ABSTRACT Objective:To evaluate the insecticidal, antimicrobial and antioxidant activities of bulb extracts ofAllium sativum(A. sativum).Methods:Dried bulbs ofA. sativum were extracted with different solvents and evaluated for insecticidal, antimicrobial and antioxidant activities.Results:Aqueous and methanol extracts showed highest insecticidal activity (mortality rate of81% and 64% respectively) against the larvae ofSpodoptera litura (S. litura) at a concentration of1 000 ppm. With regard to antimicrobial activity, aqueous extract exhibited antibacterial activity against gram positive (Bacillus subtilis, Staphylococcus aureu,) and gram negative (Escherichia coliandKlebsiella pneumonia) strains and antifungal activity againstCandida albicans. While methanol extract showed antimicrobial activity against all the tested micro organisms except two (Staphylococcus aureus andCandida albicans), the extracts of hexane, chloroform and ethyl acetate did not show any anti microbial activity. Minimum inhibitory concentration of aqueous and methanol extracts against tested bacterial and fungal strains was100-150 μg/mL. Antioxidant activity of the bulb extracts was evaluated in terms of inhibition of free radicals by 2, 2’-diphenly-1-picrylhydrazyl. Aqueous and methanol extracts exhibited strong antioxidant activity(80%-90% of the standard).Conclusions: Antioxidant and antimicrobial activity of A. sativum against the tested organisms therefore, provides scientific basis for its utilization in traditional and folk medicine. Also, our results demonstrated the insecticidal efficacy ofA. sativum againstS. litura, a polyphagous insect.

  13. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  14. Mixture for Controlling Insecticide-Resistant Malaria Vectors

    OpenAIRE

    Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabiré, Roch K.; Lapied, Bruno; Chandre, Fabrice; Hougard, Jean-Marc

    2008-01-01

    The spread of resistance to pyrethroids in the major Afrotropical malaria vectors Anopheles gambiae s.s. necessitates the development of new strategies to control resistant mosquito populations. To test the efficacy of nets treated with repellent and insecticide against susceptible and insecticide-resistant An. gambiae mosquito populations, we impregnated mosquito bed nets with an insect repellent mixed with a low dose of organophosphorous insecticide and tested them in a rice-growing area ne...

  15. Fungal infection counters insecticide resistance in African malaria mosquitoes

    OpenAIRE

    Farenhorst, M.; J. C. Mouatcho; Kikankie, C.K.; Brooke, B.D.; Hunt, R. H.; M. B. Thomas; Koekemoer, L.L.; Knols, B.G.J.; M. Coetzee

    2009-01-01

    The evolution of insecticide resistance in mosquitoes is threatening the effectiveness and sustainability of malaria control programs in various parts of the world. Through their unique mode of action, entomopathogenic fungi provide promising alternatives to chemical control. However, potential interactions between fungal infection and insecticide resistance, such as cross-resistance, have not been investigated. We show that insecticide-resistant Anopheles mosquitoes remain susceptible to inf...

  16. A critical review of neonicotinoid insecticides for developmental neurotoxicity

    OpenAIRE

    Sheets, Larry P.; Li, Abby A.; Minnema, Daniel J.; Collier, Richard H.; Creek, Moire R.; Peffer, Richard C.

    2015-01-01

    Abstract A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood–brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of a...

  17. Virus and calcium : an unexpected tandem to optimize insecticide efficacy

    OpenAIRE

    Apaire-Marchais, V; Ogliastro, M.; Chandre, Fabrice; Pennetier, Cédric; Raymond, V; Lapied, B

    2016-01-01

    The effective control of insect pests is based on the rational use of the most efficient and safe insecticide treatments. To increase the effects of classical insecticides and to avoid the ability of certain pest insects to develop resistance, it is essential to propose novel strategies. Previous studies have shown that calcium-dependent phosphorylation/dephosphorylation is now considered as a new cellular mechanism for increasing the target sensitivity to insecticides. Because it is known th...

  18. Innovative applications for insect viruses : towards insecticide sensitization

    OpenAIRE

    Lapied, B; Pennetier, Cédric; Apaire Marchais, V.; P. Licznar; Corbel, Vincent

    2009-01-01

    The effective management of emerging insect-borne disease is dependent on the use of safe and efficacious chemical insecticides. Given the inherent ability of insects to develop resistance, it is essential to propose innovative strategies because insecticides remain the most important element of integrated approaches to vector control. Recently, intracellular phosphorylation and dephosphorylation of membrane receptors and ion channels targeted by insecticides have been described as new proces...

  19. Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program.

    Directory of Open Access Journals (Sweden)

    Delenasaw Yewhalaw

    Full Text Available BACKGROUND: Indoor Residual Spraying (IRS, insecticide-treated nets (ITNs and long-lasting insecticidal nets (LLINs are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection. METHODOLOGY/PRINCIPAL FINDINGS: Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr and insensitive acetylcholinesterase (ace-1(R mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1(R mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment. CONCLUSION: The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention.

  20. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans

    Science.gov (United States)

    Sharma, Gaurav

    2016-01-01

    Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO) yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs) of T. ammi (1.94 ± 30 mL/100 gm) and M. fragrans (5.93 ± 90 mL/100 gm) were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (−) bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028) and three Gram (+) bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412) by well agar diffusion method. The essential oil in combination (CEO) exhibited higher antibacterial activity as compared with individual essential oils. PMID:27190677

  1. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans

    Directory of Open Access Journals (Sweden)

    Rajgovind Soni

    2016-01-01

    Full Text Available Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs of T. ammi (1.94±30 mL/100 gm and M. fragrans (5.93±90 mL/100 gm were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (− bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028 and three Gram (+ bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412 by well agar diffusion method. The essential oil in combination (CEO exhibited higher antibacterial activity as compared with individual essential oils.

  2. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans.

    Science.gov (United States)

    Soni, Rajgovind; Sharma, Gaurav; Jasuja, Nakuleshwar Dut

    2016-01-01

    Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO) yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs) of T. ammi (1.94 ± 30 mL/100 gm) and M. fragrans (5.93 ± 90 mL/100 gm) were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (-) bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028) and three Gram (+) bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412) by well agar diffusion method. The essential oil in combination (CEO) exhibited higher antibacterial activity as compared with individual essential oils. PMID:27190677

  3. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica fragrans.

    Science.gov (United States)

    Soni, Rajgovind; Sharma, Gaurav; Jasuja, Nakuleshwar Dut

    2016-01-01

    Two Indian spices, Trachyspermum ammi and Myristica fragrans, were studied for their essential oil (EO) yielding pattern, insecticidal activity, antibacterial activity, and composition. The essential oils (EOs) of T. ammi (1.94 ± 30 mL/100 gm) and M. fragrans (5.93 ± 90 mL/100 gm) were extracted using hydrodistillation method. In Gas Chromatography analysis, the beta-pinene, alpha-pinene, alpha-p-menth-1-en-4-ol, Limonene, and elemicin were found as major constituents of T. ammi essential oil whereas M. fragrans essential oil mostly contains Gamma-Terpinolene, p-Cymene, Thymol, and beta-pinene. The insecticidal activities of EO were demonstrated using LC50 values against Plodia interpunctella and EO of T. ammi was found comparatively more effective than EO of M. fragrans. Further, individual EO and combination of essential oil were examined for antibacterial activity against three Gram (-) bacterial strains (E. coli-MTCC 443, P. vulgaris-MTCC 1771, and K. pneumoniae-MTCC number 7028) and three Gram (+) bacterial strains (S. aureus-MTCC 3381, B. subtilis-MTCC 10619, and B. megaterium-MTCC 2412) by well agar diffusion method. The essential oil in combination (CEO) exhibited higher antibacterial activity as compared with individual essential oils.

  4. The use of insecticides to control insect pests

    Directory of Open Access Journals (Sweden)

    M Wojciechowska

    2016-07-01

    Full Text Available Pesticides are used as plants protection products. Among those, insecticides serve as agents to control insects. When incorrectly applied, however these substances may negatively affect people's health and natural environment. Administration routes of insecticides depend on many factors and vary from spraying to fertilizers. These different methods influence how insects prey and how pests develop. Additionally, too frequent use of the same chemicals can lead to development of resistance of insects to these insecticides. In order to prevent occurrence of negative effects of insecticides on surroundings, the effects of these compounds should be studied

  5. Recent advances in bacterial heme protein biochemistry

    OpenAIRE

    Mayfield, Jeffery A.; Dehner, Carolyn A.; Dubois, Jennifer L.

    2011-01-01

    Recent progress in genetics, fed by the burst in genome sequence data, has led to the identification of a host of novel bacterial heme proteins that are now being characterized in structural and mechanistic terms. The following short review highlights very recent work with bacterial heme proteins involved in the uptake, biosynthesis, degradation, and use of heme in respiration and sensing.

  6. Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes

    Directory of Open Access Journals (Sweden)

    Gorman Kevin

    2011-01-01

    Full Text Available Abstract Background The whitefly Trialeurodes vaporariorum is an economically important crop pest in temperate regions that has developed resistance to most classes of insecticides. However, the molecular mechanisms underlying resistance have not been characterised and, to date, progress has been hampered by a lack of nucleotide sequence data for this species. Here, we use pyrosequencing on the Roche 454-FLX platform to produce a substantial and annotated EST dataset. This 'unigene set' will form a critical reference point for quantitation of over-expressed messages via digital transcriptomics. Results Pyrosequencing produced around a million sequencing reads that assembled into 54,748 contigs, with an average length of 965 bp, representing a dramatic expansion of existing cDNA sequences available for T. vaporariorum (only 43 entries in GenBank at the time of this publication. BLAST searching of non-redundant databases returned 20,333 significant matches and those gene families potentially encoding gene products involved in insecticide resistance were manually curated and annotated. These include, enzymes potentially involved in the detoxification of xenobiotics and those encoding the targets of the major chemical classes of insecticides. A total of 57 P450s, 17 GSTs and 27 CCEs were identified along with 30 contigs encoding the target proteins of six different insecticide classes. Conclusion Here, we have developed new transcriptomic resources for T. vaporariorum. These include a substantial and annotated EST dataset that will serve the community studying this important crop pest and will elucidate further the molecular mechanisms underlying insecticide resistance.

  7. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  8. Insecticide Mixtures Could Enhance the Toxicity of Insecticides in a Resistant Dairy Population of Musca domestica L

    OpenAIRE

    Hafiz Azhar Ali Khan; Waseem Akram; Sarfraz Ali Shad; Jong-Jin Lee

    2013-01-01

    House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, em...

  9. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  10. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj;

    2014-01-01

    heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting...

  11. The insecticide resistance in two planthoppers from three areas to three insecticides

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Migrating insects brown planthopper (BPH), Nilaparata lugens Stal and white-backed planthopper (WBPH), Sogatellafurcifera Horvath are both most harmful insects on rice in China. Chemical control is thought to be the best way to manage them, but it may cause insecticide resistance.

  12. BACILLUS THURINGIENSIS ELASTASES WITH INSECTICIDE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Matseliukh

    2015-10-01

    Full Text Available The purpose of the research was a screening of proteases with elastase activity among Bacillus thuringiensis strains, their isolation, partially purification, study of physicochemical properties and insecticide activity in relation to the larvae of the Colorado beetle. The objects of the investigation were 18 strains of B. thuringiensis, isolated from different sources: sea water, dry biological product "Bitoksibatsillin" and also from natural populations of Colorado beetles of the Crimea, Kherson, Odesa, Mykolaiv and Zaporizhiia regions of Ukraine. Purification of enzymes with elastase activity isolated from above mentioned strains was performed by gel-chromatography and insecticide activity was studied on the 3–4 larvae instar of Colorado beetle. The ability of a number of B. thuringiensis strains to synthesize the proteases with elastase activity has been established. The most active were enzymes obtained from strains IMV B-7465, IMV B-7324 isolated from sea water, and strains 9, 902, Bt-H and 0-239 isolated from Colorado beetles. The study of the physicochemical properties of the partially purified proteases of these strains showed that they belonged to enzymes of the serine type. Peptidases of a number of B. thuringiensis strains (IMV B-7324, IMV B-7465, 902, 0-239, 9 are metal-dependent enzymes. Optimal conditions of action of all tested enzymes are the neutral and alkaline рН values and the temperatures of 30–40 °С. The studies of influence of the complex enzyme preparations and partially purified ones of B. thuringiensis strains on the larvae instar of Colorado beetles indicated that enzymes with elastase activity could be responsible for insecticide action of the tested strains.

  13. Application of broad-spectrum PCR amplification and direct sequencing for identification of the infrequent bacterial cultures from clinical sources, targeting the bacterial 16S rRNA gene with universal primes%基于细菌16S rRNA基因的PCR扩增与测序分析在临床不常见菌鉴定中的应用

    Institute of Scientific and Technical Information of China (English)

    陈茶; 鄂顺梅; 叶金艳; 唐小龙; 蓝锴; 罗强; 戴小波; 袁慧; 屈平华; 顾全; 黄彬; 张伟铮; 穆小萍; 张磊; 陈默蕊; 王露霞

    2012-01-01

    Objectives To identify the infrequent strains in clinical isolates by broad-spectrum PCR amplification and direct sequencing targeting the bacterial 16S rRNA gene.Methods Total 48 clinical isolates and 7 false-positive blood culture samples were collected from 7 different hospitals or institutions from Decemler 2010 to September 201 1.The bacterial 16S rRNA gene were amplified and sequenced by universal prime sets of 27f-1492r and 27f-1525r,and MicroSeq 500 16S rRNA gene kit.The homology analysis was used by the Basic Local Alignment Search Tool,and comparing to gene sequence of the type strain.provided by the List of Prokaryotic names with Standing in Nomenclature.The criteria for the bacterial identification was interpreted according to the Clinical and Laboratory Standards Institute (CLSI) M M 18-A.Results All of the 48 cultured strains were succeeded amplifying and sequencing the targeted 16S rRNA genes.According to the criteria of CLSI MM18-A,total 35 strains were specified to the species level,11 strains were specified to the genus level,and the other 2 strains were specified to possible novel genus and species.Combining the analysis the sequence of other housekeeping gene with the results of biochemical results,total 42 strains can be specified to the species level,including some clinical important pathogens,such as Streptobacillus,Capnocytophaga,Nocardia,Mycobacterium,Roseomonas and Campylobacter.Two false-positive blood culture samples were managed to amplify 16S rRNA genes and finally identified as Streptococcus pneumoniae.We also identified one novel subspecies of Campylobacter fetus,and some new valid-published species,such as Acinetobacter parvus,Mycobacterium phocaicum,Roseomonas mucosa and Halomonas johnsoniae.Conclusions The 16S rRNA gene sequence based identification has unique advantages over the phenotypic methods.It is universal to almost of all the bacteria,and can provide the genetic classified information.It is very suitable for the clinical

  14. Susceptibility of Cimex lectularius (Hemiptera: Cimicidae) to pyrethroid insecticides and to insecticidal dusts with or without pyrethroid insecticides.

    Science.gov (United States)

    Anderson, John F; Cowles, Richard S

    2012-10-01

    Relative increases of bed bug, Cimex lectularius L., populations are probably due in large measure to their resistance to pyrethroids, which have been used extensively against urban pests. A Connecticut population of bed bugs was assessed for sensitivity to pyrethroids and exposed to commonly-used commercial insecticides applied to various substrates on which the residues were allowed to age for 0-24 wk. Type I and type II pyrethroids differed in toxicity when applied at a high dosage (1 microg) per bed bug. Some type II pyrethroids (cyfluthrin, lambda-cyhalothrin, cis-cypermethrin, and deltamethrin) caused > 80% mortality, whereas exposure to type I pyrethroids caused 0.95) an exponential rise to a maximum model from which the survival half-life (S1/2) was calculated directly. Tempo Dust (Bayer Environmental Science, Montvale, NJ) killed bed bugs relatively quickly, as did Syloid 244 (Grace Davison, Columbia, MD) and Drione (Bayer Environmental Science, Montvale, NJ) on hardboard and mattress fabric substrates (S1/2 Insecticide Control solutions, Pasadena, TX) and D-Force HPX Aerosol 0.06% (Waterbury Companies, Waterbury, CT), displayed reduced residual toxicity as they aged; the mortality was < 50% on some substrates after 4 d. Desiccant dusts, with their physical mode of action and long residual activity, appear to be superior to sprayable pyrethroid products for killing bed bugs.

  15. Design, Synthesis and Insecticidal Activities of Novel Phenyl Substituted Isoxazolecarboxamides

    Institute of Scientific and Technical Information of China (English)

    LIU Peng-fei; ZHANG Ji-feng; YAN Tao; XIONG Li-xia; LI Zheng-ming

    2012-01-01

    Thirteen novel phenyl substituted isoxazolecarboxamides were synthesized,and their structures were characterized by 1H NMR,elementary analysis and high-resolution mass spectrometry(HRMS) techniques.Their evaluated insecticidal activities against oriental armyworm(Mythimna separata) indicate that the phcnyl substituted isoxazolecarboxamides exhibited moderate insecticidal activities,among which compounds 9c and 9k showed comparatively higher activities.

  16. MITIGATION OF PYRETHROID INSECTICIDES IN A MISSISSIPPI DELTA CONSTRUCTED WETLAND

    Science.gov (United States)

    Pyrethroid insecticides are commonly used in intensively cultivated agricultural areas for crop pest control. During storm runoff events, these insecticides may be transported into aquatic receiving systems where they have the potential to damage fish and invertebrates. Constructed wetlands are on...

  17. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. PMID:26821651

  18. INSECTICIDE CONCENTRATIONS IN AIR AFTER APPLICATION OF PEST CONTROL STRIPS

    Science.gov (United States)

    Contamination of air in homes due to spraying of pesticides is of concern to the public. A pest control strip which kills creeping and crawling insects by contact is one method of reducing the amount of insecticide in the air. Several different insecticides are now available in t...

  19. Effects of organophosphorus insecticides on sage grouse in southeastern Idaho

    Science.gov (United States)

    Blus, L.J.; Staley, C.S.; Henny, C.J.; Pendleton, G.W.; Craig, T.H.; Craig, E.H.; Halford, D.K.

    1989-01-01

    Unverified reports indicated die-offs of sage grouse have occurred since the 1970s in southeastern Idaho. Some verification that organophosphorus insecticides were involved was obtained in 1981 and 1983. A radio telemetry study indicated that dimethoate was responsible for most mortality. Methamidophos also acounted for mortality. Sage grouse populations may be adversely affected by organophosphorus insecticides.

  20. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    OpenAIRE

    Fisher, Madeline M.; Wilcox, Lee W.; Linda E Graham

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phyl...

  1. An Operational Framework for Insecticide Resistance Management Planning

    Science.gov (United States)

    Chanda, Emmanuel; Thomsen, Edward K.; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G.; Norris, Douglas E.; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H.; Muleba, Mbanga; Craig, Allen; Govere, John M.; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B.

    2016-01-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future. PMID:27089119

  2. Insecticidal sesquiterpene from Alpinia oxyphylla against Drosophila melanogaster.

    Science.gov (United States)

    Miyazawa, M; Nakamura, Y; Ishikawa, Y

    2000-08-01

    In the course of screening for novel naturally occurring insecticides from Chinese crude drugs, an MeOH extract of Alpinia oxyphylla was found to possess insecticidal activity against larvae of Drosophila melanogaster Meigen. From the extract, an insecticidal compound was isolated by bioassay-guided fractionation and identified as nootkatone (1) by GC, GC-MS, and (1)H and (13)C NMR spectroscopy. In bioassays for insecticidal activity, 1 showed an LC(50) value of 11.5 micromol/mL of diet against larvae of D. melanogaster and an LD(50) value of 96 microg/adult against adults. Epinootkatol (1A), however, showed slight insecticidal activity in both assays, indicating that the carbonyl group at the 2-position in 1 was the important function for enhanced activity of 1. PMID:10956162

  3. Botanical insecticides inspired by plant-herbivore chemical interactions.

    Science.gov (United States)

    Miresmailli, Saber; Isman, Murray B

    2014-01-01

    Plants have evolved a plethora of secondary chemicals to protect themselves against herbivores and pathogens, some of which have been used historically for pest management. The extraction methods used by industry render many phytochemicals ineffective as insecticides despite their bioactivity in the natural context. In this review, we examine how plants use their secondary chemicals in nature and compare this with how they are used as insecticides to understand why the efficacy of botanical insecticides can be so variable. If the commercial production of botanical insecticides is to become a viable pest management option, factors such as production cost, resource availability, and extraction and formulation techniques need be considered alongside innovative application technologies to ensure consistent efficacy of botanical insecticides.

  4. An Operational Framework for Insecticide Resistance Management Planning.

    Science.gov (United States)

    Chanda, Emmanuel; Thomsen, Edward K; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G; Norris, Douglas E; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H; Muleba, Mbanga; Craig, Allen; Govere, John M; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B; Coleman, Michael

    2016-05-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future. PMID:27089119

  5. Averting a malaria disaster: will insecticide resistance derail malaria control?

    Science.gov (United States)

    Hemingway, Janet; Ranson, Hilary; Magill, Alan; Kolaczinski, Jan; Fornadel, Christen; Gimnig, John; Coetzee, Maureen; Simard, Frederic; Roch, Dabiré K; Hinzoumbe, Clément Kerah; Pickett, John; Schellenberg, David; Gething, Peter; Hoppé, Mark; Hamon, Nicholas

    2016-04-23

    World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe. PMID:26880124

  6. Averting a malaria disaster: will insecticide resistance derail malaria control?

    Science.gov (United States)

    Hemingway, Janet; Ranson, Hilary; Magill, Alan; Kolaczinski, Jan; Fornadel, Christen; Gimnig, John; Coetzee, Maureen; Simard, Frederic; Roch, Dabiré K; Hinzoumbe, Clément Kerah; Pickett, John; Schellenberg, David; Gething, Peter; Hoppé, Mark; Hamon, Nicholas

    2016-04-23

    World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe.

  7. An Operational Framework for Insecticide Resistance Management Planning.

    Science.gov (United States)

    Chanda, Emmanuel; Thomsen, Edward K; Musapa, Mulenga; Kamuliwo, Mulakwa; Brogdon, William G; Norris, Douglas E; Masaninga, Freddie; Wirtz, Robert; Sikaala, Chadwick H; Muleba, Mbanga; Craig, Allen; Govere, John M; Ranson, Hilary; Hemingway, Janet; Seyoum, Aklilu; Macdonald, Michael B; Coleman, Michael

    2016-05-01

    Arthropod vectors transmit organisms that cause many emerging and reemerging diseases, and their control is reliant mainly on the use of chemical insecticides. Only a few classes of insecticides are available for public health use, and the increased spread of insecticide resistance is a major threat to sustainable disease control. The primary strategy for mitigating the detrimental effects of insecticide resistance is the development of an insecticide resistance management plan. However, few examples exist to show how to implement such plans programmatically. We describe the formulation and implementation of a resistance management plan for mosquito vectors of human disease in Zambia. We also discuss challenges, steps taken to address the challenges, and directions for the future.

  8. Bacterial disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008241 Comparison of opa typing with Neisseria gonorrhoeae multi-antigen sequence typing for discrimination of Neisseria gonorrhoeae from patients and their sex partners.CHEN Hongxiang(陈宏翔),et al.Dept Dermatol Wuhan Union Hosp,Tongji Med Coll,Huazhong Sci & Technol Univ,Wuhan 4300022.Chin J Dermatol 2008;41(5):307-310.Objective To compare the potentiality of opa typing ersus Ncisseria gonorrhoeae multiantigen sequence typing(Ng-MAST)in discrimination of N.gonorrhoeae iso-lates,and to investigate the consistency of genotypes of

  9. Risks of neonicotinoid insecticides to honeybees.

    Science.gov (United States)

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-04-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees. PMID:24692231

  10. Risks of neonicotinoid insecticides to honeybees.

    Science.gov (United States)

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-04-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees.

  11. A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae.

    OpenAIRE

    Lambert, B.; Buysse, L; Decock, C.; Jansens, S.; Piens, C; Saey, B; Seurinck, J; Van Audenhove, K; Van Rie, J.; A. van Vliet; Peferoen, M.

    1996-01-01

    The full characterization of a novel insecticidal crystal protein, named Cry9Ca1 according to the revised nomenclature for Cry proteins, from Bacillus thuringiensis serovar tolworthi is reported. The crystal protein has 1,157 amino acids and a molecular mass of 129.8 kDa. It has the typical features of the Lepidoptera-active crystal proteins such as five conserved sequence blocks. Also, it is truncated upon trypsin digestion to a toxic fragment of 68.7 kDa by removal of 43 amino acids at the ...

  12. Bacterial Hydrodynamics

    Science.gov (United States)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  13. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  14. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami

    Science.gov (United States)

    Herzig, Volker; Ikonomopoulou, Maria; Smith, Jennifer J.; Dziemborowicz, Sławomir; Gilchrist, John; Kuhn-Nentwig, Lucia; Rezende, Fernanda Oliveira; Moreira, Luciano Andrade; Nicholson, Graham M.; Bosmans, Frank; King, Glenn F.

    2016-01-01

    The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroach Periplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1–S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species. PMID:27383378

  15. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense

    Science.gov (United States)

    Liu, Guoxia; Ma, Hongmei; Xie, Hongyan; Xuan, Ning; Guo, Xia; Fan, Zhongxue; Rajashekar, Balaji; Arnaud, Philippe; Offmann, Bernard; Picimbon, Jean-François

    2016-01-01

    Chemosensory proteins (CSPs) are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1) was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde). This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity. PMID:27167733

  16. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense.

    Science.gov (United States)

    Liu, Guoxia; Ma, Hongmei; Xie, Hongyan; Xuan, Ning; Guo, Xia; Fan, Zhongxue; Rajashekar, Balaji; Arnaud, Philippe; Offmann, Bernard; Picimbon, Jean-François

    2016-01-01

    Chemosensory proteins (CSPs) are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1) was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde). This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity. PMID:27167733

  17. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense.

    Directory of Open Access Journals (Sweden)

    Guoxia Liu

    Full Text Available Chemosensory proteins (CSPs are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1 was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde. This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity.

  18. Contamination of sequence databases with adaptor sequences

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Takeo; Sanders, A.R.; Detera-Wadleigh, S.D. [National Institute of Mental Health, Bethesda, MD (United States)

    1997-02-01

    Because of the exponential increase in the amount of DNA sequences being added to the public databases on a daily basis, it has become imperative to identify sources of contamination rapidly. Previously, contaminations of sequence databases have been reported to alert the scientific community to the problem. These contaminations can be divided into two categories. The first category comprises host sequences that have been difficult for submitters to manage or control. Examples include anomalous sequences derived from Escherichia coli, which are inserted into the chromosomes (and plasmids) of the bacterial hosts. Insertion sequences are highly mobile and are capable of transposing themselves into plasmids during cloning manipulation. Another example of the first category is the infection with yeast genomic DNA or with bacterial DNA of some commercially available cDNA libraries from Clontech. The second category of database contamination is due to the inadvertent inclusion of nonhost sequences. This category includes incorporation of cloning-vector sequences and multicloning sites in the database submission. M13-derived artifacts have been common, since M13-based vectors have been widely used for subcloning DNA fragments. Recognizing this problem, the National Center for Biotechnology Information (NCBI) started to screen, in April 1994, all sequences directly submitted to GenBank, against a set of vector data retrieved from GenBank by use of key-word searches, such as {open_quotes}vector.{close_quotes} In this report, we present evidence for another sequence artifact that is widespread but that, to our knowledge, has not yet been reported. 11 refs., 1 tab.

  19. Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana.

    Science.gov (United States)

    Kumar, Muthukannan Satheesh; Kabra, Akhil N; Min, Booki; El-Dalatony, Marwa M; Xiong, Jiuqiang; Thajuddin, Nooruddin; Lee, Dae Sung; Jeon, Byong-Hun

    2016-01-01

    The effect of insecticides (acephate and imidacloprid) on a freshwater microalga Chlamydomonas mexicana was investigated with respect to photosynthetic pigments, carbohydrate and protein contents, fatty acids composition and induction of stress indicators including proline, superoxide dismutase (SOD) and catalase (CAT). C. mexicana was cultivated with 1, 5, 10, 15, 20 and 25 mg L(-1) of acephate and imidacloprid. The microalga growth increased with increasing concentrations of both insecticides up to 15 mg L(-1), beyond which the growth declined compared to control condition (without insecticides). C. mexicana cultivated with 15 mg L(-1) of both insecticides for 12 days was used for further analysis. The accumulation of photosynthetic pigments (chlorophyll and carotenoids), carbohydrates and protein was decreased in the presence of both insecticides. Acephate and imidacloprid induced the activities of superoxide dismutase (SOD) and catalase (CAT) and increased the concentration of proline in the microalga, which play a defensive role against various environmental stresses. Fatty acid analysis revealed that the fraction of polyunsaturated fatty acids decreased on exposure to both insecticides. C. mexicana also promoted 25 and 21% removal of acephate and imidacloprid, respectively. The biochemical changes in C. mexicana on exposure to acephate and imidacloprid indicate that the microalga undergoes an adaptive change in response to the insecticide-induced oxidative stress.

  20. Virus and calcium: an unexpected tandem to optimize insecticide efficacy.

    Science.gov (United States)

    Apaire-Marchais, Véronique; Ogliastro, Mylène; Chandre, Fabrice; Pennetier, Cédric; Raymond, Valérie; Lapied, Bruno

    2016-04-01

    The effective control of insect pests is based on the rational use of the most efficient and safe insecticide treatments. To increase the effects of classical insecticides and to avoid the ability of certain pest insects to develop resistance, it is essential to propose novel strategies. Previous studies have shown that calcium-dependent phosphorylation/dephosphorylation is now considered as a new cellular mechanism for increasing the target sensitivity to insecticides. Because it is known that virus entry is correlated with intracellular calcium concentration rise, this report attempts to present the most important data relevant to the feasibility of combining an insect virus such as baculovirus or densovirus with an insecticide. In this case, the insect virus is not used as a bioinsecticide but acts as a synergistic agent able to trigger calcium rise and to activate calcium-dependent intracellular signalling pathways involved in the increase of the membrane receptors and/or ion channels sensitivity to insecticides. This virus-insecticide mixture represents a promising alternative to optimize the efficacy of insecticides against insect pests while reducing the doses. PMID:26743399

  1. Radiotracer Approaches to Carbamate Insecticide Toxicology

    International Nuclear Information System (INIS)

    Methylcarbamates constitute one of the major groups of insecticides. Many unresolved problems in their toxicology may be readily approached with radiotracer studies. Dimethylcarbamates have been prepared with carbonyl-C14-labelling and methylcarbamates withmethyl-, carbonyl-and ring-labelling utilizing carbon-14. The pharmacological action of these.compounds presumably results from acetylcholinesterase inhibition and may involve carbamylation. Reaction of carbonyl- or methyl-labelled carbamates with purified cholinesterase or other esterases would allow a critical examination of this carbamylation reaction and the ease of spontaneous and induced reactivation or decarbamylation. The physiological significance of cholinesterase inhibition might be examined by administering acetate-C14 and analysis for radiolabelled acetylcholine accumulation in nervous tissue, or by utilizing acetyl-C14-choline as the substrate for in vitro determination of the degree of cholinesterase inhibition in tissues of poisoned animals with minimal dilution of the inhibitors and enzymes during analysis. Some progress has been made with radiolabelled materials in investigating the metabolism of carbamate insecticides. Sevin (1-naphthyl methylcarbamate) has been most extensively studied along with its potential hydrolysis products. The assumption that the metabolism of Sevin involves an initial hydrolysis and then further decomposition of the fragments was not supported by carbon-14 studies. The major detoxification mechanism in mammals, and probably also in insects, results from initial oxidative attack on the carbamate by the microsomes in the presence of reduced nicotinamide-adenine dinucleotide phosphate. Sevin is rapidly metabolized in mammals, but the fate of certain of the fragments has not been resolved. Some of the metabolites appear in the milk of lactating animals. One step in the metabolism appears to be formation of the N-methylol derivative. Preliminary studies on the metabolism

  2. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021.

    Science.gov (United States)

    Ullah, Ihsan; Khan, Abdul Latif; Ali, Liaqat; Khan, Abdur Rahim; Waqas, Muhammad; Hussain, Javid; Lee, In-Jung; Shin, Jae-Ho

    2015-02-01

    The Photorhabdus temperata M1021 secretes toxic compounds that kill their insect hosts by arresting immune responses. Present study was aimed to purify the insecticidal and antimicrobial compound(s) from the culture extract of P. temperata M1021 through bioassay guided fractionation. An ethyl acetate (EtOAc) extract of the P. temperata M1021 exhibited 100% mortality in Galleria mellonella larvae within 72 h. In addition, EtOAc extract and bioactive compound 1 purified form the extract through to column chromatography, showed phenol oxidase inhibition up to 60% and 80% respectively. The analysis of (1)H and (13)C NMR spectra revealed the identity of pure compound as "benzaldehyde". The benzaldehyde showed insecticidal activity against G. mellonella in a dose-dependent manner and 100% insect mortality was observed at 108 h after injection of 8 mM benzaldehyde. In a PO inhibition assay, 4, 6, and 8 mM concentrations of benzaldehyde were found to inhibit PO activity about 15%, 42%, and 80% respectively. In addition, nodule formation was significantly (P benzaldehyde as compare to control. Moreover, benzaldehyde was found to have great antioxidant activity and maximum antioxidant activity was 52.9% at 8 mM benzaldehyde as compare to control. Antimicrobial activity was assessed by MIC values ranged from 6 mM 10 mM for bacterial strains and 8 mM to 10 mM for fungal strains. The results suggest that benzaldehyde could be applicable for developing novel insecticide for agriculture use.

  3. Induced tolerance from a sublethal insecticide leads to cross-tolerance to other insecticides.

    Science.gov (United States)

    Hua, Jessica; Jones, Devin K; Relyea, Rick A

    2014-04-01

    As global pesticide use increases, the ability to rapidly respond to pesticides by increasing tolerance has important implications for the persistence of nontarget organisms. A recent study of larval amphibians discovered that increased tolerance can be induced by an early exposure to low concentrations of a pesticide. Since natural systems are often exposed to a variety of pesticides that vary in mode of action, we need to know whether the induction of increased tolerance to one pesticide confers increased tolerance to other pesticides. Using larval wood frogs (Lithobates sylvaticus), we investigated whether induction of increased tolerance to the insecticide carbaryl (AChE-inhibitor) can induce increased tolerance to other insecticides that have the same mode of action (chlorpyrifos, malathion) or a different mode of action (Na(+)channel-interfering insecticides; permethrin, cypermethrin). We found that embryonic exposure to sublethal concentrations of carbaryl induced higher tolerance to carbaryl and increased cross-tolerance to malathion and cypermethrin but not to chlorpyrifos or permethrin. In one case, the embryonic exposure to carbaryl induced tolerance in a nonlinear pattern (hormesis). These results demonstrate that that the newly discovered phenomenon of induced tolerance also provides induced cross-tolerance that is not restricted to pesticides with the same mode of action.

  4. Potentiality of plants as source of insecticide principles

    Directory of Open Access Journals (Sweden)

    Safia Zoubiri

    2014-12-01

    Full Text Available In the search for alternatives to conventional insecticides, essential oils extracted from aromatic plants have been widely investigated. Their toxicities toward insects were of special interest during the last decade. The purpose of this paper is to provide an overview of the data published mostly in the past 10 years on aromatic plant and plant’s essential oils that have been reported to possess insecticidal activity and practical methods and recent techniques for screening these compounds. The review refers to 230 plants, their geographical distribution and the organism tested. Some aspects of recent insecticidal activity directed research on natural products are discussed.

  5. The insecticide resistance in stripped stem borer, Chilo suppressalis (Walker)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The stripped stem borer (SSB), Chilo suppressalis (Walker) is one of the major insect pests of rice in China. Chemical control has been a common practice in SSB management since 1950s. Insecticides used included BHC before 1983;organophosphorus insecticides (methyl-parathion, trichophon, methamidophos, and monocrotophos), and chlordimeform in mid-1970s-1980s; Shachongshuang (dimehypo) and Shachongdan (monousltap) since early 1980s. In recent years, SSB population and its damage to rice increased rapidly and failures on control has been reported. To find out the cause of failure and to put forward the suitable control methods, we studied the resistance of SSB to major insecticides used in China.

  6. EVALUATION OF SOME NOVEL INSECTICIDES AGAINST MYZUS PERSICAE (SULZER)

    OpenAIRE

    OMKAR GAVKARE; SURJEET KUMAR; NIKHIL SHARMA; Sharma, P L

    2013-01-01

    Realtive toxicity of some insecticides viz., acetamiprid, fipronil, imidacloprid, lambda cyhalothrin, malathionand thiamethoxam to apterous adults of the green peach aphid, Myzus persicae (Sulzer) was evaluated in thelaboratory using leaf dip method of bioassay. The LC50 values of these insecticides were calculated to be 17, 16.5,4.5, 15.4, 362.2 and 4.1 ppm, respectively. On the basis of LC50 values, thiamethoxam was found to be the mosttoxic insecticide with LC50 value of 4.1ppm, closely fo...

  7. Insecticidal Activity of Cyanohydrin and Monoterpenoid Compounds

    Directory of Open Access Journals (Sweden)

    Joel R. Coats

    2000-04-01

    Full Text Available The insecticidal activities of several cyanohydrins, cyanohydrin esters and monoterpenoid esters (including three monoterpenoid esters of a cyanohydrin were evaluated. Topical toxicity to Musca domestica L. adults was examined, and testing of many compounds at 100 mg/fly resulted in 100% mortality. Topical LD50 values of four compounds for M. domestica were calculated. Testing of many of the reported compounds to brine shrimp (Artemia franciscana Kellog resulted in 100% mortality at 10 ppm, and two compounds caused 100% mortality at 1 ppm. Aquatic LC50 values were calculated for five compounds for larvae of the yellow fever mosquito (Aedes aegypti (L.. Monoterpenoid esters were among the most toxic compounds tested in topical and aquatic bioassays.

  8. Antibacterial, Antifungal, and Insecticidal Potentials of Oxalis corniculata and Its Isolated Compounds

    Directory of Open Access Journals (Sweden)

    Azizur Rehman

    2015-01-01

    Full Text Available Oxalis corniculata is a common medicinal plant widely used against numerous infectious diseases. The agrochemical potential of methanolic extract, n-hexane, chloroform, ethyl acetate, and n-butanol fractions were assessed to measure the antibacterial, antifungal, and insecticidal activities of the plant. The crude, chloroform, and n-butanol soluble fractions showed excellent activities against Escherichia coli, Shigella dysenteriae, Salmonella typhi, and Bacillus subtilis but have no activity against Staphylococcus aureus. Similarly the crude, n-hexane, and chloroform fractions were also found to have significant activity against fungal strains including Fusarium solani, Aspergillus flexneri, and Aspergillus flavus and have no activity against Aspergillus niger. Chemical pesticides have shown very good results at the beginning, but with the passage of time the need was realized to use the natural plant sources for the safe control of insects. The current study will provide minor contribution towards it. High mortality rate was recorded for the crude extract and chloroform fraction against Tribolium castaneum. The two isolated compounds 5-hydroxy-6,7,8,4′-tetramethoxyflavone (1 and 5,7,4′-trihydroxy-6,8-dimethoxyflavone (2 were evaluated for antibacterial, antifungal, and insecticidal activities. The results showed that compound 2 was more active than compound 1 against the tested bacterial strains and insects.

  9. Federal Insecticide, Fungicide, and Rodenticide Act Section 18 Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — Section 18 of Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) authorizes EPA to allow an unregistered use of a pesticide for a limited time if EPA...

  10. Design, Synthesis and Insecticidal Activity of Novel Phenylurea Derivatives

    Directory of Open Access Journals (Sweden)

    Jialong Sun

    2015-03-01

    Full Text Available A series of novel phenylurea derivatives were designed and synthesized according to the method of active groups linkage and the principle of aromatic groups bioisosterism in this study. The structures of the novel phenylurea derivatives were confirmed based on ESI-MS, IR and 1H-NMR spectral data. All of the compounds were evaluated for the insecticidal activity against the third instars larvae of Spodoptera exigua Hiibner, Plutella xyllostella Linnaeus, Helicoverpa armigera Hubner and Pieris rapae Linne respectively, at the concentration of 10 mg/L. The results showed that all of the derivatives displayed strong insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, chlorbenzuron and metaflumizone. Among the synthesized compounds, 3b, 3d, 3f, 4b and 4g displayed broad spectrum insecticidal activity.

  11. Insecticide Resistance in the Western Flower Thrips, Frankliniella occidentalis

    DEFF Research Database (Denmark)

    Jensen, Sten Erik

    assays used in this study appeared to have modest value for detecting resistance to methiocarb in field populations of F. occidentalis. The particular host plant of a polyphagous insect population may affect activity of detoxification enzymes and tolerance to insecticides. Another part of this study......The western flower thrips, Frankliniella occidentalis (Pergande) is a serious pest on a wide range of crops throughout the world. In Denmark F. occidentalis is a pest in greenhouses. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance to...... insecticides. Since F. occidentulis spread to become a worldwide pest in 1980’es, resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity...

  12. Insecticide Resistance and Management Strategies in Urban Ecosystems

    OpenAIRE

    Fang Zhu; Laura Lavine; Sally O’Neal; Mark Lavine; Carrie Foss; Douglas Walsh

    2016-01-01

    The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ...

  13. Mechanism of Insect Resistance to the Microbial Insecticide Bacillus thuringiensis

    Science.gov (United States)

    van Rie, J.; McGaughey, W. H.; Johnson, D. E.; Barnett, B. D.; van Mellaert, H.

    1990-01-01

    Receptor binding studies show that resistance of a laboratory-selected Plodia interpunctella strain to a Bacillus thuringiensis insecticidal crystal protein (ICP) is correlated with a 50-fold reduction in affinity of the membrane receptor for this protein. The strain is sensitive to a second type of ICP that apparently recognizes a different receptor. Understanding the mechanism of resistance will provide strategies to prevent or delay resistance and hence prolong the usefulness of B. thuringiensis ICPs as environmentally safe insecticides.

  14. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed

    OpenAIRE

    Adams, A.; Gore, J; Musser, F.; Cook, D; Catchot, A.; Walker, T.; Dobbins, C.

    2015-01-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities ...

  15. Impact of triazophos insecticide on paddy soil environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A laboratory incubation study was carried out to elucidate the dynamic response of insecticide (triazophos) on a paddy field soil health under controlled moisture (flooded soil) and temperature (25℃).The insecticide was applied at five levels that were 0.0 (control),0.5 field rate (FR),1.0 FR,5.0 FR,and 10.0 FR,where FR was 1500 ml/hm2,and the parameters were studied at 1,4,7,14,and 21days after treatments' addition.The electron transport system (ETS)/dehydrogenase activity exhibited a negative correlation with insecticide concentrations,and the activity affected adversely as the concentration increased.The higher doses of 5 and 10 field rates significantly reduced the ETS activity,while lower rates failed to produce any significant inhibiting effect against the control.The toxicity of insecticide decreased towards decreasing the ETS activity with the advancement of incubation period.The insecticide caused an improvement in the soil phenol content and it increased with increasing concentration of insecticide.The insecticide incorporation applied at various concentrations did not produce any significant change in soil protein content and it remained stable throughout the incubation period of 21 - days.The response of biomass phospholipid content was nearly similar to ETS activity.The phospholipid content was decreased with the addition of insecticide and the toxicity was in the order:10 FR (field rate) > 5 FR > 1.0 FR > 0.5 FR > control and it also decreased with incubation period.

  16. The use of insecticides to control insect pests

    OpenAIRE

    Wojciechowska, M.; Stepnowski, P.; Gołębiowski, M.

    2016-01-01

    Pesticides are used as plants protection products. Among those, insecticides serve as agents to control insects. When incorrectly applied, however these substances may negatively affect people's health and natural environment. Administration routes of insecticides depend on many factors and vary from spraying to fertilizers. These different methods influence how insects prey and how pests develop. Additionally, too frequent use of the same chemicals can lead to development of resi...

  17. Insects, Insecticides and Hormesis: Evidence and Considerations for Study

    OpenAIRE

    Cutler, G. Christopher

    2012-01-01

    Insects are ubiquitous, crucial components of almost all terrestrial and fresh water ecosystems. In agricultural settings they are subjected to, intentionally or unintentionally, an array of synthetic pesticides and other chemical stressors. These ecological underpinnings, the amenability of insects to laboratory and field experiments, and our strong knowledgebase in insecticide toxicology, make the insect-insecticide model an excellent one to study many questions surrounding hormesis. Moreov...

  18. Impact and Selectivity of Insecticides to Predators and Parasitoids

    OpenAIRE

    Flávio Lemes Fernandes; Leandro Bacci; Maria Sena Fernandes

    2010-01-01

    Problems with the use of insecticides has brought losses, such as, negative impact on natural enemies. When these beneficial insects reduce cause the eruption of pests and resurgence it’s more common. Thus principles of conservation these arthropods are extremely important in the biological natural control of pests, so that these enemies may present a high performance. Because of the negative impacts caused by insecticides on agriculture and their harmful effects on natural enemies, the objec...

  19. Neural effects of insecticides in the honey bee

    OpenAIRE

    Belzunces, Luc; Tchamitchian, Sylvie; Brunet, Jean-Luc

    2012-01-01

    International audience During their foraging activity, honey bees are often exposed to direct and residual contacts with pesticides, especially insecticides, all substances specifically designed to kill, repel, attract or perturb the vital functions of insects. Insecticides may elicit lethal and sublethal effects of different natures that may affect various biological systems of the honey bee. The first step in the induction of toxicity by a chemical is the interaction between the toxic co...

  20. The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8.

    Science.gov (United States)

    Zhu, Jun; Zhang, Qinbin; Cao, Ye; Li, Qiao; Zhu, Zizhong; Wang, Linxia; Li, Ping

    2016-02-10

    Bacillus thuringiensis, a typical aerobic, Gram-positive, spore-forming bacterium, is an important microbial insecticide widely used in the control of agricultural pests. B. thuringiensis serovar Hailuosis YWC2-8 with high insecticidal activity against Diptera and Lepidoptera insects has three insecticidal crystal protein genes, such as cry4Cb2, cry30Ea2, and cry56Aa1. In this study, the complete genome sequence of B. thuringiensis YWC2-8 was analyzed, which contains one circular gapless chromosome and six circular plasmids.

  1. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Science.gov (United States)

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  2. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Directory of Open Access Journals (Sweden)

    Ryo Futahashi

    Full Text Available The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  3. Eco-Friendly Insecticide Discovery via Peptidomimetics: Design, Synthesis, and Aphicidal Activity of Novel Insect Kinin Analogues.

    Science.gov (United States)

    Zhang, Chuanliang; Qu, Yanyan; Wu, Xiaoqing; Song, Dunlun; Ling, Yun; Yang, Xinling

    2015-05-13

    Insect kinin neuropeptides are pleiotropic peptides that are involved in the regulation of hindgut contraction, diuresis, and digestive enzyme release. They share a common C-terminal pentapeptide sequence of Phe(1)-Xaa(2)-Yaa(3)-Trp(4)-Gly(5)-NH2 (where Xaa(2) = His, Asn, Phe, Ser, or Tyr; Yaa(3) = Pro, Ser, or Ala). Recently, the aphicidal activity of insect kinin analogues has attracted the attention of researchers. Our previous work demonstrated that the sequence-simplified insect kinin pentapeptide analogue Phe-Phe-[Aib]-Trp-Gly-NH2 could retain good aphicidal activity and be the lead compound for the further discovery of eco-friendly insecticides which encompassed a broad array of biochemicals derived from micro-organisms and other natural sources. Using the peptidomimetics strategy, we chose Phe-Phe-[Aib]-Trp-Gly-NH2 as the lead compound, and we designed and synthesized three series, including 31 novel insect kinin analogues. The aphicidal activity of the new analogues against soybean aphid was determined. The results showed that all of the analogues exhibited aphicidal activity. Of particular interest was the analogue II-1, which exhibited improved aphicidal activity with an LC50 of 0.019 mmol/L compared with the lead compound (LC50 = 0.045 mmol/L) or the commercial insecticide pymetrozine (LC50 = 0.034 mmol/L). This suggests that the analogue II-1 could be used as a new lead for the discovery of potential eco-friendly insecticides. PMID:25912216

  4. Profile of the population use of household insecticides against mosquitoes

    Directory of Open Access Journals (Sweden)

    Luzilene Barbosa Oliveira

    2015-11-01

    Full Text Available This study described the use of household insecticides in Picos (Piauí, Brazil, identify which are the most used types of insecticides and describes the incidence of poisoning and environmental awareness of the population. After home visits (n = 700, it was seen that the majority of respondents was represented by women (75%, with 31-55 years-old (49%, incomplete primary education (38.1% and income between 1-2 earnings (64%. Most homes have between 1-3 residents (48%, 85% of the persons use insecticides mainly chosen in TV and radio and only 54% of them read the label before employing the product. The most used form of presentation is the aerosol (70.7%. Majority (79% recognizes that insecticides are harmful to health, but 74% do not use any Personal Protective Equipment (PPE. Symptoms of toxicity were reported by 27% of people interviewed. Two women reported irritation, dizziness and respiratory problems and need for medical intervention and hospitalization. All interviewed discard the package as regular trash, since Picos does not has selective collection. In conclusion, most people use insecticides, know about the individual and collective risks to which they are exposed but do not use PPE, though they believe insecticides are toxic. It was noted that acquisition of knowledge does not necessarily result in behavioral changes, since learning does not translate into appropriate preventive attitudes and practices, emphasizing the requirement for awareness campaigns about toxicity and environmental risks, preparation of professionals and surveillance policy against indiscriminate sale.

  5. Impact of some selected insecticides application on soil microbial respiration.

    Science.gov (United States)

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation. PMID:19266909

  6. Design, synthesis and insecticidal evaluation of aryloxy dihalopropene derivatives.

    Science.gov (United States)

    Yang, Ji-Chun; Li, Miao; Wu, Qiao; Liu, Chang-Ling; Chang, Xiu-Hui

    2016-02-01

    Plutella xylostella (P. xylostella) is a highly migratory, cosmopolitan species and one of the most important pest of cruciferous crops worldwide. Pyridalyl as a novel class of insecticides has good efficacy against P. xylostella. On the basis of the commercial insecticide pyridalyl, a series of new aryloxy dihalopropene derivatives were designed and synthesized by using Intermediate Derivatization Methods. Their chemical structures were confirmed by (1)H NMR, high-resolution mass spectrum (HRMS), and single-crystal X-ray diffraction analysis. The insecticidal activities of the new compounds against P. xylostella were evaluated. The results of bioassays indicated that most of the compounds showed moderate to high activities at the tested concentration, especially compounds 10e and 10g displayed more than 75% insecticidal activity against P. xylostella at 6.25mg/L, while pyridalyl showed 50% insecticidal activity at the same concentration. The field trials result of the insecticidal activities showed that compound 10e as a 10% emulsifiable concentrate (EC) was effective in the control of P. xylostella at 75-150g a.i./ha, and the mortality of P. xylostella for treatment with compound 10e at 75g a.i./ha was equivalent to pyridalyl at 105g a.i./ha. PMID:26432606

  7. Using Luseweilei insecticide to control Dendrolimus superans T.

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Luseweilei is an easily-bursted microcapsule insecticide. A test of effectiveness of the insecticide to control the larvae of Dendrolimus superans T. was carried out in larch forest in Baoan Forest Farm of Nehe City, Heilongjiang Province, in April 2001. The solutions of different concentrations (1:150, 1:250, 1:350, and 1:450 Luseweilei : water) were sprayed on the larch trunk before the overwintering larvae climbing on trees and the spraying lengths (height) designed were 1.0, 2.5, and 3.5 m high from ground. The control result showed that spraying 150-, 250-, and 350-fold solutions of the insecticide all produced a good control result, with a mortality rate of 97%, but the 450-fold solution only produced 70% mortality. It is concluded that this insecticide can be used as a kind of good insecticide to control the overwintering larvae of D. superans in spring. Spraying 350-fold solution of easy-burst microcapsule insecticide and one meter spraying length are recommended for the future application..

  8. Broad-range PCR, cloning and sequencing of the full 16S rRNA gene for detection of bacterial DNA in synovial fluid samples of Tunisian patients with reactive and undifferentiated arthritis

    OpenAIRE

    Siala, Mariam; Gdoura, Radhouane; Fourati, Hela; Rihl, Markus; Jaulhac, Benoit; Younes, Mohamed; Sibilia, Jean; Baklouti, Sofien; Bargaoui, Naceur; Sellami, Slaheddine; Sghir, Abdelghani; Hammami, Adnane

    2009-01-01

    Introduction Broad-range rDNA PCR provides an alternative, cultivation-independent approach for identifying bacterial DNA in reactive and other form of arthritis. The aim of this study was to use broad-range rDNA PCR targeting the 16S rRNA gene in patients with reactive and other forms of arthritis and to screen for the presence of DNA from any given bacterial species in synovial fluid (SF) samples. Methods We examined the SF samples from a total of 27 patients consisting of patients with rea...

  9. Sublethal and transgenerational effects of insecticides in developing Trichogramma galloi (Hymenoptera: Trichogrammatidae) : toxicity of insecticides to Trichogramma galloi.

    Science.gov (United States)

    Costa, Mariana Abreu; Moscardini, Valéria Fonseca; da Costa Gontijo, Pablo; Carvalho, Geraldo Andrade; de Oliveira, Rodrigo Lopes; de Oliveira, Harley Nonato

    2014-10-01

    This study assessed the transgenerational effects of insecticides in developing Trichogramma galloi (Hymenoptera: Trichogrammatidae). Laboratory bioassays were performed in which five insecticides were sprayed on egg-larval, pre-pupal and pupal stages of the parasitoid. The interaction between insecticides and development stages of the parasitoid was not significant for the rate of F0 emergence. All insecticides significantly reduced the emergence of wasps, with the lowest emergence observed when they were applied to the pupal stage. For the sex ratio, only spinosad applied to the pre-pupal stage and triflumuron applied on the egg-larval and pre-pupal stages did not differ from the controls. Triflumuron applied to pre-pupae did not lead to any difference in the parasitism rate of the treated generation (F0) when compared to the control. There were no significant differences among survival curves for females of F0 when all insecticides were sprayed on the egg-larval stage. Both concentrations of lambda-cyhalothrin + thiamethoxam reduced female pre-pupal survival, and all treatments reduced female pupal survival. In addition, we observed a transgenerational effect of the insecticides on emergence and sex ratio of next generation (F1). Lambda-cyhalothrin + thiamethoxam (Min) applied to the pre-pupae and pupae, the maximum rate of the same insecticides applied to the egg-larvae and pre-pupae, and spinosad applied to pre-pupae all significantly reduced the adults emergence of T. galloi F1 generation. Only triflumuron did not alter the F1 sex ratio. These bioassays provide a basis for better understanding the effects of insecticide use on beneficial parasitoids.

  10. Sublethal and transgenerational effects of insecticides in developing Trichogramma galloi (Hymenoptera: Trichogrammatidae) : toxicity of insecticides to Trichogramma galloi.

    Science.gov (United States)

    Costa, Mariana Abreu; Moscardini, Valéria Fonseca; da Costa Gontijo, Pablo; Carvalho, Geraldo Andrade; de Oliveira, Rodrigo Lopes; de Oliveira, Harley Nonato

    2014-10-01

    This study assessed the transgenerational effects of insecticides in developing Trichogramma galloi (Hymenoptera: Trichogrammatidae). Laboratory bioassays were performed in which five insecticides were sprayed on egg-larval, pre-pupal and pupal stages of the parasitoid. The interaction between insecticides and development stages of the parasitoid was not significant for the rate of F0 emergence. All insecticides significantly reduced the emergence of wasps, with the lowest emergence observed when they were applied to the pupal stage. For the sex ratio, only spinosad applied to the pre-pupal stage and triflumuron applied on the egg-larval and pre-pupal stages did not differ from the controls. Triflumuron applied to pre-pupae did not lead to any difference in the parasitism rate of the treated generation (F0) when compared to the control. There were no significant differences among survival curves for females of F0 when all insecticides were sprayed on the egg-larval stage. Both concentrations of lambda-cyhalothrin + thiamethoxam reduced female pre-pupal survival, and all treatments reduced female pupal survival. In addition, we observed a transgenerational effect of the insecticides on emergence and sex ratio of next generation (F1). Lambda-cyhalothrin + thiamethoxam (Min) applied to the pre-pupae and pupae, the maximum rate of the same insecticides applied to the egg-larvae and pre-pupae, and spinosad applied to pre-pupae all significantly reduced the adults emergence of T. galloi F1 generation. Only triflumuron did not alter the F1 sex ratio. These bioassays provide a basis for better understanding the effects of insecticide use on beneficial parasitoids. PMID:25011923

  11. Bacillus thuringiensis insecticidal Cry1Aa toxin binds to a highly conserved region of aminopeptidase N in the host insect leading to its evolutionary success.

    Science.gov (United States)

    Nakanishi, K; Yaoi, K; Shimada, N; Kadotani, T; Sato, R

    1999-06-15

    Bacillus thuringiensis insecticidal protein, Cry1Aa toxin, binds to a specific receptor in insect midguts and has insecticidal activity. Therefore, the structure of the receptor molecule is probably a key factor in determining the binding affinity of the toxin and insect susceptibility. The cDNA fragment (PX frg1) encoding the Cry1Aa toxin-binding region of an aminopeptidase N (APN) or an APN family protein from diamondback moth, Plutella xylostella midgut was cloned and sequenced. A comparison between the deduced amino acid sequence of PX frg1 and other insect APN sequences shows that Cry1Aa toxin binds to a highly conserved region of APN family protein. In this paper, we propose a model to explain the mechanism that causes B. thuringiensis evolutionary success and differing insect susceptibility to Cry1Aa toxin. PMID:10366728

  12. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L [corrected].

    Directory of Open Access Journals (Sweden)

    Hafiz Azhar Ali Khan

    Full Text Available House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, emamectin benzoate and fipronil were assessed separately, and in mixtures against house flies. A field-collected population was significantly resistant to all the insecticides under investigation when compared with a laboratory susceptible strain. Most of the insecticide mixtures like one pyrethroid with other compounds evaluated under two conditions (1∶1-"A" and LC50: LC50-"B" significantly increased the toxicity of pyrethroids in the field population. Under both conditions, the combination indices of pyrethroids with other compounds, in most of the cases, were significantly below 1, suggesting synergism. The enzyme inhibitors, PBO and DEF, when used in combination with insecticides against the resistant population, toxicities of bifenthrin, cypermethrin, deltamethrin and emamectin were significantly increased, suggesting esterase and monooxygenase based resistance mechanism. The toxicities of bifenthrin, cypermethrin and deltamethrin in the resistant population of house flies could be enhanced by the combination with chlorpyrifos, profenofos, emamectin and fipronil. The findings of the present study might have practical significance for resistance management in house flies.

  13. Bioinformatic Comparison of Bacterial Secretomes

    Institute of Scientific and Technical Information of China (English)

    Catharine Song; Aseem Kumar; Mazen Saleh

    2009-01-01

    The rapid increasing number of completed bacterial genomes provides a good op-portunity to compare their proteomes. This study was undertaken to specifically compare and contrast their secretomes-the fraction of the proteome with pre-dicted N-terminal signal sequences, both type Ⅰ and type Ⅱ. A total of 176 theoreti-cal bacterial proteomes were examined using the ExProt program. Compared with the Gram-positives, the Gram-negative bacteria were found, on average, to con-tain a larger number of potential Sec-dependent sequences. In the Gram-negative bacteria but not in the others, there was a positive correlation between proteome size and secretome size, while there was no correlation between secretome size and pathogenicity. Within the Gram-negative bacteria, intracellular pathogens were found to have the smallest secretomes. However, the secretomes of certain bacte-ria did not fit into the observed pattern. Specifically, the secretome of Borrelia burgdoferi has an unusually large number of putative lipoproteins, and the signal peptides of mycoplasmas show closer sequence similarity to those of the Gram-negative bacteria. Our analysis also suggests that even for a theoretical minimal genome of 300 open reading frames, a fraction of this gene pool (up to a maximum of 20%) may code for proteins with Sec-dependent signal sequences.

  14. Mutagenic and cytotoxic activities of benfuracarb insecticide.

    Science.gov (United States)

    Eren, Yasin; Erdoğmuş, Sevim Feyza; Akyıl, Dilek; Özkara, Arzu

    2016-08-01

    Benfuracarb is a carbamate insecticide used to control insect pests in vegetables and it has anti-acetylcholinesterase activity lower than other carbamates. Cytotoxic effects of benfuracarb were evaluated by using root growth inhibition (EC50), mitotic index (MI), and mitotic phase determinations on the root meristem cells of Allium cepa and mutagenic effects were determined in Salmonella typhymurium Ames test by TA98 and TA100 strains with and without metabolic activation. In Allium test, 1 % DMSO was used as negative control group and 10 ppm MMS was used as positive control group. 75 ppm concentration of benfuracarb was found as EC50. In MI and mitotic phases determination study, 37.5, 75 and 150 ppm doses of benfuracarb were used. Dose-dependent cytotoxic activity was found by root growth inhibition and MI studies. It was identified that mitotic inhibition activity of benfuracarb was higher than 10 ppm MMS. In Ames test, mutagenic activity was not observed and over 200 µg/plate of benfuracarb was determined as cytotoxic to S. typhymurium strains. Benfuracarb can be called as "mitotic inhibitor" but not called as mutagen. PMID:25381170

  15. Anaerobic microbial degradation of organochlorine insecticides Aldrin

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T.C.; Yen, J.H.; Wang, Y.S. [National Taiwan Univ. (Taiwan)

    2004-09-15

    Aldrin (1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4-endo-exo-5,8-dimethanonnaphthalene), a cyclodiene organochlorine insecticide, was banned by nations and classified as B2 carcinogen by United States Environmental Protection Agency (EPA). Because of its chemical stability and lipophilicity, aldrin is regarded as a persistent and recalcitrant compound. Aldrin is easily adsorbed to soil and sediment after spreading to the environments, furthermore, it may be accumulated in animal's tissue or milk and then cause adverse effects by food-chain. The dissipation process of aldrin in environments has continuously been paid much attention by researchers. In general, the dissipation of aldrin has been thought as relating to three mechanisms: photo-degradation, chemical hydrolysis, and microbial degradation. And it has been well known that microbial degradation is the most important agent for breakdown of organochlorine pesticides. There has been shown that aldrin could be transformed to its metabolites, such as dieldrin or photo-dieldrin, by microorganisms under aerobic conditions, however, limited information has been shown under anaerobic conditions. For this reason, the degradation potential of aldrin by anaerobic microorganisms obtained from indigenous river sediment was evaluated, and the effect of environmental factors such as temperatures and nutrients on the aldrin degradation was also investigated in this study.

  16. Tolerance to the carbamate insecticide propoxur.

    Science.gov (United States)

    Costa, L G; Hand, H; Schwab, B W; Murphy, S D

    1981-01-01

    Male mice were given the carbamate insecticide propoxur (2-isopropoxy phenyl methylcarbamate; Baygon) in the drinking water at weekly increasing concentrations (from 50 to 2000 ppm), for a period of 6 weeks. At the end of the treatment the LD50 for propoxur was significantly higher in the treated animals as compared with controls. Propoxur-treated animals were also resistant to the hypothermic effect of an acute administration of the same compound. Groups of mice were challenged with the cholinergic agonist carbachol at intervals during the drinking water dosing and at its end. No differences in sensitivity to carbachol acute toxicity were found between control and treated animals. Propoxur-tolerant animals were also not resistant to the hypothermic effect of oxotremorine, another cholinergic agonist. [3H]Quinuclidinyl benzilate ([3H]QNB) binding (a measure of muscarinic receptor density and affinity) in forebrain, hindbrain and ileum never differed in control and treated mice. The possibility that repeated administrations of propoxur induced increased metabolic inactivation was tested by measuring hexobarbital sleeping time and carboxylesterase activity in treated and control mice. No changes in tissue carboxylesterase activities occurred but hexobarbital sleeping time was significantly reduced in propoxur treated animals suggesting an induction of hepatic microsomal enzymes. These results suggest that tolerance to propoxur is not mediated by a decrease of cholinergic receptors, as reported for other acetylcholinesterase inhibitors, but possibly by an enhancement of its metabolism.

  17. Cell Culture for Production of Insecticidal Viruses.

    Science.gov (United States)

    Reid, Steven; Chan, Leslie C L; Matindoost, Leila; Pushparajan, Charlotte; Visnovsky, Gabriel

    2016-01-01

    While large-scale culture of insect cells will need to be conducted using bioreactors up to 10,000 l scale, many of the main challenges for cell culture-based production of insecticidal viruses can be studied using small-scale (20-500 ml) shaker/spinner flasks, either in free suspension or using microcarrier-based systems. These challenges still relate to the development of appropriate cell lines, stability of virus strains in culture, enhancing virus yields per cell, and the development of serum-free media and feeds for the desired production systems. Hence this chapter presents mainly the methods required to work with and analyze effectively insect cell systems using small-scale cultures. Outlined are procedures for quantifying cells and virus and for establishing frozen cells and virus stocks. The approach for maintaining cell cultures and the multiplicity of infection (MOI) and time of infection (TOI) parameters that should be considered for conducting infections are discussed.The methods described relate, in particular, to the suspension culture of Helicoverpa zea and Spodoptera frugiperda cell lines to produce the baculoviruses Helicoverpa armigera nucleopolyhedrovirus, HearNPV, and Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, AgMNPV, respectively, and the production of the nonoccluded Oryctes nudivirus, OrNV, using an adherent coleopteran cell line. PMID:27565495

  18. ISOLATION AND CHARACTERIZATION OF BIFENTHRIN CATABOLIZING BACTERIAL STRAIN BACILLUS CIBI FROM SOIL FOR PYRETHROIDS BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    Preeti Pandey

    2014-01-01

    Full Text Available Pyrethroids are commonly used in most parts of the world and are reported to have potential health risks. Bifenthrin, a third generation pyrethroid used as insecticide has caused potential effect on aquatic life and human health. Bioremediation is a practical approach to reduce pesticide in the environment and reports of microbial degradation of bifenthrin are meagre. This study was aimed at isolating and characterizing bacterial isolates for the efficient removal of bifenthrin residues in the environment. A bacterial strain PGS-4 isolated from sewage of pesticide industry was tested for growth at higher concentration of bifenthrin (800 mg L-1 and the optimum pH and temperature were determined. The strain utilized bifenthrin as sole carbon source for growth over a wide range of pH (4.0-9.0 and temperatures (16-37°C. On the basis of growth kinetics studies, the optimal conditions were determined to be pH 7.0-8.0 and 30°C. 16S rRNA gene sequence analysis showed that strain PGS-4 forms a distinct phylogenetic lineage within the evolutionary radiation encompassed by the genus Bacillus and showed 99% similarity to that of Bacillus cibi. This study depicts the ability of B. cibi to utilize bifenthrin at higher concentration under in vitro thereby can be used in eliminating bifenthrin from contaminated soils as a practical approach to reduce pyrethroid toxicity in the environment.

  19. Detection of arboviruses and other micro-organisms in experimentally infected mosquitoes using massively parallel sequencing.

    Science.gov (United States)

    Hall-Mendelin, Sonja; Allcock, Richard; Kresoje, Nina; van den Hurk, Andrew F; Warrilow, David

    2013-01-01

    Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.

  20. Detection of arboviruses and other micro-organisms in experimentally infected mosquitoes using massively parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Sonja Hall-Mendelin

    Full Text Available Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.

  1. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  2. An evaluation of garlic lectin as an alternative carrier domain for insecticidal fusion proteins

    Institute of Scientific and Technical Information of China (English)

    Elaine Fitches; Judith Philip; Gareth Hinchliffe; Leisbeth Vercruysse; Nanasaheb Chougule; John A.Gatehouse

    2008-01-01

    The mannosc-binding lectin GNA(snowdrop lectin)is used as a"carrier"domain in insecticidal fusion proteins which cross the insect gut after oral ingestion.A similar lectin from garlic bulb,ASAII,has been evaluated as an altemative"carrieff".Recombinant ASAII delivered orally to larvae of cabbage moth(Mamestra brassica;Lepidoptera)Was subse-quently detected in haemolymph,demonstrating transport.Fusion proteins comprising an insect neurotoxin.ButaIT(Buthus tamulus insecticidal toxin;red scorpion toxin)linked to the C-terminal region of ASAII or GNA were produced as recombinant proteins(GNA/ButaIT and ASA/ButaIT)by expression in Pichia pastoris.In both cases the C-terminal sequence of the lectin was truncated to avoid post-translational proteolysis.The GNA-containing fusion protein was toxic by injection to cabbage moth larvae(LD50≈250μg/g),and when fed had a negative effect on survival and growth.It also decreased the survival of cereal aphids(Sitobion avenae;Homoptera)from neonate to adult by>70%when fed.In contrast,the ASA-ButaIT fusion protein was non-toxic to aphids,and had no effect on lepidopteran lalwae,either when injected or when fed.However,intact ASA-ButaIT fusion protein was present in the haemolymph of cabbage moth larvae following ingestion,showing that transport of the fusion had occurred.The stabilities of GNA/BUtaIT and ASA/ButaIT to proteolysis in vivo after injection or ingestion differed,and this may be a factor in determining insecticidal activities.

  3. Modeling evolution of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to transgenic corn with two insecticidal traits.

    Science.gov (United States)

    Onstad, David W; Meinke, Lance J

    2010-06-01

    A simulation model of the population dynamics and genetics of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), was created to evaluate the use of refuges in the management of resistance to transgenic insecticidal corn, Zea mays L., expressing one or two toxin traits. Hypothetical scenarios and a case study of a corn hybrid pyramided with existing toxins are simulated. In the hypothetical situations, results demonstrated that evolution is generally delayed by pyramids compared with deployment of a single-toxin corn hybrid. However, soil insecticide use in the refuge reduced this delay and quickened the evolution of resistance. Results were sensitive to the degree of male beetle dispersal before mating and to the effectiveness of both toxins in the pyramid. Resistance evolved faster as fecundity increased for survivors of insecticidal corn. Thus, effects on fecundity must be measured to predict which resistance management plans will work well. Evolution of resistance also occurred faster if the survival rate due to exposure to the two toxins was not calculated by multiplication of two independent survival rates (one for each insect gene) but was equivalent to the minimum of the two. Furthermore, when single-trait and pyramided corn hybrids were planted within rootworm-dispersal distance of each other, the toxin traits lost efficacy more quickly than they did in scenarios without single-trait corn. For the case study involving transgenic corn expressing Cry34/35Ab1 and Cry3Bb1, the pyramid delayed evolution longer than a single trait corn hybrid and longer than a sequence of toxins based on at least one resistance-allele frequency remaining below 50%. Results are discussed within the context of a changing transgenic corn marketplace and the landscape dynamics of resistance management.

  4. Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis Diversidade bacteriana de solo sob eucaliptos obtida por seqüenciamento do 16S rDNA

    OpenAIRE

    Érico Leandro da Silveira; Rodrigo Matheus Pereira; Denilson César Scaquitto; Eliamar Aparecida Nascimbém Pedrinho; Silvana Pómpeia Val-Moraes; Ester Wickert; Lúcia Maria Carareto-Alves; Eliana Gertrudes Macedo Lemos

    2006-01-01

    Studies on the impact of Eucalyptus spp. on Brazilian soils have focused on soil chemical properties and isolating interesting microbial organisms. Few studies have focused on microbial diversity and ecology in Brazil due to limited coverage of traditional cultivation and isolation methods. Molecular microbial ecology methods based on PCR amplified 16S rDNA have enriched the knowledge of soils microbial biodiversity. The objective of this work was to compare and estimate the bacterial diversi...

  5. Insecticidal and Nematicidal Activities of Novel Mimosine Derivatives

    Directory of Open Access Journals (Sweden)

    Binh Cao Quan Nguyen

    2015-09-01

    Full Text Available Mimosine, a non-protein amino acid, is found in several tropical and subtropical plants, which has high value for medicine and agricultural chemicals. Here, in continuation of works aimed to development of natural product-based pesticidal agents, we present the first significant findings for insecticidal and nematicidal activities of novel mimosine derivatives. Interestingly, mimosinol and deuterated mimosinol (D-mimosinol from mimosine had strong insecticidal activity which could be a result of tyrosinase inhibition (IC50 = 31.4 and 46.1 μM, respectively. Of synthesized phosphoramidothionate derivatives from two these amino alcohols, two compounds (1a and 1b showed high insecticidal activity (LD50 = 0.5 and 0.7 μg/insect, respectively with 50%–60% mortality at 50 μg/mL which may be attributed to acetylcholinesterase inhibition. Compounds 1a and 1b also had strong nematicidal activity with IC50 = 31.8 and 50.2 μM, respectively. Our results suggest that the length of the alkyl chain and the functional group at the C5-position of phosphoramidothionates derived from mimosinol and d-mimosinol are essential for the insecticidal and nematicidal activities. These results reveal an unexplored scaffold as new insecticide and nematicide.

  6. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal]. E-mail: marcio.dionizio@gmail.com; picanco@ufv.br; guedes@ufv.br; mateusc3@yahoo.com.br; agronomiasilva@yahoo.com.br

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  7. The global status of insect resistance to neonicotinoid insecticides.

    Science.gov (United States)

    Bass, Chris; Denholm, Ian; Williamson, Martin S; Nauen, Ralf

    2015-06-01

    The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.

  8. Insecticide cytotoxicology in China: Current status and challenges.

    Science.gov (United States)

    Zhong, Guohua; Cui, Gaofeng; Yi, Xin; Sun, Ranran; Zhang, Jingjing

    2016-09-01

    The insecticide cytotoxicology, as a new branch of toxicology, has rapidly developed in China. During the past twenty years, thousands of investigations have sprung up to evaluate the damages and clarify the mechanisms of insecticidal chemical substances to insect cells in vivo or in vitro. The mechanisms of necrosis, apoptosis or autophagy induced by synthetic or biogenic pesticides and virus infections have been systematically illuminated in many important models, including S2, BmN, SL-1, Sf21 and Sf9 cell lines. In addition, a variety of methods have also been applied to examine the effects of insecticides and elaborate the modes of action. As a result, many vital factors and pathways, such as cytochrome c, the Bcl-2 family and caspases, in mitochondrial signaling pathways, intracellular free calcium and lysosome signal pathways have been illuminated and drawn much attention. Benefiting from the application of insecticide cytotoxicology, natural products purifications, biological activities assessments of synthetic compounds and high throughput screening models have been accelerated in China. However, many questions remained, and there exist great challenges, especially in theory system, evaluation criterion, evaluation model, relationship between activity in vitro and effectiveness in vivo, and the toxicological mechanism. Fortunately, the generation of "omics" could bring opportunities for the development of insecticide cytotoxicology. PMID:27521907

  9. Insecticide resistance in the bed bug comes with a cost.

    Science.gov (United States)

    Gordon, Jennifer R; Potter, Michael F; Haynes, Kenneth F

    2015-01-01

    Adaptation to new environmental stress is often associated with an alteration of one or more life history parameters. Insecticide resistant populations of insects often have reduced fitness relative to susceptible populations in insecticide free environments. Our previous work showed that three populations of bed bugs, Cimex lectularius L., evolved significantly increased levels of resistance to one product containing both β-cyfluthrin and imidacloprid insecticides with only one generation of selection, which gave us an opportunity to explore potential tradeoffs between life history parameters and resistance using susceptible and resistant strains of the same populations. Life history tables were compiled by collecting weekly data on mortality and fecundity of bugs from each strain and treatment throughout their lives. Selection led to a male-biased sex ratio, shortened oviposition period, and decreased life-time reproductive rate. Generation time was shortened by selection, a change that represents a benefit rather than a cost. Using these life history characteristics we calculated that there would be a 90% return to pre-selection levels of susceptibility within 2- 6.5 generations depending on strain. The significant fitness costs associated with resistance suggest that insecticide rotation or utilization of non-insecticidal control tactics could be part of an effective resistance management strategy. PMID:26039510

  10. RESISTANCE OF THE TOXAPHENE INSECTICIDE IN SOIL

    Directory of Open Access Journals (Sweden)

    G MIRSATTARI

    2001-06-01

    Full Text Available Introduction. Toxaphene is resistant to degration and has been known as persistent bioaccumulator. In oder to understand the persistence and degradation phenomena of toxaphene in soil a series of tests were run. Methods. All experiments for dry and moist soil were conducted with 10 to 20 kg soil samples, contained in plastic tubs. The experiment was carried out in two parts. The five samples studied in each part are described below. Part I: "Dry samples". Soil control I soil amended with 10 percent gin trash/soil amended with 25 percent gin trash/soil amended with 10 percent gin trash and treated with 500 ppm toxaphene and soil treated with 500 ppm toxaphene. These samples were kept dry during the entire experimental period. Part II: "Moist samples". The samples were the same as described in part I, but they were kept moist by addition of water weekly during the experimental period. Periodically twenty grams of soil were analyzed using a gas chromatograph. Results. Chromatograms of dry and moist samples from soil containers (Part I and II analyzed up to 12 months after initiation of the experiments showed that no toxaphene degradation or dissipation had occurred. GLC profiles of extracts of 12 months soil samples were identical to those of 0 dry samples and almost 100 percent of toxaphene was recovered in all samples after one year regardless of whether samples were dry or moist I amended or not. Discussion. The results suggest that toxaphene dose not undergo degradation in soil" under aerobic condition, so it can be a persistent insecticide in soil under environmental condition.

  11. Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...

  12. Efficacy of an insecticide paint against insecticide-susceptible and resistant mosquitoes - Part 1: Laboratory evaluation

    Directory of Open Access Journals (Sweden)

    Carnevale Pierre

    2010-11-01

    Full Text Available Abstract Background The main malaria vector Anopheles gambiae and the urban pest nuisance Culex quinquefasciatus are increasingly resistant to pyrethroids in many African countries. There is a need for new products and strategies. Insecticide paint Inesfly 5A IGR™, containing two organophosphates (OPs, chlorpyrifos and diazinon, and insect growth regulator (IGR, pyriproxyfen, was tested under laboratory conditions for 12 months following WHOPES Phase I procedures. Methods Mosquitoes used were laboratory strains of Cx. quinquefasciatus susceptible and resistant to OPs. The paint was applied at two different doses (1 kg/6 m2 and 1 kg/12 m2 on different commonly used surfaces: porous (cement and stucco and non-porous (softwood and hard plastic. Insecticide efficacy was studied in terms of delayed mortality using 30-minute WHO bioassay cones. IGR efficacy on fecundity, fertility and larval development was studied on OP-resistant females exposed for 30 minutes to cement treated and control surfaces. Results After treatment, delayed mortality was high (87-100% even against OP-resistant females on all surfaces except cement treated at 1 kg/12 m2. Remarkably, one year after treatment delayed mortality was 93-100% against OP-resistant females on non-porous surfaces at both doses. On cement, death rates were low 12 months after treatment regardless of the dose and the resistance status. Fecundity, fertility and adult emergence were reduced after treatment even at the lower dose (p -3. A reduction in fecundity was still observed nine months after treatment at both doses (p -3 and adult emergence was reduced at the higher dose (p -3. Conclusions High mortality rates were observed against laboratory strains of the pest mosquito Cx. quinquefasciatus susceptible and resistant to insecticides. Long-term killing remained equally important on non-porous surfaces regardless the resistance status for over 12 months. The paint's effect on fecundity, fertility and

  13. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  14. Xylella Genomics and Bacterial Pathogenicity to Plants

    OpenAIRE

    Dow, J. M.; Daniels, M J

    2000-01-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics.

  15. Modeling the integration of parasitoid, insecticide, and transgenic insecticidal crop for the long-term control of an insect pest.

    Science.gov (United States)

    Onstad, David W; Liu, Xiaoxia; Chen, Mao; Roush, Rick; Shelton, Anthony M

    2013-06-01

    The tools of insect pest management include host plant resistance, biological control, and insecticides and how they are integrated will influence the durability of each. We created a detailed model of the population dynamics and population genetics of the diamondback moth, Plutella xylostella L., and its parasitoid, Diadegma insulare (Cresson), to study long-term pest management in broccoli Brassica oleracea L. Given this pest's history of evolving resistance to various toxins, we also evaluated the evolution of resistance to transgenic insecticidal Bt broccoli (expressing Cry1Ac) and two types of insecticides. Simulations demonstrated that parasitism provided the most reliable, long-term control of P. xylostella populations. Use of Bt broccoli with a 10% insecticide-free refuge did not reduce the long-term contribution of parasitism to pest control. Small refuges within Bt broccoli fields can delay evolution of resistance > 30 generations if resistance alleles are rare in the pest population. However, the effectiveness of these refuges can be compromised by insecticide use. Rainfall mortality during the pest's egg and neonate stages significantly influences pest control but especially resistance management. Our model results support the idea that Bt crops and biological control can be integrated in integrated pest management and actually synergistically support each other. However, the planting and maintenance of toxin-free refuges are critical to this integration. PMID:23865173

  16. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large β-hairpin loop.

    Science.gov (United States)

    Bende, Niraj S; Dziemborowicz, Sławomir; Herzig, Volker; Ramanujam, Venkatraman; Brown, Geoffrey W; Bosmans, Frank; Nicholson, Graham M; King, Glenn F; Mobli, Mehdi

    2015-03-01

    Spider venoms contain a plethora of insecticidal peptides that act on neuronal ion channels and receptors. Because of their high specificity, potency and stability, these peptides have attracted much attention as potential environmentally friendly insecticides. Although many insecticidal spider venom peptides have been isolated, the molecular target, mode of action and structure of only a small minority have been explored. Sf1a, a 46-residue peptide isolated from the venom of the tube-web spider Segesteria florentina, is insecticidal to a wide range of insects, but nontoxic to vertebrates. In order to investigate its structure and mode of action, we developed an efficient bacterial expression system for the production of Sf1a. We determined a high-resolution solution structure of Sf1a using multidimensional 3D/4D NMR spectroscopy. This revealed that Sf1a is a knottin peptide with an unusually large β-hairpin loop that accounts for a third of the peptide length. This loop is delimited by a fourth disulfide bond that is not commonly found in knottin peptides. We showed, through mutagenesis, that this large loop is functionally critical for insecticidal activity. Sf1a was further shown to be a selective inhibitor of insect voltage-gated sodium channels, consistent with its 'depressant' paralytic phenotype in insects. However, in contrast to the majority of spider-derived sodium channel toxins that function as gating modifiers via interaction with one or more of the voltage-sensor domains, Sf1a appears to act as a pore blocker. PMID:25559770

  17. A comparative study of insecticide toxicity among seven cladoceran species.

    Science.gov (United States)

    Mano, Hiroyuki; Sakamoto, Masaki; Tanaka, Yoshinari

    2010-11-01

    The sensitivities of seven cladoceran species (Ceriodaphnia reticulata, Chydorus sphaericus, Daphnia galeata, Diaphanosoma brachyurum, Moina macrocopa, Scapholeberis kingi, and Simocephalus vetulus) to carbamate insecticides (carbaryl and methomyl) were investigated by acute toxicity tests. The sensitivities to carbaryl and methomyl were highly correlated among the tested organisms, but the co-tolerance level varied markedly among species. C. reticulata showed the highest sensitivity, whereas M. macrocopa and S. kingi showed the lowest sensitivities to the two insecticides. These results indicate that the degree of chemical impacts on natural communities can vary depending on cladoceran species composition. The highly positive correlation between the EC(50) values for both insecticides indicates that the two chemicals have a shared mode of action on cladoceran species. Unlike previous reports, acute toxicity was not correlated with body size. The results are discussed in relation to community-level experiments, the functions of freshwater ecosystems, and ecological risk assessment. PMID:20862541

  18. EVALUATION OF SOME NOVEL INSECTICIDES AGAINST MYZUS PERSICAE (SULZER

    Directory of Open Access Journals (Sweden)

    OMKAR GAVKARE

    2013-01-01

    Full Text Available Realtive toxicity of some insecticides viz., acetamiprid, fipronil, imidacloprid, lambda cyhalothrin, malathionand thiamethoxam to apterous adults of the green peach aphid, Myzus persicae (Sulzer was evaluated in thelaboratory using leaf dip method of bioassay. The LC50 values of these insecticides were calculated to be 17, 16.5,4.5, 15.4, 362.2 and 4.1 ppm, respectively. On the basis of LC50 values, thiamethoxam was found to be the mosttoxic insecticide with LC50 value of 4.1ppm, closely followed by imidacloprid with LC50 value as 4.5ppm.Malathion was found to be the least toxic with LC50 value of 362.2ppm

  19. Biodiversity of Bacterial Ecosystems in Traditional Egyptian Domiati Cheese▿

    OpenAIRE

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2006-01-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Do...

  20. Extraction of Bacterial RNA from Soil: Challenges and Solutions

    OpenAIRE

    Wang, Yong; Hayatsu, Masahito; Fujii, Takeshi

    2012-01-01

    Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing techn...

  1. Sublethal effects of some synthetic and botanical insecticides on Bemisia tabaci (Hemiptera: Aleyrodidae)

    OpenAIRE

    Esmaeily Saeideh; Samih Mohammad Amin; Zarabi Mehdi; Jafarbeigi Fatemeh

    2014-01-01

    In addition to direct mortality caused by insecticides, some biological traits of insects may also be affected by sublethal insecticide doses. In this study, we used the age-stage, two-sex life table method to evaluate the sublethal effects of the four synthetic insecticides: abamectin, imidacloprid, diazinon, and pymetrozin as well as the botanical insecticide taken from Calotropis procera (Asclepiadaceae) extract, on eggs of the cotton whitefly, Bemisia tabaci (Hem.: Aleyrodidae). The lowes...

  2. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    Science.gov (United States)

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the

  3. Insecticide resistance status in Anopheles gambiae in southern Benin

    Directory of Open Access Journals (Sweden)

    Corbel Vincent

    2010-03-01

    Full Text Available Abstract Background The emergence of pyrethroid resistance in Anopheles gambiae has become a serious concern to the future success of malaria control. In Benin, the National Malaria Control Programme has recently planned to scaling up long-lasting insecticidal nets (LLINs and indoor residual spraying (IRS for malaria prevention. It is, therefore, crucial to monitor the level and type of insecticide resistance in An. gambiae, particularly in southern Benin where reduced efficacy of insecticide-treated nets (ITNs and IRS has previously been reported. Methods The protocol was based on mosquito collection during both dry and rainy seasons across forty districts selected in southern Benin. Bioassay were performed on adults collected from the field to assess the susceptibility of malaria vectors to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1% following WHOPES guidelines. The species within An. gambiae complex, molecular form and presence of kdr and ace-1 mutations were determined by PCR. Results Strong resistance to permethrin and DDT was found in An. gambiae populations from southern Benin, except in Aglangandan where mosquitoes were fully susceptible (mortality 100% to all insecticides tested. PCR showed the presence of two sub-species of An. gambiae, namely An. gambiae s.s, and Anopheles melas, with a predominance for An. gambiae s.s (98%. The molecular M form of An. gambiae was predominant in southern Benin (97%. The kdr mutation was detected in all districts at various frequency (1% to 95% whereas the Ace-1 mutation was found at a very low frequency (≤ 5%. Conclusion This study showed a widespread resistance to permethrin in An. gambiae populations from southern Benin, with a significant increase of kdr frequency compared to what was observed previously in Benin. The low frequency of Ace-1 recorded in all populations is encouraging for the use of bendiocarb as an alternative insecticide to

  4. Novel AChE inhibitors for sustainable insecticide resistance management.

    Directory of Open Access Journals (Sweden)

    Haoues Alout

    Full Text Available Resistance to insecticides has become a critical issue in pest management and it is particularly chronic in the control of human disease vectors. The gravity of this situation is being exacerbated since there has not been a new insecticide class produced for over twenty years. Reasoned strategies have been developed to limit resistance spread but have proven difficult to implement in the field. Here we propose a new conceptual strategy based on inhibitors that preferentially target mosquitoes already resistant to a currently used insecticide. Application of such inhibitors in rotation with the insecticide against which resistance has been selected initially is expected to restore vector control efficacy and reduce the odds of neo-resistance. We validated this strategy by screening for inhibitors of the G119S mutated acetylcholinesterase-1 (AChE1, which mediates insensitivity to the widely used organophosphates (OP and carbamates (CX insecticides. PyrimidineTrione Furan-substituted (PTF compounds came out as best hits, acting biochemically as reversible and competitive inhibitors of mosquito AChE1 and preferentially inhibiting the mutated form, insensitive to OP and CX. PTF application in bioassays preferentially killed OP-resistant Culex pipiens and Anopheles gambiae larvae as a consequence of AChE1 inhibition. Modeling the evolution of frequencies of wild type and OP-insensitive AChE1 alleles in PTF-treated populations using the selectivity parameters estimated from bioassays predicts a rapid rise in the wild type allele frequency. This study identifies the first compound class that preferentially targets OP-resistant mosquitoes, thus restoring OP-susceptibility, which validates a new prospect of sustainable insecticide resistance management.

  5. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management.

    Science.gov (United States)

    Mougabure-Cueto, Gastón; Picollo, María Inés

    2015-09-01

    Chagas disease is a chronic parasitic infection restricted to America. The disease is caused by the protozoa Trypanosoma cruzi, which is transmitted to human through the feces of infected triatomine insects. Because no treatment is available for the chronic forms of the disease, vector chemical control represents the best way to reduce the incidence of the disease. Chemical control has been based principally on spraying dwellings with insecticide formulations and led to the reduction of triatomine distribution and consequent interruption of disease transmission in several areas from endemic region. However, in the last decade it has been repeatedly reported the presence triatomnes, mainly Triatoma infestans, after spraying with pyrethroid insecticides, which was associated to evolution to insecticide resistance. In this paper the evolution of insecticide resistance in triatomines is reviewed. The insecticide resistance was detected in 1970s in Rhodnius prolixus and 1990s in R. prolixus and T. infestans, but not until the 2000s resistance to pyrthroids in T. infestans associated to control failures was described in Argentina and Bolivia. The main resistance mechanisms (i.e. enhanced metabolism, altered site of action and reduced penetration) were described in the T. infestans resistant to pyrethrods. Different resistant profiles were demonstrated suggesting independent origin of the different resistant foci of Argentina and Bolivia. The deltamethrin resistance in T. infestans was showed to be controlled by semi-dominant, autosomally inherited factors. Reproductive and developmental costs were also demonstrated for the resistant T. infestans. A discussion about resistance and tolerance concepts and the persistence of T. infestans in Gran Chaco region are presented. In addition, theoretical concepts related to toxicological, evolutionary and ecological aspects of insecticide resistance are discussed in order to understand the particular scenario of pyrethroid

  6. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    Science.gov (United States)

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the

  7. Haematological parameters as bioindicators of insecticide exposure in teleosts.

    Science.gov (United States)

    Singh, Narendra Nath; Srivastava, Anil Kumar

    2010-06-01

    Haematological parameters, such as erythrocyte and leucocyte count, erythrocyte indices and thrombocyte number vis-a-vis coagulation of blood has been considered bioindicators of toxicosis in fish following exposure to organochlorine, organophosphate, carbamate and pyrethroid insecticides. This review deals with the effects of insecticides on the morphology of red blood cells, total erythrocyte count, haemoglobin content, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, erythrocyte sedimentation rate, total and differential leucocyte counts, thrombocyte count and clotting time in the peripheral blood of a number of teleosts. The review also takes stock of knowledge of the subject and explores prospects of additional research in the related area. PMID:20177774

  8. Why insecticides are more toxic to insects than people: The unique toxicology of insects

    OpenAIRE

    Casida, J E; Quistad, G B

    2004-01-01

    The unique toxicology of insects provides the safety mechanisms for the major insecticides. The selectivity of insecticidal nerve poisons is attributable to structural differences in binding subsites (acetylcholinesterase and nicotinic receptor) or receptor subunit interfaces (gamma-aminobutyric acid receptor) or transmembrane regions (voltage-sensitive sodium channel) supplemented by metabolic activation and detoxification. Slow action limits the use of the remarkably selective insecticides ...

  9. Comparative analysis of cytochrome P450-like genes from Locusta migratoria manilensis: expression profiling and response to insecticide exposure

    Institute of Scientific and Technical Information of China (English)

    Yan-Qiong Guo; Jian-Zhen Zhang; Mei-Ling Yang; Liang-Zhen Yan; Kun Yan Zhu; Ya-Ping Guo; En-Bo Ma

    2012-01-01

    The cytochrome P450 monooxygenase (cytochrome P450) gene superfamily comprises many genes that may be involved in the biotransformations of pesticides and other xenobiotics.To date,very little is known about cytochrome P450 genes in the oriental migratory locust,Locusta migratoria manilensis.In this study,we carried out a genomewide analysis of cytochrome P450 genes of the locust to identify putative cytochrome P450 genes and characterize their expression responses to insecticide exposures.We identified 15 cytochrome P450-1ike genes from a locust expressed sequence tag database (LocustDB).Reverse transcription polymerase chain reaction (RT-PCR) analysis showed that most cytochrome P450-1ike genes displayed different tissue and developmental stage expression patterns.However,most of them were predominantly expressed in the midgut,gastric caeca,fatbodies,and/or hindgut.Biochemical analysis showed that cytochrome P450 was differentially affected by three different insecticides.Deltamethrin caused significant inductions in 12 h at LD30 (dose to kill 30% of the tested individuals) in the nymphs,whereas malathion and carbaryl did not have significant effect on cytochrome P450 enzyme activity.Further RT-PCR analysis showed significant increases of transcriptions of several cytochrome P450 genes in deltamethrin-treated locusts.Thus,the increased cytochrome P450 enzyme activity is likely due to increased transcriptions of multiple cytochrome P450genes in response to deltamethrin exposure.These results are expected to help us better understand the interactions between insecticides and major detoxification enzymes,and possible changes of the susceptibility to other insecticides in deltamethrin-treated insects at various molecular levels.

  10. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  11. Characterization of an insecticidal toxin and pathogenicity of Pseudomonas taiwanensis against insects.

    Directory of Open Access Journals (Sweden)

    Wen-Jen Chen

    2014-08-01

    Full Text Available Pseudomonas taiwanensis is a broad-host-range entomopathogenic bacterium that exhibits insecticidal activity toward agricultural pests Plutella xylostella, Spodoptera exigua, Spodoptera litura, Trichoplusia ni and Drosophila melanogaster. Oral infection with different concentrations (OD = 0.5 to 2 of wild-type P. taiwanensis resulted in insect mortality rates that were not significantly different (92.7%, 96.4% and 94.5%. The TccC protein, a component of the toxin complex (Tc, plays an essential role in the insecticidal activity of P. taiwanensis. The ΔtccC mutant strain of P. taiwanensis, which has a knockout mutation in the tccC gene, only induced 42.2% mortality in P. xylostella, even at a high bacterial dose (OD = 2.0. TccC protein was cleaved into two fragments, an N-terminal fragment containing an Rhs-like domain and a C-terminal fragment containing a Glt symporter domain and a TraT domain, which might contribute to antioxidative stress activity and defense against macrophagosis, respectively. Interestingly, the primary structure of the C-terminal region of TccC in P. taiwanensis is unique among pathogens. Membrane localization of the C-terminal fragment of TccC was proven by flow cytometry. Sonicated pellets of P. taiwanensis ΔtccC strain had lower toxicity against the Sf9 insect cell line and P. xylostella larvae than the wild type. We also found that infection of Sf9 and LD652Y-5d cell lines with P. taiwanensis induced apoptotic cell death. Further, natural oral infection by P. taiwanensis triggered expression of host programmed cell death-related genes JNK-2 and caspase-3.

  12. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis

    OpenAIRE

    Hai-Zhong Yu; De-Fu Wen; Wan-Lin Wang; Lei Geng; Yan Zhang; Jia-Ping Xu

    2015-01-01

    The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed usef...

  13. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

    OpenAIRE

    David, J.-P.; Ismail, H M; Chandor-Proust, A.; Paine, M. J. I.

    2013-01-01

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementat...

  14. Metaflumizone is a novel sodium channel blocker insecticide.

    Science.gov (United States)

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide. PMID:17959312

  15. A Powerful New Insecticide for the Organic Grower

    OpenAIRE

    Kuhar, Thomas Patrick, 1969-; Speese, John

    2009-01-01

    Entrust contains the active ingredient spinosad, which is in the naturalyte class of chemistry. Spinosad is a fermentation product produced by the soil-dwelling actinomycete Saccharopolyspora spinosa. Actinomycetes are microorganisms that have characteristics of both bacteria and fungi. This publication reviews the uses for this insecticide.

  16. How heterogeneous is the involvement of ABC transporters against insecticides?

    Science.gov (United States)

    Porretta, Daniele; Epis, Sara; Mastrantonio, Valentina; Ferrari, Marco; Bellini, Romeo; Favia, Guido; Urbanelli, Sandra

    2016-05-01

    Understanding the molecular mechanisms underlying cellular defense against xenobiotic compounds is a main research issue in medical and veterinary entomology, as insecticide/acaricide resistance is a major threat in the control of arthropods. ABC transporters are recognized as a component of the detoxifying mechanism in arthropods. We investigated the possible involvement of ABC transporters in defense to the organophosphate insecticide temephos in the malarial vector Anopheles stephensi. We performed bioassays on larvae of An. stephensi, using insecticide alone and in combination with ABC-transporter inhibitors, to assess synergism between these compounds. Next, we investigated the expression profiles of six ABC transporter genes in larvae exposed to temephos. Surprisingly, neither bioassays nor gene expression analyses provided any evidence for a major role of ABC transporters in defense against temephos in An. stephensi. We thus decided to review existing literature to generate a record of other studies that failed to reveal a role for ABC transporters against particular insecticides/acaricides. A review of the scientific literature led to the recovery of 569 papers about ABC transporters; among these, 50 involved arthropods, and 10 reported negative results. Our study on An. stephensi and accompanying literature review highlight the heterogeneity that exists in ABC transporter involvement in defense/resistance mechanisms in arthropods. PMID:26855383

  17. Investigation of the Insecticide Seed Dressing on the Sugar Beet

    Directory of Open Access Journals (Sweden)

    Jasminka Igrc Barčić

    2000-06-01

    Full Text Available The results of three year trials with various sugar beet seed treatments on the most important sugar beet pests, wireworms, flea beetles, sugar beet weevil and aphids are presented. The task of the investigation was to establish whether or not the sugar beet seed should be treated with insecticides and when granulars should be applied. In threeyear investigations 6 trials on different localities were carried out. Gaucho 70WS, Montur 190 FS, Geocid ST 35, Carbofuran 500 FS and a combination of Geocid ST 35 and Geocid G-5 were applied. The results showed that the imidacloprid seed treatment was satisfactory efficient on wireworms ensuring 20-42% more plants than on untreated plots. The efficacy of all treatments on the flea beetles was sufficient: Gaucho 70 WS 63-70%, the combined carbofuran treatment 65-67%, Geocid ST 35 54-55% and Montur 190 FS 52-55%. Therefore on imidacloprid and carbofuran treated crops the foliar treatment against flea beetles is mostly unnecassary. Insecticides based on imidacloprid showed a very good efficacy on aphids until 64 days after the sowing time with a somewhat longer residual action than the standard carbofuran treatments. All investigated insecticides were not satisfactorily efficient against sugar beet weevil. The seed dressing with a systemic insecticide is a justified measure. But, if the attack of wirevorms is strong or if a positive sugar beet weevil forecast is present, granulars shoud be applied additionaly.

  18. Ecological risks of pesticides in freshwater ecosystems; Part 2: insecticides

    NARCIS (Netherlands)

    Brock, T.C.M.; Wijngaarden, van R.P.A.; Geest, van G.J.

    2000-01-01

    A literature review of freshwater model ecosystem studies with insecticides was performed to assess the NOEC ecosystem for individual compounds, to compare these threshold levels with water quality standards, and to evaluate the ecological consequences of exceeding these standards. Studies were judg

  19. Pyrethroid insecticides in urban salmon streams of the Pacific Northwest

    International Nuclear Information System (INIS)

    Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 deg. C), and in one additional sample at a more environmentally realistic temperature (13 deg. C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols. - Highlights: → Salmon-bearing creeks can be adversely impacted by insecticides from urban runoff. → Pyrethroid insecticides were found in one-third of the creeks in Washington and Oregon. → Two creeks contained concentrations acutely lethal to sensitive invertebrates. → Bifenthrin was of greatest concern, though less than in prior studies. → Standard toxicity testing underestimates the ecological risk of pyrethroids. - Pyrethroid insecticides are present in sediments of urban creeks of Oregon and Washington, though less commonly than in studies elsewhere in the U.S.

  20. Insecticidal Activity of Piperine Isolated from Piper sarmentosum

    Institute of Scientific and Technical Information of China (English)

    Feng; Gang; Ye; Huochun; Yuan; Enlin; Zhang; Jing; Yan; Chao; Jin; Qian; Peng; Zhengqiang; Fu; Yue-guan

    2014-01-01

    In order to clarify the insecticidal active ingredients of Piper sarmentosum,one active ingredient was isolated from ethanol extract of P. sarmentosum by bioassay-guided fractionation method. Its chemical structures were identified to be piperine by MS,1H NMR,13C NMR. The insecticidal activity of piperine and ethanol extract of P. sarmentosum against Aleurodicus dispels Russell were tested by leaf dip method. The results showed that piperine and ethanol extract of P. sarmentosum exhibited strong insecticidal activity against adults and nymphs of A. dispels; LC50values against adults were 28. 59 and 224. 31 mg/L,and LC50values against nymphs were 65. 91 and 336. 68 mg/L,respectively. There was no significant difference between piperine and azadirachtin against adults and nymphs of A.dispels. Therefore,piperine might be one of the main insecticidal ingredients of P. sarmentosum. In addition,piperine and ethanol extract showed ovicidal activity with different mode of action,piperine reduced the survival rate of newly hatched nymphs while ethanol extract impacted hatch of eggs.

  1. Hydrocarbon insecticides: their risks for environment and human health.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Mohammad, Amina El-Hosini; Morsy, Tosson A

    2014-08-01

    Insecticides are used to control diseases spread by arthropods, but theys vary greatly in toxicity. Toxicity depends on the chemical and physical properties of a substance, and may be defined as the quality of being poisonous or harmful to animals or plants. Poisons have many different modes of action, but in general cause biochemical changes which interfere with normal body functions. Toxicity can be either acute or chronic. Acute toxicity is the ability of a substance to cause harmful effects which develop rapidly following absorption, i.e. a few hours or a day. Chronic toxicity is the ability of a substance to cause adverse health effects resulting from long-term exposure to a substance. There is a great range in the toxicity of insecticides to humans. The relative hazard of an insecticide is dependent upon the toxicity of the pesticide, the dose received and the length of time exposed. A hazard can be defined as a source of danger. The great majority of insecticides are poisonous to man and his beneficial insects and animals and are carcinogenic agents particularly, the halogenated hydrocarbons containing benzene ring.

  2. Paraoxonase 1 (PON1) Status and Risk of Insecticide Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Furlong, Clement E.; Cole, Toby B.; Walter, Betsy J.; Shih, Diana M.; Tward, Aaron; Lusis, Aldons J.; Timchalk, Chuck; Richter, Rebecca J.; Costa, Lucio G.

    2005-06-23

    Paraoxonase 1 (PON1) is an HDL associated enzyme that catalyzes a number of different reactions including the hydrolysis of the toxic oxon metabolites of the insecticides diazinon and chlorpyrifos. PON1 has also been implicated in the detoxication of oxidized lipids and the metabolism of a number of drugs, activating some, while inactivating others. There are two common PON1 coding region polymorphisms (L55M and Q192R). The latter determines the catalytic efficiency of hydrolysis of a number of substrates including chlorpyrifos oxon, but not diazoxon. Evidence for the physiological importance of PON1 in modulating exposures to these two insecticides comes from several different studies. Early studies noted that species with high levels of PON1 were much more resistant to certain organophosphorus (OP) insecticides than were species with low levels. Another early study by Main demonstrated that injected rabbit paraoxonase protected rats from paraoxon toxicity. Our research group began the development of a mouse model system for examining the importance of PON1 in the detoxication of OP insecticides.

  3. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    Science.gov (United States)

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-01

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees. PMID:25901681

  4. Automatic sequences

    CERN Document Server

    Haeseler, Friedrich

    2003-01-01

    Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, number theory, finite automata and formal languages, combinatorics on words. The text deals with different aspects of automatic sequences, in particular:· a general introduction to automatic sequences· the basic (combinatorial) properties of automatic sequences· the algebraic approach to automatic sequences· geometric objects related to automatic sequences.

  5. Bacterial sex in dental plaque

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2013-06-01

    Full Text Available Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  6. Analysis of Insecticides in Dead Wild Birds in Korea from 2010 to 2013.

    Science.gov (United States)

    Kim, Soohee; Park, Mi-Young; Kim, Hyo-Jin; Shin, Jin Young; Ko, Kyung Yuk; Kim, Dong-Gyu; Kim, MeeKyung; Kang, Hwan-Goo; So, ByungJae; Park, Sung-Won

    2016-01-01

    Wild birds are exposed to insecticides in a variety of ways, at different dose levels and via multiple routes, including ingestion of contaminated food items, and dermal, inhalation, preening, and embryonic exposure. Most poisoning by insecticides occurs as a result of misuse or accidental exposure, but intentional killing of unwanted animals also occurs. In this study, we investigated insecticides in the gastric contents of dead wild birds that were suspected to have died from insecticide poisoning based on necropsy. The wild birds were found dead in various regions and locations such as in mountains, and agricultural and urban areas. A total of 182 dead wild birds of 27 species were analyzed in this study, and insecticide residue levels were determined in 60.4% of the total samples analyzed. Monocrotophos and phosphamidon were the most common insecticides identified at rates of 50.0% and 30.7% of the insecticide-positive samples, respectively. Other insecticides identified in dead wild birds included organophosphorous, organochlorine and carbamate insecticides. However, there was limited evidence to conclusively establish the cause of death related to insecticides in this study. Nevertheless, considering the level of insecticide exposure, it is speculated that the exposure was mainly a result of accidental or intentional killing, and not from environmental residue.

  7. A study under semi-field conditions on the efficacy of insecticides against Meligethes aeneus F

    DEFF Research Database (Denmark)

    Kaiser, Caroline; Bormann, Inga; Ahlemann, Martin;

    2014-01-01

    to pyrethroid insecticides which has been reported from several European countries. There are two methods for insecticide susceptibility tests: insecticides can be tested in field trials or in the laboratory using the ‘glass vial testing method’. The presented approach is a semi-field method coming with precise...... statements of the reactions of the beetles to insecticides under realistic field conditions. The method is implemented to study the efficacy of insecticides with different mode of actions. Pollen beetle populations were collected from untreated fields in Saxony-Anhalt, Germany. Six insecticides...... the efficacy of insecticides the beetles were divided into three categories (alive, damaged and dead). These observations were interpreted as a realization of classified ordered categorical random variables. For the analysis we used a threshold model (generalized linear model). The dependence...

  8. Bacterial community reconstruction using compressed sensing.

    Science.gov (United States)

    Amir, Amnon; Zuk, Or

    2011-11-01

    Bacteria are the unseen majority on our planet, with millions of species and comprising most of the living protoplasm. We propose a novel approach for reconstruction of the composition of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture. Our method is based on compressive sensing theory, which deals with reconstruction of a sparse signal using a small number of measurements. Utilizing the fact that in many cases each bacterial community is comprised of a small subset of all known bacterial species, we show the feasibility of this approach for determining the composition of a bacterial mixture. Using simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA gene sequence may provide enough information for reconstruction of mixtures containing tens of species, out of tens of thousands, even in the presence of realistic measurement noise. Finally, we show initial promising results when applying our method for the reconstruction of a toy experimental mixture with five species. Our approach may have a potential for a simple and efficient way for identifying bacterial species compositions in biological samples. All supplementary data and the MATLAB code are available at www.broadinstitute.org/?orzuk/publications/BCS/.

  9. Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution

    Directory of Open Access Journals (Sweden)

    Schachtner Joachim

    2008-12-01

    Full Text Available Abstract Background Toxin complex (Tc proteins termed TcaABC, TcdAB, and TccABC with insecticidal activity are present in a variety of bacteria including the yersiniae. Results The tc gene sequences of thirteen Yersinia strains were compared, revealing a high degree of gene order conservation, but also remarkable differences with respect to pseudogenes, sequence variability and gene duplications. Outside the tc pathogenicity island (tc-PAIYe of Y. enterocolitica strain W22703, a pseudogene (tccC2'/3' encoding proteins with homology to TccC and similarity to tyrosine phosphatases at its C-terminus was identified. PCR analysis revealed the presence of the tc-PAIYe and of tccC2'/3'-homologues in all biotype 2–5 strains tested, and their absence in most representatives of biotypes 1A and 1B. Phylogenetic analysis of 39 TccC sequences indicates the presence of the tc-PAIYe in an ancestor of Yersinia. Oral uptake experiments with Manduca sexta revealed a higher larvae lethality of Yersinia strains harbouring the tc-PAIYe in comparison to strains lacking this island. Following subcutaneous infection of Galleria mellonella larvae with five non-human pathogenic Yersinia spp. and four Y. enterocolitica strains, we observed a remarkable variability of their insecticidal activity ranging from 20% (Y. kristensenii to 90% (Y. enterocolitica strain 2594 dead larvae after five days. Strain W22703 and its tcaA deletion mutant did not exhibit a significantly different toxicity towards G. mellonella. These data confirm a role of TcaA upon oral uptake only, and suggest the presence of further insecticidal determinants in Yersinia strains formerly unknown to kill insects. Conclusion This study investigated the tc gene distribution among yersiniae and the phylogenetic relationship between TccC proteins, thus contributing novel aspects to the current discussion about the evolution of insecticidal toxins in the genus Yersinia. The toxic potential of several Yersinia

  10. An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera.

    Science.gov (United States)

    Corzo, Gerardo; Diego-García, Elia; Clement, Herlinda; Peigneur, Steve; Odell, George; Tytgat, Jan; Possani, Lourival D; Alagón, Alejandro

    2008-11-01

    The soluble venom of the Mexican theraposid spider Brachypelma smithi was screened for insecticidal peptides based on toxicity to house crickets. An insecticidal peptide, named Bs1 (which stands for Brachypelma smithi toxin 1) was obtained in homogeneous form after the soluble venom was fractionated using reverse-phase and cation-exchange chromatography. It contains 41 amino acids cross-linked by three disulfide bridges. Its sequence is similar to an insecticidal peptide isolated from the theraposid spider Ornithoctonus huwena from China, and another from the hexathelid spider Macrothelegigas from Japan, indicating that they are phylogenetically related. A cDNA library was prepared from the venomous glands of B. smithi and the gene that code for Bs1 was cloned. Sequence analysis of the nucleotides of Bs1 showed similarities to that of the hexathelid spider from Japan proving additional evidence for close genetic relationship between these spider peptides. The mRNAs of these toxins code for signal peptides that are processed at the segment rich in acidic and basic residues. Their C-terminal amino acids are amidated. However, they contain only a glycine residue at the most C-terminal position, without the presence of additional basic amino acid residues, normally required for post-translation processing of other toxins reported in the literature. The possible mechanism of action of Bs1 was investigated using several ion channels as putative receptors. Bs1 had minor, but significant effects on the Para/tipE insect ion channel, which could indirectly correlate with the observed lethal activity to crickets. PMID:18687374

  11. Horizontal gene transfer and bacterial diversity

    Indian Academy of Sciences (India)

    Chitra Dutta; Archana Pan

    2002-02-01

    Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.

  12. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

    Science.gov (United States)

    Killiny, Nabil; Hajeri, Subhas; Tiwari, Siddharth; Gowda, Siddarame; Stelinski, Lukasz L

    2014-01-01

    Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development. PMID:25330026

  13. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Zhifeng Xu

    Full Text Available The carmine spider mite (CSM, Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs, Kyoto Encyclopedia of Genes and Genomes (KEGG and Gene Ontology (GO. Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45% of the transcripts had significant (e-value <10-5 matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA analysis identified 435 core eukaryotic genes (CEGs in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  14. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

    Directory of Open Access Journals (Sweden)

    Nabil Killiny

    Full Text Available Silencing of genes through RNA interference (RNAi in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4 in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.

  15. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

    Science.gov (United States)

    Killiny, Nabil; Hajeri, Subhas; Tiwari, Siddharth; Gowda, Siddarame; Stelinski, Lukasz L

    2014-01-01

    Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.

  16. Studies on Locusts' Pathogenesis and Energy Metabolic Inhibition Induced by the Insecticidal Protein Purified from Pseudomonas Pseudoalcaligenes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The insecticidal protein produced by Pseudomonas pseudoalcaligenes is purified from the suspension of the bacterial culture. As an intact molecule, the protein acts on the foregut, midgut, hindgut, vasa Malpighii and fat body, and kills locusts. The disinsection rates of feeding and injection are 63.3% and 65.7%, respectively. After 24h to 48h, it is observed that all these tissues and cells show pathological changes in varying degrees, and so did the host cellular organs of these cells, such as cytoblast, mitochondria, endoplasmic reticulum and ribosome. Particularly, the changes of the mitochondria are much more serious than those of others. Detection of oxygen electrode shows the efficiency of oxidative phosphorylation and the ATP synthesis decreases, while the activity of mitochondrial ATPase is almost not affected. That means the energy utilization of locusts is in gear, but the shortage of the supplying of energy results in their death. This research forms the substantial basis for controlling locusts.

  17. The genome of the insecticidal Chromobacterium subtsugae PRAA4-1 and its comparison with that of Chromobacterium violaceum ATCC 12472.

    Science.gov (United States)

    Blackburn, Michael B; Sparks, Michael E; Gundersen-Rindal, Dawn E

    2016-12-01

    The genome of Chromobacterium subtsugae strain PRAA4-1, a betaproteobacterium producing insecticidal compounds, was sequenced and compared with the genome of C. violaceum ATCC 12472. The genome of C. subtsugae displayed a reduction in genes devoted to capsular and extracellular polysaccharide, possessed no genes encoding nitrate reductases, and exhibited many more phage-related sequences than were observed for C. violaceum. The genomes of both species possess a number of gene clusters predicted to encode biosynthetic complexes for secondary metabolites; these clusters suggest they produce overlapping, but distinct assortments of metabolites. PMID:27617206

  18. Insights from genomics into bacterial pathogen populations.

    Directory of Open Access Journals (Sweden)

    Daniel J Wilson

    2012-09-01

    Full Text Available Bacterial pathogens impose a heavy burden of disease on human populations worldwide. The gravest threats are posed by highly virulent respiratory pathogens, enteric pathogens, and HIV-associated infections. Tuberculosis alone is responsible for the deaths of 1.5 million people annually. Treatment options for bacterial pathogens are being steadily eroded by the evolution and spread of drug resistance. However, population-level whole genome sequencing offers new hope in the fight against pathogenic bacteria. By providing insights into bacterial evolution and disease etiology, these approaches pave the way for novel interventions and therapeutic targets. Sequencing populations of bacteria across the whole genome provides unprecedented resolution to investigate (i within-host evolution, (ii transmission history, and (iii population structure. Moreover, advances in rapid benchtop sequencing herald a new era of real-time genomics in which sequencing and analysis can be deployed within hours in response to rapidly changing public health emergencies. The purpose of this review is to highlight the transformative effect of population genomics on bacteriology, and to consider the prospects for answering abiding questions such as why bacteria cause disease.

  19. Jellyfish modulate bacterial dynamic and community structure.

    Directory of Open Access Journals (Sweden)

    Tinkara Tinta

    Full Text Available Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  20. Identification and Characterization of Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductase

    OpenAIRE

    Ling, Losee L.; Xian, Jun; Ali, Syed; Geng, Bolin; Fan, Jun; Mills, Debra M.; Arvanites, Anthony C.; Orgueira, Hernan; Ashwell, Mark A.; Carmel, Gilles; Xiang, Yibin; Moir, Donald T.

    2004-01-01

    Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Esch...

  1. Optimized genotyping method for identification of bacterial contaminants in pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    Stamatoski Borche

    2016-06-01

    Full Text Available Microbiological control is of crucial importance in the pharmaceutical industry regarding the possible bacterial contamination of the environment, water, raw materials and finished products. Molecular identification of bacterial contaminants based on DNA sequencing of the hypervariable 16SrRNA gene has been introduced recently. The aim of this study is to investigate the suitability of gene sequencing using our selection of PCR primers and conditions for rapid and accurate bacterial identification in pharmaceutical industry quality control.

  2. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  3. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome

    Science.gov (United States)

    Benoit, Joshua B.; Adelman, Zach N.; Reinhardt, Klaus; Dolan, Amanda; Poelchau, Monica; Jennings, Emily C.; Szuter, Elise M.; Hagan, Richard W.; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M.; Nelson, David R.; Rosendale, Andrew J.; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M.; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R.; Ioannidis, Panagiotis; Waterhouse, Robert M.; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J. Spencer; Gondhalekar, Ameya D.; Scharf, Michael E.; Peterson, Brittany F.; Raje, Kapil R.; Hottel, Benjamin A.; Armisén, David; Crumière, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Sèverine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S. T.; Duncan, Elizabeth J.; Murali, Shwetha C.; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L.; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C.; Muzny, Donna M.; Wheeler, David; Panfilio, Kristen A.; Vargas Jentzsch, Iris M.; Vargo, Edward L.; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T.; Anderson, Michelle A. E.; Jones, Jeffery W.; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D.; Attardo, Geoffrey M.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Ribeiro, Jose M. C.; Gibbs, Richard A.; Werren, John H.; Palli, Subba R.; Schal, Coby; Richards, Stephen

    2016-01-01

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite. PMID:26836814

  4. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome.

    Science.gov (United States)

    Benoit, Joshua B; Adelman, Zach N; Reinhardt, Klaus; Dolan, Amanda; Poelchau, Monica; Jennings, Emily C; Szuter, Elise M; Hagan, Richard W; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M; Nelson, David R; Rosendale, Andrew J; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R; Ioannidis, Panagiotis; Waterhouse, Robert M; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J Spencer; Gondhalekar, Ameya D; Scharf, Michael E; Peterson, Brittany F; Raje, Kapil R; Hottel, Benjamin A; Armisén, David; Crumière, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Sèverine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S T; Duncan, Elizabeth J; Murali, Shwetha C; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C; Muzny, Donna M; Wheeler, David; Panfilio, Kristen A; Vargas Jentzsch, Iris M; Vargo, Edward L; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T; Anderson, Michelle A E; Jones, Jeffery W; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D; Attardo, Geoffrey M; Robertson, Hugh M; Zdobnov, Evgeny M; Ribeiro, Jose M C; Gibbs, Richard A; Werren, John H; Palli, Subba R; Schal, Coby; Richards, Stephen

    2016-01-01

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite. PMID:26836814

  5. The role of plant metabolism in the mutagenic and cytotoxic effects of four organophosphorus insecticides in Salmonella typhimurium and in human cell lines.

    Science.gov (United States)

    Cortés-Eslava, Josefina; Gómez-Arroyo, Sandra; Arenas-Huertero, Francisco; Flores-Maya, Saúl; Díaz-Hernández, Martha E; Calderón-Segura, María Elena; Valencia-Quintana, Rafael; Espinosa-Aguirre, Jesús Javier; Villalobos-Pietrini, Rafael

    2013-08-01

    This study used a cell/microbe co-incubation assay to evaluate the effect of four organophosphorus insecticides (parathion-methyl, azinphos-methyl, omethoate, and methamidophos) metabolized by coriander (Coriandrum sativum). The reverse mutation of Salmonella typhimurium strains TA98 and TA100 was used as an indicator of genetic damage. Treatments with these insecticides inhibited peroxidase activity in plant cells by between 17% (omethoate) and 98% (azinphos-methyl) and decreased plant protein content by between 36% (omethoate) and 99.6% (azinphos-methyl). Azinphos-methyl was the most toxic when applied directly. In the Ames test, treatments applied directly to strain TA100 killed the bacteria; however, the presence of plant metabolism detoxified the system and permitted the growth of bacteria. In strain TA98, plant metabolites of insecticides were mutagenic. This result suggests that the tested pesticides produce mutations through frameshifting. The same pesticides were applied to human skin (HaCaT) and lung (NL-20) cell lines to evaluate their effects on cell viability. Pesticides applied directly were more cytotoxic than the combination of pesticide plus coriander metabolic fraction. Omethoate and methamidophos did not affect the viability of HaCaT cells, but azinphos-methyl and parathion-methyl at 100 and 1000μgmL(-1) significantly decreased viability (pinsecticides. All of the treatment conditions caused decreases in NL-20 cell viability (e.g., viability decreased to 12.0% after parathion-methyl treatment, to 14.7% after azinphos-methyl treatment, and to 6.9% after omethoate treatment). Similar to the Ames test, all of the insecticides showed decreased toxicity in human cells when they were cultured in the presence of plant metabolism. In conclusion, when the studied organophosphorus insecticides were plant-metabolized, they induced mutations in the bacterial strain TA98. In human cell lines, plant metabolism reduced the cytotoxic properties of the

  6. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes

    Directory of Open Access Journals (Sweden)

    Jones Christopher M

    2012-04-01

    Full Text Available Abstract Background Zanzibar has a long history of lymphatic filariasis (LF caused by the filarial parasite Wuchereria bancrofti, and transmitted by the mosquito Culex quinquefasciatus Say. The LF Programme in Zanzibar has successfully implemented mass drug administration (MDA to interrupt transmission, and is now in the elimination phase. Monitoring infections in mosquitoes, and assessing the potential role of interventions such as vector control, is important in case the disease re-emerges as a public health problem. Here, we examine Culex mosquito species from the two main islands to detect W. bancrofti infection and to determine levels of susceptibility to the insecticides used for vector control. Methods Culex mosquitoes collected during routine catches in Vitongoji, Pemba Island, and Makadara, Unguja Island were tested for W. bancrofti infection using PCR. Insecticide bioassays on Culex mosquitoes were performed to determine susceptibility to permethrin, deltamethrin, lambda-cyhalothrin, DDT and bendiocarb. Additional synergism assays with piperonyl butoxide (PBO were used for lambda-cyhalothrin. Pyrosequencing was used to determine the kdr genotype and sequencing of the mitochondrial cytochrome oxidase I (mtCOI subunit performed to identify ambiguous Culex species. Results None of the wild-caught Culex mosquitoes analysed were found to be positive for W. bancrofti. High frequencies of resistance to all insecticides were found in Wete, Pemba Island, whereas Culex from the nearby site of Tibirinzi (Pemba and in Kilimani, Unguja Island remained relatively susceptible. Species identification confirmed that mosquitoes from Wete were Culex quinquefasciatus. The majority of the Culex collected from Tibirinzi and all from Kilimani could not be identified to species by molecular assays. Two alternative kdr alleles, both resulting in a L1014F substitution were detected in Cx. quinquefasciatus from Wete with no homozygote susceptible detected

  7. Secondary metabolites and insecticidal activity of Anemone pavonina.

    Science.gov (United States)

    Varitimidis, Christos; Petrakis, Panos V; Vagias, Constantinos; Roussis, Vassilios

    2006-01-01

    The insecticidal properties of the crude extracts of the leaves and flowers of Anemone pavonina were evaluated on Pheidole pallidula ants and showed significant levels of activity. Bioassay-guided fractionations led to the isolation of the butenolide ranunculin (1) as the active principle. Chemical investigations of the extracts showed them to contain as major components the sitosterol glycopyranoside lipids 2-5 and the glycerides 6-8. The structures of the metabolites were elucidated, following acetylation and hydrolysis of the natural products, by interpretation of their NMR and mass spectral data. The uncommon lipid metabolites 2-8 were isolated for the first time from the genus Anemone and this is the first report of insecticidal activity of the Anemone metabolite ranunculin against ants.

  8. Resistance is not Futile: It Shapes Insecticide Discovery

    Directory of Open Access Journals (Sweden)

    Margaret C. Hardy

    2014-01-01

    Full Text Available Conventional chemical control compounds used for the management of insect pests have been much maligned, but still serve a critical role in protecting people and agricultural products from insect pests, as well as conserving biodiversity by eradicating invasive species. Although biological control can be an effective option for area-wide management of established pests, chemical control methods are important for use in integrated pest management (IPM programs, as well as in export treatments, eradicating recently arrived invasive species, and minimizing population explosions of vectors of human disease. Cogitated research and development programs have continued the innovation of insecticides, with a particular focus on combating insecticide resistance. Recent developments in the fields of human health, protecting the global food supply, and biosecurity will be highlighted.

  9. Synthesis and Insecticidal Activities of Novel Phthalic Acid Diamides

    Institute of Scientific and Technical Information of China (English)

    闫涛; 李玉新; 李永强; 王多义; 陈伟; 刘卓; 李正名

    2012-01-01

    In order to discover novel insecticides with the new action mode on ryanodine receptor (RyR), a series of novel phthalic acid diamide derivatives were designed and synthesized. All compounds were characterized by 1H NMR spectra and HRMS. The preliminary results of biological activity assessment indicated that some title compounds exhibited excellent insecticidal activities against Mythimna separata, Spodoptera exigua, and Plutella xylostella. The title compound 3-nitro-N-cyclopropyl-N'-[2-methyl-4-(perfluoropropan-2-yl)phenyl]phthalamidte (4a) was more efficient against diamondback moths than the control (chlorantraniliprole). The effects of some title compounds on intracellular calcium of neurons from the Spodoptera exigua proved that the title compounds were RyR activators.

  10. [INSECTICIDE RESISTANCE IN MAJOR MALARIA VECTORS IN UZBEKISTAN].

    Science.gov (United States)

    Zhakhongirov, Sh M; Saifiev, Sh T; Abidov, Z I

    2016-01-01

    The resistance of Anopheles artemievi to DDT (26.7%) and propoxur (80.0%) was established in the kishlak of Chubat, Bulungursky District, Samarkand Viloyati and that in the kishlak of Rastguzar, Uichinsky District, Namangan Viloyati, was 45.0 and 22.5%, respectively. In the kishlak of Navruz, Kanlikulsky District, Republic of Karakalpakstan, there was reduced propoxur susceptibil- ity (90.0% An. superpictus death); in other human settle- ments, An. artemievi was susceptible--100% death in the use of the test insecticides. An. superpictus proved to be susceptive to 7 test insecticides (other than propoxur). In Uzbekistan, the resistance of An. artemievi was noted only in a small area. Among the major malaria vectors, An. superpictus remained susceptible to pyrethroid insec- ticides.

  11. Typical Monoterpenes as Insecticides and Repellents against Stored Grain Pests.

    Science.gov (United States)

    Reis, Suelen L; Mantello, Anieli G; Macedo, Jeferson M; Gelfuso, Erica A; da Silva, Cássio P; Fachin, Ana L; Cardoso, Alexandre M; Beleboni, Rene O

    2016-01-01

    Five monoterpenes naturally occurring in essential oils were tested for their insecticidal and repellent activities against the bruchid beetle Callosobruchus maculatus and the maize weevil Sitophilus zeamais. The monoterpenes were highly efficient as inducers of mortality or repellency against both insect species. They were more efficient in their fumigant activity against C. maculatus than against S. zeamais, while this profile of action was inverted when considering the repellent activities. Eugenol was one the most effective fumigants against both insects and one the most effective repellent against C. maculatus, while citronellal and geranial were one the most effective repellents against S. zeamais. Functional and positional isomerism of the monoterpenes pairs appears to exert little or no influence on theirs effects, especially in case of repellency. The validation of the insecticidal/repellent efficacy of isolated monoterpenes may permit a more advantageous, rapid, economic and optimized approach to the identification of promising oils for commercial formulations when combined with ethnobotanical strategies. PMID:26907246

  12. Illumina sequencing of the V4 hypervariable region 16S rRNA gene reveals extensive changes in bacterial communities in the cecum following carbohydrate oral infusion and development of early-stage acute laminitis in the horse.

    Science.gov (United States)

    Moreau, Michael M; Eades, Susan C; Reinemeyer, Craig R; Fugaro, Michael N; Onishi, Janet C

    2014-01-31

    In the equine carbohydrate overload model of acute laminitis, disease progression is associated with changes in bacteria found in the cecum. To date, research has focused on changes in specific Gram-positive bacteria in this portion of the intestinal tract. Metagenomic methods are now available making it possible to interrogate microbial communities using animal protocols that sufficiently power a study. In this study, the microbiota in cecal fluid collected from control, non-laminitic horses (n=8) and from horses with early-stage acute laminitis induced with either oligofructan (n=6) or cornstarch (n=6) were profiled. The microbiota were identified based on sequencing the V4 hypervariable region of the 16S rRNA gene. The results of the study show that the relative abundance of Lactobacillus sp. and Streptococcus sp. increased significantly (plaminitis. PMID:24355533

  13. Usage Possibilities of Insecticide Effective Biocidals in Organic Agriculture

    OpenAIRE

    Şimşek, Muharrem; Yağcı, Mürşide; Erenler, Zuhal; Yaşarer, A. Haluk

    2015-01-01

    In conventional agriculture it is aimed that mainly increase in the amount of products, synthetic chemicals and fertilizers are used extensively to provide it. Today, terms such as safe food, human and environment health have become more important. Therefore, it is necessary to increase the share of organic agriculture which have less negative impacts to human health and environment, and sustainable use of natural resources. Herein environmentally insecticide effective biocidals to pest contr...

  14. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    OpenAIRE

    Kanniah Rajasekaran; Jian Chen; BECNEL, JAMES J.; Natasha M. Agramonte; Bernier, Ulrich R.; Maia Tsikolia; Kemal Husnu Can Baser; Betul Demirci; David E. Wedge; Nurhayat Tabanca; Sampson, Blair J.; Hamidou F. Sakhanokho; James M. Spiers

    2013-01-01

    The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum...

  15. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%.

  16. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    Science.gov (United States)

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system. PMID:26513508

  17. Exogenous lipoid pneumonia induced by aspiration of insecticide.

    Science.gov (United States)

    Ishimatsu, Keisuke; Kamitani, Takeshi; Matsuo, Yoshio; Hatakenaka, Masamitsu; Sunami, Shunya; Jinnouchi, Mikako; Nagao, Michinobu; Yabuuchi, Hidetake; Honda, Hiroshi

    2012-01-01

    Exogenous lipoid pneumonia is a rare disorder caused by inhalation and/or aspiration of oil-based substances. The confirmed diagnosis of exogenous lipoid pneumonia is difficult, especially in cases for which it is impossible to ascertain a history of inhalation or aspiration. We present a case of exogenous lipoid pneumonia due to aspiration of insecticide, for which the computed tomography findings of fat attenuation within the lesion were helpful in reaching a correct diagnosis. PMID:21952608

  18. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    Science.gov (United States)

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system.

  19. Distribution of pyrethroid insecticides in secondary wastewater effluent

    OpenAIRE

    Parry, Emily; Young, Thomas M.

    2013-01-01

    Although the freely dissolved form of hydrophobic organic chemicals may best predict aquatic toxicity, differentiating between dissolved and particle bound forms is challenging at environmentally relevant concentrations for compounds with low toxicity thresholds such as pyrethroid insecticides. We investigated the distribution of pyrethroids among three forms: freely dissolved, complexed with dissolved organic carbon (DOC), and sorbed to suspended particulate matter, during a yearlong study a...

  20. Mixed function oxidases and insecticide resistance in medically important insects

    OpenAIRE

    A.A. Enayati; Ladonni, H

    2006-01-01

    MFOs are a large diverse superfamily of enzymes found in all insect tissues. They are involved in the metabolism of xenobiotics (e.g. drugs, pesticides and plant toxins) and endogenous compounds (e.g. ecdysteroids and juvenile hormones). They are also involved in bioactivation of phosphorothioate compounds such as organophosphorus insecticides. They have very diverse activities like hydroxylation, epoxidation, N-, O-or S-dealkylation, deamination, sulfoxidation, desulfuration and oxidative de...

  1. Mechanism of action of organophosphorus and carbamate insecticides.

    OpenAIRE

    Fukuto, T R

    1990-01-01

    Organophosphorus and carbamate insecticides are toxic to insects and mammals by virtue of their ability to inactivate the enzyme acetylcholinesterase. This review addresses the mechanism of inhibition of acetylcholinesterase by organophosphorus and carbamate esters, focusing on structural requirements necessary for anticholinesterase activity. The inhibition of acetylcholinesterase by these compounds is discussed in terms of reactivity and steric effects. The role of metabolic activation or d...

  2. The Side Effects of Insecticide Efficient Biocidals to Beneficial Insects

    OpenAIRE

    Şimşek, Muharrem; ÖZKAN, Cem

    2015-01-01

    Unawares usage of biocidals effects not only natural resources, environment and human health but also can damage beneficial insects which suppresses pests. Herein, the side effects of insecticide efficient biocidals to important beneficial insects was handled and measures on sustainable biocidal usages was discussed. The side effects of Deltamethrin, Azadirachtin, Spinosad and Bacillus thuringinensis biocidals to certain important beneficial insects were evaluated with literature data. Negati...

  3. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides

    OpenAIRE

    Fang Zhu; Hemant Gujar; Jennifer R. Gordon; Haynes, Kenneth F; Michael F. Potter; Palli, Subba R.

    2013-01-01

    Recent advances in genomic and post-genomic technologies have facilitated a genome-wide analysis of the insecticide resistance-associated genes in insects. Through bed bug, Cimex lectularius transcriptome analysis, we identified 14 molecular markers associated with pyrethroid resistance. Our studies revealed that most of the resistance-associated genes functioning in diverse mechanisms are expressed in the epidermal layer of the integument, which could prevent or slow down the toxin from reac...

  4. Insecticide residues cross-contamination of oilseeds during storage

    Directory of Open Access Journals (Sweden)

    Dauguet Sylvie

    2007-11-01

    Full Text Available Pesticide residues are found in oilseeds and crude oils: they are mainly organophosphate insecticides (pirimiphos-methyl, dichlorvos, malathion used in empty storage facilities and for application to stored cereal grains. Even if pests are found in stored oilseeds, French regulation does not permit use of these insecticides on stored oilseeds, as they have affinity for these lipophilic subtances. These residues arise from cross-contamination during mechanical contact with storage bins and grain handling equipment, and not from illegal use. This uptake of insecticide residues from their storage environment by oilseeds can lead to levels that exceed regulatory limits. An investigation of 11 grain storage companies allowed us to follow the course of 27 sunflower seeds batches, from reception at the storage facilities to outloading. Samples from each of these batches, made at outloading, were analysed content for insecticide residues. Traceability of sunflower seeds established by storers allowed us to identify the origine of observed cross-contamination cases. Substances discovered were dichlorvos, pirimiphos-methyl and malathion (and chlorpyriphos-methyl in a single case. Pirimiphos-methyl was most commonly detected, but most cases of non-accordance with regulatory levels were observed with dichlorvos and malathion. Main cross-contamination hazard resulted from treatment of cereals at outloading, just before sunflower seeds were outloaded, especially when these cereals treatments were frequent on that elevator. Other situations led to cross-contaminations, but generally of lower levels: outloading of sunflower seeds after outloading of cereal that was treated at the reception, several weeks or months before; sunflower seeds stored in bin that contained previously treated cereal; empty bins and handling equipment treated before receipt of sunflower seeds.

  5. The impact of insecticides to local honey bee colony Apis cerana indica in laboratory condition

    Science.gov (United States)

    Putra, Ramadhani E.; Permana, Agus D.; Nuriyah, Syayidah

    2014-03-01

    Heavy use of insecticides considered as one of common practice at local farming systems. Even though many Indonesian researchers had stated the possible detrimental effect of insecticide on agriculture environment and biodiversity, researches on this subject had been neglected. Therefore, our purpose in this research is observing the impact of insecticides usage by farmer to non target organisme like local honey bee (Apis cerana indica), which commonly kept in area near agriculture system. This research consisted of field observations out at Ciburial, Dago Pakar, Bandung and laboratory tests at School of Life Sciences and Technology, Institut Teknologi Bandung. The field observations recorded visited agriculture corps and types of pollen carried by bees to the nest while laboratory test recorderd the effect of common insecticide to mortality and behavior of honey bees. Three types of insecticides used in this research were insecticides A with active agent Chlorantraniliprol 50 g/l, insecticide B with active agent Profenofos 500 g/l, and insecticides C with active agent Chlorantraniliprol 100 g/l and λ-cyhalotrin 50g/l. The results show that during one week visit, wild flower, Wedelia montana, visited by most honey bees with average visit 60 honey bees followed by corn, Zea mays, with 21 honey bees. The most pollen carried by foragers was Wedelia montana, Calliandra callothyrsus, and Zea mays. Preference test show that honeybees tend move to flowers without insecticides as the preference to insecticides A was 12.5%, insecticides B was 0%, and insecticides was C 4.2%. Mortality test showed that insecticides A has LD50 value 0.01 μg/μl, insecticide B 0.31 μg/μl, and insecticides C 0.09 μg/μl which much lower than suggested dosage recommended by insecticides producer. This research conclude that the use of insecticide could lower the pollination service provide by honey bee due to low visitation rate to flowers and mortality of foraging bees.

  6. Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain

    International Nuclear Information System (INIS)

    We have identified and cloned a novel toxin gene (tccC1/xptB1) from Xenorhabdus nematophilus strain isolated from Korea-specific entomophagous nematode Steinernema glaseri MK. The DNA sequence of cloned toxin gene (3048 bp) has an open reading frame encoding 1016 amino acids with a predicted molecular mass of 111058 Da. The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus (AJ308438), Photorhabdus luminescens W14 (AF346499) P. luminescens TTO1 (BX571873), and Yersinia pestis CO92 (NC003143). The toxin gene was successfully expressed in Escherichia coli, and the recombinant toxin protein caused a rapid cessation in mortality of Galleria mellonella larvae (80% death of larvae within 2 days). Conclusively, the heterologous expression of the novel gene tccC1 cloned into E. coli plasmid vector produced recombinant toxin with high insecticidal activity

  7. Biochemical and microbial soil functioning after application of the insecticide imidacloprid

    Institute of Scientific and Technical Information of China (English)

    Mariusz Cyco(n); Zofia Piotrowska-Seget

    2015-01-01

    Imidacloprid is one of the most commonly used insecticides in agricultural practice,and its application poses a potential risk for soil microorganisms.The objective of this study was to assess whether changes in the structure of the soil microbial community after imidacloprid application at the field rate (FR,1 mg/kg soil) and 10 times the FR (10× FR,10 mg/kg soil)may also have an impact on biochemical and microbial soil functioning.The obtained data showed a negative effect by imidacloprid applied at the FR dosage for substrate-induced respiration (SIR),the number of total bacteria,dehydrogenase (DHA),both phosphatases (PHOS-H and PHOS-OH),and urease (URE) at the beginning of the experiment.In 10× FR treated soil,decreased activity of SIR,DHA,PHOS-OH and PHOS-H was observed over the experimental period.Nitrifying and N2-fixing bacteria were the most sensitive to imidacloprid.The concentration of NO3-decreased in both imidacloprid-treated soils,whereas the concentration of NH4+ in soil with 10× FR was higher than in the control.Analysis of the bacterial growth strategy revealed that imidacloprid affected the r-or K-type bacterial classes as indicated also by the decreased eco-physiological (EP) index.Imidacloprid affected the physiological state of culturable bacteria and caused a reduction in the rate of colony formation as well as a prolonged time for growth.Principal component analysis showed that imidacloprid application significantly shifted the measured parameters,and the application of imidacloprid may pose a potential risk to the biochemical and microbial activity of soils.

  8. Neonicotinoid insecticides can serve as inadvertent insect contraceptives

    Science.gov (United States)

    Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R.

    2016-01-01

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera. Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  9. Potent Insecticidal Secondary Metabolites from the Medicinal Plant Acanthus montanus

    Directory of Open Access Journals (Sweden)

    Elham Amin

    2012-03-01

    Full Text Available Acanthus montanus (Nees T. Anders. (Family: Acanthaceae is a small shrub with sparse branches and soft stems, widespread in Africa, the Balkans, Romania, Greece and Eastern Mediterranean. Documented evidence showed that the leaves of the plant possess spasmolytic, analgesic, anti-inflammatory and antipyretic activities. In our ongoing research project; aimed at identifying new natural compounds with insecticidal activity, the alcohol extract of the aerial parts of A. montanus exhibited a significant activity against adult Aedes aegypti. Phytochemical study of the plant has resulted in isolation of nine compounds, eight of which exhibit variable degrees of insecticidal activity. β-sitosterol-3-O- β –D-glucoside (1 exhibited potent mosquitocidal activity (100% mortality against adult Aedes aegypti at 1.25 μg/mg concentration, followed by palmitic acid (2 (90%, linaroside (3 (80%, and acetoside (9 (70% respectively. It is noteworthy that this is the first report of insecticidal activity of β-sitosterol-3-O- β –D-glucoside, linaroside and acetoside.

  10. Neonicotinoid insecticides can serve as inadvertent insect contraceptives.

    Science.gov (United States)

    Straub, Lars; Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R

    2016-07-27

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  11. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides.

    Science.gov (United States)

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Navarro, Simón

    2015-10-01

    The photocatalytic degradation of three neonicotinoid insecticides (NIs), thiamethoxam (TH), imidacloprid (IM) and acetamiprid (AC), in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO2) as photocatalysts under natural sunlight and artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the electron acceptor (Na2S2O8) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO2 alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such insecticides in optimal conditions and at constant volumetric rate of photon absorption. Thus, the complete disappearance of all the studied compounds was achieved after 10 and 30 min of artificial light irradiation, in the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively. The highest degradation rate was noticed for IM, while the lowest rate constant was obtained for AC under artificial light irradiation. In addition, solar irradiation was more efficient compared to artificial light for the removal of these insecticides from water. The main photocatalytic intermediates detected during the degradation of NIs were identified.

  12. Dermal insecticide residues from birds inhabiting an orchard

    Science.gov (United States)

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Gentry, S.; Borges, S.L.

    2007-01-01

    The US Environmental Protection Agency conducts risk assessments of insecticide applications to wild birds using a model that is limited to the dietary route of exposure. However, free-flying birds are also exposed to insecticides via the inhalation and dermal routes. We measured azinphos-methyl residues on the skin plus feathers and the feet of brown-headed cowbirds (Molothrus ater) in order to quantify dermal exposure to songbirds that entered and inhabited an apple (Malus x domestica) orchard following an insecticide application. Exposure to azinphos-methyl was measured by sampling birds from an aviary that was built around an apple tree. Birds sampled at 36 h and 7-day post-application were placed in the aviary within 1 h after the application whereas birds exposed for 3 days were released into the aviary 4-day post-application. Residues on vegetation and soil were also measured. Azinphos-methyl residues were detected from the skin plus feathers and the feet from all exposure periods. Our results underscore the importance of incorporating dermal exposure into avian pesticide risk assessments.

  13. Carvacrol importance in veterinary and human medicine as ecologic insecticide and acaricide

    Directory of Open Access Journals (Sweden)

    Vučinić Marijana

    2011-01-01

    Full Text Available Carvacrol is an active ingredient of essential oils from different plants, mainly from oregano and thyme species. It poseses biocidal activity agains many artropodes of the importance for veterinary and human medicine. Carvacrol acts as repelent, larvicide, insecticide and acaricide. It acts against pest artropodes such as those that serve as mechanical or biological vectors for many causal agents of viral, bacterial and parasitic diseases for animals and humans. Therefore, it may be used not only in pest arthropodes control but in vector borne diseases control, too. In the paper carvacrol bioactivity against mosquitoes, house flies, cockroaches, ticks and mites are described. Potencial modes of carvacrol action on artropodes are given, too. Carvacrol reachs its biotoxicity against arthropodes alone or in combination with other active ingredients from the same plant of its origin, such as tymol, cymen or others. The paper explains reasons for frequently investigations on essential oils and other natural products of plant origin to their biotoxicity against food stored pest or pest of medicinal importance, as well as, needs for their use in agriculture, veterinary and human medicine.

  14. Effects of neem-based insecticides on beet armyworm (Lepidoptera: Noctuidae)

    Institute of Scientific and Technical Information of China (English)

    SHOILM.GREENBERG; ALLANT.SHOWLER; TONG-XIANLIU

    2005-01-01

    Three commercial neem [Azadirachta indica A. Juss (Meliaceae)]-based insecticides, Agroneem, Ecozin, and Neemix, and a non-commercial neem leaf powder,were evaluated for oviposition deterrence, antifeedant effect on larvae, and toxicity to eggs and larvae of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae),on cotton leaves in the laboratory. Oviposition deterrence in no-choice, and two- and fivechoice assays, was observed for the neem-based insecticide treatments when compared with a non-treated control. Neem-based insecticides also deterred feeding by beet armyworm larvae. Direct contact with neem-based insecticides decreased the survival of beet armyworm eggs. Survival of beet armyworm larvae fed for 7 days on leaves treated with neembased insecticides was reduced to 27, 33, 60, and 61% for neem leaf powder, Ecozin,Agroneem, and Neemix, respectively. Possibilities for adoption of neem-based insecticides in commercial cotton for beet armyworm control are discussed.

  15. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis Larvae through Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Hai-Zhong Yu

    2015-09-01

    Full Text Available The rice leaf roller (Cnaphalocrocis medinalis is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG, and gene ontology (GO, respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG. Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest.

  16. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis

    Science.gov (United States)

    Yu, Hai-Zhong; Wen, De-Fu; Wang, Wan-Lin; Geng, Lei; Zhang, Yan; Xu, Jia-Ping

    2015-01-01

    The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr) protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG), and gene ontology (GO), respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR) for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest. PMID:26378520

  17. Isolation, characterisation and synthesis of insecticidal natural products of the Myrtaceae family

    OpenAIRE

    Beddie, David G.

    1998-01-01

    New insecticidal natural products are required to find compounds with higher intrinsic activities to lower field application rates, and with novel modes of action to combat insect pest species which have developed resistance to current commercial insecticides. Using a taxonomic approach, studies on plants of the Myrtaceae family led to the isolation and characterisation of a range of insecticidal natural products 1 - 9 (figure 1). These compounds are all structurally related as they conta...

  18. Blocking the evolution of insecticide-resistant malaria vectors with a microsporidian

    OpenAIRE

    Koella, Jacob C; Saddler, Adam; Karacs, Thomas P S

    2011-01-01

    Finding a way to block the evolution insecticide resistance would be a major breakthrough for the control of malaria. We suggest that this may be possible by introducing a stress into mosquito populations that restores the sensitivity of genetically resistant mosquitoes and that decreases their longevity when they are not exposed to insecticide. We use a mathematical model to show that, despite the intense selection pressure imposed by insecticides, moderate levels of stress might tip the evo...

  19. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    OpenAIRE

    Nicoletta Faraone; N Kirk Hillier; G Christopher Cutler

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids wer...

  20. Resistance to bio-insecticides or how to enhance their sustainability: a review

    OpenAIRE

    Myriam eSIEGWART; Benoit eGraillot; Christine eBlachère-Lopez; Samantha eBesse; Marc eBardin; Philippe eNicot; Miguel eLopez-Ferber

    2015-01-01

    After more than 70 years of chemical pesticide use, modern agriculture is increasingly using biological control products. Resistances to conventional insecticides are wide spread, while those to bio-insecticides have raised less attention, and resistance management is frequently neglected. However, a good knowledge of the limitations of a new technique often provides greater sustainability. In this review, we compile cases of resistance to widely used bio-insecticides and describe the associa...

  1. Various novel insecticides are less toxic to humans, more specific to key pests

    OpenAIRE

    Grafton-Cardwell, Elizabeth E.; Godfrey, Larry D.; Chaney, William E.; Bentley, Walter J.

    2005-01-01

    A number of novel insecticides have recently been registered for insect control in agriculture. A major advantage of these new products is that they act on insect biological processes that humans do not experience, such as molting. Many also have greater selectivity to target specific species, so they are less likely to harm natural enemies when compared with the broader spectrum organophosphate, carbamate, neonicotinoid and pyrethroid insecticides. Such novel insecticides currently in use in...

  2. Insecticidal and repellent effect of extracts of Pluchea sericea (Nutt.) on adults of Bemisia tabaci (Genn.)

    OpenAIRE

    Carlos Enrique Ail-Catzim; Alejandro Manelik García-López; Rosalba Troncoso-Rojas; Rosario Esmeralda González-Rodríguez; Yuliana Sánchez-Segura

    2015-01-01

    T he use of repeated insecticide applications in agricultural crops to control Bemisia tabaci (Genn.) has resulted in resistance problems and environmental pollution. Inputs from plant species are an alternative to reduce this problem. Plants are a source of bioactive chemicals that can have insecticidal, repellent, attractant, anti-feeding or growth regulator effects. The aim of this study was to determine the insecticidal and repellent activity of ethanolic, acetonic and aqueous extracts of...

  3. Isolation of an Orally Active Insecticidal Toxin from the Venom of an Australian Tarantula

    OpenAIRE

    Hardy, Margaret C.; Daly, Norelle L.; Mehdi Mobli; Rodrigo A. V. Morales; Glenn F. King

    2013-01-01

    Many insect pests have developed resistance to existing chemical insecticides and consequently there is much interest in the development of new insecticidal compounds with novel modes of action. Although spiders have deployed insecticidal toxins in their venoms for over 250 million years, there is no evolutionary selection pressure on these toxins to possess oral activity since they are injected into prey and predators via a hypodermic needle-like fang. Thus, it has been assumed that spider-v...

  4. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  5. Bacteriophage functional genomics and its role in bacterial pathogen detection.

    Science.gov (United States)

    Klumpp, Jochen; Fouts, Derrick E; Sozhamannan, Shanmuga

    2013-07-01

    Emerging and reemerging bacterial infectious diseases are a major public health concern worldwide. The role of bacteriophages in the emergence of novel bacterial pathogens by horizontal gene transfer was highlighted by the May 2011 Escherichia coli O104:H4 outbreaks that originated in Germany and spread to other European countries. This outbreak also highlighted the pivotal role played by recent advances in functional genomics in rapidly deciphering the virulence mechanism elicited by this novel pathogen and developing rapid diagnostics and therapeutics. However, despite a steady increase in the number of phage sequences in the public databases, boosted by the next-generation sequencing technologies, few functional genomics studies of bacteriophages have been conducted. Our definition of 'functional genomics' encompasses a range of aspects: phage genome sequencing, annotation and ascribing functions to phage genes, prophage identification in bacterial sequences, elucidating the events in various stages of phage life cycle using genomic, transcriptomic and proteomic approaches, defining the mechanisms of host takeover including specific bacterial-phage protein interactions and identifying virulence and other adaptive features encoded by phages and finally, using prophage genomic information for bacterial detection/diagnostics. Given the breadth and depth of this definition and the fact that some of these aspects (especially phage-encoded virulence/adaptive features) have been treated extensively in other reviews, we restrict our focus only on certain aspects. These include phage genome sequencing and annotation, identification of prophages in bacterial sequences and genetic characterization of phages, functional genomics of the infection process and finally, bacterial identification using genomic information.

  6. Bacteriophage functional genomics and its role in bacterial pathogen detection.

    Science.gov (United States)

    Klumpp, Jochen; Fouts, Derrick E; Sozhamannan, Shanmuga

    2013-07-01

    Emerging and reemerging bacterial infectious diseases are a major public health concern worldwide. The role of bacteriophages in the emergence of novel bacterial pathogens by horizontal gene transfer was highlighted by the May 2011 Escherichia coli O104:H4 outbreaks that originated in Germany and spread to other European countries. This outbreak also highlighted the pivotal role played by recent advances in functional genomics in rapidly deciphering the virulence mechanism elicited by this novel pathogen and developing rapid diagnostics and therapeutics. However, despite a steady increase in the number of phage sequences in the public databases, boosted by the next-generation sequencing technologies, few functional genomics studies of bacteriophages have been conducted. Our definition of 'functional genomics' encompasses a range of aspects: phage genome sequencing, annotation and ascribing functions to phage genes, prophage identification in bacterial sequences, elucidating the events in various stages of phage life cycle using genomic, transcriptomic and proteomic approaches, defining the mechanisms of host takeover including specific bacterial-phage protein interactions and identifying virulence and other adaptive features encoded by phages and finally, using prophage genomic information for bacterial detection/diagnostics. Given the breadth and depth of this definition and the fact that some of these aspects (especially phage-encoded virulence/adaptive features) have been treated extensively in other reviews, we restrict our focus only on certain aspects. These include phage genome sequencing and annotation, identification of prophages in bacterial sequences and genetic characterization of phages, functional genomics of the infection process and finally, bacterial identification using genomic information. PMID:23520178

  7. Cloning and characterization of an insecticidal crystal protein gene from Bacillus thuringiensis subspecies kenyae

    Indian Academy of Sciences (India)

    Hari S. Misra; Nivedita P. Khairnar; Manjula Mathur; N. Vijayalakshmi; Remesh S. Hire; T. K. Dongre; S. K. Mahajan

    2002-04-01

    A sporulating culture of Bacillus thuringiensis subsp. kenyae strain HD549 is toxic to larvae of lepidopteran insect species such as Spodoptera litura, Helicoverpa armigera and Phthorimaea operculella, and a dipteran insect, Culex fatigans. A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed in E. coli. The recombinant protein produced 92% mortality in first-instar larvae of Spodoptera litura and 86% inhibition of adult emergence in Phthorimaea operculella, but showed very low toxicity against Helicoverpa armigera, and lower mortality against third-instar larvae of dipteran insects Culex fatigans, Anopheles stephensi and Aedes aegypti. The sequence of the cloned crystal protein gene showed almost complete homology with a mosquitocidal toxin gene from Bacillus thuringiensis var. kurstaki, with only five mutations scattered in different regions. Amino acid alignment with different insecticidal crystal proteins using the MUTALIN program suggested presence of the conserved block 3 region in the sequence of this protein. A mutation in codon 409 of this gene that changes a highly conserved phenylalanine residue to serine lies in this block.

  8. Cloning and characterization of an insecticidal crystal protein gene from Bacillus thuringiensis subspecies kenyae.

    Science.gov (United States)

    Misra, Hari S; Khairnar, Nivedita P; Mathur, Manjula; Vijayalakshmi, N; Hire, Ramesh S; Dongre, T K; Mahajan, S K

    2002-04-01

    A sporulating culture of Bacillus thuringiensis subsp. kenyae strain HD549 is toxic to larvae of lepidopteran insect species such as Spodoptera litura, Helicoverpa armigera and Phthorimaea operculella, and a dipteran insect, Culex fatigans. A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed in E. coli. The recombinant protein produced 92% mortality in first-instar larvae of Spodoptera litura and 86% inhibition of adult emergence in Phthorimaea operculella, but showed very low toxicity against Helicoverpa armigera, and lower mortality against third-instar larvae of dipteran insects Culex fatigans, Anopheles stephensi and Aedes aegypti. The sequence of the cloned crystal protein gene showed almost complete homology with a mosquitocidal toxin gene from Bacillus thuringiensis var. kurstaki, with only five mutations scattered in different regions. Amino acid alignment with different insecticidal crystal proteins using the MUTALIN program suggested presence of the conserved block 3 region in the sequence of this protein. A mutation in codon 409 of this gene that changes a highly conserved phenylalanine residue to serine lies in this block. PMID:12357073

  9. Two chitinase-like proteins abundantly accumulated in latex of mulberry show insecticidal activity

    Directory of Open Access Journals (Sweden)

    Komatsu Aino

    2010-01-01

    Full Text Available Abstract Background Plant latex is the cytoplasm of highly specialized cells known as laticifers, and is thought to have a critical role in defense against herbivorous insects. Proteins abundantly accumulated in latex might therefore be involved in the defense system. Results We purified latex abundant protein a and b (LA-a and LA-b from mulberry (Morus sp. and analyzed their properties. LA-a and LA-b have molecular masses of approximately 50 and 46 kDa, respectively, and are abundant in the soluble fraction of latex. Western blotting analysis suggested that they share sequence similarity with each other. The sequences of LA-a and LA-b, as determined by Edman degradation, showed chitin-binding domains of plant chitinases at the N termini. These proteins showed small but significant chitinase and chitosanase activities. Lectin RCA120 indicated that, unlike common plant chitinases, LA-a and LA-b are glycosylated. LA-a and LA-b showed insecticidal activities when fed to larvae of the model insect Drosophila melanogaster. Conclusions Our results suggest that the two LA proteins have a crucial role in defense against herbivorous insects, possibly by hydrolyzing their chitin.

  10. On-line Monitoring for Phosphorus Removal Process and Bacterial Community in Sequencing Batch Reactor%SBR工艺除磷过程与种群结构在线监测

    Institute of Scientific and Technical Information of China (English)

    崔有为; 王淑莹; 李晶

    2009-01-01

    For efficient energy consumption and control of effluent quality, the cycle duration for a sequencing batch reactor (SBR) needs to be adjusted by real-time control according to the characteristics and loading of waste-water. In this study, an on-line information system for phosphorus removal processes was established. Based on the analysis for four systems with different ecological community structures and two operation modes, anaerobic-aerobic process and anaerobic-anaerobic process, the characteristic patterns of oxidation-reduction potential (ORP) and pH were related to phosphorous dynamics in the anaerobic, anoxic and aerobic phases, for determination of the end of phosphorous removal. In the operation mode of anaerobic-aerobic process, the pH profile in the anaerobic phase was used to estimate the relative amount of phosphorous accumulating organisms (PAOs) and glycogen accumulat- ing organisms (GAOs), which is beneficial to early detection of ecology community shifts. The on-line sensor val-ue of pH and ORP may be used as the parameters to adjust the duration for phosphorous removal and community shifts to cope with influent variations and maintain appropriate operation conditions.

  11. Effect of Botanical Insecticide of Macleya cordata on Physiology and Biochemistry of Cabbage (Brassica oleracea L.

    Directory of Open Access Journals (Sweden)

    Gong Li

    2013-06-01

    Full Text Available In order to improve the effect of Cyhalothrin and botanical insecticide of Macleya cordata in the Brassica oleracea L. investigated, the contents of proline, soluble sugar and soluble protein were determined. The results showed that under the stress of botanical insecticide of Macleya cordata at the same concentration, the contents of proline, soluble sugar and soluble protein were significantly lower than those with Cyhalothrin (p<0.05 except the proline content has not significant differences between Cyhalothrin and botanical insecticide of Macleya cordata with a dosage of 50×. The degree of damage with Cyhalothrin is greater than that of botanical insecticide of Macleya cordata.

  12. The Use of Radioisotopes to Study the Absorption, Distribution and Elimination of Various Insecticides in Animals

    International Nuclear Information System (INIS)

    When insecticides are used against farm-animal parasites it is important to ensure that no harm is done to the health of the animal or the consumer. Radioisotopes provide a means of studying the behaviour of labelled insecticides in animal organisms and of obtaining extremely accurate data on residues of insecticides and insecticide decomposition products in meat and milk. The paper gives details on the rate at which DDT-C14, polychloropinene-Cl36 and chlorophos-P32 are absorbed through the skin, accumulated in the organs and tissues and eliminated from the organisms of farm and laboratory animals. (author)

  13. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae.

    Science.gov (United States)

    Luc, Djogbénou S; Benoit, Assogba; Laurette, Djossou; Michel, Makoutode

    2016-06-01

    We investigated the possible relationship between the agricultural use of insecticides and the emergence of insecticide resistance. Bioassays were conducted using simulated mosquito larval habitats and well known Anopheles gambiae strains. Soil samples were collected from vegetable production areas in Benin, including one site with insecticide use, one site where insecticides had not been used for two months, and a third where insecticides had not been used. Pupation and emergence rates were very low in pyrethroid-susceptible strains when exposed to soil that had been recently exposed to insecticides. Pupation and emergence rates in strains with the kdr mutation alone or both the kdr and Ace-1 mutations were much higher. Overall, strains with the kdr mutation survived at higher rates compared to that without kdr mutation. Although this study is observational, we provide indirect evidence indicating that soils from agricultural areas contain insecticide residues that can play a role in the emergence of insecticide resistance in Anopheles. This aspect should be taken into account to better utilize the insecticide in the context of integrated pest management programs.

  14. Protective effect and economic impact of insecticide application methods on barley

    Directory of Open Access Journals (Sweden)

    Alfred Stoetzer

    2014-03-01

    Full Text Available The objective of this work was to evaluate the protective effect of different forms of insecticide application on the transmission of yellow dwarf disease in barley cultivars, as well as to determine the production costs and the net profit of these managements. The experiments were carried out during 2011 and 2012 growing seasons, using the following managements at main plots: T1, seed treatment with insecticide (ST + insecticide on shoots at 15-day interval; T2, just ST; T3, insecticide applied on shoots, when aphid control level (CL was reached; T4, without insecticide; and T5, ST + insecticide on shoots when CL was reached. Different barley cultivars - BRS Cauê, BRS Brau and MN 6021 - were arranged in the subplots. Insecticides lambda cyhalothrin (pyrethroid and thiamethoxam (neonicotinoid were used. There were differences on yellow dwarf disease index in both seasons for the different treatments, while damage to grain yield was influenced by year and aphid population. Production costs and net profit were different among treatments. Seed treatment with insecticide is sufficient to reduce the transmission of yellow dwarf disease in years with low aphid population pressure, while in years with larger populations, the application of insecticide on shoots is also required.

  15. Posttreatment Feeding Affects Mortality of Bed Bugs (Hemiptera: Cimicidae) Exposed to Insecticides.

    Science.gov (United States)

    Singh, Narinderpal; Wang, Changlu; Cooper, Richard

    2016-02-01

    Insecticide sprays and dusts are used for controlling bed bugs, Cimex lectularius L. In natural environments, bed bugs have daily access to hosts after they are exposed to insecticides. The established laboratory insecticide bioassay protocols do not provide feeding after insecticide treatments, which can result in inflated mortality compared with what would be encountered in the field. We evaluated the effect of posttreatment feeding on mortality of bed bugs treated with different insecticides. None of the insecticides tested had a significant effect on the amount of blood consumed and percent feeding. The effect of posttreatment feeding on bed bug mortality varied among different insecticides. Feeding significantly reduced mortality in bed bugs exposed to deltamethrin spray, an essential oil mixture (Bed Bug Fix) spray, and diatomaceous earth dust. Feeding increased the mean survival time for bed bugs treated with chlorfenapyr spray and a spray containing an essential oil mixture (Ecoraider), but did not affect the final mortality. First instars hatched from eggs treated with chlorfenapyr liquid spray had reduced feeding compared with nymphs hatched from nontreated eggs. Those nymphs hatched from eggs treated with chlorfenapyr liquid spray and successfully fed had reduced mortality and a higher mean survival time than those without feeding. We conclude that the availability of a bloodmeal after insecticide exposure has a significant effect on bed bug mortality. Protocols for insecticide efficacy testing should consider offering a bloodmeal to the treated bed bugs within 1 to 3 d after treatment.

  16. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  17. Current Perspectives on Plague Vector Control in Madagascar: Susceptibility Status of Xenopsylla cheopis to 12 Insecticides.

    Science.gov (United States)

    Miarinjara, Adélaïde; Boyer, Sébastien

    2016-02-01

    Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.

  18. Delayed action insecticides and their role in mosquito and malaria control.

    Science.gov (United States)

    Wang, Chuncheng; Gourley, Stephen A; Liu, Rongsong

    2014-01-01

    There is considerable interest in the management of insecticide resistance in mosquitoes. One possible approach to slowing down the evolution of resistance is to use late-life-acting (LLA) insecticides that selectively kill only the old mosquitoes that transmit malaria, thereby reducing selection pressure favoring resistance. In this paper we consider an age-structured compartmental model for malaria with two mosquito strains that differ in resistance to insecticide, using an SEI approach to model malaria in the mosquitoes and thereby incorporating the parasite developmental times for the two strains. The human population is modeled using an SEI approach. We consider both conventional insecticides that target all adult mosquitoes, and LLA insecticides that target only old mosquitoes. According to linearised theory the potency of the insecticide affects mainly the speed of evolution of resistance. Mutations that confer resistance can also affect other parameters such as mean adult life span and parasite developmental time. For both conventional and LLA insecticides the stability of the malaria-free equilibrium, with only the resistant mosquito strain present, depends mainly on these other parameters. This suggests that the main long term role of an insecticide could be to induce genetic changes that have a desirable effect on a vital parameter such as adult life span. However, when this equilibrium is unstable, numerical simulations suggest that a potent LLA insecticide can slow down the spread of malaria in humans but that the timing of its action is very important.

  19. Effects of irrigation levels on interactions among Lygus hesperus (Hemiptera: Miridae), insecticides, and predators in cotton.

    Science.gov (United States)

    Asiimwe, Peter; Naranjo, Steven E; Ellsworth, Peter C

    2014-04-01

    Variation in plant quality and natural enemy abundance plays an important role in insect population dynamics. In manipulative field studies, we evaluated the impact of varying irrigation levels and insecticide type on densities of Lygus hesperus Knight and the arthropod predator community in cotton. Three watering levels were established via irrigations timed according to three levels of percent soil water depletion (SWD): 20, 40, or 60, where 40% SWD is considered standard grower practice, 60% represents a deficit condition likely to impose plant productivity losses, and 20% represents surplus conditions with likely consequences on excessive vegetative plant production. The two key L. hesperus insecticides used were the broad-spectrum insecticide acephate and the selective insecticide flonicamid, along with an untreated check. We hypothesized that densities of L. hesperus and its associated predators would be elevated at higher irrigation levels and that insecticides would differentially impact L. hesperus and predator dynamics depending on their selectivity. L. hesperus were more abundant at the higher irrigation level (20% SWD) but the predator densities were unaffected by irrigation levels. Both L. hesperus and its predators were affected by the selectivity of the insecticide with highest L. hesperus densities and lowest predator abundance where the broad spectrum insecticide (acephate) was used. There were no direct interactions between irrigation level and insecticides, indicating that insecticide effects on L. hesperus and its predators were not influenced by the irrigation levels used here. The implications of these findings on the overall ecology of insect-plant dynamics and yield in cotton are discussed.

  20. Current Perspectives on Plague Vector Control in Madagascar: Susceptibility Status of Xenopsylla cheopis to 12 Insecticides.

    Directory of Open Access Journals (Sweden)

    Adélaïde Miarinjara

    2016-02-01

    Full Text Available Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines. Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur. Only one insecticide (dieldrin was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.

  1. Current Perspectives on Plague Vector Control in Madagascar: Susceptibility Status of Xenopsylla cheopis to 12 Insecticides

    Science.gov (United States)

    Miarinjara, Adélaïde; Boyer, Sébastien

    2016-01-01

    Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar. PMID:26844772

  2. Moving From the Old to the New: Insecticide Research on Bed Bugs since the Resurgence

    Directory of Open Access Journals (Sweden)

    Alvaro Romero

    2011-05-01

    Full Text Available The scarcity of bed bugs in many countries over the last 50 years has resulted in a lack of modern research into the toxicology of this pest. Although bed bugs resurged in the late 1990s, published research related to insecticides has lagged behind and only began to appear in 2006. The difficulty in controlling bed bugs triggered the interest of both private and academic sectors to determine the value of currently available insecticides. What follows, is updated information on effectiveness of products, studies on insecticide susceptibility, identification of mechanisms of insecticide resistance and chemical strategies proposed to overcome resistance in modern bed bug populations.

  3. Posttreatment Feeding Affects Mortality of Bed Bugs (Hemiptera: Cimicidae) Exposed to Insecticides.

    Science.gov (United States)

    Singh, Narinderpal; Wang, Changlu; Cooper, Richard

    2016-02-01

    Insecticide sprays and dusts are used for controlling bed bugs, Cimex lectularius L. In natural environments, bed bugs have daily access to hosts after they are exposed to insecticides. The established laboratory insecticide bioassay protocols do not provide feeding after insecticide treatments, which can result in inflated mortality compared with what would be encountered in the field. We evaluated the effect of posttreatment feeding on mortality of bed bugs treated with different insecticides. None of the insecticides tested had a significant effect on the amount of blood consumed and percent feeding. The effect of posttreatment feeding on bed bug mortality varied among different insecticides. Feeding significantly reduced mortality in bed bugs exposed to deltamethrin spray, an essential oil mixture (Bed Bug Fix) spray, and diatomaceous earth dust. Feeding increased the mean survival time for bed bugs treated with chlorfenapyr spray and a spray containing an essential oil mixture (Ecoraider), but did not affect the final mortality. First instars hatched from eggs treated with chlorfenapyr liquid spray had reduced feeding compared with nymphs hatched from nontreated eggs. Those nymphs hatched from eggs treated with chlorfenapyr liquid spray and successfully fed had reduced mortality and a higher mean survival time than those without feeding. We conclude that the availability of a bloodmeal after insecticide exposure has a significant effect on bed bug mortality. Protocols for insecticide efficacy testing should consider offering a bloodmeal to the treated bed bugs within 1 to 3 d after treatment. PMID:26494709

  4. Bacterial small RNAs in the Genus Rickettsia

    OpenAIRE

    Schroeder, Casey L. C.; Narra, Hema P.; Rojas, Mark; Sahni, Abha; Patel, Jignesh; Khanipov, Kamil; Wood, Thomas G.; Fofanov, Yuriy; Sahni, Sanjeev K.

    2015-01-01

    Background Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either “junk DNA” or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs,...

  5. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  6. Impact and Selectivity of Insecticides to Predators and Parasitoids

    Directory of Open Access Journals (Sweden)

    Flávio Lemes Fernandes

    2010-04-01

    Full Text Available Problems with the use of insecticides has brought losses, such as, negative impact on natural enemies. When these beneficial insects reduce cause the eruption of pests and resurgence it’s more common. Thus principles of conservation these arthropods are extremely important in the biological natural control of pests, so that these enemies may present a high performance. Because of the negative impacts caused by insecticides on agriculture and their harmful effects on natural enemies, the objective of this article is to approach two important subjects, divided into three parts. Part I relates to the description of the main crop pests and their natural enemies; Part II involves the impact of insecticides on predators and parasitoids and Part III focuses on the selectivity of several groups of insecticides to natural enemies. Before spraying insecticides, it is necessary to choose a product that is efficient to pests and selective to natural enemies. So, it is indispensable to identify correctly the groups and species of natural enemies, since insecticides have an impact on their survival, growth, development, reproduction (sexual ratio, fecundity, longevity and fertility, and behavior (motility, orientation, feeding, oviposition and learning of insects. The mechanisms of toxicity and selectivity of insecticides are related to the properties of higher or lower solubility and molecular weight. Besides, characteristics of the cuticular composition of the integument of natural enemies are extremely important in the selectivity of a product or the tolerance of a certain predator or parasitoid to this molecules.Impacto e Seletividade de Inseticidas para Predadores e ParasitóidesResumo.Dentre os problemas advindos do uso de inseticidas, a destruição de inimigos naturais é fator importante. Estes insetos benéficos podem reduzir problemas de erupção de pragas secundárias, ressurgência de pragas e manter a praga abaixo do nível de dano econ

  7. Draft Genome Sequence of the Carbofuran-Mineralizing Novosphingobium sp. Strain KN65.2

    Science.gov (United States)

    Nguyen, Thi Phi Oanh; De Mot, René

    2015-01-01

    Complete mineralization of the N-methylcarbamate insecticide carbofuran, including mineralization of the aromatic moiety, appears to be confined to sphingomonad isolates. Here, we report the first draft genome sequence of such a sphingomonad strain, i.e., Novosphingobium sp. KN65.2, isolated from carbofuran-exposed agricultural soil in Vietnam. PMID:26159535

  8. Draft Genome Sequence of the Carbofuran-Mineralizing Novosphingobium sp. Strain KN65.2

    OpenAIRE

    Nguyen, Thi Phi Oanh; De Mot, René; Springael, Dirk

    2015-01-01

    Complete mineralization of the N-methylcarbamate insecticide carbofuran, including mineralization of the aromatic moiety, appears to be confined to sphingomonad isolates. Here, we report the first draft genome sequence of such a sphingomonad strain, i.e., Novosphingobium sp. KN65.2, isolated from carbofuran-exposed agricultural soil in Vietnam.

  9. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    Science.gov (United States)

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs. PMID:25843136

  10. Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage.

    Science.gov (United States)

    Xie, Wen; Liu, Yang; Wang, Shaoli; Wu, Qingjun; Pan, Huipeng; Yang, Xin; Guo, Litao; Zhang, Youjun

    2014-01-01

    Whitefly biotypes B and Q are the two most damaging members of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Control of B. tabaci (and especially of Q) has been impaired by resistance to commonly used insecticides. To find new insecticides for B. tabaci management in China, we investigated the sensitivity of eggs, larvae, and adults of laboratory strains of B and Q (named Lab-B and Lab-Q) and field strains of Q to several insecticides. For eggs, larvae, and adults of B. tabaci and for six insecticides (cyantraniliprole, chlorantraniliprole, pyriproxyfen, buprofezin, acetamiprid, and thiamethoxam), LC50 values were higher for Lab-Q than for Lab-B; avermectin LC50 values, however, were low for adults of both Lab-Q and Lab-B. Based on the laboratory results, insecticides were selected to test against eggs, larvae, and adults of four field strains of B. tabaci Q. Although the field strains differed in their sensitivity to the insecticides, the eggs and larvae of all strains were highly sensitive to cyantraniliprole, and the adults of all strains were highly sensitive to avermectin. The eggs, larvae, and adults of B. tabaci Q were generally more resistant than those of B. tabaci B to the tested insecticides. B. tabaci Q eggs and larvae were sensitive to cyantraniliprole and pyriproxyfen, whereas B. tabaci Q adults were sensitive to avermectin. Field trials should be conducted with cyantraniliprole, pyriproxyfen, and avermectin for control of B. tabaci Q and B in China.

  11. Degradation of Insecticides in Poultry Manure: Determining the Insecticidal Treatment Interval for Managing House Fly (Diptera: Muscidae) Populations in Poultry Farms.

    Science.gov (United States)

    Ong, Song-Quan; Ab Majid, Abdul Hafiz; Ahmad, Hamdan

    2016-04-01

    It is crucial to understand the degradation pattern of insecticides when designing a sustainable control program for the house fly, Musca domestica (L.), on poultry farms. The aim of this study was to determine the half-life and degradation rates of cyromazine, chlorpyrifos, and cypermethrin by spiking these insecticides into poultry manure, and then quantitatively analyzing the insecticide residue using ultra-performance liquid chromatography. The insecticides were later tested in the field in order to study the appropriate insecticidal treatment intervals. Bio-assays on manure samples were later tested at 3, 7, 10, and 15 d for bio-efficacy on susceptible house fly larvae. Degradation analysis demonstrated that cyromazine has the shortest half-life (3.01 d) compared with chlorpyrifos (4.36 d) and cypermethrin (3.75 d). Cyromazine also had a significantly greater degradation rate compared with chlorpyrifos and cypermethrin. For the field insecticidal treatment interval study, 10 d was the interval that had been determined for cyromazine due to its significantly lower residue; for ChCy (a mixture of chlorpyrifos and cypermethrin), the suggested interval was 7 d. Future work should focus on the effects of insecticide metabolites on targeted pests and the poultry manure environment.

  12. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  13. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  14. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  15. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  16. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria;

    2009-01-01

    and plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...

  17. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Sanabani, Sabri Saeed

    2015-10-22

    Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$) notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or "feiras" in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  18. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces

    Directory of Open Access Journals (Sweden)

    Tairacan Augusto Pereira da Fonseca

    2015-10-01

    Full Text Available Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$ notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or “feiras” in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  19. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies.

    Science.gov (United States)

    Ohnesorg, Wayne J; Johnson, Kevin D; O'Neal, Matthew E

    2009-10-01

    Insect predators in North America suppress Aphis glycines Matsumura (Hemiptera: Aphididae) populations; however, insecticides are required when populations reach economically damaging levels. Currently, insecticides used to manage A. glycines are broad-spectrum (pyrethroids and organophosphates), and probably reduce beneficial insect abundance in soybean, Glycine max (L.) Merr. Our goal was to determine whether insecticides considered reduced-risk by the Environmental Protection Agency could protect soybean yield from A. glycines herbivory while having a limited impact on the aphid's natural enemies. We compared three insecticides (imidacloprid, thiamethoxam, and pymetrozine,) to a broad-spectrum insecticide (lamda-cyhalothrin) and an untreated control using two application methods. We applied neonicotinoid insecticides to seeds (imidacloprid and thiamethoxam) as well as foliage (imidacloprid); pymetrozine and lamda-cyhalothrin were applied only to foliage. Foliage-applied insecticides had lower A. glycines populations and higher yields than the seed-applied insecticides. Among foliage-applied insecticides, pymetrozine and imidacloprid had an intermediate level of A. glycines population and yield protection compared with lamda-cyhalothrin and the untreated control. We monitored natural enemies with yellow sticky cards, sweep-nets, and direct observation. Before foliar insecticides were applied (i.e., before aphid populations developed) seed treatments had no observable effect on the abundance of natural enemies. After foliar insecticides were applied, differences in natural enemy abundance were observed when sampled with sweep-nets and direct observation but not with yellow sticky cards. Based on the first two sampling methods, pymetrozine and the foliage-applied imidacloprid had intermediate abundances of natural enemies compared with the untreated control and lamda-cyhalothrin. PMID:19886446

  20. [Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology].

    Science.gov (United States)

    Zhou, Xue-Yong; Liu, Ning; Zhao, Man; Li, He; Zhou, Lang; Tang, Zong-Wen; Cao, Fei; Li, Wei

    2011-05-01

    With the large scale cultivation of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystal proteins in the world, the problem of environmental safety caused by these Bt crops has received extensive attention. These insecticidal crystal proteins can be released into the soil continuously in the growing period of Bt plants. If their accumulation of the insecticidal crystal proteins exceeds consumption by insect larvae and degradation by the environmental factors, these insecticidal crystal proteins could constitute a hazard to non-target insects and soil microbiota. There are three main ways to release insecticidal crystal proteins into soil for Bt plants: root exudates, pollen falling, and crop reside returning. The Bt insecticidal crystal proteins released into soil can be adsorbed rapidly by active soil particles and the absorption equilibrium attained within 1-3 h. The adsorption protects Bt insecticidal crystal proteins against soil microbial degradation or enzyme degradation, which leads to remarkable prolong of the persistence of insecticidal activity. The change of soil microorganism species is an important index for evaluating the effect of Bt plants on soil ecology. The research showed that these insecticidal crystal proteins released by the Bt plant root exudates or Bt organism had no toxicity to the soil earthworms, nematodes, protozoa, bacteria and fungi; however, it could reduce the mycelium length of the arbuscular mycorrhizal fungi (AMF) and restrain AMF to form invasion unit. The influencing degree of Bt protein on soil enzyme activity varied with the releasing modes or growth period of Bt crops. Bt Cry1Ab protein can be taken up from soil by parts of following crops; however, different results were obtained with different commercial kits. To better understand the soil ecological evaluation about the insecticidal crystal proteins released from transgenic Bt crops, this review provides a comprehensive overview about the release