WorldWideScience

Sample records for bacterial inositol phosphatase

  1. Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane.

    LENUS (Irish Health Repository)

    Knodler, Leigh A

    2009-11-01

    The Salmonella type III effector, SopB, is an inositol polyphosphate phosphatase that modulates host cell phospholipids at the plasma membrane and the nascent Salmonella-containing vacuole (SCV). Translocated SopB persists for many hours after infection and is ubiquitinated but the significance of this covalent modification has not been investigated. Here we identify by mass spectrometry six lysine residues of SopB that are mono-ubiquitinated. Substitution of these six lysine residues with arginine, SopB-K(6)R, almost completely eliminated SopB ubiquitination. We found that ubiquitination does not affect SopB stability or membrane association, or SopB-dependent events in SCV biogenesis. However, two spatially and temporally distinct events are dependent on ubiquitination, downregulation of SopB activity at the plasma membrane and prolonged retention of SopB on the SCV. Activation of the mammalian pro-survival kinase Akt\\/PKB, a downstream target of SopB, was intensified and prolonged after infection with the SopB-K(6)R mutant. At later times, fewer SCV were decorated with SopB-K(6)R compared with SopB. Instead SopB-K(6)R was present as discrete vesicles spread diffusely throughout the cell. Altogether, our data show that ubiquitination of SopB is not related to its intracellular stability but rather regulates its enzymatic activity at the plasma membrane and intracellular localization.

  2. SH2-inositol phosphatase 1 negatively influences early megakaryocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Lia E Perez

    Full Text Available BACKGROUND: The SH2-containing-5'inositol phosphatase-1 (SHIP influences signals downstream of cytokine/chemokine receptors that play a role in megakaryocytopoiesis, including thrombopoietin, stromal-cell-derived-Factor-1/CXCL-12 and interleukin-3. We hypothesize that SHIP might control megakaryocytopoiesis through effects on proliferation of megakaryocyte progenitors (MKP and megakaryocytes (MK. METHODOLOGY AND PRINCIPAL FINDINGS: Herein, we report the megakaryocytic phenotype and MK functional assays of hematopoietic organs of two strains of SHIP deficient mice with deletion of the SHIP promoter/first exon or the inositol phosphatase domain. Both SHIP deficient strains exhibit a profound increase in MKP numbers in bone marrow (BM, spleen and blood as analyzed by flow cytometry (Lin(-c-Kit+CD41+ and functional assays (CFU-MK. SHIP deficient MKP display increased phosphorylation of Signal Transducers and Activators of Transcription 3 (STAT-3, protein kinase B (PKB/AKT and extracellular signal-regulated kinases (ERKs. Despite increased MKP content, total body number of mature MK (Lin(-c-kit(-CD41+ are not significantly changed as SHIP deficient BM contains reduced MK while spleen MK numbers are increased. Reduction of CXCR-4 expression in SHIP deficient MK may influence MK localization to the spleen instead of the BM. Endomitosis, process involved in MK maturation, was preserved in SHIP deficient MK. Circulating platelets and red blood cells are also reduced in SHIP deficient mice. CONCLUSIONS/SIGNIFICANCE: SHIP may play an important role in regulation of essential signaling pathways that control early megakaryocytopoiesis in vivo.

  3. Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation.

    OpenAIRE

    C. J. Speed; Little, P J; Hayman, J. A.; Mitchell, C A

    1996-01-01

    The 43 kDa inositol polyphosphate 5-phosphatase (5-phosphatase) hydrolyses the second messenger molecules inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. We have underexpressed the 43 kDa 5-phosphatase by stably transfecting normal rat kidney cells with the cDNA encoding the enzyme, cloned in the antisense orientation into the tetracycline-inducible expression vector pUHD10-3. Antisense-transfected cells demonstrated a 45% reduction in Ins(...

  4. Role of Inositol Poly-Phosphatases and Their Targets in T Cell Biology

    Directory of Open Access Journals (Sweden)

    Neetu eSrivastava

    2013-09-01

    Full Text Available T lymphocytes play a critical role in host defense in all anatomical sites including mucosal surfaces. This not only includes the effector arm of the immune system, but also regulation of immune responses in order to prevent autoimmunity. Genetic targeting of PI3K isoforms suggests that generation of PI(3,4,5P3 by PI3K plays a critical role in promoting effector T cell responses. Consequently, the 5’- and 3’-inositol poly-phosphatases SHIP1, SHIP2 and PTEN capable of targeting PI(3,4,5P3 are potential genetic determinants of T cell effector functions in vivo. In addition, the 5’-inositol poly phosphatases SHIP1 and 2 can shunt PI(3,4,5P3 to the rare but potent signaling phosphoinositide species PI(3,4P2 and thus these SHIP1/2, and the INPP4A/B enzymes that deplete PI(3,4P2 may have precise roles in T cell biology to amplify or inhibit effectors of PI3K signaling that are selectively recruited to and activated by PI(3,4P2. Here we summarize recent genetic and chemical evidence that indicates the inositol poly-phosphatases have important roles in both the effector and regulatory functions of the T cell compartment. In addition, we will discuss future genetic studies that might be undertaken to further elaborate the role of these enzymes in T cell biology as well as potential pharmaceutical manipulation of these enzymes for therapeutic purposes in disease settings where T cell function is a key in vivo target.

  5. Compensatory Role of Inositol 5-Phosphatase INPP5B to OCRL in Primary Cilia Formation in Oculocerebrorenal Syndrome of Lowe.

    Directory of Open Access Journals (Sweden)

    Na Luo

    Full Text Available Inositol phosphatases are important regulators of cell signaling, polarity, and vesicular trafficking. Mutations in OCRL, an inositol polyphosphate 5-phosphatase, result in Oculocerebrorenal syndrome of Lowe, an X-linked recessive disorder that presents with congenital cataracts, glaucoma, renal dysfunction and mental retardation. INPP5B is a paralog of OCRL and shares similar structural domains. The roles of OCRL and INPP5B in the development of cataracts and glaucoma are not understood. Using ocular tissues, this study finds low levels of INPP5B present in human trabecular meshwork but high levels in murine trabecular meshwork. In contrast, OCRL is localized in the trabecular meshwork and Schlemm's canal endothelial cells in both human and murine eyes. In cultured human retinal pigmented epithelial cells, INPP5B was observed in the primary cilia. A functional role for INPP5B is revealed by defects in cilia formation in cells with silenced expression of INPP5B. This is further supported by the defective cilia formation in zebrafish Kupffer's vesicles and in cilia-dependent melanosome transport assays in inpp5b morphants. Taken together, this study indicates that OCRL and INPP5B are differentially expressed in the human and murine eyes, and play compensatory roles in cilia development.

  6. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity.

    Science.gov (United States)

    Wang, Huanchen; Nair, Vasudha S; Holland, Ashley A; Capolicchio, Samanta; Jessen, Henning J; Johnson, Michael K; Shears, Stephen B

    2015-10-27

    Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity. PMID:26422458

  7. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase

    Science.gov (United States)

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.

  8. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Science.gov (United States)

    Standish, Alistair J; Salim, Angela A; Zhang, Hua; Capon, Robert J; Morona, Renato

    2012-01-01

    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  9. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Directory of Open Access Journals (Sweden)

    Alistair J Standish

    Full Text Available Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  10. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    Science.gov (United States)

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  11. Structural Studies of Medicago truncatula Histidinol Phosphate Phosphatase from Inositol Monophosphatase Superfamily Reveal Details of Penultimate Step of Histidine Biosynthesis in Plants.

    Science.gov (United States)

    Ruszkowski, Milosz; Dauter, Zbigniew

    2016-05-01

    The penultimate enzyme in the histidine biosynthetic pathway catalyzes dephosphorylation of l-histidinol 1-phosphate (HOLP) into l-histidinol. The recently discovered in Arabidopsis thaliana plant-type histidinol phosphate phosphatase (HPP) shares no homology with the two other HPP superfamilies known previously in prokaryotes and resembles myo-inositol monophosphatases (IMPases). In this work, identification of an HPP enzyme from a model legume, Medicago truncatula (MtHPP) was based on the highest sequence identity to A. thaliana enzyme. Biochemical assays confirmed that MtHPP was able to cleave inorganic phosphate from HOLP but not from d-myo-inositol-1-phosphate, the main substrate of IMPases. Dimers of MtHPP, determined by size exclusion chromatography, in the presence of CO2 or formaldehyde form mutual, methylene-bridged cross-links between Lys(158) and Cys(245) residues. Four high resolution crystal structures, namely complexes with HOLP (substrate), l-histidinol (product), and PO4 (3-) (by-product) as well as the structure showing the cross-linking between two MtHPP molecules, provide detailed structural information on the enzyme. Based on the crystal structures, the enzymatic reaction mechanism of IMPases is accustomed to fit the data for MtHPP. The enzymatic reaction, which requires Mg(2+) cations, is catalyzed mainly by amino acid residues from the N-terminal domain. The C-terminal domain, sharing little identity with IMPases, is responsible for the substrate specificity (i.e. allows the enzyme to distinguish between HOLP and d-myo-inositol-1-phosphate). Structural features, mainly the presence of a conserved Asp(246), allow MtHPP to bind HOLP specifically. PMID:26994138

  12. Expression, Purification, Crystallisation and X-ray Crystallographic Analysis of a Truncated Form of Human Src Homology 2 Containing Inositol 5-Phosphatase 2.

    Science.gov (United States)

    Le Coq, Johanne; Heredia Gallego, Luis; Lietha, Daniel

    2016-06-01

    The Src homology 2 containing inositol 5-phosphatase 2 (SHIP2) catalyses the dephosphorylation of the phospholipid phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3) to form PI(3,4)P2. PI(3,4,5)P3 is a key lipid second messenger, which can recruit signalling proteins to the plasma membrane and subsequently initiate numerous downstream signalling pathways responsible for the regulation of a plethora of cellular events such as proliferation, growth, apoptosis and cytoskeletal rearrangements. SHIP2 has been heavily implicated with several serious diseases such as cancer and type 2 diabetes but its regulation remains poorly understood. In order to gain insight into the mechanisms of SHIP2 regulation, a fragment of human SHIP2 containing the phosphatase domain and a region proposed to resemble a C2 domain was crystallized. Currently, no structural information is available on the putative C2-related domain or its relative position with respect to the phosphatase domain. Initial crystals were polycrystalline, but were optimized to obtain diffraction data to a resolution of 2.1 Å. Diffraction data analysis revealed a P212121 space group with unit cell parameters a = 136.04 Å, b = 175.84 Å, c = 176.89 Å. The Matthews coefficient is 2.54 Å(3) Da(-1) corresponding to 8 molecules in the asymmetric unit with a solvent content of 51.7 %. PMID:27170292

  13. Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis.

    Science.gov (United States)

    Hasnain, Ghulam; Roje, Sanja; Sa, Na; Zallot, Rémi; Ziemak, Michael J; de Crécy-Lagard, Valérie; Gregory, Jesse F; Hanson, Andrew D

    2016-01-15

    The penultimate step of thiamin diphosphate (ThDP) synthesis in plants and many bacteria is dephosphorylation of thiamin monophosphate (ThMP). Non-specific phosphatases have been thought to mediate this step and no genes encoding specific ThMP phosphatases (ThMPases) are known. Comparative genomic analysis uncovered bacterial haloacid dehalogenase (HAD) phosphatase family genes (from subfamilies IA and IB) that cluster on the chromosome with, or are fused to, thiamin synthesis genes and are thus candidates for the missing phosphatase (ThMPase). Three typical candidates (from Anaerotruncus colihominis, Dorea longicatena and Syntrophomonas wolfei) were shown to have efficient in vivo ThMPase activity by expressing them in an Escherichia coli strain engineered to require an active ThMPase for growth. In vitro assays confirmed that these candidates all preferred ThMP to any of 45 other phosphate ester substrates tested. An Arabidopsis thaliana ThMPase homologue (At4g29530) of unknown function whose expression pattern and compartmentation fit with a role in ThDP synthesis was shown to have in vivo ThMPase activity in E. coli and to prefer ThMP to any other substrate tested. However, insertional inactivation of the At4g29530 gene did not affect growth or the levels of thiamin or its phosphates, indicating that Arabidopsis has at least one other ThMPase gene. The Zea mays orthologue of At4g29530 (GRMZM2G035134) was also shown to have ThMPase activity. These data identify HAD genes specifying the elusive ThMPase activity, indicate that ThMPases are substrate-specific rather than general phosphatases and suggest that different evolutionary lineages have recruited ThMPases independently from different branches of the HAD family. PMID:26537753

  14. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorgani-Firuzjaee, Sattar [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Adeli, Khosrow [Division of Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto (Canada); Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-08-21

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.

  15. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Science.gov (United States)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  16. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  17. Detection of Ca2+-dependent acid phosphatase activity identiifes neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Institute of Scientific and Technical Information of China (English)

    Tigran R Petrosyan; Anna S Ter-Markosyan; Anna S Hovsepyan

    2016-01-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I;n=12) or unilateral rubrospinal tract transection at the cervical level (C3–4) (group II;n=12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian’s calcium adenoside triphosphate method revealed that BM stimulated the sprouting of ifbers and dilated the capillaries in the brain and spinal cord. These results sug-gest that BM can promote the recovery of motor function of rats with central nervous system injury;and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regenera-tion-promoting effects of BM on the injured central nervous system.

  18. Detection of Ca(2+)-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin.

    Science.gov (United States)

    Petrosyan, Tigran R; Ter-Markosyan, Anna S; Hovsepyan, Anna S

    2016-07-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca(2+)-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3-4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca(2+)-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca(2+)-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system. PMID:27630700

  19. Effects of Betaine Aldehyde Dehydrogenase-Transgenic Soybean on Phosphatase Activities and Rhizospheric Bacterial Community of the Saline-Alkali Soil

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2016-01-01

    Full Text Available The development of transgenic soybean has produced numerous economic benefits; however the potential impact of root exudates upon soil ecological systems and rhizospheric soil microbial diversity has also received intensive attention. In the present study, the influence of saline-alkali tolerant transgenic soybean of betaine aldehyde dehydrogenase on bacterial community structure and soil phosphatase during growth stages was investigated. The results showed that, compared with nontransgenic soybean as a control, the rhizospheric soil pH of transgenic soybean significantly decreased at the seedling stage. Compared to HN35, organic P content was 13.5% and 25.4% greater at the pod-filling stage and maturity, respectively. The acid phosphatase activity of SRTS was significantly better than HN35 by 12.74% at seedling, 14.03% at flowering, and 59.29% at podding, while alkaline phosphatase achieved maximum activity in the flowering stage and was markedly lower than HN35 by 13.25% at pod-filling. The 454 pyrosequencing technique was employed to investigate bacterial diversity, with a total of 25,499 operational taxonomic units (OTUs obtained from the 10 samples. Notably, the effect of SRTS on microbial richness and diversity of rhizospheric soil was marked at the stage of podding and pod-filling. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla among all samples. Compared with HN35, the relative abundance of Proteobacteria was lower by 2.01%, 2.06%, and 5.28% at the stage of seedling, at pod-bearing, and at maturity. In genus level, the relative abundance of Gp6, Sphingomonas sp., and GP4 was significantly inhibited by SRTS at the stage of pod-bearing and pod-filling.

  20. Integrating chemical and genetic silencing strategies to identify host kinase-phosphatase inhibitor networks that control bacterial infection

    NARCIS (Netherlands)

    Albers, Harald M H G; Kuijl, Coenraad; Bakker, Jeroen; Hendrickx, Loes; Wekker, Sharida; Farhou, Nadha; Liu, Nora; Blasco-Moreno, Bernat; Scanu, Tiziana; den Hertog, Jeroen; Celie, Patrick; Ovaa, Huib; Neefjes, Jacques

    2014-01-01

    Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more

  1. Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants

    Science.gov (United States)

    Inositol pyrophosphates are novel cellular signaling molecules with newly discovered roles in energy sensing and metabolic control. Studies in eukaryotes have revealed that these compounds turn over rapidly, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of...

  2. Preparation of quality inositol pyrophosphates.

    Science.gov (United States)

    Loss, Omar; Azevedo, Cristina; Szijgyarto, Zsolt; Bosch, Daniel; Saiardi, Adolfo

    2011-01-01

    Myo-inositol is present in nature either unmodified or in more complex phosphorylated derivates. Of the latest, the two most abundant in eukaryotic cells are inositol pentakisphosphate (IP(5;)) and inositol hexakisphosphate (phytic acid or IP(6;)). IP(5;) and IP(6;) are the precursors of inositol pyrophosphate molecules that contain one or more pyrophosphate bonds(1). Phosphorylation of IP(6;) generates diphoshoinositolpentakisphosphate (IP(7;) or PP-IP(5;)) and bisdiphoshoinositoltetrakisphosphate (IP(8;) or (PP)(2;)-IP(4;)). Inositol pyrophosphates have been isolated from all eukaryotic organisms so far studied. In addition, the two distinct classes of enzymes responsible for inositol pyrophosphate synthesis are highly conserved throughout evolution(2-4). The IP(6;) kinases (IP(6;)Ks) posses an enormous catalytic flexibility, converting IP(5;) and IP(6;) to PP-IP(4;) and IP(7;) respectively and subsequently, by using these products as substrates, promote the generation of more complex molecules(5,6). Recently, a second class of pyrophosphate generating enzymes was identified in the form of the yeast protein VIP(1;) (also referred as PP-IP(5;)K), which is able to convert IP(6;) to IP(7;) and IP(8;)(7,8). Inositol pyrophosphates regulate many disparate cellular processes such as insulin secretion(9), telomere length(10,11), chemotaxis(12), vesicular trafficking(13), phosphate homeostasis(14) and HIV-1 gag release(15). Two mechanisms of actions have been proposed for this class of molecules. They can affect cellular function by allosterically interacting with specific proteins like AKT(16). Alternatively, the pyrophosphate group can donate a phosphate to pre-phosphorylated proteins(17). The enormous potential of this research field is hampered by the absence of a commercial source of inositol pyrophosphates, which is preventing many scientists from studying these molecules and this new post-translational modification. The methods currently available to isolate

  3. Deficiency in hematopoietic phosphatase ptpn6/Shp1 hyperactivates the innate immune system and impairs control of bacterial infections in zebrafish embryos

    NARCIS (Netherlands)

    Kanwal, Z.; Zakrzewska, A.; den Hertog, J.; Spaink, H.P.; Schaaf, M.J.; Meijer, A.H.

    2013-01-01

    Deficiency in Src homology region 2 domain-containing phosphatase 1/protein tyrosine phosphatase nonreceptor type 6 (SHP1/PTPN6) is linked with chronic inflammatory diseases and hematological malignancies in humans. In this study, we exploited the embryonic and larval stages of zebrafish (Danio reri

  4. Discovery and development of small molecule SHIP phosphatase modulators.

    Science.gov (United States)

    Viernes, Dennis R; Choi, Lydia B; Kerr, William G; Chisholm, John D

    2014-07-01

    Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds. PMID:24302498

  5. Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily

    DEFF Research Database (Denmark)

    Josefsen, L.; Bohn, L.; Sørensen, M.B.;

    2007-01-01

    and it also interconverted the two substrates Ins(1,3,4,5)P-4 and Ins(1,3,4,6)P-4 by isomerase activity, which was not observed for the rice homologue. Both OsIpk and HvIpk had no detectable 2-kinase activity. Furthermore, the two Ipks showed phosphatase activity towards several inositol phosphates...

  6. Structural elucidation of the NADP(H) phosphatase activity of staphylococcal dual-specific IMPase/NADP(H) phosphatase.

    Science.gov (United States)

    Bhattacharyya, Sudipta; Dutta, Anirudha; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar

    2016-02-01

    NADP(H)/NAD(H) homeostasis has long been identified to play a pivotal role in the mitigation of reactive oxygen stress (ROS) in the intracellular milieu and is therefore critical for the progression and pathogenesis of many diseases. NAD(H) kinases and NADP(H) phosphatases are two key players in this pathway. Despite structural evidence demonstrating the existence and mode of action of NAD(H) kinases, the specific annotation and the mode of action of NADP(H) phosphatases remains obscure. Here, structural evidence supporting the alternative role of inositol monophosphatase (IMPase) as an NADP(H) phosphatase is reported. Crystal structures of staphylococcal dual-specific IMPase/NADP(H) phosphatase (SaIMPase-I) in complex with the substrates D-myo-inositol-1-phosphate and NADP(+) have been solved. The structure of the SaIMPase-I-Ca(2+)-NADP(+) ternary complex reveals the catalytic mode of action of NADP(H) phosphatase. Moreover, structures of SaIMPase-I-Ca(2+)-substrate complexes have reinforced the earlier proposal that the length of the active-site-distant helix α4 and its preceding loop are the predisposing factors for the promiscuous substrate specificity of SaIMPase-I. Altogether, the evidence presented suggests that IMPase-family enzymes with a shorter α4 helix could be potential candidates for previously unreported NADP(H) phosphatase activity.

  7. Broad Spectrum Anticancer Activity of Myo-Inositol and Inositol Hexakisphosphate

    Science.gov (United States)

    Dinicola, Simona

    2016-01-01

    Inositols (myo-inositol and inositol hexakisphosphate) exert a wide range of critical activities in both physiological and pathological settings. Deregulated inositol metabolism has been recorded in a number of diseases, including cancer, where inositol modulates different critical pathways. Inositols inhibit pRB phosphorylation, fostering the pRB/E2F complexes formation and blocking progression along the cell cycle. Inositols reduce PI3K levels, thus counteracting the activation of the PKC/RAS/ERK pathway downstream of PI3K activation. Upstream of that pathway, inositols disrupt the ligand interaction between FGF and its receptor as well as with the EGF-transduction processes involving IGF-II receptor and AP-1 complexes. Additionally, Akt activation is severely impaired upon inositol addition. Downregulation of both Akt and ERK leads consequently to NF-kB inhibition and reduced expression of inflammatory markers (COX-2 and PGE2). Remarkably, inositol-induced downregulation of presenilin-1 interferes with the epithelial-mesenchymal transition and reduces Wnt-activation, β-catenin translocation, Notch-1, N-cadherin, and SNAI1 release. Inositols interfere also with the cytoskeleton by upregulating Focal Adhesion Kinase and E-cadherin and decreasing Fascin and Cofilin, two main components of pseudopodia, leading hence to invasiveness impairment. This effect is reinforced by the inositol-induced inhibition on metalloproteinases and ROCK1/2 release. Overall, these effects enable inositols to remodel the cytoskeleton architecture. PMID:27795708

  8. The inositols and polycystic ovary syndrome

    Science.gov (United States)

    Kalra, Bharti; Kalra, Sanjay; Sharma, J. B.

    2016-01-01

    This review describes the rationale, biochemical, and clinical data related to the use of inositols in polycystic ovary syndrome (PCOS). It covers studies related to the mechanism of action of myo-inositol and D-chiro-inositol (MDI), with randomized controlled trials conducted in women with PCOS, and utilizes these data to suggest pragmatic indications and methods for using MDI combination in PCOS. Rationally crafted inositol combinations have a potential role to play in maintaining metabolic, endocrine, and reproductive health in women with PCOS. PMID:27730087

  9. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Science.gov (United States)

    Zheng, Dong; Neoh, Koon Gee; Kang, En-Tang

    2016-01-01

    In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm2 resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  10. ALP (Alkaline Phosphatase) Test

    Science.gov (United States)

    ... Also known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on ...

  11. Genetic control of lithium sensitivity and regulation of inositol biosynthetic genes.

    Directory of Open Access Journals (Sweden)

    Jason King

    Full Text Available Lithium (Li(+ is a common treatment for bipolar mood disorder, a major psychiatric illness with a lifetime prevalence of more than 1%. Risk of bipolar disorder is heavily influenced by genetic predisposition, but is a complex genetic trait and, to date, genetic studies have provided little insight into its molecular origins. An alternative approach is to investigate the genetics of Li(+ sensitivity. Using the social amoeba Dictyostelium, we previously identified prolyl oligopeptidase (PO as a modulator of Li(+ sensitivity. In a link to the clinic, PO enzyme activity is altered in bipolar disorder patients. Further studies demonstrated that PO is a negative regulator of inositol(1,4,5trisphosphate (IP(3 synthesis, a Li(+ sensitive intracellular signal. However, it was unclear how PO could influence either Li(+ sensitivity or risk of bipolar disorder. Here we show that in both Dictyostelium and cultured human cells PO acts via Multiple Inositol Polyphosphate Phosphatase (Mipp1 to control gene expression. This reveals a novel, gene regulatory network that modulates inositol metabolism and Li(+ sensitivity. Among its targets is the inositol monophosphatase gene IMPA2, which has also been associated with risk of bipolar disorder in some family studies, and our observations offer a cellular signalling pathway in which PO activity and IMPA2 gene expression converge.

  12. The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi.

    Directory of Open Access Journals (Sweden)

    Jennifer Pöhlmann

    2014-09-01

    Full Text Available Microtubules (MTs are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.

  13. Does ovary need D-chiro-inositol?

    Directory of Open Access Journals (Sweden)

    Isabella Rosalbino

    2012-05-01

    Full Text Available Abstract Backgroud Polycystic Ovary Syndrome (PCOS is a multifactorial pathology that affects 10% of the women in reproductive age being the main cause of infertility due to menstrual dysfunction. Since 1980, it is known that PCOS is associated with insulin resistance (IR. The recognition of this association has prompted extensive investigation on the relationship between insulin and gonadal function, and has turned insulin sensitizer agent as the main therapeutic choice. In particular two different polyalcohol myo-inositol and D-chiro-inositol have been shown to improve insulin resistance, hyperandrogenism and to induce ovulation in PCOS women. In particular, while data on myo-inositol and restored ovulation were consistent, data on D-chiro-inositol were not . Recently, a comparative study, proposed a D-chiro-inositol paradox in the ovary of PCOS patients hypothesizing that only myo-inositol has a specific ovarian action. In the present study we aim to further study the role played by D-chiro-inositol at ovarian level. Methods A total of 54 women, aged Results Total r-FSH units increased significantly in the two groups that received the higher doses of DCI. The number of immature oocytes was significantly increased in the three groups that received the higher doses of DCI. Concurrently, the number of MII oocytes was significantly lower in the D group compared to placebo group. Noteworthy, the number of grade I embryos was significantly reduced by DCI supplementation. Conclusions Indeed, increasing DCI dosage progressively worsens oocyte quality and ovarian response.

  14. Inositol hexakisphosphate inhibits mineralization of MC3T3-E1 osteoblast cultures.

    Science.gov (United States)

    Addison, William N; McKee, Marc D

    2010-04-01

    Inositol hexakisphosphate (IP6, phytic acid) is an endogenous compound present in mammalian cells and tissues. Differentially phosphorylated forms of inositol are well-documented to have important roles in signal transduction, cell proliferation and differentiation, and IP6 in particular has been suggested to inhibit soft tissue calcification (specifically renal and vascular calcification) by binding extracellularly to calcium oxalate and calcium phosphate crystals. However, the effects of IP6 on bone mineralization are largely unknown. In this study, we used MC3T3-E1 osteoblast cultures to examine the effects of exogenous IP6 on osteoblast function and matrix mineralization. IP6 at physiologic concentrations caused a dose-dependent inhibition of mineralization without affecting cell viability, proliferation or collagen deposition. Osteoblast differentiation markers, including tissue-nonspecific alkaline phosphatase activity, bone sialoprotein and osteocalcin mRNA levels, were not adversely affected by IP6 treatment. On the other hand, IP6 markedly increased protein and mRNA levels of osteopontin, a potent inhibitor of crystal growth and matrix mineralization. Inositol alone (without phosphate), as well as inositol hexakis-sulphate, a compound with a high negative charge similar to IP6, had no effect on mineralization or osteopontin induction. Binding of IP6 to mineral crystals from the osteoblast cultures, as well as to synthetic hydroxyapatite crystals, was confirmed by a colorimetric assay for IP6. In summary, IP6 inhibits mineralization of osteoblast cultures by binding to growing crystals through negatively charged phosphate groups and by induction of inhibitory osteopontin expression. These data suggest that IP6 may regulate physiologic bone mineralization by directly acting extracellularly, and by serving as a specific signal at the cellular level for the regulation of osteopontin gene expression.

  15. Myo-Inositol content determined by myo-inositol biosynthesis and oxidation in blueberry fruit.

    Science.gov (United States)

    Song, Fangyuan; Su, Hongyan; Yang, Nan; Zhu, Luying; Cheng, Jieshan; Wang, Lei; Cheng, Xianhao

    2016-11-01

    Myo-inositol metabolism in plant edible organs has become the focus of many recent studies because of its benefits to human health and unique functions in plant development. In this study, myo-inositol contents were analyzed during the development of two blueberry cultivars, cv 'Berkeley' and cv 'Bluecrop'. Furthermore, two VcMIPS 1/2 (Vaccinium corymbosum MIPS) genes, one VcIMP (Vaccinium corymbosum IMP) gene and one VcMIOX (Vaccinium corymbosum MIOX) gene were isolated for the first time from blueberry. The expression patterns of VcMIPS2, VcIMP and VcMIOX genes showed a relationship with the change profiles of myo-inositol content during fruit ripening. The results were further confirmed by the analyses of the enzyme activity. Results indicated that both myo-inositol biosynthesis and oxidation played important roles in determining of myo-inositol levels during the development of blueberry. To our knowledge, this report is the first to discuss myo-inositol levels in fruits in terms of biosynthesis and catabolism. PMID:27211661

  16. Characterization of the phosphatidylinositol-glycan membrane anchor of human placental alkaline phosphatase

    International Nuclear Information System (INIS)

    Placental alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] is a member of a diverse group of membrane proteins whose attachment to the lipid bilayer is mediated by a phosphatidylinositol-glycan. To investigate structural aspects of the glycolipid anchor, cultured WISH cells were used because, they produce the enzyme in abundant quantities. When cell suspensions were incubated with purified phosphatidylinositol-specific phospholipase C, most of the placental alkaline phosphatase was released from membranes in a hydrophilic form. On incubation of the cells with [14C]ethanolamine, [14C]myristic acid, or myo[3H]inositol, each was incorporated into the phosphatase near the carboxyl terminus, showing that these components, which are found in other phosphatidylinositol membrane-linked proteins, are also present in placental alkaline phosphatase

  17. miR-155对含SH2区域的肌醇5’磷酸酶1转录后调控在急性髓系白血病发病机制中作用的初步研究%Preliminary study of role of post-transcription regulation on SH2 domain-containing inositol 5'-phosphatase 1 gene expression by miR-155 in the pathogenesis of acute myeloid leukemia

    Institute of Scientific and Technical Information of China (English)

    薛华; 赵松颖; 王静; 范丽霞; 化罗明; 罗建民

    2015-01-01

    目的 探讨miR-155对人类含SH2区域的肌醇5’磷酸酶1(SHIP1)的转录后调控在急性髓系白血病(AML)发病机制中的作用.方法 应用反转录聚合酶链反应(RT-PCR)法检测30例AML患者miR-155、SHIP1的mRNA表达水平,选取同年龄健康人骨髓为对照组.人白血病U937细胞转染miR-155类似物后,RT-PCR法检测转染细胞中miR-155、SHIP1的mRNA表达水平.Western blot法检测转染后细胞SHIP1、AKT、pAKT蛋白水平.流式细胞术检测转染后细胞凋亡的变化.结果 30例AML患者中,15例AML-M4及AML-M5患者SHIP1蛋白水平较非AML-M4及AML-M5患者明显降低,而miR-155表达水平相应升高(均P< 0.05).U937细胞转染miR-155后,SHIP1蛋白水平较转染阴性对照组降低(P<0.05),而p-AKT水平较转染阴性对照组明显升高,转染后细胞凋亡明显受抑(P<0.05).结论 miR-155可对SHIP1进行转录后调控,miR-155可能通过降低SHIP1活性而激活PI3K-AKT途径,抑制白血病细胞的凋亡,从而促进AML的发生.%Objective To investigate the role of microRNA-155 (miR-155) on post-transcription regulation of SH2 domain-containing inositol 5'-phosphatase 1 (SHIP1) gene expression in the pathogenesis of acute myeloid leukemia (AML).Methods Quantitative real-time polymerase chain reaction (RT-PCR) was performed to detect the expression of miR-155 and SHIP1 mRNA in the AML patients and controls.miR-155 mimics was transfected into U937cells (U937m) by using X-treme GENE siRNA transfection reagent.Cells without transfection (U937c) and cells with negative transfection (U937mc) were used as controls.RT-PCR was performed to detect the expression of miR-155 and SHIP1 mRNA in these cells.The expression of SHIP1,TAKT and pAKT were detected by Western blot in U937 cells.Apoptosis was studied by flow cytometry (FCM).Results The average level of SHIP1 protein content in 15 samples of patients with AML-M4 or AML-M5 from 30 AML patients was significantly lower compared with that of

  18. Extraction and analysis of soluble inositol polyphosphates from yeast.

    Science.gov (United States)

    Azevedo, Cristina; Saiardi, Adolfo

    2006-01-01

    Soluble inositol polyphosphates are implicated in the regulation of many important cellular functions. This protocol to extract and separate inositol polyphosphates from Saccharomyces cerevisiae is divided into three steps: labeling of yeast, extraction of soluble inositol polyphosphates and chromatographic separation. Yeast cells are incubated with tritiated inositol, which is taken up and metabolized into different phosphorylated forms. Soluble inositol polyphosphates are then acid-extracted and fractionated by high-performance liquid chromatography. The radioactivity of each fraction is determined by scintillation counting. This highly sensitive and reproducible method allows the accurate detection of subtle changes in the inositol polyphosphate profile and takes less than 48 h. It can easily be applied to other systems and we have included two adaptations of the protocol, one optimized for mammalian cells and the other for Arabidopsis thaliana. PMID:17406485

  19. Rv2131c gene product: An unconventional enzyme that is both inositol monophosphatase and fructose-1,6-bisphosphatase

    International Nuclear Information System (INIS)

    Inositol monophosphatase is an enzyme in the biosynthesis of myo-inostiol, a crucial substrate for the synthesis of phosphatidylinositol, which has been demonstrated to be an essential component of mycobacteria. In this study, the Rv2131c gene from Mycobacterium tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the enzyme in fusion with a histidine-rich peptide on the N-terminal. The fusion protein was purified from the soluble fraction of the lysed cells under native conditions by immobilized metal affinity chromatography (IMAC). The purified Rv2131c gene product showed inositol monophosphatase activity but with substrate specificity that was broader than those of several bacterial and eukaryotic inositol monophosphatases, and it also acted as fructose-1,6-bisphosphatase. The dimeric enzyme exhibited dual activities of IMPase and FBPase, with K m of 0.22 ± 0.03 mM for inositol-1-phosphate and K m of 0.45 ± 0.05 mM for fructose-1,6-bisphosphatase. To better understand the relationship between the function and structure of the Rv2131c enzyme, we constructed D40N, L71A, and D94N mutants and purified these corresponding proteins. Mutations of D40N and D94N caused the proteins to almost completely lose both the inositol monophosphatase and fructose-1,6-bisphosphatase activities. However, L71A mutant did not cause loss either of the activities, but the activity toward the inositol was 12-fold more resistant to inhibition by lithium (IC5 ∼ 60 mM). Based on the substrate specificity and presence of conserved sequence motifs of the M. tuberculosis Rv2131c, we proposed that the enzyme belonged to class IV fructose-1,6-bisphosphatase (FBPase IV)

  20. Developmental regulation of the Inositol 1,4,5-trisphosphate phosphatases in Dictyostelium discoideum

    NARCIS (Netherlands)

    Bominaar, Anthony A.; Dijken, Peter van; Draijer, Richard; Haastert, Peter J.M. van

    1991-01-01

    The cellular slime mold Dictyostelium discoideum is a microorganism in which growth and development are strictly separated. Starvation initiates a developmental program in which extracellular cAMP plays a major role as a signal molecule. In response to cAMP several second messengers are produced, in

  1. Francisella DnaK Inhibits Tissue-nonspecific Alkaline Phosphatase*

    Science.gov (United States)

    Arulanandam, Bernard P.; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J.; Chambers, James P.

    2012-01-01

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related Gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella. PMID:22923614

  2. Characterization of inositol phosphates in carrot (Daucus carota L.) cells

    International Nuclear Information System (INIS)

    We have shown previously that inositol-1,4,5-trisphosphate (IP3) stimulates an efflux of 45Ca2+ from fusogenic carrot protoplasts. In light of these results, we suggested that IP3 might serve as a second messenger for the mobilization of intracellular Ca2+ in higher plant cells. To determine whether or not IP3 and other inositol phosphates were present in the carrot cells, the cells were labeled with myo-[2-3H]inositol for 18 hours and extracted with ice-cold 10% trichloroacetic acid. The inositol metabolites were separated by anion exchange chromatography and by paper electrophoresis. We found that [3H]inositol metabolites coeluted with inositol bisphosphate (IP2) and IP3 when separated by anion exchange chromatography. However, we could not detect IP2 or IP3 when the inositol metabolites were analyzed by paper electrophoresis even though the polyphosphoinositides, which are the source of IP2 and IP3, were present in these cells. Thus, [3H]inositol metabolites other than IP2 and IP3 had coeluted on the anion exchange columns. The data indicate that either IP3 is rapidly metabolized or that it is not present at a detectable level in the carrot cells

  3. A limitation of the continuous spectrophotometric assay for the measurement of myo-inositol-1-phosphate synthase activity.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2011-10-15

    Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay-the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg(2+) and is not enhanced by other divalent metal ions (Zn(2+) and Mn(2+)), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors. PMID:21729692

  4. Alkaline Phosphatase in Stem Cells

    Directory of Open Access Journals (Sweden)

    Kateřina Štefková

    2015-01-01

    Full Text Available Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells.

  5. Modulators of intestinal alkaline phosphatase.

    Science.gov (United States)

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  6. Genetic and computational identification of a conserved bacterial metabolic module.

    Directory of Open Access Journals (Sweden)

    Cara C Boutte

    2008-12-01

    Full Text Available We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the alpha-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1 confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2 defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3 identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other alpha-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol

  7. Identification of a mammalian-type phosphatidylglycerophosphate phosphatase in the Eubacterium Rhodopirellula baltica.

    Science.gov (United States)

    Teh, Phildrich G; Chen, Mark J; Engel, James L; Worby, Carolyn A; Manning, Gerard; Dixon, Jack E; Zhang, Ji

    2013-02-15

    Cardiolipin is a glycerophospholipid found predominantly in the mitochondrial membranes of eukaryotes and in bacterial membranes. Cardiolipin interacts with protein complexes and plays pivotal roles in cellular energy metabolism, membrane dynamics, and stress responses. We recently identified the mitochondrial phosphatase, PTPMT1, as the enzyme that converts phosphatidylglycerolphosphate (PGP) to phosphatidylglycerol, a critical step in the de novo biosynthesis of cardiolipin. Upon examination of PTPMT1 evolutionary distribution, we found a PTPMT1-like phosphatase in the bacterium Rhodopirellula baltica. The purified recombinant enzyme dephosphorylated PGP in vitro. Moreover, its expression restored cardiolipin deficiency and reversed growth impairment in a Saccharomyces cerevisiae mutant lacking the yeast PGP phosphatase, suggesting that it is a bona fide PTPMT1 ortholog. When ectopically expressed, this bacterial PGP phosphatase was localized in the mitochondria of yeast and mammalian cells. Together, our results demonstrate the conservation of function between bacterial and mammalian PTPMT1 orthologs. PMID:23293031

  8. Role of inositol phospholipid signaling in natural killer cell biology

    OpenAIRE

    Gumbleton, Matthew; Kerr, William G.

    2013-01-01

    Natural killer (NK) cells are important for host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to both prevent autoimmunity and acquire lytic capacity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the inositol ph...

  9. Metals in the active site of native protein phosphatase-1.

    Science.gov (United States)

    Heroes, Ewald; Rip, Jens; Beullens, Monique; Van Meervelt, Luc; De Gendt, Stefan; Bollen, Mathieu

    2015-08-01

    Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone. PMID:25890482

  10. Structural Genomics of Protein Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  11. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  12. Inositol Treatment and ART Outcomes in Women with PCOS

    Science.gov (United States)

    Garg, Deepika

    2016-01-01

    Polycystic ovary syndrome (PCOS) affects 5–10% of women in reproductive age and is characterized by oligo/amenorrhea, androgen excess, insulin resistance, and typical polycystic ovarian morphology. It is the most common cause of infertility secondary to ovulatory dysfunction. The underlying etiology is still unknown but is believed to be multifactorial. Insulin-sensitizing compounds such as inositol, a B-complex vitamin, and its stereoisomers (myo-inositol and D-chiro-inositol) have been studied as an effective treatment of PCOS. Administration of inositol in PCOS has been shown to improve not only the metabolic and hormonal parameters but also ovarian function and the response to assisted-reproductive technology (ART). Accumulating evidence suggests that it is also capable of improving folliculogenesis and embryo quality and increasing the mature oocyte yield following ovarian stimulation for ART in women with PCOS. In the current review, we collate the evidence and summarize our current knowledge on ovarian stimulation and ART outcomes following inositol treatment in women with PCOS undergoing in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI).

  13. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology

    Indian Academy of Sciences (India)

    Swarna Gowri Thota; Rashna Bhandari

    2015-09-01

    Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.

  14. Inositols affect the mating circadian rhythm of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kazuki eSakata

    2015-06-01

    Full Text Available Accumulating evidence indicates that the molecular circadian clock underlies the mating behavior of D. melanogaster. However, information about which food components affect circadian mating behavior is scant. The ice plant, Mesembryanthemum crystallinum has recently become a popular functional food. Here, we showed that the close-proximity (CP rhythm of Drosophila melanogaster courtship behavior was damped under low-nutrient conditions, but significantly enhanced by feeding the flies with powdered ice plant. Among various components of ice plants, we found that myo-inositol increased the amplitude and slightly shortened the period of the CP rhythm. Real-time reporter assays showed that myo-inositol and D-pinitol shortened the period of the circadian reporter gene Per2-luc in NIH 3T3 cells. These data suggest that the ice plant is a useful functional food and that the ability of inositols to shorten rhythms is a general phenomenon in insects as well as mammals.

  15. Synaptotagmin 1 causes phosphatidyl inositol lipid-dependent actin remodeling in cultured non-neuronal and neuronal cells

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, Anna-Karin; Karlsson, Roger, E-mail: roger.karlsson@wgi.su.se

    2012-01-15

    Here we demonstrate that a dramatic actin polymerizing activity caused by ectopic expression of the synaptic vesicle protein synaptotagmin 1 that results in extensive filopodia formation is due to the presence of a lysine rich sequence motif immediately at the cytoplasmic side of the transmembrane domain of the protein. This polybasic sequence interacts with anionic phospholipids in vitro, and, consequently, the actin remodeling caused by this sequence is interfered with by expression of a phosphatidyl inositol (4,5)-bisphosphate (PIP2)-targeted phosphatase, suggesting that it intervenes with the function of PIP2-binding actin control proteins. The activity drastically alters the behavior of a range of cultured cells including the neuroblastoma cell line SH-SY5Y and primary cortical mouse neurons, and, since the sequence is conserved also in synaptotagmin 2, it may reflect an important fine-tuning role for these two proteins during synaptic vesicle fusion and neurotransmitter release.

  16. Role of inositol phospholipid signaling in natural killer cell biology

    Directory of Open Access Journals (Sweden)

    Matthew eGumbleton

    2013-03-01

    Full Text Available Natural Killer (NK cells are important in the host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to prevent autoimmunity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the PI3K signaling pathway have defective development, natural killer cell repertoire expression (NKRR and effector function. Here we review the role of inositol phospholipid signaling in NK cell biology.

  17. Inositol Hexaphosphate and Inositol Inhibit Colorectal Cancer Metastasis to the Liver in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Min Fu

    2016-05-01

    Full Text Available Inositol hexaphosphate (IP6 and inositol (Ins, naturally occurring carbohydrates present in most mammals and plants, inhibit the growth of numerous cancers both in vitro and in vivo. In this study, we first examined the anti-metastatic effects of IP6 and Ins using a liver metastasis model of colorectal cancer (CRC in BALB/c mice. CT-26 cells were injected into the splenic capsule of 48 BALB/c mice. The mice were then randomly divided into four groups: IP6, Ins, IP6 + Ins and normal saline control (n = 12 per group. IP6 and/or Ins (80 mg/kg each, 0.2 mL/day were injected into the gastrointestinal tracts of the mice on the second day after surgery. All mice were sacrificed after 20 days, and the tumor inhibition rates were determined. The results demonstrated that the tumor weights of liver metastases and the tumor inhibition rates were reduced in the experimental groups compared to the control group and that treatment with the combination of IP6 and Ins resulted in greater inhibition of tumor growth than treatment with either compound alone. These findings suggest that IP6 and Ins prevent the development and metastatic progression of colorectal cancer to the liver in mice by altering expression of the extracellular matrix proteins collagen IV, fibronectin and laminin; the adhesion factor receptor integrin-β1; the proteolytic enzyme matrix metalloproteinase 9; and the angiogenic factors vascular endothelial growth factor, basic fibroblast growth factor, and transforming growth factor beta in the tumor metastasis microenvironment. In conclusion, IP6 and Ins inhibited the development and metastatic progression of colorectal cancer to the liver in BALB/c mice, and the effect of their combined application was significantly greater than the effect of either compound alone. This evidence supports further testing of the combined application of IP6 and Ins for the prevention of colorectal cancer metastasis to the liver in clinical studies.

  18. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen;

    2012-01-01

    profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides...... around the phosphorylated residue are important for the binding affinity of ILKAP. We conclude that solid-phase affinity pull-down of proteins from complex mixtures can be applied in phosphoproteomics and systems biology.......Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...

  19. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes

    International Nuclear Information System (INIS)

    Cultures of astrocytes and oligodendrocytes were prelabeled with 3H-inositol and the accumulation of 3H-inositol phosphates was determined following stimulation with a number of neuroactive substances. In astrocytes, norepinephrine (NE) produced the greatest stimulation with significant increase also observed with bradykinin. In oligodendrocytes, the greatest stimulation was produced by carbachol with significant increase also produced by bradykinin, histamine and NE. Carbachol was found to be ineffective in producing stimulation in astrocytes. The accumulation of 3H-inositol phosphates in astrocytes in response to NE was found to be dependent on the presence of Li+. The NE stimulation in astrocytes was dose-dependent and had an EC50 of 1.2 μM. This stimulation was blocked by the low concentration of the α1-adrenergic antagonist prazosin but not by the α2-adrenergic antagonist yohimbine. The NE-stimulated accumulation of 3H-inositol phosphates in astrocytes was inhibited by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine as well as by the cAMP analog dibutyryl cAMP. 34 references, 4 figures, 4 tables

  20. Age-associated repression of type 1 inositol 1, 4, 5-triphosphate receptor impairs muscle regeneration

    Science.gov (United States)

    Lee, Bora; Lee, Seung-Min; Bahn, Young Jae; Lee, Kwang-Pyo; Kang, Moonkyung; Kim, Yeon-Soo; Woo, Sun-Hee; Lim, Jae-Young; Kim, Eunhee; Kwon, Ki-Sun

    2016-01-01

    Skeletal muscle mass and power decrease with age, leading to impairment of mobility and metabolism in the elderly. Ca2+ signaling is crucial for myoblast differentiation as well as muscle contraction through activation of transcription factors and Ca2+-dependent kinases and phosphatases. Ca2+ channels, such as dihydropyridine receptor (DHPR), two-pore channel (TPC) and inositol 1,4,5-triphosphate receptor (ITPR), function to maintain Ca2+ homeostasis in myoblasts. Here, we observed a significant decrease in expression of type 1 IP3 receptor (ITPR1), but not types 2 and 3, in aged mice skeletal muscle and isolated myoblasts, compared with those of young mice. ITPR1 knockdown using shRNA-expressing viruses in C2C12 myoblasts and tibialis anterior muscle of mice inhibited myotube formation and muscle regeneration after injury, respectively, a typical phenotype of aged muscle. This aging phenotype was associated with repression of muscle-specific genes and activation of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. ERK inhibition by U0126 not only induced recovery of myotube formation in old myoblasts but also facilitated muscle regeneration after injury in aged muscle. The conserved decline in ITPR1 expression in aged human skeletal muscle suggests utility as a potential therapeutic target for sarcopenia, which can be treated using ERK inhibition strategies. PMID:27658230

  1. Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots.

    Science.gov (United States)

    Siddique, Shahid; Endres, Stefanie; Sobczak, Miroslaw; Radakovic, Zoran S; Fragner, Lena; Grundler, Florian M W; Weckwerth, Wolfram; Tenhaken, Raimund; Bohlmann, Holger

    2014-01-01

    The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes. PMID:24117492

  2. Evaluation of the Staphylococcus aureus Class C Nonspecific Acid Phosphatase (SapS) as a Reporter for Gene Expression and Protein Secretion in Gram-Negative and Gram-Positive Bacteria▿

    OpenAIRE

    Du Plessis, Erika; Theron, Jacques; Berger, Eldie; Louw, Maureen

    2007-01-01

    A phosphatase secreted by Staphylococcus aureus strain 154 has previously been characterized and classified as a new member of the bacterial class C family of nonspecific acid phosphatases. As the acid phosphatase activity can be easily detected with a cost-effective plate screen assay, quantitatively measured by a simple enzyme assay, and detected by zymography, its potential use as a reporter system was investigated. The S. aureus acid phosphatase (sapS) gene has been cloned and expressed f...

  3. A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis

    Directory of Open Access Journals (Sweden)

    Bennett Hayley J

    2010-08-01

    Full Text Available Abstract Background Phosphoinositide metabolism is essential to membrane dynamics and impinges on many cellular processes, including phagocytosis. Modulation of phosphoinositide metabolism is important for pathogenicity and virulence of many human pathogens, allowing them to survive and replicate in the host cells. Phosphoinositide phosphatases from bacterial pathogens are therefore key players in this modulation and constitute attractive targets for chemotherapy. MptpB, a virulence factor from Mycobacterium tuberculosis, has phosphoinositide phosphatase activity and a distinct active site P-loop signature HCXXGKDR that shares characteristics with eukaryotic lipid phosphatases and protein tyrosine phosphatases. We used this P-loop signature as a "diagnostic motif" to identify related putative phosphatases with phosphoinositide activity in other organisms. Results We found more than 200 uncharacterised putative phosphatase sequences with the conserved signature in bacteria, with some related examples in fungi and protozoa. Many of the sequences identified belong to recognised human pathogens. Interestingly, no homologues were found in any other organisms including Archaea, plants, or animals. Phylogenetic analysis revealed that these proteins are unrelated to classic eukaryotic lipid phosphatases. However, biochemical characterisation of those from Listeria monocytogenes and Leishmania major, demonstrated that, like MptpB, they have phosphatase activity towards phosphoinositides. Mutagenesis studies established that the conserved Asp and Lys in the P-loop signature (HCXXGKDR are important in catalysis and substrate binding respectively. Furthermore, we provide experimental evidence that the number of basic residues in the P-loop is critical in determining activity towards poly-phosphoinositides. Conclusion This new family of enzymes in microorganisms shows distinct sequence and biochemical characteristics to classic eukaryotic lipid phosphatases

  4. Applying a Targeted Label-free Approach using LC-MS AMT Tags to Evaluate Changes in Protein Phosphorylation Following Phosphatase Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feng; Jaitly, Navdeep; Jayachandran, Hemalatha; Lou, Quanzhou; Monroe, Matthew E.; Du, Xiuxia; Gritsenko, Marina A.; Zhang, Rui; Anderson, David J.; Purvine, Samuel O.; Adkins, Joshua N.; Moore, Ronald J.; Mottaz, Heather M.; Ding, Shi-Jian; Lipton, Mary S.; Camp, David G.; Udseth, Harold R.; Smith, Richard D.; Rossie, Sandra S.

    2007-10-12

    To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative Phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation site and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type II Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases.

  5. Inositol hexa-phosphate: a potential chelating agent for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, D.; Tapia, A.; Real, A.; Morcillo, M.A. [Radiobiology Laboratory, Radiation Dosimetry Unit, Department of Environment, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

    2007-07-01

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  6. Inositol hexa-phosphate: a potential chelating agent for uranium

    International Nuclear Information System (INIS)

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  7. Inositol pyrophosphates and their unique metabolic complexity: analysis by gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Oriana Losito

    Full Text Available BACKGROUND: Inositol pyrophosphates are a recently characterized cell signalling molecules responsible for the pyrophosphorylation of protein substrates. Though likely involved in a wide range of cellular functions, the study of inositol pyrophosphates has suffered from a lack of readily available methods for their analysis. PRINCIPAL FINDING: We describe a novel, sensitive and rapid polyacrylamide gel electrophoresis (PAGE-based method for the analysis of inositol pyrophosphates. Using 4',6-diamidino-2-phenylindole (DAPI and Toluidine Blue we demonstrate the unequivocal detection of various inositol pyrophosphate species. CONCLUSION: The use of the PAGE-based method reveals the likely underestimation of inositol pyrophosphates and their signalling contribution in cells when measured via traditional HPLC-based techniques. PAGE-based analyses also reveals the existence of a number of additional, previously uncharacterised pyrophosphorylated inositol reaction products, defining a more complex metabolism associated with the catalytically flexible kinase class responsible for the production of these highly energetic cell signalling molecules.

  8. AzioInositols in the Treatment of Insulin-Mediated Diseases

    Directory of Open Access Journals (Sweden)

    Giovanna Muscogiuri

    2016-01-01

    Full Text Available A growing body of research is currently focused on the role of inositol isomers and in particular myo-inositol (MYO-INS and D-chiroinositol (DCI in the treatment of insulin resistance states. Both isomers have been shown to exert insulin-mimetic action and to lower postprandial glucose. Further, insulin resistance-related diseases were associated to derangements in inositol metabolism. Thus, the aim of this review is to provide current evidence on the potential benefits of inositol isomers (MYO-INS and DCI in the treatment of disease associated to insulin resistance such as polycystic ovary syndrome (PCOS, gestational diabetes, and metabolic syndrome. Finally, molecular insights into inositol insulin-sensitizing effects will be covered focusing on the possible role of inositol glycans as insulin second messengers.

  9. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Science.gov (United States)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  10. Identification of Ononitol and O-methyl-scyllo-inositol in Pea Root Nodules

    DEFF Research Database (Denmark)

    Skøt, Leif; Egsgaard, Helge

    1984-01-01

    components were dominant in the carbohydrate pattern of the nodules formed by strain 1 a. The cyclitols were also present in the denodulated roots, but to a much smaller extent; in the above-ground plant parts only traces were found. The identification of ononitol and O-methyl-scyllo-inositol was established......Ononitol (4-O-methyl-myo-inositol) and O-methyl-scyllo-inositol were identified in pea (Pisum sativum L.) root nodules formed by twoRhizobium leguminosarum strains. Ononitol was the major soluble carbohydrate in nodules formed by strain 1045 while O-methyl-scyllo-inositol and two unidentified...

  11. Molecular cloning and characterization of L-galactose-1-phosphate phosphatase from tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Sakamoto, Shingo; Fujikawa, Yukichi; Tanaka, Nobukazu; Esaka, Muneharu

    2012-01-01

    L-Galactose-1-phosphate phosphatase (GPPase) is an enzyme involved in ascorbate biosynthesis in higher plants. We isolated a cDNA encoding GPPase from tobacco, and named it NtGPPase. The putative amino acid sequence of NtGPPase contained inositol monophosphatase motifs and metal binding sites. Recombinant NtGPPase hydrolyzed not only L-galactose-1-phosphate, but also myo-inositol-1-phosphate. The optimum pH for the GPPase activity of NtGPPase was 7.5. Its enzyme activity required Mg2+, and was inhibited by Li+ and Ca2+. Its fluorescence, fused with green fluorescence protein in onion cells and protoplasts of tobacco BY-2 cells, was observed in both the cytosol and nucleus. The expression of NtGPPase mRNA and protein was clearly correlated with L-ascorbic acid (AsA) contents of BY-2 cells during culture. The AsA contents of NtGPPase over expression lines were higher than those of empty lines at 13 d after subculture. This suggests that NtGPPase contributes slightly to AsA biosynthesis. PMID:22790939

  12. Role of the inositol polyphosphate-4-phosphatase type II Inpp4b in the generation of ovarian teratomas

    OpenAIRE

    Balakrishnan, Ashwini; Chaillet, J. Richard

    2012-01-01

    Teratomas are a unique class of tumors composed of ecto- meso- and endodermal tissues, all foreign to the site of origin. In humans, the most common teratoma is the ovarian teratoma. Not much is known about the molecular and genetic etiologies of these tumors. Female carriers of the Tgkd transgene are highly susceptible to developing teratomas. Ovaries of Tgkd/+ hemizygous female mice exhibit defects in luteinization, with numerous corpora lutea, some of which contain central trapped, fully-g...

  13. Results from the International Consensus Conference on Myo-inositol and d-chiro-inositol in Obstetrics and Gynecology: the link between metabolic syndrome and PCOS.

    Science.gov (United States)

    Facchinetti, Fabio; Bizzarri, Mariano; Benvenga, Salvatore; D'Anna, Rosario; Lanzone, Antonio; Soulage, Christophe; Di Renzo, Gian Carlo; Hod, Moshe; Cavalli, Pietro; Chiu, Tony T; Kamenov, Zdravko A; Bevilacqua, Arturo; Carlomagno, Gianfranco; Gerli, Sandro; Oliva, Mario Montanino; Devroey, Paul

    2015-12-01

    In recent years, interest has been focused to the study of the two major inositol stereoisomers: myo-inositol (MI) and d-chiro-inositol (DCI), because of their involvement, as second messengers of insulin, in several insulin-dependent processes, such as metabolic syndrome and polycystic ovary syndrome. Although these molecules have different functions, very often their roles have been confused, while the meaning of several observations still needs to be interpreted under a more rigorous physiological framework. With the aim of clarifying this issue, the 2013 International Consensus Conference on MI and DCI in Obstetrics and Gynecology identified opinion leaders in all fields related to this area of research. They examined seminal experimental papers and randomized clinical trials reporting the role and the use of inositol(s) in clinical practice. The main topics were the relation between inositol(s) and metabolic syndrome, polycystic ovary syndrome (with a focus on both metabolic and reproductive aspects), congenital anomalies, gestational diabetes. Clinical trials demonstrated that inositol(s) supplementation could fruitfully affect different pathophysiological aspects of disorders pertaining Obstetrics and Gynecology. The treatment of PCOS women as well as the prevention of GDM seem those clinical conditions which take more advantages from MI supplementation, when used at a dose of 2g twice/day. The clinical experience with MI is largely superior to the one with DCI. However, the existence of tissue-specific ratios, namely in the ovary, has prompted researchers to recently develop a treatment based on both molecules in the proportion of 40 (MI) to 1 (DCI).

  14. FIN13, a novel growth factor-inducible serine-threonine phosphatase which can inhibit cell cycle progression.

    OpenAIRE

    Guthridge, M A; Bellosta, P; Tavoloni, N; Basilico, C.

    1997-01-01

    We have identified a novel type 2C serine-threonine phosphatase, FIN13, whose expression is induced by fibroblast growth factor 4 and serum in late G1 phase. The protein encoded by FIN13 cDNA includes N- and C-terminal domains with significant homologies to type 2C phosphatases, a domain homologous to collagen, and an acidic domain. FIN13 expression predominates in proliferating tissues. Bacterially expressed FIN13 and FIN13 expressed in mammalian cells exhibit serine-threonine phosphatase ac...

  15. Expression of bacterial alkaline phosphatase-steroid receptor coactivator-1 fusion protein and its application in regulation of drug metabolism enzymes%BAP-SRC-1融合蛋白的表达及其在药物代谢酶调控研究中的应用

    Institute of Scientific and Technical Information of China (English)

    陈亚坤; 陈枢青; 曾苏

    2005-01-01

    目的获得活性表达的细菌碱性磷酸酶(bacterial alkaline phosphatase,BAP)基因和人甾体受体辅活化因子-1(stero1d receptor coactivator-1,SRC-1)的融合蛋白,应用于辅活化因子与核受体的结合研究.方法从Escherichia coli JM83基因组和人肝总RNA中分别扩增获得BAP基因和SRC-1的186个氨基酸对应的基因序列(简称SRC186).用重组技术,构建BAP-SRC186-pET28a融合基因表达载体,在Escherichia coli Rosetta(DE3)中,以IPTG低温诱导表达.以对硝基苯磷酸盐(p-nitrophenyl-phos-phate,PNPP)为底物进行活性测定.活性表达的BAP-SRC186融合蛋白被应用于辅活化因子与核受体的结合研究.结果获得可溶性融合蛋白BAP-SRC186.该融合蛋白的BAP比活为(0.176±0.013 4)μmol·min-1·mg(pro).在利福平存在的情况下,BAP-SRC186能与孕烷X受体配体结合域(pregnane X receptor ligand binding domain,PXRLBD)发生利福平剂量依赖性的相互作用,作用强度通过BAP的显色反应可方便地检测.结论 BAP融合蛋白与核受体的结合研究为药物代谢酶调控的体外研究开辟了新的思路.

  16. Effects of Newly Synthesized DCP-LA-Phospholipids on Protein Kinase C and Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Takeshi Kanno

    2013-04-01

    Full Text Available Background/Aims: The linoleic acid derivative DCP-LA selectively activates PKCε and inhibits protein phosphatase 1 (PP1. In the present study, we have newly synthesized phosphatidyl-ethanolamine, -serine, -choline, and -inositol containing DCP-LA at the α and β position (diDCP-LA-PE, -PS, PC, and -PI, respectively, and examined the effects of these compounds on activities of PKC isozymes and protein phosphatases. Methods: Activities of PKC isozymes PKCα, -βΙ, -βΙΙ, -γ, -δ, -ε-, ι, and -ζ and protein phosphatases PP1, PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Results: All the compounds activated PKC, with the different potential, but only PKCγ inhibition was obtained with diDCP-LA-PC. Of compounds diDCP-LA-PE alone significantly activated PKCι and -ζ. diDCP-LA-PE and diDCP-LA-PI suppressed PP1 activity, but otherwise diDCP-LA-PI enhanced PP2A activity. diDCP-LA-PE, diDCP-LA-PS, and diDCP-LA-PI strongly reduced PTP1B activity, while diDCP-LA-PC enhanced the activity. Conclusion: All the newly synthesized DCP-LA-phospholipids serve as a PKC activator and of them diDCP-LA-PE alone has the potential to activate the atypical PKC isozymes PKCι and -ζ. diDCP-LA-PE and diDCP-LA-PI serve as an inhibitor for PP1 and PTP1B, diDCP-LA-PS as a PTP1B inhibitor, diDCP-LA-PI as a PP2A enhancer, and diDCP-LA-PC as a PTP1B enhancer.

  17. Myo-Inositol Supplementation to Prevent Gestational Diabetes Mellitus.

    Science.gov (United States)

    Celentano, Claudio; Matarrelli, Barbara; Mattei, Peter A; Pavone, Giulia; Vitacolonna, Ester; Liberati, Marco

    2016-03-01

    Gestational diabetes mellitus (GDM) is a common complication characterized by increased insulin resistance, and by increased risk for adverse pregnancy outcomes affecting both the mother and the fetus. International guidelines describe optimal ways to recognize it, and the recommended treatment of patients affected to reduce adverse outcomes. Improving insulin resistance could reduce incidence of GDM and its complications. Recently, a few trials have been published on the possible prevention of GDM. Inositol has been proposed as a food supplement that might reduce gestational diabetes incidence in high-risk pregnant women.

  18. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase

    DEFF Research Database (Denmark)

    Kerovuo, J.; Rouvinen, J.; Hatzack, Frank-Andreas

    2000-01-01

    Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very...... a reaction mechanism different from that of other phytases. By combining the data presented in this study with (1) structural information obtained from the crystal structure of Bacillus amyloliquefaciens phytase [Ha, Oh, Shin, Kim, Oh, Kim, Choi and Oh (2000) Nat. Struct. Biol. 7, 147-153], and (2) computer...

  19. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    Energy Technology Data Exchange (ETDEWEB)

    Ecay, T.W.; Valentich, J.D. (Univ. of Texas Medical School, Houston (USA))

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases in inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.

  20. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H;

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not apparent...... phosphatase activity could be demonstrated....

  1. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    International Nuclear Information System (INIS)

    We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco

  2. Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice.

    Science.gov (United States)

    Moritoh, Yusuke; Oka, Masahiro; Yasuhara, Yoshitaka; Hozumi, Hiroyuki; Iwachidow, Kimihiko; Fuse, Hiromitsu; Tozawa, Ryuichi

    2016-01-01

    Inositol hexakisphosphate kinase 3 (IP6K3) generates inositol pyrophosphates, which regulate diverse cellular functions. However, little is known about its own physiological role. Here, we show the roles of IP6K3 in metabolic regulation. We detected high levels of both mouse and human IP6K3 mRNA in myotubes and muscle tissues. In human myotubes, IP6K3 was upregulated by dexamethasone treatment, which is known to inhibit glucose metabolism. Furthermore, Ip6k3 expression was elevated under diabetic, fasting, and disuse conditions in mouse skeletal muscles. Ip6k3(-/-) mice demonstrated lower blood glucose, reduced circulating insulin, deceased fat mass, lower body weight, increased plasma lactate, enhanced glucose tolerance, lower glucose during an insulin tolerance test, and reduced muscle Pdk4 expression under normal diet conditions. Notably, Ip6k3 deletion extended animal lifespan with concomitant reduced phosphorylation of S6 ribosomal protein in the heart. In contrast, Ip6k3(-/-) mice showed unchanged skeletal muscle mass and no resistance to the effects of high fat diet. The current observations suggest novel roles of IP6K3 in cellular regulation, which impact metabolic control and lifespan. PMID:27577108

  3. Inositol Hexakisphosphate Kinase 3 Regulates Metabolism and Lifespan in Mice

    Science.gov (United States)

    Moritoh, Yusuke; Oka, Masahiro; Yasuhara, Yoshitaka; Hozumi, Hiroyuki; Iwachidow, Kimihiko; Fuse, Hiromitsu; Tozawa, Ryuichi

    2016-01-01

    Inositol hexakisphosphate kinase 3 (IP6K3) generates inositol pyrophosphates, which regulate diverse cellular functions. However, little is known about its own physiological role. Here, we show the roles of IP6K3 in metabolic regulation. We detected high levels of both mouse and human IP6K3 mRNA in myotubes and muscle tissues. In human myotubes, IP6K3 was upregulated by dexamethasone treatment, which is known to inhibit glucose metabolism. Furthermore, Ip6k3 expression was elevated under diabetic, fasting, and disuse conditions in mouse skeletal muscles. Ip6k3−/− mice demonstrated lower blood glucose, reduced circulating insulin, deceased fat mass, lower body weight, increased plasma lactate, enhanced glucose tolerance, lower glucose during an insulin tolerance test, and reduced muscle Pdk4 expression under normal diet conditions. Notably, Ip6k3 deletion extended animal lifespan with concomitant reduced phosphorylation of S6 ribosomal protein in the heart. In contrast, Ip6k3−/− mice showed unchanged skeletal muscle mass and no resistance to the effects of high fat diet. The current observations suggest novel roles of IP6K3 in cellular regulation, which impact metabolic control and lifespan. PMID:27577108

  4. Phytate (Inositol Hexakisphosphate in Soil and Phosphate Acquisition from Inositol Phosphates by Higher Plants. A Review

    Directory of Open Access Journals (Sweden)

    Jörg Gerke

    2015-05-01

    Full Text Available Phosphate (P fixation to the soil solid phase is considered to be important for P availability and is often attributed to the strong binding of orthophosphate anion species. However, the fixation and subsequent immobilization of inositolhexa and pentaphosphate isomers (phytate in soil is often much stronger than that of the orthosphate anion species. The result is that phytate is a main organic P form in soil and the dominating form of identifiable organic P. The reasons for the accumulation are not fully clear. Two hypothesis can be found in the literature in the last 20 years, the low activity of phytase (phosphatases in soil, which makes phytate P unavailable to the plant roots, and, on the other hand, the strong binding of phytate to the soil solid phase with its consequent stabilization and accumulation in soil. The hypothesis that low phytase activity is responsible for phytate accumulation led to the development of genetically modified plant genotypes with a higher expression of phytase activity at the root surface and research on the effect of a higher phytate activity on P acquisition. Obviously, this hypothesis has a basic assumption, that the phytate mobility in soil is not the limiting step for P acquisition of higher plants from soil phytate. This assumption is, however, not justified considering the results on the sorption, immobilization and fixation of phytate to the soil solid phase reported in the last two decades. Phytate is strongly bound, and the P sorption maximum and probably the sorption strength of phytate P to the soil solid phase is much higher, compared to that of orthophosphate P. Mobilization of phytate seems to be a promising step to make it available to the plant roots. The excretion of organic acid anions, citrate and to a lesser extend oxalate, seems to be an important way to make phytate P available to the plants. Phytase activity at the root surface seems not be the limiting step in P acquisition from phytate

  5. Changes in inositol phosphates in wild carrot cells upon initiation of cell wall digestion

    International Nuclear Information System (INIS)

    Previous studies have shown that inositol trisphosphate (IP3) stimulated 45Ca+2 efflux from fusogenic carrot protoplasts and it was suggested that IP3 may serve as a second messenger for the mobilization of intracellular Ca+2 in higher plant cells. To determine whether or not inositol phosphate metabolism changes in response to external stimuli, the cells were labeled with myo-[2-3H] inositol for 18 h and exposed to cell wall digestion enzymes, Driselase. The inositol phosphates were extracted with ice cold 10% TCA and separated by anion exchange chromatography. The radioactivity of the fraction that contained IP3 increased 2-3.8 fold and that which contained inositol bisphosphate increased 1.9-2.6 fold within 1.5 min of exposure to Driselase. After 6 min, the radioactivity of both fractions increased 6-7.7 fold and an increase in inositol monophosphate was observed. These data indicate that inositol phosphate metabolism is stimulated by Driselase and suggest polyphosphoinositide hydrolysis occurs upon initiation of cell wall digestion

  6. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    Science.gov (United States)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  7. Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000

    Science.gov (United States)

    Aceti, David J.; Bitto, Eduard; Yakunin, Alexander F.; Proudfoot, Michael; Bingman, Craig A.; Frederick, Ronnie O.; Sreenath, Hassan K.; Vojtik, Frank C.; Wrobel, Russell L.; Fox, Brian G.; Markley, John L.; Phillips, George N.

    2015-01-01

    The crystal structure of the protein product of the gene locus At1g05000, a hypothetical protein from A. thaliana, was determined by the multiple-wavelength anomalous diffraction method and was refined to an R factor of 20.4% (Rfree = 24.9%) at 3.3 Å. The protein adopts the α/β fold found in cysteine phosphatases, a superfamily of phosphatases that possess a catalytic cysteine and form a covalent thiol-phosphate intermediate during the catalytic cycle. In At1g05000, the analogous cysteine (Cys150) is located at the bottom of a positively-charged pocket formed by residues that include the conserved arginine (Arg156) of the signature active site motif, HCxxGxxRT. Of 74 model phosphatase substrates tested, purified recombinant At1g05000 showed highest activity toward polyphosphate (poly-P12–13) and deoxyribo- and ribonucleoside triphosphates, and less activity toward phosphoenolpyruvate, phosphotyrosine, phosphotyrosine-containing peptides, and phosphatidyl inositols. Divalent metal cations were not required for activity and had little effect on the reaction. PMID:18433060

  8. Inositol metabolism in Trypanosoma cruzi: potential target for chemotherapy against Chagas' disease

    Directory of Open Access Journals (Sweden)

    MECIA M. OLIVEIRA

    2000-09-01

    Full Text Available Chagas' disease is a debilitating and often fatal disease caused by the protozoan parasite Trypanosoma cruzi. The great majority of surface molecules in trypanosomes are either inositol-containing phospholipids or glycoproteins that are anchored into the plasma membrane by glycosylphosphatidylinositol anchors. The polyalcohol myo-inositol is the precursor for the biosynthesis of these molecules. In this brief review, recent findings on some aspects of the molecular and cellular fate of inositol in T. cruzi life cycle are discussed and identified some points that could be targets for the development of parasite-specific therapeutic agents.

  9. Alterations in Lipid and Inositol Metabolisms in Two Dopaminergic Disorders.

    Directory of Open Access Journals (Sweden)

    Eva C Schulte

    Full Text Available Serum metabolite profiling can be used to identify pathways involved in the pathogenesis of and potential biomarkers for a given disease. Both restless legs syndrome (RLS and Parkinson`s disease (PD represent movement disorders for which currently no blood-based biomarkers are available and whose pathogenesis has not been uncovered conclusively. We performed unbiased serum metabolite profiling in search of signature metabolic changes for both diseases.456 metabolites were quantified in serum samples of 1272 general population controls belonging to the KORA cohort, 82 PD cases and 95 RLS cases by liquid-phase chromatography and gas chromatography separation coupled with tandem mass spectrometry. Genetically determined metabotypes were calculated using genome-wide genotyping data for the 1272 general population controls.After stringent quality control, we identified decreased levels of long-chain (polyunsaturated fatty acids of individuals with PD compared to both RLS (PD vs. RLS: p = 0.0001 to 5.80x10-9 and general population controls (PD vs. KORA: p = 6.09x10-5 to 3.45x10-32. In RLS, inositol metabolites were increased specifically (RLS vs. KORA: p = 1.35x10-6 to 3.96x10-7. The impact of dopaminergic drugs was reflected in changes in the phenylalanine/tyrosine/dopamine metabolism observed in both individuals with RLS and PD.A first discovery approach using serum metabolite profiling in two dopamine-related movement disorders compared to a large general population sample identified significant alterations in the polyunsaturated fatty acid metabolism in PD and implicated the inositol metabolism in RLS. These results provide a starting point for further studies investigating new perspectives on factors involved in the pathogenesis of the two diseases as well as possible points of therapeutic intervention.

  10. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  11. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  12. The role for protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation

    OpenAIRE

    Spalinger, Marianne R.; MCCOLE, DECLAN F.; Rogler, Gerhard; Scharl, Michael

    2015-01-01

    Current hypothesis suggests that genetic, immunological and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease (IBD). Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of IBD. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signalling processes.Evidence emerges that expression levels of PTPN...

  13. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation

    OpenAIRE

    Spalinger, Marianne R.; MCCOLE, DECLAN F.; Rogler, Gerhard; Scharl, Michael

    2015-01-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that express...

  14. On the correlation between hydrogen bonding and melting points in the inositols

    DEFF Research Database (Denmark)

    Bekö, Sándor L; Alig, Edith; Schmidt, Martin U;

    2014-01-01

    Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006...... ▶). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect...... of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight...

  15. Modulation of hemodynamic and vascular filtration changes in diabetic rats by dietary myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G.; Tilton, R.G.; Speedy, A.; Santarelli, E.; Eades, D.M.; Province, M.A.; Kilo, C.; Sherman, W.R.; Williamson, J.R. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1990-03-01

    To assess the potential of myo-inositol-supplemented diets to prevent diabetes-induced vascular functional changes, we examined the effects of diets supplemented with 0.5, 1, or 2% myo-inositol on blood flow and vascular filtration function in nondiabetic control rats and rats with streptozocin-induced diabetes (STZ-D). After 1 mo of diabetes and dietary myo-inositol supplementation, (1) 131I-labeled bovine serum albumin (BSA) permeation of vessels was assessed in multiple tissues, (2) glomerular filtration rate (GFR) was estimated as renal plasma clearance of 57Co-labeled EDTA, (3) regional blood flows were measured with 15-microns 85Sr-labeled microspheres, and (4) endogenous albumin and IgG urinary excretion rates were quantified by radial immunodiffusion assay. In STZ-D rats, 131I-BSA tissue clearance increased significantly (2- to 4-fold) in the anterior uvea, choroid-sclera, retina, sciatic nerve, aorta, new granulation tissue, diaphragm, and kidney but was unchanged in skin, forelimb muscle, and heart. myo-Inositol-supplemented diets reduced diabetes-induced increases in 131I-BSA clearance (in a dose-dependent manner) in all tissues; however, only in new granulation tissue and diaphragm did the 2% myo-inositol diet completely normalize vascular albumin permeation. Diabetes-induced increases in GFR and in urinary albumin and IgG excretion were also substantially reduced or normalized by dietary myo-inositol supplements. Increased blood flow in anterior uvea, choroid-sclera, kidney, new granulation tissue, and skeletal muscle in STZ-D rats also was substantially reduced or normalized by the 2% myo-inositol diet. myo-Inositol had minimal if any effects on the above parameters in control rats.

  16. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice

    OpenAIRE

    Ali, Nusrat; Paul, Soumitra; Gayen, Dipak; Sarkar, Sailendra Nath; Datta, Swapan K.; Datta, Karabi

    2013-01-01

    Background Phytic acid (InsP6) is considered as the major source of phosphorus and inositol phosphates in cereal grains. Reduction of phytic acid level in cereal grains is desirable in view of its antinutrient properties to maximize mineral bioavailability and minimize the load of phosphorus waste management. We report here RNAi mediated seed-specific silencing of myo-inositol-3-phosphate synthase (MIPS) gene catalyzing the first step of phytic acid biosynthesis in rice. Moreover, we also stu...

  17. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism.

    OpenAIRE

    Leeb-Lundberg, L M; Cotecchia, S; Lomasney, J W; DeBernardis, J F; Lefkowitz, R J; Caron, M G

    1985-01-01

    DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. T...

  18. Assessing the Biological Activity of the Glucan Phosphatase Laforin.

    Science.gov (United States)

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S; Sanz, Pascual

    2016-01-01

    Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity. PMID:27514803

  19. Does myo-inositol effect on PCOS follicles involve cytoskeleton regulation?

    Science.gov (United States)

    Bizzarri, Mariano; Cucina, Alessandra; Dinicola, Simona; Harrath, Abdel Halim; Alwasel, Saleh H; Unfer, Vittorio; Bevilacqua, Arturo

    2016-06-01

    Inositol metabolism is severely impaired in follicles obtained from cystic ovaries, leading to deregulated insulin transduction and steroid synthesis. On the contrary, inositol administration to women suffering from polycystic ovary syndrome (PCOS) has been proven to efficiently counteract most of the clinical hallmarks displayed by PCOS patients, including insulin resistance, hyperandrogenism and oligo-amenorrhea. We have recently observed that myo-inositol induces significant changes in cytoskeletal architecture of breast cancer cells, by modulating different biochemical pathways, eventually modulating the epithelial-mesenchymal transition. We hypothesize that inositol and its monophosphate derivatives, besides their effects on insulin transduction, may efficiently revert histological and functional features of cystic ovary by inducing cytoskeleton rearrangements. We propose an experimental model that could address not only whether inositol modulates cytoskeleton dynamics in both normal and cystic ovary cells, but also whether this effect may interfere with ovarian steroidogenesis. A more compelling understanding of the mechanisms of action of inositol (and its derivatives) would greatly improve its therapeutic utilization, by conferring to current treatments a well-grounded scientific rationale. PMID:27142131

  20. Effects of inositol trisphosphate on calcium mobilization in high-voltage and saponin-permeabilized platelets

    International Nuclear Information System (INIS)

    Interest in phosphatidylinositol metabolism has been greatly stimulated by the findings that diglyceride and inositol phosphates may serve as second messengers in modulating cellular function. Formation of 1,4,5-inositol trisphosphate (IP3), in particular, has been linked to mobilization of intracellular calcium in a number of cell types. The authors have examined the ability of IP3 to mobilize calcium in human platelets permeabilized by either saponin or high-voltage discharge. Saponin at 15 μg/ml effectively permeabilized platelets to exogenous inositol 1,4,5-trisphosphate which released bound [45Ca] within 1 min and with a Ka of 7.4 +/- 4.1 μM. A small (25%) azide-sensitive pool was also responsive to inositol trisphosphate. The calcium pools were completely discharged by A-23187 and the ATP-dependent uptake was prevented by dinitrophenol. In contrast to the result with saponin, platelets accessed by high-voltage discharge were insensitive to challenge by inositol 1,4,5-trisphosphate. The data suggest that while inositol 1,4,5-trisphosphate can rapidly mobilize platelet calcium, the ability to demonstrate this depends on the method of permeabilization

  1. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.

    2005-04-05

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  2. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  3. Enzyme-assisted total synthesis of the optical antipodes D-myo-inositol 3,4,5-trisphosphate and D-myo-inositol 1,5, 6-trisphosphate: aspects of their structure-activity relationship to biologically active inositol phosphates.

    Science.gov (United States)

    Adelt, S; Plettenburg, O; Stricker, R; Reiser, G; Altenbach, H J; Vogel, G

    1999-04-01

    Unambiguous total syntheses of both optical antipodes of the enantiomeric pair D-myo-inositol 3,4,5-trisphosphate (Ins(3,4,5)P3) and D-myo-inositol 1,5,6-trisphosphate (Ins(1,5,6)P3) are described. The ring system characteristic of myo-inositol was constructed de novo from p-benzoquinone. X-ray data for the enzymatically resolved (1S,2R,3R,4S)-1,4-diacetoxy-2,3-dibromocyclohex-5-ene enabled the unequivocal assignment of the absolute configuration. Subsequent transformations under stereocontrolled conditions led to enantiopure C2-symmetrical 1,4-(di-O-benzyldiphospho)conduritol B derivatives. Their synthetic potential was exploited to prepare Ins(3,4,5,6)P4 and Ins(1,4,5,6)P4 in three steps. With a recently identified and partially purified InsP5/InsP4 phosphohydrolase from Dictyostelium discoideum, these enantiomers could be converted to the target compounds, Ins(3,4,5)P3 and Ins(1,5,6)P3, on a preparative scale. An HPLC system employed for both purification of the inositol phosphates and analytical runs ensured that the products were isomerically homogeneous. The sensitivity of detection achieved by a complexometric postcolumn derivatization method indicates that the complexation properties of Ins(3,4,5)P3/Ins(1,5,6)P3 resemble those of Ins(1,2,3)P3, a compound with antioxidant potential. The set of inositol phosphates synthesized was used to clarify structural motifs important for molecular recognition by p42(IP4), a high-affinity Ins(1,3,4,5)P4/PtdIns(3,4,5)P3-specific binding protein from pig cerebellum. PMID:10197969

  4. Origin and production of phosphatases in the acid Lake Gardsjoen

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, H.

    1983-01-01

    The activity of acid phosphatases was followed for one year in Lake Gardsjoen as well as in the inlet and the outlet of the lake. A budget of the phosphatases was calculated, including an estimation of the production of phosphatases. The phosphatase activity was also measured in two basins upstream of L. Gardsjoen: the north basin and the south basin of L. Stora Haestevatten. The acid phosphatase activity was very high compared with reported alkaline phosphatase activities in other lakes. About 95% of the phosphatases in L. Gardsjoen was produced in the lake, and the production was highest in early summer. Small Chrysophyceae (< 10 ..mu..m) probably produced the majority of the acid phosphatases in the investigated lakes, and accordingly could be favoured in environments with low phosphorus supply due to their ability to produce large amounts of phosphatases. 10 references, 8 figures, 2 tables.

  5. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    OpenAIRE

    N. Mohd. Yusoff; T. Nuge; N.H. Zainan; Y.Z.H-Y. Hashim; P. JAMAL; Anis Shobirin Meor Hussin; Abd-Elaziem Farouk; and H.M. Salleh

    2011-01-01

    Phytate or myo-inositol hexakisphosphates (IP6) is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed go...

  6. Cloning, expression, purification, crystallization and X-ray analysis of inositol monophosphatase from Mus musculus and Homo sapiens

    OpenAIRE

    Lack, Nathan A.; Singh, Nisha; Halliday, Amy C.; Knight, Matthew; Lowe, Edward; Churchill, Grant C.

    2012-01-01

    Inositol monophosphatase (IMPase) catalyses the hydrolysis of inositol monophosphate to inositol and is crucial in the phosphatidylinositol (PI) signalling pathway. Lithium, which is the drug of choice for bipolar disorder, inhibits IMPase at therapeutically relevant plasma concentrations. Both mouse IMPase 1 (MmIMPase 1) and human IMPase 1 (HsIMPase 1) were cloned into pRSET5a, expressed in Escherichia coli, purified and crystallized using the sitting-drop method. The structures were solved ...

  7. Prometabolites of 5-Diphospho-myo-inositol Pentakisphosphate.

    Science.gov (United States)

    Pavlovic, Igor; Thakor, Divyeshsinh T; Bigler, Laurent; Wilson, Miranda S C; Laha, Debabrata; Schaaf, Gabriel; Saiardi, Adolfo; Jessen, Henning J

    2015-08-10

    Diphospho-myo-inositol phosphates (PP-InsP(y)) are an important class of cellular messengers. Thus far, no method for the transport of PP-InsP(y) into living cells is available. Owing to their high negative charge density, PP-InsP(y) will not cross the cell membrane. A strategy to circumvent this issue involves the generation of precursors in which the negative charges are masked with biolabile groups. A PP-InsP(y) prometabolite would require twelve to thirteen biolabile groups, which need to be cleaved by cellular enzymes to release the parent molecules. Such densely modified prometabolites of phosphate esters and anhydrides have never been reported to date. This study discloses the synthesis of such agents and an analysis of their metabolism in tissue homogenates by gel electrophoresis. The acetoxybenzyl-protected system is capable of releasing 5-PP-InsP5 in mammalian cell/tissue homogenates within a few minutes and can be used to release 5-PP-InsP5 inside cells. These molecules will serve as a platform for the development of fundamental tools required to study PP-InsP(y) physiology.

  8. Cellular Cations Control Conformational Switching of Inositol Pyrophosphate Analogues.

    Science.gov (United States)

    Hager, Anastasia; Wu, Mingxuan; Wang, Huanchen; Brown, Nathaniel W; Shears, Stephen B; Veiga, Nicolás; Fiedler, Dorothea

    2016-08-22

    The inositol pyrophosphate messengers (PP-InsPs) are emerging as an important class of cellular regulators. These molecules have been linked to numerous biological processes, including insulin secretion and cancer cell migration, but how they trigger such a wide range of cellular responses has remained unanswered in many cases. Here, we show that the PP-InsPs exhibit complex speciation behaviour and propose that a unique conformational switching mechanism could contribute to their multifunctional effects. We synthesised non-hydrolysable bisphosphonate analogues and crystallised the analogues in complex with mammalian PPIP5K2 kinase. Subsequently, the bisphosphonate analogues were used to investigate the protonation sequence, metal-coordination properties, and conformation in solution. Remarkably, the presence of potassium and magnesium ions enabled the analogues to adopt two different conformations near physiological pH. Understanding how the intrinsic chemical properties of the PP-InsPs can contribute to their complex signalling outputs will be essential to elucidate their regulatory functions. PMID:27460418

  9. Inositol trisphosphate metabolism in carrot (Daucus carota L.) cells

    International Nuclear Information System (INIS)

    The metabolism of exogenously added D-myo-[1-3H]inositol 1,4,5-trisphosphate (IP3) has been examined in microsomal membrane and soluble fractions of carrot cells grown in suspension culture. When [3H]IP3 was added to a microsomal membrane fraction, [3H]IP2 was the primary metabolite consisting of approximately 83% of the total recovered [3H] by electrophoresis. [3H]IP was only 6% of the [3H] recovered, and 10% of the [3H]IP3 was not further metabolized. In contrast, when [3H]IP3 was added to the soluble fraction, approximately equal amounts of [3H]IP2 and [3H]IP were recovered. Ca2+ (100 micromolar) tended to enhance IP3 dephosphorylation but inhibited the IP2 dephosphorylation in the soluble fraction by about 20%. MoO42- (1 millimolar) inhibited the dephosphorylation of IP3 by the microsomal fraction and the dephosphorylation of IP2 by the soluble fraction. MoO42-, however, did not inhibit the dephosphorylation of IP3 by the soluble fraction. Li+ (10 and 50 millimolar) had no effect on IP3 metabolism in either the soluble or membrane fraction; however, Li+ (50 millimolar) inhibited IP2 dephosphorylation in the soluble fraction about 25%

  10. Effects of a New Flavonoid and Myo-Inositol Supplement on Some Biomarkers of Cardiovascular Risk in Postmenopausal Women: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Rosario D’Anna

    2014-01-01

    Full Text Available Background and Aim. Cardiovascular risk is increased in women with menopause and metabolic syndrome. Aim of this study was to test the effect of a new supplement formula, combining cocoa polyphenols, myo-inositol, and soy isoflavones, on some biomarkers of cardiovascular risk in postmenopausal women with metabolic syndrome. Methods and Results. A total of 60 women were enrolled and randomly assigned (n=30 per group to receive the supplement (NRT: 30 mg of cocoa polyphenols, 80 mg of soy isoflavones, and 2 gr of myo-inositol, or placebo for 6 months. The study protocol included three visits (baseline, 6, and 12 months for the evaluation of glucose, triglycerides, and HDL-cholesterol (HDL-C, adiponectin, visfatin, resistin, and bone-specific alkaline phosphatase (bone-ALP. At 6 months, a significant difference between NRT and placebo was found for glucose (96±7 versus 108±10 mg/dL, triglycerides (145±14 versus 165±18 mg/dL, visfatin (2.8±0.8 versus 3.7±1.1 ng/mL, resistin (27±7 versus 32±8 µg/L, and b-ALP (19±7 versus 15±5 µg/mL. No difference in HDL-C concentrations nor in adiponectin levels between groups was reported at 6 months. Conclusions. The supplement used in this study improves most of the biomarkers linked to metabolic syndrome. This Trial is registered with NCT01400724.

  11. Effects of a new flavonoid and Myo-inositol supplement on some biomarkers of cardiovascular risk in postmenopausal women: a randomized trial.

    Science.gov (United States)

    D'Anna, Rosario; Santamaria, Angelo; Cannata, Maria Letizia; Interdonato, Maria Lieta; Giorgianni, Grazia Maria; Granese, Roberta; Corrado, Francesco; Bitto, Alessandra

    2014-01-01

    Background and Aim. Cardiovascular risk is increased in women with menopause and metabolic syndrome. Aim of this study was to test the effect of a new supplement formula, combining cocoa polyphenols, myo-inositol, and soy isoflavones, on some biomarkers of cardiovascular risk in postmenopausal women with metabolic syndrome. Methods and Results. A total of 60 women were enrolled and randomly assigned (n = 30 per group) to receive the supplement (NRT: 30 mg of cocoa polyphenols, 80 mg of soy isoflavones, and 2 gr of myo-inositol), or placebo for 6 months. The study protocol included three visits (baseline, 6, and 12 months) for the evaluation of glucose, triglycerides, and HDL-cholesterol (HDL-C), adiponectin, visfatin, resistin, and bone-specific alkaline phosphatase (bone-ALP). At 6 months, a significant difference between NRT and placebo was found for glucose (96 ± 7 versus 108 ± 10 mg/dL), triglycerides (145 ± 14 versus 165 ± 18 mg/dL), visfatin (2.8 ± 0.8 versus 3.7 ± 1.1 ng/mL), resistin (27 ± 7 versus 32 ± 8 µg/L), and b-ALP (19 ± 7 versus 15 ± 5 µg/mL). No difference in HDL-C concentrations nor in adiponectin levels between groups was reported at 6 months. Conclusions. The supplement used in this study improves most of the biomarkers linked to metabolic syndrome. This Trial is registered with NCT01400724. PMID:25254044

  12. Protein-tyrosine phosphatases in zebrafish gastrulation

    NARCIS (Netherlands)

    van Eekelen, M.J.L.

    2011-01-01

    Protein tyrosine phosphorylation plays a key role in relaying external stimuli and signals into the cell towards the appropriate responses. This process is mediated by protein-tyrosine kinases adding a phosphor group to a tyrosine residue and protein-tyrosine phosphatases removing a phosphor group f

  13. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch is ...

  14. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.;

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  15. Metabolism and Ovarian Function in PCOS Women: A Therapeutic Approach with Inositols

    Science.gov (United States)

    Rossetti, Paola; Buscema, Massimo; Condorelli, Rosita Angela; Gullo, Giuseppe; Triolo, Onofrio

    2016-01-01

    Polycystic ovary syndrome (PCOS) is characterized by chronical anovulation and hyperandrogenism which may be present in a different degree of severity. Insulin-resistance and hyperinsulinemia are the main physiopathological basis of this syndrome and the failure of inositol-mediated signaling may concur to them. Myo (MI) and D-chiro-inositol (DCI), the most studied inositol isoforms, are classified as insulin sensitizers. In form of glycans, DCI-phosphoglycan and MI-phosphoglycan control key enzymes were involved in glucose and lipid metabolism. In form of phosphoinositides, they play an important role as second messengers in several cellular biological functions. Considering the key role played by insulin-resistance and androgen excess in PCOS patients, the insulin-sensitizing effects of both MI and DCI were tested in order to ameliorate symptoms and signs of this syndrome, including the possibility to restore patients' fertility. Accumulating evidence suggests that both isoforms of inositol are effective in improving ovarian function and metabolism in patients with PCOS, although MI showed the most marked effect on the metabolic profile, whereas DCI reduced hyperandrogenism better. The purpose of this review is to provide an update on inositol signaling and correlate data on biological functions of these multifaceted molecules, in view of a rational use for the therapy in women with PCOS. PMID:27579037

  16. Metabolism and Ovarian Function in PCOS Women: A Therapeutic Approach with Inositols.

    Science.gov (United States)

    Laganà, Antonio Simone; Rossetti, Paola; Buscema, Massimo; La Vignera, Sandro; Condorelli, Rosita Angela; Gullo, Giuseppe; Granese, Roberta; Triolo, Onofrio

    2016-01-01

    Polycystic ovary syndrome (PCOS) is characterized by chronical anovulation and hyperandrogenism which may be present in a different degree of severity. Insulin-resistance and hyperinsulinemia are the main physiopathological basis of this syndrome and the failure of inositol-mediated signaling may concur to them. Myo (MI) and D-chiro-inositol (DCI), the most studied inositol isoforms, are classified as insulin sensitizers. In form of glycans, DCI-phosphoglycan and MI-phosphoglycan control key enzymes were involved in glucose and lipid metabolism. In form of phosphoinositides, they play an important role as second messengers in several cellular biological functions. Considering the key role played by insulin-resistance and androgen excess in PCOS patients, the insulin-sensitizing effects of both MI and DCI were tested in order to ameliorate symptoms and signs of this syndrome, including the possibility to restore patients' fertility. Accumulating evidence suggests that both isoforms of inositol are effective in improving ovarian function and metabolism in patients with PCOS, although MI showed the most marked effect on the metabolic profile, whereas DCI reduced hyperandrogenism better. The purpose of this review is to provide an update on inositol signaling and correlate data on biological functions of these multifaceted molecules, in view of a rational use for the therapy in women with PCOS. PMID:27579037

  17. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    Science.gov (United States)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  18. Soil metabolic transformations of carbon-14-myo-inositol, carbon-14-phytic acid and carbon-14-iron(III) phytate

    International Nuclear Information System (INIS)

    Uniformly labelled 14C-phytic acid and 14C-iron(III) phytate were synthesized from uniformly labelled 14C-myo-inositol. The three compounds were incubated in an Andosol sandy loam at 70% field capacity and 36.50C for a 12-day period. Myo-inositol, phytic acid and iron(III) phytate underwent a 61.0, 1.9 and 0% microbial oxidation respectively to CO2 during the incubation period. The rate of fixation of 14C-phytic acid was illustrated by its rapid decline in metabolism in the 12-day period. The metabolism rate of phytic was considerably reduced by the presumed formation of iron(III) and aluminium phytate. The metabolism rate of myo-inositol was reduced nine-fold after an initial rapid metabolism during the first day of incubation. The following mechanisms were observed in the soil metabolism of myo-inositol: (1) soil mineral-inositol carbon adsorption, (2) humic acid-inositol carbon adsorption, (3) the phosphorylation of myo-inositol, and (4) the epimerization of myo-inositol to chiro-inositol. The formation of (1) and (2) was found to be highly dependent upon microbial activity. Interactions (1), (2) and (3)are considered as possible mechanisms for the inhibition of the microbial oxidation of myo-inositol. The inhibition of myo-inositol oxidation via adsorption or phosphorylation is considered to be due to the chemical blockage of the stereo-specific microbial oxidative attack on the axial hydroxyl group. (author)

  19. Immunomodulating effect of inositol hexaphosphate against Aeromonas hydrophila-endotoxin.

    Science.gov (United States)

    Abu-El-Saad, Abdel-Aziz S A

    2007-01-01

    The present study was carried out to evaluate the effect of inositol hexaphosphate (IP6) administration on endotoxemia as an example of the systemic inflammatory response. Mice were divided into three groups as follows: First group, remained as a naive group injected intraperitoneally (i.p.) with PBS (pH 7.4; 0.2 ml/mice) at intervals parallel to the treated groups. The second group was injected i.p. with the lipopolysaccharide (LPS) of Aeromonas hydrophila once a week for four weeks at a dose of LPS suspension: 20 mg/kg mice/week. The third group was injected with the same LPS dose and synergistically intubated with IP6 three times a week for four weeks at a total dose of 4 0mg/kg. At different experimental periods (1, 2, 3 and 4 weeks), six animals from each group were sacrificed under mild diethyl ether anesthesia. Blood and sera were taken for the estimation of phagocytic activity, electrophoretic pattern of proteins and immunoglobulin levels. Also, a slice of liver was homogenized to estimate the respiratory burst enzymes activities and nitric acid synthesis. Histopathological changes of hepatic tissues were investigated. In the LPS-treated group, marked increase in the phagocytic activities and nitric oxide synthesis, and a decrease in hepatocyte catalase, total peroxidase and superoxide dismutase activities were observed. The histopathological features revealed a degeneration and highly mitotic division within the hepatic nuclei in addition to some karyomegaly and nuclear pyknosis. During the treatment period, liver sections of the LPS+IP6 group showed somewhat regenerative features. Reduction in the toxicity of free radicals by IP6 was observed and the IP6 effect seemed to be responsible for the observed ameliorative influence.

  20. Revisiting histidine-dependent acid phosphatases: a distinct group of tyrosine phosphatases

    OpenAIRE

    Veeramani, Suresh; Lee, Ming-Shyue; Lin, Ming-Fong

    2009-01-01

    Although classical protein tyrosine phosphatase (PTP) superfamily members are cysteine-dependent, emerging evidence shows that many acid phosphatases (AcPs) function as histidine-dependent PTPs in vivo. These AcPs dephosphorylate phospho-tyrosine substrates intracellularly and could have roles in development and disease. In contrast to cysteine-dependent PTPs, they utilize histidine, rather than cysteine, for substrate dephosphorylation. Structural analyses reveal that active site histidine, ...

  1. Lithium modulation of the human inositol monophosphatase 2 (IMPA2) promoter

    International Nuclear Information System (INIS)

    The inositol-signaling pathway is a therapeutic target for lithium in the treatment of bipolar disorder. Inositol monophosphatases (IMPases) play a key role in inositol signaling. Lithium's ability to inhibit IMPase 1 is well known, but its effect on IMPase 2 or on the transcriptional regulation of these genes has not been studied. Here, we report the identification and characterization of the minimal promoter of IMPA2 (encoding IMPase 2) in HeLa (epithelial) and SK-N-AS (neuronal) cells. IMPA2 promoter activity appears to be contributed by different elements in the 5' flanking region, suggesting that the gene is differentially regulated in neuronal and non-neuronal cells. Furthermore, IMPA2 promoter activity in both cell lines is downregulated, in a dose-dependent manner, by lithium after treatment for only 24 h. This effect is also observed in vivo. Our results suggest a possible role for IMPA2 in bipolar disorder

  2. Effect of exogenous phytase on feed inositol phosphate hydrolysis in an in vitro rumen fluid buffer system

    DEFF Research Database (Denmark)

    Brask-Pedersen, Dorte Niss; Glitsø, Lene Vibe; Skov, L.K.;

    2011-01-01

    for inositol phosphates via high performance ion chromatography. Addition of phytase (Phy1) resulted in enhanced degradation of myo-inositol hexakisphosphate (InsP6) in rapeseed cake, whereas addition of exogenous phytase did not improve the degradation of InsP6 in wheat. Only rapeseed cake was therefore used...

  3. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression

    International Nuclear Information System (INIS)

    The human placental alkaline phosphatase gene has been cloned and reintroduced into mammalian cells. When a plasmid carrying the gene under control of the simian virus 40 early promoter (pSV2Apap) is transfected into a variety of different cell types, placental alkaline phosphatase activity can readily be detected by using whole cell suspensions or cell lysates. Alkaline phosphatase activity can also be visualized directly in individual transfected cells by histochemical staining. The gene is appropriate for use as a reporter in studies of gene regulation since its expression is dependent on the presence of exogenous transcription control elements. The overall assay to detect the expression of the gene is quantitative, very rapid, and inexpensive. Cotransfections of cells with pSV2Apap and a related plasmid carrying the bacterial chloramphenicol acetyltransferase gene (pSV2Acat) indicate that transcription of these two genes is detected with roughly the same sensitivity

  4. Cyclic nucleotide- and inositol phosphate-gated ion channels in lobster olfactory receptor neurons.

    OpenAIRE

    Hatt, H; Ache, B.W.

    1994-01-01

    The idea of having two second messenger pathways in olfaction, one mediated by cAMP and the other by inositol 1,4,5-trisphosphate, is supported by evidence that both second messengers directly activate distinct ion channels in the outer dendrite of lobster olfactory receptor neurons. Evidence that both types of second messenger-gated channels can occur in the same patch of membrane suggests that channels of both types can be expressed in one neuron. Evidence of more than one type of inositol ...

  5. Putative Key Role of Inositol Messengers in Endothelial Cells in Preeclampsia

    Science.gov (United States)

    Kunjara, Sirilaksana; McLean, Patricia; Rademacher, Laurens; Rademacher, Thomas W.; Fascilla, Fabiana; Bettocchi, Stefano

    2016-01-01

    Immunological alterations, endothelial dysfunction, and insulin resistance characterize preeclampsia. Endothelial cells hold the key role in the pathogenesis of this disease. The signaling pathways mediating these biological abnormalities converge on PKB/Akt, an intracellular kinase regulating cell survival, proliferation, and metabolism. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. Intracellular action of these molecules is deeply affected by zinc, manganese, and calcium. To evaluate the pathophysiological significance, we present the response of the intracellular pathways of inositol phosphoglycans involved in cellular metabolism and propose a link with the disease. PMID:27738431

  6. Expanding the spectrum of phenotypes associated with germline PIGA mutations : a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities

    NARCIS (Netherlands)

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators a

  7. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  8. Acid phosphatase production by recombinant Arxula adeninivorans.

    Science.gov (United States)

    Minocha, Neha; Kaur, Parvinder; Satyanarayana, T; Kunze, G

    2007-08-01

    Acid phosphatase production by recombinant Arxula adeninivorans was carried out in submerged fermentation. Using the Plackett-Burman design, three fermentation variables (pH, sucrose concentration, and peptone concentration) were identified to significantly affect acid phosphatase and biomass production, and these were optimized using response surface methodology of central composite design. The highest enzyme yields were attained in the medium with 3.9% sucrose and 1.6% peptone at pH 3.8. Because of optimization, 3.86- and 4.19-fold enhancement in enzyme production was achieved in shake flasks (17,054 U g(-1) DYB) and laboratory fermenter (18,465 U g(-1) DYB), respectively. PMID:17541580

  9. [ATPase and phosphatase activity of drone brood].

    Science.gov (United States)

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae. PMID:16350755

  10. Assessment and kinetics of soil phosphatase in Brazilian Savanna systems.

    Science.gov (United States)

    Ferreira, Adão S; Espíndola, Suéllen P; Campos, Maria Rita C

    2016-05-31

    The activity and kinetics of soil phosphatases are important indicators to evaluate soil quality in specific sites such as the Cerrado (Brazilian Savanna). This study aimed to determine the activity and kinetic parameters of soil phosphatase in Cerrado systems. Soil phosphatase activity was assessed in samples of native Cerrado (NC), no-tillage (NT), conventional tillage (CT) and pasture with Brachiaria brizantha (PBb) and evaluated with acetate buffer (AB), tris-HCl buffer (TB), modified universal buffer (MUB) and low MUB. The Michaelis-Menten equation and Eadie-Hofstee model were applied to obtain the kinetic parameters of soil phosphatase using different concentrations of p-nitrophenol phosphate (p-NPP). MUB showed the lowest soil phosphatase activity in all soils whereas AB in NC and NT presented the highest. Low MUB decreased interferences in the assessment of soil phosphatase activity when compared to MUB, suggesting that organic acids interfere on the soil phosphatase activity. In NC and NT, soil phosphatase activity performed with TB was similar to AB and low MUB. Km values from the Michaels-Menten equation were higher in NC than in NT, which indicate a lower affinity of phosphatase activity for the substrate in NC. Vmax values were also higher in NC than in NT. The Eadie-Hofstee model suggests that NC had more phosphatase isoforms than NT. The study showed that buffer type is of fundamental importance when assessing soil phosphatase activity in Cerrado soils. PMID:27254453

  11. Acid Phosphatase Development during Ripening of Avocado.

    Science.gov (United States)

    Sacher, J A

    1975-02-01

    The activity and subcellular distribution of acid phosphatase were assayed during ethylene-induced ripening of whole fruit or thick slices of avocado (Persea americana Mill. var. Fuerte and Hass). The activity increased up to 30-fold during ripening in both the supernatant fraction and the Triton X-100 extract of the precipitate of a 30,000g centrifugation of tissue homogenates from whole fruit or slices ripening in moist air. Enzyme activity in the residual precipitate after Triton extraction remained constant. The development of acid phosphatase in thick slices ripened in moist air was similar to that in intact fruit, except that enzyme development and ripening were accelerated about 24 hours in the slices. The increase in enzyme activity that occurs in slices ripening in moist air was inhibited when tissue sections were infiltrated with solutions, by aspiration for 2 minutes or by soaking for 2 hours, anytime 22 hours or more after addition of ethylene. This inhibition was independent of the presence or absence of cycloheximide or sucrose (0.3-0.5m). However, the large decline in enzyme activity in the presence of cycloheximide, as compared with the controls, indicated that synthesis of acid phosphatase was occurring at all stages of ripening.

  12. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    N. Mohd. Yusoff

    2011-12-01

    Full Text Available Phytate or myo-inositol hexakisphosphates (IP6 is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed good inhibition towards the MCF-7 cell line. The MCF-7 cells growth was inhibited in minimum concentration of myo-inositol phosphates (<1000 µg/ml. However, no inhibition observed on the MCF-7 cell line by the myo-inositol phosphates fractions partially purified from rice bran at concentration <1000 ?g/ml. The inhibition of MCF-7 was only observed at concentration more than 30 mg/ml with more than 40% cells were inhibited. This indicates that the partially purified rice bran myo-inositol phosphates degraded by ASUIA279 phytase on MCF-7 breast cancer cells exhibit positive results towards the inhibition of cancer cells growth at relatively high concentration..KEYWORDS: myo-inositol phosphates, phytase, MCF-7,  cancerABSTRAK: Fitat atau myo-inositol hexakisphosphate (IP6 dikenali umum teragih di dalam tumbuhan seperti dedak padi. Penghasilan perantaraan fosfat myo-inositol mendapat perhatian memandangkan ia berpotensi tinggi dalam kesihatan. Dalam kajian ini, kesitotoksikan sebahagian daripada fosfat myo-inositol separa tulen, IP1 komersil dan IP6 komersil dikaji terhadap produk yang berupa sel kekal (cell lines kanser payu dara MCF-7. Tumbesaran sel MCF-7 direncatkan dalam pekatan minima fosfat myo-inositol (<1000 μg/ml. Tetapi, tidak ada perencatan dilihat terhadap sel kekal MCF-7 oleh sebahagian fosfat myo-inositol separa tulen daripada dedak padi pada kepekatan <1000 mg/ml. Perencatan MCF-7 hanya dilihat pada kepekatan lebih daripada 30 mg/ml dengan lebih

  13. On the correlation between hydrogen bonding and melting points in the inositols

    Directory of Open Access Journals (Sweden)

    Sándor L. Bekö

    2014-01-01

    Full Text Available Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006. CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible.

  14. Production of glucaric acid from myo-inositol in engineered Pichia pastoris.

    Science.gov (United States)

    Liu, Ye; Gong, Xu; Wang, Cui; Du, Guocheng; Chen, Jian; Kang, Zhen

    2016-09-01

    A potential myo-inositol oxygenase (ppMIOX) was identified as a functional enzyme and a glucaric acid synthetic pathway was firstly constructed in Pichia pastoris. Coexpression of the native ppMIOX and the urinate dehydrogenase (Udh) from Pseudomonas putida KT2440 led to obvious accumulation of glucaric acid (90.46±0.04mg/L) from myo-inositol whereas no glucaric acid was detected from glucose. In comparison, coexpression of the heterologous mouse MIOX (mMIOX) and Udh resulted in higher titers of glucaric acid from glucose and myo-inositol, 107.19±11.91mg/L and 785.4±1.41mg/L, respectively. By applying a fusion expression strategy with flexible peptides, the mMIOX specific activity and the glucaric acid concentration were significantly increased. Using glucose and myo-inositol as carbon substrates, the production of glucaric acid was substantially enhanced to 6.61±0.30g/L in fed-batch cultures. To the best of our knowledge, this is the highest reported value to date. PMID:27444324

  15. INOSITOL PHOSPHATES FORMED IN RAT AORTA AFTER ALPHA-1-ADRENOCEPTOR STIMULATION ARE INHIBITED BY FORSKOLIN

    NARCIS (Netherlands)

    MANOLOPOULOS, VG; PIPILISYNETOS, E; DENHERTOG, A; NELEMANS, A

    1991-01-01

    Rat aortic smooth muscle rings without endothelial cells were subjected to alpha-1-adrenoceptor stimulation. We measured the contractile state of the smooth muscle cells and the formation of inositol phosphates (InsPs) on receptor stimulation. Using different extracellular calcium-containing solutio

  16. Desorption of myo-inositol hexakisphosphate and phosphate from goethite by different reagents

    NARCIS (Netherlands)

    Yan, Y.; Koopal, L.K.; Lui, F.; Huang, Q.; Feng, X.

    2015-01-01

    Inositol phosphates are abundant organic phosphates found widely in the environment. The sorption and desorption of organic phosphate (Po) are important processes in controlling the mobility, bioavailability and fate of phosphorus (P) in soil and sediment. The desorption characteristics of myo-inosi

  17. Nutritional and environmental factors in human spina bifida : an emphasis on myo-inositol

    NARCIS (Netherlands)

    Groenen, Pascal Martinus Wilhelmus

    2004-01-01

    This thesis describes the results of a nation wide case-control triad study carried out in collaboration with nine spina bifida centers and a patient organization (VSOP/BOSK) focused on the role of myo-inositol and zinc, environmental factors and related genes in the pathogenesis of spina bifida. Mo

  18. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux

    International Nuclear Information System (INIS)

    Astrocyte-enriched cultures prepared from the neonatal rat cortex were prelabelled with either (3H)myoinositol or 45Ca2+ and then exposed to various excitatory amino acids. This resulted in an increase in both the breakdown of membrane inositol phospholipids and Ca2+ flux with the following rank order of efficacy: quisqualate ≥ glutamate (Glu)>kainate>>N-methyl-D-aspartate. Experiments performed with the Ca2+ ionophore A23187 and in the absence of medium Ca2+ suggested that Glu-evoked 45Ca2+ efflux was primarily the result of an increase influx of extracellular Ca2+. However, Glu-stimulated inositol lipid metabolism was found to be only partially dependent on extracellular Ca2+. The quisqualate-preferring receptor antagonist γ-glutamylaminomethylsulphonic acid was found to be effective in reversing both Glu-evoked inositol lipid breakdown and Ca2+ flux. The results presented are suggestive of some form of interaction between Glu receptors coupled to inositol lipid turnover and Ca2+ channel opening in astrocytes. (author)

  20. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin

    Science.gov (United States)

    Rossetti, Paola; Corrado, Francesco; Rapisarda, Agnese Maria Chiara; Condorelli, Rosita Angela; Valenti, Gaetano; Sapia, Fabrizio; Buscema, Massimo

    2016-01-01

    Assisted reproductive technologies (ART) have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment. PMID:27651794

  1. Blast neurotrauma impairs working memory and disrupts prefrontal myo-inositol levels in rats.

    Science.gov (United States)

    Sajja, Venkata Siva Sai Sujith; Perrine, Shane A; Ghoddoussi, Farhad; Hall, Christina S; Galloway, Matthew P; VandeVord, Pamela J

    2014-03-01

    Working memory, which is dependent on higher-order executive function in the prefrontal cortex, is often disrupted in patients exposed to blast overpressure. In this study, we evaluated working memory and medial prefrontal neurochemical status in a rat model of blast neurotrauma. Adult male Sprague-Dawley rats were anesthetized with 3% isoflurane and exposed to calibrated blast overpressure (17 psi, 117 kPa) while sham animals received only anesthesia. Early neurochemical effects in the prefrontal cortex included a significant decrease in betaine (trimethylglycine) and an increase in GABA at 24 h, and significant increases in glycerophosphorylcholine, phosphorylethanolamine, as well as glutamate/creatine and lactate/creatine ratios at 48 h. Seven days after blast, only myo-inositol levels were altered showing a 15% increase. Compared to controls, short-term memory in the novel object recognition task was significantly impaired in animals exposed to blast overpressure. Working memory in control animals was negatively correlated with myo-inositol levels (r=-.759, p<0.05), an association that was absent in blast exposed animals. Increased myo-inositol may represent tardive glial scarring in the prefrontal cortex, a notion supported by GFAP changes in this region after blast overexposure as well as clinical reports of increased myo-inositol in disorders of memory. PMID:24534010

  2. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin.

    Science.gov (United States)

    Vitale, Salvatore Giovanni; Rossetti, Paola; Corrado, Francesco; Rapisarda, Agnese Maria Chiara; La Vignera, Sandro; Condorelli, Rosita Angela; Valenti, Gaetano; Sapia, Fabrizio; Laganà, Antonio Simone; Buscema, Massimo

    2016-01-01

    Assisted reproductive technologies (ART) have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment. PMID:27651794

  3. Inositol 1,4,5-trisphosphate 3-kinases: functions and regulations

    Institute of Scientific and Technical Information of China (English)

    Hui Jun XIA; Guang YANG

    2005-01-01

    Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cells by phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 are critical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biological processes, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonical second messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeast and plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.

  4. Energy-requiring translocation of the OmpA protein and alkaline phosphatase of Escherichia coli into inner membrane vesicles.

    OpenAIRE

    Rhoads, D B; Tai, P C; Davis, B D

    1984-01-01

    In developing a reliable in vitro system for translocating bacterial proteins, we found that the least dense subfraction of the membrane of Escherichia coli was superior to the total inner membrane, both for a secreted protein (alkaline phosphatase) and for an outer membrane protein (OmpA). Compounds that eliminated the proton motive force inhibited translocation, as already observed in cells; since protein synthesis continued, the energy for translocation appears to be derived from the energ...

  5. Intestinal alkaline phosphatase: a summary of its role in clinical disease.

    Science.gov (United States)

    Fawley, Jason; Gourlay, David M

    2016-05-01

    Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP's physiologic function, mechanisms of action and current research in specific surgical diseases.

  6. Endothelial cell growth factor and ionophore A23187 stimulation of production of inositol phosphates in porcine aorta endothelial cells.

    OpenAIRE

    Moscat, J; Moreno, F.; Herrero, C.; C. López; García-Barreno, P.

    1988-01-01

    The existence of a bovine brain-derived endothelial cell growth factor has recently been reported, but its mode of action is unknown. We show that the endothelial cell growth factor is a potent stimulant of inositol monophosphate release in porcine aorta endothelial cells. Although the activation of phospholipase C by this factor does not appear to be dependent on Ca2+, the Ca2+ ionophore A23187 stimulates release of inositol phosphates. It is suggested that the inositol 1,4,5-trisphosphate 3...

  7. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  8. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  9. Low serum alkaline phosphatase activity in Wilson's disease.

    Science.gov (United States)

    Shaver, W A; Bhatt, H; Combes, B

    1986-01-01

    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  10. Expression, purification and crystallization of an atypical class C acid phosphatase from Mycoplasma bovis

    International Nuclear Information System (INIS)

    Methods for the expression, purification and crystallization of the class C acid phosphatase from M. bovis are reported. This enzyme is atypical in that it is nearly 20 kDa larger than other known class C acid phosphatases. Class C acid phosphatases (CCAPs) are 25–30 kDa bacterial surface proteins that are thought to function as broad-specificity 5′,3′-nucleotidases. Analysis of the newly published complete genome sequence of Mycoplasma bovis PG45 revealed a putative CCAP with a molecular weight of 49.9 kDa. The expression, purification and crystallization of this new family member are described here. Standard purification procedures involving immobilized metal-ion affinity chromatography and ion-exchange chromatography yielded highly pure and crystallizable protein. Crystals were grown in sitting drops at room temperature in the presence of PEG 3350 and HEPES buffer pH 7.5 and diffracted to 2.3 Å resolution. Analysis of diffraction data suggested a primitive monoclinic space group, with unit-cell parameters a = 78, b = 101, c = 180 Å, β = 92°. The asymmetric unit is predicted to contain six molecules, which are likely to be arranged as three dimers

  11. Serum proteins, trace metals and phosphatases in psoriasis

    Directory of Open Access Journals (Sweden)

    Bhatnagar M

    1994-01-01

    Full Text Available Serum proteins, zinc, copper, acid phosphatase (AcPase and alkaline phosphatase (AlPase were studied in both active and remission phases of psoriasis. Data were compared with healthy controls, ?1, ? and ? globulins were high in active phase while ?1 and ? globulins were at par in remission phase. Serum copper was low but zinc and alkaline phosphatase were significantly high in both active and remission phases of the disease. Acid phosphatase level was at par in all the experimental groups. Study suggests a positive correlation of globulin, zinc and Alpase in active and remission phase of psoriasis.

  12. Phage & phosphatase: a novel phage-based probe for rapid, multi-platform detection of bacteria.

    Science.gov (United States)

    Alcaine, S D; Pacitto, D; Sela, D A; Nugen, S R

    2015-11-21

    Genetic engineering of bacteriophages allows for the development of rapid, highly specific, and easily manufactured probes for the detection of bacterial pathogens. A challenge for novel probes is the ease of their adoption in real world laboratories. We have engineered the bacteriophage T7, which targets Escherichia coli, to carry the alkaline phosphatase gene, phoA. This inclusion results in phoA overexpression following phage infection of E. coli. Alkaline phosphatase is commonly used in a wide range of diagnostics, and thus a signal produced by our phage-based probe could be detected using common laboratory equipment. Our work demonstrates the successful: (i) modification of T7 phage to carry phoA; (ii) overexpression of alkaline phosphatase in E. coli; and (iii) detection of this T7-induced alkaline phosphatase activity using commercially available colorimetric and chemilumiscent methods. Furthermore, we demonstrate the application of our phage-based probe to rapidly detect low levels of bacteria and discern the antibiotic resistance of E. coli isolates. Using our bioengineered phage-based probe we were able to detect 10(3) CFU per mL of E. coli in 6 hours using a chemiluminescent substrate and 10(4) CFU per mL within 7.5 hours using a colorimetric substrate. We also show the application of this phage-based probe for antibiotic resistance testing. We were able to determine whether an E. coli isolate was resistant to ampicillin within 4.5 hours using chemiluminescent substrate and within 6 hours using a colorimetric substrate. This phage-based scheme could be readily adopted in labs without significant capital investments and can be translated to other phage-bacteria pairs for further detection.

  13. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J. (Cornell); (UMC)

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  14. Cloning, expression, purification, crystallization and X-ray analysis of inositol monophosphatase from Mus musculus and Homo sapiens

    International Nuclear Information System (INIS)

    M. musculus and H. sapiens inositol monophosphatase 1 were cloned, expressed, purified and crystallized. Diffraction data were collected and analysed at resolutions of 2.4 and 1.7 Å, respectively, and the structures were compared in order to identify any structural differences. Inositol monophosphatase (IMPase) catalyses the hydrolysis of inositol monophosphate to inositol and is crucial in the phosphatidylinositol (PI) signalling pathway. Lithium, which is the drug of choice for bipolar disorder, inhibits IMPase at therapeutically relevant plasma concentrations. Both mouse IMPase 1 (MmIMPase 1) and human IMPase 1 (HsIMPase 1) were cloned into pRSET5a, expressed in Escherichia coli, purified and crystallized using the sitting-drop method. The structures were solved at resolutions of 2.4 and 1.7 Å, respectively. Comparison of MmIMPase 1 and HsIMPase 1 revealed a core r.m.s. deviation of 0.516 Å

  15. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  16. Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep and emotional processing in humans

    OpenAIRE

    Singh, N.; Sharpley, AL; Emir, UE; Masaki, C; Herzallah, MM; Gluck, MA; Sharp, T; Harmer, CJ; Vasudevan, SR; Cowen, PJ; Churchill, GC

    2015-01-01

    Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier penetrant IMPase inhibitor on human central nervous system (CNS) function. We now repo...

  17. Synthesis of 2-diphospho-myo-inositol 1,3,4,5,6-pentakisphosphate and a photocaged analogue.

    Science.gov (United States)

    Pavlovic, I; Thakor, D T; Jessen, H J

    2016-06-15

    Diphosphoinositol polyphosphates (inositol pyrophosphates, X-InsP7) are a family of second messengers with important roles in eukaryotic biology. Their chemical synthesis and modification remains a challenging task due to the high density of phosphate groups arranged around the myo-inositol core. Here, a novel approach is presented that facilitates the incorporation of the diphosphate in the 2-position (2-InsP7) and that enables the introduction of a photocage subunit. PMID:26923707

  18. Aberrant 3H in Ehrlich mouse ascites tumor cell nucleotides after in vivo labeling with myo-[2-3H]- and L -myo-[1-3H]inositol: implications for measuring inositol phosphate signaling

    DEFF Research Database (Denmark)

    Christensen, Søren C.; Jensen, Annelie Kolbjørn; Simonsen, L.O.

    2003-01-01

    After in vivo radiolabeling of Ehrlich cells for 24 h with conventional myo-[2-3H]inositol we previously demonstrated an aberrant 3H-labeling of ATP that interfered in the HPLC analysis of inositol trisphosphates. This aberrant 3H-labeling was accounted for by the extensive kidney catabolism of m......]Inositol appears nevertheless to be a preferable alternative to myo-[2-3H]inositol for tracing the intact myo-inositol molecule after in vivo labeling, with minimized interference from aberrant 3H-labeling of nucleotides....

  19. Effect of inositol and phytases on hematological indices and α-1 acid glycoprotein levels in laying hens fed phosphorus-deficient corn-soybean meal-based diets.

    Science.gov (United States)

    Zyła, K; Grabacka, M; Pierzchalska, M; Duliński, R; Starzyńska-Janiszewska, A

    2013-01-01

    The effects of feeding low nonphytate phosphorus (NPP) corn-soybean meal-based diets supplemented with myo-inositol at 0.1%, or with phytase B at 1,300 acid phosphatase units/kg, or with phytase B enriched in 6-phytase A at 300 phytase units/kg on the hematological indices and the α-1 acid glycoprotein (AGP) concentrations in the blood of Bovans Brown laying hens were investigated. The experimental design comprised also a negative control diet and an internal control diet that had the NPP content adjusted by the addition of 0.304 g of monocalcium phosphate per kg to reach the NPP level similar to that resulting from the combined action of both phytases. A total of sixty 50-wk-old hens were randomly assigned to the dietary treatments with 12 cage replicates of 1 hen, and fed the experimental diets until wk 62, when the blood samples were taken and analyzed for basic hematological indices and for AGP concentrations in sera. The hematological indices from all the experimental groups remained in a normal range; nevertheless, the statistically significant effects of diet on hemoglobin concentration (P = 0.003), erythrocyte counts (P = 0.035), the percentage of lymphocytes (P = 0.020), heterophils (P = 0.002), eosinophils (P = 0.023), and basophils (P = 0.001) in the leucocyte population, as well as on the heterophil to lymphocyte ratio (P = 0.003), were observed. The highest erythrocyte counts were characteristic for hens fed the diet supplemented with both phytase A and phytase B. The highest heterophil to lymphocyte ratios were found in blood of hens fed the diet supplemented with phytase B, whereas the highest basophil percentages and the highest AGP concentrations occurred in birds fed the negative control diet. A highly significant correlation was observed between AGP concentrations in sera and BW losses determined previously. The results indicate that the low-NPP corn soybean meal-based diets increased acute phase protein level in laying hens. Phytase B alone

  20. Bst1 is required for Candida albicans infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins

    Science.gov (United States)

    Liu, Wei; Zou, Zui; Huang, Xin; Shen, Hui; He, Li Juan; Chen, Si Min; Li, Li Ping; Yan, Lan; Zhang, Shi Qun; Zhang, Jun Dong; Xu, Zheng; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2016-01-01

    Glycosylphosphatidyl inositol anchored proteins (GPI-APs) on fungal cell wall are essential for invasive infections. While the function of inositol deacylation of GPI-APs in mammalian cells has been previously characterized the impact of inositol deacylation in fungi and implications to host infection remains largely unexplored. Herein we describe our identification of BST1, an inositol deacylase of GPI-Aps in Candida albicans, was critical for GPI-APs cell wall attachment and host infection. BST1-deficient C. albicans (bst1Δ/Δ) was associated with severely impaired cell wall anchorage of GPI-APs and subsequen unmasked β-(1,3)-glucan. Consistent with the aberrant cell wall structures, bst1Δ/Δ strain did not display an invasive ability and could be recognized more efficiently by host immune systems. Moreover, BST1 null mutants or those expressing Bst1 variants did not display inositol deacylation activity and exhibited severely attenuated virulence and reduced organic colonization in a murine systemic candidiasis model. Thus, Bst1 can facilitate cell wall anchorage of GPI-APs in C. albicans by inositol deacylation, and is critical for host invasion and immune escape. PMID:27708385

  1. Characterization of a ligand-gated cation channel based on an inositol receptor in the silkworm, Bombyx mori.

    Science.gov (United States)

    Kikuta, Shingo; Endo, Haruka; Tomita, Natsuo; Takada, Tomoyuki; Morita, Chiharu; Asaoka, Kiyoshi; Sato, Ryoichi

    2016-07-01

    Insect herbivores recognize non-volatile compounds in plants to direct their feeding behavior. Gustatory receptors (Gr) appear to be required for nutrient recognition by gustatory organs in the mouthparts of insects. Gr10 is expressed in Bombyx mori (BmGr10) mouthparts such as maxillary galea, maxillary palp, and labrum. BmGr10 is predicted to function in sugar recognition; however, the precise biochemical function remains obscure. Larvae of B. mori are monophagous feeders able to find and feed on mulberry leaves. Soluble mulberry leaf extract contains sucrose, glucose, fructose, and myo-inositol. In this study, we identified BmGr10 as an inositol receptor using electrophysiological analysis with the Xenopus oocyte expression system and Ca(2+) imaging techniques using mammalian cells. These results demonstrated that Xenopus oocytes or HEK293T cells expressing BmGr10 specifically respond to myo-inositol and epi-inositol but do not respond to any mono-, di-, or tri-saccharides or to some sugar alcohols. These inositols caused Ca(2+) and Na(+) influxes into the cytoplasm independently of a G protein-mediated signaling cascade, indicating that BmGr10 is a ligand-gated cation channel. Overall, BmGr10 plays an important role in the myo-inositol recognition required for B. mori larval feeding behavior. PMID:27132146

  2. Inositol and Phosphatidylinositol Mediated Glucose Derepression, Gene Expression and Invertase Secretion in Yeasts

    Institute of Scientific and Technical Information of China (English)

    Zhen-Ming CHI; Jun-Feng LI; Xiang-Hong WANG; Shu-Min YAO

    2004-01-01

    Glucose repression occurs in many yeast species and some filamentous fungi, and it represses the expression and secretion of many intracellular and extracellular proteins. In recent years, it has been found that many biochemical reactions in yeast cells are mediated by phosphatidylinositol (PI)-type signaling pathway. However, little is known about the relationships between PI-type signaling and glucose repression,gene expression and invertase secretion in yeasts. Many evidences in our previous studies showed that glucose repression, invertase secretion, gene expression and cell growth were mediated by inositol and PI in Saccharomyces and Schizosaccharomyces. The elucidation of the new regulatory mechanisms of protein secretion, gene expression and glucose repression would be an entirely new aspect of inositol and PI-type signaling regulation in yeasts.

  3. Structural mechanisms of plant glucan phosphatases in starch metabolism.

    Science.gov (United States)

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings. PMID:26934589

  4. Single-Molecule Tracking of Inositol Trisphosphate Receptors Reveals Different Motilities and Distributions

    OpenAIRE

    Smith, Ian F.; Swaminathan, Divya; Dickinson, George D.; Parker, Ian

    2014-01-01

    Puffs are local Ca2+ signals that arise by Ca2+ liberation from the endoplasmic reticulum through the concerted opening of tightly clustered inositol trisphosphate receptors/channels (IP3Rs). The locations of puff sites observed by Ca2+ imaging remain static over several minutes, whereas fluorescence recovery after photobleaching (FRAP) experiments employing overexpression of fluorescently tagged IP3Rs have shown that the majority of IP3Rs are freely motile. To address this discrepancy, we ap...

  5. A Combined Therapy with Myo-Inositol and D-Chiro-Inositol Improves Endocrine Parameters and Insulin Resistance in PCOS Young Overweight Women

    Directory of Open Access Journals (Sweden)

    Elena Benelli

    2016-01-01

    Full Text Available Introduction. We evaluated the effects of a therapy that combines myo-inositol (MI and D-chiro-inositol (DCI in young overweight women affected by polycystic ovary syndrome (PCOS, characterized by oligo- or anovulation and hyperandrogenism, correlated to insulin resistance. Methods. We enrolled 46 patients affected by PCOS and, randomly, we assigned them to two groups, A and B, treated, respectively, with the association of MI plus DCI, in a 40 : 1 ratio, or with placebo (folic acid for six months. Thus, we analyzed pretreatment and posttreatment FSH, LH, 17-beta-Estradiol, Sex Hormone Binding Globulin, androstenedione, free testosterone, dehydroepiandrosterone sulphate, HOMA index, and fasting glucose and insulin. Results. We recorded a statistically significant reduction of LH, free testosterone, fasting insulin, and HOMA index only in the group treated with the combined therapy of MI plus DCI; in the same patients, we observed a statistically significant increase of 17-beta-Estradiol levels. Conclusions. The combined therapy of MI plus DCI is effective in improving endocrine and metabolic parameters in young obese PCOS affected women.

  6. A Combined Therapy with Myo-Inositol and D-Chiro-Inositol Improves Endocrine Parameters and Insulin Resistance in PCOS Young Overweight Women

    Science.gov (United States)

    Benelli, Elena; Del Ghianda, Scilla

    2016-01-01

    Introduction. We evaluated the effects of a therapy that combines myo-inositol (MI) and D-chiro-inositol (DCI) in young overweight women affected by polycystic ovary syndrome (PCOS), characterized by oligo- or anovulation and hyperandrogenism, correlated to insulin resistance. Methods. We enrolled 46 patients affected by PCOS and, randomly, we assigned them to two groups, A and B, treated, respectively, with the association of MI plus DCI, in a 40 : 1 ratio, or with placebo (folic acid) for six months. Thus, we analyzed pretreatment and posttreatment FSH, LH, 17-beta-Estradiol, Sex Hormone Binding Globulin, androstenedione, free testosterone, dehydroepiandrosterone sulphate, HOMA index, and fasting glucose and insulin. Results. We recorded a statistically significant reduction of LH, free testosterone, fasting insulin, and HOMA index only in the group treated with the combined therapy of MI plus DCI; in the same patients, we observed a statistically significant increase of 17-beta-Estradiol levels. Conclusions. The combined therapy of MI plus DCI is effective in improving endocrine and metabolic parameters in young obese PCOS affected women. PMID:27493664

  7. Optimization of pressurized liquid extraction of inositols from pine nuts (Pinus pinea L.).

    Science.gov (United States)

    Ruiz-Aceituno, L; Rodríguez-Sánchez, S; Sanz, J; Sanz, M L; Ramos, L

    2014-06-15

    Pressurized liquid extraction (PLE) has been used for the first time to extract bioactive inositols from pine nuts. The influence of extraction time, temperature and cycles of extraction in the yield and composition of the extract was studied. A quadratic lineal model using multiple linear regression in the stepwise mode was used to evaluate possible trends in the process. Under optimised PLE conditions (50°C, 18 min, 3 cycles of 1.5 mL water each one) at 10 MPa, a noticeable reduction in extraction time and solvent volume, compared with solid-liquid extraction (SLE; room temperature, 2h, 2 cycles of 5 mL water each one) was achieved; 5.7 mg/g inositols were extracted by PLE, whereas yields of only 3.7 mg/g were obtained by SLE. Subsequent incubation of PLE extracts with Saccharomyces cerevisiae (37°C, 5h) allowed the removal of other co-extracted low molecular weight carbohydrates which may interfere in the bioactivity of inositols.

  8. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  9. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  10. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    International Nuclear Information System (INIS)

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine label from the purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase

  11. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  12. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research

    Directory of Open Access Journals (Sweden)

    Kirstin eHobiger

    2015-02-01

    Full Text Available The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs. Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs. In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs. Although PTPs have already been well characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.

  13. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    Science.gov (United States)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1993-01-01

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  14. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    Directory of Open Access Journals (Sweden)

    Sarma Uddipan

    2012-07-01

    Full Text Available Abstract Background The three layer mitogen activated protein kinase (MAPK signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can

  15. Myo-inositol-14C, phytic acid-14C and ferric phytate-14C metabolism through microbian action in an andosol soil

    International Nuclear Information System (INIS)

    The myo-inositol-14C, phytic acid-14C and ferric phytate-14C compounds were incubated in an andosol soil at 70% of the field capacity and at 36.5 deg C during twelve days. These compounds suffered a microbian oxidation at 14CO2 of 61.0, 1.9 and 0% respectively. The fixation of the phytic acid-14C was observed through the fast decrease in the metabolism, due to the formation of complexes with the Fe and Al (phytates). The myo-inositol-14C metabolism was reduced by a factor of nine at the second incubation day. The following mechanisms were observed in the myo-inositol metabolism: (i) adsorption of the inositol by the soil minerals, (ii) adsorption by humic acids, (iii) myo-inositol phosphorylation and (iv) epimerization of myo-inositol to chiro-inositol. It was found that the (i) and (ii) formation depends on the soil microbian activity. The (i), (ii) and (iii) interactions were considered as possible mechanisms for the inhibition of the myo-inositol microbian oxidation. The inhibition of the myo-inositol oxidation through adsorption or phosphorylation is considered as a chemical blockade for the hydroaxial group, avoiding this way a microbian oxidation stereospecific of this hydroxil group. (author)

  16. Sugar-metal ion interactions: the complicated coordination structures of cesium ion with D-ribose and myo-inositol.

    Science.gov (United States)

    Hu, Haijian; Xue, Junhui; Wen, Xiaodong; Li, Weihong; Zhang, Chao; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2013-11-18

    The novel cesium chloride-D-ribose complex (CsCl·C5H10O5; Cs-R) and cesium chloride-myo-inositol complex (CsCl·C6H12O6; Cs-I) have been synthesized and characterized using X-ray diffraction and FTIR, FIR, THz, and Raman spectroscopy. Cs(+) is eight-coordinated to three chloride ions, O1 and O2 from one D-ribose molecule, O1 from another D-ribose molecule, and O4 and O5 from the third D-ribose molecule in Cs-R. For one D-ribose molecule, the oxygen atom O1 in the ring is coordinated to two cesium ions as an oxygen bridge, O2 is cocoordinated with O1 to one of the two cesium ions, and O4 and O5 are coordinated to the third cesium ion, respectively. O3 does not coordinate to metal ions and only takes part in forming hydrogen bonds. One chloride ion is connected to three cesium ions. Thus, a complicated structure of Cs-D-ribose forms. For Cs-I, Cs(+) is 10-coordinated to three chloride ions, O1 and O2 from one myo-inositol molecule, O3 and O4 from another myo-inositol molecule, O5 and O6 from the third myo-inositol molecule, and O6 from the fourth myo-inositol molecule. One metal ion is connected to four ligands, and one myo-inositol is coordinated to four Cs(+) ions, which is also a complicated coordination structure. Crystal structure results, FTIR, FIR, THz, and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-D-ribose and cesium chloride-myo-inositol complexes.

  17. Variations in myo-inositol in fronto-limbic regions and clinical response to electroconvulsive therapy in major depression.

    Science.gov (United States)

    Njau, Stephanie; Joshi, Shantanu H; Leaver, Amber M; Vasavada, Megha; Van Fleet, Jessica; Espinoza, Randall; Narr, Katherine L

    2016-09-01

    Though electroconvulsive therapy (ECT) is an established treatment for severe depression, the neurobiological factors accounting for the clinical effects of ECT are largely unknown. Myo-inositol, a neurometabolite linked with glial activity, is reported as reduced in fronto-limbic regions in patients with depression. Whether changes in myo-inositol relate to the antidepressant effects of ECT is unknown. Using magnetic resonance spectroscopy ((1)H-MRS), we measured dorsomedial anterior cingulate cortex (dmACC) and left and right hippocampal myo-inositol in 50 ECT patients (mean age: 43.78, 14 SD) and 33 controls (mean age: 39.33, 12 SD) to determine cross sectional effects of diagnosis and longitudinal effects of ECT. Patients were scanned prior to treatment, after the second ECT and at completion of the ECT index series. Controls were scanned twice at intervals corresponding to patients' baseline and end of treatment scans. Myo-inositol increased over the course of ECT in the dmACC (p = 0.042). A significant hemisphere by clinical response effect was observed for the hippocampus (p = 0.003) where decreased myo-inositol related to symptom improvement in the left hippocampus. Cross-sectional differences between patients and controls at baseline were not detected. Changes in myo-inositol observed in the dmACC in association with ECT and in the hippocampus in association with ECT-related clinical response suggest the mechanisms of ECT could include gliogenesis or a reversal of gliosis that differentially affect dorsal and ventral limbic regions. Change in dmACC myo-inositol diverged from control values with ECT suggesting compensation, while hippocampal change suggested normalization. PMID:27285661

  18. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  19. Purification and properties of alkaline phosphatase of silkworm Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    TANG Yunming; CEN Liang; CHU Bo; LI Changchun; XU Min; LUO Ying; LU Cheng

    2006-01-01

    Alkaline phosphatase(AKP),from the succus entericus of silkworm,was purified using 10%-50% ammonium sulfate fractions,ion exchange chromatography Of DEAE-Sepharose,and size exclusion chromatography of Sephacryl S-200.The purification fold was 464 times and specified activity was 3936 U/mg.Optimum pH value of the phosphatase was 10.5,and was stable between pH 7.5 and 11.The optimum temperature of the phosphatase was 40℃ and it was unstable over 50℃.Km value of the phosphatase was 1.25 mmol/L.In a given condition,the phosphatase was selectively modified by PCMB,NBS,PMSE TNBS,SUAN,DTT,BrAc,and IAc,the results indicate that PMSF,SUA,BrAc,IAc,and TNBS could Obviously inhibit the activity of the phosphatase,and the degree of inhibition depended on the concentration of these reagents.There was little effect on the activity of phosphatase after treatment by PMSF,DTT,and NBT.We primarily conclude that mercapto and imidazole are essential for AKP from silkworm.Also,Lys residue and disulfide bands are necessary to protect the catalysis of the AKP.

  20. An Ancient Protein Phosphatase, SHLP1, Is Critical to Microneme Development in Plasmodium Ookinetes and Parasite Transmission

    Directory of Open Access Journals (Sweden)

    Eva-Maria Patzewitz

    2013-03-01

    Full Text Available Signaling pathways controlled by reversible protein phosphorylation (catalyzed by kinases and phosphatases in the malaria parasite Plasmodium are of great interest, for both increased understanding of parasite biology and identification of novel drug targets. Here, we report a functional analysis in Plasmodium of an ancient bacterial Shewanella-like protein phosphatase (SHLP1 found only in bacteria, fungi, protists, and plants. SHLP1 is abundant in asexual blood stages and expressed at all stages of the parasite life cycle. shlp1 deletion results in a reduction in ookinete (zygote development, microneme formation, and complete ablation of oocyst formation, thereby blocking parasite transmission. This defect is carried by the female gamete and can be rescued by direct injection of mutant ookinetes into the mosquito hemocoel, where oocysts develop. This study emphasizes the varied functions of SHLP1 in Plasmodium ookinete biology and suggests that it could be a novel drug target for blocking parasite transmission.

  1. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  2. Structure-Function Analysis of the 3' Phosphatase Component of T4 Polynucleotide Kinase/phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Zhu,H.; Smith, P.; Wang, L.; Shuman, S.

    2007-01-01

    T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer

  3. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.

  4. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    Science.gov (United States)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  5. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    International Nuclear Information System (INIS)

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 370C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as α-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other fraction enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected

  6. Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses.

    Science.gov (United States)

    Kim, Hyun-Soo; Fernandes, Gary; Lee, Chang-Woo

    2016-09-01

    Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.

  7. Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses.

    Science.gov (United States)

    Kim, Hyun-Soo; Fernandes, Gary; Lee, Chang-Woo

    2016-09-01

    Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events. PMID:27669825

  8. Research on Phosphatases of Belladona Leaves and Their Purification

    Directory of Open Access Journals (Sweden)

    M. Khorsand

    1957-01-01

    Full Text Available Through experimentation with several leaves it has been possible for us to point out the existance of two different acid phosphatases. We have studied in more detail the phosphatases of belldon a leaves (Atropa Belladona L. Solanacees. The great part of the phosphatase activity is water extractable. We have compared the activity of the soluble fraction with that not directly extractable by means of water. The insoluble fraction could not be solubilized in a satisfaetC'fY m.anner.The digestion by papaine produced a slight solubilizing effect; on the other hand salt solutions, neutral or alkaline, or water glycerol mixtures had no solubilizing effect on the enzyme, It has been possible to demonstrate the existence of two different phosphatases in the insoluble fraction: the first of the type II,

  9. Phosphatase of Regenerating Liver and Its Association with Tumors

    Institute of Scientific and Technical Information of China (English)

    Yuqiong Liu; Huixiang Li

    2007-01-01

    @@ INTRODUCTION Protein kinases and protein phosphatases play key roles in regulating functions of diverse proteins which control numerous essential events in eukaryotes, such as transcriptional regulation, apoptosis, cell cycle progression, protein degradation and protein trafficking[1-3].

  10. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    Science.gov (United States)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  11. General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Islet amyloid polypeptide (IAPP or amylin forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer's disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.

  12. Inositol-trisphosphate reduces alveolar apoptosis and pulmonary edema in neonatal lung injury.

    Science.gov (United States)

    Preuss, Stefanie; Stadelmann, Sabrina; Omam, Friede D; Scheiermann, Julia; Winoto-Morbach, Supandi; von Bismarck, Philipp; Knerlich-Lukoschus, Friederike; Lex, Dennis; Adam-Klages, Sabine; Wesch, Daniela; Held-Feindt, Janka; Uhlig, Stefan; Schütze, Stefan; Krause, Martin F

    2012-08-01

    D-myo-inositol-1,2,6-trisphosphate (IP3) is an isomer of the naturally occurring second messenger D-myo-inositol-1,4,5-trisphosphate, and exerts anti-inflammatory and antiedematous effects in the lung. Myo-inositol (Inos) is a component of IP3, and is thought to play an important role in the prevention of neonatal pulmonary diseases such as bronchopulmonary dysplasia and neonatal acute lung injury (nALI). Inflammatory lung diseases are characterized by augmented acid sphingomyelinase (aSMase) activity leading to ceramide production, a pathway that promotes increased vascular permeability, apoptosis, and surfactant alterations. A novel, clinically relevant triple-hit model of nALI was developed, consisting of repeated airway lavage, injurious ventilation, and lipopolysaccharide instillation into the airways, every 24 hours. Thirty-five piglets were randomized to one of four treatment protocols: control (no intervention), surfactant alone, surfactant + Inos, and surfactant + IP3. After 72 hours of mechanical ventilation, lungs were excised from the thorax for subsequent analyses. Clinically, oxygenation and ventilation improved, and extravascular lung water decreased significantly with the S + IP3 intervention. In pulmonary tissue, we observed decreased aSMase activity and ceramide concentrations, decreased caspase-8 concentrations, reduced alveolar epithelial apoptosis, the reduced expression of interleukin-6, transforming growth factor-β1, and amphiregulin (an epithelial growth factor), reduced migration of blood-borne cells and particularly of CD14(+)/18(+) cells (macrophages) into the airspaces, and lower surfactant surface tensions in S + IP3-treated but not in S + Inos-treated piglets. We conclude that the admixture of IP3 to surfactant, but not of Inos, improves gas exchange and edema in our nALI model by the suppression of the governing enzyme aSMase, and that this treatment deserves clinical evaluation. PMID:22403805

  13. Prefrontal inositol levels and implicit decision-making in healthy individuals and depressed patients.

    Science.gov (United States)

    Jollant, Fabrice; Richard-Devantoy, Stéphane; Ding, Yang; Turecki, Gustavo; Bechara, Antoine; Near, Jamie

    2016-08-01

    Risky decision-making is found in several mental disorders and is associated with deleterious consequences. Current research aims at understanding the biological underpinnings of this complex cognitive function and the basis of individual variability. We used 3T proton Magnetic Resonance Spectroscopy to measure in vivo glutamate, GABA, N-acetyl-aspartate (NAA), and myo-inositol levels at rest in the right dorsal prefrontal cortex of 54 participants, comprising 24 unmedicated depressed patients and 30 healthy individuals. Participants were also tested with the Iowa Gambling Task (IGT), a classical measure of value-based decision-making. No group differences were found in terms of compound levels or decision-making performance. However, high inositol levels were associated with lower decision-making scores independently from group, notably during the initial stage of the task when explicit rules are still unknown and decisions are largely based on implicit processes (whole sample: F=4.0; p=0.02), with a large effect size (Cohen׳s d=0.8, 95% [0.2-1.5]). This effect was stronger when explicit knowledge was taken into account, with explicit knowledge showing an independent effect on performance. There was no association with other compounds. This study suggests, for the first time, a role for the inositol pathway on the implicit learning component of decision-making, without any direct effect on the explicit component. Hypothesized mechanisms implicate intracellular calcium modulation and subsequent synaptic plasticity. These findings represent a first step in the understanding of the biochemical mechanisms underlying decision-making and the identification of therapeutic targets. They also emphasize a dimensional approach in the study of the neurobiological determinants of mental disorders. PMID:27342631

  14. Candida albicans OPI1 regulates filamentous growth and virulence in vaginal infections, but not inositol biosynthesis.

    Directory of Open Access Journals (Sweden)

    Ying-Lien Chen

    Full Text Available ScOpi1p is a well-characterized transcriptional repressor and master regulator of inositol and phospholipid biosynthetic genes in the baker's yeast Saccharomyces cerevisiae. An ortholog has been shown to perform a similar function in the pathogenic fungus Candida glabrata, but with the distinction that CgOpi1p is essential for growth in this organism. However, in the more distantly related yeast Yarrowia lipolytica, the OPI1 homolog was not found to regulate inositol biosynthesis, but alkane oxidation. In Candida albicans, the most common cause of human candidiasis, its Opi1p homolog, CaOpi1p, has been shown to complement a S. cerevisiae opi1∆ mutant for inositol biosynthesis regulation when heterologously expressed, suggesting it might serve a similar role in this pathogen. This was tested in the pathogen directly in this report by disrupting the OPI1 homolog and examining its phenotypes. It was discovered that the OPI1 homolog does not regulate INO1 expression in C. albicans, but it does control SAP2 expression in response to bovine serum albumin containing media. Meanwhile, we found that CaOpi1 represses filamentous growth at lower temperatures (30 °C on agar, but not in liquid media. Although, the mutant does not affect virulence in a mouse model of systemic infection, it does affect virulence in a rat model of vaginitis. This may be because Opi1p regulates expression of the SAP2 protease, which is required for rat vaginal infections.

  15. Prefrontal inositol levels and implicit decision-making in healthy individuals and depressed patients.

    Science.gov (United States)

    Jollant, Fabrice; Richard-Devantoy, Stéphane; Ding, Yang; Turecki, Gustavo; Bechara, Antoine; Near, Jamie

    2016-08-01

    Risky decision-making is found in several mental disorders and is associated with deleterious consequences. Current research aims at understanding the biological underpinnings of this complex cognitive function and the basis of individual variability. We used 3T proton Magnetic Resonance Spectroscopy to measure in vivo glutamate, GABA, N-acetyl-aspartate (NAA), and myo-inositol levels at rest in the right dorsal prefrontal cortex of 54 participants, comprising 24 unmedicated depressed patients and 30 healthy individuals. Participants were also tested with the Iowa Gambling Task (IGT), a classical measure of value-based decision-making. No group differences were found in terms of compound levels or decision-making performance. However, high inositol levels were associated with lower decision-making scores independently from group, notably during the initial stage of the task when explicit rules are still unknown and decisions are largely based on implicit processes (whole sample: F=4.0; p=0.02), with a large effect size (Cohen׳s d=0.8, 95% [0.2-1.5]). This effect was stronger when explicit knowledge was taken into account, with explicit knowledge showing an independent effect on performance. There was no association with other compounds. This study suggests, for the first time, a role for the inositol pathway on the implicit learning component of decision-making, without any direct effect on the explicit component. Hypothesized mechanisms implicate intracellular calcium modulation and subsequent synaptic plasticity. These findings represent a first step in the understanding of the biochemical mechanisms underlying decision-making and the identification of therapeutic targets. They also emphasize a dimensional approach in the study of the neurobiological determinants of mental disorders.

  16. Fungal Inositol Pyrophosphate IP7 Is Crucial for Metabolic Adaptation to the Host Environment and Pathogenicity

    Science.gov (United States)

    Lev, Sophie; Li, Cecilia; Desmarini, Desmarini; Saiardi, Adolfo; Fewings, Nicole L.; Schibeci, Stephen D.; Sharma, Raghwa; Sorrell, Tania C.

    2015-01-01

    ABSTRACT Inositol pyrophosphates (PP-IPs) comprising inositol, phosphate, and pyrophosphate (PP) are essential for multiple functions in eukaryotes. Their role in fungal pathogens has never been addressed. Cryptococcus neoformans is a model pathogenic fungus causing life-threatening meningoencephalitis. We investigate the cryptococcal kinases responsible for the production of PP-IPs (IP7/IP8) and the hierarchy of PP-IP importance in pathogenicity. Using gene deletion and inositol polyphosphate profiling, we identified Kcs1 as the major IP6 kinase (producing IP7) and Asp1 as an IP7 kinase (producing IP8). We show that Kcs1-derived IP7 is the most crucial PP-IP for cryptococcal drug susceptibility and the production of virulence determinants. In particular, Kcs1 kinase activity is essential for cryptococcal infection of mouse lungs, as reduced fungal burdens were observed in the absence of Kcs1 or when Kcs1 was catalytically inactive. Transcriptome and carbon source utilization analysis suggested that compromised growth of the KCS1 deletion strain (Δkcs1 mutant) in the low-glucose environment of the host lung is due to its inability to utilize alternative carbon sources. Despite this metabolic defect, the Δkcs1 mutant established persistent, low-level asymptomatic pulmonary infection but failed to elicit a strong immune response in vivo and in vitro and was not readily phagocytosed by primary or immortalized monocytes. Reduced recognition of the Δkcs1 cells by monocytes correlated with reduced exposure of mannoproteins on the Δkcs1 mutant cell surface. We conclude that IP7 is essential for fungal metabolic adaptation to the host environment, immune recognition, and pathogenicity. PMID:26037119

  17. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Griendling, K.K.; Rittenhouse, S.E.; Brock, T.A.; Ekstein, L.S.; Gimbrone, M.A. Jr.; Alexander, R.W.

    1986-05-05

    Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes.

  18. Placental-type alkaline phosphatase in cervical neoplasia.

    OpenAIRE

    McLaughlin, P. J.; Warne, P H; Hutchinson, G. E.; Johnson, P. M.; Tucker, D. F.

    1987-01-01

    Monoclonal antibodies reactive with placental-type alkaline phosphatase have formed the basis of methods for detection of this oncodevelopmental antigen in patients with pre-invasive and invasive cervical neoplasia, with or without evidence of papilloma virus infection. Disease-related elevations of placental-type alkaline phosphatase were not observed in patients' sera. Solubilised cervical smears or biopsy material, and cervical mucus swabs, often contained substantial amounts of this isoen...

  19. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  20. Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain

    DEFF Research Database (Denmark)

    Verma, A; Hirsch, D J; Hanley, M R;

    1990-01-01

    ATP dependent Ca2+ accumulation into oxalate-loaded rat brain microsomes is potently inhibited by thapsigargin with an IC50 of 2 nM and maximal inhibition at 10 nM. Approximately 15% of the total A23187-releasable microsomal calcium store is insensitive to thapsigargin concentrations up to 100...... microM. Inositol-1,4,5-trisphosphate (IP3) maximally inhibits 40% of the net Ca2+ accumulation by whole brain microsomes. Its effects are non-additive with thapsigargin suggesting that the IP3-sensitive Ca2+ pool is a subset of the thapsigargin sensitive Ca2+ pool. Marked regional differences occur...

  1. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  2. Dynamic evolution of the LPS-detoxifying enzyme intestinal alkaline phosphatase in zebrafish and other vertebrates

    Directory of Open Access Journals (Sweden)

    Ye eYang

    2012-10-01

    Full Text Available Alkaline phosphatases (Alps are well-studied enzymes that remove phosphates from a variety of substrates. Alps function in diverse biological processes, including modulating host-bacterial interactions by dephosphorylating the Gram-negative bacterial cell wall component lipopolysaccharide (LPS. In animals, Alps are encoded by multiple genes characterized by either ubiquitous expression (named Alpls, for their liver expression, or their tissue-specific expression, for example in the intestine (Alpi. We previously characterized a zebrafish alpi gene (renamed here alpi.1 that is regulated by Myd88-dependent innate immune signaling and that is required to prevent a host’s excessive inflammatory reactions to its resident microbiota. Here we report the characterization of two new alp genes in zebrafish, alpi.2 and alp3. To understand their origins, we investigated the phylogenetic history of Alp genes in animals. We find that vertebrate Alp genes are organized in three clades with one of these clades missing from the mammals. We present evidence that these three clades originated during the two vertebrate genome duplications. We show that in zebrafish alpl is ubiquitously expressed, as it is in mammals, whereas the other three alps are specific to the intestine. Our phylogenetic analysis reveals that in contrast to Alpl, which has been stably maintained as a single gene throughout the vertebrates, the Alpis have been lost and duplicated multiple times independently in vertebrate lineages, likely reflecting the rapid and dynamic evolution of vertebrate gut morphologies, driven by changes in bacterial associations and diet.

  3. Synthesis of Differentially Protected myo- and chiro-Inositols from D-Xylose; Stereoselectivity in Intramolecular SmI(2)-Promoted Pinacol Reactions.

    Science.gov (United States)

    Luchetti, Giovanni; Ding, Kejia; Kornienko, Alexander; d'Alarcao, Marc

    2008-10-01

    Methods for the enantioselective conversion of D-xylose to differentially protected myo-inositol and L-chiro-inositol have been developed. The key transformation is a highly diastereoselective intramolecular SmI(2)-promoted pinacol coupling. The stereoselectivity was extremely dependent on the conditions, suggesting a change in mechanism. Preliminary mechanistic experiments and possible explanations for this behavior are discussed.

  4. P2 PURINOCEPTOR-MEDIATED INOSITOL PHOSPHATE FORMATION IN RELATION TO CYTOPLASMIC CALCIUM IN DDT1 MF-2 SMOOTH-MUSCLE CELLS

    NARCIS (Netherlands)

    HOITING, B; MOLLEMAN, A; DUIN, M; DENHERTOG, A; NELEMANS, A

    1990-01-01

    The effect of P2 purinoceptor stimulation on inositol phosphate (InsP) formation in relation to the intracellular Ca2+ concentration was measured in vas deferens DDT1 MF-2 smooth muscle cells. The different [H-3]myo-inositol-labelled InsP fractions were analyzed by high performance liquid chromatogr

  5. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its...

  6. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer

    NARCIS (Netherlands)

    E. Hoekstra (Elmer); L.L. Kodach (Liudmila L.); A. Mooppilmadham Das (Asha); R.R. Ruela-de-Sousa (Roberta); C.V. Ferreira (Carmen); J.C. Hardwick (James); C.J. van der Woude (Janneke); M.P. Peppelenbosch (Maikel); T.L.M. ten Hagen (Timo); G.M. Fuhler (Gwenny)

    2015-01-01

    textabstractPhosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influ

  7. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme.

    Science.gov (United States)

    Caselli, Anna; Paoli, Paolo; Santi, Alice; Mugnaioni, Camilla; Toti, Alessandra; Camici, Guido; Cirri, Paolo

    2016-10-01

    Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors. PMID:27421795

  8. Potentiometric and ³¹P NMR studies on inositol phosphates and their interaction with iron(III) ions.

    Science.gov (United States)

    Sala, Martin; Makuc, Damjan; Kolar, Jana; Plavec, Janez; Pihlar, Boris

    2011-03-01

    Potentiometric, conductometric and ³¹P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP(6) ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P-O-Fe-O-P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)-InsP(6) aggregates. (31)P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T(1) relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP(6) molecule results in an unstable heterogeneous system.

  9. Ligand Binding Reduces Conformational Flexibility in the Active Site of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from Pseudomonas aeruginosa

    OpenAIRE

    Koveal, Dorothy; Clarkson, Michael W.; Wood, Thomas K.; Page, Rebecca; Peti, Wolfgang

    2013-01-01

    TpbA is a periplasmic dual specificity phosphatase (DUSP) that controls biofilm formation in the pathogenic bacterium, Pseudomonas aeruginosa. While DUSPs are known to regulate important cellular functions in both prokaryotes and eukaryotes, very few structures of bacterial DUSPs are available. Here, we present the solution structure of TpbA in the ligand-free open conformation, along with an analysis of the structural and dynamic changes that accompany ligand/phosphate binding. While TpbA ad...

  10. Effects of the hexahydroxyhexane myoinositol on bone uptake of radiocalcium in rats: Effect of inositol and vitamin D2 on bone uptake of 45Ca in rats

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the effects of inositol and vitamin D2 on bone uptake of 45Ca in rats. The radioactive calcium was administered to young rats by orogastric intubation (2 μci/100 g body weight (b.wt.)) with inositol (20 mg/100 g b.wt) and/or vitamin D2 (500 IU/100g b.wt) to normal rats. Bone uptake of 45Ca was measured after 24 hours by standard technique. Inositol alone produced a 48% increase in calcium uptake. It is concluded that inositol significantly increases bone uptake to radioactive calcium (P>0.005). Simultaneous administration of vitamin D2 decreases the effect of inositol considerably, while vitamin D2 has no significant effect. (author)

  11. Protein phosphatase 1α is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis

    Science.gov (United States)

    Ayllón, Verónica; Martínez-A, Carlos; García, Alphonse; Cayla, Xavier; Rebollo, Angelita

    2000-01-01

    Growth factor deprivation is a physiological mechanism to regulate cell death. We utilize an interleukin-2 (IL-2)-dependent murine T-cell line to identify proteins that interact with Bad upon IL-2 stimulation or deprivation. Using the yeast two-hybrid system, glutathione S-transferase (GST) fusion proteins and co-immunoprecipitation techniques, we found that Bad interacts with protein phosphatase 1α (PP1α). Serine phosphorylation of Bad is induced by IL-2 and its dephosphorylation correlates with appearance of apoptosis. IL-2 deprivation induces Bad dephosphorylation, suggesting the involvement of a serine phosphatase. A serine/threonine phosphatase activity, sensitive to the phosphatase inhibitor okadaic acid, was detected in Bad immunoprecipitates from IL-2-stimulated cells, increasing after IL-2 deprivation. This enzymatic activity also dephosphorylates in vivo 32P-labeled Bad. Treatment of cells with okadaic acid blocks Bad dephosphorylation and prevents cell death. Finally, Ras activation controls the catalytic activity of PP1α. These results strongly suggest that Bad is an in vitro and in vivo substrate for PP1α phosphatase and that IL-2 deprivation-induced apoptosis may operate by regulating Bad phosphorylation through PP1α phosphatase, whose enzymatic activity is regulated by Ras. PMID:10811615

  12. Bacterial Hydrodynamics

    Science.gov (United States)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  13. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  14. Antibacterial polyetheretherketone implants immobilized with silver ions based on chelate-bonding ability of inositol phosphate: processing, material characterization, cytotoxicity, and antibacterial properties.

    Science.gov (United States)

    Kakinuma, H; Ishii, K; Ishihama, H; Honda, M; Toyama, Y; Matsumoto, M; Aizawa, M

    2015-01-01

    We developed a novel antibacterial implant by forming a hydroxyapatite (HAp) film on polyetheretherketone (PEEK) substrate, and then immobilizing silver ions (Ag(+) ) on the HAp film based on the chelate-bonding ability of inositol phosphate (IP6). First, the PEEK surface was modified by immersion into concentrated sulfuric acid for 10 min. HAp film was formed on the acid-treated PEEK via the soft-solution process using simulated body fluid (SBF), urea, and urease. After HAp coating, specimens were immersed into IP6 solution, and followed by immersion into silver nitrite solution at concentrations of 0, 0.5, 1, 5 or 10 mM. Ag(+) ions were immobilized on the resulting HAp film due to the chelate-bonding ability of IP6. On cell-culture tests under indirect conditions by Transwell, MC3T3-E1 cells on the specimens derived from the 0.5 and 1 mM Ag(+) solutions showed high relative growth when compared with controls. Furthermore, on evaluation of antibacterial activity in halo test, elution of Ag(+) ions from Ag(+) -immobilized HAp film inhibited bacterial growth. Therefore, the above-mentioned results demonstrated that specimens had both biocompatibility and strong antibacterial activity. The present coating therefore provides bone bonding ability to the implant surface and prevents the formation of biofilms in the early postoperative period.

  15. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    Science.gov (United States)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  16. Myo-Inositol in the Treatment of Teenagers Affected by PCOS

    Science.gov (United States)

    Barbakadze, Ludmila; Kvashilava, Nana

    2016-01-01

    Objective. To compare the effectiveness of myo-inositol (MI) and oral contraceptive pills (OCPs) in monotherapy and MI in combination with OCPs in the treatment of teenagers affected by polycystic ovary syndrome (PCOS). Methods. 61 adolescent girls aged 13–19 years, with PCOS, were involved in the prospective, open-label study. Patients were randomized into three groups: I group, 20 patients receiving drospirenone 3 mg/ethinyl estradiol 30 μg; II group, 20 patients receiving 4 g myo-inositol plus 400 mg folic acid; III group, 21 patients receiving both medications. Results. After receiving MI significant reduction in weight, BMI, glucose, C-peptide, insulin, HOMA-IR, FT, and LH was detected. The levels of SHBG, TT, FAI, DHEA-S, and AMH did not change statistically significantly. After receiving OCPs weight and BMI slightly increased, but metabolic parameters did not change. Combination of MI and OCPs did not change weight and BMI, but reduction in C-peptide, insulin, and HOMA-IR was detected. TT, FT, FAI, DHEA-S, LH, and AMH levels decreased and SHBG increased. Conclusions. Administration of MI is a safe and effective method to prevent and correct metabolic disorders in teenagers affected by PCOS. With combination of MI and OCPs antiandrogenic effects are enhanced, negative impact of OCPs on weight gain is balanced, and metabolic profile is improved. PMID:27635134

  17. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    Science.gov (United States)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  18. Chemogenetic Characterization of Inositol Phosphate Metabolic Pathway Reveals Druggable Enzymes for Targeting Kinetoplastid Parasites.

    Science.gov (United States)

    Cestari, Igor; Haas, Paige; Moretti, Nilmar Silvio; Schenkman, Sergio; Stuart, Ken

    2016-05-19

    Kinetoplastids cause Chagas disease, human African trypanosomiasis, and leishmaniases. Current treatments for these diseases are toxic and inefficient, and our limited knowledge of drug targets and inhibitors has dramatically hindered the development of new drugs. Here we used a chemogenetic approach to identify new kinetoplastid drug targets and inhibitors. We conditionally knocked down Trypanosoma brucei inositol phosphate (IP) pathway genes and showed that almost every pathway step is essential for parasite growth and infection. Using a genetic and chemical screen, we identified inhibitors that target IP pathway enzymes and are selective against T. brucei. Two series of these inhibitors acted on T. brucei inositol polyphosphate multikinase (IPMK) preventing Ins(1,4,5)P3 and Ins(1,3,4,5)P4 phosphorylation. We show that IPMK is functionally conserved among kinetoplastids and that its inhibition is also lethal for Trypanosoma cruzi. Hence, IP enzymes are viable drug targets in kinetoplastids, and IPMK inhibitors may aid the development of new drugs. PMID:27133314

  19. Determination of myo-inositol hexakisphosphate (phytate) in urine by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grases, F.; Perello, J.; Isern, B.; Prieto, R.M

    2004-05-10

    Myo-inositol hexakisphosphate (phytate) is a substance present in urine with an important role in preventing calcium renal calculi development. In spite of this, the use of urinary phytate levels on stone-formers' evaluation and treatment is still notably restricted as a consequence of the enormous difficulty to analyze this substance in urine. In this paper, a simple procedure for routinary urinary phytate determination based on phosphorus determination through inductively coupled plasma atomic emission spectrometry is described. The method only requires a previous separation of phytate from other components by column anion exchange chromatography. The working linear range used was 0-2 mg l{sup -1} phosphorus (0-7 mg l{sup -1} phytate). The limit of detection was 64 {mu}g l{sup -1} of phytate and the limit of quantification was 213 {mu}g l{sup -1}. The relative standard deviation (R.S.D.) for 1.35 mg l{sup -1} phytate was 2.4%. Different urine samples were analyzed using an alternative analytical methodology based on gas chromatography (GC)/mass detection used for inositol determination (phytate was previously hydrolyzed), resulting both methods comparable using as criterion to assess statistical significance P<0.05.

  20. Serum alkaline phosphatase screening for vitamin D deficiency states

    International Nuclear Information System (INIS)

    Objective: To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Study Design: Cross-sectional, observational study. Place and Duration of Study: Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Methodology: Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D/sub 3/ levels of greater or equal to 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D/sub 3/ = 20-29 ng/ml), moderate deficiency (vit. D/sub 3/ = 5 - 19 ng/ml) and severe deficiency forms (vit. D/sub 3/ < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D/sub 3/ levels. P-value < 0.05 was considered to be significant. Results: Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 +- 68.14I U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D/sub 3/ levels was r =0.05 (p =0.593). Conclusion: Serum vitamin D/sub 3/ levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency. (author)

  1. Wzy-dependent bacterial capsules as potential drug targets.

    Science.gov (United States)

    Ericsson, Daniel J; Standish, Alistair; Kobe, Bostjan; Morona, Renato

    2012-10-01

    The bacterial capsule is a recognized virulence factor in pathogenic bacteria. It likely works as an antiphagocytic barrier by minimizing complement deposition on the bacterial surface. With the continual rise of bacterial pathogens resistant to multiple antibiotics, there is an increasing need for novel drugs. In the Wzy-dependent pathway, the biosynthesis of capsular polysaccharide (CPS) is regulated by a phosphoregulatory system, whose main components consist of bacterial-tyrosine kinases (BY-kinases) and their cognate phosphatases. The ability to regulate capsule biosynthesis has been shown to be vital for pathogenicity, because different stages of infection require a shift in capsule thickness, making the phosphoregulatory proteins suitable as drug targets. Here, we review the role of regulatory proteins focusing on Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli and discuss their suitability as targets in structure-based drug design.

  2. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase

    International Nuclear Information System (INIS)

    A cDNA clone for human adult intestinal alkaline phosphatase (ALP) [orthophosphoric-monoester phosphohydrolase (alkaline optimum); EC 3.1.3.1] was isolated from a λgt11 expression library. The cDNA insert of this clone is 2513 base pairs in length and contains an open reading frame that encodes a 528-amino acid polypeptide. This deduced polypeptide contains the first 40 amino acids of human intestinal ALP, as determined by direct protein sequencing. Intestinal ALP shows 86.5% amino acid identity to placental (type 1) ALP and 56.6% amino acid identity to liver/bone/kidney ALP. In the 3'-untranslated regions, intestinal and placental ALP cDNAs are 73.5% identical (excluding gaps). The evolution of this multigene enzyme family is discussed

  3. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    Science.gov (United States)

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.

  4. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  5. Quantification of myo-inositol, 1,5-anhydro- D-sorbitol, and D-chiro-inositol using high-performance liquid chromatography with electrochemical detection in very small volume clinical samples.

    Science.gov (United States)

    Schimpf, Karen J; Meek, Claudia C; Leff, Richard D; Phelps, Dale L; Schmitz, Daniel J; Cordle, Christopher T

    2015-11-01

    Inositol is a six-carbon sugar alcohol and is one of nine biologically significant isomers of hexahydroxycyclohexane. Myo-inositol is the primary biologically active form and is present in higher concentrations in the fetus and newborn than in adults. It is currently being examined for the prevention of retinopathy of prematurity in newborn preterm infants. A robust method for quantifying myo-inositol (MI), D-chiro-inositol (DCI) and 1,5-anhydro- D-sorbitol (ADS) in very small-volume (25 μL) urine, blood serum and/or plasma samples was developed. Using a multiple-column, multiple mobile phase liquid chromatographic system with electrochemical detection, the method was validated with respect to (a) selectivity, (b) accuracy/recovery, (c) precision/reproducibility, (d) sensitivity, (e) stability and (f) ruggedness. The standard curve was linear and ranged from 0.5 to 30 mg/L for each of the three analytes. Above-mentioned performance measures were within acceptable limits described in the Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation. The method was validated using blood serum and plasma collected using four common anticoagulants, and also by quantifying the accuracy and sensitivity of MI measured in simulated urine samples recovered from preterm infant diaper systems. The method performs satisfactorily measuring the three most common inositol isomers on 25 μL clinical samples of serum, plasma, milk, and/or urine. Similar performance is seen testing larger volume samples of infant formulas and infant formula ingredients. MI, ADS and DCI may be accurately tested in urine samples collected from five different preterm infant diapers if the urine volume is greater than 2-5 mL.

  6. Quantification of myo-inositol, 1,5-anhydro- D-sorbitol, and D-chiro-inositol using high-performance liquid chromatography with electrochemical detection in very small volume clinical samples.

    Science.gov (United States)

    Schimpf, Karen J; Meek, Claudia C; Leff, Richard D; Phelps, Dale L; Schmitz, Daniel J; Cordle, Christopher T

    2015-11-01

    Inositol is a six-carbon sugar alcohol and is one of nine biologically significant isomers of hexahydroxycyclohexane. Myo-inositol is the primary biologically active form and is present in higher concentrations in the fetus and newborn than in adults. It is currently being examined for the prevention of retinopathy of prematurity in newborn preterm infants. A robust method for quantifying myo-inositol (MI), D-chiro-inositol (DCI) and 1,5-anhydro- D-sorbitol (ADS) in very small-volume (25 μL) urine, blood serum and/or plasma samples was developed. Using a multiple-column, multiple mobile phase liquid chromatographic system with electrochemical detection, the method was validated with respect to (a) selectivity, (b) accuracy/recovery, (c) precision/reproducibility, (d) sensitivity, (e) stability and (f) ruggedness. The standard curve was linear and ranged from 0.5 to 30 mg/L for each of the three analytes. Above-mentioned performance measures were within acceptable limits described in the Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation. The method was validated using blood serum and plasma collected using four common anticoagulants, and also by quantifying the accuracy and sensitivity of MI measured in simulated urine samples recovered from preterm infant diaper systems. The method performs satisfactorily measuring the three most common inositol isomers on 25 μL clinical samples of serum, plasma, milk, and/or urine. Similar performance is seen testing larger volume samples of infant formulas and infant formula ingredients. MI, ADS and DCI may be accurately tested in urine samples collected from five different preterm infant diapers if the urine volume is greater than 2-5 mL. PMID:26010453

  7. High-performance ion chromatography method for separation and quantification of inositol phosphates in diets and digesta

    DEFF Research Database (Denmark)

    Blaabjerg, Karoline; Hansen-Møller, Jens; Poulsen, Hanne Damgaard

    2010-01-01

    A gradient high-performance ion chromatographic method for separation and quantification of inositol phosphates (InsP2-InsP6) in feedstuffs, diets, gastric and ileal digesta from pigs was developed and validated. The InsP2-InsP6 were separated on a Dionex CarboPacTM PA1 column using a gradient wi...

  8. Pharmacokinetics and tissue distribution of inositol hexaphosphate in C.B17 SCID mice bearing human breast cancer xenografts.

    Science.gov (United States)

    Eiseman, Julie; Lan, Jing; Guo, Jianxia; Joseph, Erin; Vucenik, Ivana

    2011-10-01

    Inositol hexaphosphate (IP(6)) is effective in preclinical cancer prevention and chemotherapy. In addition to cancer, IP(6) has many other beneficial effects for human health, such as reduction in risk of developing cardiovascular disease and diabetes and inhibition of kidney stone formation. Studies presented here describe the pharmacokinetics, tissue distribution, and metabolism of IP(6) following intravenous (IV) or per os (PO) administration to mice. SCID mice bearing MDA-MB-231 xenografts were treated with 20 mg/kg IP(6) (3 μCi per mouse [(14)C]-uniformly ring-labeled IP(6)) and euthanized at various times after IP(6) treatment. Plasma and tissues were analyzed for [(14)C]-IP(6) and metabolites by high-performance liquid chromatography with radioactivity detection. Following IV administration of IP(6), plasma IP(6) concentrations peaked at 5 minutes and were detectable until 45 minutes. Liver IP(6) concentrations were more than 10-fold higher than plasma concentrations, whereas other normal tissue concentrations were similar to plasma. Only inositol was detected in xenografts. After PO administration, IP(6) was detected in liver; but only inositol was detectable in other tissues. After both IV and PO administration, exogenous IP(6) was rapidly dephosphorylated to inositol; however, alterations in endogenous IPs were not examined.

  9. Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release.

    NARCIS (Netherlands)

    Mekahli, D.; Sammels, E.; Luyten, T.; Welkenhuyzen, K.; Heuvel, L.P.W.J. van den; Levtchenko, E.N.; Gijsbers, R.; Bultynck, G.; Parys, J.B.; Smedt, H. de; Missiaen, L.

    2012-01-01

    Autosomal dominant polycystic kidney disease is caused by loss-of-function mutations in the PKD1 or PKD2 genes encoding respectively polycystin-1 and polycystin-2. Polycystin-2 stimulates the inositol trisphosphate (IP(3)) receptor (IP(3)R), a Ca(2+)-release channel in the endoplasmic reticulum (ER)

  10. Identification and Quantitation of Various Inositols and O-methylinositols Present in Plant Roots Using Gas Chromatograpghy/Mass Spectrometry

    Science.gov (United States)

    Many inositols and O-methylinositols serve important roles in medicine and plant biology. A simple method was developed for the identification of these compounds in plant roots by extracting with 80% ethanol, derivatizing with trimethylsilyl imidazole, and analyzing by gas chromatography/mass spect...

  11. Dephosphorylation Pathway of D-myo-Inositol 1,4,5-trisphosphate in the Unicellular Green Alga Chlamydomonas eugametos

    NARCIS (Netherlands)

    Klerk, Hans; Himbergen, John A.J. van; Musgrave, Alan; Haastert, Peter J.M. van; Ende, Herman van den

    1994-01-01

    In vitro dephosphorylation of D-myo-inositol 1,4,5-trisphosphate [Ins(l,4,5)P-3] by vegetative cells, gametes and zygotes of the green alga Chlamydomonas eugametos was studied using a soluble cell fraction as enzyme source and labelled Ins(1,4,5)P-3 as substrate. This compound was dephosphorylated y

  12. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  13. Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase 2 is required for seed coat development

    Institute of Scientific and Technical Information of China (English)

    Yong Tang; Shutang Tan; Hongwei Xue

    2013-01-01

    Inositol 1,3,4-trisphosphate 5/6 kinase (ITPK) phosphorylates inositol 1,3,4-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4,6-tetrakisphosphate which can be finally transferred to inositoi hexaphosphate (IP6) and play important roles during plant growth and development.There are 4 putative ITPK members in Arabidopsis.Expression pattern analysis showed that ITPK2 is constitutively expressed in various tissues.A TDNA knockout mutant of ITPK2 was identified and scanning electron microscopy (SEM) analysis showed that the epidermis structure of seed coat was irregularly formed in seeds of itpk2-1 mutant,resulting in the increased permeability of seed coat to tetrazolium salts.Further analysis by gas chromatography coupled with mass spectrometry of lipid polyester monomers in cell wall confirmed a dramatic decrease in composition of suberin and cutin,which relate to the permeability of seed coat and the formation of which is accompanied with seed coat development.These results indicate that ITPK2 plays an essential role in seed coat development and lipid polyester barrier formation.

  14. Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases

    Directory of Open Access Journals (Sweden)

    Kaushlendra Tripathi

    2015-01-01

    Full Text Available Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during the de novo process in the ER (endoplasmic reticulum from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases, alkaline SMases (alk-SMASES, and neutral SMases (nSMases. The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase.

  15. Inositol Metabolism in Plants. III. Conversion of Myo-inositol-2-H to Cell Wall Polysaccharides in Sycamore (Acer pseudoplatanus L.) Cell Culture.

    Science.gov (United States)

    Roberts, R M; Loewus, F

    1966-11-01

    Prolonged growth of cell cultures of sycamore (Acer pseudoplatanus L.) on agar medium containing myo-inositol-2-(3)H resulted in incorporation of label predominately into uronosyl and pentosyl units of cell wall polysaccharides. Procedures normally used to distinguish between pectic substance and hemicellulose yielded carbohydrate-rich fractions with solubility characteristics ranging from pectic substance to hemicellulose yet the uronic acid and pentose composition of these fractions was decidedly pectic. Galacturonic acid was the only uronic acid present in each fraction. Subfractionation of alkali-soluble (hemicellulosic) polysaccharide by neutralization followed by ethanol precipitation gave 3 fractions, a water-insoluble, an ethanol-insoluble, and an ethanol-soluble fraction, each progressively poorer in galacturonic acid units and progressively richer in arabinose units; all relatively poor in xylose units.Apparently, processes involved in biosynthesis of primary cell wall continued to produce pectic substance during cell enlargement while processes leading to biosynthesis of typically secondary cell wall polysaccharide such as 4-0-methyl glucuronoxylan were not activated.

  16. Prostatic acid phosphatase, purification and iodination using Iodogen

    International Nuclear Information System (INIS)

    Prostatic acid phosphatase was purified from prostatic adenomas. The procedure involved chromatography on Concanavalin A-Sepharose, DEAE-cellulose, Bio-Gel P-150 and L-tartrate-Sepharose. The purified phosphatase hydrolyzed p-nitrophenyl phosphate at a rate of 270 μmol.mg-1.min-1 (250C) and showed homogeneity upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The final prostatic acid phosphatase preparation was pure and the antisera were monospecific as judged by the highly-sensitive technique of crossed immunoelectrophoresis. Of the procedures evaluated for the radioiodination of the purified enzyme with iodine 125, oxidation with Iodogen was found to give the best radioiodinated product, to be used in radioimmunoassay. (Auth.)

  17. Association of erythrocyte acid phosphatase phenotypes with myopia

    Directory of Open Access Journals (Sweden)

    Himabindu P

    2005-01-01

    Full Text Available Acid phosphatase is a polymorphic nonspecific orthophosphate monoesterase which catalyses the cleaving of phosphoric acid and subsequent breakdown of several monophosphoric esters under acidic pH conditions. Acid phosphatase has a physiologic function as a flavin mononucleotide phosphatase (FMN and regulates the intracellular concentrations of flavin coenzymes that are electron carriers in the oxidative phosphorylation pathway. Myopia or nearsightedness is caused by both environmental and genetic factors. Myopic eyes when subjected to excessive oxidative stress results in retinal detachments .In the present study there is a significant elevation of AA phenotype in myopes when compared to controls. The AA phenotype is more susceptible to oxidative stress and its lower enzyme activity is known to be associated with increased intrauterine growth that further results in increased axial length in progressive myopia. The AA phenotype also confers risk for myopia development in males, early age group and cases with parental consanguinity.

  18. Ultrastructural localization of acid phosphatase in nonhuman primate vaginal epithelium.

    Science.gov (United States)

    King, B F

    1985-01-01

    The vagina of the rhesus monkey is lined by a stratified squamous epithelium. However, little is known regarding the cytochemical composition of its cell organelles and the substances found in the intercellular spaces. In this study we have examined the ultrastructural distribution of acid phosphatase in the vaginal epithelium. In basal and parabasal cells reaction product was found in some Golgi cisternae and vesicles and in a variety of cytoplasmic granules. Reaction product was also found in some, but not all, membrane-coating granules. In the upper layers of the epithelium, the membrane-coating granules extruded their contents and acid phosphatase was localized in the intercellular spaces. The possible roles of acid phosphatase in keratinization, desquamation, or modification of substances in the intercellular compartment are discussed.

  19. Dietary arginine silicate inositol complex increased bone healing: histologic and histomorphometric study

    Directory of Open Access Journals (Sweden)

    Yaman F

    2016-06-01

    Full Text Available Ferhan Yaman,1 Izzet Acikan,1 Serkan Dundar,2 Sercan Simsek,3 Mehmet Gul,4 İbrahim Hanifi Ozercan,3 James Komorowski,5 Kazim Sahin6 1Department of Oral-Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey; 2Department of Periodontology, Faculty of Dentistry, Firat University, Elazig, Turkey; 3Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey; 4Department of Periodontology, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey; 5Nutrition 21, LLC, Purchase, NY, USA; 6Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey Background: Arginine silicate inositol complex (ASI; arginine 49.5%, silicon 8.2%, and inositol 25% is a novel material that is a bioavailable source of silicon and arginine. ASI offers potential benefits for vascular and bone health. Objective: The aim of this study was to evaluate the potential effects of ASI complex on bone healing of critical-sized defects in rats. Methods: The rats were randomly assigned to two groups of 21 rats each. The control group was fed a standard diet for 12 weeks; after the first 8 weeks, a calvarial critical-sized defect was created, and the rats were sacrificed 7, 14, and 28 days later. The ASI group was fed a diet containing 1.81 g/kg of ASI for 12 weeks; after the first 8 weeks, a calvarial critical-sized defect was created, and the rats were sacrificed 7, 14, and 28 days later. The calvarial bones of all the rats were then harvested for evaluation. Results: Osteoblasts and osteoclasts were detected at higher levels in the ASI group compared with the control group at days 7, 14, and 28 of the calvarial defect (P<0.05. New bone formation was detected at higher levels in the ASI group compared with the controls at day 28 (P<0.05. However, new bone formation was not detected at days 7 and 14 in both the groups (P>0.05. Conclusion: ASI supplementation significantly improved bone tissue

  20. Effect of myo-inositol and alpha-lipoic acid on oocyte quality in polycystic ovary syndrome non-obese women undergoing in vitro fertilization: a pilot study.

    Science.gov (United States)

    Rago, R; Marcucci, I; Leto, G; Caponecchia, L; Salacone, P; Bonanni, P; Fiori, C; Sorrenti, G; Sebastianelli, A

    2015-01-01

    The aim of the present study was to evaluate the effectiveness of the combined administration of myo-inositol and α-lipoic acid in polycystic ovary syndrome (PCOS) patients with normal body mass index (BMI), who had previously undergone intracytoplasmic sperm injection (ICSI) and received myo-inositol alone. Thirty-six of 65 normal-weight patients affected by PCOS who did not achieve pregnancy and one patient who had a spontaneous abortion were re-enrolled and given a cycle of treatment with myo-inositol and α-lipoic acid. For all female partners of the treated couples, the endocrine-metabolic and ultrasound parameters, ovarian volume, oocyte and embryo quality, and pregnancy rates were assessed before and after three months of treatment and compared with those of previous in vitro fertilization (IVF) cycle(s). After supplementation of myo-inositol with α-lipoic acid, insulin levels, BMI and ovarian volume were significantly reduced compared with myo-inositol alone. No differences were found in the fertilization and cleavage rate or in the mean number of transferred embryos between the two different treatments, whereas the number of grade 1 embryos was significantly increased, with a significant reduction in the number of grade 2 embryos treated with myo-inositol plus α-lipoic acid. Clinical pregnancy was not significantly different with a trend for a higher percentage for of myo-inositol and α-lipoic acid compared to the myo-inositol alone group. Our preliminary data suggest that the supplementation of myo-inositol and α-lipoic acid in PCOS patients undergoing an IVF cycle can help to improve their reproductive outcome and also their metabolic profiles, opening potential for their use in long-term prevention of PCOS. PMID:26753656

  1. Effect of myo-inositol and alpha-lipoic acid on oocyte quality in polycystic ovary syndrome non-obese women undergoing in vitro fertilization: a pilot study.

    Science.gov (United States)

    Rago, R; Marcucci, I; Leto, G; Caponecchia, L; Salacone, P; Bonanni, P; Fiori, C; Sorrenti, G; Sebastianelli, A

    2015-01-01

    The aim of the present study was to evaluate the effectiveness of the combined administration of myo-inositol and α-lipoic acid in polycystic ovary syndrome (PCOS) patients with normal body mass index (BMI), who had previously undergone intracytoplasmic sperm injection (ICSI) and received myo-inositol alone. Thirty-six of 65 normal-weight patients affected by PCOS who did not achieve pregnancy and one patient who had a spontaneous abortion were re-enrolled and given a cycle of treatment with myo-inositol and α-lipoic acid. For all female partners of the treated couples, the endocrine-metabolic and ultrasound parameters, ovarian volume, oocyte and embryo quality, and pregnancy rates were assessed before and after three months of treatment and compared with those of previous in vitro fertilization (IVF) cycle(s). After supplementation of myo-inositol with α-lipoic acid, insulin levels, BMI and ovarian volume were significantly reduced compared with myo-inositol alone. No differences were found in the fertilization and cleavage rate or in the mean number of transferred embryos between the two different treatments, whereas the number of grade 1 embryos was significantly increased, with a significant reduction in the number of grade 2 embryos treated with myo-inositol plus α-lipoic acid. Clinical pregnancy was not significantly different with a trend for a higher percentage for of myo-inositol and α-lipoic acid compared to the myo-inositol alone group. Our preliminary data suggest that the supplementation of myo-inositol and α-lipoic acid in PCOS patients undergoing an IVF cycle can help to improve their reproductive outcome and also their metabolic profiles, opening potential for their use in long-term prevention of PCOS.

  2. Biochemical characterization and spatio-temporal expression of myo-inositol oxygenase (MIOX from wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Anshu Alok

    2015-12-01

    Full Text Available Myo-inositol oxygenase (MIOX catalyzes the conversion of myo-inositol into d-glucuronic acid. The present study demonstrates isolation of MIOX cDNA (TaMIOX from wheat (Triticum aestivum L. with open reading frame of 912 bp encoding 303 amino acid polypeptides with a molecular mass of 35.2 kDa. Phylogenetic analysis of TaMIOX across kingdoms confirmed the close relationship with Triticum urartu and Aegilops tauschii. Secondary structure of TaMIOX consists of α-helixes (42.9%, β-turns (7.26% joined by extended strands (14.85%, and 37 random coils (34.94%. Three-dimensional structure of TaMIOX suggested its close functional and structural resemblance with known MIOX. Catalytic activity of the purified TaMIOX is 3.47 μkatal at pH 8.0 and 35 °C with Michaelis constant 5.6 mM. Differential expression pattern of TaMIOX was observed in leaves, root, stem, seed and seed developmental stages. Leaves showed a significantly higher transcript accumulation followed by root, stem and seed. Expression of TaMIOX during seed development stages showed higher expression at later stage and suggested that expression of TaMIOX was significantly higher in endosperm as compared with aleurone. The exogenous application of myo-inositol enhanced the expression of TaMIOX in leaves and roots suggested myo-inositol acts as an inducer for the TaMIOX expression. The present study reports molecular, structural and biochemical characterizations of MIOX in wheat which might play an important role in myo-inositol oxidation pathway.

  3. Direct Promotion of Collagen Calcification by Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alkaline phosphatase promotes hydrolysis of phosphate containing substrates, causes a rise in inorganic phosphate and, therefore, enhances calcification of biological tissues. In this work, the calcification of collagen in a model serum was used as a model of collagenous tissue biomaterials to study the possible calcification promotion mechanism of alkaline phosphatase. In the enzyme concentration range of 0.10.5mg/mL, the enzyme shows a direct calcification promoting effect which is independent of the hydrolysis of its phosphate containing substrates but proportional to the enzyme concentration. Potassium pyrophosphate somewhat inhibits the calcification promotion.

  4. Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction.

    Science.gov (United States)

    Xu, Risheng; Paul, Bindu D; Smith, Dani R; Tyagi, Richa; Rao, Feng; Khan, A Basit; Blech, Daniel J; Vandiver, M Scott; Harraz, Maged M; Guha, Prasun; Ahmed, Ishrat; Sen, Nilkantha; Gallagher, Michela; Snyder, Solomon H

    2013-10-01

    Profound induction of immediate early genes (IEGs) by neural activation is a critical determinant for plasticity in the brain, but intervening molecular signals are not well characterized. We demonstrate that inositol polyphosphate multikinase (IPMK) acts noncatalytically as a transcriptional coactivator to mediate induction of numerous IEGs. IEG induction by electroconvulsive stimulation is virtually abolished in the brains of IPMK-deleted mice, which also display deficits in spatial memory. Neural activity stimulates binding of IPMK to the histone acetyltransferase CBP and enhances its recruitment to IEG promoters. Interestingly, IPMK regulation of CBP recruitment and IEG induction does not require its catalytic activities. Dominant-negative constructs, which prevent IPMK-CBP binding, substantially decrease IEG induction. As IPMK is ubiquitously expressed, its epigenetic regulation of IEGs may influence diverse nonneural and neural biologic processes.

  5. Novel structural features of the immunocompetent ceramide phospho-inositol glycan core from Trichomonas vaginalis.

    Science.gov (United States)

    Heiss, Christian; Wang, Zhirui; Black, Ian; Azadi, Parastoo; Fichorova, Raina N; Singh, Bibhuti N

    2016-01-01

    The ceramide phosphoinositol glycan core (CPI-GC) of the lipophosphoglycan of Trichomonas vaginalis is a major virulent factor of this common genitourinary parasite. While its carbohydrate composition has been reported before, its structure has remained largely unknown. We isolated the glycan portions of CPI-GC by nitrous acid deamination and hydrofluoric acid treatment and investigated their structures by methylation analysis and 1- and 2-D NMR. We found that the α-anomer of galactose is a major constituent of CPI-GC. The β-anomer was found exclusively at the non-reducing end of CPI-GC side chains. Furthermore the data showed that the rhamnan backbone is more complex than previously thought and that the inositol residue at the reducing end is linked to a 4-linked α-glucuronic acid (GlcA) residue. This appears to be the most striking and novel feature of this GPI-anchor type molecule.

  6. Myo-Inositol trisphosphate mobilizes calcium from fusogenic carrot (Daucus carota L.) protoplasts

    International Nuclear Information System (INIS)

    To determine whether or not inositol trisphosphate (IP3) mobilizes calcium in higher plant cells; they investigated the effect of IP3 on Ca2+ fluxes in fusogenic carrot (Daucus carota L.) protoplasts. The protoplasts were incubated in 45Ca2+-containing medium and the 45Ca2+ associated with the protoplasts was monitored with time. Addition of IP3 (20 micromolar) caused a 17% net loss of the accumulated 45Ca2+ within 4 minutes. There was a reuptake of 45Ca2+ and the protoplasts recovered to their initial value by 10 minutes. Phytic acid (IP6), also stimulated 45Ca2+ efflux from the protoplasts. Both the IP3- and the IP6-induced 45Ca2+ efflux were inhibited by the calmodulin antagonist, trifluoperazine

  7. Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis.

    Science.gov (United States)

    Yule, David I; Betzenhauser, Matthew J; Joseph, Suresh K

    2010-06-01

    Great insight has been gained into the structure and function of the inositol 1,4,5 trisphosphate receptor (InsP(3)R) by studies employing mutagenesis of the cDNA encoding the receptor. Notably, early studies using this approach defined the key constituents required for InsP(3) binding in the N-terminus and the membrane spanning regions in the C-terminal domain responsible for channel formation, targeting and function. In this article we evaluate recent studies which have used a similar approach to investigate key residues underlying the in vivo modulation by select regulatory factors. In addition, we review studies defining the structural requirements in the channel domain which comprise the conduction pathway and are suggested to be involved in the gating of the channel.

  8. Effects of inositol hexaphosphate on proliferation of HT-29 human colon carcinoma cell line

    Institute of Scientific and Technical Information of China (English)

    Ying Tian; Yang Song

    2006-01-01

    AIM: To investigate the effects of inositol hexaphosphate (IP6) on proliferation of HT-29 human colon carcinoma cell line.METHODS: Cells were exposed to various concentrations (0, 1.8, 3.3, 5.0, 8.0, 13.0 mmol/L) of IP6 for a certain period of time. Its effect on growth of HT-29 cells was measured by MTT assay. The expressions of cell cycle regulators treated with IP6 for 2 d were detected by immunocytochemistry.RESULTS: IP6 inhibited the HT-29 cell growth in a dose- and time-dependent manner. Analysis of cell cycle regulator expression revealed that IP6 reduced the abnormal expression of P53 and PCNA and induced the expression of P21.CONCLUSION: IP6 has potent inhibitory effect on proliferation of HT-29 cells by modulating the expression of special cell cycle regulators.

  9. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Directory of Open Access Journals (Sweden)

    Fernando D Villarreal

    Full Text Available Myo-inositol (Ins is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus. Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS and inositol monophosphatase (IMPase, by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1 were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P, mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  10. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae.

    Science.gov (United States)

    Fernandez, Luisa E; Aimanova, Karlygash G; Gill, Sarjeet S; Bravo, Alejandra; Soberón, Mario

    2006-02-15

    A 65 kDa GPI (glycosylphosphatidyl-inositol)-anchored ALP (alkaline phosphatase) was characterized as a functional receptor of the Bacillus thuringiensis subsp. israelensis Cry11Aa toxin in Aedes aegypti midgut cells. Two (a 100 kDa and a 65 kDa) GPI-anchored proteins that bound Cry11Aa toxin were preferentially extracted after treatment of BBMV (brush boder membrane vesicles) from Ae. aegypti midgut epithelia with phospholipase C. The 65 kDa protein was further purified by toxin affinity chromatography. The 65 kDa protein showed ALP activity. The peptide-displaying phages (P1.BBMV and P8.BBMV) that bound to the 65 kDa GPI-ALP (GPI-anchored ALP) and competed with the Cry11Aa toxin to bind to BBMV were isolated by selecting BBMV-binding peptide-phages by biopanning. GPI-ALP was shown to be preferentially distributed in Ae. aegypti in the posterior part of the midgut and in the caeca, by using P1.BBMV binding to fixed midgut tissue sections to determine the location of GPI-ALP. Cry11Aa binds to the same regions of the midgut and competed with P1.BBMV and P8.BBMV to bind to BBMV. The importance of this interaction was demonstrated by the in vivo attenuation of Cry11Aa toxicity in the presence of these phages. Our results shows that GPI-ALP is an important receptor molecule involved in Cry11Aa interaction with midgut cells and toxicity to Ae. aegypti larvae.

  11. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    Science.gov (United States)

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  12. Bone alkaline phosphatase and mortality in dialysis patients

    NARCIS (Netherlands)

    C. Drechsler; M. Verduijn; S. Pilz; R.T. Krediet; F.W. Dekker; C. Wanner; M. Ketteler; E.W. Boeschoten; V. Brandenburg

    2011-01-01

    Serum alkaline phosphatase (AP) is associated with vascular calcification and mortality in hemodialysis patients, but AP derives from various tissues of origin. The aim of this study was to assess the effect of bone-specific AP (BAP) on morbidity and mortality in dialysis patients. From a prospectiv

  13. A physiologic function for alkaline phosphatase : Endotoxin detoxification

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Hardonk, M.J; Meijer, D.K F

    1997-01-01

    Alkaline phosphatase (AP), a common enzyme present in many species including humans, has been studied extensively. Although the enzyme is routinely applied as a marker for liver function, its biologic relevance is poorly understood. The reason for this is obvious: the pH optimum of AP in vitro, as m

  14. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D;

    1990-01-01

    antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  15. Endotoxin detoxification by alkaline phosphatase in cholestatic livers

    NARCIS (Netherlands)

    Poelstra, K; Bakker, WW; Hardonk, MJ; Meijer, DKF; Wisse, E; Knook, DL; Balabaud, C

    1997-01-01

    Increased expression of alkaline phosphatase (AP) in the liver is a hallmark of cholestasis but the pathophysiological role of this is not clear. We argue that deprotonation of carboxyl groups at the active site of the enzyme may be a prerequisite for optimal AP activity. Such a creation of negative

  16. A versatile spectrophotometric protein tyrosine phosphatase assay based on 3-nitrophosphotyrosine containing substrates

    NARCIS (Netherlands)

    van Ameijde, Jeroen; Overvoorde, John; Knapp, Stefan; den Hertog, Jeroen; Ruijtenbeek, Rob; Liskamp, Rob M J

    2014-01-01

    A versatile assay for protein tyrosine phosphatases (PTP) employing 3-nitrophosphotyrosine containing peptidic substrates is described. These therapeutically important phosphatases feature in signal transduction pathways. The assay involves spectrophotometric detection of 3-nitrotyrosine production

  17. Effect of inositol requiring enzyme 1-mediated endoplasmic reticulum stress in liver cell apoptosis of experimental fulminant hepatic failure and its significance

    Institute of Scientific and Technical Information of China (English)

    甄真

    2013-01-01

    Objective To study the role of inositol requiring enzyme 1(IRE1)-mediated endoplasmic reticulum stress on hepatocyte apoptosis of experimental fulminant hepatic failure(FHF). Methods Thirty male depuratory Wistar

  18. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acid phosphatase (total or prostatic) test system... Test Systems § 862.1020 Acid phosphatase (total or prostatic) test system. (a) Identification. An acid phosphatase (total or prostatic) test system is a device intended to measure the activity of the...

  19. Fermentation of phytic acid from lamtoro gung seeds (Leucaena leucocephala to produce inositol and tannin as pharmaceutical commodity

    Directory of Open Access Journals (Sweden)

    I. A.R. Bakti

    2003-12-01

    Full Text Available The research was done to define the effect of tempe yeast concentration on inositol and tannin contents of fermented lamtoro gung seeds (Leucaena leucocephala. This is a research with completely randomized design using four doses of tempe yeast, i.e. 0 %, 5 %, 10 %, and 15 %. Each treatment was replicated 4 times. The resulted data were analyzed by analysis of variance and the significant differences were tested by least significantly difference test. Tannin was analyzed by Lowenthal-Procter method. The result of the research showed that the treatment had significant effects (P<0.05 on the parameter measured. The highest inositol with lowest tannin contents were found by using 15 % tempe yeast and duration of fermentation 96 hours, that is 0.2631 %. (Med J Indones 2003; 12: 236-42Keywords: tempe yeast

  20. Development Rapid Analytical Methods for Inositol as a Trace Component by HPLC and LC-MS/MS in Infant Formula

    OpenAIRE

    Shin, Jin-Ho; Park, Jung-Min; Kim, Ha-Jung; Ahn, Jang-Hyuk; Kwak, Byung-Man; Kim, Jin-Man

    2015-01-01

    A rapid and simple analytical method, using liquid chromatography tandem mass spectrometry (LC-MS/MS), was developed to detect myo-inositol (MI) in infant formulas. For protein removal: acid hydrolysis and lipid removal through organic solvent extraction. The operating conditions for instrumental analysis were determined based on previously reported analogous methods that used LC-MS/MS. Quantitative analysis was used for the detection limit test, infant formula recovery test, and standard ref...

  1. Bacterial standing stock, meiofauna and sediment-nutrient characteristics: Indicators of benthic disturbance in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; LokaBharathi, P.A.; Ansari, Z.A.; Nair, S.; Ingole, B.S.; Sheelu, G.; Mohandass, C.; Nath, B.N.; Rodrigues, N.

    ), there was decrease observed in meiofauna, macrofauna and bacterial numbers, accompanied by a decrease in LOM, ATP and lipase activity, indicating importance of quality food for the deep-sea benthos. On the other hand, there was an increase in TOC, phosphatase...

  2. Renal depletion of myo-inositol is associated with its increased degradation in animal models of metabolic disease.

    Science.gov (United States)

    Chang, H-H; Chao, H-N; Walker, C S; Choong, S-Y; Phillips, A; Loomes, K M

    2015-11-01

    Renal depletion of myo-inositol (MI) is associated with the pathogenesis of diabetic nephropathy in animal models, but the underlying mechanisms involved are unclear. We hypothesized that MI depletion was due to changes in inositol metabolism and therefore examined the expression of genes regulating de novo biosynthesis, reabsorption, and catabolism of MI. We also extended the analyses from diabetes mellitus to animal models of dietary-induced obesity and hypertension. We found that renal MI depletion was pervasive across these three distinct disease states in the relative order: hypertension (-51%)>diabetes mellitus (-35%)>dietary-induced obesity (-19%). In 4-wk diabetic kidneys and in kidneys derived from insulin-resistant and hypertensive rats, MI depletion was correlated with activity of the MI-degrading enzyme myo-inositol oxygenase (MIOX). By contrast, there was decreased MIOX expression in 8-wk diabetic kidneys. Immunohistochemistry localized the MI-degrading pathway comprising MIOX and the glucuronate-xylulose (GX) pathway to the proximal tubules within the renal cortex. These findings indicate that MI depletion could reflect increased catabolism through MIOX and the GX pathway and implicate a common pathological mechanism contributing to renal oxidative stress in metabolic disease. PMID:26311112

  3. Effect of the Putative Lithium Mimetic Ebselen on Brain Myo-Inositol, Sleep, and Emotional Processing in Humans.

    Science.gov (United States)

    Singh, Nisha; Sharpley, Ann L; Emir, Uzay E; Masaki, Charles; Herzallah, Mohammad M; Gluck, Mark A; Sharp, Trevor; Harmer, Catherine J; Vasudevan, Sridhar R; Cowen, Philip J; Churchill, Grant C

    2016-06-01

    Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials. PMID:26593266

  4. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  5. Apoptotic effects of inositol hexaphosphate on biomarker Itpr3 in induced colon rat carcinogenesis Efeito de apoptose do inositol hexafosfato no marcador biológico Itpr3 em carcinogênese induzida de colo em ratos

    Directory of Open Access Journals (Sweden)

    Marks Guido

    2008-04-01

    Full Text Available PURPOSE: To study the effect of the modulation of inositol hexaphosphate (IP6 in the biological immunohistochemistry expression of cellular signaling marker apoptosis, in model of carcinogenesis of colon induced by azoxymethane (AOM. METHODS: Wistar rats (N=112 distributed in 4 groups (n=28: Control; B, AOM (5 mg kg-1, 2x, to break week 3; C, IP6 (in water 1%, six weeks; D, IP6+AOM. Weekly euthanasia (n=7, from week three. Immunohistochemistry of ascendant colon with biological marker inositol 1,4,5 triphosphate receptor type III (Itpr3. Quantification of the immune-expression with use of computer-assisted image processing. Analysis statistics of the means between groups, weeks in groups, groups in weeks, and established significance when pOBJETIVO: Estudar os efeitos da modulação do inositol hexafosfato (IP6 na expressão imunoistoquímica de marcador biológico de sinalização celular de apoptose, em modelo de carcinogênese induzida pelo azoximetano (AOM. MÉTODOS: Ratos Wistar (N=112 distribuídos em 4 grupos (n=28: A, controle; B, AOM (5 mg Kg-1, 2x, a partir semana 3; C, IP6 (em água a 1%, seis semanas; D, IP6+AOM. Eutanásia semanal (n=7, a partir de semana três. Imunoistoquímica de colo ascendente com marcador biológico inositol 1,4,5 trisphosphate receptor type III (Itpr3. Quantificação da imunoexpressão com uso de processamento imagem assistida computador. Análise estatística da expressão média entre grupos, semanas em grupos e grupos em semanas, e estabelecido significância quando p<0.05. RESULTADOS: Evidenciou-se diferença significante entre grupos na expressão de Itpr3, p<0.0001; com diminuição Itpr3 de grupo BxD, p<0.001. CONCLUSÃO: O inositol hexafostato promove a modulação de marcador biológico com diminuição Itpr3 em carcinogênese de colo.

  6. Protein phosphatase 2A, a key player in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Rong LIU; Qing TIAN

    2009-01-01

    Protein phosphatase 2A (PP2A) is the pre-dominant serine/threonine phosphatase in eukaryotic cells. In the brains of patients with Alzheimer's disease (AD), decreased PP2A activities were observed, which is suggested to be involved in neurofibrillary tangle (NFT) formation, disturbed amyloid precursor protein (APP) secretion and neurodegeneration in AD brain. Based on our research and other previous findings, decreased PP2Ac level, decreased PP2A holoenzyme composition, increased level of PP2A inhibitors, increased PP2Ac Leu309 demethylation and Tyr307 phosphorylation underlie PP2A inactivation in AD. β-amyloid (Aβ) over-production, estrogen deficiency and impaired homocys-teine metabolism are the possible up-stream factors that inactivate PP2A in AD neurons. Further studies are required to disclose the role of PP2A in Alzheimer's disease.

  7. Assembly and structure of protein phosphatase 2A

    Institute of Scientific and Technical Information of China (English)

    SHI YiGong

    2009-01-01

    Protein phosphatase 2A (PP2A) represents a conserved family of important protein serinetthreonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, mediated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interaction with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

  8. Assembly and structure of protein phosphatase 2A

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Protein phosphatase 2A (PP2A) represents a conserved family of important protein serine/threonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, medi-ated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interac-tion with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

  9. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.;

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....

  10. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.

    Science.gov (United States)

    Yang, Jing; Roe, S Mark; Cliff, Matthew J; Williams, Mark A; Ladbury, John E; Cohen, Patricia T W; Barford, David

    2005-01-12

    Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.

  11. Alkaline phosphatase for immunocytochemical labelling: problems with endogenous enzyme activity.

    OpenAIRE

    Bulman, A. S.; Heyderman, E

    1981-01-01

    Alkaline phosphatase may be used as a label for immunocytochemistry and can be demonstrated in tissue sections using the single step naphthol phosphate method. Endogenous enzyme activity may not be destroyed by fixation in formalin, formol alcohol, Carnoy's or Baker's solutions and should be inhibited before results are assessed. Either Bouin's solution or periodic acid followed by potassium borohydride are satisfactory inhibitor and do not adversely affect immunocytochemical results.

  12. Mammalian-like Purple Acid Phosphatases in Plants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Introduction Purple acid phosphatases (PAPs) comprise of a family of binuclear metal-containing hydrolases, some members of which have been isolated and characterized from animal, plant and fungal sources[1]. PAPs not only catalyze the hydrolyses of a wide range of phosphate esters and anhydrides under acidic reaction conditions,but also catalyze the generation of hydroxyl radicals in a Fenton-like reaction, by virtue of the presence of a redox-active binuclear metal center.

  13. Protein tyrosine phosphatases expression during development of mouse superior colliculus

    OpenAIRE

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-01-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior col...

  14. Redox Regulation of Protein Tyrosine Phosphatase Activity by Hydroxyl Radical

    OpenAIRE

    Meng, Fan-Guo; Zhang, Zhong-Yin

    2012-01-01

    Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H2O2 include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H2O2 abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. ...

  15. Metavanadate at the active site of the phosphatase VHZ.

    Science.gov (United States)

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  16. Roles of phosphatidate phosphatase enzymes in lipid metabolism

    OpenAIRE

    Carman, George M.; Han, Gil-Soo

    2006-01-01

    Phosphatidate phosphatase (PAP) enzymes catalyze the dephosphorylation of phosphatidate, yielding diacylglycerol and inorganic phosphate. In eukaryotic cells, PAP activity has a central role in the synthesis of phospholipids and triacylglycerol through its product diacylglycerol, and it also generates and/or degrades lipid-signaling molecules that are related to phosphatidate. There are two types of PAP enzyme, Mg2+ dependent (PAP1) and Mg2+ independent (PAP2), but only genes encoding PAP2 en...

  17. Bioengineered protein phosphatase 2A: Update on need

    OpenAIRE

    Rubiolo, Juan A.; López-Alonso, Henar; Alfonso, Amparo; Vega, Félix V.; Vieytes, Mercedes Rodríguez; Botana, Luis M

    2013-01-01

    Harmful algal blooms caused by phytoplankton can occur in all aquatic environments. Some of the algae present in these blooms are capable of producing extremely potent toxins. Due to climate change and eutrophication, harmful algal blooms are increasing on a global scale. One kind of toxin producing algae are those that produce okadaic acid, its derivatives (dinophysistoxin-1 and 2), and microcystins. These toxins are potent inhibitors of protein phosphatase 2A, so this protein is used to det...

  18. Cytochemical characterization of yolk granule acid phosphatase during early development of the oyster Crassostrea gigas (Thunberg)

    Science.gov (United States)

    Wang, Yiyan; Sun, Hushan; Wang, Yanjie; Yan, Dongchun; Wang, Lei

    2015-03-01

    In this study, a cytochemical method and transmission electron microscopy was used to examine acid phosphatase activities of yolk granules throughout the early developmental stages of the Pacific oyster Crassostrea gigas. This study aimed to investigate the dynamic change of yolk granule acid phosphatase, and the mechanisms underlying its involvement in yolk degradation during the early developmental stages of molluscs. Three types of yolk granules (YGI, YGII, and YGIII) that differed in electron density and acid phosphatase reaction were identified in early cleavage, morula, blastula, gastrula, trochophore, and veliger stages. The morphological heterogeneities of the yolk granules were related to acid phosphatase activity and degrees of yolk degradation, indicating the association of acid phosphatase with yolk degradation in embryos and larvae of molluscs. Fusion of yolk granules was observed during embryogenesis and larval development of C. gigas. The fusion of YGI (free of acid phosphatase reaction) with YGII (rich in acid phosphatase reaction) could be the way by which yolk degradation is triggered.

  19. The role of phosphatases in the initiation of skeletal mineralization.

    Science.gov (United States)

    Millán, José Luis

    2013-10-01

    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene cause hypophosphatasia, a heritable form of rickets and osteomalacia, caused by an arrest in the propagation of hydroxyapatite (HA) crystals onto the collagenous extracellular matrix due to accumulation of extracellular inorganic pyrophosphate (PPi), a physiological TNAP substrate and a potent calcification inhibitor. However, TNAP knockout (Alpl(-/-)) mice are born with a mineralized skeleton and have HA crystals in their chondrocyte- and osteoblast-derived matrix vesicles (MVs). We have shown that PHOSPHO1, a soluble phosphatase with specificity for two molecules present in MVs, phosphoethanolamine and phosphocholine, is responsible for initiating HA crystal formation inside MVs and that PHOSPHO1 and TNAP have nonredundant functional roles during endochondral ossification. Double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality, despite normal systemic phosphate and calcium levels. This strongly suggests that the Pi needed for initiation of MV-mediated mineralization is produced locally in the perivesicular space. As both TNAP and nucleoside pyrophosphohydrolase-1 (NPP1) behave as potent ATPases and pyrophosphatases in the MV compartment, our current model of the mechanisms of skeletal mineralization implicate intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP and NPP1 in the extravesicular progression of mineralization.

  20. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  1. Activation of Calf Intestinal Alkaline Phosphatase by Trifluoroethanol

    Institute of Scientific and Technical Information of China (English)

    曹志方; 徐真; 朴龙斗; 周海梦

    2001-01-01

    Alkaline phosphatase is a stable enzyme which is strongly resistant to urea, guanidine hydrochloride, acid pH, and heat. But there have been few studies on the effect of organic cosolvents on the activity and structure of alkaline phosphatase. The activity of calf intestinal alkaline phosphatase (CIAP) is markedly increased when incubated in solutions with elevated trifluoroethanol (TFE) concentrations. The activation is a time dependent course. There is a very fast phase in the activation kinetics in the mixing dead time (30 s) using convential methods. Further activation after the very fast phase follows biphasic kinetics. The structural basis of the activation has been monitored by intrinsic fluorescence and far ultraviolet circular dichroism. TFE (0 - 60%) did not lead to any significant change in the intrinsic fluorescence emission maximum, indicating no significant change in the tertiary structure of CIAP. But TFE did significantly change the secondary structure of CIAP, especially increasing α-helix content. We conclude that the activation of ClAP is due to its secondary structural change. The time for the secondary structure change induced by TFE preceds that of the activity increase. These results suggest that a rapid conformational change of ClAP induced by TFE results in the enhancement of ClAP activity, followed by further increase of this activity because of the further slightly slower rearrangements of the activated conformation. It is concluded that the higher catalytic activity of ClAP can be attained with various secondary structures.

  2. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  3. (1) H NMR analysis of O-methyl-inositol isomers: a joint experimental and theoretical study.

    Science.gov (United States)

    De Almeida, Mauro V; Couri, Mara Rubia C; De Assis, João Vitor; Anconi, Cleber P A; Dos Santos, Hélio F; De Almeida, Wagner B

    2012-09-01

    Density functional theory (DFT) calculations of (1) H NMR chemical shifts for l-quebrachitol isomers were performed using the B3LYP functional employing the 6-31G(d,p) and 6-311 + G(2d,p) basis sets. The effect of the solvent on the B3LYP-calculated NMR spectrum was accounted for using the polarizable continuum model. Comparison is made with experimental (1) H NMR spectroscopic data, which shed light on the average uncertainty present in DFT calculations of chemical shifts and showed that the best match between experimental and theoretical B3LYP (1) H NMR profiles is a good strategy to assign the molecular structure present in the sample handled in the experimental measurements. Among four plausible O-methyl-inositol isomers, the l-quebrachitol 2a structure was unambiguously assigned based only on the comparative analysis of experimental and theoretical (1) H NMR chemical shift data. The B3LYP infrared (IR) spectrum was also calculated for the four isomers and compared with the experimental data, with analysis of the theoretical IR profiles corroborating assignment of the 2a structure. Therefore, it is confirmed in this study that a combined experimental/DFT spectroscopic investigation is a powerful tool in structural/conformational analysis studies. PMID:22865668

  4. Structure-Function Analysis of Inositol Hexakisphosphate-induced Autoprocessing in Clostridium difficile Toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Pruitt, Rory N.; Chagot, Benjamin; Cover, Michael; Chazin, Walter J.; Spiller, Ben; Lacy, D. Borden; (Vanderbilt)

    2009-09-25

    The action of Clostridium difficile toxins A and B depends on inactivation of host small G-proteins by glucosylation. Cellular inositol hexakisphosphate (InsP6) induces an autocatalytic cleavage of the toxins, releasing an N-terminal glucosyltransferase domain into the host cell cytosol. We have defined the cysteine protease domain (CPD) responsible for autoprocessing within toxin A (TcdA) and report the 1.6 {angstrom} x-ray crystal structure of the domain bound to InsP6. InsP6 is bound in a highly basic pocket that is separated from an unusual active site by a {beta}-flap structure. Functional studies confirm an intramolecular mechanism of cleavage and highlight specific residues required for InsP6-induced TcdA processing. Analysis of the structural and functional data in the context of sequences from similar and diverse origins highlights a C-terminal extension and a {pi}-cation interaction within the {beta}-flap that appear to be unique among the large clostridial cytotoxins.

  5. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease.

    Science.gov (United States)

    Berridge, Michael J

    2016-10-01

    Many cellular functions are regulated by calcium (Ca(2+)) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca(2+)) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca(2+) that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca(2+) signal generated by the entry of Ca(2+) through voltage-operated channels that releases Ca(2+) from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca(2+) signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca(2+) signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca(2+) signaling are a contributory factor responsible for the onset of a large number human diseases. PMID:27512009

  6. Treating Woman with Myo-Inositol Vaginal Suppositories Improves Partner’s Sperm Motility and Fertility

    Directory of Open Access Journals (Sweden)

    Mario Montanino Oliva

    2016-01-01

    Full Text Available Motility is the feature that allows spermatozoa to actively reach and penetrate the female gamete during fertilization. When this function is altered, and especially decreased, troubles in conceiving may occur. In this study, we demonstrated that treating fertile women with myo-inositol (MI vaginal suppositories ameliorated their partners’ sperm motility and also positively affected their conceiving capacity, without changes in cervical mucus structural and biochemical characteristics. Indeed, by means of the postcoital test on female cervical mucus, a significant improvement especially in progressive sperm motility was recorded after MI suppository use. Concomitantly, after MI treatment, a reduction of immotile spermatozoa percentage was observed. Importantly, MI vaginal supplementation positively correlated with a pregnancy for 5 of the 50 couples enrolled in the study, leading us to speculate that this substance may substantially contribute to create in the cervical mucus an ideal milieu that makes spermatozoa more motile and functionally able to fertilize. Even though the detailed mechanism is still unclear, these results should encourage MI vaginal use for the clinical improvement of male infertility, through their partners.

  7. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Laura B; Tan, Xu; Mao, Haibin; Withers, John; Ben-Nissan, Gili; Hinds, Thomas R; Kobayashi, Yuichi; Hsu, Fong-Fu; Sharon, Michal; Browse, John; He, Sheng Yang; Rizo, Josep; Howe, Gregg A; Zheng, Ning [Tokyo Inst. Tech.; (UWASH); (MSU); (WIS-I); (WU-MED); (UTSMC)

    2011-11-07

    Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved {alpha}-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.

  8. Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo -Inositol Accumulation

    KAUST Repository

    Bruggeman, Quentin

    2015-06-05

    Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants. © 2015 American Society of Plant Biologists. All rights reserved.

  9. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  10. Association of Protein Phosphatase 1γ1 with Spinophilin Suppresses Phosphatase Activity in a Parkinson Disease Model*

    OpenAIRE

    Brown, Abigail M.; Baucum, Anthony J.; Bass, Martha A.; Roger J Colbran

    2008-01-01

    Sustained nigrostriatal dopamine depletion increases the serine/threonine phosphorylation of multiple striatal proteins that play a role in corticostriatal synaptic plasticity, including Thr286 phosphorylation of calcium/calmodulin-dependent protein kinase IIα (CaMKIIα). Mechanisms underlying these changes are unclear, but protein phosphatases play a critical role in the acute modulation of striatal protein phosphorylation. Here we show that dopamine depletion for periods ranging from 3 weeks...

  11. In vitro morphogenetic response of apple (Malus domestica Borkh. and pear (Pyrus communis L. to the elevated levels of copper and myo-inositol

    Directory of Open Access Journals (Sweden)

    Rafail S. Toma

    2012-10-01

    Full Text Available The elevated levels of copper and myo-inositol in the MS medium were demonstrated to enhance culture growth and morphogenetic response of apple and pear explants. The results revealed that the highest number of branches per explant (2.80 for apple was obtained from the levels of 0.0+ 100 and 0.050+400 mg/l of both copper and myo-inositol, respectively (C1M2 and C4M4, while for pear 3.40 branches per explant were achieved from the same treatment. The mean length of branches was significantly lower in the case of the control treatment (the absence of copper and inositol. The highest number of leaves per explant (29.73 and 29.80 for both apple and pear, respectively, was recorded for treatment C4M4 (0.050+ 400 mg/l of both copper and myo-inositol, respectively. At the rooting stage, the elevated levels of copper and myo-inositol were very effective in stimulating root formation in both apple and pear shoots. The highest number of roots in apple (2.00 roots/ explant was achieved while using 0.100+ 800 (C5M5 of both copper and myo-inositol, whereas the highest number of roots for pear (3.17 roots/ explant was recorded for C6M6 (0.200+ 1600. The highest mean length of roots for apple reached 1.23 cm in treatment C3M3 and 1.10 cm for pear in treatment C6M6. These data suggest that the higher levels of copper and myo-inositol enabled shoot and root formation in the explants, and it might be necessary to use higher levels of these two medium components in order to enhance morphogenetic potential of explants.

  12. Have We Overlooked the Importance of Serine/Threonine Protein Phosphatases in Pancreatic Beta-Cells? Role Played by Protein Phosphatase 2A in Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Esser V

    2005-07-01

    Full Text Available Genetic predisposition and environmental influences insidiously converge to cause glucose intolerance and hyperglycemia. Beta-cell compensates by secreting more insulin and when it fails, overt diabetes mellitus ensues. The need to understand the mechanisms involved in insulin secretion cannot be stressed enough. Phosphorylation of proteins plays an important role in regulating insulin secretion. In order to understand how a particular cellular process is regulated by protein phosphorylation the nature of the protein kinases and protein phosphatases involved and the mechanisms that determine when and where these enzymes are active should be investigated. While the actions of protein kinases have been intensely studied within the beta-cell, less emphasis has been placed on protein phosphatases even though they play an important regulatory role. This review focuses on the importance of protein phosphatase 2A in insulin secretion. Most of the present knowledge on protein phosphatase 2A originates from protein phosphatase inhibitor studies on islets and beta-cell lines. The ability of protein phosphatase 2A to change its activity in the presence of glucose and inhibitors provides clues to its role in regulating insulin secretion. An aggressive approach to elucidate the substrates and mechanisms of action of protein phosphatases is crucial to the understanding of phosphorylation events within the beta-cell. Characterizing protein phosphatase 2A within the beta-cell will certainly help us in understanding the mechanisms involved in insulin secretion and provide valuable information for drug development.

  13. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.

    Science.gov (United States)

    Dubey, Badri N; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-09-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling.

  14. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    Science.gov (United States)

    Dubey, Badri N.; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-01-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di–guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  15. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.

    Science.gov (United States)

    Dubey, Badri N; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-09-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  16. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development

    Science.gov (United States)

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  17. Optimal level of Purple Acid Phosphatase5 is required for maintaining complete resistance to Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Sridhar eRavichandran

    2015-08-01

    Full Text Available Plants possess an exceedingly complex innate immune system to defend against most pathogens. However, a relative proportion of the pathogens overcome host’s innate immunity and impair plant growth and productivity. We previously showed that mutation in purple acid phosphatase (PAP5 lead to enhanced susceptibility of Arabidopsis to the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pst DC3000. Here, we report that an optimal level of PAP5 is crucial for mounting complete basal resistance. Overexpression of PAP5 impaired ICS1, PR1 expression and salicylic acid (SA accumulation similar to pap5 knockout mutant plants. Moreover, plant overexpressing PAP5 was impaired in H2O2 accumulation in response to Pst DC3000. PAP5 is localized in to peroxisomes, a known site of generation of reactive oxygen species for activation of defense responses. Taken together, our results demonstrate that optimal levels of PAP5 is required for mounting resistance against Pst DC3000 as both knockout and overexpression of PAP5 lead to compromised basal resistance.

  18. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection.

    Science.gov (United States)

    Yue, Lei; Xie, Zhongping; Li, Hua; Pang, Zheng; Junkins, Robert D; Tremblay, Michel L; Chen, Xiaochun; Lin, Tong-Jun

    2016-05-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in immune-compromised individuals. Mechanisms governing immune responses to P. aeruginosa infection remain incompletely defined. Herein, we demonstrate that protein tyrosine phosphatase-1B (PTP1B) is a critical negative regulator in P. aeruginosa infection. PTP1B-deficient mice display greatly enhanced bacterial clearance and reduced disease scores, which are accompanied by increased neutrophil infiltration and cytokine production. Interestingly, PTP1B deficiency mainly up-regulates the production of interferon-stimulated response elements-regulated cytokines and chemokines, including chemokine ligand 5 (regulated on activation normal T cell expressed and secreted), CXCL10 (interferon γ-inducible protein 10), and interferon-β production. Further studies reveal that PTP1B deficiency leads to increased interferon regulatory factor 7 (IRF7) expression and activation. These findings demonstrate a novel regulatory mechanism of the immune response to P. aeruginosa infection through PTP1B-IRF7 interaction. This novel PTP1B-IRF7-interferon-stimulated response elements pathway may have broader implications in Toll-like receptor-mediated innate immunity. PMID:27105736

  19. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    International Nuclear Information System (INIS)

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium U(VI) phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO43- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 (micro)M dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  20. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert (co-PI); and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  1. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles

    Science.gov (United States)

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  2. Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation.

    Science.gov (United States)

    Martín-Garrido, A; Boyano-Adánez, M C; Alique, M; Calleros, L; Serrano, I; Griera, M; Rodríguez-Puyol, D; Griendling, K K; Rodríguez-Puyol, M

    2009-11-15

    Hydrogen peroxide (H(2)O(2)) is implicated in the regulation of signaling pathways leading to changes in vascular smooth muscle function. Contractile effects produced by H(2)O(2) are due to the phosphorylation of myosin light chain kinase triggered by increases in intracellular calcium (Ca(2+)) from intracellular stores or influx of extracellular Ca(2+). One mechanism for mobilizing such stores involves the phosphoinositide pathway. Inositol 1,4,5-trisphosphate (IP(3)) mobilizes intracellular Ca(2+) by binding to a family of receptors (IP(3)Rs) on the endoplasmic-sarcoplasmic reticulum that act as ligand-gated Ca(2+) channels. IP(3)Rs can be rapidly ubiquitinated and degraded by the proteasome, causing a decrease in cellular IP(3)R content. In this study we show that IP(3)R(1) and IP(3)R(3) are down-regulated when vascular smooth muscle cells (VSMC) are stimulated by H(2)O(2), through an increase in proteasome activity. Moreover, we demonstrate that the decrease in IP(3)R by H(2)O(2) is accompanied by a reduction in calcium efflux induced by IP(3) in VSMC. Also, we observed that angiotensin II (ANGII) induces a decrease in IP(3)R by activation of NADPH oxidase and that preincubation with H(2)O(2) decreases ANGII-mediated calcium efflux and planar cell surface area in VSMC. The decreased IP(3) receptor content observed in cells was also found in aortic rings, which exhibited a decreased ANGII-dependent contraction after treatment with H(2)O(2). Altogether, these results suggest that H(2)O(2) mediates IP(3)R down-regulation via proteasome activity.

  3. CaMKII Regulation of Cardiac Ryanodine Receptors and Inositol Triphosphate Receptors

    Directory of Open Access Journals (Sweden)

    Emmanuel eCamors

    2014-05-01

    Full Text Available Ryanodine receptors (RyRs and inositol triphosphate receptors (InsP3Rs are structurally related intracellular calcium release channels that participate in multiple primary or secondary amplified Ca2+ signals, triggering muscle contraction and oscillatory Ca2+ waves, or activating transcription factors. In the heart, RyRs play an indisputable role in the process of excitation-contraction coupling as the main pathway for Ca2+ release from sarcoplasmic reticulum (SR, and a less prominent role in the process of excitation-transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only, to contraction of the heart, and in more important ways to regulation of transcription factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening arrhythmogenic and/or remodeling Ca2+ signals, regulation of their activity is of paramount importance for normal cardiac function. Due to their structural similarity, many regulatory factors, accessory proteins, and posttranslational processes are equivalent for RyRs and InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation, but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful modulator of RyR and InsP3R activity but interestingly, some of the complexities and controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects of CaMKII on global cellular activity, such as SR Ca2+ leak or force-frequency potentiation, appear clear now, and this constrains the limits of the controversies and permits a more tractable approach to elucidate the effects of phosphorylation at the single channel level.

  4. Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits.

    Science.gov (United States)

    Alzayady, Kamil J; Wagner, Larry E; Chandrasekhar, Rahul; Monteagudo, Alina; Godiska, Ronald; Tall, Gregory G; Joseph, Suresh K; Yule, David I

    2013-10-11

    Vertebrate genomes code for three subtypes of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R1, -2, and -3). Individual IP3R monomers are assembled to form homo- and heterotetrameric channels that mediate Ca(2+) release from intracellular stores. IP3R subtypes are regulated differentially by IP3, Ca(2+), ATP, and various other cellular factors and events. IP3R subtypes are seldom expressed in isolation in individual cell types, and cells often express different complements of IP3R subtypes. When multiple subtypes of IP3R are co-expressed, the subunit composition of channels cannot be specifically defined. Thus, how the subunit composition of heterotetrameric IP3R channels contributes to shaping the spatio-temporal properties of IP3-mediated Ca(2+) signals has been difficult to evaluate. To address this question, we created concatenated IP3R linked by short flexible linkers. Dimeric constructs were expressed in DT40-3KO cells, an IP3R null cell line. The dimeric proteins were localized to membranes, ran as intact dimeric proteins on SDS-PAGE, and migrated as an ∼1100-kDa band on blue native gels exactly as wild type IP3R. Importantly, IP3R channels formed from concatenated dimers were fully functional as indicated by agonist-induced Ca(2+) release. Using single channel "on-nucleus" patch clamp, the channels assembled from homodimers were essentially indistinguishable from those formed by the wild type receptor. However, the activity of channels formed from concatenated IP3R1 and IP3R2 heterodimers was dominated by IP3R2 in terms of the characteristics of regulation by ATP. These studies provide the first insight into the regulation of heterotetrameric IP3R of defined composition. Importantly, the results indicate that the properties of these channels are not simply a blend of those of the constituent IP3R monomers.

  5. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity?

    Science.gov (United States)

    Wang, Liwei; Alzayady, Kamil J; Yule, David I

    2016-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes.

  6. Bacterial Mobilization of Nutrients From Biochar-Amended Soils.

    Science.gov (United States)

    Schmalenberger, A; Fox, A

    2016-01-01

    Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur. PMID:26917243

  7. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4.......4. Three enzyme peaks were eluted using low pressure chromatography with a Bio-gel column. With a HPLC gel filtration column the separation of the enamel extract resulted in only one peak with AP activity. The fractions of this peak were used to produce an antibody against bovine AP....

  8. Acid phosphatase localization in neurons of Bulla gouldiana (Gastropoda: Opisthobranchia.

    Science.gov (United States)

    Robles, L J; Fisher, S K

    1975-01-01

    The organization of the ganglia and the ultrastructure of the neurons of Bulla gouldiana are similar to those described for other molluscs. Acid phosphatase positive reactions were found in the large pigmented granules, small dense bodies, multivesicular bodies, and Golgi lamellae and associated vesicles. The small dense bodies and multivesicular bodies may be stages in the formation of the larger pigmented granules which are interpreted as lysosomes. Comparison is made between the pigmented granules in Bulla and the lipofuscin bodies of vertebrate neurons. The possible involvement of these pigmented granules in the hyperpolarization of Bulla and Aplysia neurons to light is discussed. PMID:1122539

  9. A description of alkaline phosphatases from marine organisms

    Science.gov (United States)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2016-07-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  10. PROTEN TYROSINE PHOSPHATASE ACTIVITY IN RAT ASCITES HEPATOMA CELLS

    Directory of Open Access Journals (Sweden)

    M.Saadat

    1998-10-01

    Full Text Available Protein tyrosine phosphatases (PTPases regulate tyrosine phosphorylation of target proteins involved in several aspects of cellular functions. Enzyme activities of the PTPases in cytosolic and particulate fractions of rat ascites hepatoma cell lines were determined and compared with those of normal rat liver. Our present data revealed that although there was no neoplatic-specific alteration of the PTPase activity in examined hepatomas, the activity in particulate fractions of island type of hepatomas was remarkably decreased compared with either rat liver or free type hepatomas.

  11. Direct Electrochemistry of Porcine Purple Acid Phosphatase (Uteroferrin)

    OpenAIRE

    Bernhardt, Paul V; Schenk, Gerhard; Wilson, Gregory J.

    2004-01-01

    Cyclic voltammetry of the non-heme diiron enzyme porcine purple acid phosphatase (uteroferrin, Uf) has been reported for the first time. Totally reversible one-electron oxidation responses (FeIII-FeII f FeIII-FeIII) are seen both in the absence and in the presence of weak competitive inhibitors phosphate and arsenate, and dissociation constants of these oxoanion complexes formed with uteroferrin in its oxidized state (Ufo) have been determined. The effect of pH on the redox potent...

  12. Protein Tyrosine Phosphatase 1B Inhibitors from Plantago asiatica

    Institute of Scientific and Technical Information of China (English)

    CUI Long; LEE Hyun-sun; AHN Jong-seog; YUAN Guang-xin; SUN Ya-nan

    2011-01-01

    Objective To identify the active compounds for protein tyrosine phosphatase 1B (PTP1B) from the seeds of Plantago asiatica. Methods Bioassay-guided fractionation resulted in the isolation of iridoid glucosides (1-5) with PTP1B inhibitory activity. Results Five compounds were identified as desacetylhookerioside (1), melittoside (2), geniposidic acid (3), 10-O-acetyl-geniposidic acid (4), and alpinoside (5). Conclusion Isolated compounds 3-5 inhibit PTP1B with IC50 values ranged from (16.3 ± 1.1) to (19.8 ± 1.2) μmol/L.

  13. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    KOSINIAK-KAMYSZ K.

    2007-01-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  14. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    length density was twice as high in soil with added straw compared to the two other treatments. Mycorrhizal colonization resulted in lower activity of acid phosphatase in the HC for two out of three treatments. Alkaline phosphatase activity was only decreased by mycorrhiza in soil without organic matter...... additions. In soil with added clover alkaline phosphatase activity increased due to the presence of mycorrhizal hyphae. We suggest that mycorrhizas may influence the exudation of acid phosphatase by roots. Hyphae of G. invermaium did apparently not excrete extracellular phosphatases, but their presence may......Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...

  15. Cervical acid phosphatase detection: A guide to abnormal cells in cytology smear screening for cervical cancer

    OpenAIRE

    Deb Prabal; Iyer Venkateswaran; Bhatla Neerja; Markovic O; Verma Kusum

    2008-01-01

    Background: Cervical acid phosphatase-Papanicolaou (CAP-PAP) test has recently been described for detection of acid phosphatase enzyme in abnormal squamous cells, and has been proposed as a biomarker-based technology for the screening of cervical cancer. Materials and Methods: Eighty-one consecutive cervical smears were subjected to routine Papanicolaou (Pap) staining as well as CAP-PAP, which combined cytochemical staining for acid phosphatase with modified Pap stain. Statistical evaluation ...

  16. Regioselective phosphorylation of myo-inositol with BINOL-derived phosphoramidites and its application for protozoan lysophosphatidylinositol.

    Science.gov (United States)

    Aiba, Toshihiko; Sato, Masaki; Umegaki, Daichi; Iwasaki, Takanori; Kambe, Nobuaki; Fukase, Koichi; Fujimoto, Yukari

    2016-07-12

    A regioselective phosphorylation method for myo-inositol was developed by utilizing readily preparable BINOL-derived phosphoramidites. The method also facilitated the complete separation of the diastereomeric products by simple chromatography. Based on this phosphorylation and Ni-catalyzed alkyl-alkyl cross-coupling reaction for long fatty acids, we achieved the first synthesis of a lysophosphatidylinositol, EhPIa having long fatty acid C30:1, as a partial structure of glycosylphosphatidylinositol (GPI) anchor from the cell membrane of a protozoa, Entamoeba histolytica. PMID:27326923

  17. TYPE 2 INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR MODULATES BILE SALT EXPORT PUMP ACTIVITY IN RAT HEPATOCYTES

    OpenAIRE

    Kruglov, Emma A.; Gautam, Samir; Guerra, Mateus T.; Nathanson, Michael H.

    2011-01-01

    Bile salt secretion is mediated primarily by the bile salt export pump (Bsep), a transporter on the canalicular membrane of the hepatocyte. However, little is known about the short-term regulation of Bsep activity. Ca2+ regulates targeting and insertion of transporters in many cell systems, and Ca2+ release near the canalicular membrane is mediated by the type II inositol 1,4,5-trisphosphate receptor (InsP3R2), so we investigated the possible role of InsP3R2 in modulating Bsep activity. The k...

  18. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Hume David A

    2008-09-01

    Full Text Available Abstract Background Tartrate-resistant acid phosphatases (TRAcPs, also known as purple acid phosphatases (PAPs, are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.

  19. Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Gilbert Christophe

    2008-04-01

    Full Text Available Abstract Background Reversible phosphorylation events within a polymerisation complex have been proposed to modulate capsular polysaccharide synthesis in Streptococcus pneumoniae. Similar phosphatase and kinase genes are present in the exopolysaccharide (EPS biosynthesis loci of numerous lactic acid bacteria genomes. Results The protein sequence deduced from the wzb gene in Lactobacillus rhamnosus ATCC 9595 reveals four motifs of the polymerase and histidinol phosphatase (PHP superfamily of prokaryotic O-phosphatases. Native and modified His-tag fusion Wzb proteins were purified from Escherichia coli cultures. Extracts showed phosphatase activity towards tyrosine-containing peptides. The purified fusion protein Wzb was active on p-nitrophenyl-phosphate (pNPP, with an optimal activity in presence of bovine serum albumin (BSA 1% at pH 7.3 and a temperature of 75°C. At 50°C, residual activity decreased to 10 %. Copper ions were essential for phosphatase activity, which was significantly increased by addition of cobalt. Mutated fusion Wzb proteins exhibited reduced phosphatase activity on p-nitrophenyl-phosphate. However, one variant (C6S showed close to 20% increase in phosphatase activity. Conclusion These characteristics reveal significant differences with the manganese-dependent CpsB protein tyrosine phosphatase described for Streptococcus pneumoniae as well as with the polysaccharide-related phosphatases of Gram negative bacteria.

  20. Purification and Characterization of PRL Protein Tyrosine Phosphatases

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-fa; WANG Yan; LI Qing-shan; ZHAO Zhi-zhuang Joe; FU Xue-qi; LI Yu-lin; LI Yi-lei

    2005-01-01

    PRLs constitute a subfamily of protein tyrosine phosphatases(PTPs). In the present paper are reported the molecular cloning, expression, purification, and characterization of all the three members of the PRL enzymes in human and the only PRL in C.elegans. These enzymes were expressed as glutathione S-transferase(GST) fusion proteins in DE3pLysS E.coli cells, and the recombinant fusion proteins were purified on glutathione-Sepharose affinity columns. Having been cleaved with thrombin, GST-free enzymes were further purified on an S-100 Sepharose gel filtration column. The purified proteins show single polypeptide bands on SDS-polyacrylamide gel electrophoresis. With para-nitrophenyl phosphate(p-NPP) as a substrate, PRLs exhibit classical Michaelis-Menten kinetics with Vmax values two orders of magnitude smaller than those of classic PTPs. The responses of PRLs to ionic strength, metal ions and phosphatase inhibitors are similar to those of other characterized PTPs, but their optimal pH values are different. These data thus reveal distinct common biochemical properties of PRL subfamily PTPs as well.

  1. Protein phosphatase Z modulates oxidative stress response in fungi.

    Science.gov (United States)

    Leiter, Éva; González, Asier; Erdei, Éva; Casado, Carlos; Kovács, László; Ádám, Csaba; Oláh, Judit; Miskei, Márton; Molnar, Monika; Farkas, Ilona; Hamari, Zsuzsanna; Ariño, Joaquín; Pócsi, István; Dombrádi, Viktor

    2012-09-01

    The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.

  2. Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis.

    Science.gov (United States)

    Rahmouni, Souad; Hego, Alexandre; Delierneux, Céline; Wéra, Odile; Musumeci, Lucia; Tautz, Lutz; Oury, Cécile

    2016-01-01

    Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets. PMID:27514813

  3. Protein phosphatase 1 suppresses androgen receptor ubiquitylation and degradation.

    Science.gov (United States)

    Liu, Xiaming; Han, Weiwei; Gulla, Sarah; Simon, Nicholas I; Gao, Yanfei; Cai, Changmeng; Yang, Hongmei; Zhang, Xiaoping; Liu, Jihong; Balk, Steven P; Chen, Shaoyong

    2016-01-12

    The phosphoprotein phosphatases are emerging as important androgen receptor (AR) regulators in prostate cancer (PCa). We reported previously that the protein phosphatase 1 catalytic subunit (PP1α) can enhance AR activity by dephosphorylating a site in the AR hinge region (Ser650) and thereby decrease AR nuclear export. In this study we show that PP1α increases the expression of wildtype as well as an S650A mutant AR, indicating that it is acting through one or more additional mechanisms. We next show that PP1α binds primarily to the AR ligand binding domain and decreases its ubiquitylation and degradation. Moreover, we find that the PP1α inhibitor tautomycin increases phosphorylation of AR ubiquitin ligases including SKP2 and MDM2 at sites that enhance their activity, providing a mechanism by which PP1α may suppress AR degradation. Significantly, the tautomycin mediated decrease in AR expression was most pronounced at low androgen levels or in the presence of the AR antagonist enzalutamide. Consistent with this finding, the sensitivity of LNCaP and C4-2 PCa cells to tautomycin, as assessed by PSA synthesis and proliferation, was enhanced at low androgen levels or by treatment with enzalutamide. Together these results indicate that PP1α may contribute to stabilizing AR protein after androgen deprivation therapies, and that targeting PP1α or the AR-PP1α interaction may be effective in castration-resistant prostate cancer (CRPC).

  4. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair

    Science.gov (United States)

    Tahbaz, Nasser; Subedi, Sudip; Weinfeld, Michael

    2012-01-01

    Mutations in mitochondrial DNA (mtDNA) are implicated in a broad range of human diseases and in aging. Compared to nuclear DNA, mtDNA is more highly exposed to oxidative damage due to its proximity to the respiratory chain and the lack of protection afforded by chromatin-associated proteins. While repair of oxidative damage to the bases in mtDNA through the base excision repair pathway has been well studied, the repair of oxidatively induced strand breaks in mtDNA has been less thoroughly examined. Polynucleotide kinase/phosphatase (PNKP) processes strand-break termini to render them chemically compatible for the subsequent action of DNA polymerases and ligases. Here, we demonstrate that functionally active full-length PNKP is present in mitochondria as well as nuclei. Downregulation of PNKP results in an accumulation of strand breaks in mtDNA of hydrogen peroxide-treated cells. Full restoration of repair of the H2O2-induced strand breaks in mitochondria requires both the kinase and phosphatase activities of PNKP. We also demonstrate that PNKP contains a mitochondrial-targeting signal close to the C-terminus of the protein. We further show that PNKP associates with the mitochondrial protein mitofilin. Interaction with mitofilin may serve to translocate PNKP into mitochondria. PMID:22210862

  5. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato.

    Science.gov (United States)

    Zhai, Hong; Wang, Feibing; Si, Zengzhi; Huo, Jinxi; Xing, Lei; An, Yanyan; He, Shaozhen; Liu, Qingchang

    2016-02-01

    Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3 ), phosphatidic acid (PA), Ca(2+) , ABA, K(+) , proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na(+) and H2 O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3 , PA, Ca(2+) , ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2 O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants. PMID:26011089

  6. Cloning, purification, crystallization and preliminary X-ray analysis of two low-molecular-weight protein tyrosine phosphatases from Vibrio cholerae

    International Nuclear Information System (INIS)

    Two protein tyrosine phosphatases, namely VcLMWPTP-1 and VcLMWPTP-2, from V. cholerae have been cloned, expressed, purified and crystallized. Low-molecular-weight protein tyrosine phosphatases (LMWPTPs) are small cytoplasmic enzymes of molecular weight ∼18 kDa that belong to the large family of protein tyrosine phosphatases (PTPs). Despite their wide distribution in both prokaryotes and eukaryotes, their exact biological role in bacterial systems is not yet clear. Two low-molecular-weight protein tyrosine phosphatases (VcLMWPTP-1 and VcLMWPTP-2) from the Gram-negative bacterium Vibrio cholerae have been cloned, overexpressed, purified by Ni2+–NTA affinity chromatography followed by gel filtration and used for crystallization. Crystals of VcLMWPTP-1 were grown in the presence of ammonium sulfate and glycerol and diffracted to a resolution of 1.6 Å. VcLMWPTP-2 crystals were grown in PEG 4000 and diffracted to a resolution of 2.7 Å. Analysis of the diffraction data showed that the VcLMWPTP-1 crystals had symmetry consistent with space group P31 and that the VcLMWPTP-2 crystals had the symmetry of space group C2. Assuming the presence of four molecules in the asymmetric unit, the Matthews coefficient for the VcLMWPTP-1 crystals was estimated to be 1.97 Å3 Da−1, corresponding to a solvent content of 37.4%. The corresponding values for the VcLMWPTP-2 crystals, assuming the presence of two molecules in the asymmetric unit, were 2.77 Å3 Da−1 and 55.62%, respectively

  7. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  8. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease

    Science.gov (United States)

    Sundgren, Pia C.; Strandberg, Olof; Zetterberg, Henrik; Minthon, Lennart; Blennow, Kaj; Wahlund, Lars-Olof; Westman, Eric

    2016-01-01

    Objective: We aimed to test whether in vivo levels of magnetic resonance spectroscopy (MRS) metabolites myo-inositol (mI), N-acetylaspartate (NAA), and choline are abnormal already during preclinical Alzheimer disease (AD), relating these changes to amyloid or tau pathology, and functional connectivity. Methods: In this cross-sectional multicenter study (a subset of the prospective Swedish BioFINDER study), we included 4 groups, representing the different stages of predementia AD: (1) cognitively healthy elderly with normal CSF β-amyloid 42 (Aβ42), (2) cognitively healthy elderly with abnormal CSF Aβ42, (3) patients with subjective cognitive decline and abnormal CSF Aβ42, (4) patients with mild cognitive decline and abnormal CSF Aβ42 (Ntotal = 352). Spectroscopic markers measured in the posterior cingulate/precuneus were considered alongside known disease biomarkers: CSF Aβ42, phosphorylated tau, total tau, [18F]-flutemetamol PET, f-MRI, and the genetic risk factor APOE. Results: Amyloid-positive cognitively healthy participants showed a significant increase in mI/creatine and mI/NAA levels compared to amyloid-negative healthy elderly (p < 0.05). In amyloid-positive healthy elderly, mI/creatine and mI/NAA correlated with cortical retention of [18F] flutemetamol tracer ( = 0.44, p = 0.02 and = 0.51, p = 0.01, respectively). Healthy elderly APOE ε4 carriers with normal CSF Aβ42 levels had significantly higher mI/creatine levels (p < 0.001) than ε4 noncarriers. Finally, elevated mI/creatine was associated with decreased functional connectivity within the default mode network (rpearson = −0.16, p = 0.02), independently of amyloid pathology. Conclusions: mI levels are elevated already at asymptomatic stages of AD. Moreover, mI/creatine concentrations were increased in healthy APOE ε4 carriers with normal CSF Aβ42 levels, suggesting that mI levels may reveal regional brain consequences of APOE ε4 before detectable amyloid pathology. PMID:27164711

  9. Cellular delivery and photochemical release of a caged inositol-pyrophosphate induces PH-domain translocation in cellulo.

    Science.gov (United States)

    Pavlovic, Igor; Thakor, Divyeshsinh T; Vargas, Jessica R; McKinlay, Colin J; Hauke, Sebastian; Anstaett, Philipp; Camuña, Rafael C; Bigler, Laurent; Gasser, Gilles; Schultz, Carsten; Wender, Paul A; Jessen, Henning J

    2016-02-04

    Inositol pyrophosphates, such as diphospho-myo-inositol pentakisphosphates (InsP7), are an important family of signalling molecules, implicated in many cellular processes and therapeutic indications including insulin secretion, glucose homeostasis and weight gain. To understand their cellular functions, chemical tools such as photocaged analogues for their real-time modulation in cells are required. Here we describe a concise, modular synthesis of InsP7 and caged InsP7. The caged molecule is stable and releases InsP7 only on irradiation. While photocaged InsP7 does not enter cells, its cellular uptake is achieved using nanoparticles formed by association with a guanidinium-rich molecular transporter. This novel synthesis and unprecedented polyphosphate delivery strategy enable the first studies required to understand InsP7 signalling in cells with controlled spatiotemporal resolution. It is shown herein that cytoplasmic photouncaging of InsP7 leads to translocation of the PH-domain of Akt, an important signalling-node kinase involved in glucose homeostasis, from the membrane into the cytoplasm.

  10. Relationship between stimulated phosphatidic acid production and inositol lipid hydrolysis in intestinal longitudinal smooth muscle from guinea pig.

    Science.gov (United States)

    Mallows, R S; Bolton, T B

    1987-06-15

    Accumulation of [32P]phosphatidic acid (PA) and total [3H]inositol phosphates (IPs) was measured in the longitudinal smooth-muscle layer from guinea-pig small intestine. Stimulation with carbachol, histamine and substance P produced increases in accumulation of both [3H]IPs and [32P]PA over the same concentration range. The increase in [32P]PA accumulation in response to carbachol (1 microM-0.1 mM) was inhibited in the presence of atropine (0.5 microM). Buffering the external free [Ca2+] to 10 nM did not prevent the carbachol-stimulated increase in [32P]PA accumulation. Carbachol and Ca2+ appear to act synergistically to increase accumulation of [32P]PA. In contrast, although incubation with noradrenaline also increased accumulation of [3H]IPs, no increase in accumulation of [32P]PA could be detected. These results suggest that an increase in formation of IPs is not necessarily accompanied by an increase in PA formation, and imply the existence of receptor-modulated pathways regulating PA concentrations other than by phospholipase-C-catalysed inositol phospholipid hydrolysis.

  11. Inositol hexaphosphate-induced enhancement of natural killer cell activity correlates with suppression of colon carcinogenesis in rats

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhang; Yang Song; Xiu-Li Wang

    2005-01-01

    AIM: To investigate the anti-neoplastic effect of inositol hexaphosphate (InsP6 or phytic acid) on dimethylhydrazine (DMH)-induced colon tumor in rats and its effect on blood natural killer (NK) cell activity.METHODS: Healthy Wistar rats, 4 wk old, were divided into control group (fed with common food) and TnsP6 group (fed with common food+2% sodium inositol hexaphosphate in the drinking water), 15 rats in each group. Both groups were injected with 1,2-dimethylhydrazine subcutaneously (20 mg/kg body weight) once a week for 20 wk. Rats were killed after 21 wk. The whole large intestine was isolated to determine the general condition of tumors and to test blood NK cell activity by lactate-dehydrogenaserelease assay.RESULTS: Administration of InsP6 significantly increased blood NK cell activity in DMH-induced colorectal tumor in rats. InsP6 group had a smaller tumor size on average and a smaller number of tumors than the control group. Its mortality was also higher than that in control. However, the variables of body weight and tumor incidence were not significantly different between the two groups.CONCLUSION: InsP6 can increase blood NK cell activity in DMH-induced colon tumor in rats and inhibit tumor growth and metastasis in rats.

  12. Synergism between Inositol Polyphosphates and TOR Kinase Signaling in Nutrient Sensing, Growth Control, and Lipid Metabolism in Chlamydomonas[OPEN

    Science.gov (United States)

    Evans, Bradley S.; Li, Jia; Liu, Yu; Diamond, Spencer

    2016-01-01

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of Rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas reinhardtii using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8. Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively overaccumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulation. PMID:27600537

  13. Identification of a new membrane-permeable inhibitor against inositol-1,4,5-trisphosphate-3-kinase A.

    Science.gov (United States)

    Schröder, Dominik; Rehbach, Christoph; Seyffarth, Carola; Neuenschwander, Martin; Kries, Jens V; Windhorst, Sabine

    2013-09-20

    Ectopic expression of the neuron-specific inositol-1,4,5-trisphosphate-3-kinase A (ITPKA) in lung cancer cells increases their metastatic potential because the protein exhibits two actin regulating activities; it bundles actin filaments and regulates inositol-1,4,5-trisphosphate (InsP3)-mediated calcium signals by phosphorylating InsP3. Thus, in order to inhibit the metastasis-promoting activity of ITPKA, both its actin bundling and its InsP3kinase activity has to be blocked. In this study, we performed a high throughput screen in order to identify specific and membrane-permeable substances against the InsP3kinase activity. Among 341,44 small molecules, 237 compounds (0.7%) were identified as potential InsP3kinase inhibitors. After determination of IC50-values, the three compounds with highest specificity and highest hydrophobicity (EPPC-3, BAMB-4, MEPTT-3) were further characterized. Only BAMB-4 was nearly completely taken up by H1299 cells and remained stable after cellular uptake, thus exhibiting a robust stability and a high membrane permeability. Determination of the inhibitor type revealed that BAMB-4 belongs to the group of mixed type inhibitors. Taken together, for the first time we identified a highly membrane-permeable inhibitor against the InsP3kinase activity of ITPKA providing the possibility to partly inhibit the metastasis-promoting effect of ITPKA in lung tumor cells. PMID:23981806

  14. Inositol 1,4,5-trisphosphate 3-kinase B controls survival and prevents anergy in B cells.

    Science.gov (United States)

    Maréchal, Yoann; Quéant, Séverine; Polizzi, Selena; Pouillon, Valérie; Schurmans, Stéphane

    2011-01-01

    Inositol 1,4,5-trisphosphate 3-kinase B (or Itpkb) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), its reaction product, play an important role in the control of B lymphocyte fate and function in vivo. In order to investigate the fine mechanisms of Itpkb and Ins(1,3,4,5)P4 action in B cells, we crossed Itpkb(-/-) mice with transgenic mice expressing a 3-83μδ B cell receptor (BCR) specific for membrane-bound MHC-I H2-K(b) and H2-K(k) molecules. On a non-deleting H2-K(d) genetic background, we show that Itpkb is important for the control of Bim protein expression and B cell survival rather than for the control of B cell development from one stage to another. Analyses of cell surface markers expression, proapoptotic Bim protein expression, in vitro survival and in vivo turnover demonstrated that BCR transgenic Itpkb(-/-) B cells exhibit an anergic phenotype with the notable exception of their enhanced antigen-induced calcium signalling. On a deleting H2-K(b) genetic background, we show that Itpkb is not essential for BCR editing or negative selection. These data establish Itpkb as an important regulator of B cell survival and anergy in vivo.

  15. The effect of M & B 22948 on carbachol-induced inositol trisphosphate accumulation and contraction in iris sphincter smooth muscle.

    Science.gov (United States)

    Akhtar, R A; Abdel-Latif, A A

    1991-04-25

    The effect of a cyclic GMP phosphodiesterase inhibitor, M & B 22948, on carbachol-induced phosphatidylinositol 4,5-bis-phosphate (PIP2) breakdown and phosphatidic acid labeling, 1,4,5-inositol trisphosphate (IP3) accumulation and muscle contraction was studied in bovine iris sphincter smooth muscle. Addition of carbachol (10 microM) to 32P-labeled tissue resulted in increased labeling of phosphatidic acid and hydrolysis of PIP2. In myo[3H]inositol labeled tissue, carbachol caused rapid accumulation of IP3 which reached its maximum at about 2 min. Under identical experimental conditions, carbachol initiated a rapid increase in muscle contraction (phasic component) which was followed by a slightly lower contractile response (tonic component) that lasted for several minutes. Pretreatment of the iris sphincter with M & B 22948 did not alter carbachol-stimulated PIP2 breakdown and phosphatidic acid labeling, IP3 accumulation, or phasic component of the contractile response. However, the tonic component of the contractile response was increasingly attenuated by increasing concentrations of the drug. In conclusion, the data presented demonstrate a close correlation between carbachol-induced IP3 accumulation and muscle contraction, and that M & B 22948 does not inhibit carbachol-induced responses in the iris sphincter.

  16. Biological response of hepatomas to an extract of Fagopyrum esculentum M. (buckwheat) is not mediated by inositols or rutin.

    Science.gov (United States)

    Curran, Julianne M; Stringer, Danielle M; Wright, Brenda; Taylor, Carla G; Przybylski, Roman; Zahradka, Peter

    2010-03-10

    Buckwheat contains d-chiro-inositol (D-CI) and myo-inositol (MI), possible insulin-mimetic compounds; thus, this study investigated the insulin-mimetic activities of a buckwheat concentrate (BWC), D-CI, and MI on insulin signal transduction pathways and glucose uptake with H4IIE rat hepatoma cells. BWC stimulated phosphorylation of p42/44 extracellular-related kinase (p42/44 ERK) and its downstream target, p70(S6K), on Thr(421). In contrast, D-CI, MI, rutin, or its agylcone form, quercetin, did not activate these signal transduction proteins. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), another target of insulin, was also up-regulated upon BWC treatment. The effects of BWC on glucose uptake were subsequently investigated using H4IIE cells. Insulin and D-CI stimulated glucose uptake, whereas BWC inhibited basal and insulin-stimulated glucose uptake. Although results from this work suggest that BWC has insulin-mimetic effects on select protein phosphorylation events in H4IIE cells, D-CI and MI were not the active components responsible for the observed effects. The inhibition of glucose uptake by BWC suggests that buckwheat may affect hepatic glucose metabolism, possibly by inhibiting glucose flux. Furthermore, the fact that D-CI and MI stimulated glucose uptake in H4IIE cells suggests that other compounds are responsible for inhibition of glucose uptake by BWC.

  17. Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review.

    Science.gov (United States)

    Melo, A D B; Silveira, H; Luciano, F B; Andrade, C; Costa, L B; Rostagno, M H

    2016-01-01

    The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets. PMID:26732323

  18. Improved double immunohistochemical staining method for cryostat and paraffin wax sections, combining alkaline phosphatase anti-alkaline phosphatase and indirect immunofluorescence

    OpenAIRE

    Tao, Q.; Srivastava, G; Loke, S L; Chan, E. Y.; Ho, F C

    1994-01-01

    Aims - To develop an immunohistochemical staining method for cryostat and paraffin wax sections so that two different antigens in the same section of tissues could be detected by combining immunoenzyme and immunofluorescence techniques. Methods - This double immunohistochemical staining method combines alkaline phosphatase-anti-alkaline phosphatase (APAAP) using New Fuchsin as a chromogen and indirect immunofluorescence. Results - APAAP staining for one antigen of this double immunohistochemi...

  19. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?

    DEFF Research Database (Denmark)

    Petrone, A; Sap, J

    2000-01-01

    Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions with signal...

  20. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin to i...

  1. Characterization of the alkaline phosphatase expressed on the surface of a Hodgkin's lymphoma cell line

    NARCIS (Netherlands)

    Belland, L; Visser, L; Poppema, S; Stinson, R A

    1993-01-01

    Alkaline phosphatase solubilized from a human Hodgkin's lymphoma cell line (L428) was compared with purified amphiphilic and hydrophilic forms of the enzyme from human liver, and with the enzyme solubilized from a cultured osteosarcoma cell line (Saos-2). Purified hydrophilic alkaline phosphatases f

  2. Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants.

    Science.gov (United States)

    Płachno, B J; Adamec, L; Lichtscheidl, I K; Peroutka, M; Adlassnig, W; Vrba, J

    2006-11-01

    A new ELF (enzyme labelled fluorescence) assay was applied to detect phosphatase activity in glandular structures of 47 carnivorous plant species, especially Lentibulariaceae, in order to understand their digestive activities. We address the following questions: (1) Are phosphatases produced by the plants and/or by inhabitants of the traps? (2) Which type of hairs/glands is involved in the production of phosphatases? (3) Is this phosphatase production a common feature among carnivorous plants or is it restricted to evolutionarily advanced species? Our results showed activity of the phosphatases in glandular structures of the majority of the plants tested, both from the greenhouse and from sterile culture. In addition, extracellular phosphatases can also be produced by trap inhabitants. In Utricularia, activity of phosphatase was detected in internal glands of 27 species from both primitive and advanced sections and different ecological groups. Further positive reactions were found in Genlisea, Pinguicula, Aldrovanda, Dionaea, Drosera, Drosophyllum, Nepenthes, and Cephalotus. In Utricularia and Genlisea, enzymatic secretion was independent of stimulation by prey. Byblis and Roridula are usually considered as "proto-carnivores", lacking digestive enzymes. However, we found high activity of phosphatases in both species. Thus, they should be classified as true carnivores. We suggest that the inflorescence of Byblis and some Pinguicula species might also be an additional "carnivorous organ", which can trap a prey, digest it, and finally absorb available nutrients. PMID:16865659

  3. Stimulation of receptor protein-tyrosine phosphatase alpha activity and phosphorylation by phorbol ester

    DEFF Research Database (Denmark)

    den Hertog, J; Sap, J; Pals, C E;

    1995-01-01

    Receptor Protein-Tyrosine Phosphatase alpha (RPTP alpha) is a transmembrane protein with two cytoplasmic catalytic protein-tyrosine phosphatase (PTP) domains and a relatively short (123 amino acids) extracellular domain. Here we report that treatment of transfected cells that express RPTP alpha...

  4. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  5. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosin

  6. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  7. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

    Science.gov (United States)

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  8. 22(R)-hydroxycholesterol induces HuR-dependent MAP kinase phosphatase-1 expression via mGluR5-mediated Ca(2+)/PKCα signaling.

    Science.gov (United States)

    Kim, Hyunmi; Woo, Joo Hong; Lee, Jee Hoon; Joe, Eun-Hye; Jou, Ilo

    2016-08-01

    MAP kinase phosphatase (MKP)-1 plays a pivotal role in controlling MAP kinase (MAPK)-dependent (patho) physiological processes. Although MKP-1 gene expression is tightly regulated at multiple levels, the underlying mechanistic details remain largely unknown. In this study, we demonstrate that MKP-1 expression is regulated at the post-transcriptional level by 22(R)-hydroxycholesterol [22(R)-HC] through a novel mechanism. 22(R)-HC induces Hu antigen R (HuR) phosphorylation, cytoplasmic translocation and binding to MKP-1 mRNA, resulting in stabilization of MKP-1 mRNA. The resulting increase in MKP-1 leads to suppression of JNK-mediated inflammatory responses in brain astrocytes. We further demonstrate that 22(R)-HC-induced phosphorylation of nuclear HuR is mediated by PKCα, which is activated in the cytosol by increases in intracellular Ca(2+) levels mediated by the phospholipase C/inositol 1,4,5-triphosphate receptor (PLC/IP3R) pathway and translocates from cytoplasm to nucleus. In addition, pharmacological interventions reveal that metabotropic glutamate receptor5 (mGluR5) is responsible for the increases in intracellular Ca(2+) that underlie these actions of 22(R)-HC. Collectively, our findings identify a novel anti-inflammatory mechanism of 22(R)-HC, which acts through PKCα-mediated cytoplasmic shuttling of HuR to post-transcriptionally regulate MKP-1 expression. These findings provide an experimental basis for the development of a RNA-targeted therapeutic agent to control MAPK-dependent inflammatory responses. PMID:27206966

  9. Measurement of bone alkaline phosphatase and relative study with osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    YANG Zhiping; HUO Yanqing; SUN Guangzhi; LI Jianmin; LI Xin

    2007-01-01

    The objective of this paper is to explore the value of bone alkaline phosphatase (BALP) for diagnosing osteosarcoma,evaluating the effect of the chemotherapy,judging the prognosis and supervising the relapse and metastasis.The immunoassay was used to check the BALP of the blood serum that was from 42 primary osteosarcoma patients.Alkaline phosphatase (ALP) in blood serum was checked with auto biochemistry equipment.The biopsy tissue and the lesion resected in operation were treated with pathology and histological response was counted.The patients were followed up from five months to 49 months with an average of 24.3 months.Eighteen cases relapsed and transferred,among which,16 of them were dead,and others were survival to the end of the follow-up.BALP was more sensitive than ALP in diagnosing osteosarcoma (P = 0.015).Fifteen cases decreased to normal value in ALP after preoperative chemotherapy,and 34 cases decreased in BALP.Both ALP and BALP in all cases decreased to normal value in postoperative.There was significant difference in positive correlation between the decrease of BALP and the increase of histological response (P = 0.001,r = 0.642).In the followup,there was significant difference in BALP between the group of relapse and transfer and the group of free disease survival (P=0.000).As a check marker in blood serum,BALP,reflecting the process of ossification,has a higher sensitivity than ALP.It has applied value in the diagnosis of osteosarcoma,reflection of the effect of chemotherapy and forecast the prognosis.

  10. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells.

    Science.gov (United States)

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan

    2015-09-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk. PMID:25745026

  11. Mannitol metabolism in brown algae involves a new phosphatase family.

    Science.gov (United States)

    Groisillier, Agnès; Shao, Zhanru; Michel, Gurvan; Goulitquer, Sophie; Bonin, Patricia; Krahulec, Stefan; Nidetzky, Bernd; Duan, Delin; Boyen, Catherine; Tonon, Thierry

    2014-02-01

    Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase (M1Pase). Genome analysis of the brown algal model Ectocarpus siliculosus allowed identification of genes potentially involved in the mannitol cycle. Among these, two genes coding for haloacid dehalogenase (HAD)-like enzymes were suggested to correspond to M1Pase activity, and thus were named EsM1Pase1 and EsM1Pase2, respectively. To test this hypothesis, both genes were expressed in Escherichia coli. Recombinant EsM1Pase2 was shown to hydrolyse the phosphate group from mannitol-1-phosphate to produce mannitol but was not active on the hexose monophosphates tested. Gene expression analysis showed that transcription of both E. siliculosus genes was under the influence of the diurnal cycle. Sequence analysis and three-dimensional homology modelling indicated that EsM1Pases, and their orthologues in Prasinophytes, should be seen as founding members of a new family of phosphatase with original substrate specificity within the HAD superfamily of proteins. This is the first report describing the characterization of a gene encoding M1Pase activity in photosynthetic organisms. PMID:24323504

  12. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    Science.gov (United States)

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  13. Purification and characterization of acid phosphatase from a germinating black gram (Vigna mungo L. seedling

    Directory of Open Access Journals (Sweden)

    Asaduzzaman A.K.M.

    2011-01-01

    Full Text Available An acid phosphatase has been isolated and purified from an extract of a germinating black gram seedling. The method was accomplished by gel filtration of a germinating black gram seedling crude extract on sephadex G-75 followed by ion exchange chromatography on DEAE cellulose. The acid phosphatase gave a single band on SDS-polyacrylamide slab gel electrophoresis. The molecular weight of the acid phosphatase determined by SDS-polyacrylamide slab gel electrophoresis was estimated to be 25 kDa. The purified enzyme showed maximum activity at pH 5 and at temperature of 55°C. Mg2+, Zn2+ and EDTA had an inhibitory effect on the activity of the acid phosphatase. Black gram seedling acid phosphatase was activated by K+, Cu2+ and Ba2+. The Km value of the enzyme was found to be 0.49 mM for pNPP as substrate.

  14. Correlations between calcineurin phosphatase inhibition and cyclosporine metabolites concentrations in kidney transplant recipients: implications for immunoassays

    DEFF Research Database (Denmark)

    Karamperis, N; Koefoed-Nielsen, PB; Brahe, P;

    2006-01-01

    by the enzyme multiplied immunoassay technique (EMIT) and by the polyclonal fluorescence polarization immunoassay (pFPIA). Calcineurin phosphatase activity was measured by its ability to dephosphorylate a previously phosphorylated 19-amino acid peptide. We found that calcineurin phosphatase inhibition...... by inhibiting the enzyme calcineurin phosphatase. Determination of the enzyme's activity is one of the most promising pharmacodynamic markers. It is unknown how calcineurin phosphatase inhibition correlates with various cyclosporine monitoring assays and what is the potential impact of metabolites...... in this perspective? The aim of the present study was to determine the concentration of cyclosporine (by means of three different assay methods) and the four most significant metabolites (AM1, AM4N, AM9, and AM1C) in relation to calcineurin phosphatase inhibition. Twelve randomly selected cyclosporine-treated renal...

  15. Effects of Lanthanum and Cerium on Acid Phosphatase Activities in Two Soils

    Institute of Scientific and Technical Information of China (English)

    徐冬梅; 刘广深; 徐杰; 刘维屏

    2004-01-01

    To evaluate the security of using thulium,comparision between effects of La and those of Ce on acidic phosphatase activities in red soil and yellow soil in Zhejiang district was studied under conditions of ambient temperature and humidity. Results show that the acid phosphatase from different soil respondes to La and Ce differently. The activity of acid phosphatase in soil 1 declines with the increase of the concentration of La and Ce. The maximum inhibitory ratio of La and Ce reaches 69.8% and 71.0% respectively. But La and Ce have stimulative effect on the activity of acid phosphatase in soil 2. Under the effect of same concentration of the thulium,the acid phosphatase in two soils increases with the extending of culture time.

  16. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  17. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation.

    Science.gov (United States)

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2015-03-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease.

  18. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation.

    Science.gov (United States)

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2015-03-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease. PMID:25581833

  19. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy.

    Directory of Open Access Journals (Sweden)

    Marianne R Spalinger

    Full Text Available BACKGROUND: Variations within the gene locus encoding protein tyrosine phosphatase non-receptor type 22 (PTPN22 are associated with the risk to develop inflammatory bowel disease (IBD. PTPN22 is involved in the regulation of T- and B-cell receptor signaling, but although it is highly expressed in innate immune cells, its function in other signaling pathways is less clear. Here, we study whether loss of PTPN22 controls muramyl-dipeptide (MDP-induced signaling and effects in immune cells. MATERIAL & METHODS: Stable knockdown of PTPN22 was induced in THP-1 cells by shRNA transduction prior to stimulation with the NOD2 ligand MDP. Cells were analyzed for signaling protein activation and mRNA expression by Western blot and quantitative PCR; cytokine secretion was assessed by ELISA, autophagosome induction by Western blot and immunofluorescence staining. Bone marrow derived dendritic cells (BMDC were obtained from PTPN22 knockout mice or wild-type animals. RESULTS: MDP-treatment induced PTPN22 expression and activity in human and mouse cells. Knockdown of PTPN22 enhanced MDP-induced activation of mitogen-activated protein kinase (MAPK-isoforms p38 and c-Jun N-terminal kinase as well as canonical NF-κB signaling molecules in THP-1 cells and BMDC derived from PTPN22 knockout mice. Loss of PTPN22 enhanced mRNA levels and secretion of interleukin (IL-6, IL-8 and TNF in THP-1 cells and PTPN22 knockout BMDC. Additionally, loss of PTPN22 resulted in increased, MDP-mediated autophagy in human and mouse cells. CONCLUSIONS: Our data demonstrate that PTPN22 controls NOD2 signaling, and loss of PTPN22 renders monocytes more reactive towards bacterial products, what might explain the association of PTPN22 variants with IBD pathogenesis.

  20. Genetic optimization of a bacteriophage-delivered alkaline phosphatase reporter to detect Escherichia coli.

    Science.gov (United States)

    Jackson, Angelyca A; Hinkley, Troy C; Talbert, Joey N; Nugen, Sam R; Sela, David A

    2016-10-01

    A large fraction of foodborne illnesses are linked to (∼46%) leafy green vegetables contaminated by pathogens harbored in agricultural water. To prevent this, accurate point-of-production detection tools are required to identify and quantify bacterial contaminants in produce before consumers are impacted. In this study, a proof-of-concept model was engineered for a phage-based Escherichia coli detection system. We engineered the coliphage T7 to express alkaline phosphatase (ALP) to serve as the signal for E. coli detection. Wild type phoA (T7ALP) and a dominant-active allele, phoA D153G D330N (T7ALP*) was inserted into the T7 genome, with engineered constructs selected by CRISPR-mediated cleavage of unaltered chromosomes and confirmed by PCR. Engineered phages and E. coli target cells were co-incubated for 16 hours to produce lysates with liberated ALP correlated with input cell concentrations. A colorimetric assay used p-nitrophenyl phosphate (pNPP) to demonstrate significant ALP production by T7ALP and T7ALP* compared to the vector control (T7EV) (p≤ 0.05). Furthermore, T7ALP* produced 2.5-fold more signal than T7ALP (p≤ 0.05) at pH 10. Due to the increase in signal for the modified ALP* allele, we assessed T7ALP* sensitivity in a dose-responsive manner. We observed 3-fold higher signal for target cell populations as low as ∼2 × 10(5) CFU mL(-1) (p≤ 0.05 vs. no-phage control). PMID:27412402

  1. Effect of heat-treatment, phytase, xylanase and soaking time on inositol phosphate degradation in vitro in wheat, soybean meal and rapeseed cake

    DEFF Research Database (Denmark)

    Blaabjerg, Karoline; Carlsson, N G; Hansen-Møller, Jens;

    2010-01-01

    An in vitro method was used to evaluate the degradation of myo-inositol hexakisphosphate (InsP6) in non-heat-treated wheat (NHW), heat-treated wheat (HW), soybean meal (SBM) or rapeseed cake (RSC) soaked separately or in combination. The feedstuffs were soaked in water (20 °C) and samples were...

  2. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  3. Ice nucleation of an insect lipoprotein ice nucleator (LPIN) correlates with retardation of the hydrogen bond dynamics at the myo-inositol ring.

    Science.gov (United States)

    Bäumer, Alexander; Duman, John G; Havenith, Martina

    2016-07-28

    Remarkably little is known about the mechanism of action of ice nucleation proteins (INPs), although their ability to trigger ice nucleation could be used in a broad variety of applications. We present CD measurements of an insect lipoprotein ice nucleator (LPIN) which show that the lipoproteins consist of a high amount of β-structures (35%). Terahertz absorption spectroscopy is used to probe the influence of the LPIN on the H-bond network dynamics. We observe a small, but significant THz excess, as an indication of an influence on the H-bond network dynamics. When adding the ice nucleation inhibitor sodium borate, this effect is considerably reduced, similar to that observed before for antifreeze glycoproteins (AFGPs). We propose that myo-inositol, the functional group of phosphatidylinositols, is crucial for the observed change of the H-bond network dynamics of hydration water. This hypothesis is confirmed by additional THz experiments which revealed that the influence of myo-inositol on the hydrogen bond network can be blocked by sodium borate, similar to the case of LPINs. Interestingly, we find a less significant effect when myo-inositol is replaced for chiro- and allo-inositol which underlines the importance of the exact positioning of the OH groups for the interaction with the H-bond network. We propose that a local ordering of water molecules is supporting ice nucleation activity for the LPIN in a similar way to that found for AFP activity in the case of hyperactive insect AFPs. PMID:27373225

  4. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Science.gov (United States)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  5. A Novel Synthesis of 3-O-Allyl-4, 5, 6-tri-O-benzyl-1-O-(p-methoxybenzyl)-D-myo-inositol

    Institute of Scientific and Technical Information of China (English)

    Zhi Zhou YUE; Yuan Chao LI

    2005-01-01

    Highly efficient synthesis of the entitled compound was achieved from a readily available myo-inositol derivative. The key step involved a desymmetrization with (+)-camphor dimethyl ketal to give two diastereomers. The two diastereomers could be used to synthesize the same compound by changing the orders to introduce the protective groups.

  6. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  7. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  8. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  9. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  10. Hypotonic activation of the myo-inositol transporter SLC5A3 in HEK293 cells probed by cell volumetry, confocal and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Joseph Andronic

    Full Text Available Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol P ino [m/s] and expression/localization of SLC5A3. P ino values were determined by cell volumetry over a wide tonicity range (100-275 mOsm in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200-275 mOsm, P ino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼ 3 nm/s at 100-125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in P ino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM. dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200-2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80-800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.

  11. Comparative evaluation of Schistosoma mansoni, Schistosoma intercalatum, and Schistosoma haematobium alkaline phosphatase antigenicity by the alkaline phosphatase immunoassay (APIA).

    Science.gov (United States)

    Cesari, I M; Ballén, D E; Mendoza, L; Ferrer, A; Pointier, J-P; Kombila, M; Richard-Lenoble, D; Théron, A

    2014-04-01

    To know if alkaline phosphatase (AP) from schistosomes other than Schistosoma mansoni can be used as diagnostic marker for schistosomiasis in alkaline phosphatase immunocapture assay (APIA), we comparatively tested n-butanol extracts of adult worm membranes from a Venezuelan (JL) strain of S. mansoni (Ven/AWBE/Sm); a Cameroonian (EDEN) strain of Schistosoma intercalatum (Cam/AWBE/Si) and a Yemeni strain of Schistosoma haematobium (Yem/AWBE/Sh). APIA was evaluated with sera of patients from Venezuela, Senegal, and Gabon infected with S. mansoni, from Gabon infected with S. intercalatum or S. haematobium, from Chine infected with Schistosoma japonicum and from Cambodian patients infected with Schistosoma mekongi. Results indicate that 92.5% (37/40) of Venezuela sera, 75% (15/20) of Senegal sera, 39.5% (17/43) of S. haematobium sera, and 19.2% (5/26) S. intercalatum sera were APIA-positive with the Ven/AWBE/Sm preparation. APIA with the Cam/AWBE/Si preparation showed that 53.8% of S. intercalatum-positive sera had anti-AP antibodies, and 51.2% S. haematobium-positive sera cross-immunocapturing the S. intercalatum AP. APIA performed with Yem/AWBE/Sh showed that 55.8% S. haematobium sera were positive. Only two out of nine S. japonicum sera were APIA-positive with the Ven/AWBE/Sm and Cam/AWBE/Si, and no reaction was observed with Cambodian S. mekongi-positive sera. AP activity was shown to be present in all the schistosome species/strains studied. The use of APIA as a tool to explore the APs antigenicity and the presence of Schistosoma sp. infections through the detection of anti-Schistosoma sp. AP antibodies in a host, allowed us to demonstrate the antigenicity of APs of S. mansoni, S. intercalatum, and S. haematobium.

  12. Cloning and Characterization of a Novel Purple Acid Phosphatase Gene (MtPAP1) from Medicago truncatula Barrel Medic

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel purple acid phosphatase gene (MtPAP1) was isolated from the model legume Medicago truncatula Barrel Medic. The cDNA was 1 698 bp in length with an open reading frame (ORF) of 1 398 bp capable of encoding an N-terminal signal peptide of 23 amino acids. The transcripts of MtPAP1 were mainly detected in leaves under high-phosphate conditions, whereas under low-phosphate conditions the transcript level was reduced in leaves and increased in roots, with the strongest hybridization signal detected in roots. A chimeric gene construct fusing MtPAP1 and GFPwas made in which the fusion was driven by the CaMV35S promoter. Transgenlc Arabidopsis plants carrying the chimeric gene constructs showed that the fusion protein was mainly located at the apoplast based on confocal microscopic analysis, showing that MtPAP1 could be secreted to the outside of the cell directed by the signal peptide at the N-terminal. The coding region of MtPAP1 without signal peptide was inserted into the prokaryotic expression vector pET-30a (+) and overexpressed in Escherlchia coll BL21(DE3). The acid phosphatase (APase) proteins extracted from bacterial culture were found largely based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An enzyme activity assay demonstrated that the APase activity in the transformed bacteria was 3.16-fold higher than that of control. The results imply that MtPAP1 functions to improve phosphorus acquisition in plants under conditions of phosphorus (P) stress.

  13. Distinct soil bacterial communities revealed under a diversely managed agroecosystem.

    Directory of Open Access Journals (Sweden)

    Raymon S Shange

    Full Text Available Land-use change and management practices are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, their effect on the soil microbial community and their subsequent influence on soil function is still difficult to quantify. Recent applications of molecular techniques to soil biology, especially the use of 16S rRNA, are helping to bridge this gap. In this study, the influence of three land-use systems within a demonstration farm were evaluated with a view to further understand how these practices may impact observed soil bacterial communities. Replicate soil samples collected from the three land-use systems (grazed pine forest, cultivated crop, and grazed pasture on a single soil type. High throughput 16S rRNA gene pyrosequencing was used to generate sequence datasets. The different land use systems showed distinction in the structure of their bacterial communities with respect to the differences detected in cluster analysis as well as diversity indices. Specific taxa, particularly Actinobacteria, Acidobacteria, and classes of Proteobacteria, showed significant shifts across the land-use strata. Families belonging to these taxa broke with notions of copio- and oligotrphy at the class level, as many of the less abundant groups of families of Actinobacteria showed a propensity for soil environments with reduced carbon/nutrient availability. Orders Actinomycetales and Solirubrobacterales showed their highest abundance in the heavily disturbed cultivated system despite the lowest soil organic carbon (SOC values across the site. Selected soil properties ([SOC], total nitrogen [TN], soil texture, phosphodiesterase [PD], alkaline phosphatase [APA], acid phosphatase [ACP] activity, and pH also differed significantly across land-use regimes, with SOM, PD, and pH showing variation consistent with shifts in community structure and composition. These results suggest that use of

  14. Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 (IP6K3) gene promoter to the susceptibility to late onset Alzheimer's disease.

    Science.gov (United States)

    Crocco, Paolina; Saiardi, Adolfo; Wilson, Miranda S; Maletta, Raffaele; Bruni, Amalia C; Passarino, Giuseppe; Rose, Giuseppina

    2016-09-01

    Maintenance of electric potential and synaptic transmission are energetically demanding tasks that neuronal metabolism must continually satisfy. Inability to fulfil these energy requirements leads to the development of neurodegenerative disorders, including Alzheimer's disease. A prominent feature of Alzheimer's disease is in fact neuronal glucose hypometabolism. Thus understanding the fine control of energetic metabolism might help to understand neurodegenerative disorders. Recent research has indicated that a novel class of signalling molecules, the inositol pyrophosphates, act as energy sensors. They are able to alter the balance between mitochondrial oxidative phosphorylation and glycolytic flux, ultimately affecting the cellular level of ATP. The neuronal inositol pyrophosphate synthesis relies on the activity of the neuron enriched inositol hexakisphosphate kinase 3 (IP6K3) enzyme. To verify an involvement of inositol pyrophosphate signalling in neurodegenerative disorders, we performed tagging single nucleotide polymorphism (SNP) analysis of the IP6K3 gene in patients with familial and sporadic late onset Alzheimer's disease (LOAD). Two SNPs in the 5'-flanking promoter region of the IP6K3 gene were found to be associated with sporadic LOAD. Characterizing the functionality of the two polymorphisms by luciferase assay revealed that one of them (rs28607030) affects IP6K3 promoter activity, with the G allele showing an increased activity. As the same allele has a beneficial effect on disease risk, this may be related to upregulation of IP6K3 expression, with a consequent increase in inositol pyrophosphate synthesis. In conclusion, we provide the first evidence for a contribution of genetic variability in the IP6K3 gene to LOAD pathogenesis. PMID:27345265

  15. Dimerization of inositol monophosphatase Mycobacterium tuberculosis SuhB is not constitutive, but induced by binding of the activator Mg2+

    Directory of Open Access Journals (Sweden)

    Nigou Jérôme

    2007-08-01

    Full Text Available Abstract Background The cell wall of Mycobacterium tuberculosis contains a wide range of phosphatidyl inositol-based glycolipids that play critical structural roles and, in part, govern pathogen-host interactions. Synthesis of phosphatidyl inositol is dependent on free myo-inositol, generated through dephosphorylation of myo-inositol-1-phosphate by inositol monophosphatase (IMPase. Human IMPase, the putative target of lithium therapy, has been studied extensively, but the function of four IMPase-like genes in M. tuberculosis is unclear. Results We determined the crystal structure, to 2.6 Å resolution, of the IMPase M. tuberculosis SuhB in the apo form, and analysed self-assembly by analytical ultracentrifugation. Contrary to the paradigm of constitutive dimerization of IMPases, SuhB is predominantly monomeric in the absence of the physiological activator Mg2+, in spite of a conserved fold and apparent dimerization in the crystal. However, Mg2+ concentrations that result in enzymatic activation of SuhB decisively promote dimerization, with the inhibitor Li+ amplifying the effect of Mg2+, but failing to induce dimerization on its own. Conclusion The correlation of Mg2+-driven enzymatic activity with dimerization suggests that catalytic activity is linked to the dimer form. Current models of lithium inhibition of IMPases posit that Li+ competes for one of three catalytic Mg2+ sites in the active site, stabilized by a mobile loop at the dimer interface. Our data suggest that Mg2+/Li+-induced ordering of this loop may promote dimerization by expanding the dimer interface of SuhB. The dynamic nature of the monomer-dimer equilibrium may also explain the extended concentration range over which Mg2+ maintains SuhB activity.

  16. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  17. Phosphorylated TandeMBP: A unique protein substrate for protein phosphatase assay.

    Science.gov (United States)

    Sugiyama, Yasunori; Yamashita, Sho; Uezato, Yuuki; Senga, Yukako; Katayama, Syouichi; Goshima, Naoki; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2016-11-15

    To analyze a variety of protein phosphatases, we developed phosphorylated TandeMBP (P-TandeMBP), in which two different mouse myelin basic protein isoforms were fused in tandem, as a protein phosphatase substrate. P-TandeMBP was prepared efficiently in four steps: (1) phosphorylation of TandeMBP by a protein kinase mixture (Ca(2+)/calmodulin-dependent protein kinase Iδ, casein kinase 1δ, and extracellular signal-regulated kinase 2); (2) precipitation of both P-TandeMBP and protein kinases to remove ATP, Pi, and ADP; (3) acid extraction of P-TandeMBP with HCl to remove protein kinases; and (4) neutralization of the solution that contains P-TandeMBP with Tris. In combination with the malachite green assay, P-TandeMBP can be used to detect protein phosphatase activity without using radioactive materials. Moreover, P-TandeMBP served as an efficient substrate for PPM family phosphatases (PPM1A, PPM1B, PPM1D, PPM1F, PPM1G, PPM1H, PPM1K, and PPM1M) and PPP family phosphatase PP5. Various phosphatase activities were also detected with high sensitivity in gel filtration fractions from mouse brain using P-TandeMBP. These results indicate that P-TandeMBP might be a powerful tool for the detection of protein phosphatase activities. PMID:27565380

  18. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    Science.gov (United States)

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo. PMID:20071031

  19. Restoration of the di-myo-inositol-phosphate pathway in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    Science.gov (United States)

    Cario, Anaïs; Mizgier, Alex; Thiel, Axel; Jebbar, Mohamed; Oger, Phil M

    2015-11-01

    Most Thermococcales accumulate di-myo-inositol-phosphate (DIP) as an organic solute as a response to heat stress. We have studied the accumulation of this osmolyte in the high-hydrostatic pressure adapted hyperthermophile Thermococcus barophilus. We found no accumulation of DIP under any of the stress conditions tested, although this archaeon harbors the 3 DIP synthesis genes. Lack of synthesis is due to the lack of expression of TERMP_01135 coding for the second step of DIP synthesis. In contrast to other species, the T. barophilus synthesis operon is interrupted by a four gene locus, in reverse orientation. Restoring an operon like structure at the DIP locus restored DIP synthesis, but did not have an impact on growth characteristics, suggesting that other mechanisms have evolved in this organism to cope with heat stress.

  20. Protein phosphatases decrease their activity during capacitation: a new requirement for this event.

    Directory of Open Access Journals (Sweden)

    Janetti R Signorelli

    Full Text Available There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate. The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1 NCM; 2 NCM plus inhibitors; 3 RCM; and 4 RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important

  1. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  2. Research on Phosphatases of Belladona Leaves and Their Purification (Part 1

    Directory of Open Access Journals (Sweden)

    M. Khorsand

    1956-12-01

    Full Text Available Belladona leaves as well as all other studied leaves contains two distinct phosphatase fractions belonging respectively to types II and IIIi the major parts of these enzymes is extraetible by water. It was not possible to extract the non soluble fraction which is solidly retained by the cellular constituents. Phosphatase II does not differ from other phosphatnses of the same type. Whereas phosphatase III is distinetely different from enzymes of the same type of vegetal or animal origins. It is activated by bivalent metallic ions which are specific activators of the alkaline phcspbatnses: Mg-Zn-Ni and Co.

  3. Research on Phosphatases of Belladona Leaves and Their Purification (Part 1

    Directory of Open Access Journals (Sweden)

    M. Khorsand

    1956-07-01

    Full Text Available Belladona leaves as well as all other studied leaves contains two distinct phosphatase fractions belonging respectively to types II and IIIi the major parts of these enzymes is extraetible by water. It was not possible to extract the non soluble fraction which is solidly retained by the cellular constituents. Phosphatase II does not differ from other phosphatnses of the same type. Whereas phosphatase III is distinetely different from enzymes of the same type of vegetal or animal origins. It is activated by bivalent metallic ions which are specific activators of the alkaline phcspbatnses: Mg-Zn-Ni and Co.

  4. The use of the tyrosine phosphatase antagonist orthovanadate in the study of a cell proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Hanek, G.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Incubation of murine fibroblasts with orthovanadate, a global tyrosine phosphatase inhibitor, was shown to confer a "pseudo-transformed" phenotype with regard to cell morphology and growth characteristics. This alteration was manifested by both an increasing refractile appearance of the cells, consistent with many transformed cell lines, as well as an increase in maximum cell density was attained. Despite the abrogation of cellular tyrosine phosphatase activity, orthovanadate-treated cells remained sensitive to the biological activity of a naturally occurring sialoglycopeptide (SGP) cell surface proliferation inhibitor. The results indicated that tyrosine phosphatase activity, inhibited by orthovanadate, was not involved in the signal transduction pathway of the SGP.

  5. Catalytic activity of a novel serine/threonine protein phosphatase PP5 from Leishmania major

    Directory of Open Access Journals (Sweden)

    Norris-Mullins Brianna

    2014-01-01

    Full Text Available Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania. Our knowledge of protein phosphatases (PPs and their implication in signaling events is very limited. Here we report the expression, characterization and mutagenesis analysis of a novel protein phosphatase 5 (PP5 in Leishmania major. Recombinant PP5 is a bona fide phosphatase and is enzymatically active. Site-directed mutagenesis revealed auto-inhibitory roles of the N-terminal region. This is a rational first approach to understand the role of PP5 in the biology of the parasite better as well as its potential future applicability to anti-parasitic intervention.

  6. Purification of prostatic acid phosphatase (PAP) for structural and functional studies.

    Science.gov (United States)

    Herrala, Annakaisa M; Quintero, Ileana B; Vihko, Pirkko T

    2013-01-01

    High-scale purification methods are required for several protein studies such as crystallography, mass spectrometry, circular dichroism, and function. Here we describe a purification method for PAP based on anion exchange, L-(+)-tartrate affinity, and gel filtration chromatographies. Acid phosphatase activity and protein concentration were measured for each purification step, and to collect the fractions with the highest acid phosphatase activity the p-nitrophenyl phosphate method was used. The purified protein obtained by the procedure described here was used for the determination of the first reported three-dimensional structure of prostatic acid phosphatase.

  7. Is phosphoadenosine phosphate phosphatase a target of lithium’s therapeutic effect?

    OpenAIRE

    Shaltiel, G.; Deutsch, J.; Rapoport, S I; Basselin, M.; Belmaker, R. H.; Agam, G.

    2009-01-01

    Lithium, which is approved for treating patients with bipolar disorder, is reported to inhibit 3′(2′)-phosphoadenosine-5′-phosphate (PAP) phosphatase activity. In yeast, deletion of PAP phosphatase results in elevated PAP levels and in inhibition of sulfation and of growth. The effect of lithium on PAP phosphatase is remarkable for the low Ki (~0.2 mM), suggesting that this system would be almost completely shut down in vivo with therapeutic levels of 1 mM lithium, thereby elevating PAP level...

  8. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    Full Text Available BACKGROUND: Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. PRINCIPAL FINDINGS: Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. CONCLUSION: Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  9. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity.

    Science.gov (United States)

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L

    2014-11-14

    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP's role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP's ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP's ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP's ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium.

  10. Role of Striatal-Enriched Tyrosine Phosphatase in Neuronal Function.

    Science.gov (United States)

    Kamceva, Marija; Benedict, Jessie; Nairn, Angus C; Lombroso, Paul J

    2016-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a CNS-enriched protein implicated in multiple neurologic and neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA and AMPA receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits. High levels of STEP are present in human postmortem samples and animal models of Alzheimer's disease, Parkinson's disease, and schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that include ischemia, Huntington's chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer's disease and the mechanisms by which STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in mouse models of Alzheimer's disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest that STEP is an important point for modulation of proteins required for synaptic plasticity. PMID:27190655

  11. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    Science.gov (United States)

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  12. Sensitive optical detection of alkaline phosphatase activity with quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiangling [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China); The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China); Chen, Zhenzhen; Chen, Xiaoying; Liu, Jing [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China); Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China)

    2014-01-15

    A simple method has been developed to detect the activity of alkaline phosphatase (ALP) by the changing of fluorescence intensities of the quantum dots (QDs). In this system, the fluorescence intensities of the QDs were quenched by p-nitrophenol (pNP) which was produced in the process of ALP catalytic reaction. A series of linear calibration curves of the activity of ALP were obtained in different pH buffer solutions. The wide linear range was 3–1000 U L{sup −1} and the detection limit was 3 U L{sup −1} (S/N=3). Furthermore, the experimental conditions of biosensor were optimized, and anti-interference ability was presented. The activity of ALP was also detected in serum and the recovery of ALP in serum samples was more than 95%. The excellent performance of this biosensor indicates that it can be used in practice detection of ALP. -- Highlights: • A sensitive ALP biosensor is constructed based on QDs without complex processes. • The analysis processing is very convenient, simple and rapid. • The detection mechanism of the ALP biosensor is studied by XPS. • The paper proposes a feasible approach for some substrates or enzymes detecting.

  13. Role of Striatal-Enriched Tyrosine Phosphatase in Neuronal Function

    Directory of Open Access Journals (Sweden)

    Marija Kamceva

    2016-01-01

    Full Text Available Striatal-enriched protein tyrosine phosphatase (STEP is a CNS-enriched protein implicated in multiple neurologic and neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA and AMPA receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits. High levels of STEP are present in human postmortem samples and animal models of Alzheimer’s disease, Parkinson’s disease, and schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that include ischemia, Huntington’s chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer’s disease and the mechanisms by which STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in mouse models of Alzheimer’s disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest that STEP is an important point for modulation of proteins required for synaptic plasticity.

  14. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    Science.gov (United States)

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds. PMID:26118418

  15. Diagnostic value of prostatic acid phosphatase as determined by radioimmunoassay

    International Nuclear Information System (INIS)

    Serum concentrations of prostatic acid phosphatase (PAP) were determined with 4 different radioimmunoassays and with the standard enzymatic method (p-nitrophenylphosphate) in 35 patients with prostatic carcinoma. Staging of localized tumors was based on histopathological evaluation after radial prostatectomy and pelvic lymphnode dissection (pTsub(1-3), pN0). In tumor lesions Tsub(1-2) N0 M0 elevated PAP-serum concentrations were found by RIA-determination in only one patient. Increased PAP serum levels were observed in 43-78% of carcinomas stage T3 N0 M0 and in 54-83% in stage Tsub(2-4) Nsub(x) M1 tumors, depending on the test kit used for the PAP determination. Concentrations for PAP obtained with the 4 different RIA-kits used, varied significantly and thus are not comparable. No false positive results were observed in sera of 9 patients with benign prostatic hyperplasia. Elevated PAP serum levels were found in a significantly higher frequency when determined by radioimmunoassay than by the enzymatic method. The results clearly indicate, that PAP is of no value for early recognition of carcinoma of the prostate even when measured by radioimmunoassay. However, the RIA-method seems to be of clinical importance in estimating the course of advanced local and metastasizing carcinoma of the prostate. (orig.)

  16. How Should an Increase in Alkaline Phosphatase Activity Be Interpreted?

    International Nuclear Information System (INIS)

    Low-level laser therapy, commonly known as LLLT, is the application of low power, monochromatic, and coherent light to injuries and lesions to stimulate healing and give pain relief. There are conflicting reports in the literature regarding the role of ALP. Objective: this study aimed to compare the cellular responses of wounded human skin fibroblasts exposed to doses of 0.5 J/cm2, 2.5 J/cm2, 5 J/cm2, or 16 J/cm2 using LLLT with a Helium-Neon laser (632.8 nm, 18.8 mW power output, 2.07 mW/cm2 power density, and 3.4 cm diameter spot size or area 9.1?cm2) to elucidate the role of alkaline phosphatase (ALP) in cell proliferation. Methods: cellular responses to laser irradiation were evaluated using ALP enzyme activity, LDH membrane integrity, neutral red for cell proliferation, optical density at 540?nm, and basic fibroblast growth factor (bFGF) expression. Results: results suggest that an increase in ALP is negatively correlated with cell growth depending on the concentration of growth factors in the medium. Results also indicate that an increase in ALP may be related to cellular damage. Conclusion: since the exact role of ALP is unknown, the ALP enzyme activity assay should be considered in conjunction with other cell proliferation assays such as neutral red, optical density, or more specifically bFGF expression.

  17. Protein tyrosine phosphatases expression during development of mouse superior colliculus.

    Science.gov (United States)

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-12-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis. PMID:19727691

  18. Pregnancy-secreted Acid phosphatase, uteroferrin, enhances fetal erythropoiesis.

    Science.gov (United States)

    Ying, Wei; Wang, Haiqing; Bazer, Fuller W; Zhou, Beiyan

    2014-11-01

    Uteroferrin (UF) is a progesterone-induced acid phosphatase produced by uterine glandular epithelia in mammals during pregnancy and targeted to sites of hematopoiesis throughout pregnancy. The expression pattern of UF is coordinated with early fetal hematopoietic development in the yolk sac and then liver, spleen, and bone to prevent anemia in fetuses. Our previous studies suggested that UF exerts stimulatory impacts on hematopoietic progenitor cells. However, the precise role and thereby the mechanism of action of UF on hematopoiesis have not been investigated previously. Here, we report that UF is a potent regulator that can greatly enhance fetal erythropoiesis. Using primary fetal liver hematopoietic cells, we observed a synergistic stimulatory effect of UF with erythropoietin and other growth factors on both burst-forming unit-erythroid and colony-forming unit-erythroid formation. Further, we demonstrated that UF enhanced erythropoiesis at terminal stages using an in vitro culture system. Surveying genes that are crucial for erythrocyte formation at various stages revealed that UF, along with erythropoietin, up-regulated transcription factors required for terminal erythrocyte differentiation and genes required for synthesis of hemoglobin. Collectively, our results demonstrate that UF is a cytokine secreted by uterine glands in response to progesterone that promotes fetal erythropoiesis at various stages of pregnancy, including burst-forming unit-erythroid and colony-forming unit-erythroid progenitor cells and terminal stages of differentiation of hematopoietic cells in the erythroid lineage. PMID:25093463

  19. Redox and zinc signalling pathways converging on protein tyrosine phosphatases.

    Science.gov (United States)

    Bellomo, Elisa; Hogstrand, Christer; Maret, Wolfgang

    2014-10-01

    Zinc ions, though redox-inert, have either pro-antioxidant or pro-oxidant functions at critical junctures in redox metabolism and redox signalling. They are released from cells and in cells, e.g. from metallothionein, a protein that transduces redox signals into zinc signals (1). The released zinc ions inhibit enzymes such as protein tyrosine phosphatases (PTPs), key regulatory enzymes of cellular phosphorylation signalling. The Ki(Zn) value for inhibition of receptor PTPB is 21pM (2). The binding is about as tight as the binding of zinc to zinc metalloenzymes and suggests tonic zinc inhibition. PTP1-B (PTPN1), an enzyme regulating the insulin and leptin receptors and involved in cancer and diabetes pathobiochemistry, has a Ki(Zn) value of about 5nM (3). Zinc ions bind to the enzyme in the closed conformation when additional metal-binding ligands are brought into the vicinity of the active site. In contrast, redox reactions target cysteines in the active sites of PTPs in the open conformation. This work provides a molecular basis how hydrogen peroxide and free zinc ions generated by growth factor signalling stimulate phosphorylation signalling differentially. (Supported by the Biotechnology and Biological Sciences Research Council UK, grant BB/K001442/1.). PMID:26461422

  20. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  1. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  2. MAP kinase phosphatase 2 regulates macrophage-adipocyte interaction.

    Directory of Open Access Journals (Sweden)

    Huipeng Jiao

    Full Text Available Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2 in inflammation during macrophage-adipocyte interaction.White adipose tissues (WAT from mice either on a high-fat diet (HFD or normal chow (NC were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction.HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs. MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction.MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.

  3. Expression of acid phosphatase in the seminiferous epithelium of vertebrates.

    Science.gov (United States)

    Peruquetti, R L; Taboga, S R; Azeredo-Oliveira, M T V

    2010-01-01

    Acid phosphatases (AcPs) are known to provide phosphate to tissues that have high energy requirements, especially during development, growth and maturation. During spermatogenesis AcP activity is manifested in heterophagous lysosomes of Sertoli cells. This phagocytic function appears to be hormone-independent. We examined the expression pattern of AcP during the reproductive period of four species belonging to different vertebrate groups: Tilapia rendalli (Teleostei, Cichlidae), Dendropsophus minutus (Amphibia, Anura), Meriones unguiculatus (Mammalia, Rodentia), and Oryctolagus cuniculus (Mammalia, Lagomorpha). To demonstrate AcP activity, cryosections were processed for enzyme histochemistry by a modification of the method of Gömöri. AcP activity was similar in the testes of these four species. Testes of T. rendalli, D. minutus and M. unguiculatus showed an intense reaction in the Sertoli cell region. AcP activity was detected in the testes of D. minutus and O. cuniculus in seminiferous epithelium regions, where cells are found in more advanced stages of development. The seminiferous epithelium of all four species exhibited AcP activity, mainly in the cytoplasm of either Sertoli cells or germ cells. These findings reinforce the importance of AcP activity during the spermatogenesis process in vertebrates. PMID:20391346

  4. Phosphoglycosylation of a secreted acid phosphatase from Leishmania donovani.

    Science.gov (United States)

    Lippert, D N; Dwyer, D W; Li, F; Olafson, R W

    1999-06-01

    The secreted acid phosphatase (SAcP) of L.donovani is a heterogeneous glycoprotein that displays a wide array of N- and O-linked glycosylations. The O-linked sugars are of particular interest due to their similarity to the phosphoglycan structures of the major lipophosphoglycan surface antigen and released phosphoglycan (Turco et al., 1987; Greis et al., 1992). This study describes a structural analysis of the SAcP O-linked glycosylations using mass spectroscopy, amino acid sequencing, and enzymatic carbohydrate sequencing. Analysis of glycan chain lengths and peptide glycosylation site distribution was performed, revealing that the average O-linked structure was approximately 32 repeat units in length. Amino acid sequence analysis of glycosylated peptides showed that phosphoglycosylations did not occur randomly but were localized to specific serine residues within an array of degenerate serine/threonine-rich repeat sequences localized in the C-terminus. No evidence was obtained for modification of threonine residues. The observed pattern suggested that a consensus sequence may exist for localization of phosphoglycan structures. PMID:10336996

  5. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  6. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  7. Phosphatase production and activity in Citrobacter freundii and a naturally occurring, heavy-metal-accumulating Citrobacter sp.

    Science.gov (United States)

    Montgomery, D M; Dean, A C; Wiffen, P; Macaskie, L E

    1995-10-01

    The ability of a naturally occurring Citrobacter sp. to accumulate cadmium has been attributed to cellular precipitation of CdHPO4, utilizing HPO4(2-) liberated via the activity of an overproduced, Cd-resistant acid-type phosphatase. Phosphatase production and heavy metal accumulation by batch cultures of this strain (N14) and a phosphatase-deficient mutant were compared with two reference strains of Citrobacter freundii. Only strain N14 expressed a high level of acid phosphatase and accumulated lanthanum and uranyl ion enzymically. Acid phosphatase is regulated via carbon-starvation; although the C. freundii strains overexpressed phosphatase activity in carbon-limiting continuous culture, this was approximately 20-fold less than the activity of strain N14 grown similarly. Citrobacter strain N14 was originally isolated from a metal-contaminated soil environment; phosphatase overproduction and metal accumulation were postulated as a detoxification mechanism. However, application of Cd-stress, and enrichment for Cd-resistant C. freundii ('training'), reduced the phosphatase activity of this organism by about 50% as compared to Cd-unstressed cultures. The acid phosphatase of C. freundii and Citrobacter N14 had a similar pattern of resistance to some diagnostic reagents. The enzyme of the latter is similar to the PhoN acid phosphatase of Salmonella typhimurium described by other workers; the results are discussed with respect to the known phosphatases of the enterobacteria.

  8. A selective Seoul-Fluor-based bioprobe, SfBP, for vaccinia H1-related phosphatase--a dual-specific protein tyrosine phosphatase.

    Science.gov (United States)

    Jeong, Myeong Seon; Kim, Eunha; Kang, Hyo Jin; Choi, Eun Joung; Cho, Alvin R; Chung, Sang J; Park, Seung Bum

    2012-07-01

    We report a Seoul-Fluor-based bioprobe, SfBP, for selective monitoring of protein tyrosine phosphatases (PTPs). A rational design based on the structures at the active site of dual-specific PTPs can enable SfBP to selectively monitor the activity of these PTPs with a 93-fold change in brightness. Moreover, screening results of SfBP against 30 classical PTPs and 35 dual-specific PTPs show that it is selective toward vaccinia H1-related (VHR) phosphatase, a dual-specific PTP (DUSP-3).

  9. Calcineurin phosphatase activity and immunosuppression. A review on the role of calcineurin phosphatase activity and the immunosuppressive effect of cyclosporin A and tacrolimus

    DEFF Research Database (Denmark)

    Jørgensen, Kaj Anker; Koefoed-Nielsen, P.B.; Karamperis, N.

    2003-01-01

    The mode of immunosuppressive action of tacrolimus (FK506) and cyclosporin A has been elucidated. Both drugs bind to proteins in the cytoplasm to form complexes, which in turn inhibit the phosphatase activity of calcineurin, an important limiting step in the activation of T cells. The association...... between drug uptake (pharmacokinetics) and enzyme inhibition (pharmacodynamics) is under current investigation. Great variations in the correlation between blood drug levels and enzyme inhibition could indicate that monitoring calcineurin phosphatase activity for treatment might be superior to monitoring...... blood drug levels Udgivelsesdato: 2003/2...

  10. Dexamethasone Causes Sustained Expression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase 1 and Phosphatase-Mediated Inhibition of MAPK p38

    OpenAIRE

    Lasa, Marina; Abraham, Sonya M.; Boucheron, Christine; Saklatvala, Jeremy; Clark, Andrew R.

    2002-01-01

    The stress-activated protein kinase p38 stabilizes a number of mRNAs encoding inflammatory mediators, such as cyclooxygenase 2 (Cox-2). In HeLa cells the anti-inflammatory glucocorticoid dexamethasone destabilizes Cox-2 mRNA by inhibiting p38 function. Here we demonstrate that this effect is phosphatase dependent. Furthermore, in HeLa cells dexamethasone induced the sustained expression of mitogen-activated protein kinase phosphatase 1 (MKP-1), a potent inhibitor of p38 function. The inhibiti...

  11. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria.

    Science.gov (United States)

    Macaskie, L E; Bonthrone, K M; Rouch, D A

    1994-08-15

    A Citrobacter sp. was reported previously to accumulate heavy metals as cell-bound heavy metal phosphates. Metal uptake is mediated by the activity of a periplasmic acid-type phosphatase that liberates inorganic phosphate to provide the precipitant ligand for heavy metals presented to the cells. Amino acid sequencing of peptide fragments of the purified enzyme revealed significant homology to the phoN product (acid phosphatase) of some other enterobacteria. These organisms, together with Klebsiella pneumoniae, previously reported to produce acid phosphatase, were tested for their ability to remove uranium and lanthanum from challenge solutions supplemented with phosphatase substrate. The coupling of phosphate liberation to metal bioaccumulation was limited to the metal accumulating Citrobacter sp.; therefore the participation of species-specific additional factors in metal bioaccumulation was suggested.

  12. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    DEFF Research Database (Denmark)

    Faerk, J; Peitersen, Birgit; Petersen, S;

    2002-01-01

    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone mineral...... content was measured at term (mean gestational age 41 weeks) by dual energy x ray absorptiometry and corrected for body size. RESULTS: Serum alkaline phosphatase was significantly negatively associated with serum phosphate (p alkaline...

  13. Protein phosphatase 2A in stretch-induced endothelial cell proliferation

    Science.gov (United States)

    Murata, K.; Mills, I.; Sumpio, B. E.

    1996-01-01

    We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic stain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C.

  14. Stabilization of human prostate acid phosphatase by cross-linking with diimidoesters.

    Science.gov (United States)

    Wasylewska, E; Dulińska, J; Trubetskoy, V S; Torchilin, V P; Ostrowski, W S

    1987-01-01

    1. Modification of dimeric human prostate acid phosphatase (EC 3.1.3.2) by diimidoesters leads to the formation of water-soluble preparations of high enzymatic activity, resistant to denaturing agents. 2. Monomeric, dimeric, trimeric and tetrameric species were found in SDS-polyacrylamide gel electrophoresis of the phosphatase cross-linked with dimethyl-suberimidate, and dimeric, trimeric and tetrameric enzymatically active species on thin-layer Sephadex 200 gel filtration. This molecular pattern evidenced formation of the inter-subunit covalent linkages. All molecular forms are immunoreactive against the polyclonal rabbit anti-phosphatase antibodies. 3. The catalytic properties of the modified phosphatase are almost the same as those of the native enzyme. Differences in the optical properties between the modified and the native enzymes point to slight conformational transitions in the modified enzyme.

  15. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    OpenAIRE

    Faerk, J; Peitersen, B; Petersen, S; Michaelsen, K

    2002-01-01

    Background: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation.

  16. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    Science.gov (United States)

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  17. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity.

    Science.gov (United States)

    Smyth, Susan S; Sciorra, Vicki A; Sigal, Yury J; Pamuklar, Zehra; Wang, Zuncai; Xu, Yong; Prestwich, Glenn D; Morris, Andrew J

    2003-10-31

    Blood platelets play an essential role in ischemic heart disease and stroke contributing to acute thrombotic events by release of potent inflammatory agents within the vasculature. Lysophosphatidic acid (LPA) is a bioactive lipid mediator produced by platelets and found in the blood and atherosclerotic plaques. LPA receptors on platelets, leukocytes, endothelial cells, and smooth muscle cells regulate growth, differentiation, survival, motility, and contractile activity. Definition of the opposing pathways of synthesis and degradation that control extracellular LPA levels is critical to understanding how LPA bioactivity is regulated. We show that intact platelets and platelet membranes actively dephosphorylate LPA and identify the major enzyme responsible as lipid phosphate phosphatase 1 (LPP1). Localization of LPP1 to the platelet surface is increased by exposure to LPA. A novel receptor-inactive sn-3-substituted difluoromethylenephosphonate analog of phosphatidic acid that is a potent competitive inhibitor of LPP1 activity potentiates platelet aggregation and shape change responses to LPA and amplifies LPA production by agonist-stimulated platelets. Our results identify LPP1 as a pivotal regulator of LPA signaling in the cardiovascular system. These findings are consistent with genetic and cell biological evidence implicating LPPs as negative regulators of lysophospholipid signaling and suggest that the mechanisms involve both attenuation of lysophospholipid actions at cell surface receptors and opposition of lysophospholipid production. PMID:12909631

  18. STRIATAL-ENRICHED PROTEIN TYROSINE PHOSPHATASE (STEP) KNOCKOUT MICE HAVE ENHANCED HIPPOCAMPAL MEMORY

    OpenAIRE

    Venkitaramani, Deepa V.; Moura, Paula J.; Picciotto, Marina R.; Lombroso, Paul J.

    2011-01-01

    STEP is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STriatal-Enriched protein tyrosine Phosphatase (STEP) in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. H...

  19. Application of Intracellular Alkaline Phosphatase Activity Measurement in Detection of Neutrophil Adherence In Vitro

    OpenAIRE

    Katarzyna Bednarska; Magdalena Klink; Zofia Sulowska

    2006-01-01

    We have proposed the use of the fluorimetric method with 4-methylumbelliferyl phosphate (4-MUP) specific substrate for the alkaline phosphatase determination in the neutrophil adhesion assay. We provide evidence that the endogenous neutrophil alkaline phosphatase (NAP) activity evaluation is reliable to quantify neutrophil adhesion at a wide range of cell numbers (104–106). The results obtained by fluorimetric NAP activity test correlate to the results of adherence evaluated using...

  20. Acrylamide gel electrophoresis of proteins, acid phosphatases and RN-ases from three potato varieties

    OpenAIRE

    A. Kubicz; E. Wieczorek; B. Morawiecka

    2015-01-01

    Studies on variety differences in the protein and acid phosphatase patterns as well as ribunuclease activity distribution were carried out by disc electrophoresis on saline extracts of three varieties of the potato Solanum tuberosum (L.). The protein bands varied in number, position and relative abundance. One main zone of the acid phosphatase activity was detected consisting of 2-3 electrophoretically different bands. Variety differences were concerned with the number and relative abundance ...

  1. Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae

    OpenAIRE

    Garipler, Görkem; Mutlu, Nebibe; Lack, Nathan; Dunn, Cory David

    2014-01-01

    Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved alpha 4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or o...

  2. Effects of multivalent cations on cell wall-associated acid phosphatase activity

    Energy Technology Data Exchange (ETDEWEB)

    Tu, S.I.; Brouillette, J.N.; Nagahashi, G.; Kumosinski, T.F.

    1988-09-01

    Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu/sup 2 +/, Mg/sup 2 +/, Za/sup 2 +/, and Mn/sup 2 +/; unaffected by Ba/sup 2 +/, Cd/sup 2 +/, and Pb/sup 2 +/; and inhibited by Al/sup 3 +/. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg/sup 2 +/. On the other hand, in the case of corn root cells walls (CCW), only inhibition of the bound acid phosphatase by Al/sup 3 +/ and Hg/sup 2 +/ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg/sup 2 +/. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca/sup 2 +/ significantly reduced the effects of Hg/sup 2 +/ or Al/sup 3 +/, but not Mg/sup 2 +/, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg/sup 2 +/ or Al/sup 3 +/ which caused a Ca/sup 2 +/-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.

  3. Optical Algal Biosensor using Alkaline Phosphatase for Determination of Heavy Metals

    OpenAIRE

    Durrieu, Claude; Tran-Minh, Canh

    2002-01-01

    International audience A biosensor is constructed to detect heavy metals from inhibition of alkaline phosphatase (AP) present on the external membrane of Chlorella vulgaris microalgae. The microalgal cells are immobilized on removable membranes placed in front of the tip of an optical fiber bundle inside a homemade microcell. C. vulgaris was cultivated in the laboratory and its alkaline phosphatase activity is strongly inhibited in the presence of heavy metals. This property has been used ...

  4. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    OpenAIRE

    W. Huang; Liu, J; Zhou, G.; Zhang, D; Deng, Q

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation t...

  5. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  6. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  7. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  8. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  9. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  10. Modeling intraocular bacterial infections.

    Science.gov (United States)

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  11. Insight into the redox regulation of the phosphoglucan phosphatase SEX4 involved in starch degradation.

    Science.gov (United States)

    Silver, Dylan M; Silva, Leslie P; Issakidis-Bourguet, Emmanuelle; Glaring, Mikkel A; Schriemer, David C; Moorhead, Greg B G

    2013-01-01

    Starch is the major carbohydrate reserve in plants, and is degraded for growth at night. Starch breakdown requires reversible glucan phosphorylation at the granule surface by novel dikinases and phosphatases. The dual-specificity phosphatase starch excess 4 (SEX4) is required for glucan desphosphorylation; however, regulation of the enzymatic activity of SEX4 is not well understood. We show that SEX4 switches between reduced (active) and oxidized (inactive) states, suggesting that SEX4 is redox-regulated. Although only partial reactivation of SEX4 was achieved using artificial reductants (e.g. dithiothreitol), use of numerous chloroplastic thioredoxins recovered activity completely, suggesting that thioredoxins could reduce SEX4 in vivo. Analysis of peptides from oxidized and reduced SEX4 identified a disulfide linkage between the catalytic cysteine at position 198 (Cys198) and the cysteine at position 130 (Cys130) within the phosphatase domain. The position of these cysteines was structurally analogous to that for known redox-regulated dual-specificity phosphatases, suggesting a common mechanism of reversible oxidation amongst these phosphatases. Mutation of Cys130 renders SEX4 more sensitive to oxidative inactivation and less responsive to reductive reactivation. Together, these results provide the first biochemical evidence for a redox-dependent structural switch that regulates SEX4 activity, which represents the first plant phosphatase known to undergo reversible oxidation via disulfide bond formation like its mammalian counterparts.

  12. Expression and Characterization of Recombinant Thermostable Alkaline Phosphatase from a Novel Thermophilic Bacterium Thermus thermophilus XM

    Institute of Scientific and Technical Information of China (English)

    Jianbo LI; Limei XU; Feng YANG

    2007-01-01

    A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co2+, Fe2+, Mg2+, or Mn2+ but was strongly inhibited by 2.0 mM Fe2+. Under optimal conditions, the Michaelis constant (Km) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.

  13. Single and Combined Effects of As (III) and Acetochlor on Phosphatase Activity in Soil

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun; ZHANG Feng; ZHANG Guan-cai; GUAN Lian-zhu

    2013-01-01

    The actions and interactions of acetochlor and As on the soil phosphatase activity were investigated after 1, 3, 6, 10, 15, 30 and 60 d of exposure under control conditions. The soils were exposed to various concentrations of acetochlor and As individually and simultaneously. The results showed that acetochlor, As only, and combined pollution all clearly inhibited soil phosphatase activity. The maximum inhibition ratios of soil phosphatase activity by acetochlor, As only and combined pollution were 36.44, 74.12 and 61.29%, respectively. Two kinetic models,ν=c/(1+bi) (model 1) andν=c(1+ai)/(l+bi) (model 2), were used to describe the relationship between the concentrations of As and acetochlor and the activity of soil phosphatase. The semi-effect dose (ED50) values induced by As and acetochlor stress based on the inhibition of soil phosphatase were 18.1 and 33.11 mg kg-1, respectively, according to calculation by model 1. The interactive effect of acetochlor with As on soil phosphatase primarily consisted of significant antagonism effects at the higher concentrations tested. The step regression results show that the toxicity order was As (III)>acetochlor>As (III)×acetochlor throughout the incubation period.

  14. Alkaline Phosphatase Activity in San Francisco and Monterey Bays

    Science.gov (United States)

    Nicholson, D. P.

    2002-12-01

    Phosphorus (P) is an essential nutrient utilized by all living organisms, and has been recognized as a limiting nutrient in some oceanic systems (Cotner et al., 1997; Karl et al., 1995; Michaels et al., 1996; Wu et al., 2000). However, relatively little is known about the extent of P limitation in natural environments, how P limitation varies spatially and temporally, and what determines how and when P becomes limiting (Benitez-Nelson, 2000). A more direct estimate of the degree of P limitation in a variety of oceanic systems is needed to better understand P cycling and dynamics within the ocean and how these have and will change in response to global climate and environmental perturbation. Accordingly, the objective this study is to assess the P-status of marine planktonic communities in Monterey and San Francisco Bays using the activity of alkaline phosphatase in the water column. Alkaline phosphatase (AP) is the most widely used enzyme that marine organisms use to hydrolize organic P compounds to biologically available orthophosphate. Accordingly it is expected that in areas where P is a limiting nutrient organisms will produce and release more AP to seawater so they can utilize the dissolved and particulate organic P compounds. Indeed it has been suggested that the AP activity is a reliable indicator of P-availability to planktonic communities (Ammerman and Azam, 1985; Cotner and Wetzel, 1991; Hong et al., 1998). High enzyme activities indicate low dissolved inorganic phosphate (DIP) availability while low levels suggest that DIP supply satisfies the community P-demand. This study examines AP activity in San Francisco and Monterey Bays over a 12 month period, from November, 2001 through November, 2002 using two enzyme assays. The study encompasses data from a three-station transect in Monterey Bay, at depths ranging from 0-60 meters. The stations range from coastal waters to open ocean depths of several thousand meters. In San Francisco Bay, surface water from

  15. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    Science.gov (United States)

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  16. Protein phosphatase-1 activates CDK9 by dephosphorylating Ser175.

    Directory of Open Access Journals (Sweden)

    Tatiana Ammosova

    Full Text Available The cyclin-dependent kinase CDK9/cyclin T1 induces HIV-1 transcription by phosphorylating the carboxyterminal domain (CTD of RNA polymerase II (RNAPII. CDK9 activity is regulated by protein phosphatase-1 (PP1 which was previously shown to dephosphorylate CDK9 Thr186. Here, we analyzed the effect of PP1 on RNAPII phosphorylation and CDK9 activity. The selective inhibition of PP1 by okadaic acid and by NIPP1 inhibited phosphorylation of RNAPII CTD in vitro and in vivo. Expression of the central domain of NIPP1 in cultured cells inhibited the enzymatic activity of CDK9 suggesting its activation by PP1. Comparison of dephosphorylation of CDK9 phosphorylated by ((32P in vivo and dephosphorylation of CDK9's Thr186 analyzed by Thr186 phospho-specific antibodies, indicated that a residue other than Thr186 might be dephosphorylated by PP1. Analysis of dephosphorylation of phosphorylated peptides derived from CDK9's T-loop suggested that PP1 dephosphorylates CDK9 Ser175. In cultured cells, CDK9 was found to be phosphorylated on Ser175 as determined by combination of Hunter 2D peptide mapping and LC-MS analysis. CDK9 S175A mutant was active and S175D--inactive, and dephosphorylation of CDK9's Ser175 upregulated HIV-1 transcription in PP1-dependent manner. Collectively, our results point to CDK9 Ser175 as novel PP1-regulatory site which dephosphorylation upregulates CDK9 activity and contribute to the activation of HIV-1 transcription.

  17. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Domenech

    2011-01-01

    Full Text Available Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP or phosphorylcholine (Pcho. The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs: one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure.

  18. [Glucose-6-phosphatase from nuclear envelope in rat liver].

    Science.gov (United States)

    González-Mujica, Freddy

    2008-06-01

    Nuclear envelope (NE) and microsomal glucosa-6-phosphatase (G-6-Pase) activities were compared. Intact microsomes were unable to hydrolyze mannose-6-phosphate (M-6-P), on the other hand, intact NE hydrolyzes this substrate. Galactose-6-phosphate showed to be a good substrate for both NE and microsomal enzymes, with similar latency to that obtained with M-6-P using microsomes. In consequence, this substrate was used to measure the NE integrity. The kinetic parameters (Kii and Kis) of the intact NE G-6-Pase for the phlorizin inhibition using glucose-6-phosphate (G-6-P) and M-6-P as substrates, were very similar. The NE T1 transporter was more sensitive to amiloride than the microsomal T1. The microsomal system was more sensitive to N-ethylmalemide (NEM) than the NE and the latter was insensitive to anion transport inhibitors DIDS and SITS, which strongly affect the microsomal enzyme. The above results allowed to postulate the presence of a hexose-6-phosphate transporter in the NE which is able to carry G-6-P and M-6-P, and perhaps other hexose-6-phosphate which could be different from that present in microsomes or, if it is the same, its activity could by modified by the membrane system where it is included. The higher PPi hydrolysis activity of the intact NE G-6-Pase in comparison to the intact microsomal, suggests differences between the Pi/PPi transport (T2) of both systems. The lower sensitivity of the NE G-6-Pase to NEM suggests that the catalytic subunit of this system has some differences with the microsomal isoform. PMID:18717264

  19. Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors.

    Science.gov (United States)

    Bharatham, Kavitha; Bharatham, Nagakumar; Lee, Keun Woo

    2007-05-01

    A three dimensional chemical feature based pharmacophore model was developed for the inhibitors of protein tyrosine phosphatase 1B (PTP1B) using the CATALYST software, which would provide useful knowledge for performing virtual screening to identify new inhibitors targeted toward type II diabetes and obesity. A dataset of 27 inhibitors, with diverse structural properties, and activities ranging from 0.026 to 600 microM, was selected as a training set. Hypol, the most reliable quantitative four featured pharmacophore hypothesis, was generated from a training set composed of compounds with two H-bond acceptors, one hydrophobic aromatic and one ring aromatic features. It has a correlation coefficient, RMSD and cost difference (null cost-total cost) of 0.946, 0.840 and 65.731, respectively. The best hypothesis (Hypol) was validated using four different methods. Firstly, a cross validation was performed by randomizing the data using the Cat-Scramble technique. The results confirmed that the pharmacophore models generated from the training set were valid. Secondly, a test set of 281 molecules was scored, with a correlation of 0.882 obtained between the experimental and predicted activities. Hypol performed well in correctly discriminating the active and inactive molecules. Thirdly, the model was investigated by mapping on two PTP1B inhibitors identified by different pharmaceutical companies. The Hypol model correctly predicted these compounds as being highly active. Finally, docking simulations were performed on few compounds to substantiate the role of the pharmacophore features at the binding site of the protein by analyzing their binding conformations. These multiple validation approaches provided confidence in the utility of this pharmacophore model as a 3D query for virtual screening to retrieve new chemical entities showing potential as potent PTP1B inhibitors.

  20. Calcium-phosphate biomineralization induced by alkaline phosphatase activity in Escherichia coli: localization, kinetics and potential signatures in the fossil record

    Science.gov (United States)

    Cosmidis, Julie; Benzerara, Karim; Guyot, François; Skouri-Panet, Fériel; Duprat, Elodie; Férard, Céline; Guigner, Jean-Michel; Babonneau, Florence; Coelho, Cristina

    2015-12-01

    Bacteria are thought to play an important role in the formation of calcium-phosphate minerals composing marine phosphorites, as supported by the common occurrence of fossil microbes in these rocks. Phosphatase enzymes may play a key role in this process. Indeed, they may increase the supersaturation with respect to Ca-phosphates by releasing orthophosphate ions following hydrolysis of organic phosphorus. However, several questions remain unanswered about the cellular-level mechanisms involved in this model, and its potential signatures in the mineral products. We studied Ca-phosphate precipitation by different strains of Escherichia coli which were genetically modified to differ in the abundance and cellular localization of the alkaline phosphatase (PHO A) produced. The mineral precipitated by either E. coli or purified PHO A was invariably identified as a carbonate-free non-stoichiometric hydroxyapatite. However, the bacterial precipitates could be discriminated from the ones formed by purified PHO A at the nano-scale. PHO A localization was shown to influence the pattern of Ca-phosphate nucleation and growth. Finally, the rate of calcification was proved to be consistent with the PHO A enzyme kinetics. Overall, this study provides mechanistic keys to better understand phosphogenesis in the environment, and experimental references to better interpret the microbial fossil record in phosphorites.

  1. Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles.

    Science.gov (United States)

    Mechri, Beligh; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed

    2015-01-01

    This study reports a method for the analysis of mannitol, sorbitol and myo-inositol in olive tree roots and rhizospheric soil with gas chromatography. The analytical method consists of extraction with a mixture of dichloromethane:methanol (2:1, v/v) for soil samples and a mixture of ethanol:water (80:20) for root samples, silylation using pyridine, hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS). The recovery of mannitol sorbitol and myo-inositol (for extraction and analysis in dichloromethane:methanol and ethanol:water) was acceptable and ranged from 100.3 to 114.7%. The time of analysis was <24 min. Among identified polyols extracted from rhizosphere and roots of olive plants, mannitol was the major compound. A marked increase in mannitol content occurred in rhizosphere and roots of water-stressed plants, suggesting a much broader role of mannitol in stress response based on its ability to act as a compatible solute.

  2. Heme uptake in bacterial pathogens

    OpenAIRE

    Contreras, Heidi; Chim, Nicholas; Credali, Alfredo; Goulding, Celia W.

    2014-01-01

    Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within...

  3. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity.

    Directory of Open Access Journals (Sweden)

    Chang-Jin Park

    2008-09-01

    Full Text Available Perception of extracellular signals by cell surface receptors is of central importance to eukaryotic development and immunity. Kinases that are associated with the receptors or are part of the receptors themselves modulate signaling through phosphorylation events. The rice (Oryza sativa L. XA21 receptor kinase is a key recognition and signaling determinant in the innate immune response. A yeast two-hybrid screen using the intracellular portion of XA21, including the juxtamembrane (JM and kinase domain as bait, identified a protein phosphatase 2C (PP2C, called XA21 binding protein 15 (XB15. The interaction of XA21 and XB15 was confirmed in vitro and in vivo by glutathione-S-transferase (GST pull-down and co-immunoprecipitation assays, respectively. XB15 fusion proteins purified from Escherichia coli and from transgenic rice carry PP2C activity. Autophosphorylated XA21 can be dephosphorylated by XB15 in a temporal- and dosage-dependent manner. A serine residue in the XA21 JM domain is required for XB15 binding. Xb15 mutants display a severe cell death phenotype, induction of pathogenesis-related genes, and enhanced XA21-mediated resistance. Overexpression of Xb15 in an XA21 rice line compromises resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. These results demonstrate that Xb15 encodes a PP2C that negatively regulates the XA21-mediated innate immune response.

  4. Generic phosphatase activity detection using zinc mediated aggregation modulation of polypeptide-modified gold nanoparticles

    Science.gov (United States)

    Selegård, Robert; Enander, Karin; Aili, Daniel

    2014-11-01

    A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme. Phosphatase activity generates inorganic phosphate that forms an insoluble complex with Zn2+. In a sample containing a preset concentration of Zn2+, phosphatase activity will markedly reduce the concentration of dissolved Zn2+ from the original value, which in turn affects the aggregation of gold nanoparticles functionalized with a designed Zn2+ responsive polypeptide. The change in nanoparticle stability thus provides a rapid and sensitive readout of the phosphatase activity. The assay is not limited to a particular enzyme or enzyme substrate, which is demonstrated using three completely different phosphatases and five different substrates, and thus constitutes a highly interesting system for drug screening and diagnostics.A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme

  5. Biological Removal of Phosphate Using Phosphate Solubilizing Bacterial Consortium from Synthetic Wastewater: A Laboratory Scale

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2015-01-01

    Full Text Available Biological phosphate removal is an important process having gained worldwide attention and widely used for removing phosphorus from wastewater. The present investigation was aimed to screen the efficient phosphate solubilizing bacterial isolates and used to remove phosphate from synthetic wastewater under shaking flasks conditions. Pseudomonas sp. JPSB12, Enterobacter sp. TPSB20, Flavobacterium sp. TPSB23 and mixed bacterial consortium (Pseudomonas sp. JPSB12+Enterobacter sp. TPSB20+Flavobacterium sp. TPSB23 were used for the removal of phosphate. Among the individual strains, Enterobacter sp. TPSB20 was removed maximum phosphate (61.75% from synthetic wastewater in presence of glucose as a carbon source. The consortium was effectively removed phosphate (74.15-82.50% in the synthetic wastewater when compared to individual strains. The pH changes in culture medium with time and extracellular phosphatase activity (acid and alkaline were also investigated. The efficient removal of phosphate by the consortium may be due to the synergistic activity among the individual strains and phosphatase enzyme activity. The use of bacterial consortium in the remediation of phosphate contaminated aquatic environments has been discussed.

  6. Inositol's and other nutraceuticals' synergistic actions counteract insulin resistance in polycystic ovarian syndrome and metabolic syndrome: state-of-the-art and future perspectives.

    Science.gov (United States)

    Paul, Cristiana; Laganà, Antonio Simone; Maniglio, Paolo; Triolo, Onofrio; Brady, David M

    2016-06-01

    The incidence of metabolic syndrome (MetS), type II diabetes (T2D) and polycystic ovarian syndrome (PCOS) has been progressively increasing. Insulin resistance (InsR) seems to play a key role in a majority of phenotypes of these conditions, altering metabolic homeostasis, within muscle, liver, adipose and other tissues. Hyperinsulinemia is often associated with InsR and causes hormonal imbalances especially within ovaries and adrenals. Inositol is a polyalcohol, naturally occurring as nine stereoisomers, including D-chiro-inositol (DCI) and myo-inositol (MI), which have prominent roles in the metabolism of glucose and free fatty acids. MI and DCI have been classified as insulin-sensitizers and seem to adequately counteract several InsR-related metabolic alterations with a safe nutraceutical profile. Based on our analysis of selected studies that investigated MI and/or DCI, we conclude that supplementation with MI and/or DCI complement each other in their metabolic actions and act in synergy with other insulin sensitizing drugs and/or nutraceuticals. Nevertheless, considering the possible severe bias due to different methodologies across published studies, we conclude that there is a need for further studies on larger cohorts and with greater statistical power. These should further clarify outcomes and suitable therapeutic dosages of MI and DCI, possibly based on each patient's clinical status.

  7. Molecular and biochemical identification of inositol 1,3,4,5,6-pentakisphosphate 2-kinase encoding mRNA variants in castor bean (Ricinus communis L.) seeds.

    Science.gov (United States)

    Yu, Jaeju; Saiardi, Adolfo; Greenwood, John S; Bewley, J Derek

    2014-05-01

    During seed development, phytic acid (PA) associated with mineral cations is stored as phytin and mobilized following germination in support of seedling growth. Two parallel biosynthetic pathways for PA have been proposed; yet the pathway is still poorly understood in terms of its regulation and the enzymes involved. Here, the castor bean (Ricinus communis L.) gene for inositol 1,3,4,5,6-pentakisphosphate 2-kinase (RcIPK1) has been identified. This encodes the enzyme implicated in catalyzing the final reaction in PA biosynthesis, and its expression is enhanced in isolated germinated embryos by application of phosphate and myo-inositol (Ins). Even though only one copy of the RcIPK1 gene is present in the genome, numerous RNA variants are present, most likely due to alternative splicing. These are translated into six closely related protein isoforms according to in silico analysis. Functional analyses using yeast ipk1Δ revealed that only three of the mRNA variants can rescue a temperature-sensitive growth phenotype of this strain. High-performance liquid chromatography (HPLC) analysis of the synthesized inositol phosphates demonstrated that the ability to complement the missing yeast IPK1 enzyme is associated with the production of enzyme activity. The three active isoforms possess unique conserved motifs important for IPK1 catalytic activity.

  8. Biochemical Evidence for a Putative Inositol 1,3,4,5-Tetrakisphosphate Receptor in the Olfactory System of Atlantic Salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Jiongdong Pang

    2013-01-01

    Full Text Available Olfactory receptor neurons in Atlantic salmon (Salmo salar appear to use a phosphoinositide-directed phospholipase C (PLC in odorant signal transduction. The consequences of odor-activated PLC depend on its product, inositol 1,4,5-trisphosphate (IP3. Therefore, a plasma membrane rich (PMR fraction, previously characterized from salmon olfactory rosettes, was used to study binding sites for IP3 and its phosphorylation product, inositol 1,3,4,5-tetrakisphosphate (IP4. Binding sites for IP3 were present at the lower limit for detection in the PMR fraction but were abundant in a microsomal fraction. Binding sites for IP4 were abundant in the PMR fraction and thus colocalized in the same subcellular fraction with odorant receptors for amino acids and bile acids. Binding of IP4 was saturable and high affinity (Kd = 83 nM. The rank order for potency of inhibition of IP4 by other inositol polyphosphates (InsPx followed the phosphorylation number with InsP6 > InsP5 > other InsP4 isomers > InsP3 isomers > InsP2 isomers, with the latter showing no activity. The consequences of PLC activity in this system may be dictated in part by a putative receptor for IP4.

  9. Cognitive deficits and brain myo-Inositol are early biomarkers of epileptogenesis in a rat model of epilepsy.

    Science.gov (United States)

    Pascente, Rosaria; Frigerio, Federica; Rizzi, Massimo; Porcu, Luca; Boido, Marina; Davids, Joe; Zaben, Malik; Tolomeo, Daniele; Filibian, Marta; Gray, William P; Vezzani, Annamaria; Ravizza, Teresa

    2016-09-01

    One major unmet clinical need in epilepsy is the identification of therapies to prevent or arrest epilepsy development in patients exposed to a potential epileptogenic insult. The development of such treatments has been hampered by the lack of non-invasive biomarkers that could be used to identify the patients at-risk, thereby allowing to design affordable clinical studies. Our goal was to test the predictive value of cognitive deficits and brain astrocyte activation for the development of epilepsy following a potential epileptogenic injury. We used a model of epilepsy induced by pilocarpine-evoked status epilepticus (SE) in 21-day old rats where 60-70% of animals develop spontaneous seizures after around 70days, although SE is similar in all rats. Learning was evaluated in the Morris water-maze at days 15 and 65 post-SE, each time followed by proton magnetic resonance spectroscopy for measuring hippocampal myo-Inositol levels, a marker of astrocyte activation. Rats were video-EEG monitored for two weeks at seven months post-SE to detect spontaneous seizures, then brain histology was done. Behavioral and imaging data were retrospectively analysed in epileptic rats and compared with non-epileptic and control animals. Rats displayed spatial learning deficits within three weeks from SE. However, only epilepsy-prone rats showed accelerated forgetting and reduced learning rate compared to both rats not developing epilepsy and controls. These deficits were associated with reduced hippocampal neurogenesis. myo-Inositol levels increased transiently in the hippocampus of SE-rats not developing epilepsy while this increase persisted until spontaneous seizures onset in epilepsy-prone rats, being associated with a local increase in S100β-positive astrocytes. Neuronal cell loss was similar in all SE-rats. Our data show that behavioral deficits, together with a non-invasive marker of astrocyte activation, predict which rats develop epilepsy after an acute injury. These measures

  10. Bacterial chemoreceptors and chemoeffectors.

    Science.gov (United States)

    Bi, Shuangyu; Lai, Luhua

    2015-02-01

    Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.

  11. Bacterial Colony Optimization

    Directory of Open Access Journals (Sweden)

    Ben Niu

    2012-01-01

    Full Text Available This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO. BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism is developed to simplify the bacterial optimization, which is spread over the whole optimization process. However, the other behaviors such as elimination, reproduction, and migration are implemented only when the given conditions are satisfied. Two types of interactive communication schemas: individuals exchange schema and group exchange schema are designed to improve the optimization efficiency. In the simulation studies, a set of 12 benchmark functions belonging to three classes (unimodal, multimodal, and rotated problems are performed, and the performances of the proposed algorithms are compared with five recent evolutionary algorithms to demonstrate the superiority of BCO.

  12. [Bacterial diseases of rape].

    Science.gov (United States)

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  13. Bacterial transformation of terpenoids

    International Nuclear Information System (INIS)

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references

  14. Supramolecular bacterial systems

    OpenAIRE

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found in living systems, it was possible to integrate chemically-synthesized and naturally-occurring components to create platforms with interesting bioactive properties. Bacterial cells and recombinant ...

  15. Bacterial Colony Optimization

    OpenAIRE

    Ben Niu; Hong Wang

    2012-01-01

    This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli) lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO). BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism i...

  16. Comparisons of [18F]-1-deoxy-1-fluoro-scyllo-inositol with [18F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    International Nuclear Information System (INIS)

    Introduction: The aim of the study was to evaluate the uptake of [18F]-1-deoxy-1-fluoro-scyllo-inositol ([18F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [18F]-2-fluoro-2-deoxy-D-glucose ([18F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [18F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [18F]-scyllo-inositol and [18F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [18F]-scyllo-inositol was automated with good radiochemical yields (24.6%±3.3%, uncorrected for decay, 65±2 min, n=5) and high specific activities (≥195 GBq/μmol at end of synthesis). Uptake of [18F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [18F]-FDG (4.6±0.5 vs. 5.5±2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [18F]-scyllo-inositol in inflammation was lower than [18F]-FDG. While uptake of [18F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [18F]-FDG, the tumour-to-brain ratio was significantly higher (10.6±2.5 vs. 2.1±0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [18F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [18F]-FDG. The tumour-to-brain ratio of [18F]-scyllo-inositol was also significantly higher than that of [18F]-FDG for visualizing intracranial glioma xenografts in NOD SCID mice, giving a better contrast. -- Graphical Abstract: Display Omitted

  17. Comparisons of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol with [{sup 18}F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Kristin; Moran, Matthew D. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit [Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, ON, M5G 1X8 (Canada); McLaurin, JoAnne [Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 3H2 (Canada); Nitz, Mark [Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Houle, Sylvain; Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2011-10-15

    Introduction: The aim of the study was to evaluate the uptake of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol ([{sup 18}F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [{sup 18}F]-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [{sup 18}F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [{sup 18}F]-scyllo-inositol and [{sup 18}F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [{sup 18}F]-scyllo-inositol was automated with good radiochemical yields (24.6%{+-}3.3%, uncorrected for decay, 65{+-}2 min, n=5) and high specific activities ({>=}195 GBq/{mu}mol at end of synthesis). Uptake of [{sup 18}F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [{sup 18}F]-FDG (4.6{+-}0.5 vs. 5.5{+-}2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [{sup 18}F]-scyllo-inositol in inflammation was lower than [{sup 18}F]-FDG. While uptake of [{sup 18}F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [{sup 18}F]-FDG, the tumour-to-brain ratio was significantly higher (10.6{+-}2.5 vs. 2.1{+-}0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [{sup 18}F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [{sup 18}F]-FDG. The tumour-to-brain ratio of [{sup 18}F]-scyllo-inositol was also significantly higher than that of [{sup 18}F]-FDG for visualizing intracranial glioma xenografts in

  18. Associations between renal hyperfiltration and serum alkaline phosphatase.

    Directory of Open Access Journals (Sweden)

    Se Won Oh

    Full Text Available Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP level is also elevated in patients with diabetes (DM or metabolic syndrome (MS, and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in the Korea National Health and Nutrition Examination Survey IV-V databases (2008-2011 was performed. Renal hyperfiltration was defined as exceeding the age- and sex-specific 97.5th percentile. We divided participants into 4 groups according to their estimated glomerular filtration rate (eGFR: >120, 90-119, 60-89, and 120 mL/min/1.73 m2 showed the highest risk for MS, in the highest ALP quartiles (3.848, 95% CI, 1.876-7.892, compared to the lowest quartile. Similarly, the highest risk for DM, in the highest ALP quartiles, was observed in participants with eGFR >120 ml/min/1.73 m2 (2.166, 95% CI, 1.084-4.329. ALP quartiles were significantly associated with albuminuria in participants with eGFR ≥ 60 ml/min/1.73m2. The highest ALP quartile had a 1.631-fold risk elevation for albuminuria with adjustment of age and sex. (95% CI, 1.158-2.297, P = 0.005. After adjustment, the highest ALP quartile had a 1.624-fold risk elevation, for renal hyperfiltration (95% CI, 1.204-2.192, P = 0.002. In addition, hyperfiltration was significantly associated with hemoglobin, triglyceride, white blood cell count, DM, smoking, and alcohol consumption (P<0.05. The relationship between serum ALP and metabolic disorders is stronger in participants with an upper-normal range of eGFR. Higher ALP levels are significantly associated with renal hyperfiltration in Korean general population.

  19. PHLPP phosphatase:a key mediator integrating multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Hui ZHONG

    2010-01-01

    @@ Cellular responses to bacterial or viral infections and to stress require rapid and accurate transmission of signals from cell-surface receptors to the nucleus (Karin and Hunter, 1995).These signaling pathways, relying on extensive protein phosphorylation events, lead to the activation of specific transcription factors that induce the expression of appropriate target genes.Among the activated transcription factors, nuclear factor KB (NF-KB)is essential for inflammation, immunity, cell proliferation and apoptosis.NF-KB requires a signaling pathway for activation.Such NF-KB-activating pathways can be triggered by a variety of extracellular stimuli, which lead to the phosphorylation and subsequent proteasomemediated degradation of inhibitory molecules, the inhibitor of NF-KB (hcB) proteins (Karin and Ben-Neriah, 2000).Activated NF-KB migrates into the nucleus to regulate the expression of multiple target genes.

  20. The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release*

    Science.gov (United States)

    Hedgepeth, Serena C.; Garcia, M. Iveth; Wagner, Larry E.; Rodriguez, Ana M.; Chintapalli, Sree V.; Snyder, Russell R.; Hankins, Gary D. V.; Henderson, Beric R.; Brodie, Kirsty M.; Yule, David I.; van Rossum, Damian B.; Boehning, Darren

    2015-01-01

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  1. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors.

    Science.gov (United States)

    Hamada, Kozo; Terauchi, Akiko; Nakamura, Kyoko; Higo, Takayasu; Nukina, Nobuyuki; Matsumoto, Nagisa; Hisatsune, Chihiro; Nakamura, Takeshi; Mikoshiba, Katsuhiko

    2014-09-23

    The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.

  2. Crystal Structure of the Ligand Binding Suppressor Domain of Type 1 Inositol 1,4,5-Trisphosphate Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bosanac, Ivan; Yamazaki, Haruka; Matsu-ura, Toru; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Ikura, Mitsuhiko (U. of Texas-SMED)

    2010-11-10

    Binding of inositol 1,4,5-trisphosphate (IP{sub 3}) to the amino-terminal region of IP{sub 3} receptor promotes Ca{sup 2+} release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP{sub 3} binding core domain play a key role in IP{sub 3} binding suppression and regulatory protein interaction. Here we present a crystal structure of the suppressor domain of the mouse type 1 IP{sub 3} receptor at 1.8 {angstrom}. Displaying a shape akin to a hammer, the suppressor region contains a Head subdomain forming the {beta}-trefoil fold and an Arm subdomain possessing a helix-turn-helix structure. The conserved region on the Head subdomain appeared to interact with the IP{sub 3} binding core domain and is in close proximity to the previously proposed binding sites of Homer, RACK1, calmodulin, and CaBP1. The present study sheds light onto the mechanism underlying the receptor's sensitivity to the ligand and its communication with cellular signaling proteins.

  3. In Vitro Antioxidant Treatment of Semen Samples in Assisted Reproductive Technology: Effects of Myo-Inositol on Nemaspermic Parameters.

    Science.gov (United States)

    Palmieri, Mariangela; Papale, Palma; Della Ragione, Antonietta; Quaranta, Giuseppa; Russo, Giovanni; Russo, Sabatino

    2016-01-01

    Male infertility and the poor quality of sperm seem to be influenced by oxidative stress. In particular, the reactive oxygen species (ROS) mainly produced by morphologically altered spermatozoa affect sperm motility, morphology, and integrity. The aim of this study was to evaluate the efficacy of Myo-Inositol (Myo-Ins) on a number of parameters such as viscosity and total and progressive motility of spermatozoa, in order to better validate its possible practical application in vitro, in order to improve the capacitation protocols commonly used in Assisted Reproductive Technology (ART). A total of 100 fresh and 25 thawed semen samples were analyzed in vitro prior to and after addition of Myo-Ins. Treatment of samples with Myo-Ins showed an increase in the sperm total and progressive motility in both fresh and thawed samples. Furthermore, Myo-Ins proved to be well tolerated by spermatozoa in vitro, demonstrating that it can be efficiently and safely used as antioxidant in the laboratory practice and for preparation of semen samples in ART. PMID:27672392

  4. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection

    Science.gov (United States)

    Funao, Haruki; Nagai, Shigenori; Sasaki, Aya; Hoshikawa, Tomoyuki; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Nakamura, Masaya; Aizawa, Mamoru; Matsumoto, Morio; Ishii, Ken

    2016-03-01

    Various silver-coated implants have been developed to prevent implant-associated infections, and have shown dramatic effects in vitro. However, the in vivo results have been inconsistent. Recent in vitro studies showed that silver exerts antibacterial activity by mediating the generation of reactive oxygen species in the presence of oxygen. To maintain its antibacterial activity in vivo, the silver should remain in an ionic state and be stably bound to the implant surface. Here, we developed a novel bacteria-resistant hydroxyapatite film in which ionic silver is immobilized via inositol hexaphosphate chelation using a low-heat immersion process. This bacteria-resistant coating demonstrated significant antibacterial activity both in vitro and in vivo. In a murine bioluminescent osteomyelitis model, no bacteria were detectable 21 days after inoculation with S. aureus and placement of this implant. Serum interleukin-6 was elevated in the acute phase in this model, but it was significantly lower in the ionic-silver group than the control group on day 2. Serum C-reactive protein remained significantly higher in the control group than the ionic-silver group on day 14. Because this coating is produced by a low-heat immersion process, it can be applied to complex structures of various materials, to provide significant protection against implant-associated infections.

  5. Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937.

    Science.gov (United States)

    Betzenhauser, Matthew J; Fike, Jenna L; Wagner, Larry E; Yule, David I

    2009-09-11

    Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) represents a mechanism for shaping intracellular Ca(2+) signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca(2+) release in cells that express predominantly InsP(3)R2. PKA is known to phosphorylate InsP(3)R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP(3)R2 in DT40-3KO cells that are devoid of endogenous InsP(3)R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca(2+) signals and augmented the single channel open probability of InsP(3)R2. A PKA phosphorylation site unique to the InsP(3)R2 was identified at Ser(937). The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser(937), since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca(2+) signaling following PKA activation in cells that express predominantly InsP(3)R2.

  6. Using concatenated subunits to investigate the functional consequences of heterotetrameric inositol 1,4,5-trisphosphate receptors.

    Science.gov (United States)

    Chandrasekhar, Rahul; Alzayady, Kamil J; Yule, David I

    2015-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of ubiquitous, ER localized, tetrameric Ca2+ release channels. There are three subtypes of the IP3Rs (R1, R2, R3), encoded by three distinct genes, that share ∼60-70% sequence identity. The diversity of Ca2+ signals generated by IP3Rs is thought to be largely the result of differential tissue expression, intracellular localization and subtype-specific regulation of the three subtypes by various cellular factors, most significantly InsP3, Ca2+ and ATP. However, largely unexplored is the notion of additional signal diversity arising from the assembly of both homo and heterotetrameric InsP3Rs. In the present article, we review the biochemical and functional evidence supporting the existence of homo and heterotetrameric populations of InsP3Rs. In addition, we consider a strategy that utilizes genetically concatenated InsP3Rs to study the functional characteristics of heterotetramers with unequivocally defined composition. This approach reveals that the overall properties of IP3R are not necessarily simply a blend of the constituent monomers but that specific subtypes appear to dominate the overall characteristics of the tetramer. It is envisioned that the ability to generate tetramers with defined wild type and mutant subunits will be useful in probing fundamental questions relating to IP3R structure and function.

  7. Fragmented inositol 1,4,5-trisphosphate receptors retain tetrameric architecture and form functional Ca2+ release channels.

    Science.gov (United States)

    Alzayady, Kamil J; Chandrasekhar, Rahul; Yule, David I

    2013-04-19

    Inositol 1,4,5-trisphosphate receptor isoforms are a family of ubiquitously expressed ligand-gated channels encoded by three individual genes. The proteins are localized to membranes of intracellular Ca(2+) stores and play pivotal roles in Ca(2+) homeostasis. Previous studies have demonstrated that IP3R1 is cleaved by the intracellular proteases calpain and caspase both in vivo and in vitro. However, the resultant cleavage products are poorly defined, and the functional consequences of these proteolytic events are not fully understood. We demonstrate that IP3R1 is cleaved during staurosporine-induced apoptosis, yielding N-terminal fragments encompassing the ligand-binding domain and the majority of the central modulatory domain together with a C-terminal fragment containing the channel domain and cytosolic tail. Notably, these fragments remain associated with the membrane after initiation of apoptotic cleavage. Furthermore, when recombinant IP3R1 fragments, corresponding to those predicted to be generated by caspase or calpain cleavage, are stably coexpressed in cells, they physically associate and form functional channels. These data provide novel insights regarding the regulation of IP3R1 during proteolysis and provide direct evidence that polypeptide continuity is not required for IP3R activation and Ca(2+) release.

  8. The role of Inositol Phosphoglycan as a possible mediator of the radiation effects on undifferentiated thyroid carcinoma (UTC) cells

    International Nuclear Information System (INIS)

    Full text: In our laboratory we demonstrated that the Inositol Phosphoglycan (IPG) inhibits thyroperoxidase (TPO) activity and other oxidoreductases in normal bovine thyroid gland cultures, thus increasing the H2O2 levels. On the other hand, when a cell is irradiated, damage is caused either by an increase of free radicals (H2O2 and other reactive oxygen species (ROS)) or by the direct ionization of molecules, depending on the radiation quality. With the purpose to establish if the IPG participates in damage mechanisms by radiation, UTC cells of the tumoral line (ARO) in proliferation, were exposed to high and low LET radiation: gamma, neutrons, He and 7 Li nucleus (the lasts ones produced through Boron Neutron Capture Reaction). In each group, the total physical absorbed doses were 3 and 8 Gy (Ra-3 reactor neutrons flux = 7.5 109 n/cm2 s). The results show a significant increase in the IPG activity in cells irradiated with gamma and neutrons in comparison with control cultures (p2O2 levels (p<0.01). These results suggest that the inhibition of oxidoreductases by IPG would produce an increase in peroxides which would add to the ROS produced by low LET radiation strengthening the damage along with cell viability decrease

  9. Knockout of inositol-requiring enzyme 1α in pro-opiomelanocortin neurons decreases fat mass via increasing energy expenditure

    Science.gov (United States)

    Xiao, Yuzhong; Xia, Tingting; Yu, Junjie; Deng, Yalan; Liu, Hao; Liu, Bin; Chen, Shanghai; Liu, Yong

    2016-01-01

    Although numerous functions of inositol-requiring enzyme 1α (IRE1α) have been identified, a role of IRE1α in pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus is largely unknown. Here, we showed that mice lacking IRE1α specifically in POMC neurons (PIKO) are lean and resistant to high-fat diet-induced obesity and obesity-related insulin resistance, liver steatosis and leptin resistance. Furthermore, PIKO mice had higher energy expenditure, probably due to increased thermogenesis in brown adipose tissue. Additionally, α-melanocyte-stimulating hormone production was increased in the hypothalamus of PIKO mice. These results demonstrate that IRE1α in POMC neurons plays a critical role in the regulation of obesity and obesity-related metabolic disorders. Our results also suggest that IRE1α is not only an endoplasmic reticulum stress sensor, but also a new potential therapeutic target for obesity and obesity-related metabolic diseases. PMID:27558934

  10. Sodium-Dependent myo-Inositol Transporter 1 Is a Cellular Receptor for Mus cervicolor M813 Murine Leukemia Virus

    Science.gov (United States)

    Hein, Sibyll; Prassolov, Vladimir; Zhang, Yuanming; Ivanov, Dmitry; Löhler, Jürgen; Ross, Susan R.; Stocking, Carol

    2003-01-01

    Retrovirus infection is initiated by binding of the surface (SU) portion of the viral envelope glycoprotein (Env) to specific receptors on cells. This binding triggers conformational changes in the transmembrane portion of Env, leading to membrane fusion and cell entry, and is thus a major determinant of retrovirus tissue and species tropism. The M813 murine leukemia virus (MuLV) is a highly fusogenic gammaretrovirus, isolated from Mus cervicolor, whose host range is limited to mouse cells. To delineate the molecular mechanisms of its restricted host range and its high fusogenic potential, we initiated studies to characterize the cell surface protein that mediates M813 infection. Screening of the T31 mouse-hamster radiation hybrid panel for M813 infectivity localized the receptor gene to the distal end of mouse chromosome 16. Expression of one of the likely candidate genes (slc5a3) within this region in human cells conferred susceptibility to both M813 infection and M813-induced fusogenicity. slc5a3 encodes sodium myo-inositol transporter 1 (SMIT1), thus adding another sodium-dependent transporter to the growing list of proteins used by MuLVs for cell entry. Characterization of SMIT1 orthologues in different species identified several amino acid variations within two extracellular loops that may restrict susceptibility to M813 infection. PMID:12719585

  11. Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Denise S Walker

    2009-09-01

    Full Text Available When Caenorhabditis elegans encounters an unfavourable stimulus at its anterior, it responds by initiating an avoidance response, namely reversal of locomotion. The amphid neurons, ASHL and ASHR, are polymodal in function, with roles in the avoidance responses to high osmolarity, nose touch, and both volatile and non-volatile repellents. The mechanisms that underlie the ability of the ASH neurons to respond to such a wide range of stimuli are still unclear. We demonstrate that the inositol 1,4,5-trisphosphate receptor (IP(3R, encoded by itr-1, functions in the reversal responses to nose touch and benzaldehyde, but not in other known ASH-mediated responses. We show that phospholipase Cbeta (EGL-8 and phospholipase Cgamma (PLC-3, which catalyse the production of IP(3, both function upstream of ITR-1 in the response to nose touch. We use neuron-specific gene rescue and neuron-specific disruption of protein function to show that the site of ITR-1 function is the ASH neurons. By rescuing plc-3 and egl-8 in a neuron-specific manner, we show that both are acting in ASH. Imaging of nose touch-induced Ca(2+ transients in ASH confirms these conclusions. In contrast, the response to benzaldehyde is independent of PLC function. Thus, we have identified distinct roles for the IP(3R in two specific responses mediated by ASH.

  12. Sodium-dependent myo-inositol transporter 1 is a cellular receptor for Mus cervicolor M813 murine leukemia virus.

    Science.gov (United States)

    Hein, Sibyll; Prassolov, Vladimir; Zhang, Yuanming; Ivanov, Dmitry; Löhler, Jürgen; Ross, Susan R; Stocking, Carol

    2003-05-01

    Retrovirus infection is initiated by binding of the surface (SU) portion of the viral envelope glycoprotein (Env) to specific receptors on cells. This binding triggers conformational changes in the transmembrane portion of Env, leading to membrane fusion and cell entry, and is thus a major determinant of retrovirus tissue and species tropism. The M813 murine leukemia virus (MuLV) is a highly fusogenic gammaretrovirus, isolated from Mus cervicolor, whose host range is limited to mouse cells. To delineate the molecular mechanisms of its restricted host range and its high fusogenic potential, we initiated studies to characterize the cell surface protein that mediates M813 infection. Screening of the T31 mouse-hamster radiation hybrid panel for M813 infectivity localized the receptor gene to the distal end of mouse chromosome 16. Expression of one of the likely candidate genes (slc5a3) within this region in human cells conferred susceptibility to both M813 infection and M813-induced fusogenicity. slc5a3 encodes sodium myo-inositol transporter 1 (SMIT1), thus adding another sodium-dependent transporter to the growing list of proteins used by MuLVs for cell entry. Characterization of SMIT1 orthologues in different species identified several amino acid variations within two extracellular loops that may restrict susceptibility to M813 infection.

  13. Electroreduction of nitrate ions at a platinum-copper electrode in an alkaline medium: Influence of sodium inositol phytate

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: The electrochemical behavior of a Pt-Cu (copper-platinum) electrode on the electroreduction of nitrate and nitrite ions has been investigated in an alkaline medium (0.05 M NaOH) in the presence of 5 mM sodium inositol phytate (NaIP6). Different electrode materials (Cu, Pt, and Pt-Cu) were used to study their activity and selectivity towards the electroreduction of nitrates and nitrites using cyclic voltammetry. The Pt-Cu electrode shows the best performance. The addition of NaIP6 is to prevent the oxidation of copper atoms to copper ions. The effect of NaIP6 on the optimization of the electrode activity and stability was investigated in this study. The presence of NaIP6 further improves the performance of the Pt-Cu electrode especially the stability of the electrode. The final nitrate and nitrite reduction product is ammonia (NH3) which was observed both in the presence and absence of NaIP6, although different mechanism pathways are assumed to have taken place in both systems

  14. Molecular Cloning and Functional Expression of a Protein-Serine/Threonine Phosphatase from the Hyperthermophilic Archaeon Pyrodictium abyssi TAG11

    Science.gov (United States)

    Mai, Bianca; Frey, Gerhard; Swanson, Ronald V.; Mathur, Eric J.; Stetter, K. O.

    1998-01-01

    An open reading frame coding for a putative protein-serine/threonine phosphatase was identified in the hyperthermophilic archaeon Pyrodictium abyssi TAG11 and named Py-PP1. Py-PP1 was expressed in Escherichia coli, purified from inclusion bodies, and biochemically characterized. The phosphatase gene is part of an operon which may provide, for the first time, insight into a physiological role for archaeal protein phosphatases in vivo. PMID:9696747

  15. Binuclear Metal Centers in Plant Purple Acid Phosphatases: Fe-Mn in Sweet Potato and Fe-Zn in Soybean

    OpenAIRE

    Schenk, Gerhard; Ge, Yubin; Carrington, Lyle E; Wynne, Ceridwen J.; Searle, Iain R.; Carroll, Bernard J; Hamilton, Susan E.; de Jersey, John

    1999-01-01

    Purple acid phosphatases comprise a family of binuclear metal-containing acid hydrolases, representatives of which have been found in animals, plants, and fungi. The goal of this study was to characterize purple acid phosphatases from sweet potato tubers and soybean seeds and to establish their relationship with the only well-characterized plant purple acid phosphatase, the FeIII–ZnII-containing red kidney bean enzyme. Metal analysis indicated the presence in the pu...

  16. Eyes absent tyrosine phosphatase activity is not required for Drosophila development or survival.

    Directory of Open Access Journals (Sweden)

    Meng Jin

    Full Text Available Eyes absent (Eya is an evolutionarily conserved transcriptional coactivator and protein phosphatase that regulates multiple developmental processes throughout the metazoans. Drosophila eya is necessary for survival as well as for the formation of the adult eye. Eya contains a tyrosine phosphatase domain, and mutations altering presumptive active-site residues lead to strongly reduced activities in ectopic eye induction, in vivo genetic rescue using the Gal4-UAS system, and in vitro phosphatase assays. However, these mutations have not been analyzed during normal development with the correct levels, timing, and patterns of endogenous eya expression. To investigate whether the tyrosine phosphatase activity of Eya plays a role in Drosophila survival or normal eye formation, we generated three eya genomic rescue (eyaGR constructs that alter key active-site residues and tested them in vivo. In striking contrast to previous studies, all eyaGR constructs fully restore eye formation as well as viability in an eya null mutant background. We conclude that the tyrosine phosphatase activity of Eya is not required for normal eye development or survival in Drosophila. Our study suggests the need for a re-evaluation of the mechanism of Eya action and underscores the importance of studying genes in their native context.

  17. Acidic-phosphoprotein phosphatase activity of rat ventral prostate nuclei: apparent lack of effect of androgens.

    Science.gov (United States)

    Wilson, M J; Ahmed, K; Fischbach, T J

    1978-08-01

    A protein phosphatase activity has been demonstrated in nuclei of rat ventral prostate utilizing 32P-labelled phosvitin as a model acidic phosphoprotein substrate. This phosphoprotein phosphatase has a pH optimum of 6.7, is unaffected by the sulphydryl protecting agent 2-mercaptoethanol, and requires a divalent cation for maximal activity. Of the various divalent cations tested, Mg2+ is the most effective in reactivating the EDTA-inhibited enzyme. The phosphatase is inhibited by sodium flouride, sodium oxalate, N-ethylmaleimide, ATP and ADP but is relatively insensitive to ammonium molybdate. Increased ionic strength of the reaction medium also causes a reduction in the enzyme activity, e.g., by 48% at 200 mM sodium chloride. The activity of the acidic phosphoprotein phosphatase did not change significantly at 48 h or 96 h post-orchiectomy when expressed per unit of nuclear protein. However, it is reduced by approx. 30% at these times after castration if based on DNA content. The decline in activity per nucleus reflects the decrease in the realtive nuclear protein content observed at 48 h or 96 h post-orchiectomy. This suggests that the decline in the phosphorylation of prostatic nuclear acidic proteins which occurs upon androgen withdrawal is not due to increased nuclear phosphatase activity.

  18. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    Science.gov (United States)

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  19. Phosphatase Activity of Microbial Populations in Different Milk Samples in Relation to Protein and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Sosanka Protim SANDILYA

    2014-12-01

    Full Text Available Cattle milk is a rich source of protein, carbohydrate, vitamins, minerals and all other major and micro nutrients. At a moderate pH, milk is an excellent media for the growth of microbes and thus, intake of raw milk is precarious. In this study, attempt was made for a qualitative study of eight raw milk samples of different varieties of cow and goat milk, collected from Jorhat district of Assam, India, on the basis of nutritional value and microbial population. The highest microbial population was found in the milk collected from cross hybrid variety of cow, whereas microbial contamination was the least in Jersey cow milk. Samples of C1 (Jersey cow variety showed presence of the highest amount of protein and carbohydrate content as compared to the others. Almost all the milk samples showed positive acid and alkaline phosphatase activity. Maximum acid phosphatase activity was observed in cross hybrid cow milk, whereas local cow milk exhibited the highest alkaline phosphatase activity. Phosphatase activity did not show any co-relationship with microbial population of the milk samples. Similarly, the protein and carbohydrate content of the samples did not have any significant impact on both acid and alkaline phosphatase activity.

  20. Biochemical Properties and Inhibition Kinetics of Phosphatase from Wheat Thylakoid Membranes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A phosphatase that hydrolyses phosphate monoesters has been isolated from wheat thylakoid membranes.Biochemical properties and inhibition kinetics of the phosphatase were investigated using several ions, organic solvents, and inhibitors. Wheat (Triticum aestivum L. cv. PH82-2-2) thylakoid membrane phosphatase activity was activated by Mg2+, Ca2+, and Fe2+ and was inhibited by Mn2+ and Cu2+. For example, enzyme activity was activated 34.81% by 2 mmol/L Mg2+, but was inhibited 22.3% and 8.5% by 2 and 1 mmol/L Cu2+, respectively.Methanol, ethanol and glycol were all able to activate enzyme activity. Enzyme activity was activated 58.5%, 48.2%,and 8.7% by 40% ethanol, methanol and glycol, respectively. From these results, it can be seen that the degree of activation of the phosphatase was greatest for ethanol and the type of activation was uncompetitive. Moreover,the activity of the thylakoid membrane phosphatase was inhibited by molybdate, vanadate, phosphate, and fluoride and the type of inhibition produced by these elements was uncompetitive, non-competitive, competitive and mixed, respectively.

  1. [Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo].

    Science.gov (United States)

    Sibirnyi, A A; Shavlovskii, G M

    1978-01-01

    The rate of p-nitrophenyl phosphate and flavin mononucleotide (FMN) hydrolysis by the partially purified preparation of alkaline phosphatase I of Pichia guilliermondii flavinogenic yeast was studied as affected by different substrates and inorganic ions. Their Km was established to be 2.0 X 10(-4) m and 2.5 X 10(-4) M, respectively. Dephosphorylation of p-nitrophenylphosphate and FMN was inhibited competitively by beta-glycerophosphate (Ki = 3.1 X 10(-3) M, respectively). The presence of inorganic phosphate ions in the reaction mixture decreases or removes inhibition of these compounds hydrolysis by other substrates of alkaline phosphatase I. The activity of alkaline phosphatase I increases in the presence of Mg2+ and was strongly inhibited in the presence of Be2+, Cu2+, Zn2+, Cd2+ and inorganic phosphate, the mixture of Be2+ and F- being the most effective. This mixture inhibited the phosphatase activity of the partially purified preparation of alkaline phosphatase I of the cell-free extract as well as of intact cells in both the alkaline and acid zones of pH (8.6 and 5.5, respectively). Incubation of the washed iron-deficient P. guilliermondii cells in the presence of Be2+ and F- did not result in accumulation of FMN in the yeast culture. A possible role of nonspecific phosphomonoesterases in hydrolysis of FMN in vivo is discussed. PMID:208203

  2. MALDI mass sequencing and biochemical characterization of Setaria cervi protein tyrosine phosphatase.

    Science.gov (United States)

    Rai, Reeta; Singh, Neetu; Elesela, Srikanth; Tiwari, Savitri; Rathaur, Sushma

    2013-01-01

    A 30-kDa acid phosphatase with protein tyrosine phosphatase activity was identified in Setaria cervi (ScPTP). The enzyme was purified to homogeneity using three-step column chromatography. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of purified ScPTP yielded a total of eight peptides matching most closely to phosphoprotein phosphatase of Ricinus communis (RcPP). A hydrophilicity plot of RcPP revealed the presence of these peptides in the hydrophilic region, suggesting their antigenic nature. The substrate specificity of ScPTP with ortho-phospho-L-tyrosine and inhibition with sodium orthovanadate and ammonium molybdate affirmed it as a protein tyrosine phosphatase. ScPTP was also found to be tartrate resistant. The Km and Vmax were 6.60 mM and 83.3 μM/ml/min, respectively, with pNPP and 8.0 mM and 111 μM/ml/min, respectively, with ortho-phospho-L-tyrosine as the substrate. The Ki value with sodium orthovanadate was calculated to be 16.10 mM. Active site modification with DEPC, EDAC and pHMB suggested the presence of histidine, cysteine and aspartate at its active site. Thus, on the basis of MALDI-TOF and biochemical studies, it was confirmed that purified acid phosphatase is a PTP. PMID:23052758

  3. Lipophosphoglycan and secreted acid phosphatase of Leishmania tropica share species-specific epitopes.

    Science.gov (United States)

    Jaffe, C L; Perez, L; Schnur, L F

    1990-06-01

    Several species-specific monoclonal antibodies (T11, T13-T15) which only react with Leishmania tropica, recognize phosphorlated carbohydrate epitopes on lipophosphoglycan and the structurally related molecule, phosphoglycan, which is shed by promastigotes into spent culture medium. During immunoaffinity isolation of [32P]orthophosphate-labeled phosphoglycan on monoclonal antibody T15 conjugated to Sepharose 4B, a high-Mr component (approx. 200,000) was co-purified. The latter material is metabolically labeled with [35S]methionine and [3H]glucosamine. This glycoprotein was separated from phosphoglycan by chromatography on lentil lectin resin. The glycoprotein exhibited a L-tatrate-sensitive acid phosphatase activity, typical of secreted acid phosphatase (EC 3.1.3.2) from Leishmania. Monospecific antibodies to Leishmania donovani-secreted acid phosphatase selectively precipitated the L. tropica enzyme from immunoaffinity purified mixtures of the two antigens, and monoclonal antibodies to lipophosphoglycan precipitate the pure enzyme. Species-specific monoclonal antibodies to L. major lipophosphoglycan also recognized both L. tropica antigens. Treatment of the acid phosphatase with periodate or phosphodiesterase I abolished binding by the monoclonal antibodies to the pure enzyme. These results demonstrate that the two major secreted glycoconjugates of Leishmania tropica, the lipophosphoglycan and the acid phosphatase, share species-specific phosphorylated carbohydrate epitope(s). PMID:1697935

  4. Exogenously applied D-pinitol and D-chiro-inositol modifies the accumulation of α-D-galactosides in developing tiny vetch (Vicia hirsuta [L.] S.F. Gray seeds

    Directory of Open Access Journals (Sweden)

    Lesław B. Lahuta

    2011-04-01

    Full Text Available In the present study we have investigated the effect of exogenous cyclitols on the accumulation of their galactosides and raffinose family oligosaccharides (RFOs, as well as on some enzymes important for their biosynthesis in seeds of tiny vetch (Vicia hirsuta [L.] S.F. Gray. Immature seeds during 6-day incubation with D-chiro-inositol (naturally does not appear in seeds of tiny vetch were accumulated cyclitol and its galactosides (fagopyritols: B1 and B2. Short 4-hour incubation with D-chiro-inositol, and subsequent slow desiccation process caused accumulation of free cyclitol only, without biosynthesis of its galactosides. Feeding D-chiro-inositol to pods of tiny vetch induced accumulation of high levels of its galactosides (fagopyritol B1, B2 and B3 in maturing seeds. Similarly, feeding D-pinitol increased accumulation of its mono-, di- and tri-galactosides: GPA, GPB, DGPA and TGPA in tiny vetch seed. Accumulation of both cyclitols and their galactosides drastically reduced accumulation of verbascose. Inhibition of RFOs biosynthesis by elevated levels of free cyclitols suggests some competition between formation of both types of galactosides and similarity of both biosynthetic routes in tiny vetch seeds. Galactinol synthase (GolS from tiny vetch seeds demonstrated ability to utilize D-chiro-inositol as galactosyl acceptor, instead of myo-inositol. Presence of both cyclitols, as substrates for GolS, caused synthesis of their galactosides: fagopyritol B1 and galactinol. However, formation of galactinol was more efficient than fagopyritol B1. D-chiro-Inositol and D-pinitol at concentrations several-fold higher than myo-inositol had inhibitory effect on GolS. Thus, we suggest that a level of free cyclitols can have an influence on the rate of galactinol biosynthesis and further accumulation of RFOs and galactosyl cyclitols in tiny vetch seeds.

  5. Diversity and biogeography of bacterial assemblages in surface sediments across the San Pedro Basin, Southern California Borderlands.

    Science.gov (United States)

    Hewson, Ian; Jacobson Meyers, Myrna E; Fuhrman, Jed A

    2007-04-01

    Sediment bacteria play important roles in the biogeochemistry of ocean sediments; however, factors influencing assemblage composition have not been extensively studied. We examined extractable sediment bacterial abundance, the composition of bacterial assemblages using a high-throughput molecular fingerprinting approach, and several sediment biogeochemical parameters (organic matter content and alkaline phosphatase activity), along a 35 km transect from Point Fermin, Southern California, to Santa Catalina Island, across the approximately 900-m-deep San Pedro Basin. Automated rRNA intergenic spacer analysis (ARISA) demonstrated that in two spatially isolated shallow (approximately < 60 m, on opposite sides of the channel) sediment environments, assemblages were more similar to each other than to deeper communities. Distinct communities existed in deeper and shallower sediments, and stations within the deep basin over 2 km apart contained remarkably similar assemblage fingerprints. The relative contribution to total amplified DNA fluorescence of operational taxonomic units (OTUs) was significantly correlated to that of other OTUs in few comparisons (2.7% of total), i.e. few bacterial types were found together or apart consistently. The relative proportions within assemblages of only a few OTU were significantly correlated to measured physicochemical parameters (organic matter content and wet/dry weight ratio of sediments) or enzyme (alkaline phosphatase) activities. A low percentage of shared OTU between shallow and deep sediments, and the presence of similar, but spatially isolated assemblages suggests that bacterial OTU may be widely dispersed over scales of a few kilometres, but that environmental conditions select for particular assemblages.

  6. Application of intracellular alkaline phosphatase activity measurement in detection of neutrophil adherence in vitro.

    Science.gov (United States)

    Bednarska, Katarzyna; Klink, Magdalena; Sulowska, Zofia

    2006-01-01

    We have proposed the use of the fluorimetric method with 4-methylumbelliferyl phosphate (4-MUP) specific substrate for the alkaline phosphatase determination in the neutrophil adhesion assay. We provide evidence that the endogenous neutrophil alkaline phosphatase (NAP) activity evaluation is reliable to quantify neutrophil adhesion at a wide range of cell numbers (10(4)-10(6)). The results obtained by fluorimetric NAP activity test correlate to the results of adherence evaluated using the MTT reduction assay. The fluorimetric NAP activity test may be applied for resting as well as activated neutrophils without the risk of the activators interferences into the test. The alkaline phosphatase survey with the use of 4-MUP substrate is recommended herein as a sensitive, repeatable, simple, and reliable method of the neutrophil adherence determination in vitro. PMID:17047286

  7. Kinetics of Phosphatase of Regenerating Liver-3 (PRL-3) Inhibition by Small-molecular Inhibitors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Phosphatase of Regenerating Liver-3 (PRL-3) is a newly identified colorectal cancer metastasis-related protein,which isa 22 kDa non-classical protein tyrosine phosphatase with a C-terminal prenylation motif. In this study, the inhibition kinetics of protein tyrosine phosphatases (PTPs) by a fluorescent substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) was evaluated. PRL-3 exhibits classical Michaelis-Menten kinetics with a vmax value of the inhibitor magnolol can cause Km to increase, but does not alter the vmax value, which suggests the competitive inhibition of PRL-3. At the same time, it was found that DiFMUP is a more sensitive substrate for PRL-3 than para-nitrophenyl phosphate(pNPP) that is more frequently used at present. Furthermore, the method of screening for PTPs by the use of DiFMUP was developed, which studied the acceptance of DiFMUP by other PTPs.

  8. Rapid assessment of acid phosphatase activity in the mycorrhizosphere and in arbuscular mycorrhizal fungal hyphae

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A pot experiment has been carried out under controlled conditions to study the possibility of applying the technique of in vivo staining for acid phosphatase activity on the roots of mycorrhizal plants and arbuscular mycorrhizal hyphae. The pots had 5 compartments. The central root compartment was separated from the two adjacent hyphal compartments using nylon nets of 30 m m mesh, and the two hyphal compartments were separated from the two outermost compartments with 0.45 m m membranes. Red clover was grown in the root compartment and was either inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae or uninoculated. Sodium phytate was applied to all compartments. The results show that AMF can increase acid phosphatase activity of clover roots. The plant roots acquired deep red "mycorrhizal prints". The external hyphae also had obvious "hyphal prints" on the test papers, indicating the ability of mycorrhizal hyphae to release acid phosphatase.

  9. Reversible oxidation controls the activity and oligomeric state of the mammalian phosphoglycolate phosphatase AUM.

    Science.gov (United States)

    Seifried, Annegrit; Bergeron, Alexandre; Boivin, Benoit; Gohla, Antje

    2016-08-01

    Redox-dependent switches of enzyme activity are emerging as important fine-tuning mechanisms in cell signaling. For example, protein tyrosine phosphatases employ a conserved cysteine residue for catalysis, which also renders them highly susceptible to reversible inactivation by oxidation. In contrast, haloacid dehalogenase (HAD)-type phosphatases perform catalysis via a phosphoaspartyltransferase reaction. The potential regulation of HAD phosphatases by reversible oxidation has not yet been explored. Here, we investigate the redox-sensitivity of the HAD-type phosphoglycolate phosphatase PGP, also known as AUM or glycerol-3-phosphate phosphatase. We show that recombinant, purified murine PGP is inhibited by oxidation and re-activated by reduction. We identify three reactive cysteine residues in the catalytic core domain of PGP (Cys35, Cys104 and Cys243) that mediate the reversible inhibition of PGP activity and the associated, redox-dependent conformational changes. Structural analysis suggests that Cys35 oxidation weakens van-der-Waals interactions with Thr67, a conserved catalytic residue required for substrate coordination. Cys104 and Cys243 form a redox-dependent disulfide bridge between the PGP catalytic core and cap domains, which may impair the open/close-dynamics of the catalytic cycle. In addition, we demonstrate that Cys297 in the PGP cap domain is essential for redox-dependent PGP oligomerization, and that PGP oxidation/oligomerization occurs in response to stimulation of cells with EGF. Finally, employing a modified cysteinyl-labeling assay, we show that cysteines of cellular PGP are transiently oxidized to sulfenic acids. Taken together, our findings establish that PGP, an aspartate-dependent HAD phosphatase, is transiently inactivated by reversible oxidation in cells. PMID:27179418

  10. Tubulin polymerization by paclitaxel (taxol) phosphate prodrugs after metabolic activation with alkaline phosphatase.

    Science.gov (United States)

    Mamber, S W; Mikkilineni, A B; Pack, E J; Rosser, M P; Wong, H; Ueda, Y; Forenza, S

    1995-08-01

    Paclitaxel (taxol) phosphate derivatives BMY46366, BMY-46489, BMS180661 and BMS180820 were used to determine the ability of alkaline phosphatase to convert these water-soluble potential prodrugs to tubulin-polymerizing metabolites (i.e., paclitaxel). Compounds were treated up to 180 min with an in vitro metabolic activation system composed of 10% bovine alkaline phosphatase in 0.2 M tris, pH 7.4, or in 0.2 M glycine, pH 8.8, plus 0.05 M MgCl2. Samples were tested (either by direct addition or after methylene chloride extraction/dimethyl-sulfoxide resuspension) in spectrophotometric tubulin polymerization assays utilizing bovine-derived microtubule protein. Pretreatment of 2'- and 7-phosphonoxyphenylpropionate prodrugs BMS180661 and BMS180820 with alkaline phosphatase for 30 to 120 min yielded relative initial slopes of about 20 to 100% at test concentrations equimolar to paclitaxel. High-performance liquid chromatography/mass spectrometry of BMS180661 treated with alkaline phosphatase confirmed the production of paclitaxel from the prodrug. In contrast, 2'- and 7-phosphate analogs BMY46366 and BMY46489 treated with alkaline phosphatase were not active in tubulin assays. None of the paclitaxel phosphate prodrugs polymerized tubulin in the absence of metabolic activation. The differences in tubulin polymerization with metabolic activation may be related both to accessibility of the phosphate group to the enzyme and to anionic charge effects. These results demonstrate that certain paclitaxel phosphate prodrugs can be metabolized by alkaline phosphatase to yield effective tubulin polymerization. PMID:7636751

  11. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    Directory of Open Access Journals (Sweden)

    W. Huang

    2011-07-01

    Full Text Available Phosphorus (P is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF, coniferous and broad-leaved mixed forest (MF and monsoon evergreen broad-leaved forest (MEBF. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  12. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  13. Antimicrobials for bacterial bioterrorism agents.

    Science.gov (United States)

    Sarkar-Tyson, Mitali; Atkins, Helen S

    2011-06-01

    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  14. Identification of a macro-alkaline phosphatase complex in a patient with inflammatory bowel disease.

    Science.gov (United States)

    McTaggart, Malcolm P; Rawson, Catherine; Lawrence, David; Raney, Barbara S; Jaundrill, Linnet; Miller, Lorna A; Murtinho-Braga, Joseph; Kearney, Edward M

    2012-07-01

    We report the rare finding of a macro-alkaline phosphatase (macroALP) complex in a patient with a previously unexplained raised alkaline phosphatase activity. The clinical symptoms were persistent, daily diarrhoea for two months with blood in the stool. The patient was subsequently diagnosed with inflammatory bowel disease, specifically ulcerative colitis, following a rectal biopsy and colonoscopy. Two cases of macroALP associated with ulcerative colitis have been reported before, suggesting there could be an increased prevalence of macroALP in these patients. PMID:22454544

  15. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation

    OpenAIRE

    Song, Gyun Jee; Jung, Myungsu; Kim, Jong-Heon; Park, Hana; Rahman, Md. Habibur; Zhang, Sheng; Zhang, Zhong-Yin; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Suk, Kyoungho

    2016-01-01

    Background Protein tyrosine phosphatase 1B (PTP1B) is a member of the non-transmembrane phosphotyrosine phosphatase family. Recently, PTP1B has been proposed to be a novel target of anti-cancer and anti-diabetic drugs. However, the role of PTP1B in the central nervous system is not clearly understood. Therefore, in this study, we sought to define PTP1B’s role in brain inflammation. Methods PTP1B messenger RNA (mRNA) and protein expression levels were examined in mouse brain and microglial cel...

  16. Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination

    OpenAIRE

    Juliana da Silva Agostini; Rosicler Balduíno Nogueira; Elza Iouko Ida

    2010-01-01

    The objective of this work was to investigate the germination of hybrid sunflowers BRS191 and C11 as a means of lowering phytic acid (PA) content by enhancing the activity of endogenous phytase and acid phosphatase. The concentration of PA in hybrid sunflower achenes varied from 2.16 to 2.83g/100g of sample (p < 0.05). The phytase and acid phosphatase activities of sunflowers BRS191 and C11 were the highest on the 4th and 5th days of germination, respectively, with the release of the phosphor...

  17. The activity of some phosphatases in tissues of adult Hymenolepis nana Siebold (Csetoda).

    Science.gov (United States)

    Humiczewska, M

    1989-01-01

    Histochemical methods were used to study the localization and activity of acid and alkaline phosphatases, ATP-ase, 5-nucleotidase, and glucose-6-phosphatase in tissues of the mature form of Hymenolepis nana. Considerable differences in activity and localization of particular enzymes were observed in the organs of the parasite. The results obtained permit the statement that the integument is the most active enzymatically; in connection with the literature data, this gives grounds for the thesis that the integument of the cestodes functions as an absorbent-digestive organ. PMID:2558920

  18. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation

    DEFF Research Database (Denmark)

    Petrone, Angiola; Battaglia, Fortunato; Wang, Cheng;

    2003-01-01

    (RPTPalpha) regulates SRC family kinases, potassium channels and NMDA receptors. Here, we report that absence of RPTPalpha compromises correct positioning of pyramidal neurons during development of mouse hippocampus. Thus, RPTPalpha is a novel member of the functional class of genes that control radial......Despite clear indications of their importance in lower organisms, the contributions of protein tyrosine phosphatases (PTPs) to development or function of the mammalian nervous system have been poorly explored. In vitro studies have indicated that receptor protein tyrosine phosphatase alpha...

  19. Elevated Nitrogen Deposition from Alberta Oil Sands Development Stimulates Phosphatase Activity in Dominant Sphagnum Moss Species

    Science.gov (United States)

    Kashi, N. N.; Wieder, R.; Vile, M. A.

    2013-12-01

    Emissions of NOx associated with Alberta oil sands (AOS) development are leading to locally elevated atmospheric N deposition, in a region where background N deposition has been historically quite low (acid phosphatase activities in living plant capitulum of Sphagnum angustifolium, Sphagnum fuscum, and Sphagnum magellanicum were quantified in June and July using 4-methyumbelliferylphosphate and fluorescence detection of the enzymatically released methylumbelliferone (MUF). Phosphatase activities did not differ with N treatment for S. angustifolium in the bog (p=0.3409) or the poor fen (p=0.0629), or for S. fuscum in the bog (p=0.1950), averaging 35.0 × 0.7, 61.6 × 1.2, and 41.6 × 0.9 μmol MUF/g DWT/hr, respectively. For S. fuscum in the poor fen, phosphatase activities differed between N treatments (p=0.0275), ranging 40.6 × 1.1 μmol MUF/g DWT/hr in the control plots to 73.7 × 2.0 μmol MUF/g DWT/hr in the 5 kg/ha/yr N treatment plots; increasing N deposition did not result in a gradual change in enzyme activity. On the other hand, S. magellanicum phosphatase activities differed between N treatments (p=0.0189) and showed a pattern of generally increasing activity with increasing N deposition (37.4 × 0.5 μmol MUF/g DWT/hr in control plots; 97.9 × 4.5 μmol MUF/g DWT/hr in the 25 kg/ha/yr N treatment plots). The differing phosphatase responses between these dominant Sphagnum species suggest unique differences in nutrient balance and/or microbial activity. Combining the three moss species and weighting by their abundances within each plot (percent cover), phosphatase activities differed between N treatments in the bog (p=0.0388) and the poor fen (p=0.0005), with the latter exhibiting a clear increase in enzyme activity with increasing N deposition, and a doubling of phosphatase activity between the control plots and the 25 kg/kg/yr N deposition treatment. Although the three moss species responded differently, at the plot scale, increasing N deposition

  20. Investigation of the role of sigma1-receptors in inositol 1,4,5-trisphosphate dependent calcium signaling in hepatocytes.

    Science.gov (United States)

    Abou-Lovergne, A; Collado-Hilly, M; Monnet, F P; Koukoui, O; Prigent, S; Coquil, J F; Dupont, G; Combettes, L

    2011-07-01

    In hepatocytes, as in other cell types, Ca(2+) signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP(3)R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca(2+) signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP(3) receptors (InsP(3)R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP(3)R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP(3)-induced Ca(2+) release in hepatocytes. This can be explained by the rather low expression level expression of InsP(3)R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca(2+) signaling via an inhibitory effect on InsP(3) synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP(3) synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.