WorldWideScience

Sample records for bacterial inhibition mechanical

  1. Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based.

    Science.gov (United States)

    Williams, Tishan L; Yin, Yuhui W; Carter, Charles W

    2016-01-01

    Indolmycin is a natural tryptophan analog that competes with tryptophan for binding to tryptophanyl-tRNA synthetase (TrpRS) enzymes. Bacterial and eukaryotic cytosolic TrpRSs have comparable affinities for tryptophan (Km ∼ 2 μm), and yet only bacterial TrpRSs are inhibited by indolmycin. Despite the similarity between these ligands, Bacillus stearothermophilus (Bs)TrpRS preferentially binds indolmycin ∼1500-fold more tightly than its tryptophan substrate. Kinetic characterization and crystallographic analysis of BsTrpRS allowed us to probe novel aspects of indolmycin inhibitory action. Previous work had revealed that long range coupling to residues within an allosteric region called the D1 switch of BsTrpRS positions the Mg(2+) ion in a manner that allows it to assist in transition state stabilization. The Mg(2+) ion in the inhibited complex forms significantly closer contacts with non-bridging oxygen atoms from each phosphate group of ATP and three water molecules than occur in the (presumably catalytically competent) pre-transition state (preTS) crystal structures. We propose that this altered coordination stabilizes a ground state Mg(2+)·ATP configuration, accounting for the high affinity inhibition of BsTrpRS by indolmycin. Conversely, both the ATP configuration and Mg(2+) coordination in the human cytosolic (Hc)TrpRS preTS structure differ greatly from the BsTrpRS preTS structure. The effect of these differences is that catalysis occurs via a different transition state stabilization mechanism in HcTrpRS with a yet-to-be determined role for Mg(2+). Modeling indolmycin into the tryptophan binding site points to steric hindrance and an inability to retain the interactions used for tryptophan substrate recognition as causes for the 1000-fold weaker indolmycin affinity to HcTrpRS. PMID:26555258

  2. Anthocyanin Incorporated Dental Copolymer: Bacterial Growth Inhibition, Mechanical Properties, and Compound Release Rates and Stability by 1H NMR

    OpenAIRE

    Halyna Hrynash; Vinay Kumar Pilly; Alexandra Mankovskaia; Yaoyang Xiong; Getulio Nogueira Filho; Eduardo Bresciani; Céline Marie Lévesque; Anuradha Prakki

    2014-01-01

    Objective. To evaluate bacterial growth inhibition, mechanical properties, and compound release rate and stability of copolymers incorporated with anthocyanin (ACY; Vaccinium macrocarpon). Methods. Resin samples were prepared (Bis-GMA/TEGDMA at 70/30 mol%) and incorporated with 2 w/w% of either ACY or chlorhexidine (CHX), except for the control group. Samples were individually immersed in a bacterial culture (Streptococcus mutans) for 24 h. Cell viability (n = 3) was assessed by counting the ...

  3. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tseng, I-Sheng; Møller, Per;

    2010-01-01

    techniques. The microstructure of these 316 stainless steels was examined, and the influences of silver additions to 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance were investigated. This study suggested that silver-bearing 316 stainless steels could be used in...

  4. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    Science.gov (United States)

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  5. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tseng, I-Sheng; Møller, Per;

    2010-01-01

    Bacterial contamination is a major concern in many areas. In this study, silver was added to type 316 stainless steels in order to obtain an expected bacteria inhibiting property to reduce the occurrence of bacterial contamination. Silver-bearing 316 stainless steels were prepared by vacuum melti...

  6. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

    OpenAIRE

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of rib...

  7. MECHANISMS OF BACTERIAL POLYHOSTALITY

    Directory of Open Access Journals (Sweden)

    Markova Yu.A.

    2007-12-01

    Full Text Available In the review data about factors of pathogenicity of the bacteria, capable to amaze both animals, and a plant are collected. Such properties of microorganisms as adhesion, secretion of some enzymes, mobility, a phenomenon of cooperative sensitivity - play an essential role at defeat of different organisms. They are used for many universal offensive strategy overcoming protection of an organism, irrespective of its evolutionary origin. Studying of these mechanisms, will allow to provide new approaches to monitoring illnesses.

  8. Advances in Bacterial Methionine Aminopeptidase Inhibition.

    Science.gov (United States)

    Helgren, Travis R; Wangtrakuldee, Phumvadee; Staker, Bart L; Hagen, Timothy J

    2016-01-01

    Methionine aminopeptidases (MetAPs) are metalloenzymes that cleave the N-terminal methionine from newly synthesized peptides and proteins. These MetAP enzymes are present in bacteria, and knockout experiments have shown that MetAP activity is essential for cell life, suggesting that MetAPs are good antibacterial drug targets. MetAP enzymes are also present in the human host and selectivity is essential. There have been significant structural biology efforts and over 65 protein crystal structures of bacterial MetAPs are deposited into the PDB. This review highlights the available crystallographic data for bacterial MetAPs. Structural comparison of bacterial MetAPs with human MetAPs highlights differences that can lead to selectivity. In addition, this review includes the chemical diversity of molecules that bind and inhibit the bacterial MetAP enzymes. Analysis of the structural biology and chemical space of known bacterial MetAP inhibitors leads to a greater understanding of this antibacterial target and the likely development of potential antibacterial agents. PMID:26268344

  9. Molecular Mechanisms Underlying Bacterial Persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...... technological advances in microfluidics and reporter genes have improved this scenario. Here, we summarize recent progress in the field, revealing the ubiquitous bacterial stress alarmone ppGpp as an emerging central regulator of multidrug tolerance and persistence, both in stochastically and environmentally...

  10. Bacterial inhibition of silver-containing stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, W.C. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Chang, S.M.; Lin, J.D.; Tseng, I.S.; Wu, J.K. [National Taiwan Ocean Univ., Taiwan (China). Inst. of Materials Engineering

    2010-07-01

    In this study, silver (Ag) was added to AlSl 316 austenitic 2205 duplex and 430 ferritic stainless steels as a means of inhibiting bacterial contamination. Three Ag-containing stainless steels were prepared using vacuum melting techniques. The influence of the Ag addition on corrosion resistance, bacterial inhibition, and mechanical properties was investigated. A study of the Ag-containing stainless steel microstructures demonstrated that Ag precipitates as small particles on the steel matrix surface. The precipitates act as anodes in the local action cell in the presence of bacteria. Ag dissolution mechanisms from the Ag precipitates on the Ag-containing stainless steels in the presence of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were also discussed. Results of the study suggested that Ag-containing stainless steels may be used in areas where hygiene is a significant concern.

  11. Inhibition of bacterial luminescence by cerulenin

    International Nuclear Information System (INIS)

    Bacterial luminescence is very sensitive to cerulenin, a fungal inhibitor of fatty acid (FA) synthesis. Cerulenin does not inhibit luciferase itself, but rather the synthesis of its aldehyde substrate by FA reductase. The acyl-CoA reductase (58 kDa) component of the Photobacterium phosphoreum FA reductase complex was inhibited by cerulenin in vitro. Similarly, acylation of the corresponding Vibrio harveyi 57 kDa protein with [3H]myristic acid was preferentially decreased, while cerulenin had no effect on the activities of luciferase or the acyltransferase (32 kDa) responsible for FA supply to luminescence. Light emission of wild type V. harveyi was less sensitive to cerulenin at 10 μg/ml (5-fold decrease at 1h) than that of the FA-stimulatable dark mutant M17 (100-fold inhibition), which lacks the 32 kDa acyltransferase. The V. harveyi reductase subunit was also labeled by [3H]tetrahydrocerulenin in vivo in M17 but not wild type cells; this labeling could be prevented by preincubating M17 cells with cerulenin or FA. These results suggest that (a) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, and (b) this enzyme is partially protected from inhibition in vivo in the wild type cell

  12. NEW TARGET FOR INHIBITION OF BACTERIAL RNA POLYMERASE: "SWITCH REGION"

    OpenAIRE

    Srivastava, Aashish; Talaue, Meliza; Liu, Shuang; Degen, David; Ebright, Richard Y.; Sineva, Elena; Chakraborty, Anirban; Druzhinin, Sergey Y.; Chatterjee, Sujoy; Mukhopadhyay, Jayanta; Ebright, Yon W.; Zozula, Alex; Shen, Juan; Sengupta, Sonali; Niedfeldt, Rui Rong

    2011-01-01

    A new drug target-- the "switch region"--has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, c...

  13. Inhibition of bacterial ammonia oxidation by organohydrazines in soil microcosms

    Directory of Open Access Journals (Sweden)

    Yucheng eWu

    2012-01-01

    Full Text Available Hydroxylamine oxidation by hydroxylamine oxidoreductase (HAO is a key step for energy-yielding in support of the growth of ammonia-oxidizing bacteria (AOB. Organohydrazines have been shown to inactivate HAO from Nitrosomonas europaea, and may serve as selective inhibitors to differentiate bacterial from archaeal ammonia oxidation due to the absence of bacterial HAO gene homologue in known ammonia-oxidizing archaea (AOA. In this study, the effects of three organohydrazines on activity, abundance and composition of AOB and AOA were evaluated in soil microcosms. The results indicate that phenylhydrazine and methylhydrazine at the concentration of 100 mol per gram dry weight soil completely suppressed the activity of soil nitrification. DGGE fingerprinting and sequencing analysis of bacterial ammonia monooxygenase subunit A gene (amoA clearly demonstrated that nitrification activity change is well paralleled with the growth of Nitrosomonas europaea-like AOB in soil microcosms. No significant correlation between AOA community structure and nitrification activity was observed among all treatments during the incubation period, although incomplete inhibition of nitrification activity occurred in 2-hydroxyethylhydrazine-amended soil microcosms. These findings show that the HAO-targeted organohydrazines can effectively inhibit bacterial nitrification in soil, and the mechanism of organohydrazine affecting AOA remains unclear.

  14. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections

    DEFF Research Database (Denmark)

    Hentzer, Morten; Givskov, Michael Christian

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. The discovery of bacterial-communication systems (quorum......-sensing systems), which orchestrate important temporal events during the infection process, has afforded a novel opportunity to ameliorate bacterial infection by means other than growth inhibition. Compounds able to override bacterial signaling are present in nature. Herein we discuss the known signaling...... mechanisms and potential antipathogenic drugs that specifically target quorum-sensing systems in a manner unlikely to pose a selective pressure for the development of resistant mutants....

  15. Staying alive: bacterial inhibition of apoptosis during infection

    OpenAIRE

    Faherty, Christina S.; Maurelli, Anthony T.

    2008-01-01

    The ability of bacterial pathogens to inhibit apoptosis in eukaryotic cells during infection is an emerging theme in the study of bacterial pathogenesis. Prevention of apoptosis provides a survival advantage because it enables the bacteria to replicate inside host cells. Bacterial pathogens have evolved several ways to prevent apoptosis by protecting the mitochondria and preventing cytochrome c release, by activating cell survival pathways, or by preventing caspase activation. This review sum...

  16. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, F.W.

    1992-12-31

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  17. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    OpenAIRE

    MacBeth, K J; Lee, C. A.

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase ...

  18. Vancomycin prophylaxis of experimental Streptococcus sanguis. Inhibition of bacterial adherence rather than bacterial killing.

    OpenAIRE

    Bernard, J. P.; Francioli, P.; Glauser, M P

    1981-01-01

    Using a strain of Streptococcus sanguis tolerant to vancomycin to infect aortic vegetations in rats, we found that prophylactic intravenous vancomycin given 30 min before bacterial challenge decreased the incidence of endocarditis from 88 to 8% (P less than 10(-5)). Because peak vancomycin serum levels were below the minimal bactericidal concentration, mechanisms of protection other than bacterial killing were investigated. S. sanguis were incubated with inhibitory concentration of vancomycin...

  19. Examination of bacterial inhibition using a catalytic DNA.

    Science.gov (United States)

    Qu, Long; Ali, M Monsur; Aguirre, Sergio D; Liu, Hongxia; Jiang, Yuyang; Li, Yingfu

    2014-01-01

    Determination of accurate dosage of existing antibiotics and discovery of new antimicrobials or probiotics entail simple but effective methods that can conveniently track bacteria growth and inhibition. Here we explore the application of a previously reported fluorogenic E. coli-specific DNAzyme (catalytic DNA), RFD-EC1, as a molecular probe for monitoring bacterial inhibition exerted by antibiotics and for studying bacterial competition as a result of cohabitation. Because the DNAzyme method provides a convenient way to monitor the growth of E. coli, it is capable of determining the minimal inhibitory concentration (MIC) of antibiotics much faster than the conventional optical density (OD) method. In addition, since the target for RFD-EC1 is an extracellular protein molecule from E. coli, RFD-EC1 is able to identify pore-forming antibiotics or compounds that can cause membrane leakage. Finally, RFD-EC1 can be used to analyse the competition of cohabitating bacteria, specifically the inhibition of growth of E. coli by Bacillus subtilis. The current work represents the first exploration of a catalytic DNA for microbiological applications and showcases the utility of bacteria-sensing fluorogenic DNAzymes as simple molecular probes to facilitate antibiotic and probiotic research. PMID:25531274

  20. Examination of bacterial inhibition using a catalytic DNA.

    Directory of Open Access Journals (Sweden)

    Long Qu

    Full Text Available Determination of accurate dosage of existing antibiotics and discovery of new antimicrobials or probiotics entail simple but effective methods that can conveniently track bacteria growth and inhibition. Here we explore the application of a previously reported fluorogenic E. coli-specific DNAzyme (catalytic DNA, RFD-EC1, as a molecular probe for monitoring bacterial inhibition exerted by antibiotics and for studying bacterial competition as a result of cohabitation. Because the DNAzyme method provides a convenient way to monitor the growth of E. coli, it is capable of determining the minimal inhibitory concentration (MIC of antibiotics much faster than the conventional optical density (OD method. In addition, since the target for RFD-EC1 is an extracellular protein molecule from E. coli, RFD-EC1 is able to identify pore-forming antibiotics or compounds that can cause membrane leakage. Finally, RFD-EC1 can be used to analyse the competition of cohabitating bacteria, specifically the inhibition of growth of E. coli by Bacillus subtilis. The current work represents the first exploration of a catalytic DNA for microbiological applications and showcases the utility of bacteria-sensing fluorogenic DNAzymes as simple molecular probes to facilitate antibiotic and probiotic research.

  1. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    Science.gov (United States)

    MacBeth, K J; Lee, C A

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase lose their ability to enter cultured cells. In addition, a short-lived capacity to enter cells may be important during infection so that bacterial invasiveness is limited to certain times and host sites during pathogenesis. PMID:8454361

  2. Controlling bacterial infections by inhibiting proton-dependent processes.

    Science.gov (United States)

    Kaneti, Galoz; Meir, Ohad; Mor, Amram

    2016-05-01

    Bacterial resistance to antibiotics is recognized as one of the greatest threats in modern healthcare, taking a staggering toll worldwide. New approaches for controlling bacterial infections must be designed, eventually combining multiple strategies for complimentary therapies. This review explores an old/new paradigm for multi-targeted antibacterial therapy, focused at disturbing bacterial cytoplasmic membrane functions at sub minimal inhibitory concentrations, namely through superficial physical alterations of the bilayer, thereby perturbing transmembrane signals transduction. Such a paradigm may have the advantage of fighting the infection while avoiding many of the known resistance mechanisms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26522076

  3. Inhibition of Bacterial Conjugation by Phage M13 and Its Protein g3p: Quantitative Analysis and Model

    OpenAIRE

    Lin, Abraham; Derr, Julien; Villanueva, Laura; Webber, Mark Alexander; Jimenez, Jose Ignacio; Vera, Pedro; Manapat, Michael; Esvelt, Kevin Michael; Liu, David Ruchien; Chen, Irene Ann

    2011-01-01

    Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conju...

  4. Fine-Tuning Covalent Inhibition of Bacterial Quorum Sensing.

    Science.gov (United States)

    Amara, Neri; Gregor, Rachel; Rayo, Josep; Dandela, Rambabu; Daniel, Erik; Liubin, Nina; Willems, H Marjo E; Ben-Zvi, Anat; Krom, Bastiaan P; Meijler, Michael M

    2016-05-01

    Emerging antibiotic resistance among human pathogens has galvanized efforts to find alternative routes to combat bacterial virulence. One new approach entails interfering with the ability of bacteria to coordinate population-wide gene expression, or quorum sensing (QS), thus inhibiting the production of virulence factors and biofilm formation. We have recently developed such a strategy by targeting LasR, the master regulator of QS in the opportunistic human pathogen Pseudomonas aeruginosa, through the rational design of covalent inhibitors closely based on the core structure of the native ligand. We now report several groups of new inhibitors, one of which, fluoro-substituted ITC-12, displayed complete covalent modification of LasR, as well as effective QS inhibition in vitro and promising in vivo results. In addition to their potential clinical relevance, this series of synthetic QS modulators can be used as a tool to further unravel the complicated QS regulation in P. aeruginosa. PMID:26840534

  5. Cutaneous bacterial species from Lithobates catesbeianus can inhibit pathogenic dermatophytes.

    Science.gov (United States)

    Lauer, Antje; Hernandez, Trang

    2015-04-01

    Antibiotics are being successfully used to fight many infectious diseases caused by pathogenic microorganisms. However, new infectious diseases are continuously being identified, and some known pathogens are becoming resistant against known antibiotics. Furthermore, many antifungals are causing serious side effects in long-term treatments of patients, and many skin infections caused by dermatophytes are difficult to cure. The beneficial roles of resident cutaneous microbiota to inhibit pathogenic microorganisms have been shown for many vertebrate species. Microbial symbionts on the amphibian skin for example can be a source of powerful antimicrobial metabolites that can protect amphibians against diseases, such as chytridiomycosis, caused by a fungal pathogen. In this research, we investigated whether cutaneous bacterial species isolated from Lithobates catesbeianus (North American bullfrog), an invasive amphibian species that is resistant to chytridiomycosis, produce secondary metabolites that can be used to inhibit the growth of three species of dermatophytes (Microsporum gypseum, Epidermophyton floccosum, and Trichophyton mentagrophytes) which are known to cause topical or subdermal skin infections in humans. Strongly anti-dermatophyte bacterial species that belonged to the Bacillaceae, Streptomycetaceae, Pseudomonadaceae, Xanthomonadaceae, Aeromonadaceae, and Enterobacteriaceae were identified. This research has provided evidence of the presence of cutaneous anti-dermatophyte bacteria from L. catesbeianus which might provide a basis for health care providers to experiment with new antifungals in the future. PMID:25431089

  6. Novel mechanisms power bacterial gliding motility.

    Science.gov (United States)

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. PMID:27028358

  7. Inhibition of Bacterial Adhesion by Subinhibitory Concentrations of Antibiotics

    Directory of Open Access Journals (Sweden)

    Vidya K

    2005-01-01

    Full Text Available Background: Urinary Tract Infections (UTIs due to Escherichia coli is one of the most common diseases encountered in clinical practice. Most common recognised pathogenic factor in E.coli is adhesion. There is accumulating evidence that through subinhibitory concentrations (sub - MICs of many antibiotics do not kill bacteria, they are able to interfere with some important aspects of bacterial cell function. Materials and Methods: A study was conducted to investigate the effect of sub MICs (1/2-1/8 MIC of ciprofloxacin, ceftazidime, gentamicin, ampicillin and co - trimoxazole on E. coli adhesiveness to human vaginal epithelial cells using three strains ATCC 25922, MTCC 729 and U 105. Results: The 1/2 MIC of all the antibiotics tested produced the greatest inhibition of bacterial adhesion. Morphological changes were observed with ciprofloxacin, ceftazidime and ampicillin at 1/2 MIC and to a lesser extent at 1/4 and 1/8 MIC. Co-trimoxazole caused the greatest suppression of adhesion at 1/2 MIC of E. coli strain MTCC 729 when compared with the controls, followed by ceftazidime. Conclusion: These results suggest that co - trimoxazole is the most effective antibiotic in the treatment of urinary tract infections caused by uropathogenic E. coli.

  8. Bortezomib inhibits bacterial and fungal β-carbonic anhydrases.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-09-15

    Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from pathogenic fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, Malassezia globosa) and bacteria (three isoforms from Mycobacterium tuberculosis, Rv3273, Rv1284 and Rv3588), as well from the insect Drosophila melanogaster (DmeCA) and the plant Flaveria bidentis (FbiCA1) with the boronic acid peptidomimetic proteosome inhibitor bortezomib was investigated. Bortezomib was a micromolar inhibitor of all these enzymes, with KIs ranging between 1.12 and 11.30μM. Based on recent crystallographic data it is hypothesized that the B(OH)2 moiety of the inhibitor is directly coordinated to the zinc ion from the enzyme active site. The class of boronic acids, an under-investigated type of CA inhibitors, may lead to the development of anti-infectives with a novel mechanism of action, based on the pathogenic organisms CA inhibition. PMID:27469982

  9. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition.

    Science.gov (United States)

    Arenz, Stefan; Wilson, Daniel N

    2016-01-01

    Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria. PMID:27481773

  10. The mechanism of electronic excitation in the bacterial bioluminescent reaction

    International Nuclear Information System (INIS)

    The current state of the problem of formation of the electron-excited product in the chemiluminescent reaction that underlies the bacterial luminescence is analysed. Various schemes of chemical transformations capable of producing a bacterial bioluminescence emitter are presented. The problem of excitation of secondary emitters is considered; two possible mechanisms of their excitation are analysed.

  11. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.

    Science.gov (United States)

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D

    2016-04-01

    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs. PMID:26771749

  12. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp.

    Science.gov (United States)

    Aakre, Christopher D; Phung, Tuyen N; Huang, David; Laub, Michael T

    2013-12-12

    Toxin-antitoxin (TA) systems are ubiquitous on bacterial chromosomes, yet the mechanisms regulating their activity and the molecular targets of toxins remain incompletely defined. Here, we identify SocAB, an atypical TA system in Caulobacter crescentus. Unlike canonical TA systems, the toxin SocB is unstable and constitutively degraded by the protease ClpXP; this degradation requires the antitoxin, SocA, as a proteolytic adaptor. We find that the toxin, SocB, blocks replication elongation through an interaction with the sliding clamp, driving replication fork collapse. Mutations that suppress SocB toxicity map to either the hydrophobic cleft on the clamp that binds DNA polymerase III or a clamp-binding motif in SocB. Our findings suggest that SocB disrupts replication by outcompeting other clamp-binding proteins. Collectively, our results expand the diversity of mechanisms employed by TA systems to regulate toxin activity and inhibit bacterial growth, and they suggest that inhibiting clamp function may be a generalizable antibacterial strategy. PMID:24239291

  13. Polymer film deposition on agar using a dielectric barrier discharge jet and its bacterial growth inhibition

    Science.gov (United States)

    Tsai, T.-C.; Cho, J.; Mcintyre, K.; Jo, Y.-K.; Staack, D.

    2012-08-01

    Polymer film deposition on agar in ambient air was achieved using the helium dielectric barrier discharge jet (DBD jet) fed with polymer precursors, and the bacterial growth inhibition due to the deposited film was observed. The DBD jet with precursor addition was more efficient at sterilization than a helium-only DBD jet. On the areas where polymer films cover the agar the bacterial growth was significantly inhibited. The inhibition efficacy showed dependence on the film thickness. The DBD jet without precursor also created a modified agar layer, which may slow the growth of some bacterial strains.

  14. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide

    OpenAIRE

    Valle, Jaione; Da Re, Sandra; Henry, Nelly; Fontaine, Thierry; Balestrino, Damien; Latour-Lambert, Patricia; Ghigo, Jean-Marc

    2006-01-01

    The development of surface-attached biofilm bacterial communities is considered an important source of nosocomial infections. Recently, bacterial interference via signaling molecules and surface active compounds was shown to antagonize biofilm formation, suggesting that nonantibiotic molecules produced during competitive interactions between bacteria could be used for biofilm reduction. Hence, a better understanding of commensal/pathogen interactions within bacterial community could lead to a...

  15. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    OpenAIRE

    Zindel, S.; Kaman, W.E.; Frols, S.; Pfeifer, F; Peters, A.; Hays, J.P.; Fuchsbauer, H.-L.

    2013-01-01

    A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacte...

  16. In vitro inhibition of bacterial DNA gyrase by cinodine, a glycocinnamoylspermidine antibiotic.

    OpenAIRE

    Osburne, M S; Maiese, W M; Greenstein, M

    1990-01-01

    Cinodine, a broad-spectrum glycocinnamoylspermidine antibiotic, binds to DNA and irreversibly inhibits bacterial and phase DNA synthesis. Cinodine was found to inhibit the activity of Micrococcus luteus DNA gyrase in vitro, but it did not inhibit the activities of two other DNA-binding enzymes, namely, topoisomerase I and BamHI. Although we cannot yet conclude that DNA gyrase is an intracellular target of the drug, in vitro inhibition of the enzyme by cinodine appears to be specific.

  17. Orally administered bovine lactoferrin inhibits bacterial translocation in mice fed bovine milk.

    OpenAIRE

    Teraguchi, S.; Shin, K.; Ogata, T; Kingaku, M; Kaino, A; Miyauchi, H; Fukuwatari, Y; Shimamura, S

    1995-01-01

    Feeding of bovine milk to mice induced a high incidence of bacterial translocation from the intestines to the mesenteric lymph nodes, and the bacteria involved were mainly members of the family Enterobacteriaceae. Supplementation of the milk diet with bovine lactoferrin or a pepsin-generated hydrolysate of bovine lactoferrin resulted in significant suppression of bacterial translocation. Our findings suggest that this ability of lactoferrin to inhibit bacterial translocation may be due to its...

  18. A bacteriophage transcription regulator inhibits bacterial transcription initiation by σ-factor displacement

    OpenAIRE

    Liu, Bing; Shadrin, Andrey; Sheppard, Carol; Mekler, Vladimir; Xu, Yingqi; Severinov, Konstantin; Matthews, Steve; Wigneshweraraj, Sivaramesh

    2014-01-01

    Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10. We reveal that P7 uses a two-step ...

  19. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation

    Science.gov (United States)

    Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grin...

  20. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections

    DEFF Research Database (Denmark)

    Hentzer, Morten; Givskov, Michael Christian

    2003-01-01

    -sensing systems), which orchestrate important temporal events during the infection process, has afforded a novel opportunity to ameliorate bacterial infection by means other than growth inhibition. Compounds able to override bacterial signaling are present in nature. Herein we discuss the known signaling...

  1. Bacterial Inhibition and Antioxidant Activity of Kefir Produced from Thai Jasmine Rice Milk

    OpenAIRE

    Deeseenthum Sirirat; Pejovic Jelena

    2010-01-01

    The aim of this study was to investigate the bacterial inhibition and antioxidant activity of 24 and 48 h of rice milk-kefir and cow milk-kefir. Bacterial inhibition activity of kefir was investigated against Staphylococcus aureus, Bacillus subtillis, Escherichia coli and Pseudomonas fluorescens by using the disk diffusion method. Kefir showed some activity against all organisms tested. Antioxidant activity of kefir was measured using three different methods: DPPH radical scavenging activity ...

  2. A study of bacterial gene regulatory mechanisms

    DEFF Research Database (Denmark)

    Hansen, Sabine

    GRNs this thesis also provided the first evidence of the sensor histidine kinase VC1831 being an additional player in the Vibrio cholerae quorum sensing (QS) GRN. Bacteria use a process of cell-cell communication called QS which enable the bacterial cells to collectively control their gene expression...... using small signaling molecules called autoinducers, thereby coordinating group behavior. At the heart of the V. cholerae QS response lie four small RNA (sRNA) molecules called the quorum regulatory RNAs (Qrr). This PhD thesis provides evidence that the sensor histidine kinase VC1831 is regulated by the...... Qrr sRNAs. It is further shown that VC1831 feeds back to activate the expression the Qrrs, presumably via phosphorylation of LuxU. Thus, VC1831, which responds to an unknown ligand, is a new player in the V. cholerae QS response. Prior to this report, the two autoinducer sensors CqsS and LuxQ were the...

  3. How many carbonic anhydrase inhibition mechanisms exist?

    Science.gov (United States)

    Supuran, Claudiu T

    2016-01-01

    Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes. PMID:26619898

  4. Monensin inhibits growth of bacterial contaminants from fuel ethanol plants

    Science.gov (United States)

    Contamination of commercial fermentation cultures by lactic acid bacteria (LAB) is a common and costly problem to the fuel ethanol industry. Virginiamycin (VIR) and penicillin (PEN) are frequently used to control bacterial contamination but extensive use of antibiotics may select for strains with d...

  5. Mechanisms of bacterial metals removal from solids

    International Nuclear Information System (INIS)

    The Great Lakes area sediments are contaminated with varying amounts of heavy metals and polychlorinated organic matter. With respect to the bioremediation of metallic contents of these sediments, it was shown that a number of microorganisms exist which can effectively solubilize heavy metals. The basic reaction mechanisms of bioleaching processes were discussed and the effects of semiconductor character of the sulfide substrate explained. A special emphasis was made to comment on INEL's bioremediation capability. 37 refs

  6. Mechanism of Action of the Arylomycin Antibiotics and Effects of Signal Peptidase I Inhibition

    OpenAIRE

    Smith, Peter A.; Romesberg, Floyd E.

    2012-01-01

    Clinically approved antibiotics inhibit only a small number of conserved pathways that are essential for bacterial viability, and the physiological effects of inhibiting these pathways have been studied in great detail. Likewise, characterizing the effects of candidate antibiotics that function via novel mechanisms of action is critical for their development, which is of increasing importance due to the ever-growing problem of resistance. The arylomycins are a novel class of natural-product a...

  7. Common β-lactamases inhibit bacterial biofilm formation

    OpenAIRE

    Gallant, Claude V.; Daniels, Craig; Leung, Jacqueline M.; Ghosh, Anindya S.; Young, Kevin D; Kotra, Lakshmi P.; Burrows, Lori L.

    2005-01-01

    β-Lactamases, which evolved from bacterial penicillin-binding proteins (PBPs) involved in peptidoglycan (PG) synthesis, confer resistance to β-lactam antibiotics. While investigating the genetic basis of biofilm development by Pseudomonas aeruginosa, we noted that plasmid vectors encoding the common β-lactamase marker TEM-1 caused defects in twitching motility (mediated by type IV pili), adherence and biofilm formation without affecting growth rates. Similarly, strains of Escherichia coli car...

  8. A Trojan horse mechanism of bacterial pathogenesis against nematodes

    OpenAIRE

    Niu, Qiuhong; Huang, Xiaowei; Zhang, Lin; Xu, Jianping; Yang, Dongmei; Wei, Kangbi; Niu, Xuemei; An, Zhiqiang; Bennett, Joan Wennstrom; Zou, Chenggang; Yang, Jinkui; Zhang, Ke-Qin

    2010-01-01

    Understanding the mechanisms of host–pathogen interaction can provide crucial information for successfully manipulating their relationships. Because of its genetic background and practical advantages over vertebrate model systems, the nematode Caenorhabditis elegans model has become an attractive host for studying microbial pathogenesis. Here we report a “Trojan horse” mechanism of bacterial pathogenesis against nematodes. We show that the bacterium Bacillus nematocida B16 lures nematodes by ...

  9. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate

    OpenAIRE

    Chen, Lan; Walker, Deborah; Sun, Binyuan; Hu, Yanan; Walker, Suzanne; Kahne, Daniel

    2003-01-01

    Bacterial transglycosylases are enzymes that couple the disaccharide subunits of peptidoglycan to form long carbohydrate chains. These enzymes are the target of the pentasaccharide antibiotic moenomycin as well as the proposed target of certain glycopeptides that overcome vancomycin resistance. Because bacterial transglycosylases are difficult enzymes to study, it has not previously been possible to evaluate how moenomycin inhibits them or to determine whether glycopeptide analogues directly ...

  10. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  11. Mechanism of bacterial membrane poration by Antimicrobial Peptides

    Science.gov (United States)

    Arora, Ankita; Mishra, Abhijit

    2015-03-01

    Bacterial resistance to conventional antibiotics is a major health concern. Antimicrobial peptides (AMPs), an important component of mammalian immune system, are thought to utilize non-specific interactions to target common features on the outer membranes of pathogens; hence development of resistance to such AMPs may be less pronounced. Most AMPs are amphiphilic and cationic in nature. Most AMPs form pores in the bacterial membranes causing them to lyse, however, the exact mechanism is unknown. Here, we study the AMP CHRG01 (KSSTRGRKSSRRKK), derived from human β defensin 3 (hBD3) with all Cysteine residues substituted with Serine. Circular Dichorism studies indicate that CHRG01 shows helicity and there is change in helicity as it interacts with the lipid membrane. The AMP was effective against different species of bacteria. Leakage of cellular components from bacterial cells observed by SEM and AFM indicates AMP action by pore formation. Confocal microscopy studies on giant vesicles incubated with AMP confirm poration. The effect of this AMP on model bacterial membranes is characterized using Small Angle X-ray scattering and Fluorescence spectroscopy to elucidate the mechanism behind antimicrobial activity.

  12. Mechanism of allopurinol induced TPMT inhibition.

    Science.gov (United States)

    Blaker, P A; Arenas-Hernandez, M; Smith, M A; Shobowale-Bakre, E A; Fairbanks, L; Irving, P M; Sanderson, J D; Marinaki, A M

    2013-08-15

    Up to 1/5 of patients with wildtype thiopurine-S-methyltransferase (TPMT) activity prescribed azathioprine (AZA) or mercaptopurine (MP) demonstrate a skewed drug metabolism in which MP is preferentially methylated to yield methylmercaptopurine (MeMP). This is known as thiopurine hypermethylation and is associated with drug toxicity and treatment non-response. Co-prescription of allopurinol with low dose AZA/MP (25-33%) circumvents this phenotype and leads to a dramatic reduction in methylated metabolites; however, the biochemical mechanism remains unclear. Using intact and lysate red cell models we propose a novel pathway of allopurinol mediated TPMT inhibition, through the production of thioxanthine (TX, 2-hydroxymercaptopurine). In red blood cells pre-incubated with 250 μM MP for 2h prior to the addition of 250 μM TX or an equivalent volume of Earle's balanced salt solution, there was a significant reduction in the concentration of MeMP detected at 4h and 6h in cells exposed to TX (4 h, 1.68, p=0.0005, t-test). TX acts as a direct TPMT inhibitor with an apparent Ki of 0.329 mM. In addition we have confirmed that the mechanism is relevant to in vivo metabolism by demonstrating raised urinary TX levels in patients receiving combination therapy. We conclude that the formation of TX in patients receiving combination therapy with AZA/MP and allopurinol, likely explains the significant reduction of methylated metabolites due to direct TPMT inhibition. PMID:23770457

  13. Silver-nanoparticle-coated biliary stent inhibits bacterial adhesion in bacterial cholangitis in swine

    Institute of Scientific and Technical Information of China (English)

    Wei Wen; Li-Mei Ma; Wei He; Xiao-Wei Tang; Yin Zhang; Xiang Wang; Li Liu; Zhi-Ning Fan

    2016-01-01

    BACKGROUND: One of the major limitations of biliary stents is the stent occlusion, which is closely related to the over-growth of bacteria. This study aimed to evaluate the feasibility of a novel silver-nanoparticle-coated polyurethane (Ag/PU) stent in bacterial cholangitis model in swine. METHODS: Ag/PU was designed by coating silver nanopar-ticles on polyurethane (PU) stent. Twenty-four healthy pigs with bacterial cholangitis using Ag/PU and PU stents were ran-domly divided into an Ag/PU stent group (n=12) and a PU stent group (n=12), respectively. The stents were inserted by standard endoscopic retrograde cholangiopancreatography. Laboratory assay was performed for white blood cell (WBC) count, alanine aminotransferase (ALT), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) at baseline time, 8 hours, 1, 2, 3, and 7 days after stent placements. The segment of bile duct containing the stent was examined histologically ex vivo. Implanted bili-ary stents were examined by a scan electron microscope. The amount of silver release was also measured in vitro. RESULTS: The number of inflammatory cells and level of ALT, IL-1β and TNF-α were significantly lower in the Ag/PU stent group than in the PU stent group. Hyperplasia of the mucosa was more severe in the PU stent group than in the Ag/PU stent group. In contrast to the biofilm of bacteria on the PU stent, fewer bacteria adhered to the Ag/PU stent. CONCLUSIONS: PU biliary stents modified with silver nanoparticles are able to alleviate the inflammation of pigs with bacterial cholangitis. Silver-nanoparticle-coated stents are resistant to bacterial adhesion.

  14. [Advances in molecular mechanism of bacterial reduction of hexavalent chromium].

    Science.gov (United States)

    Li, Dou; Zhao, You-Cai; Song, Li-Yan; Yin, Ya-Jie; Wang, Yang-Qing; Xu, Zhong-Hui

    2014-04-01

    Cr(VI) has been causing serious environmental pollution due to its carcinogenicity, teratogenicity and strong migration. Reduction of Cr( VI) to Cr(III), a precipitation that is much less toxic, is an efficient strategy to control Cr pollution. Within the strategy, bacterial reduction of Cr(VI) to Cr(III) has been considered as one of the best bioremediation methods because of its efficiency, environment friendly, and low cost; however, the molecular mechanism remains large unknown. This review summarizes Cr(VI) reduction bacterial species and its application in pollution control, elaborates the pathways of Cr( VI) reduction and functional proteins involved, concludes the molecular mechanism of baterial reduction Cr(VI), and discusses the orientation of the future research. PMID:24946623

  15. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, FCT, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Ana M. Rosa da [Centro de Investigacao em Quimica do Algarve, Universidade do Algarve, FCT, DQF, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa (Portugal); Matos, Antonio Pedro [Servico de Anatomia Patologica, Hospital Curry Cabral, Lisboa (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  16. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    International Nuclear Information System (INIS)

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  17. The bacterial Sec-translocase: structure and mechanism

    OpenAIRE

    Lycklama a Nijeholt, Jelger A.; Driessen, Arnold J. M.

    2012-01-01

    Most bacterial secretory proteins pass across the cytoplasmic membrane via the translocase, which consists of a protein-conducting channel SecYEG and an ATP-dependent motor protein SecA. The ancillary SecDF membrane protein complex promotes the final stages of translocation. Recent years have seen a major advance in our understanding of the structural and biochemical basis of protein translocation, and this has led to a detailed model of the translocation mechanism.

  18. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.

    Directory of Open Access Journals (Sweden)

    Sourabh Dwivedi

    Full Text Available The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼ 10-15 nm has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM. The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.

  19. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten;

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways to...... control certain bacterial infections. Furanone compounds capable of inhibiting bacterial quorum-sensing systems have been isolated from the marine macro alga Delisea pulchra. Objectives: Two synthetic furanones were tested for their ability to attenuate bacterial virulence in the mouse models of chronic...... lung infection by targeting bacterial quorum-sensing without directly killing bacteria or inhibiting their growth. Methods: Study I. Mice with Escherichia coli MT102 [luxR-PluxI-gfp(ASV)] lung infection were injected intravenously with N-acyl homoserine lactones with or without furanones to test the...

  20. The anti-inflammatory effect of combined complement and CD14 inhibition is preserved during escalating bacterial load

    OpenAIRE

    2015-01-01

    Combined inhibition of complement and CD14 is known to attenuate bacterial-induced inflammation, but the dependency of the bacterial load on this effect is unknown. Thus, we investigated whether the effect of such combined inhibition on Escherichia coli- and Staphylococcus aureus-induced inflammation was preserved during increasing bacterial concentrations. Human whole blood was preincubated with anti-CD14, eculizumab (C5-inhibitor) or compstatin (C3-inhibitor), or combinations thereof. Then ...

  1. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper; Tolker-Nielsen, Tim; Møller, Per

    2008-01-01

    used for the evaluation of inhibiting effects and the inhibiting mechanism. For silver-palladium surfaces combined with bacteria in media, the inhibiting effect was a result of electrochemical interactions and/or electrical field, and in some specific media, such as ammonium containing, undesired...

  2. Pain inhibits pain; human brainstem mechanisms.

    Science.gov (United States)

    Youssef, A M; Macefield, V G; Henderson, L A

    2016-01-01

    Conditioned pain modulation is a powerful analgesic mechanism, occurring when a painful stimulus is inhibited by a second painful stimulus delivered at a different body location. Reduced conditioned pain modulation capacity is associated with the development of some chronic pain conditions and the effectiveness of some analgesic medications. Human lesion studies show that the circuitry responsible for conditioned pain modulation lies within the caudal brainstem, although the precise nuclei in humans remain unknown. We employed brain imaging to determine brainstem sites responsible for conditioned pain modulation in 54 healthy individuals. In all subjects, 8 noxious heat stimuli (test stimuli) were applied to the right side of the mouth and brain activity measured using functional magnetic resonance imaging. This paradigm was then repeated. However, following the fourth noxious stimulus, a separate noxious stimulus, consisting of an intramuscular injection of hypertonic saline into the leg, was delivered (conditioning stimulus). During this test and conditioning stimulus period, 23 subjects displayed conditioned pain modulation analgesia whereas 31 subjects did not. An individual's analgesic ability was not influenced by gender, pain intensity levels of the test or conditioning stimuli or by psychological variables such as pain catastrophizing or fear of pain. Brain images were processed using SPM8 and the brainstem isolated using the SUIT toolbox. Significant increases in signal intensity were determined during each test stimulus and compared between subjects that did and did not display CPM analgesia (pmechanisms responsible for the maintenance of persistent pain conditions thought to involve altered analgesic circuitry. PMID:26343321

  3. Mechanics of torque generation in the bacterial flagellar motor

    CERN Document Server

    Mandadapu, Kranthi K; Berry, Richard M; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well-established that the passage of ions down a transmembrane gradient through the stator complex provides the energy needed for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, while steric forces comprise the actual 'power stroke'. Specifically, we predict that ion-induced conformational changes about a proline 'hinge' residue in an $\\alpha$-helix of the stator are directly responsible for generating the power stroke. Our model predictions f...

  4. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.;

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that coll...... cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology......The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that...

  5. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Depan, D.; Misra, R.D.K., E-mail: dmisra@louisiana.edu

    2014-01-01

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm.

  6. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    International Nuclear Information System (INIS)

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm

  7. Cortisol involvement in mechanisms of behavioral inhibition

    NARCIS (Netherlands)

    Tops, Mattie; Boksem, Maarten A. S.

    2011-01-01

    We studied whether baseline cortisol is associated with post-error slowing, a measure that depends upon brain areas involved in behavioral inhibition. Moreover, we studied whether this association holds after controlling for positive associations with behavioral inhibition scores and error-related n

  8. The Magnetosome Model: Insights into the Mechanisms of Bacterial Biomineralization

    Directory of Open Access Journals (Sweden)

    Lilah eRahn-Lee

    2013-11-01

    Full Text Available Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aquatic bacteria that contains single-domain crystals of the iron oxide magnetite (Fe3O4 or the iron sulfide greigite (Fe3S4. Here, recent advances in our understanding of the mechanisms of bacterial magnetite biomineralization are discussed and used as a framework for understanding less-well studied examples, including the bacterial intracellular biomineralization of cadmium, selenium, silver, nickel, uranium, and calcium carbonate. Understanding the molecular mechanisms underlying the biological formation of these minerals will have important implications for technologies such as the fabrication of nanomaterials and the bioremediation of toxic compounds.

  9. The magnetosome model: insights into the mechanisms of bacterial biomineralization.

    Science.gov (United States)

    Rahn-Lee, Lilah; Komeili, Arash

    2013-01-01

    Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aquatic bacteria that contains single-domain crystals of the iron oxide magnetite (Fe3O4) or the iron sulfide greigite (Fe3S4). Here, recent advances in our understanding of the mechanisms of bacterial magnetite biomineralization are discussed and used as a framework for understanding less-well studied examples, including the bacterial intracellular biomineralization of cadmium, selenium, silver, nickel, uranium, and calcium carbonate. Understanding the molecular mechanisms underlying the biological formation of these minerals will have important implications for technologies such as the fabrication of nanomaterials and the bioremediation of toxic compounds. PMID:24324464

  10. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.

    Science.gov (United States)

    Andersson, D I; Hughes, D; Kubicek-Sutherland, J Z

    2016-05-01

    Cationic antimicrobial peptides (AMPs) are an intrinsic part of the human innate immune system. Over 100 different human AMPs are known to exhibit broad-spectrum antibacterial activity. Because of the increased frequency of resistance to conventional antibiotics there is an interest in developing AMPs as an alternative antibacterial therapy. Several cationic peptides that are derivatives of AMPs from the human innate immune system are currently in clinical development. There are also ongoing clinical studies aimed at modulating the expression of AMPs to boost the human innate immune response. In this review we discuss the potential problems associated with these therapeutic approaches. There is considerable experimental data describing mechanisms by which bacteria can develop resistance to AMPs. As for any type of drug resistance, the rate by which AMP resistance would emerge and spread in a population of bacteria in a natural setting will be determined by a complex interplay of several different factors, including the mutation supply rate, the fitness of the resistant mutant at different AMP concentrations, and the strength of the selective pressure. Several studies have already shown that AMP-resistant bacterial mutants display broad cross-resistance to a variety of AMPs with different structures and modes of action. Therefore, routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system. The ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis are not yet understood. This is something that needs to be carefully studied and monitored if AMPs are used in clinical settings. PMID:27180309

  11. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten; Andersen, Jens Bo; Molin, Søren; Givskov, Michael Christian; Høiby, N.

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways to...... lung infection by targeting bacterial quorum-sensing without directly killing bacteria or inhibiting their growth. Methods: Study I. Mice with Escherichia coli MT102 [luxR-PluxI-gfp(ASV)] lung infection were injected intravenously with N-acyl homoserine lactones with or without furanones to test the...

  12. Effects of Heating and Gamma Radiation on the Inhibition of Bacterial Spores by Curing Agents

    International Nuclear Information System (INIS)

    Studies on the resistance of bacterial spores to inhibition by sodium chloride in the recovery medium have shown that both heat and gamma radiation are capable of inflicting damage to the spores which manifests itself as a reduction in salt tolerance. Radiation is at least as effective as heat in causing this damage. Implications of these observations are discussed with respect to cured meat products. (author)

  13. Comparative inhibition of bacterial and microsomal 3-ketodihydrosphingosine synthetases by L-cycloserine and other inhibitors.

    OpenAIRE

    Sundaram, K S; Lev, M

    1984-01-01

    Eleven compounds were examined for their capacity to inhibit the first enzyme of the sphingolipid pathway, 3-ketodihydrosphingosine synthetase. Of these, L-cycloserine was the most potent, affecting both bacterial and brain microsomal enzymes to a significant degree at 0.04 mM. D- and L-cycloserine irreversibly inactivated the enzyme, indicating a suicide substrate mode of action. L-Cycloserine was a more potent inhibitor of the growth of Bacteroides levii than was D-cycloserine, indicating t...

  14. Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth

    Science.gov (United States)

    Klose, Julia; Aistleitner, Karin; Horn, Matthias; Krenn, Liselotte; Dirsch, Verena; Zehl, Martin; Bright, Monika

    2016-01-01

    The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm’s trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains. PMID:26730960

  15. Structural analysis of inhibition of E. coli methionine aminopeptidase: implication of loop adaptability in selective inhibition of bacterial enzymes

    Directory of Open Access Journals (Sweden)

    Hurley Thomas D

    2007-12-01

    Full Text Available Abstract Background Methionine aminopeptidase is a potential target of future antibacterial and anticancer drugs. Structural analysis of complexes of the enzyme with its inhibitors provides valuable information for structure-based drug design efforts. Results Five new X-ray structures of such enzyme-inhibitor complexes were obtained. Analysis of these and other three similar structures reveals the adaptability of a surface-exposed loop bearing Y62, H63, G64 and Y65 (the YHGY loop that is an integral part of the substrate and inhibitor binding pocket. This adaptability is important for accommodating inhibitors with variations in size. When compared with the human isozymes, this loop either becomes buried in the human type I enzyme due to an N-terminal extension that covers its position or is replaced by a unique insert in the human type II enzyme. Conclusion The adaptability of the YHGY loop in E. coli methionine aminopeptidase, and likely in other bacterial methionine aminopeptidases, enables the enzyme active pocket to accommodate inhibitors of differing size. The differences in this adaptable loop between the bacterial and human methionine aminopeptidases is a structural feature that can be exploited to design inhibitors of bacterial methionine aminopeptidases as therapeutic agents with minimal inhibition of the corresponding human enzymes.

  16. Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.

    Directory of Open Access Journals (Sweden)

    Abraham Lin

    Full Text Available Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage, these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.

  17. Final Report - Molecular Mechanisms of Bacterial Mercury Transformation - UCSF

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Susan M. [UCSF

    2014-04-24

    The bacterial mercury resistance (mer) operon functions in Hg biogeochemistry and bioremediation by converting reactive inorganic Hg(II) and organic [RHg(II)]1+ mercurials to relatively inert monoatomic mercury vapor, Hg(0). Its genes regulate operon expression (MerR, MerD, MerOP), import Hg(II) (MerT, MerP, and MerC), and demethylate (MerB) and reduce (MerA) mercurials. We focus on how these components interact with each other and with the host cell to allow cells to survive and detoxify Hg compounds. Understanding how this ubiquitous detoxification system fits into the biology and ecology of its bacterial host is essential to guide interventions that support and enhance Hg remediation. In the current overall project we focused on two aspects of this system: (1) investigations of the energetics of Hg(II)-ligand binding interactions, and (2) both experimental and computational approaches to investigating the molecular mechanisms of Hg(II) acquisition by MerA and intramolecular transfer of Hg(II) prior to reduction within the MerA enzyme active site. Computational work was led by Prof. Jeremy Smith and took place at the University of Tennessee, while experimental work on MerA was led by Prof. Susan Miller and took place at the University of California San Francisco.

  18. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... recommendations as specified under 40 CFR part 792, subpart J the following specific information should be... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.”...

  19. Molecular mechanisms of DNA repair inhibition by caffeine

    International Nuclear Information System (INIS)

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA

  20. Inhibition Mechanism of Cholinesterases by Carbamate: A Theoretical Study

    Institute of Scientific and Technical Information of China (English)

    YAO Yuan; LI Ze-sheng

    2008-01-01

    The density functional theory at the B3LYP/6-311G(d,p) level was applied to exploring the inhibition mechanism of cholinesterases by carbamate.The results indicate that the inhibition reactions with or without the catalytic effect of the catalytic triad in cholinesterases underwent a two-step addition-elimination mechanism,which is in good agreement with the proposed mechanism.The solvent has a strong effect on the inhibition reactions and the reaction with the catalytic triad in the solvent phase is close to the real reaction under biological condition.

  1. Mechanism of Amyloidogenesis of a Bacterial AAA+ Chaperone.

    Science.gov (United States)

    Chan, Sze Wah Samuel; Yau, Jason; Ing, Christopher; Liu, Kaiyin; Farber, Patrick; Won, Amy; Bhandari, Vaibhav; Kara-Yacoubian, Nareg; Seraphim, Thiago V; Chakrabarti, Nilmadhab; Kay, Lewis E; Yip, Christopher M; Pomès, Régis; Sharpe, Simon; Houry, Walid A

    2016-07-01

    Amyloids are fibrillar protein superstructures that are commonly associated with diseases in humans and with physiological functions in various organisms. The precise mechanisms of amyloid formation remain to be elucidated. Surprisingly, we discovered that a bacterial Escherichia coli chaperone-like ATPase, regulatory ATPase variant A (RavA), and specifically the LARA domain in RavA, forms amyloids under acidic conditions at elevated temperatures. RavA is involved in modulating the proper assembly of membrane respiratory complexes. LARA contains an N-terminal loop region followed by a β-sandwich-like folded core. Several approaches, including nuclear magnetic resonance spectroscopy and molecular dynamics simulations, were used to determine the mechanism by which LARA switches to an amyloid state. These studies revealed that the folded core of LARA is amyloidogenic and is protected by its N-terminal loop. At low pH and high temperatures, the interaction of the N-terminal loop with the folded core is disrupted, leading to amyloid formation. PMID:27265850

  2. Mechanical and structural property analysis of bacterial cellulose composites.

    Science.gov (United States)

    Dayal, Manmeet Singh; Catchmark, Jeffrey M

    2016-06-25

    Bacterial cellulose (BC) exhibits unique properties including high mechanical strength and high crystallinity. Improvement in the mechanical properties of BC is sought for many applications ranging from food to structural composites to biomedical materials. In this study, different additives including carboxymethyl cellulose (CMC), pectin, gelatin, cornstarch, and corn steep liquor were included in the fermentation media to alter the BC produced. Three different concentrations (1%, 3% and 5%) were chosen for each of the additives, with no additive (0%) as the control. The produced BC was then analyzed to determine tensile and compression modulus. Amongst the tested additives, BC produced in media containing 3% (w/v) pectin had the maximum compressive modulus (142kPa), and BC produced in media containing 1% (w/v) gelatin exhibited the maximum tensile modulus (21MPa). Structural characteristics of BC and BC-additive composites were compared using X-Ray diffraction (XRD). The crystal size and crystallinity of BC was reduced when grown in the presence of CMC and gelatin while pectin only decreased the crystallite size. This suggested that CMC and gelatin may be incorporated into the BC fibril structure. The field emission scanning electron microscopy (FESEM) images showed the increased micro-fibril aggregation in BC pellicles grown in the presence of additives to the culture media. PMID:27083837

  3. Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Seonghee Lee

    2013-02-01

    Full Text Available Pseudomonas syringae is the most widespread bacterial pathogen in plants. Several strains of P. syringae produce a phytotoxin, coronatine (COR, which acts as a jasmonic acid mimic and inhibits plant defense responses and contributes to disease symptom development. In this study, we found that COR inhibits early defense responses during nonhost disease resistance. Stomatal closure induced by a nonhost pathogen, P. syringae pv. tabaci, was disrupted by COR in tomato epidermal peels. In addition, nonhost HR cell death triggered by P. syringae pv. tabaci on tomato was remarkably delayed when COR was supplemented along with P. syringae pv. tabaci inoculation. Using isochorismate synthase (ICS-silenced tomato plants and transcript profiles of genes in SA- and JA-related defense pathways, we show that COR suppresses SA-mediated defense during nonhost resistance.

  4. Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers.

    Science.gov (United States)

    de Sousa, Natanael Teixeira Alves; Gomes, Rosana Caetano; Santos, Marcos Ferracioli; Brandino, Hugo Evangelista; Martinez, Roberto; de Jesus Guirro, Rinaldo Roberto

    2016-04-01

    Low-level laser therapy (LLLT) is used in chronic wounds due to its healing effects. However, bacterial species may colonize these wounds and the optimal parameters for effective bacterial inhibition are not clear. The aim of this study was to analyze the effect of LLLT on bacterial growth in vitro. Bacterial strains including Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were suspended in saline solution at a concentration of 10(3) cells/ml and exposed to laser irradiation at wavelengths of 660, 830, and 904 nm at fluences of 0 (control), 3, 6, 12, 18, and 24 J/cm(2). An aliquot of the irradiated suspension was spread on the surface of petri plates and incubated at 37 °C for quantification of colony-forming unit after 24, 48, and 72 h. Laser irradiation inhibited the growth of S. aureus at all wavelengths and fluences higher than 12 J/cm(2), showing a strong correlation between increase in fluence and bacterial inhibition. However, for P. aeruginosa, LLLT inhibited growth at all wavelengths only at a fluence of 24 J/cm(2). E. coli had similar growth inhibition at a wavelength of 830 nm at fluences of 3, 6, 12, and 24 J/cm(2). At wavelengths of 660 and 904 nm, growth inhibition was only observed at fluences of 12 and 18 J/cm(2), respectively. LLLT inhibited bacterial growth at all wavelengths, for a maximum of 72 h after irradiation, indicating a correlation between bacterial species, fluence, and wavelength. PMID:26886585

  5. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Directory of Open Access Journals (Sweden)

    Anne-lie Ståhl

    2015-02-01

    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  6. Inhibition of bacterial growth by different mixtures of propofol and thiopentone

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2005-06-01

    Full Text Available Propofol is, as a result of its formulation, an ideal bacterial and yeast culture medium. An outbreak of sepsis in humans and an increase in wound infections in dogs has been ascribed to the use of propofol. It has been previously reported that a 1:1 mixture of propofol and thiopentone has bactericidal properties. This study was undertaken to determine if further serial mixtures of propofol and thiopentone maintained the bactericidal properties. Mixtures of 1:1 (solution A, 5:1 (solution B, 10:1 (solution C, 50:1 (solution D and 100:1 (solution E of 1 % propofol to 2.5 % thiopentone, 2.5 % thiopentone (solution T, 1 % propofol (solution P and saline (solution S were prepared and inoculated with between 105 and 106 colony-forming units of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. A sample was withdrawn from each solution at 0, 1, 6, 12, 48 and 120 hours after inoculation and a bacterial count was performed. This study showed that thiopentone and solution A behaved in similar fashion by inhibiting bacterial growth and was bactericidal after 48 hours. Solution B was not bactericidal against S. aureus and C. albicans. Propofol and solutions D and E all supported growth of all the organisms tested. These data indicate that mixtures of propofol and thiopentone at a ratio less than 1:1 do not maintain the bactericidal properties.

  7. Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity.

    Science.gov (United States)

    Mesleh, Michael F; Rajaratnam, Premraj; Conrad, Mary; Chandrasekaran, Vasu; Liu, Christopher M; Pandya, Bhaumik A; Hwang, You Seok; Rye, Peter T; Muldoon, Craig; Becker, Bernd; Zuegg, Johannes; Meutermans, Wim; Moy, Terence I

    2016-02-01

    Synthesis of bacterial cell wall peptidoglycan requires glycosyltransferase enzymes that transfer the disaccharide-peptide from lipid II onto the growing glycan chain. The polymerization of the glycan chain precedes cross-linking by penicillin-binding proteins and is essential for growth for key bacterial pathogens. As such, bacterial cell wall glycosyltransferases are an attractive target for antibiotic drug discovery. However, significant challenges to the development of inhibitors for these targets include the development of suitable assays and chemical matter that is suited to the nature of the binding site. We developed glycosyltransferase enzymatic activity and binding assays using the natural products moenomycin and vancomycin as model inhibitors. In addition, we designed a library of disaccharide compounds based on the minimum moenomycin fragment with peptidoglycan glycosyltransferase inhibitory activity and based on a more drug-like and synthetically versatile disaccharide building block. A subset of these disaccharide compounds bound and inhibited the glycosyltransferase enzymes, and these compounds could serve as chemical entry points for antibiotic development. PMID:26358369

  8. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  9. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

    Directory of Open Access Journals (Sweden)

    Wen-tao Lin

    2016-03-01

    Full Text Available Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC with a 27% degree of substitution (DS; referred to as 27% HACC that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300 and Staphylococcus epidermidis (American Type Culture Collection 35984, and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H using the spread plate method, confocal laser scanning microscopy (CLSM, and scanning electron microscopy (SEM. Smooth titanium (Smooth Ti was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.

  10. Physical and mechanical properties of modified bacterial cellulose composite films

    Science.gov (United States)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  11. Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals.

    Science.gov (United States)

    Abachi, Soheila; Lee, Song; Rupasinghe, H P Vasantha

    2016-01-01

    This review paper summarizes the antibacterial effects of phytochemicals of various medicinal plants against pathogenic and cariogenic streptococcal species. The information suggests that these phytochemicals have potential as alternatives to the classical antibiotics currently used for the treatment of streptococcal infections. The phytochemicals demonstrate direct bactericidal or bacteriostatic effects, such as: (i) prevention of bacterial adherence to mucosal surfaces of the pharynx, skin, and teeth surface; (ii) inhibition of glycolytic enzymes and pH drop; (iii) reduction of biofilm and plaque formation; and (iv) cell surface hydrophobicity. Collectively, findings from numerous studies suggest that phytochemicals could be used as drugs for elimination of infections with minimal side effects. PMID:26901172

  12. Molecular Mechanisms of Inhibition of Streptococcus Species by Phytochemicals

    Directory of Open Access Journals (Sweden)

    Soheila Abachi

    2016-02-01

    Full Text Available This review paper summarizes the antibacterial effects of phytochemicals of various medicinal plants against pathogenic and cariogenic streptococcal species. The information suggests that these phytochemicals have potential as alternatives to the classical antibiotics currently used for the treatment of streptococcal infections. The phytochemicals demonstrate direct bactericidal or bacteriostatic effects, such as: (i prevention of bacterial adherence to mucosal surfaces of the pharynx, skin, and teeth surface; (ii inhibition of glycolytic enzymes and pH drop; (iii reduction of biofilm and plaque formation; and (iv cell surface hydrophobicity. Collectively, findings from numerous studies suggest that phytochemicals could be used as drugs for elimination of infections with minimal side effects.

  13. Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Wang, Xiaodong; Axelsen, Lene Nygaard;

    2015-01-01

    period (ERP) and slowing the conduction velocity. We therefore aimed at elucidating these properties of SK channel inhibition and the underlying antiarrhythmic mechanisms by using; microelectrode action potential recordings and conduction velocity measurements in isolated rat atrium. Automated patch-clamping...... and two-electrode voltage-clamp was used to access INa and IK,ACh respectively. RESULTS: The SK channel inhibitor N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) exhibited antiarrhythmic effects. ICA prevented electrically induced runs of atrial fibrillation in the isolated right atrium and...... channel inhibition by ICA (10-30 µM) demonstrated prominent depression of other sodium channel-dependent parameters. ICA did not inhibit IK,ACh, but at concentrations above 10 µM ICA use-dependently inhibited INa. CONCLUSION: SK channel inhibition modulates multiple parameters of the action potential. It...

  14. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices.

    Directory of Open Access Journals (Sweden)

    Sarah Forbes

    Full Text Available Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD; sodium fluoride (FD; stannous fluoride and zinc lactate (SFD1; or stannous fluoride, zinc lactate and stannous chloride (SFD2. Minimum inhibitory concentrations (MIC were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC, a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices.

  15. Effect of Water Soluble Polymer on Structure and Mechanical Properties of Bacterial Cellulose Composites

    Science.gov (United States)

    Yudianti, Rike; Indrarti, Lucia

    Bacterial Cellulose (BC) sheet has a remarkably high elastic modulus and crystallinity inhibiting its processing. Short fibers of homogenized BC are utilized in Bacterial Cellulose Composites (BCC) formation. Water Soluble Polymers (WSP) (Carboxymethyl Cellulose (CMC) and glycerol) present in homogenized BC fiber have significant effects on mechanical properties and structure. Increasing CMC concentrations from 0 to 0.75% causes crystallinity index reduction from 81 to 61, 76 to 53 and 70 to 50% when treated glycerol concentrations of 0, 0.25 and 0.5%, respectively. Increasing CMC concentrations from 0 to 0.75% enhances elastic modulus from 2907.5 to 6245, 180.4 to 1581.3 and 30.5 to 212.5 Gpa greatly under glycerol concentrations of 0, 0.25 and 0.5%, respectively. Increasing tensile strengths from 64.8 to 167.7, 52.7 to 78.2 and 17.5 to 41.3 MPa and elongation reduction from 4.9 to 2.5, 14.5 to 9.2 and 29.6 to 23% occurs at glycerol concentrations of 0, 0.25 and 0.5%, respectively when CMC concentrations increased from 0 to 0.75%. Conversely, effects of glycerol treatment on tensile strength, elastic modulus and elongation are also presented in this study. Combination of CMC and glycerol treatment into homogenized BC is quite possible to modify BC characteristic as good processing BC.

  16. A search for new mechanisms to inhibit plasmid conjugation

    OpenAIRE

    Getino Redondo, María

    2011-01-01

    Infections due to antibiotic-resistant (AbR) bacteria are a major cause of morbidity and mortality throughout the world. In addition, the number of new antibiotics being developed has plummeted. Although resistance genes can disseminate by any horizontal gene transfer mechanism, the vast majority of reports of bacterial gene transfer in the environment involve conjugation. Our group developed a method for high-throughput analysis of conjugation. This method was used to check for host genes in...

  17. Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration.

    Science.gov (United States)

    Bardon, Clément; Poly, Franck; Piola, Florence; Pancton, Muriel; Comte, Gilles; Meiffren, Guillaume; Haichar, Feth El Zahar

    2016-05-01

    Recently, it has been shown that procyanidins fromFallopiaspp. inhibit bacterial denitrification, a phenomenon called biological denitrification inhibition (BDI). However, the mechanisms involved in such a process remain unknown. Here, we investigate the mechanisms of BDI involving procyanidins, using the model strainPseudomonas brassicacearumNFM 421. The aerobic and anaerobic (denitrification) respiration, cell permeability and cell viability ofP. brassicacearumwere determined as a function of procyanidin concentration. The effect of procyanidins on the bacterial membrane was observed using transmission electronic microscopy. Bacterial growth, denitrification, NO3- and NO2-reductase activity, and the expression of subunits of NO3- (encoded by the genenarG) and NO2-reductase (encoded by the genenirS) under NO3or NO2were measured with and without procyanidins. Procyanidins inhibited the denitrification process without affecting aerobic respiration at low concentrations. Procyanidins also disturbed cell membranes without affecting cell viability. They specifically inhibited NO3- but not NO2-reductase.Pseudomonas brassicacearumresponded to procyanidins by over-expression of the membrane-bound NO3-reductase subunit (encoded by the genenarG). Our results suggest that procyanidins can specifically inhibit membrane-bound NO3-reductase inducing enzymatic conformational changes through membrane disturbance and thatP. brassicacearumresponds by over-expressing membrane-bound NO3-reductase. Our results lead the way to a better understanding of BDI. PMID:26906096

  18. Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa.

    Science.gov (United States)

    Myers, Jillian M; Ramsey, Jeremy P; Blackman, Alison L; Nichols, A Elizabeth; Minbiole, Kevin P C; Harris, Reid N

    2012-08-01

    A powerful mechanism for protection against disease in animals is synergy between metabolites present in the natural microbiota of the host and antimicrobial peptides (AMPs) produced by the host. We studied this method of protection in amphibians in regard to the lethal disease chytridiomycosis, which is caused by Batrachochytrium dendrobatidis (Bd). In this study, we show that the AMPs of Rana muscosa, as well as the metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) from Pseudomonas fluorescens, a bacterial species normally found on the skin of R. muscosa, were inhibitory to the growth of Bd in vitro. When both AMPs and 2,4-DAPG were used in growth inhibition assays, they worked synergistically to inhibit the growth of Bd. This synergy resulted in reduced minimum concentrations necessary for inhibition by either 2,4-DAPG or AMPs. This inhibitory concentration of AMPs did not inhibit the growth of a P. fluorescens strain that produced 2,4-DAPG in vitro, although its growth was inhibited at higher peptide concentrations. These data suggest that the AMPs secreted onto frog skin and the metabolites secreted by the resident beneficial bacteria may work synergistically to enhance protection against Bd infection on amphibian skin. These results may aid conservation efforts to augment amphibian skins' resistance to chytridiomycosis by introducing anti-Bd bacterial species that work synergistically with amphibian AMPs. PMID:22914957

  19. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors

    Directory of Open Access Journals (Sweden)

    Moran Magdalene M

    2009-04-01

    Full Text Available Abstract Background TRPA1 has been implicated in both chemo- and mechanosensation. Recent work demonstrates that inhibiting TRPA1 function reduces mechanical hypersensitivity produced by inflammation. Furthermore, a broad range of chemical irritants require functional TRPA1 to exert their effects. In this study we use the ex-vivo skin-nerve preparation to directly determine the contribution of TRPA1 to mechanical- and chemical-evoked responses at the level of the primary afferent terminal. Results Acute application of HC-030031, a selective TRPA1 antagonist, inhibited all formalin responses in rat C fibers but had no effect on TRPV1 function, assessed by capsaicin responsiveness. Genetic ablation experiments corroborated the pharmacological findings as C fibers from wild type mice responded to both formalin and capsaicin, but fibers from their TRPA1-deficient littermates responded only to capsaicin. HC-030031 markedly reduced the mechanically-evoked action potential firing in rat and wild type mouse C fibers, particularly at high-intensity forces, but had no effect on the mechanical responsiveness of Aδ fiber nociceptors. Furthermore, HC-030031 had no effect on mechanically-evoked firing in C fibers from TRPA1-deficient mice, indicating that HC-030031 inhibits mechanically-evoked firing via a TRPA1-dependent mechanism. Conclusion Our data show that acute pharmacological blockade of TRPA1 at the cutaneous receptive field inhibits formalin-evoked activation and markedly reduces mechanically-evoked action potential firing in C fibers. Thus, functional TRPA1 at sensory afferent terminals in skin is required for their responsiveness to both noxious chemical and mechanical stimuli.

  20. A study of PCR inhibition mechanisms using real time PCR.

    Science.gov (United States)

    Opel, Kerry L; Chung, Denise; McCord, Bruce R

    2010-01-01

    In this project, real time polymerase chain reaction (PCR) was utilized to study the mechanism of PCR inhibition through examination of the effect of amplicon length, melting temperature, and sequence. Specifically designed primers with three different amplicon lengths and three different melting temperatures were used to target a single homozygous allele in the HUMTH01 locus. The effect on amplification efficiency for each primer pair was determined by adding different concentrations of various PCR inhibitors to the reaction mixture. The results show that a variety of inhibition mechanisms can occur during the PCR process depending on the type of co-extracted inhibitor. These include Taq inhibition, DNA template binding, and effects on reaction efficiency. In addition, some inhibitors appear to affect the reaction in more than one manner. Overall we find that amplicon size and melting temperature are important in some inhibition mechanisms and not in others and the key issue in understanding PCR inhibition is determining the identity of the interfering substance. PMID:20015162

  1. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    International Nuclear Information System (INIS)

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p 2 CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  2. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    Science.gov (United States)

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A., III; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  3. Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP

    OpenAIRE

    Morgan, Jacob L.W.; McNamara, Joshua T.; Zimmer, Jochen

    2014-01-01

    The bacterial signaling molecule cyclic-di-GMP stimulates the synthesis of bacterial cellulose, frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of the cellulose synthase BcsA and BcsB subunits. Here we present crystal structures of the cyclic-di-GMP-activated BcsA–B complex. The structures reveal that cyclic-di-GMP releases an auto-inhibited state of the enzyme by breaking a salt bridge which otherwise tethers a conserve...

  4. On the mechanism of metformin-inhibited hepatic gluconeogenesis

    Institute of Scientific and Technical Information of China (English)

    唐红菊

    2014-01-01

    Objective To investigate the underlying molecular mechanisms of metformin in inhibiting hepatic gluconeogenesis.Methods Primary hepatocytes of mice were isolated by a modified version of the collagenase method.The effect of metformin on glucose production in primary hepatocytes was detected by glucose oxidation method.The

  5. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA

    OpenAIRE

    Lebreton, Alice; Job, Viviana; Ragon, Marie; Le Monnier, Alban; Cossart, Pascale

    2014-01-01

    The nucleus has emerged as a key target for nucleomodulins, a family of effectors produced by bacterial pathogens to control host transcription or other nuclear processes. The virulence factor LntA from Listeria monocytogenes stimulates interferon responses during infection by inhibiting BAHD1, a nuclear protein involved in gene silencing by promoting heterochromatin formation. So far, whether the interaction between LntA and BAHD1 is direct and sufficient for inhibiting BAHD1 activity is unk...

  6. The calcification of staphylococcus aureus bacteria by the mineralization by inhibitor exclusion mechanism : a potential defense mechanism against bacterial infections

    OpenAIRE

    Truong, Linh Y.

    2011-01-01

    The emergence of antibiotic resistant bacteria has become a worldwide concern. Our goal was to develop a new strategy to treat antibiotic resistant bacterial infections. We investigated whether bacteria are killed by the Mineralization by Inhibitor Exclusion (MIE) mechanism. This mechanism exploits the size exclusion characteristics of the bacterial cell wall, and therefore has no impact on mammalian cells. Our studies demonstrate that live Staphylococcus aureus are calcified by the MIE mecha...

  7. The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent

    Science.gov (United States)

    Wiens, Kirsten E.; Ernst, Joel D.

    2016-01-01

    Type I interferons (including IFNαβ) are innate cytokines that may contribute to pathogenesis during Mycobacterium tuberculosis (Mtb) infection. To induce IFNβ, Mtb must gain access to the host cytosol and trigger stimulator of interferon genes (STING) signaling. A recently proposed model suggests that Mtb triggers STING signaling through bacterial DNA binding cyclic GMP-AMP synthase (cGAS) in the cytosol. The aim of this study was to test the generalizability of this model using phylogenetically distinct strains of the Mtb complex (MTBC). We infected bone marrow derived macrophages with strains from MTBC Lineages 2, 4 and 6. We found that the Lineage 6 strain induced less IFNβ, and that the Lineage 2 strain induced more IFNβ, than the Lineage 4 strain. The strains did not differ in their access to the host cytosol and IFNβ induction by each strain required both STING and cGAS. We also found that the three strains shed similar amounts of bacterial DNA. Interestingly, we found that the Lineage 6 strain was associated with less mitochondrial stress and less mitochondrial DNA (mtDNA) in the cytosol compared with the Lineage 4 strain. Treating macrophages with a mitochondria-specific antioxidant reduced cytosolic mtDNA and inhibited IFNβ induction by the Lineage 2 and 4 strains. We also found that the Lineage 2 strain did not induce more mitochondrial stress than the Lineage 4 strain, suggesting that additional pathways contribute to higher IFNβ induction. These results indicate that the mechanism for IFNβ by Mtb is more complex than the established model suggests. We show that mitochondrial dynamics and mtDNA contribute to IFNβ induction by Mtb. Moreover, we show that the contribution of mtDNA to the IFNβ response varies by MTBC strain and that additional mechanisms exist for Mtb to induce IFNβ. PMID:27500737

  8. Function, structure, and mechanism in bacterial photosensory LOV proteins

    OpenAIRE

    Herrou, Julien; Crosson, Sean

    2011-01-01

    LOV domains are protein photosensors conserved in bacteria, archaea, plants and fungi that detect blue light via a flavin cofactor. In the bacterial kingdom, LOV domains are present in both chemotrophic and phototrophic species, where they are found N-terminally of signaling and regulatory domains such as sensor histidine kinases, diguanylate cyclases/phosphodiesterases, DNA-binding domains, and σ factor regulators. In this review, we describe the current state of knowledge on the function of...

  9. Type I interferon protects against pneumococcal invasive disease by inhibiting bacterial transmigration across the lung.

    Directory of Open Access Journals (Sweden)

    Kim S LeMessurier

    Full Text Available Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia, sepsis and meningitis and is associated with high morbidity and mortality. Type I interferon (IFN-I, whose contribution to antiviral and intracellular bacterial immunity is well established, is also elicited during pneumococcal infection, yet its functional significance is not well defined. Here, we show that IFN-I plays an important role in the host defense against pneumococci by counteracting the transmigration of bacteria from the lung to the blood. Mice that lack the type I interferon receptor (Ifnar1 (-/- or mice that were treated with a neutralizing antibody against the type I interferon receptor, exhibited enhanced development of bacteremia following intranasal pneumococcal infection, while maintaining comparable bacterial numbers in the lung. In turn, treatment of mice with IFNβ or IFN-I-inducing synthetic double stranded RNA (poly(I:C, dramatically reduced the development of bacteremia following intranasal infection with S. pneumoniae. IFNβ treatment led to upregulation of tight junction proteins and downregulation of the pneumococcal uptake receptor, platelet activating factor receptor (PAF receptor. In accordance with these findings, IFN-I reduced pneumococcal cell invasion and transmigration across epithelial and endothelial layers, and Ifnar1 (-/- mice showed overall enhanced lung permeability. As such, our data identify IFN-I as an important component of the host immune defense that regulates two possible mechanisms involved in pneumococcal invasion, i.e. PAF receptor-mediated transcytosis and tight junction-dependent pericellular migration, ultimately limiting progression from a site-restricted lung infection to invasive, lethal disease.

  10. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism.

    Science.gov (United States)

    Greaney, Allison J; Maier, Nolan K; Leppla, Stephen H; Moayeri, Mahtab

    2016-01-01

    The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial to the innate immune response, have also been linked to the pathology of several inflammatory and autoimmune disorders. The natural isothiocyanate sulforaphane, present in broccoli sprouts and available as a dietary supplement, has gained attention for its antioxidant, anti-inflammatory, and chemopreventive properties. We discovered that sulforaphane inhibits caspase-1 autoproteolytic activation and interleukin-1β maturation and secretion downstream of the nucleotide-binding oligomerization domain-like receptor leucine-rich repeat proteins NLRP1 and NLRP3, NLR family apoptosis inhibitory protein 5/NLR family caspase-1 recruitment domain-containing protein 4 (NAIP5/NLRC4), and absent in melanoma 2 (AIM2) inflammasome receptors. Sulforaphane does not inhibit the inflammasome by direct modification of active caspase-1 and its mechanism is not dependent on protein degradation by the proteasome or de novo protein synthesis. Furthermore, sulforaphane-mediated inhibition of the inflammasomes is independent of the transcription factor nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and the antioxidant response-element pathway, to which many of the antioxidant and anti-inflammatory effects of sulforaphane have been attributed. Sulforaphane was also found to inhibit cell recruitment to the peritoneum and interleukin-1β secretion in an in vivo peritonitis model of acute gout and to reverse NLRP1-mediated murine resistance to Bacillus anthracis spore infection. These findings demonstrate that sulforaphane inhibits the inflammasomes through a novel mechanism and contributes to

  11. Bacterial mechanisms to overcome inhibitory effects of dietary tannins

    NARCIS (Netherlands)

    Smith, A.H.; Zoetendal, E.G.; Mackie, R.I.

    2005-01-01

    High concentrations of tannins in fodder plants inhibit gastrointestinal bacteria and reduce ruminant performance. Increasing the proportion of tannin-resistant bacteria in the rumen protects ruminants from antinutritional effects. The reason for the protective effect is unclear, but could be elucid

  12. Mechanism of Inhibition to HIV-1 by Mycoplasma Fermentans

    Institute of Scientific and Technical Information of China (English)

    尚红; 姜拥军; 王琪; 王亚男; 张子宁

    2003-01-01

    To explore the mechanism of the inhibition of HIV-1 by Mycoplasma fermerttans, culture supernatants and thallodic proteins from M.fermerttans PG18 were prepared and the protein components of the supernatants were purified withhigh performance liquid chromatography (HPLC). The inhibitory activities to reverse transcriptase (RT) and the nuclease activities were detected; the influence of M.fermerttans on IL-10 secretion by both normal and H1V-1 infected human PBMC were determined, and the inhibitory effect of rhIL-10 on H1V-1 replication was detected with EI,ISA method. The results showed that the purified proteins with a molecular weight of 67-100 kDa or 10-25 kDa showed a 36% or 34% in hibitory ac-tivity to RT and partial nuclease activity. The thallodic protein could induce both normal and H1V-1 infected PBMC to secret IL-10 remarkably, and to the latter, this effect was more apparent. While rhIL-10 could inhibit replication of H1V-1 in PB-MC in vitro in a dose-dependant manner. It concludes that the inhibitory effect of the M.fermentans PG18 culture supernatants on RT and the promoting effect of PG18 thallodic protein on IL-10 secretion in PBMC explain the mechanisms of inhibition to HIV-1 by M.fermentans PG18.

  13. Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase

    OpenAIRE

    Xu, Changqi; Wang, Yong

    2010-01-01

    The molecular structure, weight loss and mechanical properties of demineralized dentin of non-crosslinked/crosslinked by glutaraldehyde (GA) were investigated when being challenged by bacterial collagenase solution over time in the present study. Raman spectra proved that cross-linking occurred in demineralized dentin matrices after being treated with GA. Meanwhile, the weight of the cross-linked demineralized dentin matrices didn’t change after being challenged by bacterial collagenase solut...

  14. Adjunctive TNF Inhibition with Standard Treatment Enhances Bacterial Clearance in a Murine Model of Necrotic TB Granulomas

    OpenAIRE

    Skerry, Ciaran; Harper, Jamie; Klunk, Mariah; Bishai, William R.; Sanjay K. Jain

    2012-01-01

    Background It has been hypothesized that early host-responses during TB treatment may paradoxically promote survival of persistent bacteria. We therefore evaluated whether adjunctive inhibition of tumor necrosis factor alpha (TNF-α)–a key cytokine in host responses against TB–could hasten bacterial clearance in a mouse strain that develops necrotic lesions in response to Mycobacterium tuberculosis infection. Methodology/Principal Findings Six weeks after an aerosol infection, C3HeB/FeJ mice r...

  15. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance

    OpenAIRE

    Speer, B S; Shoemaker, N. B.; Salyers, A A

    1992-01-01

    Tetracycline has been a widely used antibiotic because of its low toxicity and broad spectrum of activity. However, its clinical usefulness has been declining because of the appearance of an increasing number of tetracycline-resistant isolates of clinically important bacteria. Two types of resistance mechanisms predominate: tetracycline efflux and ribosomal protection. A third mechanism of resistance, tetracycline modification, has been identified, but its clinical relevance is still unclear....

  16. Structural insights into inhibition of lipid I production in bacterial cell wall synthesis.

    Science.gov (United States)

    Chung, Ben C; Mashalidis, Ellene H; Tanino, Tetsuya; Kim, Mijung; Matsuda, Akira; Hong, Jiyong; Ichikawa, Satoshi; Lee, Seok-Yong

    2016-05-26

    Antibiotic-resistant bacterial infection is a serious threat to public health. Peptidoglycan biosynthesis is a well-established target for antibiotic development. MraY (phospho-MurNAc-pentapeptide translocase) catalyses the first and an essential membrane step of peptidoglycan biosynthesis. It is considered a very promising target for the development of new antibiotics, as many naturally occurring nucleoside inhibitors with antibacterial activity target this enzyme. However, antibiotics targeting MraY have not been developed for clinical use, mainly owing to a lack of structural insight into inhibition of this enzyme. Here we present the crystal structure of MraY from Aquifex aeolicus (MraYAA) in complex with its naturally occurring inhibitor, muraymycin D2 (MD2). We show that after binding MD2, MraYAA undergoes remarkably large conformational rearrangements near the active site, which lead to the formation of a nucleoside-binding pocket and a peptide-binding site. MD2 binds the nucleoside-binding pocket like a two-pronged plug inserting into a socket. Further interactions it makes in the adjacent peptide-binding site anchor MD2 to and enhance its affinity for MraYAA. Surprisingly, MD2 does not interact with three acidic residues or the Mg(2+) cofactor required for catalysis, suggesting that MD2 binds to MraYAA in a manner that overlaps with, but is distinct from, its natural substrate, UDP-MurNAc-pentapeptide. We have determined the principles of MD2 binding to MraYAA, including how it avoids the need for pyrophosphate and sugar moieties, which are essential features for substrate binding. The conformational plasticity of MraY could be the reason that it is the target of many structurally distinct inhibitors. These findings can inform the design of new inhibitors targeting MraY as well as its paralogues, WecA and TarO. PMID:27088606

  17. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.

    Science.gov (United States)

    Fitzmaurice, Arthur G; Rhodes, Shannon L; Lulla, Aaron; Murphy, Niall P; Lam, Hoa A; O'Donnell, Kelley C; Barnhill, Lisa; Casida, John E; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff M

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), preferential degeneration of dopaminergic neurons, and development of PD. This hypothesis is supported by multiple lines of evidence. (i) We previously showed in mice the metabolism of benomyl to S-methyl N-butylthiocarbamate sulfoxide, which inhibits ALDH at nanomolar levels. We report here that benomyl exposure in primary mesencephalic neurons (ii) inhibits ALDH and (iii) alters dopamine homeostasis. It induces selective dopaminergic neuronal damage (iv) in vitro in primary mesencephalic cultures and (v) in vivo in a zebrafish system. (vi) In vitro cell loss was attenuated by reducing DOPAL formation. (vii) In our epidemiology study, higher exposure to benomyl was associated with increased PD risk. This ALDH model for PD etiology may help explain the selective vulnerability of dopaminergic neurons in PD and provide a potential mechanism through which environmental toxicants contribute to PD pathogenesis. PMID:23267077

  18. Ketamine inhibits human sperm function by Ca(2+)-related mechanism.

    Science.gov (United States)

    He, Yuanqiao; Zou, Qianxing; Li, Bingda; Chen, Houyang; Du, Xiaohong; Weng, Shiqi; Luo, Tao; Zeng, Xuhui

    2016-09-01

    Ketamine, a dissociative anesthetic, which was widely used in human and animal medicine, has become a popular recreational drug, as it can induce hallucinatory effects. Ketamine abuse can cause serious damage to many aspects of the organism, mainly reflected in the nervous system and urinary system. It has also been reported that ketamine can impair the male genital system. However, the detailed effect of ketamine on human spermatozoa remains unclear. Thus, we investigated the in vitro effects of ketamine on human sperm functions, to elucidate the underlying mechanism. Human sperm were treated in vitro with different concentrations of ketamine (0, 0.125, 0.25, 0.5, 1 g/L). The results showed that 0.25-1 g/L ketamine inhibited sperm total motility, progressive motility and linear velocity, in a dose-dependent manner. In addition, the sperm's ability to penetrate viscous medium and the progesterone-induced acrosome reaction were significantly inhibited by ketamine. Ketamine did not affect sperm viability, capacitation and spontaneous acrosome reaction. The intracellular calcium concentration ([Ca(2+)]i), which is a central factor in the regulation of human sperm function, was decreased by ketamine (0.125-1 g/L) in a dose-dependent manner. Furthermore, the currents of the sperm-specific Ca(2+) channel, CatSper, which modulates Ca(2+) influx in sperm, were inhibited by ketamine (0.125-1 g/L) in a dose-dependent manner. Our findings suggest that ketamine induces its toxic effects on human sperm functions by reducing sperm [Ca(2+)]i through inhibition of CatSper channel. PMID:27143628

  19. Cell wall mechanical properties as measured with bacterial thread made from Bacillus subtilis.

    OpenAIRE

    Mendelson, N H; Thwaites, J J

    1989-01-01

    Engineering approaches used in the study of textile fibers have been applied to the measurement of mechanical properties of bacterial cell walls by using the Bacillus subtilis bacterial thread system. Improved methods have been developed for the production of thread and for measuring its mechanical properties. The best specimens of thread produced from cultures of strain FJ7 grown in TB medium at 20 degrees C varied in diameter by a factor of 1.09 over a 30-mm thread length. The stress-strain...

  20. Mechanism of colour discrimination by a bacterial sensory rhodopsin

    Science.gov (United States)

    Spudich, J. L.; Bogomolni, R. A.

    1984-01-01

    A photosensitive protein resembling the visual pigments of invertebrates enables phototactic archaebacteria to distinguish color. This protein exists in two spectrally-distinct forms, one of which is a transient photoproduct of the other and each of which undergoes photochemical reactions controlling the cell's swimming behaviour. Activation of a single pigment molecule in the cell is sufficient to signal the flagellar motor. This signal-transduction mechanism makes evident a color-sensing capability inherent in the retinal/protein chromophore.

  1. Bacterial chitin degradation—mechanisms and ecophysiological strategies

    OpenAIRE

    StefanBertilsson; SaraBeier

    2013-01-01

    Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while a...

  2. The magnetosome model: insights into the mechanisms of bacterial biomineralization

    OpenAIRE

    Rahn-Lee, Lilah; Komeili, Arash

    2013-01-01

    Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aqu...

  3. The Magnetosome Model: Insights into the Mechanisms of Bacterial Biomineralization

    OpenAIRE

    Lilah eRahn-Lee; Arash eKomeili

    2013-01-01

    Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of a...

  4. Development and Validation of a Whole-Cell Inhibition Assay for Bacterial Methionine Aminopeptidase by Surface-Enhanced Laser Desorption Ionization-Time of Flight Mass Spectrometry

    OpenAIRE

    Greis, Kenneth D.; Zhou, Songtao; Siehnel, Richard; Klanke, Chuck; Curnow, Alan; Jeremy HOWARD; Layh-Schmitt, Gerlinde

    2005-01-01

    Bacterial methionine aminopeptidase (MAP) is a protease that removes methionine from the N termini of newly synthesized bacterial proteins after the peptide deformylase enzyme cleaves the formyl group from the initiator formylmethionine. MAP is an essential bacterial gene product and thus represents a potential target for therapeutic intervention. A fundamental challenge in the antibacterial drug discovery field is demonstrating conclusively that compounds with in vitro enzyme inhibition acti...

  5. Investigation of Bacterial Cellulose Biosynthesis Mechanism in Gluconoacetobacter hansenii

    OpenAIRE

    Mohite, Bhavna V.; Patil, Satish V

    2014-01-01

    The present study explores the mechanism of cellulose biosynthesis in Gluconoacetobacter hansenii. The cellulose synthase enzyme was purified as membrane fraction and solubilized by treatment with 0.1% digitonin. The enzyme was separated by native-gel electrophoresis and β -D-glucan analysis was carried out using in vitro gel assay. The cellulose synthase has glycoprotein nature and composed two polypeptide subunits of 93 KDa and 85 KDa. The confirmation of β -1,4-glucan (cellulose) was perfo...

  6. Bacterial chitin degradation-mechanisms and ecophysiological strategies.

    Science.gov (United States)

    Beier, Sara; Bertilsson, Stefan

    2013-01-01

    Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities. PMID:23785358

  7. Bacterial chitin degradation – mechanisms and ecophysiological strategies

    Directory of Open Access Journals (Sweden)

    StefanBertilsson

    2013-06-01

    Full Text Available Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities.

  8. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis

    Science.gov (United States)

    Jung, Joanna; Dyck, Jason R. B.; Lopaschuk, Gary D.; Agellon, Luis B.; Michalak, Marek

    2016-01-01

    Background Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR) pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function. Methodology/Principal Findings We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER) homeostasis, transient activation of the unfolded protein response (UPR) pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA) is sufficient to prevent cardiac fibrosis, and improved exercise tolerance. Conclusions We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function. PMID:27441395

  9. Experimental Study of Bacterial Penetration into Chalk Rock: Mechanisms and Effect on Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander; Eliasson Lantz, Anna;

    2014-01-01

    Bacterial selective plugging is one of the mechanisms through which microorganisms can be applied for enhanced oil recovery, as bacteria can plug the water-swept zones of a reservoir, thus altering the flow paths and improving sweep efficiency. However, complete understanding of the penetration...

  10. K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Na(v) Channels.

    Science.gov (United States)

    Ngo, Van; Wang, Yibo; Haas, Stephan; Noskov, Sergei Y; Farley, Robert A

    2016-01-01

    Crystal structures of several bacterial Na(v) channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na(v) channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na(v)Ab channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Na(v) channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of Na(v)Ab in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be 'locked' in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose "knock-on" mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Na(v) channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free

  11. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.

    Science.gov (United States)

    Wang, Qichen; Uzunoglu, Emel; Wu, Yong; Libera, Matthew

    2012-05-01

    We explored the use of self-assembled microgels to inhibit the bacterial colonization of synthetic surfaces both by modulating surface cell adhesiveness at length scales comparable to bacterial dimensions (∼1 μm) and by locally storing/releasing an antimicrobial. Poly(ethylene glycol) [PEG] and poly(ethylene glycol)-co-acrylic acid [PEG-AA] microgels were synthesized by suspension photopolymerization. Consistent with macroscopic gels, a pH dependence of both zeta potential and hydrodynamic diameter was observed in AA-containing microgels but not in pure PEG microgels. The microgels were electrostatically deposited onto poly(l-lysine) (PLL) primed silicon to form submonolayer surface coatings. The microgel surface density could be controlled via the deposition time and the microgel concentration in the parent suspension. In addition to their intrinsic antifouling properties, after deposition, the microgels could be loaded with a cationic antimicrobial peptide (L5) because of favorable electrostatic interactions. Loading was significantly higher in PEG-AA microgels than in pure PEG microgels. The modification of PLL-primed Si by unloaded PEG-AA microgels reduced the short-term (6 h) S. epidermidis surface colonization by a factor of 2, and the degree of inhibition increased when the average spacing between microgels was reduced. Postdeposition L5 peptide loading into microgels further reduced bacterial colonization to the extent that, after 10 h of S. epidermidis culture in tryptic soy broth, the colonization of L5-loaded PEG-AA microgel-modified Si was comparable to the very small level of colonization observed on macroscopic PEG gel controls. The fact that these microgels can be deposited by a nonline-of-sight self-assembly process and hinder bacterial colonization opens the possibility of modifying the surfaces of topographically complex biomedical devices and reduces the rate of biomaterial-associated infection. PMID:22519439

  12. On the Mechanism of the Primary Charge Separation in Bacterial Photosynthesis

    CERN Document Server

    Mak, C H; Egger, Reinhold

    1994-01-01

    We present a detailed analysis of the mechanism of the primary charge separation process in bacterial photosynthesis using real-time path integrals. Direct computer simulations as well as an approximate analytical theory have been employed to map out the dynamics of the charge separation process in many regions of the parameter space relevant to bacterial photosynthesis. Two distinct parameter regions, one characteristic of sequential transfer and the other characteristic of superexchange, have been found to yield charge separation dynamics in agreement with experiments. Nonadiabatic theory provides accurate rate estimates for low-lying and very high-lying bacteriochlorophyll state energies, but it breaks down in between these two regimes.

  13. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.

    Science.gov (United States)

    Lu, Canhua; Nakayasu, Ernesto S; Zhang, Li-Qun; Luo, Zhao-Qing

    2016-01-01

    The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology. PMID:26814232

  14. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  15. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    Science.gov (United States)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  16. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    International Nuclear Information System (INIS)

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  17. Pyocin inhibition of Neisseria gonorrhoeae: mechanism of action.

    OpenAIRE

    S. A. Morse; Jones, B V; Lysko, P G

    1980-01-01

    Purified R-type pyocins (611 131) from Pseudomonas aeruginosa PA103 exhibited bactericidal activity against Neisseria gonorrhoeae. Killing of gonococci was a single-hit process requiring as few as 1 pyocin per colony-forming unit. Deoxyriboinucleic acid, ribonucleic acid, protein, and lipid syntheses were rapidly and completely inhibited. Oxygen uptake was also inhibited, but occurred after the inhibition of macromolecular synthesis. The cell lysis which occurred after pyocin inhibition of go...

  18. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities.

    Science.gov (United States)

    Ge, Yuan; Priester, John H; Van De Werfhorst, Laurie C; Schimel, Joshua P; Holden, Patricia A

    2013-12-17

    It has been reported that engineered nanoparticles (ENPs) alter soil bacterial communities, but the underlying mechanisms and environmental controls of such effects remain unknown. Besides direct toxicity, ENPs may indirectly affect soil bacteria by changing soil water availability or other properties. Alternatively, soil water or other environmental factors may mediate ENP effects on soil bacterial communities. To test, we incubated nano-TiO2-amended soils across a range of water potentials for 288 days. Following incubation, the soil water characteristics, organic matter, total carbon, total nitrogen, and respiration upon rewetting (an indicator of bioavailable organic carbon) were measured. Bacterial community shifts were characterized by terminal restriction fragment length polymorphism (T-RFLP). The endpoint soil water holding had been reported previously as not changing with this nano-TiO2 amendment; herein, we also found that some selected soil properties were unaffected by the treatments. However, we found that nano-TiO2 altered the bacterial community composition and reduced diversity. Nano-TiO2-induced community dissimilarities increased but tended to approach a plateau when soils became drier. Taken together, nano-TiO2 effects on soil bacteria appear to be a result of direct toxicity rather than indirectly through nano-TiO2 affecting soil water and organic matter pools. However, such directs effects of nano-TiO2 on soil bacterial communities are mediated by soil water. PMID:24256577

  19. Mechanisms of Inhibition of Rhizobium etli Pyruvate Carboxylase by l-Aspartate

    OpenAIRE

    Sirithanakorn, Chaiyos; Adina-Zada, Abdussalam; Wallace, John C.; Jitrapakdee, Sarawut; Attwood, Paul V.

    2014-01-01

    l-Aspartate is a regulatory feedback inhibitor of the biotin-dependent enzyme pyruvate carboxylase in response to increased levels of tricarboxylic acid cycle intermediates. Detailed studies of l-aspartate inhibition of pyruvate carboxylase have been mainly confined to eukaryotic microbial enzymes, and aspects of its mode of action remain unclear. Here we examine its inhibition of the bacterial enzyme Rhizobium etli pyruvate carboxylase. Kinetic studies demonstrated that l-aspartate binds to ...

  20. Virtual Screening of Peptide and Peptidomimetic Fragments Targeted to Inhibit Bacterial Dithiol Oxidase DsbA.

    Directory of Open Access Journals (Sweden)

    Wilko Duprez

    Full Text Available Antibacterial drugs with novel scaffolds and new mechanisms of action are desperately needed to address the growing problem of antibiotic resistance. The periplasmic oxidative folding system in Gram-negative bacteria represents a possible target for anti-virulence antibacterials. By targeting virulence rather than viability, development of resistance and side effects (through killing host native microbiota might be minimized. Here, we undertook the design of peptidomimetic inhibitors targeting the interaction between the two key enzymes of oxidative folding, DsbA and DsbB, with the ultimate goal of preventing virulence factor assembly. Structures of DsbB--or peptides--complexed with DsbA revealed key interactions with the DsbA active site cysteine, and with a hydrophobic groove adjacent to the active site. The present work aimed to discover peptidomimetics that target the hydrophobic groove to generate non-covalent DsbA inhibitors. The previously reported structure of a Proteus mirabilis DsbA active site cysteine mutant, in a non-covalent complex with the heptapeptide PWATCDS, was used as an in silico template for virtual screening of a peptidomimetic fragment library. The highest scoring fragment compound and nine derivatives were synthesized and evaluated for DsbA binding and inhibition. These experiments discovered peptidomimetic fragments with inhibitory activity at millimolar concentrations. Although only weakly potent relative to larger covalent peptide inhibitors that interact through the active site cysteine, these fragments offer new opportunities as templates to build non-covalent inhibitors. The results suggest that non-covalent peptidomimetics may need to interact with sites beyond the hydrophobic groove in order to produce potent DsbA inhibitors.

  1. Sharing the sandbox: Evolutionary mechanisms that maintain bacterial cooperation [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Eric Bruger

    2015-12-01

    Full Text Available Microbes are now known to participate in an extensive repertoire of cooperative behaviors such as biofilm formation, production of extracellular public-goods, group motility, and higher-ordered multicellular structures. A fundamental question is how these cooperative tasks are maintained in the face of non-cooperating defector cells. Recently, a number of molecular mechanisms including facultative participation, spatial sorting, and policing have been discovered to stabilize cooperation. Often these different mechanisms work in concert to reinforce cooperation. In this review, we describe bacterial cooperation and the current understanding of the molecular mechanisms that maintain it.

  2. Hypercapnia Inhibits Autophagy and Bacterial Killing in Human Macrophages by Increasing Expression of Bcl-2 and Bcl-xL

    Science.gov (United States)

    Casalino-Matsuda, S. Marina; Nair, Aisha; Beitel, Greg J.; Gates, Khalilah L.; Sporn, Peter H. S.

    2015-01-01

    Hypercapnia, the elevation of CO2 in blood and tissue, commonly develops in patients with advanced lung disease and severe pulmonary infections, and is associated with high mortality. We previously reported that hypercapnia alters expression of host defense genes, inhibits phagocytosis, and increases the mortality of Pseudomonas pneumonia in mice. However, the effect of hypercapnia on autophagy, a conserved process by which cells sequester and degrade proteins and damaged organelles that also plays a key role in antimicrobial host defense and pathogen clearance, has not previously been examined. In the present study we show that hypercapnia inhibits autophagy induced by starvation, rapamycin, LPS, heat-killed and live bacteria in the human macrophage. Inhibition of autophagy by elevated CO2 was not attributable to acidosis. Hypercapnia also reduced macrophage killing of Pseudomonas aeruginosa. Moreover, elevated CO2 induced the expression of Bcl-2 and Bcl-xL, anti-apoptotic factors that negatively regulate autophagy by blocking Beclin 1, an essential component of the autophagy initiation complex. Furthermore, siRNA targeting Bcl-2 and Bcl-xL and the small molecule Z36, which blocks Bcl-2 and Bcl-xL binding to Beclin 1, prevented hypercapnic inhibition of autophagy and bacterial killing. These results suggest that targeting the Bcl-2/Bcl-xL-Beclin 1 interaction may hold promise for ameliorating hypercapnia-induced immunosuppression and improving resistance to infection in patients with advanced lung disease and hypercapnia. PMID:25895534

  3. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    Science.gov (United States)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  4. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    Energy Technology Data Exchange (ETDEWEB)

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  5. Inhibition of Bacterial Multidrug Resistance by Celecoxib, a Cyclooxygenase-2 Inhibitor▿

    OpenAIRE

    Kalle, Arunasree M.; Rizvi, Arshad

    2010-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs ins...

  6. Mechanisms of the Hepatic Acute-Phase Response during Bacterial Pneumonia▿

    OpenAIRE

    Quinton, Lee J.; Jones, Matthew R.; Robson, Bryanne E.; Mizgerd, Joseph P.

    2009-01-01

    The acute-phase response is characterized by increased circulating levels of acute-phase proteins (APPs) generated by the liver. During bacterial pneumonia, APPs correlate with the severity of disease, serve as biomarkers, and are functionally significant. The kinetics and regulatory mechanisms of APP induction in the liver during lung infection have yet to be defined. Here we show that APP mRNA transcription is induced in the livers of mice whose lungs are infected with either Escherichia co...

  7. Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2016-04-01

    Full Text Available Bacterial cellulose (BC has great potential to be used as a new filler to reinforce isotactic polypropylene (iPP due to its high crystallinity, biodegradability, and efficient mechanical properties. In this study, esterification was used to modify BC, which improved the surface compatibility of the iPP and BC. The results indicated that the cellulose octoate (CO changed the surface properties from hydrophilic to lipophilic. Compared to the pure iPP, the tensile strength, charpy notched impact strength, and tensile modulus of the iPP/BC composites increased by 9.9%, 7.77%, and 15.64%, respectively. However, the addition of CO reinforced the iPP/CO composites. The tensile strength, charpy notched impact strength, and tensile modulus of the iPP/CO composites increased by 14.23%, 14.08%, and 17.82% compared to the pure iPP. However, the elongation at break of both the composites is decreased. The SEM photographs and particle size distribution of the composites showed improvements when the change of polarity of the BC surface, interface compatibility, and dispersion of iPP improved.

  8. Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

    International Nuclear Information System (INIS)

    Drug resistance is a cause of ovarian cancer recurrence and low overall survival rates. There is a need for more effective treatment approaches because the development of new drug is expensive and time consuming. Alternatively, the concept of ‘drug repurposing’ is promising. We focused on Bithionol (BT), a clinically approved anti-parasitic drug as an anti-ovarian cancer drug. BT has previously been shown to inhibit solid tumor growth in several preclinical cancer models. A better understanding of the anti-tumor effects and mechanism(s) of action of BT in ovarian cancer cells is essential for further exploring its therapeutic potential against ovarian cancer. The cytotoxic effects of BT against a panel of ovarian cancer cell lines were determined by Presto Blue cell viability assay. Markers of apoptosis such as caspases 3/7, cPARP induction, nuclear condensation and mitochondrial transmembrane depolarization were assessed using microscopic, FACS and immunoblotting methods. Mechanism(s) of action of BT such as cell cycle arrest, reactive oxygen species (ROS) generation, autotaxin (ATX) inhibition and effects on MAPK and NF-kB signalling were determined by FACS analysis, immunoblotting and colorimetric methods. BT caused dose dependent cytotoxicity against all ovarian cancer cell lines tested with IC50 values ranging from 19 μM – 60 μM. Cisplatin-resistant variants of A2780 and IGROV-1 have shown almost similar IC50 values compared to their sensitive counterparts. Apoptotic cell death was shown by expression of caspases 3/7, cPARP, loss of mitochondrial potential, nuclear condensation, and up-regulation of p38 and reduced expression of pAkt, pNF-κB, pIκBα, XIAP, bcl-2 and bcl-xl. BT treatment resulted in cell cycle arrest at G1/M phase and increased ROS generation. Treatment with ascorbic acid resulted in partial restoration of cell viability. In addition, dose and time dependent inhibition of ATX was observed. BT exhibits cytotoxic effects on various

  9. Photoinactivation of Eight Health-Relevant Bacterial Species: Determining the Importance of the Exogenous Indirect Mechanism.

    Science.gov (United States)

    Maraccini, Peter A; Wenk, Jannis; Boehm, Alexandria B

    2016-05-17

    It is presently unknown to what extent the endogenous direct, endogenous indirect, and exogenous indirect mechanisms contribute to bacterial photoinactivation in natural surface waters. In this study, we investigated the importance of the exogenous indirect mechanism by conducting photoinactivation experiments with eight health-relevant bacterial species (Bacteroides thetaiotaomicron, Campylobacter jejuni, Enterococcus faecalis, Escherichia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococcus aureus, and Streptococcus bovis). We used three synthetic photosensitizers (methylene blue, rose bengal, and nitrite) and two model natural photosensitizers (Suwannee River natural organic matter and dissolved organic matter isolated from a wastewater treatment wetland) that generated singlet oxygen and hydroxyl radical. B. thetaiotaomicron had larger first order rate constants than all other organisms under all conditions tested. The presence of the synthetic photosensitizers generally enhanced photoinactivation of Gram-positive facultative anaerobes (Ent. faecalis, Staph. aureus, and Strep. bovis). Among Gram-negative bacteria, only methylene blue with E. coli K12 and rose bengal with C. jejuni showed an enhancing effect. The presence of model natural photosensitizers either reduced or did not affect photoinactivation rate constants. Our findings highlight the importance of the cellular membrane and photosensitizer properties in modulating the contribution of the exogenous indirect mechanism to the overall bacterial photoinactivation. PMID:27121126

  10. Slow Onset Inhibition of Bacterial β-Ketoacyl-acyl Carrier Protein Synthases by Thiolactomycin*

    OpenAIRE

    Machutta, Carl A.; Bommineni, Gopal R.; Luckner, Sylvia R.; Kapilashrami, Kanishk; Ruzsicska, Bela; Simmerling, Carlos; Kisker, Caroline; Tonge, Peter J.

    2009-01-01

    Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the β-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in...

  11. Organic-Inorganic Hybrid Nanoparticles for Bacterial Inhibition: Synthesis and Characterization of Doped and Undoped ONPs with Ag/Au NPs

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Huerta Aguilar

    2015-04-01

    Full Text Available Organic nanoparticles (ONPs of lipoic acid and its doped derivatives ONPs/Ag and ONPs/Au were prepared and characterized by UV-Visible, EDS, and TEM analysis. The antibacterial properties of the ONPs ONPs/Ag and ONPs/Au were tested against bacterial strains (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella typhi. Minimal Inhibitory Concentration (MIC and bacterial growth inhibition tests show that ONPs/Ag are more effective in limiting bacterial growth than other NPs, particularly, for Gram positive than for Gram-negative ones. The order of bacterial cell growth inhibition was ONPs/Ag > ONPs > ONPs/Au. The morphology of the cell membrane for the treated bacteria was analyzed by SEM. The nature of bond formation of LA with Ag or Au was analyzed by molecular orbital and density of state (DOS using DFT.

  12. N-acetylcysteine and the human serum components that inhibit bacterial invasion of gingival epithelial cells prevent experimental periodontitis in mice

    OpenAIRE

    Alam, Jehan; Baek, Keum Jin; Choi, Yun Sik; Kim, Yong Cheol; Choi, Youngnim

    2014-01-01

    Purpose We previously reported that human serum significantly reduces the invasion of various oral bacterial species into gingival epithelial cells in vitro. The aims of the present study were to characterize the serum component(s) responsible for the inhibition of bacterial invasion of epithelial cells and to examine their effect on periodontitis induced in mice. Methods Immortalized human gingival epithelial (HOK-16B) cells were infected with various 5- (and 6-) carboxy-fluorescein diacetat...

  13. First quantum mechanics/molecular mechanics studies of the inhibition mechanism of cruzain by peptidyl halomethyl ketones.

    Science.gov (United States)

    Arafet, Kemel; Ferrer, Silvia; Moliner, Vicent

    2015-06-01

    Cruzain is a primary cysteine protease expressed by the protozoan parasite Trypanosoma cruzi during Chagas disease infection, and thus, the development of inhibitors of this protein is a promising target for designing an effective therapy against the disease. In this paper, the mechanism of inhibition of cruzain by two different irreversible peptidyl halomethyl ketones (PHK) inhibitors has been studied by means of hybrid quantum mechanics/molecular mechanics-molecular dynamics (MD) simulations to obtain a complete representation of the possible free energy reaction paths. These have been traced on free energy surfaces in terms of the potential of mean force computed at AM1d/MM and DFT/MM levels of theory. An analysis of the possible reaction mechanisms of the inhibition process has been performed showing that the nucleophilic attack of an active site cysteine, Cys25, on a carbon atom of the inhibitor and the cleavage of the halogen-carbon bond take place in a single step. PClK appears to be much more favorable than PFK from a kinetic point of view. This result would be in agreement with experimental studies in other papain-like enzymes. A deeper analysis of the results suggests that the origin of the differences between PClK and PFK can be the different stabilizing interactions established between the inhibitors and the residues of the active site of the protein. Any attempt to explore the viability of the inhibition process through a stepwise mechanism involving the formation of a thiohemiketal intermediate and a three-membered sulfonium intermediate has been unsuccessful. Nevertheless, a mechanism through a protonated thiohemiketal, with participation of His159 as a proton donor, appears to be feasible despite showing higher free energy barriers. Our results suggest that PClK can be used as a starting point to develop a proper inhibitor of cruzain. PMID:25965914

  14. A spinal GABAergic mechanism is necessary for bladder inhibition by pudendal afferent stimulation

    OpenAIRE

    McGee, Meredith J.; Danziger, Zachary C.; Bamford, Jeremy A.; Grill, Warren M.

    2014-01-01

    Electrical stimulation of pudendal afferents can inhibit bladder contractions and increase bladder capacity. Recent results suggest that stimulation-evoked bladder inhibition is mediated by a mechanism other than activation of sympathetic bladder efferents in the hypogastric nerve, generating α-adrenergic receptor-mediated inhibition at the vesical ganglia and/or β-adrenergic receptor-mediated direct inhibition of the detrusor muscle. We investigated several inhibitory neurotransmitters that ...

  15. IRF7 inhibition prevents destructive innate immunity-A target for nonantibiotic therapy of bacterial infections.

    Science.gov (United States)

    Puthia, Manoj; Ambite, Ines; Cafaro, Caterina; Butler, Daniel; Huang, Yujing; Lutay, Nataliya; Rydström, Gustav; Gullstrand, Birgitta; Swaminathan, Bhairavi; Nadeem, Aftab; Nilsson, Björn; Svanborg, Catharina

    2016-04-27

    Boosting innate immunity represents an important therapeutic alternative to antibiotics. However, the molecular selectivity of this approach is a major concern because innate immune responses often cause collateral tissue damage. We identify the transcription factor interferon regulatory factor 7 (IRF-7), a heterodimer partner of IRF-3, as a target for non-antibiotics-based therapy of bacterial infections. We found that the efficient and self-limiting innate immune response to bacterial infection relies on a tight balance between IRF-3 and IRF-7. Deletion of Irf3 resulted in overexpression of Irf7 and led to an IRF-7-driven hyperinflammatory phenotype, which was entirely prevented if Irf7 was deleted. We then identified a network of strongly up-regulated, IRF-7-dependent genes in Irf3(-/-) mice with kidney pathology, which was absent in Irf7(-/-) mice. IRF-3 and IRF-7 from infected kidney cell nuclear extracts were shown to bind OAS1, CCL5, and IFNB1 promoter oligonucleotides. These data are consistent in children with low IRF7 expression in the blood: attenuating IRF7 promoter polymorphisms (rs3758650-T and rs10902179-G) negatively associated with recurrent pyelonephritis. Finally, we identified IRF-7 as a target for immunomodulatory therapy. Administering liposomal Irf7 siRNA to Irf3(-/-) mice suppressed mucosal IRF-7 expression, and the mice were protected against infection and renal tissue damage. These findings offer a response to the classical but unresolved question of "good versus bad inflammation" and identify IRF7 as a therapeutic target for protection against bacterial infection. PMID:27122612

  16. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Science.gov (United States)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  17. Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE

    NARCIS (Netherlands)

    R.N. Kulkarni; A.D. Bakker; V. Everts; J. Klein Nulend

    2010-01-01

    In regions of high bone loading, the mechanoresponsive osteocytes inhibit osteoclastic bone resorption by producing signaling molecules. One possible candidate is matrix extracellular phosphoglycoprotein (MEPE) because acidic serine- and aspartate-rich MEPE-associated motif peptides upregulate osteo

  18. Curcumin inhibits Akt/mTOR signaling through protein phosphatase-dependent mechanism*

    OpenAIRE

    Yu, Siwang; Shen, Guoxiang; Khor, Tin Oo; Kim, Jung-Hwan; Kong, Ah-Ng

    2008-01-01

    Akt/mTOR signaling plays an important role in tumorigenesis and is dysregulated in many tumors, especially metastatic prostate cancers. Curcumin has been shown to effectively prevent or inhibit prostate cancer in vivo and inhibit Akt/mTOR signaling in vitro, but the mechanism(s) remains unclear. Here we show that curcumin concentration- and time-dependently inhibited the phosphorylation of Akt, mTOR, and their downstream substrates in human prostate cancer PC-3 cells, and this inhibitory effe...

  19. Bacterial nitric oxide reductase: a mechanism revisited by an ONIOM (DFT:MM) study.

    Science.gov (United States)

    Attia, Amr A A; Silaghi-Dumitrescu, Radu

    2015-05-01

    Bacterial nitric oxide reductase (cNOR) is an important binuclear iron enzyme responsible for the reduction of nitric oxide to nitrous oxide in the catalytic cycle of bacterial respiration. The reaction mechanism of cNOR as well as the key reactive intermediates of the reaction are still under debate. Here, we report a computational study based on ONIOM (DFT:MM) calculations aimed at investigating the reaction mechanism of cNOR. The results suggest that the reaction proceeds via the mono-nitrosyl mechanism which starts off by the binding of an NO molecule to the heme b3 center, N-N hyponitrite bond formation as a result of the reaction with a second NO molecule was found to proceed with an exothermic energy barrier to yield a hyponitrite adduct forming an open (incomplete) ring conformation with the non-heme FeB center (O-N-N-O-FeB). N-O bond cleavage to yield N2O was shown to be the rate-limiting step with an activation barrier of 22.6 kcal mol(-1). The dinitrosyl (trans) mechanism, previously proposed by several studies, was also examined and found unfavorable due to high activation barriers of the resulting intermediates. PMID:25920393

  20. Significance of bacterial flora in abdominal irradiation-induced inhibition of lung metastases

    International Nuclear Information System (INIS)

    We have previously reported that abdominal irradiation prior to i.v. injection of syngeneic tumor cells reduced metastases in lung. Our report described an investigation of the significance of intestinal organisms in the radiation effect. We found that eliminating intestinal organisms with antibiotics totally abolished the radiation effect. Monoassociation of germ-free mice revealed that the radiation effect was observable only for Enterobacter cloacae, never for Streptococcus faecium, Bifidobacterium adlesentis, or Escherichia coli. After abdominal irradiation of regular mice, E. cloacae multiplied in cecal contents, adhered to mucous membranes, invaded the cecal wall, and translocated to mesenteric lymph nodes. Intravenous administration of E. cloacae in place of abdominal irradiation inhibited metastases. E. cloacae-monoassociated mice developed fewer metastases than germ-free mice, and the reduction was further enhanced by abdominal irradiation. We concluded that abdominal irradiation caused the invasion of E. cloacae from the mucous membrane of the intestine and inhibited formation of lung metastases

  1. Inhibition of bacterial aggregation by serum- and blood-derived proteins.

    OpenAIRE

    Malamud, D; Brown, C; Goldman, R

    1984-01-01

    Human and animal sera contain potent inhibitors of saliva-mediated aggregation of oral streptococci. The inhibitors consist of a high-molecular-weight heat-labile factor and a lower-molecular-weight heat-activated factor. The latter appears to be serum albumin. Analyses of purified blood-derived proteins indicated that several high-molecular-weight proteins (fibrinogen, fibronectin, and ferritin) were able to inhibit aggregation at low concentrations. These data suggest that high-molecular-we...

  2. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  3. Microbial dehalogenation of trichlorophenol by a bacterial consortium: characterization and mechanism

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chlorinated phenolic compounds are a class of toxic and refractory organic pollutants. The pollution caused by chlorophenols poses serious ecological and environmental problems. A stable bacterial consortium capable of reductively dechlorinating trichlorophenol was isolated using chlorophenol as the sole source of carbon and energy. The physiological characteristics of the mixed cultures were studied and the results show that the consortium could use pyruvate as the carbon and energy source. The fermentation of pyruvate, sulfate reduction and dechlorination process proceeded strictly in succession within this consortium. The effect of specific inhibitors on the dechlorinating activity of the consortium was investigated, and the results indicate that sulfate and molybdate (1 mmol/L) have a strong inhibitive influence on the dechlorination activity. Fluorescence in situ hybridization (FISH) technique was applied to analyzing the composition of the consortium and the results reveal that one major subpopulation within the consortium was phylogenetically affiliated to gamma and delta subclass of Proteobacteria.

  4. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  5. Lvserpin3 is involved in shrimp innate immunity via the inhibition of bacterial proteases and proteases involved in prophenoloxidase system.

    Science.gov (United States)

    Liu, Yongjie; Liu, Tao; Hou, Fujun; Wang, Xianzong; Liu, Xiaolin

    2016-01-01

    Serine protease inhibitor, represented by serpin, plays an important inhibitory role on proteases involved in the immune responses. To clarify the immune characterizations of serpin, a novel serpin (Lvserpin3) encoding for 410 amino acids with a 23-amino acid signal peptide and a serpin domain was identified from the Pacific white shrimp Litopenaeus vannamei. Lvserpin3 expressed strongest in hepatopancreas, and was significantly up-regulated in the early stage upon Vibrio anguillarum, Micrococcus lysodeikticus or White Spot Syndrome Virus (WSSV) infection. Suppression of Lvserpin3 by dsRNA led to a significant increase in the transcripts of LvPPAF, LvproPO and phenoloxidase (PO) activity, and also led to the high cumulative mortality. The recombinant Lvserpin3 protein (rLvserpin3) inhibited the proteases secreted by M. lysodeikticus and Bacillus subtilis, and further exhibited inhibitory role on the growth of B. subtilis and M. lysodeikticu. Moreover, rLvserpin3 was found to be able to block the activation of prophenoloxidase system. Taken together, the results imply that Lvserpin3 may be involved in shrimp innate immunity via the inhibition of bacterial proteases and proteases involved in prophenoloxidase system. PMID:26432049

  6. Structural Basis of Response Regulator Inhibition by a Bacterial Anti-Activator Protein

    OpenAIRE

    Melinda D Baker; Neiditch, Matthew B.

    2011-01-01

    The complex interplay between the response regulator ComA, the anti-activator RapF, and the signaling peptide PhrF controls competence development in Bacillus subtilis. More specifically, ComA drives the expression of genetic competence genes, while RapF inhibits the interaction of ComA with its target promoters. The signaling peptide PhrF accumulates at high cell density and upregulates genetic competence by antagonizing the interaction of RapF and ComA. How RapF functions mechanistically to...

  7. Grain coarsening of calcite: Fundamental mechanisms and biogenic inhibition

    DEFF Research Database (Denmark)

    Schultz, Logan Nicholas

    coarsening – small grains coarsen by aggregation at high temperatures, followed by Ostwald ripening. Alginate, a model for the acidic polysaccharides produced by coccolithiphores, inhibited coarsening at a steady rate. A Pseudomonas aeruginosa biofilm preserved particles for at least 60 days before a...

  8. Neural mechanisms of impaired fear inhibition in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Tanja eJovanovic

    2011-07-01

    Full Text Available Posttraumatic stress disorder (PTSD can develop in some individuals who are exposed to an event that causes extreme fear, horror, or helplessness (APA, 1994. PTSD is a complex and heterogeneous disorder, which is often co-morbid with depression, substance abuse, and anxiety disorders such as panic or social phobia. Given this complexity, progress in the field can be greatly enhanced by focusing on phenotypes that are more proximal to the neurobiology of the disorder. Such neurobiological intermediate phenotypes can provide investigative tools to increase our understanding of the roots of the disorder and develop better prevention or intervention programs. In the present paper, we argue that the inhibition of fear responses is an intermediate phenotype that is related to both the neurocircuitry associated with the disorder, and is linked to its clinical symptoms. An advantage of focusing on fear inhibition is that the neurobiology of fear has been well investigated in animal models providing the necessary groundwork in understanding alterations. Furthermore, because many paradigms can be tested across species, fear inhibition is an ideal translational tool. Here we review both the behavioral tests and measures of fear inhibition and the related neurocircuitry in neuroimaging studies with both healthy and clinical samples.

  9. Cellular mechanisms for presynaptic inhibition of sensory afferents

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; delgado-lezama, rodolfo; Christensen, Rasmus Kordt;

    It is well established that presynaptic inhibition of primary afferents involves the activation of GABAA receptors located on presynaptic terminals. However, the source of GABA remains unknown. In an integrated preparation of the spinal cord of the adult turtle, we evoked dorsal root potentials (...

  10. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms

    International Nuclear Information System (INIS)

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs

  11. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil

    International Nuclear Information System (INIS)

    Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation. Highlights: ► Impact of nano-sized zerovalent iron on microbes was investigated in soil microcosms. ► Zerovalent iron had short-lived effects on redox potential and Aroclor dechlorination. ► Microbial populations also showed short-lived perturbations in their size. ► The activity of chloroaromatic degrading microbes did not recover within 28 days. ► Zerovalent iron application inhibits ensuing PCB bioremediative microbial functions. - nZVI inhibits microbial functions of potential importance for remediation strategies combining nZVI treatment and biodegradation.

  12. Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yue; WU; Bin; YAN; Baixu; GAO; Peiji

    2004-01-01

    An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.

  13. Contextual control of inhibition with reinforcement: Adaptation and timing mechanisms

    OpenAIRE

    Bouton, Mark E.; Frohardt, Russell J.; Sunsay, Ceyhun; Waddell, Jaylyn; Richard W Morris

    2008-01-01

    Four experiments with rats studied the effects of switching the context after Pavlovian conditioning. In three conditioned suppression experiments, a large number of conditioning trials created “inhibition with reinforcement” (IWR), in which fear of the conditional stimulus (CS) reached a maximum and then declined despite continued CS – unconditional stimulus pairings. When IWR occurred, a context switch augmented fear of the CS; IWR and augmentation were highly correlated. Neither IWR nor au...

  14. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease

    OpenAIRE

    Fitzmaurice, Arthur G.; Rhodes, Shannon L.; Lulla, Aaron; Murphy, Niall P.; Lam, Hoa A.; O’Donnell, Kelley C.; Barnhill, Lisa; Casida, John E.; Cockburn, Myles; Sagasti, Alvaro; Stahl, Mark C.; Maidment, Nigel T; Ritz, Beate; Bronstein, Jeff. M.

    2013-01-01

    Parkinson disease (PD) is a neurodegenerative disorder particularly characterized by the loss of dopaminergic neurons in the substantia nigra. Pesticide exposure has been associated with PD occurrence, and we previously reported that the fungicide benomyl interferes with several cellular processes potentially relevant to PD pathogenesis. Here we propose that benomyl, via its bioactivated thiocarbamate sulfoxide metabolite, inhibits aldehyde dehydrogenase (ALDH), leading to accumulation of the...

  15. Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE

    OpenAIRE

    Kulkarni, R.N.; Bakker, A.D.; Everts, V.; Klein Nulend, J.

    2010-01-01

    In regions of high bone loading, the mechanoresponsive osteocytes inhibit osteoclastic bone resorption by producing signaling molecules. One possible candidate is matrix extracellular phosphoglycoprotein (MEPE) because acidic serine- and aspartate-rich MEPE-associated motif peptides upregulate osteoprotegerin (OPG) gene expression, a negative regulator of osteoclastogenesis. These peptides are cleaved from MEPE when relatively more MEPE than PHEX (phosphate-regulating gene with homology to en...

  16. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms.

    Science.gov (United States)

    Pavlovsky, Leonid; Sturtevant, Rachael A; Younger, John G; Solomon, Michael J

    2015-02-17

    Changes in temperature were found to affect the morphology, cell viability, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. S. epidermidis biofilms are commonly associated with hospital-acquired medical device infections. We observed the effect of heat treatment on three physical properties of the biofilms: the bacterial cell morphology and viability, the polymeric properties of the extracellular polymeric substance (EPS), and the rheological properties of the bulk biofilm. After application of a 1 h heat treatment at 45 °C, cell reproduction had ceased, and at 60 °C, cell viability was significantly reduced. Size exclusion chromatography was used to fractionate the extracellular polymeric substance (EPS) based on size. Chemical analysis of each fraction showed that the relative concentrations of the polysaccharide, protein, and DNA components of the EPS were unchanged by the heat treatment at 45 and 60 °C. The results suggest that the EPS molecular constituents are not significantly degraded by the temperature treatment. However, some aggregation on the scale of 100 nm was found by dynamic light scattering at 60 °C. Finally, relative to control biofilms maintained at 37 °C, we observed an order of magnitude reduction in the biofilm yield stress after 60 °C temperature treatment. No such difference was found for treatment at 45 °C. From these results, we conclude that the yield stress of bacterial biofilms is temperature-sensitive and that this sensitivity is correlated with cell viability. The observed significant decrease in yield stress with temperature suggests a means to weaken the mechanical integrity of S. epidermidis biofilms with applications in areas such as the treatment of biofilm-infected medical devices. PMID:25602470

  17. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  18. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation.

    Science.gov (United States)

    Mousa, Walaa K; Shearer, Charles R; Limay-Rios, Victor; Zhou, Ting; Raizada, Manish N

    2015-01-01

    Wild maize (teosinte) has been reported to be less susceptible to pests than their modern maize (corn) relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER) in modern maize and produces the mycotoxin, deoxynivalenol (DON). In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense. PMID:26500660

  19. Fluoride inhibits the response of bone cells to mechanical loading

    NARCIS (Netherlands)

    H.M.E. Willems; E.G.H.M. van den Heuvel; S. Castelein; J. Keverling Buisman; A.L.J.J. Bronckers; A.D. Bakker; J. Klein-Nulend

    2011-01-01

    The response of bone cells to mechanical loading is mediated by the cytoskeleton. Since the bone anabolic agent fluoride disrupts the cytoskeleton, we investigated whether fluoride affects the response of bone cells to mechanical loading, and whether this is cytoskeleton mediated. The mechano-respon

  20. Inhibition of bacterial and phytoplanktonic metabolic activity in the lower River Rhine by ditallowdimethylammonium chloride.

    Science.gov (United States)

    Tubbing, D M; Admiraal, W

    1991-12-01

    The effects of a quaternary ammonium compound, ditallowdimethylammonium chloride (DTDMAC), on natural populations of bacteria and phytoplankton from the lower River Rhine were examined to estimate their sensitivity to the discharges of cationic surfactants in the river basin. In short-term experiments, significant decreases in the growth rate of bacterioplankton and in the photosynthetic rate of phytoplankton were observed at a nominal concentration of 0.03 to 0.1 mg of DTDMAC liter-1. Nitrification was measured with an ion-selective electrode and by the rate of acid production in ammonium-spiked river water and was found to be only sensitive to the addition of concentrations higher than 1 mg of DTDMAC liter-1. This does not support an earlier suggestion that ammonium-oxidizing bacteria are specifically sensitive to quaternary ammonium compounds. The effect of DTDMAC on thymidine incorporation was shown to depend strongly on the concentration of suspended material, which varied with the sampling date. This effect was also quantified in experimental manipulations with Rhine water. Calculations on the partitioning of DTDMAC between water and suspended matter confirmed the role of suspended solids and showed that an increase of the dissolved DTDMAC concentration in Rhine water by circa 0.01 mg liter-1 leads to a slight inhibition of the growth of heterotrophic bacteria. It is concluded that a total concentration of circa 0.01 mg of DTDMAC liter-1 measured in the River Rhine is likely to have biological consequences. PMID:1785934

  1. Inhibition of Bacterial Quorum Sensing by Extracts from Aquatic Fungi: First Report from Marine Endophytes

    Directory of Open Access Journals (Sweden)

    Alberto J. Martín-Rodríguez

    2014-11-01

    Full Text Available In our search for quorum-sensing (QS disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes, saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS region sequences (ITS1, 5.8S and ITS2 between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06, Fusarium (LAEE13, Epicoccum (LAEE14, and Khuskia (LAEE21. Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.

  2. Importance of Bacterial Replication and Alveolar Macrophage-Independent Clearance Mechanisms during Early Lung Infection with Streptococcus pneumoniae

    OpenAIRE

    Camberlein, Emilie; Cohen, Jonathan M.; José, Ricardo; Hyams, Catherine J.; Callard, Robin; Chimalapati, Suneeta; Yuste, Jose; Edwards, Lindsey A.; Marshall, Helina; van Rooijen, Nico; Noursadeghi, Mahdad; Brown, Jeremy S.

    2015-01-01

    Although the importance of alveolar macrophages for host immunity during early Streptococcus pneumoniae lung infection is well established, the contribution and relative importance of other innate immunity mechanisms and of bacterial factors are less clear. We have used a murine model of S. pneumoniae early lung infection with wild-type, unencapsulated, and para-amino benzoic acid auxotroph mutant TIGR4 strains to assess the effects of inoculum size, bacterial replication, capsule, and alveol...

  3. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    Science.gov (United States)

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants. PMID:15210989

  4. Suramin inhibits chikungunya virus replication through multiple mechanisms.

    Science.gov (United States)

    Albulescu, Irina C; van Hoolwerff, Marcella; Wolters, Laura A; Bottaro, Elisabetta; Nastruzzi, Claudio; Yang, Shih Chi; Tsay, Shwu-Chen; Hwu, Jih Ru; Snijder, Eric J; van Hemert, Martijn J

    2015-09-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes severe and often persistent arthritis. In recent years, millions of people have been infected with this virus for which registered antivirals are still lacking. Using our recently established in vitro assay, we discovered that the approved anti-parasitic drug suramin inhibits CHIKV RNA synthesis (IC50 of ∼5μM). The compound inhibited replication of various CHIKV isolates in cell culture with an EC50 of ∼80μM (CC50>5mM) and was also active against Sindbis virus and Semliki Forest virus. In vitro studies hinted that suramin interferes with (re)initiation of RNA synthesis, whereas time-of-addition studies suggested it to also interfere with a post-attachment early step in infection, possibly entry. CHIKV (nsP4) mutants resistant against favipiravir or ribavirin, which target the viral RNA polymerase, did not exhibit cross-resistance to suramin, suggesting a different mode of action. The assessment of the activity of a variety of suramin-related compounds in cell culture and the in vitro assay for RNA synthesis provided more insight into the moieties required for antiviral activity. The antiviral effect of suramin-containing liposomes was also analyzed. Its approved status makes it worthwhile to explore the use of suramin to prevent and/or treat CHIKV infections. PMID:26112648

  5. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Schmidt, Juliane; Meier, René; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-08-01

    Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with high sequence and structural similarity. Both enzymes exhibit an exposed active site in a substrate binding groove located at the protein surface. By exchanging selected amino acid residues of TfCut2 involved in substrate binding with those present in LCC, enzyme variants with increased PET hydrolytic activity at 65°C were obtained. The highest activity in hydrolyzing PET films and fibers were detected with the single variant G62A and the double variant G62A/I213S. Both variants caused a weight loss of PET films of more than 42% after 50 h of hydrolysis, corresponding to a 2.7-fold increase compared to the wild type enzyme. Kinetic analysis based on the released PET hydrolysis products confirmed the superior hydrolytic activity of G62A with a fourfold higher hydrolysis rate constant and a 1.5-fold lower substrate binding constant than those of the wild type enzyme. Mono-(2-hydroxyethyl) terephthalate is a strong inhibitor of TfCut2. A determination of the Rosetta binding energy suggested a reduced interaction of G62A with 2PET, a dimer of the PET monomer ethylene terephthalate. Indeed, G62A revealed a 5.5-fold lower binding constant to the inhibitor than the wild type enzyme indicating that its increased PET hydrolysis activity is the result of a relieved product inhibition by mono-(2-hydroxyethyl) terephthalate. Biotechnol. Bioeng. 2016;113: 1658-1665. © 2016 Wiley Periodicals, Inc. PMID:26804057

  6. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    Science.gov (United States)

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure. PMID:25956940

  7. The analysis of the defense mechanism against indigenous bacterial translocation in X-irradiated mice

    International Nuclear Information System (INIS)

    The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bacterial activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intenstine in mice. (author)

  8. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility.

    Science.gov (United States)

    Carneiro, Luísa Cunha; Cronin, James Graham; Sheldon, Iain Martin

    2016-03-01

    Bacterial infections of the endometrium after parturition commonly cause metritis and endometritis in dairy cattle, and these diseases are important because they compromise animal welfare and incur economic costs, as well as delaying or preventing conception. Here we highlight that uterine infections cause infertility, discuss which bacteria cause uterine disease, and review the evidence for mechanisms of inflammation and tissue damage in the endometrium. Bacteria cultured from the uterus of diseased animals include Escherichia coli, Trueperella pyogenes, and several anaerobic species, but their causative role in disease is challenged by the discovery of many other bacteria in the uterine disease microbiome. Irrespective of the species of bacteria, endometrial cell inflammatory responses to infection initially depend on innate immunity, with Toll-like receptors binding pathogen-associated molecular patterns, such as lipopolysaccharide and bacterial lipopeptides. In addition to tissue damage associated with parturition and inflammation, endometrial cell death is caused by a cholesterol-dependent cytolysin secreted by T. pyogenes, called pyolysin, which forms pores in plasma membranes of endometrial cells. However, endometrial cells surprisingly do not sense damage-associated molecular patterns, but a combination of infections followed by cell damage leads to release of the intracellular cytokine interleukin (IL)-1 alpha from endometrial cells, which then acts to scale inflammatory responses. To develop strategies to limit the impact of uterine disease on fertility, future work should focus on determining which bacteria and virulence factors cause endometritis, and understanding how the host response to infection is regulated in the endometrium. PMID:26952747

  9. Surface-Mediated Release of a Small-Molecule Modulator of Bacterial Biofilm Formation: A Non-Bactericidal Approach to Inhibiting Biofilm Formation in Pseudomonas aeruginosa

    OpenAIRE

    Broderick, Adam H.; Breitbach, Anthony S.; Frei, Reto; Blackwell, Helen E.; Lynn, David M.

    2013-01-01

    We report an approach to preventing bacterial biofilm formation that is based on the surface-mediated release of 5,6-dimethyl-2-aminobenzimidazole (DMABI), a potent and non-bactericidal small-molecule inhibitor of bacterial biofilm growth. Our results demonstrate that DMABI can be encapsulated in thin films of a model biocompatible polymer [poly(lactide-co-glycolide), PLG] and be released in quantities that inhibit the formation of Pseudomonas aeruginosa biofilms by up to 75–90% on surfaces t...

  10. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2.

    LENUS (Irish Health Repository)

    Power, Colm P

    2012-02-03

    The human sepsis syndrome resulting from bacterial infection continues to account for a significant proportion of hospital mortality. Neutralizing strategies aimed at individual bacterial wall products (such as LPS) have enjoyed limited success in this arena. Bacterial lipoprotein (BLP) is a major constituent of the wall of diverse bacterial forms and profoundly influences cellular function in vivo and in vitro, and has been implicated in the etiology of human sepsis. Delayed polymorphonuclear cell (PMN) apoptosis is a characteristic feature of human sepsis arising from Gram-negative or Gram-positive bacterial infection. Bacterial wall product ligation and subsequent receptor-mediated events upstream of caspase inhibition in neutrophils remain incompletely understood. BLP has been shown to exert its cellular effects primarily through TLR-2, and it is now widely accepted that lateral associations with the TLRs represent the means by which CD14 communicates intracellular messages. In this study, we demonstrate that BLP inhibits neutrophil mitochondrial membrane depolarization with a subsequent reduction in caspase-3 processing, ultimately leading to a significant delay in PMN apoptosis. Pretreatment of PMNs with an anti-TLR-2 mAb or anti-CD14 mAb prevented BLP from delaying PMN apoptosis to such a marked degree. Combination blockade using both mAbs completely prevented the effects of BLP (in 1 and 10 ng\\/ml concentrations) on PMN apoptosis. At higher concentrations of BLP, the antiapoptotic effects were observed, but were not as pronounced. Our findings therefore provide the first evidence of a crucial role for both CD14 and TLR-2 in delayed PMN apoptosis arising from bacterial infection.

  11. Bacterial corrosion in low-temperature geothermal. Mechanisms of corrosion by sulphate-reducing bacteria

    International Nuclear Information System (INIS)

    Within the frame of researches aimed at determining the causes of damages noticed on geothermal equipment, this research thesis aims at assessing the respective importance of physical-chemical processes and bacterial intervention in corrosion phenomena. It proposes an ecological approach of the fluid sampled in the Creil geothermal power station. The aim is to define the adaptation and activity degree of isolated sulphate-reducing bacteria with respect to their environment conditions. The author studied the effect of the development of these bacteria on the corrosion of carbon steel used in geothermal. Thus, he proposes a contribution to the understanding of mechanisms related to iron attack by these bacteria. Electrochemical techniques have been adapted to biological processes and used to measure corrosion

  12. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression

    Science.gov (United States)

    Brunwasser-Meirom, Michal; Pollak, Yaroslav; Goldberg, Sarah; Levy, Lior; Atar, Orna; Amit, Roee

    2016-02-01

    We explore a model for `quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10-11 bp insertions or deletions (INDELs) and sensitive to 5-6 bp INDELs. We test this prediction on 61 σ54-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat.

  13. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    Science.gov (United States)

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  14. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them.

    Science.gov (United States)

    Khameneh, Bahman; Diab, Roudayna; Ghazvini, Kiarash; Fazly Bazzaz, Bibi Sedigheh

    2016-06-01

    Multidrug-resistant (MDR) bacteria have increased at an alarming rate over recent decades and cause serious problems. The emergence of resistant infections caused by these bacteria has led to mortality and morbidity; consequently there is an urgent need to find solution for combating bacterial resistance. In the present paper, first, some mechanisms of antibiotic resistance such as changing the antibacterial agent's uptake and biofilm formation are discussed. Following, for removing the antibacterial resistance, a wide range of approaches like developing new generations of antibiotics, combination therapy, natural antibacterial substances and applying nanoparticulate systems have been explained. Among them, antibiotic delivery via nanoparticles, has been attracted more attention recently, so discussed in present review, separately. PMID:26911646

  15. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    OpenAIRE

    Yinglong Su; Xiong Zheng; Yinguang Chen; Mu Li; Kun Liu

    2015-01-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total n...

  16. Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants.

    Science.gov (United States)

    Zhao, Congcong; Xie, HuiJun; Xu, Jingtao; Xu, Xiaoli; Zhang, Jian; Hu, Zhen; Liu, Cui; Liang, Shuang; Wang, Qian; Wang, Jingmin

    2015-02-01

    Triclosan (TCS) is a broad-spectrum synthetic antimicrobial agent that is toxic to microbes and other aquatic organisms. Constructed wetlands (CWs) are now popular in TCS removal. However, knowledge on the effects of TCS on the bacterial community and microbial removal mechanism in CWs is lacking. The effects of TCS (60 μg L(-1)) on bacterial communities in batch-loaded CWs with emergent (Typha angustifolia), submerged (Hydrilla verticillata), and floating plant (Salvinia natans) were analyzed by 454 pyrosequencing technology. After six periods of experiment, the TCS removal efficiencies were over 90% in CWs, and negative effects of TCS on bacterial community richness and diversity were observed. Moreover, plant species effect existed. Bacterial strains that contributed to TCS biodegradation in CWs were successfully identified. In TCS-treated T. angustifolia and H. verticillata CWs, beta-Proteobacteria increased by 16.63% and 18.20%, respectively. In TCS-treated S. natans CWs, delta- and gamma-Proteobacteria and Sphingobacteria increased by 9.36%, 19.49%, and 31.37%, respectively, and could relate to TCS biodegradation. TCS affected the development of certain bacteria, and eventually, the bacterial community structures in CWs. This research provided ecologically relevant information on bacterial community and microbial removal mechanism in CWs under TCS treatment. PMID:25461066

  17. Bacterial metabolic 'toxins': a new mechanism for lactose and food intolerance, and irritable bowel syndrome.

    Science.gov (United States)

    Campbell, A K; Matthews, S B; Vassel, N; Cox, C D; Naseem, R; Chaichi, J; Holland, I B; Green, J; Wann, K T

    2010-12-30

    Lactose and food intolerance cause a wide range of gut and systemic symptoms, including gas, gut pain, diarrhoea or constipation, severe headaches, severe fatigue, loss of cognitive functions such as concentration, memory and reasoning, muscle and joint pain, heart palpitations, and a variety of allergies (Matthews and Campbell, 2000; Matthews et al., 2005; Waud et al., 2008). These can be explained by the production of toxic metabolites from gut bacteria, as a result of anaerobic digestion of carbohydrates and other foods, not absorbed in the small intestine. These metabolites include alcohols, diols such as butan 2,3 diol, ketones, acids, and aldehydes such as methylglyoxal (Campbell et al., 2005, 2009). These 'toxins' induce calcium signals in bacteria and affect their growth, thereby acting to modify the balance of microflora in the gut (Campbell et al., 2004, 2007a,b). These bacterial 'toxins' also affect signalling mechanisms in cells around the body, thereby explaining the wide range of symptoms in people with food intolerance. This new mechanism also explains the most common referral to gastroenterologists, irritable bowel syndrome (IBS), and the illness that afflicted Charles Darwin for 50 years (Campbell and Matthews, 2005a,b). We propose it will lead to a new understanding of the molecular mechanism of type 2 diabetes and some cancers. PMID:20851732

  18. A rapid in situ procedure for determination of bacterial susceptibility or resistance to antibiotics that inhibit peptidoglycan biosynthesis

    Directory of Open Access Journals (Sweden)

    Bou Germán

    2011-08-01

    Full Text Available Abstract Background Antibiotics which inhibit bacterial peptidoglycan biosynthesis are the most widely used in current clinical practice. Nevertheless, resistant strains increase dramatically, with serious economic impact and effects on public health, and are responsible for thousands of deaths each year. Critical clinical situations should benefit from a rapid procedure to evaluate the sensitivity or resistance to antibiotics that act at the cell wall. We have adapted a kit for rapid determination of bacterial DNA fragmentation, to assess cell wall integrity. Results Cells incubated with the antibiotic were embedded in an agarose microgel on a slide, incubated in an adapted lysis buffer, stained with a DNA fluorochrome, SYBR Gold and observed under fluorescence microscopy. The lysis affects the cells differentially, depending on the integrity of the wall. If the bacterium is susceptible to the antibiotic, the weakened cell wall is affected by the lysing solution so the nucleoid of DNA contained inside the bacterium is released and spread. Alternatively, if the bacterium is resistant to the antibiotic, it is practically unaffected by the lysis solution and does not liberate the nucleoid, retaining its normal morphological appearance. In an initial approach, the procedure accurately discriminates susceptible, intermediate and resistant strains of Escherichia coli to amoxicillin/clavulanic acid. When the bacteria came from an exponentially growing liquid culture, the effect on the cell wall of the β-lactam was evident much earlier that when they came from an agar plate. A dose-response experiment with an E. coli strain susceptible to ampicillin demonstrated a weak effect before the MIC dose. The cell wall damage was not homogenous among the different cells, but the level of damage increased as dose increased with a predominant degree of effect for each dose. A microgranular-fibrilar extracellular background was evident in gram

  19. Neumann boundary conditions inhibiting the SSB in the Coleman-Weinberg mechanism

    CERN Document Server

    Fagundes, F N; Dilem, B B; Nogueira, J A; 10.1088/0253-6102/54/6/21

    2012-01-01

    In this work we show that homogeneous Neumann boundary conditions inhibit the Coleman-Weinberg mechanism for spontaneous symmetry breaking in the scalar electrodynamics if the length of the finite region is small enough ($a = e^{2}M^{-1}_{\\phi}$, where $M_{\\phi}$ is the mass of the scalar field generated by the Coleman-Weinberg mechanism)

  20. High-resolution bacterial growth inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antibacterial constituents in Chinese plants used to treat snakebites

    DEFF Research Database (Denmark)

    Liu, Yueqiu; Nielsen, Mia; Stærk, Dan;

    2014-01-01

    Ethnopharmacogical relevance Bacterial infection is one of the main secondary infections caused by snakebite. The 88 plant species investigated in this study have been used as folk remedies for treatment of snakebite, and it is therefore the aim of this study to investigate whether the plants...... contain compounds with bacterial growth inhibition. Materials and methods The water and ethanol extracts of 88 plant species were screened at 200 μg/mL against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa for their antibacterial activity by micro-broth dilution...... assay. The most active extracts were fractionated into microplates using analytical-scale RP-HPLC, and subsequently growth inhibition was assessed for each well. The biochromatograms constructed from these assays were used to identify compounds responsible for antibacterial activity. The structures of...

  1. Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor

    Science.gov (United States)

    Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue

    2014-07-01

    Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors.

  2. Effect of titanium dioxide nanoparticles on mechanical strength and bacterial inhibition of glass ionomer cements%玻璃离子水门汀加入二氧化钛纳米颗粒后的机械与抑菌性能

    Institute of Scientific and Technical Information of China (English)

    刘莉霞; 陈琳

    2014-01-01

    BACKGROUND:Glass ionomer cements have been gradual y employed in many aspects of dental clinical field. However, low mechanical strength and antibacterial effect restrict its further applications. OBJECTIVE:To proportional y explore the effects of titanium dioxide nanoparticles on the mechanical strength and antibacterial effect of traditional glass ionomer cements. METHODS:Base on different mass fractions of titanium dioxide nanoparticles in glass ionomer cements, al the glass ionomer cement samples were divided into control group (no titanium dioxide nanoparticles), low titanium dioxide group (containing 3%titanium dioxide nanoparticles), medium titanium dioxide group (containing 6%titanium dioxide nanoparticles), and high titanium dioxide group (containing 9%titanium dioxide nanoparticles). A universal material testing machine and a hardness tester were used to examine flexural strength, compressive strength, and surface hardness of glass ionomer cement samples, respectively. Glass ionomer cement samples were immerged into the artificial saliva, and fluoride release was measured by using a fluoride ion selective electrode. The direct contact test was used to investigate antibacterial effect of glass ionomer cement samples towards Streptococcus mutans. RESULTS AND CONCLUSION:Compared with the control group, few titanium dioxide nanoparticles (low and medium titanium dioxide group) could significantly improve flexural strength, compressive strength and surface hardness of glass ionomer cement samples (P<0.05), and high titanium dioxide nanoparticles (high titanium dioxide group) significantly decreased flexural strength, compressive strength and surface hardness (P<0.05). The introduction of titanium dioxide nanoparticles had little effect on fluorine release behavior of glass ionomer cement samples, and greatly improved antibacterial effect of glass ionomer cement samples towards Streptococcus mutans.%背景:玻璃离子水门汀已被逐渐应用于口腔

  3. An unprecedented alteration in mode of action of IsCT resulting its translocation into bacterial cytoplasm and inhibition of macromolecular syntheses.

    Science.gov (United States)

    Tripathi, Jitendra K; Kathuria, Manoj; Kumar, Amit; Mitra, Kalyan; Ghosh, Jimut K

    2015-01-01

    IsCT, a 13-residue, non-cell-selective antimicrobial peptide is comprised of mostly hydrophobic residues and lesser cationic residues. Assuming that placement of an additional positive charge in the non-polar face of IsCT could reduce its hydrophobic interaction, resulting in its reduction of cytotoxicity, an analog, I9K-IsCT was designed. Two more analogs, namely, E7K-IsCT and E7K,I9K-IsCT, were designed to investigate the impact of positive charges in the polar face as well as polar and non-polar faces at a time. These amino acid substitutions resulted in a significant enhancement of therapeutic potential of IsCT. IsCT and E7K-IsCT seem to target bacterial membrane for their anti-bacterial activity. However, I9K-IsCT and E7K,I9K-IsCT inhibited nucleic acid and protein syntheses in tested E. coli without perturbing its membrane. This was further supported by the observation that NBD-IsCT localized onto bacterial membrane while NBD-labeled I9K-IsCT and E7K,I9K-IsCT translocated into bacterial cytoplasm. Interestingly, IsCT and E7K-IsCT were significantly helical while I9K-IsCT and E7K,I9K-IsCT were mostly unstructured with no helix content in presence of mammalian and bacterial membrane-mimetic lipid vesicles. Altogether, the results identify two novel cell-selective analogs of IsCT with new prototype amino acid sequences that can translocate into bacterial cytoplasm without any helical structure and inhibit macromolecular syntheses. PMID:25773522

  4. Biochemistry of Bacterial Multidrug Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Sanath Kumar

    2012-04-01

    Full Text Available Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps.

  5. Mechanisms of dexamethasone-mediated inhibition of Toll-like receptor signaling induced by Neisseria meningitidis and Streptococcus pneumoniae

    DEFF Research Database (Denmark)

    Mogensen, Trine; Berg, Randi S; Paludan, Søren R;

    2008-01-01

    significantly reduces mortality and morbidity from bacterial meningitis. Here we investigate the molecular mechanisms behind the inhibitory effect of dexamethasone upon the inflammatory responses evoked by Neisseria meningitidis and Streptococcus pneumoniae, two of the major causes of bacterial meningitis. The...... and S. pneumoniae, which may contribute to our understanding of the clinical effect and the importance of timing with respect to corticosteroid treatment during bacterial meningitis. Udgivelsesdato: 2008-Jan...

  6. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT.

    Directory of Open Access Journals (Sweden)

    Pengfei Ding

    2015-06-01

    Full Text Available Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.

  7. Bacterial radiosensitization by using radiation processing in combination with essential oil: Mechanism of action

    International Nuclear Information System (INIS)

    Spice extracts under the form of essential oils were tested for their efficiency to increase the relative radiosensitivity of Listeria monocytogenes and Escherichia coli O157H7 in culture media. The two pathogens were treated by gamma-irradiation alone or in combination with oregano essential oil to evaluate their mechanism of action. The membrane murein composition, and the intracellular and extracellular concentration of ATP was determined. The bacterial strains were treated with two irradiation doses: 1.2 kGy to induce cell damage and 3.5 kGy to cause cell death for L. monocytogenes. A dose of 0.4 kGy to induce cell damages, 1.1 kGy to obtain viable but nonculturable (VBNC) state and 1.3 kGy to obtain a lethal dose was also applied on E. coli O157H7. Oregano essential oil was used at 0.020% and 0.025% (w/v), which is the minimum inhibitory concentration (MIC) for L. monocytogenes. For E. coli O157H7, a concentration of 0.006% and 0.025% (w/v) which is the minimum inhibitory concentration was applied. The use of essential oils in combination with irradiation has permitted an increase of the bacterial radiosensitization by more than 3.1 times. All treatments had also a significant effect (p≤0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment influenced differently the relative percentage and number of muropeptides. There was a significant (p≤0.05) correlation between the reduction of intracellular ATP and increase in extracellular ATP following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when essential oil was combined with irradiation, but irradiation of L. monocytogenes alone induced a significant decrease (p≤0.05) of the internal ATP without affecting the external ATP.

  8. Bacterial radiosensitization by using radiation processing in combination with essential oil: Mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, Monique [Canadian Irradiation Center, Research Laboratory in Sciences Applied to Food, INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Quebec, H7V 1B7 (Canada)], E-mail: monique.lacroix@iaf.inrs.ca; Caillet, Stephane [Canadian Irradiation Center, Research Laboratory in Sciences Applied to Food, INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Quebec, H7V 1B7 (Canada); Shareck, Francois [INRS-Institut Armand-Frappier, 531, Boulevard des Prairies, Laval, Quebec, H7V 1B7 (Canada)

    2009-07-15

    Spice extracts under the form of essential oils were tested for their efficiency to increase the relative radiosensitivity of Listeria monocytogenes and Escherichia coli O157H7 in culture media. The two pathogens were treated by gamma-irradiation alone or in combination with oregano essential oil to evaluate their mechanism of action. The membrane murein composition, and the intracellular and extracellular concentration of ATP was determined. The bacterial strains were treated with two irradiation doses: 1.2 kGy to induce cell damage and 3.5 kGy to cause cell death for L. monocytogenes. A dose of 0.4 kGy to induce cell damages, 1.1 kGy to obtain viable but nonculturable (VBNC) state and 1.3 kGy to obtain a lethal dose was also applied on E. coli O157H7. Oregano essential oil was used at 0.020% and 0.025% (w/v), which is the minimum inhibitory concentration (MIC) for L. monocytogenes. For E. coli O157H7, a concentration of 0.006% and 0.025% (w/v) which is the minimum inhibitory concentration was applied. The use of essential oils in combination with irradiation has permitted an increase of the bacterial radiosensitization by more than 3.1 times. All treatments had also a significant effect (p{<=}0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment influenced differently the relative percentage and number of muropeptides. There was a significant (p{<=}0.05) correlation between the reduction of intracellular ATP and increase in extracellular ATP following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when essential oil was combined with irradiation, but irradiation of L. monocytogenes alone induced a significant decrease (p{<=}0.05) of the internal ATP without affecting the external ATP.

  9. Bacterial radiosensitization by using radiation processing in combination with essential oil: Mechanism of action

    Science.gov (United States)

    Lacroix, Monique; Caillet, Stéphane; Shareck, Francois

    2009-07-01

    Spice extracts under the form of essential oils were tested for their efficiency to increase the relative radiosensitivity of Listeria monocytogenes and Escherichia coli O157H7 in culture media. The two pathogens were treated by gamma-irradiation alone or in combination with oregano essential oil to evaluate their mechanism of action. The membrane murein composition, and the intracellular and extracellular concentration of ATP was determined. The bacterial strains were treated with two irradiation doses: 1.2 kGy to induce cell damage and 3.5 kGy to cause cell death for L. monocytogenes. A dose of 0.4 kGy to induce cell damages, 1.1 kGy to obtain viable but nonculturable (VBNC) state and 1.3 kGy to obtain a lethal dose was also applied on E. coli O157H7. Oregano essential oil was used at 0.020% and 0.025% (w/v), which is the minimum inhibitory concentration (MIC) for L. monocytogenes. For E. coli O157H7, a concentration of 0.006% and 0.025% (w/v) which is the minimum inhibitory concentration was applied. The use of essential oils in combination with irradiation has permitted an increase of the bacterial radiosensitization by more than 3.1 times. All treatments had also a significant effect ( p⩽0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment influenced differently the relative percentage and number of muropeptides. There was a significant ( p⩽0.05) correlation between the reduction of intracellular ATP and increase in extracellular ATP following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when essential oil was combined with irradiation, but irradiation of L. monocytogenes alone induced a significant decrease ( p⩽0.05) of the internal ATP without affecting the external ATP.

  10. Soluble Epoxide Hydrolase Inhibition: Targeting Multiple Mechanisms of Ischemic Brain Injury with a Single Agent

    OpenAIRE

    Iliff, Jeffrey J.; Alkayed, Nabil J.

    2009-01-01

    Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolic conversion and degradation of P450 eicosanoids called epoxyeicosatrienoic acids (EETs). Genetic variations in the sEH gene, designated EPHX2, are associated with ischemic stroke risk. In experimental studies, sEH inhibition and gene deletion reduce infarct size after focal cerebral ischemia in mice. Although the precise mechanism of protection afforded by sEH inhibition remains under investigation, EETs exhibit a wide array of p...

  11. Kinetics and Mechanism Study of Competitive Inhibition of Jack-Bean Urease by Baicalin

    OpenAIRE

    Lirong Tan; Jiyan Su; Dianwei Wu; Xiaodan Yu; Zuqing Su; Jingjin He; Xiaoli Wu; Songzhi Kong; Xiaoping Lai; Ji Lin; Ziren Su

    2013-01-01

    Baicalin (BA) is the principal component of Radix Scutellariae responsible for its pharmacological activity. In this study, kinetics and mechanism of inhibition by BA against jack-bean urease were investigated for its therapeutic potential. It was revealed that the IC50 of BA against jack-bean urease was 2.74 ± 0.51 mM, which was proved to be a competitive and concentration-dependent inhibition with slow-binding progress curves. The rapid formation of initial BA-urease complex with an inhibit...

  12. ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.

    Science.gov (United States)

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Futai, Masamitsu

    2016-02-01

    ATP synthases (FoF1) are found ubiquitously in energy-transducing membranes of bacteria, mitochondria, and chloroplasts. These enzymes couple proton transport and ATP synthesis or hydrolysis through subunit rotation, which has been studied mainly by observing single molecules. In this review, we discuss the mechanism of rotational catalysis of ATP synthases, mainly that from Escherichia coli, emphasizing the high-speed and stochastic rotation including variable rates and an inhibited state. Single molecule studies combined with structural information of the bovine mitochondrial enzyme and mutational analysis have been informative as to an understanding of the catalytic site and the interaction between rotor and stator subunits. We discuss the similarity and difference in structure and inhibitory regulation of F1 from bovine and E. coli. Unlike the crystal structure of bovine F1 (α3β3γ), that of E. coli contains a ε subunit, which is a known inhibitor of bacterial and chloroplast F1 ATPases. The carboxyl terminal domain of E. coli ε (εCTD) interacts with the catalytic and rotor subunits (β and γ, respectively), and then inhibits rotation. The effects of phytopolyphenols on F1-ATPase are also discussed: one of them, piceatannol, lowered the rotational speed by affecting rotor/stator interactions. PMID:26589785

  13. Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose.

    Science.gov (United States)

    Olsen, Johan P; Alasepp, Kadri; Kari, Jeppe; Cruys-Bagger, Nicolaj; Borch, Kim; Westh, Peter

    2016-06-01

    The cellobiohydrolase cellulase Cel7A is extensively utilized in industrial treatment of lignocellulosic biomass under conditions of high product concentrations, and better understanding of inhibition mechanisms appears central in attempts to improve the efficiency of this process. We have implemented an electrochemical biosensor assay for product inhibition studies of cellulases acting on their natural substrate, cellulose. Using this method we measured the hydrolytic rate of Cel7A as a function of both product (inhibitor) concentration and substrate load. This data enabled analyses along the lines of conventional enzyme kinetic theory. We found that the product cellobiose lowered the maximal rate without affecting the Michaelis constant, and this kinetic pattern could be rationalized by two fundamentally distinct molecular mechanisms. One was simple reversibility, that is, an increasing rate of the reverse reaction, lowering the net hydrolytic velocity as product concentrations increase. Strictly this is not a case of inhibition, as no catalytically inactive is formed. The other mechanism that matched the kinetic data was noncompetitive inhibition with an inhibition constant of 490 ± 40 μM. Noncompetitive inhibition implies that the inhibitor binds with comparable strength to either free enzyme or an enzymesubstrate complex, that is, that association between enzyme and substrate has no effect on the binding of the inhibitor. This mechanism is rarely observed, but we argue, that the special architecture of Cel7A with numerous subsites for binding of both substrate and product could give rise to a true noncompetitive inhibition mechanism. Biotechnol. Bioeng. 2016;113: 1178-1186. © 2015 Wiley Periodicals, Inc. PMID:26636743

  14. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    International Nuclear Information System (INIS)

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms. (paper)

  15. The Mechanism of Organophosphorus Pesticide-Induced Inhibition of Cytolytic Activity of Killer Cells

    Institute of Scientific and Technical Information of China (English)

    Qing Li; Tomoyuki Kawada

    2006-01-01

    The main toxicity of organophosphorus pesticides (OPs) is neurotoxicity, which is caused by the inhibition of acetylcholinesterase. OPs also affect immune responses including effects on antibody production, IL-2 production,T cell proliferation, decreasement of CD5 cells, and increasement of CD26 cells and autoantibodies. However, there have been few papers investigating the mechanism of OP-induced inhibition of cytolytic activity of killer cells. This study reviews the new mechanism of OP-induced inhibition of activities of natural killer (NK),lymphokine-activated killer (LAK) and cytotoxic T lymphocytes (CTL). NK, LAK and CTL induce cell death in tumor or virus-infected target cells by two main mechanisms. The first mechanism is direct release of cytolytic granules that contain perforin, granzymes, and granulysin by exocytosis to kill target cells, which is called the granule exocytosis pathway. The second mechanism is mediated by the Fas !igand (Fas-L)/Fas pathway. To date, it has been reported that OPs inhibit NK, LAK and CTL activities by at least the following three mechanisms: 1) OPs impair the granule exocytosis pathway of NK, LAK and CTL cells by inhibiting the activity of granzymes, and by decreasing the intracellular level of perforin, granzyme A and granulysin, which was mediated by inducing degranulation of NK cells and by inhibiting the transcript of mRNA of perforin, granzyme A and granulysin; 2)OPs impair the FasL/Fas pathway of NK, LAK and CTL cells, as investigated by using perforin-knockout mice, in which the granule exocytosis pathway of NK cells does not function and only the FasL/Fas pathway remains functional; 3) OPs induce apoptosis of immune cells.

  16. Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies.

    Directory of Open Access Journals (Sweden)

    Xiangying Guan

    Full Text Available Sirtuins are key regulators of many cellular functions including cell growth, apoptosis, metabolism, and genetic control of age-related diseases. Sirtuins are themselves regulated by their cofactor nicotinamide adenine dinucleotide (NAD+ as well as their reaction product nicotinamide (NAM, the physiological concentrations of which vary during the process of aging. Nicotinamide inhibits sirtuins through the so-called base exchange pathway, wherein rebinding of the reaction product to the enzyme accelerates the reverse reaction. We investigated the mechanism of nicotinamide inhibition of human SIRT3, the major mitochondrial sirtuin deacetylase, in vitro and in silico using experimental kinetic analysis and Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PB(GBSA binding affinity calculations with molecular dynamics sampling. Through experimental kinetic studies, we demonstrate that NAM inhibition of SIRT3 involves apparent competition between the inhibitor and the enzyme cofactor NAD+, contrary to the traditional characterization of base exchange as noncompetitive inhibition. We report a model for base exchange inhibition that relates such kinetic properties to physicochemical properties, including the free energies of enzyme-ligand binding, and estimate the latter through the first reported computational binding affinity calculations for SIRT3:NAD+, SIRT3:NAM, and analogous complexes for Sir2. The computational results support our kinetic model, establishing foundations for quantitative modeling of NAD+/NAM regulation of mammalian sirtuins during aging and the computational design of sirtuin activators that operate through alleviation of base exchange inhibition.

  17. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

    Directory of Open Access Journals (Sweden)

    Hamonangan Nainggolan

    2013-05-01

    Full Text Available The effects of the addition of fibres of bacterial cellulose (FBC to commercial starch of Mater-Bi® have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min−1. Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young’s modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (Tc and melting temperature (Tm were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

  18. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation.

    Science.gov (United States)

    Fang, Qile; Zhou, Xufeng; Deng, Wei; Zheng, Zhi; Liu, Zhaoping

    2016-01-01

    Graphene oxide (GO) based membranes have been widely applied in molecular separation based on the size exclusion effect of the nanochannels formed by stacked GO sheets. However, it's still a challenge to prepare a freestanding GO-based membrane with high mechanical strength and structural stability which is prerequisite for separation application in aqueous solution. Here, a freestanding composite membrane based on bacterial cellulose (BC) and GO is designed and prepared. BC network provides a porous skeleton to spread GO sheets and uniformly incorporates into the GO layers, which endows the BC + GO composite membrane with well water-stability, excellent tensile strength, as well as improved toughness, guaranteeing its separation applicability in water environment. The resulting BC + GO membrane exhibits obviously discrepant permeation properties for different inorganic/organic ions with different size, and in particular, it can quickly separate ions in nano-scale from angstrom-scale. Therefore, this novel composite membrane is considered to be a promising candidate in the applications of water purification, food industry, biomedicine, and pharmaceutical and fuel separation. PMID:27615451

  19. Comparison of Mechanisms of Alkane Metabolism under Sulfate-Reducing Conditions among Two Bacterial Isolates and a Bacterial Consortium

    OpenAIRE

    Callaghan, Amy V.; Gieg, Lisa M.; Kropp, Kevin G.; Suflita, Joseph M.; Young, Lily Y.

    2006-01-01

    Recent studies have demonstrated that fumarate addition and carboxylation are two possible mechanisms of anaerobic alkane degradation. In the present study, we surveyed metabolites formed during growth on hexadecane by the sulfate-reducing isolates AK-01 and Hxd3 and by a mixed sulfate-reducing consortium. The cultures were incubated with either protonated or fully deuterated hexadecane; the sulfate-reducing consortium was also incubated with [1,2-13C2]hexadecane. All cultures were extracted,...

  20. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    Science.gov (United States)

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  1. Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Atsushi [Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806 (Japan); Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Green Tea Laboratory, Saitama Prefectural Agriculture and Forestry Research Center, Saitama 358-0042 (Japan); Watanabe, Tatsuro; Mondal, Anupom; Suzuki, Kaori; Kurusu-Kanno, Miki [Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806 (Japan); Li, Zhenghao; Yamazaki, Takashi [Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806 (Japan); Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Fujiki, Hirota [Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806 (Japan); Suganuma, Masami, E-mail: masami@cancer-c.pref.saitama.jp [Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806 (Japan)

    2014-01-03

    Highlights: •EGCG reduced cell motility of highly metastatic human lung cancer cells. •EGCG increased cell stiffness of the cells, indicating the inhibition of phenotypes of EMT. •EGCG inhibited expression of vimentin and Slug in the cells at the leading edge of scratch. •Treatment of MβCD increased cell stiffness, and inhibited cell motility and vimentin expression. •Inhibition of EMT phenotypes with EGCG is a mechanism-based inhibition of cancer metastasis. -- Abstract: Cell motility and cell stiffness are closely related to metastatic activity of cancer cells. (−)-Epigallocatechin gallate (EGCG) has been shown to inhibit spontaneous metastasis of melanoma cell line into the lungs of mice, so we studied the effects of EGCG on cell motility, cell stiffness, and expression of vimentin and Slug, which are molecular phenotypes of epithelial–mesenchymal transition (EMT). Treatments of human non-small cell lung cancer cell lines H1299 and Lu99 with 50 and 100 μM EGCG reduced cell motility to 67.5% and 43.7% in H1299, and 71.7% and 31.5% in Lu99, respectively in in vitro wound healing assay. Studies on cell stiffness using atomic force microscope (AFM) revealed that treatment with 50 μM EGCG increased Young’s modulus of H1299 from 1.24 to 2.25 kPa and that of Lu99 from 1.29 to 2.28 kPa, showing a 2-fold increase in cell stiffness, i.e. rigid elasticity of cell membrane. Furthermore, treatment with 50 μM EGCG inhibited high expression of vimentin and Slug in the cells at a leading edge of scratch. Methyl-β-cyclodextrin, a reagent to deplete cholesterol in plasma membrane, showed inhibition of EMT phenotypes similar that by EGCG, suggesting that EGCG induces inhibition of EMT phenotypes by alteration of membrane organization.

  2. The mechanism study on overcoming oxygen inhibition of polyether type multifunctional acrylate

    International Nuclear Information System (INIS)

    The high reactive polyester type multifunctional acrylic resin and polyether type multifunctional acrylate was prepared and used for EB cured coatings. The experimental results have showed that when the absorbed dose reaches 60 KGy, the hardness kept to 80%. In order to overcome oxygen inhibition the authors also performed further mechanism study of anti-oxidation

  3. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E;

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or...

  4. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism.

    Science.gov (United States)

    Mulligan, Christopher; Fenollar-Ferrer, Cristina; Fitzgerald, Gabriel A; Vergara-Jaque, Ariela; Kaufmann, Desirée; Li, Yan; Forrest, Lucy R; Mindell, Joseph A

    2016-03-01

    Secondary transporters use alternating-access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters use a 'rocking bundle' motion, wherein the protein moves around an immobile substrate-binding site. However, the glutamate-transporter homolog GltPh translocates its substrate-binding site vertically across the membrane, through an 'elevator' mechanism. Here, we used the 'repeat swap' approach to computationally predict the outward-facing state of the Na(+)/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial elevator-like movement of VcINDY's substrate-binding site, with a vertical translation of ~15 Å and a rotation of ~43°. Our observation that multiple disulfide cross-links completely inhibit transport provides experimental confirmation of the model and demonstrates that such movement is essential. In contrast, cross-links across the VcINDY dimer interface preserve transport, thus revealing an absence of large-scale coupling between protomers. PMID:26828963

  5. Mechanism of arsenate inhibition of the glucose active transport system in Neurospora crassa

    International Nuclear Information System (INIS)

    The mechanism of arsenate inhibition of the glucose active transport system in wild-type cells of Neurospora crassa has been examined. Arsenate treatment results in approximately 65% inhibition of the glucose active transport system with only a small depression of cellular ATP levels. The transport system is not inhibited in cells treated with sodium arsenate in the presence of sodium azide. The transport inhibition is suppressed when orthophosphate is present during arsenate treatment, but is not reversed by orthophosphate when added after the arsenate treatment. The transport inhibition is completely reversed by treatment of the cells with mercaptoethanol. Gel chromatography of sonicates of intact cells which had been treated with [74As]arsenate reveals three radioactive peaks, one with the elution volume of arsenate, one with the elution volume of arsenite, and in high molecular-weight radioactive fraction. Treatment of the high molecular-weight radioactive fraction with mercaptoethanol results in the production of radioactive arsenite. In view of these findings, it is proposed that arsenate inhibition of the glucose active transport system in Neurospora involves transport of arsenate into the cells, probably via the orthophosphate transport system, reduction of the transported arsenate to arsenite, and interaction of arsenite with some component of the glucose active transport system, presumably via covalent binding with vicinal thiol groups. 15 references, 4 figures, 2 tables

  6. The mechanics of adhesion polymers and their role in bacterial attachment

    OpenAIRE

    Zakrisson, Johan

    2015-01-01

    Bacterial resistance to antibiotics is increasing at a high rate in both developing and developed countries. To circumvent the problem of drug-resistant bacterial pathogens, we need to develop new effective methods, substances, and materials that can disarm and prevent them from causing infections. However, to do this we first need to find new possible targets in bacteria to approach and novel strategies to apply.Escherichia coli (E. coli) bacteria is a normal member of the intestinal microfl...

  7. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.

    Science.gov (United States)

    Raimunda, Daniel; González-Guerrero, Manuel; Leeber, Blaise W; Argüello, José M

    2011-06-01

    Cu(+)-ATPases play a key role in bacterial Cu(+) homeostasis by participating in Cu(+) detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P(1B-1) type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu(+) with high affinity in a trigonal planar geometry. The cytoplasmic Cu(+) chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu(+) is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu(+)-ATPases drive cytoplasmic Cu(+) efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu(+)-efflux pumps responsible for Cu(+) tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments. PMID:21210186

  8. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    International Nuclear Information System (INIS)

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor α = 0.51 and maximum velocity by a factor β = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations

  9. Potential Mechanisms for IgG4 Inhibition of Immediate Hypersensitivity Reactions.

    Science.gov (United States)

    James, Louisa K; Till, Stephen J

    2016-03-01

    IgG4 is the least abundant IgG subclass in human serum, representing less than 5 % of all IgG. Increases in IgG4 occur following chronic exposure to antigen and are generally associated with states of immune tolerance. In line with this, IgG4 is regarded as an anti-inflammatory antibody with a limited ability to elicit effective immune responses. Furthermore, IgG4 attenuates allergic responses by inhibiting the activity of IgE. The mechanism by which IgG4 inhibits IgE-mediated hypersensitivity has been investigated using a variety of model systems leading to two proposed mechanisms. First by sequestering antigen, IgG4 can function as a blocking antibody, preventing cross-linking of receptor bound IgE. Second IgG4 has been proposed to co-stimulate the inhibitory IgG receptor FcγRIIb, which can negatively regulate FcεRI signaling and in turn inhibit effector cell activation. Recent advances in our understanding of the structural features of human IgG4 have shed light on the unique functional and immunologic properties of IgG4. The aim of this review is to evaluate our current understanding of IgG4 biology and reassess the mechanisms by which IgG4 functions to inhibit IgE-mediated allergic responses. PMID:26892721

  10. Potential Mechanisms for IgG4 Inhibition of Immediate Hypersensitivity Reactions

    OpenAIRE

    James, Louisa K.; Till, Stephen J.

    2016-01-01

    IgG4 is the least abundant IgG subclass in human serum, representing less than 5% of all IgG. Increases in IgG4 occur following chronic exposure to antigen and are generally associated with states of immune tolerance. In line with this, IgG4 is regarded as an anti-inflammatory antibody with a limited ability to elicit effective immune responses. Furthermore, IgG4 attenuates allergic responses by inhibiting the activity of IgE. The mechanism by which IgG4 inhibits IgE-mediated hypersensitivity...

  11. Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jun [College of Physics Science and Technology, China University of Petroleum Dongying, Shandong 257061 (China)], E-mail: zhjupc@yahoo.com; Liu Jinxiang [College of Physics Science and Technology, China University of Petroleum Dongying, Shandong 257061 (China); Yu Weizhao [College of Petroleum Engineering, China University of Petroleum Qingdao, Shandong 266555 (China); Yan Youguo; You Long; Liu Linfa [College of Physics Science and Technology, China University of Petroleum Dongying, Shandong 257061 (China)

    2010-06-15

    Inhibition mechanism of five 1-(2-aminoethyl)-2-alkyl-imidazoline derivatives for carbon steel against CO2 corrosion was studied by molecular modeling. Molecular reactivity derived from quantum chemical calculation is insensitive to alkyl length. Inhibitor molecules can be adsorbed preferentially on metal surface with imidazoline ring attached on the surface. And with increase of alkyl length, interaction between inhibitor molecule and metal surface is enhanced to enable more stable adsorption of inhibitor molecules, which will form more compact self-assembly membrane with higher inhibition efficiency. The efficiency order of the inhibitors obtained by theoretical analysis was verified by experimental results.

  12. Alkali-Silica Reaction Inhibited by LiOH and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A high alkali reactive aggregate-zeolitization perlite was used to test the long-term effectiveness of LiOH in inhibiting alkali-silica reaction.In this paper,the rigorous conditions were designed that the mortar bars had been cured at 80℃ for 3 years after autoclaved 24 hours at 150℃.Under this condition,LiOH was able to inhibit the alkali-silica reaction long-term effectiveness.Not only the relationship between the molar ratio of n(Li)/(Na) and the alkali contents in systems was established, but also the governing mechanism of such effects was also studied by SEM.

  13. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip

    OpenAIRE

    Kim, Hyun Jung; Li, Hu; Collins, James J.; Donald E. Ingber

    2015-01-01

    The main advance of this study is the development of a microengineered model of human intestinal inflammation and bacterial overgrowth that permits analysis of individual contributors to the pathophysiology of intestinal diseases, such as ileus and inflammatory bowel disease, over a period of weeks in vitro. By studying living human intestinal epithelium, with or without vascular and lymphatic endothelium, immune cells, and mechanical deformation, as well as living microbiome and pathogenic m...

  14. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    Science.gov (United States)

    Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun

    2015-10-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification.

  15. Molecular Mechanism of Inhibition of the Mitochondrial Carnitine/Acylcarnitine Transporter by Omeprazole Revealed by Proteoliposome Assay, Mutagenesis and Bioinformatics

    OpenAIRE

    Annamaria Tonazzi; Ivano Eberini; Cesare Indiveri

    2013-01-01

    The effect of omeprazole on the mitochondrial carnitine/acylcarnitine transporter has been studied in proteoliposomes. Externally added omeprazole inhibited the carnitine/carnitine antiport catalysed by the transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s). Inhibition of the C-less mutant transporter indicated also the occurrence of an alternative non-covalent mechanism. The IC50 of the inhibition...

  16. Open State Destabilization by Atp Occupancy Is Mechanism Speeding Burst Exit Underlying KATP Channel Inhibition by Atp

    OpenAIRE

    Li, Lehong; Geng, Xuehui; Drain, Peter

    2002-01-01

    The ATP-sensitive potassium (KATP) channel is named after its characteristic inhibition by intracellular ATP. The inhibition is a centerpiece of how the KATP channel sets electrical signaling to the energy state of the cell. In the β cell of the endocrine pancreas, for example, ATP inhibition results from high blood glucose levels and turns on electrical activity leading to insulin release. The underlying gating mechanism (ATP inhibition gating) includes ATP stabilization of closed states, bu...

  17. Study on the effect and mechanism of tumor inhibition of α-Ti3

    International Nuclear Information System (INIS)

    Objective: Tumor inhibition of α-Ti3 on H22 cell, Lewis cell and S180 cell and the effect of α-Ti3 on immune function in tumor mice were observed. Methods: Taking H22 tumor mice as an animal model, the authors measured tumor weight and relative immunologic indexes. Results: The results showed that LD50 of α-Ti3 was 1849.36 mg/kg; α-Ti3 could inhibit tumor and enhance spontaneous proliferation of thymocytes and synergically ConA-induced mitogenic response of splenocytes, and increase DNA synthesis of S period of splenocytes. Conclusion: That α-Ti3 can improve immune function of tumor mice could be one of the mechanisms of tumor inhibition

  18. Density functional theory and quantum mechanics/molecular mechanics study of cysteine protease inhibition by nitrile-based inhibitors.

    Science.gov (United States)

    De Visser, Sam; Quesne, Matthew; Ward, Richard

    2013-12-01

    Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical versus electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.

  19. Efficient Inhibition of Germination of Coat-Deficient Bacterial Spores by Multivalent Metal Cations, Including Terbium (Tb3+) ▿

    OpenAIRE

    Yi, Xuan; Bond, Colton; Sarker, Mahfuzur R.; Setlow, Peter

    2011-01-01

    Release of dipicolinic acid (DPA) and its fluorescence with terbium (Tb3+) allow rapid measurement of the germination and viability of spores of Bacillus and Clostridium species. However, germination of coat-deficient Bacillus spores was strongly inhibited by Tb3+ and some other multivalent cations. Tb3+ also inhibited germination of coat-deficient Clostridium perfringens spores.

  20. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions

    Directory of Open Access Journals (Sweden)

    Katsikogianni M.

    2004-12-01

    Full Text Available This article reviews the mechanisms of bacterial adhesion to biomaterial surfaces, the factors affecting the adhesion, the techniques used in estimating bacteria-material interactions and the models that have been developed in order to predict adhesion. The process of bacterial adhesion includes an initial physicochemical interaction phase and a late molecular and cellular one. It is a complicated process influenced by many factors, including the bacterial properties, the material surface characteristics, the environmental factors, such as the presence of serum proteins and the associated flow conditions. Two categories of techniques used in estimating bacteria-material interactions are described: those that utilize fluid flowing against the adhered bacteria and counting the percentage of bacteria that detach, and those that manipulate single bacteria in various configurations which lend themselves to more specific force application and provide the basis for theoretical analysis of the receptor-ligand interactions. The theories that are reviewed are the Derjaguin-Landau-Verwey-Overbeek (DLVO theory, the thermodynamic approach and the extended DLVO theory. Over the years, significant work has been done to investigate the process of bacterial adhesion to biomaterial surfaces, however a lot of questions still remain unanswered.

  1. Convective mechanism for inhibition of heat conduction in laser produced plasmas

    International Nuclear Information System (INIS)

    In laser-produced plasmas, the laser energy is absorbed only below and up to the critical density. For laser fusion applications, this energy must be transported beyond the corona via electron thermal conduction towards colder, higher density regions of the target to heat up material and cause ablation, which in turn generates an inward pressure to compress the fusion fuel. If the heat conduction is inhibited, the consequences will be a weaker ablation and therefore a weaker implosion. For many years now, the inhibition of heat conduction, i.e., the reduction of heat conduction relative to classical conduction, in laser-produced plasmas at relevant irradiances has been apparent from the large body of experimental evidence. Many mechanisms, such as dc magnetic fields, ion acoustic turbulence, and Weibel instabilities, have been proposed to be the cause of inhibition of heat conduction. Even improved calculations of the classical heat flux have been carried out to solve this problem. Nevertheless, no single one of the above mentioned mechanisms can explain the large inhibition observed in the experiments

  2. Two Novel Vaginal Microbicides (Polystyrene Sulfonate and Cellulose Sulfate) Inhibit Gardnerella vaginalis and Anaerobes Commonly Associated with Bacterial Vaginosis

    OpenAIRE

    Simoes, Jose A.; Citron, Diane M.; Aroutcheva, Alla; Anderson, Robert A.; Chany II, Calvin J.; Waller, Donald P.; Faro, Sebastian; Lourens J. D. Zaneveld

    2002-01-01

    This is the first report demonstrating the in vitro inhibitory activity of two novel microbicides (cellulose sulfate and polystyrene sulfonate) against bacterial vaginosis (BV)-associated bacteria. Vaginal application of these microbicides not only may reduce the risk of acquisition of human immunodeficiency virus and other sexually transmitted infection-causing organisms but may also decrease the incidence of BV.

  3. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    Science.gov (United States)

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. PMID:26386058

  4. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  5. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  6. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells.

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  7. Mechanism of p300 specific histone acetyltransferase inhibition by small molecules.

    Science.gov (United States)

    Arif, M; Pradhan, Suman Kalyan; Thanuja, G R; Vedamurthy, B M; Agrawal, Shipra; Dasgupta, Dipak; Kundu, Tapas K

    2009-01-22

    Dysfunction of histone acetyltransferases (HATs) leads to several diseases including cancer, diabetes, and asthma. Therefore, small molecule inhibitors and activators of HATs are being considered as new generation therapeutics. Here, we report the molecular mechanisms of p300 HAT inhibition by specific and nonspecific HAT inhibitors: garcinol, isogarcinol, and 1 (LTK14). The p300 specific HAT inhibitor 1 behaves as a noncompetitive inhibitor for both acetyl-CoA and histone, unlike nonspecific HAT inhibitors garcinol and isogarcinol. The isothermal calorimetric data suggest that there is a high affinity enthalpy driven single binding site for 1 on p300HAT domain in contrast to two binding sites for garcinol and isogarcinol. Furthermore, the precise nature of molecular interactions was determined by using fluorescence, docking, and mutational studies. On the basis of these observations, we have proposed the mechanisms of specific versus nonspecific HAT inhibition by these small molecule compounds, which may be useful to design therapeutically favorable HAT inhibitors. PMID:19086895

  8. Turning excitation into inhibition: Glu-GABA exchange as an endogenous defensive mechanism in epilepsy

    OpenAIRE

    Laszlo Heja; Miklos Palkovits

    2009-01-01

    The balance between excitation and inhibition is of crucial importance for the proper functioning of the nervous system. Many neurological disorders, like epilepsy or ischemia are characterized by a disruption of this balance, usually by the abnormal intensification of excitatory signals. Here we demonstrate that the intense excitation leads to the emergence of a previously unrecognized endogenous defense mechanism by which the extracellular excitatory glutamate (Glu) is exchanged for the inh...

  9. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, S.; Tsai, B.L.; Blanco, M.; Goddard, W.A. III [California Inst. of Technology, Pasadena, CA (United States); Chen, H.; Tang, Y. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1996-12-25

    Some of the most effective corrosion inhibitors for oil field pipeline applications are the oleic imidazoline (OI) class of molecules. However, the mechanism by which the OIs inhibit corrosion is not known. We report atomistic simulations (quantum mechanics and molecular dynamics) designed to elucidate this mechanism. These studies lead to the self-assembled monolayer (SAM) model for corrosion inhibition, which explains the differences in corrosion inhibition efficiency for various OI molecules. The SAM model of OI inhibitors involves the following critical elements: (i) strong bonding of the head group to Lewis acid sites on the iron oxide surface, (ii) self-assembly of the inhibitors on these surfaces to obtain a pattern controlled by the shape of the head group, (iii) self-organization of the tails to form a coherent hydrophobic film that serves as a barrier for migration of water, oxygen, and electrons to the metal surface, and (iv) optimal oil/water partitioning of the inhibitor molecules so that a monolayer can be formed on the surface with only ppm concentration in solution. 25 refs., 13 figs., 3 tabs.

  10. Dexamethasone rapidly inhibits glucose uptake via non-genomic mechanisms in contracting myotubes.

    Science.gov (United States)

    Gong, Hong; Liu, Lei; Ni, Chen-Xu; Zhang, Yi; Su, Wen-Jun; Lian, Yong-Jie; Peng, Wei; Zhang, Jun-Ping; Jiang, Chun-Lei

    2016-08-01

    Glucocorticoids (GCs) are a class of steroid hormones that regulate multiple aspects of glucose homeostasis. In skeletal muscle, it is well established that prolonged GC excess inhibits glucose uptake and utilization through glucocorticoid receptor (GR)-mediated transcriptional changes. However, it remains obscure that whether the rapid non-genomic effects of GC on glucose uptake are involved in acute exercise stress. Therefore, we used electric pulse stimulation (EPS)-evoked contracting myotubes to determine whether the non-genomic actions of GC were involved and its underlying mechanism(s). Pretreatment with dexamethasone (Dex, 10 μM) significantly prevented contraction-stimulated glucose uptake and glucose transporter 4 (Glut4) translocation within 20 min in C2C12 myotubes. Neither GC nuclear receptor antagonist (RU486) nor protein synthesis inhibitor (cycloheximide, Chx) affected the rapid inhibition effects of Dex. AMPK and CaMKII-dependent signaling pathways were associated with the non-genomic effects of Dex. These results provide evidence that GC rapidly suppresses glucose uptake in contracting myotubes via GR-independent non-genomic mechanisms. AMPK and CaMKII-mediated Glut4 translocation may play a critical role in GC-induced rapid inhibition of glucose uptake. PMID:27246478

  11. Histone deacetylase inhibition: an important mechanism in the treatment of lymphoma.

    Science.gov (United States)

    Guo, Shan-Qi; Zhang, Yi-Zhuo

    2012-06-01

    Lymphomas encompass a group of malignancies that originate in the lymph nodes or other lymphoid tissues. Epigenetic modification, especially by histone deacetylase (HDACs), plays a key role during the occurrence and development of lymphomas. Consequently, HDAC inhibitors (HDACIs), a class of gene expression-modulating drugs, have emerged as promising mechanism-based agents for the treatment of lymphomas. This review presents the rationale of HDAC inhibition, describes the epigenetic-based mechanisms of action of HDACIs, discusses their clinical efficiency, and summarizes the current and future developments in this field. PMID:23691460

  12. Growth inhibition of bacterial isolates recovered from two types of Portuguese dry smoked sausages (chouriço)

    OpenAIRE

    Matos, T.J.S.; Bruno-Soares, A.; Jensen, B. B.; Barreto, A.S.; Hojberg, O.

    2008-01-01

    Potassium sorbate (PS), sodium benzoate (SB) and methyl p-hydroxybenzoate (MHB) were investigated as surface treatments for their ability to inhibit the growth of 18 isolates of spoilage and pathogenic bacteria from two types of Portuguese dry smoked sausages (Chouric o). MHB significantly inhibited the growth rate of 12 of the isolates (p < 0.05) whereas no effect was observed for four isolates of lactic acid bacteria, identified as Enterococcus faecium, Pediococcus acidilactici ...

  13. Structural insight into the rotational switching mechanism of the bacterial flagellar motor.

    Directory of Open Access Journals (Sweden)

    Tohru Minamino

    2011-05-01

    Full Text Available The bacterial flagellar motor can rotate either clockwise (CW or counterclockwise (CCW. Three flagellar proteins, FliG, FliM, and FliN, are required for rapid switching between the CW and CCW directions. Switching is achieved by a conformational change in FliG induced by the binding of a chemotaxis signaling protein, phospho-CheY, to FliM and FliN. FliG consists of three domains, FliG(N, FliG(M, and FliG(C, and forms a ring on the cytoplasmic face of the MS ring of the flagellar basal body. Crystal structures have been reported for the FliG(MC domains of Thermotoga maritima, which consist of the FliG(M and FliG(C domains and a helix E that connects these two domains, and full-length FliG of Aquifex aeolicus. However, the basis for the switching mechanism is based only on previously obtained genetic data and is hence rather indirect. We characterized a CW-biased mutant (fliG(ΔPAA of Salmonella enterica by direct observation of rotation of a single motor at high temporal and spatial resolution. We also determined the crystal structure of the FliG(MC domains of an equivalent deletion mutant variant of T. maritima (fliG(ΔPEV. The FliG(ΔPAA motor produced torque at wild-type levels under a wide range of external load conditions. The wild-type motors rotated exclusively in the CCW direction under our experimental conditions, whereas the mutant motors rotated only in the CW direction. This result suggests that wild-type FliG is more stable in the CCW state than in the CW state, whereas FliG(ΔPAA is more stable in the CW state than in the CCW state. The structure of the TM-FliG(MC(ΔPEV revealed that extremely CW-biased rotation was caused by a conformational change in helix E. Although the arrangement of FliG(C relative to FliG(M in a single molecule was different among the three crystals, a conserved FliG(M-FliG(C unit was observed in all three of them. We suggest that the conserved FliG(M-FliG(C unit is the basic functional element in the rotor

  14. [Inhibition effect of hedyotis diffusa wild injection on HL-60 cells and its mechanism].

    Science.gov (United States)

    Chen, Xiao-Hong; Gao, Rui-Lan; Qian, Xu-Dai; Wang, Xiao; Tan, Pan-Li; Yin, Li-Ming; Zhou, Yu-Hong

    2008-10-01

    This study was aimed to explore the inhibition effect and mechanism of hedyotis diffusa wild injection (HDI) on leukemia cell line (HL-60) in vitro. The leukemia cell line HL-60 was used as target cells. The inhibitory effects of HDI on proliferation of HL-60 cells were observed by MTT assay. The positive rate of cell apoptosis and the surface marker of granulocytic differentiation (CD33 and CD15) were measured by flow cytometry. The expressions of anti-apoptosis related gene (survivin and bcl-2) were detected by RT-PCR. The results showed that the growth of HL-60 cells was inhibited by higher concentration of HDI (3.12 - 12.5 ml/L) and inhibited obviously in dose-dependent manner (p 0.05). The FCM and DNA Ladder results showed that the phenomenon of typical apoptosis did not detected after HL-60 cells were treated with the different concentrations of HDI for 24, 48 and 72 hours respectively. After HL-60 cells were treated with HDI (1.56, 3.12, 6.25 and 12.5 ml/L) for one week, the expression level of CD15 surface marker was all enhanced obviously. When treated with HDI (6.25 ml/L) for 3 weeks, the expression levels of survivin and bcl-2 gene were also decreased obviously by 60% and 44% respectively. It is concluded that HDI can inhibit HL-60 cells in the presence of its higher concentrations. The mechanisms of HDI may induce HL-60 cells differentiation, and suppress the expression of anti-apoptosis related gene (survivin or bcl-2) to inhibit the growth of HL-60 cells. PMID:18928590

  15. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yan; Lin, Zuoxian [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Xia, Menghang; Zheng, Wei [National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Zhiyuan, E-mail: li_zhiyuan@gibh.ac.cn [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2013-03-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.

  16. Kinetics and Mechanism Study of Competitive Inhibition of Jack-Bean Urease by Baicalin

    Directory of Open Access Journals (Sweden)

    Lirong Tan

    2013-01-01

    Full Text Available Baicalin (BA is the principal component of Radix Scutellariae responsible for its pharmacological activity. In this study, kinetics and mechanism of inhibition by BA against jack-bean urease were investigated for its therapeutic potential. It was revealed that the IC50 of BA against jack-bean urease was 2.74 ± 0.51 mM, which was proved to be a competitive and concentration-dependent inhibition with slow-binding progress curves. The rapid formation of initial BA-urease complex with an inhibition constant of Ki=3.89 × 10−3 mM was followed by a slow isomerization into the final complex with an overall inhibition constant of Ki*=1.47×10-4 mM. High effectiveness of thiol protectors against BA inhibition indicated that the strategic role of the active-site sulfhydryl group of the urease was involved in the blocking process. Moreover, the inhibition of BA was proved to be reversible due to the fact that urease could be reactivated by dithiothreitol but not reactant dilution. Molecular docking assay suggested that BA made contacts with the important activating sulfhydryl group Cys-592 residues and restricted the mobility of the active-site flap. Taken together, it could be deduced that BA was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for treatments on urease-related diseases.

  17. Patterned macroarray plates in comparison of bacterial adhesion inhibition of tantalum, titanium, and chromium compared with diamond-like carbon.

    Science.gov (United States)

    Levon, Jaakko; Myllymaa, Katja; Kouri, Vesa-Petteri; Rautemaa, Riina; Kinnari, Teemu; Myllymaa, Sami; Konttinen, Yrjö T; Lappalainen, Reijo

    2010-03-15

    Staphylococcus aureus device-related infection is a common complication in implantology. Bacterial adhesion on implant surfaces is the initial step in the infective process. The aim was to develop a method suitable for quantitative bacterial adherence studies and to test a new diamond-like carbon (DLC) coating against commonly used metallic biomaterials with regards to Staphylococcus aureus adhesion. Patterned silicon chips with spots of tantalum, titanium, chromium, and DLC were produced using ultraviolet lithography and physical vapor deposition. These patterned chips were used as such or glued to array plates, pretreated with serum and exposed to S. aureus (S-15981) for 90 min, followed by acridine orange staining and fluorescence microscopy. An adhesion index showed that the ranking order of the biomaterials was titanium, tantalum, chromium, and DLC, with the DLC being clearly most resistant against colonization with S. aureus. Micropatterned surfaces are useful for quantitative comparison of bacterial adherence on different biomaterials. In the presence of serum, DLC is superior in its ability to resist adhesion and colonization by S. aureus compared with the commonly used biomaterial metals tantalum, titanium, and chromium. PMID:19437436

  18. The corrosion inhibition mechanism of new rare earth cinnamate compounds - Electrochemical studies

    International Nuclear Information System (INIS)

    A combination of linear polarisation resistance (LPR) and cyclic potentiodynamic polarisation (CPP) measurements demonstrated that the lanthanum-4 hydroxy cinnamate compound could inhibit both the cathodic and anodic corrosion reactions on mild steel surfaces exposed to 0.01 M NaCl solutions. However, the dominating response was shown to vary with inhibitor concentration. At the concentrations for which the highest level of protection was achieved, both REM-4 hydroxy cinnamate (REM being lanthanum and mischmetal) displayed a strong anodic behaviour for mild steel and their inhibition performance, including their resistance against localised attack, improved with time. Electrochemical impedance spectroscopy (EIS) measurements and modelling were carried out so as to propose a simple electrical model and correlate the extracted parameters to the inhibition mechanism put forward for REM-cinnamate based compounds. The results supported the high corrosion inhibition performance of the compounds as well as the build-up of a protective film with time. Based on a two-layer model the results suggested that the upper layer of the inhibitor film seemed to offer less resistance to the diffusion of electrochemically active species than the highly resistive inner layer at the film/metal interface

  19. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will...

  20. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  1. Growth Inhibition and Apoptosis Inducing Mechanisms of Curcumin on Human Ovarian Cancer Cell Line A2780

    Institute of Scientific and Technical Information of China (English)

    ZHENG Li-duan; TONG Qiang-song; WU Cui-huan

    2006-01-01

    Objective: To explore the growth inhibition effects and apoptosis inducing mechanisms of curcumin on human ovarian cancer cell line A2780. Methods: After treatment with 10-50 μmol/L curcumin for 6-24 h, the growth activity of A2780 cancer cells were studied by [ 4, 5-dimethylthiazol-2-yl]-2, 5-diphenyItetrazolium bromide (MTT) colorimetry. Cellular apoptosis was inspected by flow cytometery and acridine orange-ethidium bromide fluorescent staining methods. The fragmentation of cellular chromosome DNA was detected by DNA ladder, the ultrastructural change was observed under a transmission electron microscope,and the protein levels of nuclear factor-kappa B (NF-κB, P65) and cysteinyl aspartate specific protease-3 (Caspase-3) in ovarian cancer cells were measured by immunohistochemistry. Results: After treatment with various concentrations of curcumin, the growth inhibition rates of cancer cells reached 62.05%- 89.24%,with sub-G1 peaks appearing on histogram. Part of the cancer cells showed characteristic morphological changes of apoptosis under fluorescence and electron microscopes, and the rate of apoptosis was 21.5 % -33.5%. The protein expression of NF-κB was decreased, while that of Caspase-3 was increased in a timedependent manner. Conclusion: Curcumin could significantly inhibit the growth of human ovarian cancer cells;inducing apoptosis through up-regulating Caspase-3 and down-regulating gene expression of NF-κB is probably one of its molecular mechanisms.

  2. Synthetic pentapeptides inhibiting autophosphorylation of insulin receptor in a non-ATP-competitive mechanism.

    Science.gov (United States)

    Kato, Masaki; Abe, Mineo; Kuroda, Yoshihiro; Hirose, Munetaka; Nakano, Minoru; Handa, Tetsurou

    2009-05-01

    In an attempt to develop non-ATP-competitive inhibitors of the autophosphorylation of IR, the effects of the synthetic peptides, Ac-DIY(1158)ET-NH(2) and Ac-DY(1162)Y(1163)RK-NH(2), on the phosphorylation of IR were studied in vitro. The peptides were derived from the amino-acid sequence in the activation loop of IR. They inhibited the autophosphorylation of IR to 20.5 and 40.7%, respectively, at 4000 microM. The Asp/Asn- and Glu/Gln-substituted peptides, Ac-NIYQT-NH(2) and Ac-NYYRK-NH(2), more potently inhibited the autophosphorylation than did the corresponding parent peptides. The inhibitory potencies of the substituted peptides were decreased with increasing concentrations of ATP, indicating that these peptides employ an ATP-competitive mechanism in inhibiting the autophosphorylation of IR. In contrast, those of the parent peptides were not affected. Mass spectrometry showed that the parent peptides were phosphorylated by IR, suggesting that they interact with the catalytic loop. Moreover, docking simulations predicted that the substituted peptides would interact with the ATP-binding region of IR, whereas their parent peptides would interact with the catalytic loop of IR. Thus, Ac-DIYET-NH(2) and Ac-DYYRK-NH(2) are expected to be non-ATP-competitive inhibitors. These peptides could contribute to the development of a drug employing a novel mechanism. PMID:19206072

  3. Bacterial Tethering Analysis Reveals a “Run-Reverse-Turn” Mechanism for Pseudomonas Species Motility

    OpenAIRE

    Qian, Chen; Wong, Chui Ching; SWARUP, SANJAY; Chiam, Keng-Hwee

    2013-01-01

    We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into pha...

  4. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function

    OpenAIRE

    Raimunda, Daniel; González-Guerrero, Manuel; Leeber, Blaise W.; Argüello, José M.

    2011-01-01

    Cu+-ATPases play a key role in bacterial Cu+ homeostasis by participating in Cu+ detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P1B-1 type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combi...

  5. Evidence for a bacterial mechanism for group-specific social odors among hyenas

    OpenAIRE

    Theis, Kevin R.; Schmidt, Thomas M.; Holekamp, Kay E.

    2012-01-01

    Symbiotic microbes can benefit their animal hosts by enhancing the diversity of communication signals available to them. The fermentation hypothesis for chemical recognition posits that 1) fermentative bacteria in specialized mammalian scent glands generate odorants that mammals co-opt to communicate with one another, and 2) that variation in scent gland odors is due to underlying variation in the structure of bacterial communities within scent glands. For example, group-specific social odors...

  6. Investigation of a potential mechanism for the inhibition of SmTGR by Auranofin and its implications for Plasmodium falciparum inhibition

    KAUST Repository

    Caroli, Antonia

    2012-01-01

    Schistosoma mansoni and Plasmodium falciparum are pathogen parasites that spend part of their lives in the blood stream of the human host and are therefore heavily exposed to fluxes of toxic reactive oxygen species (ROS). SmTGR, an essential enzyme of the S. mansoni ROS detoxification machinery, is known to be inhibited by Auranofin although the inhibition mechanism has not been completely clarified. Auranofin also kills P. falciparum, even if its molecular targets are unknown. Here, we used computational and docking techniques to investigate the molecular mechanism of interaction between SmTGR and Auranofin. Furthermore, we took advantage of the homology relationship and of docking studies to assess if PfTR, the SmTGR malaria parasite homologue, can be a putative target for Auranofin. Our findings support a recently hypothesized molecular mechanism of inhibition for SmTGR and suggest that PfTR is indeed a possible and attractive drug target in P. falciparum. © 2011 Elsevier Inc.

  7. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  8. Transport and Mechanical Characteristics of Corrosion-Inhibited High- Strength Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Marva Blankson

    2015-11-01

    Full Text Available This paper is on the study of traditional silica fume (SG self-compacting concrete (SCC samples that was made as control and then incorporated with carboxylic inhibitor (SM to study the transport, rheological and mechanical responses of the inhibited samples. Comparison with the respective SG control, showed that the carboxylic inhibitor resulted in the reduction of the homogeneity of the SM samples and there was the development of flaws that could have contributed to the reduction in strength of the SM samples. When the concentration of the inhibitor was increased from the basic content to 100% higher, there was a noticeable increase in the chloride migration resistance of the SM samples. The study also showed that the transit time of the ultrasonic pulse that was transmitted was slower in the carboxylic inhibited-samples.

  9. Mechanism and inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase.

    Science.gov (United States)

    Murkin, Andrew S; Manning, Kathryn A; Kholodar, Svetlana A

    2014-12-01

    The non-mevalonate or 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is responsible for generating isoprenoid precursors in plants, protozoa, and bacteria. Because this pathway is absent in humans, its enzymes represent potential targets for the development of herbicides and antibiotics. 1-Deoxy-d-xylulose (DXP) reductoisomerase (DXR) is a particularly attractive target that catalyzes the pathway's first committed step: the sequential isomerization and NADPH-dependent reduction of DXP to MEP. This article provides a comprehensive review of the mechanistic and structural investigations on DXR, including its discovery and validation as a drug target, elucidation of its chemical and kinetic mechanisms, characterization of inhibition by the natural antibiotic fosmidomycin, and identification of structural features that provide the molecular basis for inhibition of and catalysis. PMID:24998420

  10. Structural Biology of Bacterial RNA Polymerase

    Directory of Open Access Journals (Sweden)

    Katsuhiko S. Murakami

    2015-05-01

    Full Text Available Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477–42485, an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP. In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank, describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  11. Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis).

    Science.gov (United States)

    Al-Qadiri, Hamzah M; Al-Holy, Murad A; Shiroodi, Setareh Ghorban; Ovissipour, Mahmoudreza; Govindan, Byju N; Al-Alami, Nivin; Sablani, Shyam S; Rasco, Barbara

    2016-08-16

    The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus and Campylobacter jejuni in laboratory contaminated live clam (Venerupis philippinarum) and mussel (Mytilus edulis) was investigated. The initial levels of bacterial contamination were: in clam 4.9 to 5.7log10CFU/g, and in mussel 5.1 to 5.5log10CFU/g. Two types of AEW were used for treatment time intervals of 1 and 2h: strong (SAEW) with an available chlorine concentration (ACC) of 20mg/L, pH=3.1, and an oxidation-reduction potential (ORP) of 1150mV, and weak (WAEW) at ACC of 10mg/L, pH=3.55 and ORP of 950mV. SAEW and WAEW exhibited significant inhibitory activity against inoculated bacteria in both shellfish species with significant differences compared to saline solutions treatments (1-2% NaCl) and untreated controls (0h). SAEW showed the largest inhibitory activity, the extent of reduction (log10CFU/g) ranged from 1.4-1.7 for E. coli O104:H4; 1.0-1.6 for L. monocytogenes; 1.3-1.6 for A. hydrophila; 1.0-1.5 for V. parahaemolyticus; and 1.5-2.2 for C. jejuni in both types of shellfish. In comparison, significantly (Pmonocytogenes; 0.6-1.3 for A. hydrophila; 0.7-1.3 for V. parahaemolyticus; and 0.8-1.9 for C. jejuni in both types of shellfish. Among all bacterial strains examined in this study, AEW induced less bacterial injury (~0.1-1.0log10CFU/g) and more inactivation effect. This study revealed that AEW (10-20mg/L ACC) could be used to reduce bacterial contamination in live clam and mussel, which may help control possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish. PMID:27208583

  12. Quorum Sensing Inhibition by Asparagopsis taxiformis, a Marine Macro Alga: Separation of the Compound that Interrupts Bacterial Communication

    Directory of Open Access Journals (Sweden)

    Anton Hartmann

    2013-01-01

    Full Text Available The majority of the marine algal species, though completing their life cycle in seawater, are rarely susceptible to fouling, making them an important source of quorum sensing (QS inhibitory substances. The separation and characterization of QS inhibitors are crucial for any potential application. Thirty marine macroalgae were tested for QS inhibition activity by using Chromobacterium violaceum CV026 as the reporter strain, and among them, Asparagopsis taxiformis showed antibacterial, as well as antiquorum, sensing activities. Cinnamaldehyde (75 mM and methanol were used as positive and negative controls, respectively. The antiquorum sensing activity of A. taxiformis was further confirmed using the sensor strain, Serratia liquefaciens MG44, having green fluorescent protein (gfp. Methanolic extract of the alga was fractionated by solid phase extraction (SPE, and each fraction was tested for QS inhibition. Two types of activities were observed—zone of clearance (antibacterial activity and zone of inhibition with or without finger-like projections (QS inhibition. Out of five SPE cartridges, Bond Elut PH showed clear separation of these two fractions. The Ion Cyclotron Resonance Fourier Transformation Mass Spectrometer (ICR-FT/MS analysis of the fractions further supported the bioassay results. The presence of strong QS inhibitory compound in A. taxiformis indicates its potential use in antifouling preparations.

  13. Mechanism of corrosion inhibition of AA2024 by rare-earth compounds.

    Science.gov (United States)

    Yasakau, Kiryl A; Zheludkevich, Mikhail L; Lamaka, Sviatlana V; Ferreira, Mario G S

    2006-03-23

    The mechanism of corrosion protection of the widely used 2024-T3 aluminum alloy by cerium and lanthanum inhibitors in chloride media is described in detail in the present work. The corrosion process was investigated by means of scanning Kelvin probe force microscopy (SKPFM), in situ atomic force microscopy, and scanning electron microscopy coupled with energy dispersive spectroscopy. Employment of the high-resolution and in situ techniques results in a deep understanding of the details of the physical chemistry and mechanisms of the corrosion processes. The applicability of the SKPFM for mechanistic analysis of the effect of different corrosion inhibitors is demonstrated for the first time. The inhibitors under study show sufficient hindering of the localized corrosion processes especially in the case of pitting formation located around the intermetallic S-phase particles. The main role of Ce(3+) and La(3+) in the corrosion protection is formation of hydroxide deposits on S-phase inclusions buffering the local increase of pH, which is responsible for the acceleration of the intermetallics dealloying. The formed hydroxide precipitates can also act as a diffusion barrier hindering the corrosion processes in active zones. Cerium nitrate exhibits higher inhibition efficiency in comparison with lanthanum nitrate. The higher effect in the case of cerium is obtained due to lower solubility of the respective hydroxide. A detailed mechanism of the corrosion process and its inhibition is proposed based on thermodynamic analysis. PMID:16539491

  14. Evaluation of the gene encoding the enzyme βHPMEH for the bacterial wilt inhibition caused by Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Elizabeth Fernandez

    2015-10-01

    Full Text Available Ralstonia solanacearum is the causal agent of the devastating bacterial wilt disease that attacks important agricultural crops such as potato, tomato, banana, among others, causing serious yield losses. Control of R. solanacearum is difficult because of its wide range of alternate hosts, its long survival in soil, its biological and genetic variation, the lack of natural resistance sources and the insufficiency of the appropriate chemical control measures. Quorum sensing is the term that describes the phenomenon whereby the accumulation of molecules allows bacteria to know the number of bacteria found in the environment (population density. R. solanacearum has a quorum sensing system for the regulation of the expression of virulence genes; the molecule 3-OH-PAME is the self-regulatory signal. The molecule ΒHPMEH hydrolyzes 3-OH-PAME nullifying the signal of virulence, and thus, the quorum sensing communication in R. solanacearum. In order to evaluate the βhpmeh gene we designed two vectors that express this gene under the control of two different promoters. Both vectors were verified by restriction analysis and sequencing. Agroinfiltration assays were used to analyze gene expression and the effect against R. solanacearum in potato (Solanum tuberosum leaves. The results of the transient expression experiments showed that the expression of gene βhpmeh caused a delay in the appearance of symptoms of bacterial wilt and thus is a good candidate for whole genetic plant transformation.

  15. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats.

    Science.gov (United States)

    Sankar, Renu; Baskaran, Athmanathan; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-07-01

    An impaired wound healing is one of the major health related problem in diabetic and non-diabetic patients around the globe. The pathogenic bacteria play a predominant role in delayed wound healing, owing to interaction in the wound area. In our previous work we developed green chemistry mediated copper oxide nanoparticles using Ficus religiosa leaf extract. In the present study we make an attempt to evaluate the anti-bacterial, and wound healing activity of green synthesized copper oxide nanoparticles in male Wistar Albino rats. The agar well diffusion assay revealed copper oxide nanoparticles have substantial inhibition activity against human pathogenic strains such as Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli, which were responsible for delayed wound healing process. Furthermore, the analyses results of wound closure, histopathology and protein profiling confirmed that the F. religiosa leaf extract tailored copper oxide nanoparticles have enhanced wound healing activity in Wistar Albino rats. PMID:26194977

  16. IFNγ inhibits Th17 differentiation and function via Tbet-dependent and Tbet-independent mechanisms

    Science.gov (United States)

    Yeh, Wen-I; McWilliams, Ian L.; Harrington, Laurie E.

    2015-01-01

    The transcription factor Tbet is critical for the differentiation of Th1 CD4 T cells and is associated with the induction of multiple autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate that Tbet suppresses IL-17A and Th17 differentiation both in vitro and in vivo in a cell-intrinsic manner, and that in fact, Tbet is not necessary for EAE induction. Moreover, we find that IFNγ inhibits the production of IL-17A and IL-17F in a STAT1-dependent, Tbet-independent manner. These findings illustrate multiple mechanisms utilized by developing Th1 cells to silence the Th17 program. PMID:24369297

  17. Mechanism of inhibition of calcium channels in rat nucleus tractus solitarius by neurotransmitters.

    OpenAIRE

    Rhim, H; Toth, P. T.; Miller, R. J.

    1996-01-01

    1. High-threshold Ca2+ channel currents were measured every 15 s following a 200 ms voltage step from -80 mV to 0 mV in order to study the coupling mechanism between neurotransmitter receptors and Ca2+ channels in neurones acutely isolated from the nucleus tractus solitarius (NTS) of the rat. 2. Application of 30 microM baclofen (GABAB receptor agonist) caused 38.9 +/- 1.2% inhibition of the peak inward Ba2+ current (IBa2+) in most NTS cells tested (n = 85 of 88). Somatostatin, 300 nM, also r...

  18. Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem Resistant Escherichia coli.

    Science.gov (United States)

    Thakur, Pallavi; Chawla, Raman; Narula, Alka; Goel, Rajeev; Arora, Rajesh; Sharma, Rakesh Kumar

    2016-06-01

    Expression of a multitude of virulence factors by multi-drug resistant microbial strains, e.g., Carbapenem Resistant Escherichia coli (Family: Enterobacteriaceae; Class: Gammaproteobacteria), is responsible for resistance against beta-lactam antibiotics. Hemolysin production and induction of hemagglutination by bacterial surface receptors inflicts direct cytotoxicity by destroying host phagocytic and epithelial cells. We have previously reported that Berberis aristata, Camellia sinensis, Cyperus rotundus Holarrhena antidysenterica and Andrographis paniculata are promising herbal leads for targeting Carbapenem resistant Escherichia coli. These herbal leads were analyzed for their anti-hemolytic potential by employing spectrophotometric assay of hemoglobin liberation. Anti-hemagglutination potential of the extracts was assessed by employing qualitative assay of visible RBC aggregate formation. Camellia sinensis (PTRC-31911-A) exhibited anti-hemolytic potential of 73.97 ± 0.03%, followed by Holarrhena antidysenterica (PTRC-8111-A) i.e., 68.32 ± 0.05%, Berberis aristata (PTRC-2111-A) i.e., 60.26 ± 0.05% and Cyperus rotundus (PTRC-31811-A) i.e., 53.76 ± 0.03%. Comprehensive, visual analysis of hemagglutination inhibition revealed that only Berberis aristata (PTRC-2111-A) and Camellia sinensis (PTRC-31911-A) exhibited anti-hemagglutination activity. However, Andrographis paniculata (PTRC-11611-A) exhibited none of the inhibitory activities. Furthermore, the pair wise correlation analysis of the tested activities with quantitative phytochemical descriptors revealed that an increased content of alkaloid; flavonoids; polyphenols, and decreased content of saponins supported both the activities. Additionally, flow cytometry revealed that cell membrane structures of CRE were damaged by extracts of Berberis aristata (PTRC-2111-A) and Camellia sinensis (PTRC-31911-A) at their respective Minimum Inhibitory Concentrations, thereby confirming noteworthy antibacterial

  19. NF-κB Inhibition after Cecal Ligation and Puncture Reduces Sepsis-Associated Lung Injury without Altering Bacterial Host Defense

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available Introduction. Since the NF-κB pathway regulates both inflammation and host defense, it is uncertain whether interventions targeting NF-κB would be beneficial in sepsis. Based on the kinetics of the innate immune response, we postulated that selective NF-κB inhibition during a defined time period after the onset of sepsis would reduce acute lung injury without compromising bacterial host defense. Methods. Mice underwent cecal ligation and puncture (CLP. An NF-κB inhibitor, BMS-345541 (50 µg/g mice, was administered by peroral gavage beginning 2 hours after CLP and repeated at 6 hour intervals for 2 additional doses. Results. Mice treated with BMS-345541 after CLP showed reduced neutrophilic alveolitis and lower levels of KC in bronchoalveolar lavage fluid compared to mice treated with CLP+vehicle. In addition, mice treated with CLP+BMS had minimal histological evidence of lung injury and normal wet-dry ratios, indicating protection from acute lung injury. Treatment with the NF-κB inhibitor did not affect the ability of cultured macrophages to phagocytose bacteria and did not alter bacterial colony counts in blood, lung tissue, or peritoneal fluid at 24 hours after CLP. While BMS-345541 treatment did not alter mortality after CLP, our results showed a trend towards improved survival. Conclusion. Transiently blocking NF-κB activity after the onset of CLP-induced sepsis can effectively reduce acute lung injury in mice without compromising bacterial host defense or survival after CLP.

  20. Aerossol bacteriano gerado por respiradores mecânicos: estudo comparativo Bacterial aerosol generated by mechanical ventilators: a comparative study

    Directory of Open Access Journals (Sweden)

    M. D'Agostino Dias

    1997-03-01

    Full Text Available Respiradores mecânicos emitem aerossóis que podem estar colonizados com bactérias. OBJETIVO. Estudar a contaminação ambiental gerada por respiradores, comparando-se dois siste-mas de umidificação. MÉTODOS. Realizaram-se 51 estudos, comparando-se a colonização dos aerossóis emitidos pela válvula expiratória dos aparelhos de ventilação mecânica, sendo em 31 com nebulizadores convencionais e em 20 com condensadores higroscópicos, em quinze minutos de observação. RESULTADOS. Houve emissão de bactérias para o ambiente, pela válvula expiratória, de 32,2% de respiradores equipados com sistema de nebulização convencional e de 5% com condensador (p = 0,0340. CONCLUSÃO. A umidificação da mistura gasosa com o uso de condensadores pode ser um meio eficiente de reduzir a contaminação bacteriana ambiental.Mechanical ventilators generate aerosol which may be bacterially colonized. PURPOSE - To determine the environmental contamination generated by ventilators with two different humidification techniques. METHODS - The study was done comparing the generation of bacterial colonized aerosol by the expiratory valve of mechanical respirators with conventional water nebulization or with hygroscopic condensator as the humidifier source during 15 minutes of observation. RESULTS - The aerosol got positive cultures in 32.2% of the conventional system and in 5% of the condensator system (p = 0.0340. CONCLUSION - We concluded that the humidification by the hygroscopic condensator may be an efficient way to reduce environmental bacterial contamination.

  1. Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates.

    Science.gov (United States)

    Sosic, Alice; Sinigaglia, Laura; Cappellini, Marta; Carli, Ilaria; Parolin, Cristina; Zagotto, Giuseppe; Sabatino, Giuseppina; Rovero, Paolo; Fabris, Dan; Gatto, Barbara

    2016-01-20

    The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidyl-anthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved N-terminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA. PMID:26666402

  2. The antipsoriatic drug, anthralin, inhibits protein kinase C--implications for its mechanism of action.

    Science.gov (United States)

    Hegemann, L; Fruchtmann, R; van Rooijen, L A; Müller-Peddinghaus, R; Mahrle, G

    1992-01-01

    In psoriatic patients, anthralin is known to attenuate lesional inflammation, but often generates perilesional dermatitis. This phenomenon is well reflected by the contrasting action of anthralin on human leukocytes. The release of reactive oxygen species (ROS) is inhibited by anthralin in phorbol ester-activated leukocytes, whereas anthralin directly induces this cellular response in unstimulated cells. In order to elaborate further the underlying mechanisms, we compared the kinetics of anthralin and different well-characterized stimuli, including the phorbol ester, phorbol-12-myristate-13-acetate, in this test system. Compared with standard stimuli, anthralin only marginally induced the release of ROS from human leukocytes and displayed different kinetics. Protein kinase C (PKC), the major cellular phorbol ester receptor, is considered to be involved in the regulation of this cellular response. Furthermore, its involvement in the pathophysiology of psoriasis has been suggested. Therefore, we also investigated the effects of anthralin on purified PKC. Anthralin was found to inhibit the enzyme activity in a dose-dependent manner but not to display any stimulatory effects. The present results provide first evidence that the therapeutic activity of anthralin, at least in part, might be mediated by inhibition of PKC. PMID:1503504

  3. Rapid Functional Definition of Extended Spectrum β-Lactamase Activity in Bacterial Cultures via Competitive Inhibition of Fluorescent Substrate Cleavage

    OpenAIRE

    Sallum, Ulysses W; Zheng, Xiang; Verma, Sarika; Hasan, Tayyaba

    2010-01-01

    The functional definition of extended-spectrum β-lactamase (ESBL) activity is a clinical challenge. Here we report a rapid and convenient assay of β-lactamase activity through the competitive inhibition of fluorescent substrate hydrolysis that provides a read-out nearly 40x more rapidly than conventional techniques for functional definition. A panel of β-lactam antibiotics was used for competition against β-lactamase enzyme activated photosensitizer (β-LEAP) yielding a competitive index (Ci) ...

  4. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis†

    OpenAIRE

    Lu, Xuequan; Zhang, Huaning; Tonge, Peter J.; Tan, Derek S.

    2008-01-01

    Menaquinone (vitamin K2) is an essential component of the electron transfer chain in many pathogens, including Mycobacterium tuberculosis and Staphylococcus aureus, and menaquinone biosynthesis is a potential target for antibiotic drug discovery. We report herein a series of mechanism-based inhibitors of MenE, an acyl-CoA synthetase that catalyzes adenylation and thioesterification of o-succinylbenzoic acid (OSB) during menaquinone biosynthesis. The most potent compound inhibits MenE with an ...

  5. Mechanism-based inhibition of CYP2C8 by gemfibrozil in humans : characterisation of time and dose relationships

    OpenAIRE

    Honkalammi, Johanna

    2011-01-01

    Drug-drug interactions may cause serious, even fatal clinical consequences. Therefore, it is important to examine the interaction potential of new chemical entities early in drug development. Mechanism-based inhibition is a pharmacokinetic interaction type, which causes irreversible loss of enzyme activity and can therefore lead to unusually profound and long-lasting consequences. The in vitro in vivo extrapolation (IVIVE) of drug-drug interactions caused by mechanism-based inhibition is ch...

  6. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.

    Science.gov (United States)

    Kim, Hyun Jung; Li, Hu; Collins, James J; Ingber, Donald E

    2016-01-01

    A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1β, and TNF-α) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models. PMID:26668389

  7. A mechanism for the inhibition of neural progenitor cell proliferation by cocaine.

    Directory of Open Access Journals (Sweden)

    Chun-Ting Lee

    2008-06-01

    Full Text Available BACKGROUND: Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation. METHODS AND FINDINGS: Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER stress response, as indicated by increased phosphorylation of eIF2alpha and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A. CONCLUSIONS: Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of

  8. Mechanisms of butylated hydroxytoluene chemoprevention of aflatoxicosis-inhibition of aflatoxin B1 metabolism

    International Nuclear Information System (INIS)

    Chemoprevention of toxicoses and/or cancer through the use of nutrients or pharmacologic compounds is the subject of intense study. Among the many compounds examined, food additives such as antioxidants are being considered due to their ability to reduce disease formation by either induction or inhibition of key enzyme systems. One such compound, butylated hydroxytoluene (BHT), has been found to protect against cancer formation caused by exposure to aflatoxin B1 (AFB1) in rodents. We have shown that dietary BHT protects against clinical signs of aflatoxicosis in turkeys, a species that is very susceptible to this mycotoxin. In this study, the effect of BHT on AFB1 metabolism and other cytochrome P450 (CYP)-related enzyme activities in turkey liver microsomes was examined to discern possible mechanisms of BHT-mediated protection against aflatoxicosis. Ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), prototype activities for CYP1A1 and 1A2, respectively, were decreased in the BHT fed (4000 ppm) animals, while oxidation of nifedipine, a prototype activity for CYP3A4, was increased. However, BHT added to microsomal incubations inhibited these CYP activities in a concentration-related manner. Importantly, BHT inhibited conversion of AFB1 to the reactive intermediate AFB1-8,-9-epoxide (AFBO), exhibiting Michaelis-Menton competitive inhibition kinetics (Ki = 0.81 μM). Likewise, microsomes prepared from turkeys fed BHT were significantly less active in AFBO formation compared to those from control birds. When turkeys were fed BHT for up to 40 days, residual BHT was present in liver, breast meat, thigh meat and abdominal fat in concentrations substantially below U.S. FDA guidelines for this antioxidant, but in concentrations greater than the Ki, likely sufficient to inhibit bioactivation of AFB1in vivo. BHT-induced hydropic degeneration in the livers of BHT fed animals was significantly greater in birds that remained on BHT treatment for up to 30

  9. Mechanism and site of inhibition of Bacillus cereus spore outgrowth by nitrosothiols

    International Nuclear Information System (INIS)

    Structure vs. activity studies demonstrate that nitrosothiols inhibit outgrowth of B. cereus spores by reversible covalent bond formation with sensitive spore components. Kinetic studies of the binding of nitrosothiols and iodoacetate, a known sulfhydryl reagent, show that they complete for the same spore sites. Since two other nitrite derivatives, the Perigo factor and the transferrin inhibitor, interfere with iodoacetate label uptake in a kinetically similar fashion, all of these compounds may inhibit spore outgrowth by interacting with the same spore thiol groups. Disruption of spores which have been inhibited by radioactive iodoacetate demonstrates that much of the label is incorporated into a membrane-rich fraction that sediments as a single peak on a sucrose density gradient. SDS gel electrophoresis and autofluorography allows the identification of four intensely labelled proteins with molecular weights of 13,000, 28,000, 29,000, and 30,000. If the iodoacetate labelling is carried out in the presence of nitrosothiol, incorporation is greatly reduced into all components. When germinating spores are labelled with succinate or the lactose analog, o-nitrophenylgalactopyranoside, a significant reduction in the amount of label bound is also observed suggesting that two iodoacetate-reactive sites may be the succinate and lactose permease systems. Severe decreases in the transport of succinate and lactose into iodoacetate and nitrosothiol inhibited spores further implicates a nitrosothiol (iodoacetate) permease interaction. Iodoacetate and nitrosothiols therefore may exert their inhibitory effects by interfering with critical membrane protein sulfhydryl groups, possibly by a a covalent modification mechanism. Some of these sensitive thiols may be involved in active transport processes

  10. On the mechanism of Escherichia coli pyridoxal kinase inhibition by pyridoxal and pyridoxal 5'-phosphate.

    Science.gov (United States)

    di Salvo, Martino Luigi; Nogués, Isabel; Parroni, Alessia; Tramonti, Angela; Milano, Teresa; Pascarella, Stefano; Contestabile, Roberto

    2015-09-01

    Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a crucial role in several cellular processes. In most organisms, PLP is recycled from nutrients and degraded B6-enzymes in a salvage pathway that involves pyridoxal kinase (PLK), pyridoxine phosphate oxidase and phosphatase activities. Regulation of the salvage pathway is poorly understood. Escherichia coli possesses two distinct pyridoxal kinases, PLK1, which is the focus of the present work, and PLK2. From previous studies dating back to thirty years ago, pyridoxal (PL) was shown to inhibit E. coli PLK1 forming a covalent link with the enzyme. This inhibition was proposed to play a regulative role in vitamin B6 metabolism, although its details had never been clarified. Recently, we have shown that also PLP produced during PLK1 catalytic cycle acts as an inhibitor, forming a Schiff base with Lys229, without being released in the solvent. The question arises as to which is the actual inhibition mechanism by PL and PLP. In the present work, we demonstrated that also PL binds to Lys229 as a Schiff base. However, the isolated covalent PLK1-PL complex is not inactive but, in the presence of ATP, is able to catalyse the single turnover production of PLP, which binds tightly to the enzyme and is ultimately responsible for its inactivation. The inactivation mechanism mediated by Lys229 may play a physiological role in controlling cellular levels of PLP. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. PMID:25655354

  11. Inhibition of platelet aggregation by polyaspartoyl L-arginine and its mechanism

    Institute of Scientific and Technical Information of China (English)

    Yin-ye WANG; Zhi-yu TANG; Min DONG; Xiao-yan LIU; Shi-qi PENG

    2004-01-01

    AIM: To observe the oral anti-platelet efficacy and the potential action mechanism of polyaspartoyl L-arginine (PDR), a new L-arginine rich compound. METHODS: Platelet aggregation was conducted by Born's method;bleeding time was determined using tail's bleeding time in mice; platelet adhesion was carried out with glass bottle method; nitric oxide (NO) was tested with Griess' method; and cAMP, thromboxane B2 (TXB2) and 6-keto-PGF1a were assessed with commercial kits. RESULTS: The inhibition by PDR (15-60 mg/kg ig or 10 mg/kg iv) of platelet aggregation induced by adenosine diphosphate (ADP), collagen or thrombin at 1 h after oral administration or at 20 min after iv injection for rats (P<0.01), and its (15 mg/kg, ig) inhibition of ADP-induced platelet aggregation for rabbits during 6 h after administration were observed. PDR (15-60 mg/kg) prolonged the bleeding time of mice (P<0.05) and (30 mg/kg) increased NO concentration in plasma. On the other hand PDR did not change the contents of cAMP in platelet and TXB2 or 6-keto-PGF1a in plasma. CONCLUSION: PDR is a novel, oral effective platelet aggregation inhibitor and its action mechanism possibly related to increasing NO generation.

  12. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases.

    Science.gov (United States)

    Basarab, Gregory S; Kern, Gunther H; McNulty, John; Mueller, John P; Lawrence, Kenneth; Vishwanathan, Karthick; Alm, Richard A; Barvian, Kevin; Doig, Peter; Galullo, Vincent; Gardner, Humphrey; Gowravaram, Madhusudhan; Huband, Michael; Kimzey, Amy; Morningstar, Marshall; Kutschke, Amy; Lahiri, Sushmita D; Perros, Manos; Singh, Renu; Schuck, Virna J A; Tommasi, Ruben; Walkup, Grant; Newman, Joseph V

    2015-01-01

    With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy. PMID:26168713

  13. New Kinase Regulation Mechanism Found in HipBA: a Bacterial Persistence Switch

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimov, A.; Voznesensky, I; Fennell, K; Anderson, M; Smith, J; Fisher, D

    2009-01-01

    Bacterial persistence is the ability of individual cells to randomly enter a period of dormancy during which the cells are protected against antibiotics. In Escherichia coli, persistence is regulated by the activity of a protein kinase HipA and its DNA-binding partner HipB, which is a strong inhibitor of both HipA activity and hip operon transcription. The crystal structure of the HipBA complex was solved by application of the SAD technique to a mercury derivative. In this article, the fortuitous and interesting effect of mercury soaks on the native HipBA crystals is discussed as well as the intriguing tryptophan-binding pocket found on the HipA surface. A HipA-regulation model is also proposed that is consistent with the available structural and biochemical data.

  14. New kinase regulation mechanism found in HipBA: a bacterial persistence switch.

    Science.gov (United States)

    Evdokimov, Artem; Voznesensky, Igor; Fennell, Kimberly; Anderson, Marie; Smith, James F; Fisher, Douglas A

    2009-08-01

    Bacterial persistence is the ability of individual cells to randomly enter a period of dormancy during which the cells are protected against antibiotics. In Escherichia coli, persistence is regulated by the activity of a protein kinase HipA and its DNA-binding partner HipB, which is a strong inhibitor of both HipA activity and hip operon transcription. The crystal structure of the HipBA complex was solved by application of the SAD technique to a mercury derivative. In this article, the fortuitous and interesting effect of mercury soaks on the native HipBA crystals is discussed as well as the intriguing tryptophan-binding pocket found on the HipA surface. A HipA-regulation model is also proposed that is consistent with the available structural and biochemical data. PMID:19622872

  15. Bacterial receptors for host transferrin and lactoferrin: molecular mechanisms and role in host-microbe interactions.

    Science.gov (United States)

    Morgenthau, Ari; Pogoutse, Anastassia; Adamiak, Paul; Moraes, Trevor F; Schryvers, Anthony B

    2013-12-01

    Iron homeostasis in the mammalian host limits the availability of iron to invading pathogens and is thought to restrict iron availability for microbes inhabiting mucosal surfaces. The presence of surface receptors for the host iron-binding glycoproteins transferrin (Tf) and lactoferrin (Lf) in globally important Gram-negative bacterial pathogens of humans and food production animals suggests that Tf and Lf are important sources of iron in the upper respiratory or genitourinary tracts, where they exclusively reside. Lf receptors have the additional function of protecting against host cationic antimicrobial peptides, suggesting that the bacteria expressing these receptors reside in a niche where exposure is likely. In this review we compare Tf and Lf receptors with respect to their structural and functional features, their role in colonization and infection, and their distribution among pathogenic and commensal bacteria. PMID:24266357

  16. Serrulatane Diterpenoid from Eremophila neglecta Exhibits Bacterial Biofilm Dispersion and Inhibits Release of Pro-inflammatory Cytokines from Activated Macrophages.

    Science.gov (United States)

    Mon, Htwe H; Christo, Susan N; Ndi, Chi P; Jasieniak, Marek; Rickard, Heather; Hayball, John D; Griesser, Hans J; Semple, Susan J

    2015-12-24

    The purpose of this study was to assess the biofilm-removing efficacy and inflammatory activity of a serrulatane diterpenoid, 8-hydroxyserrulat-14-en-19-oic acid (1), isolated from the Australian medicinal plant Eremophila neglecta. Biofilm breakup activity of compound 1 on established Staphylococcus epidermidis and Staphylococcus aureus biofilms was compared to the antiseptic chlorhexidine and antibiotic levofloxacin. In a time-course study, 1 was deposited onto polypropylene mesh to mimic a wound dressing and tested for biofilm removal. The ex-vivo cytotoxicity and effect on lipopolysaccharide-induced pro-inflammatory cytokine release were studied in mouse primary bone-marrow-derived macrophage (BMDM) cells. Compound 1 was effective in dispersing 12 h pre-established biofilms with a 7 log10 reduction of viable bacterial cell counts, but was less active against 24 h biofilms (approximately 2 log10 reduction). Compound-loaded mesh showed dosage-dependent biofilm-removing capability. In addition, compound 1 displayed a significant inhibitory effect on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) secretion from BMDM cells, but interleukin-1 beta (IL-1β) secretion was not significant. The compound was not cytotoxic to BMDM cells at concentrations effective in removing biofilm and lowering cytokine release. These findings highlight the potential of this serrulatane diterpenoid to be further developed for applications in wound management. PMID:26636180

  17. Studying the Mechanism of Phototransformation of Light Signal by Various Mammal and Bacterial Photoreceptor Pigments  Rhodopsin, Iodopsin and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2015-06-01

    Full Text Available This review article outlines the structure and function of mammal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and their aspects of bio-nanotechnological usage. On an example of bacteriorhodopsin is described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium ET 1001 by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0,09 M Tris-buffer (pH = 8,35 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual retina analyzer having the ability to analyze certain ranges of the optical spectrum as colors, was studied along with an analysis of the additive mixing of two or more colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceives them as the separate or average wave length corresponding to the mixing color.

  18. Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites.

    Science.gov (United States)

    Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Domeneguetti, Rafael R; Ribeiro, Sidney J L

    2015-02-25

    Highly transparent biocomposite based on bacterial cellulose (BC) mat modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer (EPE) were fabricated in situ during biosynthesis of bacterial cellulose in a static culture from Gluconacetobacter xylinum. The effect of the addition to the culture medium of water-soluble EPE block copolymer on structure, morphology, crystallinity, and final properties of the novel biocomposites was investigated at nano- and macroscale. High compatibility between components was confirmed by ATR-FTIR indicating hydrogen bond formation between the OH group of BC and the PEO block of EPE block copolymer. Structural properties of EPE/BC biocomposites showed a strong effect of EPE block copolymer on the morphology of the BC mats. Thus, the increase of the EPE block copolymer content lead to the generation of spherulites of PEO block, clearly visualized using AFM and MO technique, changing crystallinity of the final EPE/BC biocomposites investigated by XRD. Generally, EPE/BC biocomposites maintain thermal stability and mechanical properties of the BC mat being 1 wt % EPE/BC biocomposite material with the best properties. Biosynthesis of EPE/BC composites open new strategy to the utilization of water-soluble block copolymers in the preparation of BC mat based biocomposites with tunable properties. PMID:25633223

  19. Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms

    Directory of Open Access Journals (Sweden)

    Betania Hernández-Ocaña

    2016-01-01

    Full Text Available This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.

  20. Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms

    Science.gov (United States)

    Hernández-Ocaña, Betania; Pozos-Parra, Ma. Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara

    2016-01-01

    This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem. PMID:27057156

  1. Dual mechanisms of NF-κB inhibition in carnosol-treated endothelial cells

    International Nuclear Information System (INIS)

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFα-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein IκBα in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-β phosphorylation in pretreatments of less than 3 h. In TNFα-treated ECs, NF-κB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFα-induced singling pathways through the inhibition of IKK-β activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.

  2. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism.

    Science.gov (United States)

    Bernal, Carmen E; Zorro, Maria M; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H; Baena, Andres; Ramirez-Pineda, Jose R

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700

  3. Encephalitozoon intestinalis inhibits dendritic cell differentiation through an IL-6-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Bernal Silva

    2016-02-01

    Full Text Available AbstractMicrosporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNg, CD4+ and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei, a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1b or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNg secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNg secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development towards cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.

  4. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite.

    Science.gov (United States)

    Moreau, Jennifer L; Sun, Limin; Chow, Laurence C; Xu, Hockin H K

    2011-07-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size were synthesized via a spray-drying technique and incorporated into a resin. Flexural strength of nanocomposite with 10 to 30% NACP fillers matched the strength of a commercial hybrid composite (p > 0.1). Nanocomposite with 40% NACP matched the strength of a microfill composite, which was 2-fold that of a resin-modified glass ionomer. Nanocomposite with 40% NACP neutralized a lactic acid solution of pH 4 by rapidly increasing the pH to 5.69 in 10 min. In contrast, the commercial controls had pH staying at near 4. Using Streptoccocus mutans, an agar disk-diffusion test showed no inhibition zone for commercial controls. In contrast, the inhibition zone was (2.5 ± 0.7) mm for nanocomposite with 40% NACP. Crystal violet staining showed that S. mutans coverage on nanocomposite was 1/4 that on commercial composite. In conclusion, novel calcium-phosphate nanocomposite matched the mechanical properties of commercial composite and rapidly neutralized lactic acid of pH 4. The nanocomposite appeared to moderately reduce the S. mutans growth, and further study is needed to obtain strong antimicrobial properties. The new nanocomposite may have potential to reduce secondary caries and restoration fracture, two main challenges facing tooth cavity restorations. PMID:21504057

  5. Decameric SelA•tRNA(Sec) ring structure reveals mechanism of bacterial selenocysteine formation.

    Science.gov (United States)

    Itoh, Yuzuru; Bröcker, Markus J; Sekine, Shun-ichi; Hammond, Gifty; Suetsugu, Shiro; Söll, Dieter; Yokoyama, Shigeyuki

    2013-04-01

    The 21st amino acid, selenocysteine (Sec), is synthesized on its cognate transfer RNA (tRNA(Sec)). In bacteria, SelA synthesizes Sec from Ser-tRNA(Sec), whereas in archaea and eukaryotes SepSecS forms Sec from phosphoserine (Sep) acylated to tRNA(Sec). We determined the crystal structures of Aquifex aeolicus SelA complexes, which revealed a ring-shaped homodecamer that binds 10 tRNA(Sec) molecules, each interacting with four SelA subunits. The SelA N-terminal domain binds the tRNA(Sec)-specific D-arm structure, thereby discriminating Ser-tRNA(Sec) from Ser-tRNA(Ser). A large cleft is created between two subunits and accommodates the 3'-terminal region of Ser-tRNA(Sec). The SelA structures together with in vivo and in vitro enzyme assays show decamerization to be essential for SelA function. SelA catalyzes pyridoxal 5'-phosphate-dependent Sec formation involving Arg residues nonhomologous to those in SepSecS. Different protein architecture and substrate coordination of the bacterial enzyme provide structural evidence for independent evolution of the two Sec synthesis systems present in nature. PMID:23559248

  6. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    Science.gov (United States)

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  7. Carbon and hydrogen isotope ratios of bacterial methane and its formation mechanism

    International Nuclear Information System (INIS)

    Anaerobic incubations of paddy soil collected from Konosu, Japan, were carried out for 10 weeks to clarify the general principles that govern the variation of carbon isotopic composition of bacterial methane from freshwater areas. The δ13C value of produced CH4 was highly variable ranging from -60 to -33%, corresponding to change in its formation pathways: acetate fermentation and CO2/H2 reduction. The δ13C value of CH4 from CO2/H2 was estimated as -77 to -60%, adopting 45% of δ13C difference between the CH4 and its source CO2. The δ13C value of methyl carbon of acetate accumulated with addition of inhibitor for methanogenesis ranged from -43 to -30%, which was considered with the δ13C value of CH4 from acetate. Variability of CH4 δ13C resulted from the difference in contribution of each biological process. It was demonstrated that δ13C value of methane was a useful indicator for assessing the contribution of each process in wetlands and paddy fields. (author)

  8. Pramipexole inhibits MPTP toxicity in mice by dopamine D3 receptor dependent and independent mechanisms.

    Science.gov (United States)

    Ramirez, Andres D; Wong, Stephen K-F; Menniti, Frank S

    2003-08-15

    The role of dopamine D3 receptors was investigated in mediating the neuroprotective effect of the dopamine D2/D3 receptor agonist (S)-2-amino-4,5,6,7-tetrahydro-6-propylamine-benzothiazole (pramipexole) in vivo. Pramipexole retained the ability to inhibit 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion in mice in which the dopamine D3 receptor had been deleted. However, the neuroprotective efficacy was reduced in the dopamine D3 receptor-deleted mice compared to that in littermates expressing the wildtype receptor. Furthermore, the dopamine D3 receptor selective antagonist 2-(3-[4-(2-tert-butyl-6-trifluoromethyl-4-pyrimidinyl)-1-piperazinyl]propylthio)-4-pyrimidinol (A-437203) partially inhibited the neuroprotective effect of pramipexole in dopamine D3 receptor expressing mice but not in receptor-deleted mice. These results indicate that pramipexole protects dopamine neurons from MPTP-induced toxicity by mechanisms that are both dependent and independent of an interaction with dopamine D3 receptors. PMID:12954356

  9. Structurally novel steroidal spirooxindole by241 potently inhibits tumor growth mainly through ROS-mediated mechanisms.

    Science.gov (United States)

    Shi, Xiao-Jing; Yu, Bin; Wang, Jun-Wei; Qi, Ping-Ping; Tang, Kai; Huang, Xin; Liu, Hong-Min

    2016-01-01

    Cancer cells always have increased ROS levels, thus making them more vulnerable to persistent endogenous oxidative stress. The biochemical difference between cancer and normal cells could be exploited to achieve selective cancer cell killing by exogenous ROS-producing agents. Herein we described a structurally novel steroidal spirooxindole by241 and its anticancer efficacy. By241 exhibited potent inhibition against human cancer cells and less toxic to normal cells. By241 concentration-dependently induced apoptosis of MGC-803 and EC9706 cells, accompanied with the mitochondrial dysfunction and increased ROS levels. NAC can completely restore the decreased cell viability of MGC-803 cells caused by by241, suggesting ROS-mediated mechanisms. The expression levels of proteins involved in the mitochondrion-related pathways were detected, showing increased expression of proapoptotic proteins and decreased expression of anti-apoptotic proteins, and activation of caspases-9/-3, but without activating caspase-8 expression. Pretreatment with Z-VAD-FMK partially rescued by241-induced apoptosis of MGC-803 cells. Additionally, by241 inhibited mTOR, activated p53 and its downstream proteins, cleaved MDM2 and PI3K/AKT as well as NF-κB signaling pathway. In vivo experiments showed that by241 did not have significant acute oral toxicity and exerted good anticancer efficacy against MGC-803 bearing mice models. Therefore, by241 may serve as a lead for further development for cancer therapy. PMID:27527552

  10. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium

    International Nuclear Information System (INIS)

    The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO4, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO4 (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 A resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-binding site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.

  11. Oestrogen inhibits human colonic motility by a non-genomic cell membrane receptor-dependent mechanism.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    BACKGROUND: Classical effects of oestrogen involve activation of target genes after binding nuclear receptors. Oestrogenic effects too rapid for DNA transcription (non-genomic) are known to occur. The effect of oestrogen on colonic motility is unknown despite the prevalence of gastrointestinal symptoms in pregnant and premenopausal women. METHODS: Histologically normal colon was obtained from proximal resection margins of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended in organ baths under 1 g of tension. After equilibration, they were exposed to 17beta-oestradiol (n = 8) or bovine serum albumin (BSA)-conjugated 17beta-oestradiol (n = 8). Fulvestrant, an oestrogen receptor antagonist, was added to some baths (n = 8). Other strips were exposed to calphostin C or cycloheximide. Carbachol was added in increasing concentrations and contractile activity was recorded isometrically. RESULTS: Oestrogen inhibited colonic contractility (mean difference 19.7 per cent; n = 8, P < 0.001). In keeping with non-genomic, rapid-onset steroid action, the effect was apparent within minutes and reversible. It was observed with both 17beta-oestradiol and BSA-conjugated oestrogen, and was not altered by cycloheximide. Effects were inhibited by fulvestrant, suggesting receptor mediation. CONCLUSION: Oestrogen decreases contractility in human colonic smooth muscle by a non-genomic mechanism involving cell membrane coupling.

  12. Aquatic environmental safety assessment and inhibition mechanism of chemicals for targeting Microcystis aeruginosa.

    Science.gov (United States)

    Yu, Xiao-Bo; Hao, Kai; Ling, Fei; Wang, Gao-Xue

    2014-11-01

    Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, fungi, bacteria and cell lines. Recently the main methods of controlling cyanobacteria are using chemicals, medicinal plants and microorganism but fewer involved the safety research in hydrophytic ecosystems. In search of an environmentally safe compound, 53 chemicals were screened against the developed heavy cyanobacteria bloom Microcystis aeruginosa using coexistence culture system assay. The results of the coexistence assay showed that 9 chemicals inhibited M. aeruginosa effectively at 20 mg L(-1) after 7 days of exposure. Among them dimethomorph, propineb, and paraquat were identified that they are safe for Chlorella vulgaris, Scenedesmus obliquus, Carassius auratus (Goldfish) and Bacillus subtilis within half maximal effective concentration (EC50) values 5.2, 4.2 and 0.06 mg L(-1) after 7 days, respectively. Paraquat as the positive control observed to be more efficient than the other compounds with the inhibitory rate (IR) of 92% at 0.5 mg L(-1). For the potential inhibition mechanism, the chemicals could destroy the cell ultrastructure in different speed. The safety assay proved dimethomorph, propineb and paraquat as harmless formulations or products having potential value in M. aeruginosa controlling, with the advantage of its cell morphology degrading ability. PMID:25139029

  13. Mechanical Stimulus Inhibits the Growth of a Bone Tissue Model Cultured In Vitro

    Institute of Scientific and Technical Information of China (English)

    Zong-ming Wan; Lu Liu; Jian-yu Li; Rui-xin Li; Yong Guo; Hao Li; Jian-ming Zhang; Xi-zheng Zhang

    2013-01-01

    Objectives To construct the cancellous bone explant model and a method of culturing these bone tissues in vitro, and to investigate the effect of mechanical load on growth of cancellous bone tissue in vitro. Methods Cancellous bone were extracted from rabbit femoral head and cut into 1-mm-thick and 8-mm-diameter slices under sterile conditions. HE staining and scanning electron microscopy were employed to identify the histomorphology of the model after being cultured with a new dynamic load and circulating perfusion bioreactor system for 0, 3, 5, and 7 days, respectively. We built a three-dimensional model using microCT and analyzed the loading effects using finite element analysis. The model was subjected to mechanical load of 1000, 2000, 3000, and 4000μεrespectively for 30 minutes per day. After 5 days of continuous stimuli, the activities of alkaline phosphatase (AKP) and tartrate-resistant acid phosphatase (TRAP) were detected. Apoptosis was analyzed by DNA ladder detection and caspase-3/8/9 activity detection. Results After being cultured for 3, 5, and 7 days, the bone explant model grew well. HE staining showed the apparent nucleus in cells at the each indicated time, and electron microscope revealed the living cells in the bone tissue. The activities of AKP and TRAP in the bone explant model under mechanical load of 3000 and 4000μεwere significantly lower than those in the unstressed bone tissues (all P Conclusions The cancellous bone explant model extracted from the rabbit femoral head could be alive at least for 7 days in the dynamic load and circulating perfusion bioreactor system, however, pathological mechanical load could affect the bone tissue growth by apoptosis in vitro. The differentiation of osteoblasts and osteoclasts might be inhibited after the model is stimulated by mechanical load of 3000 and 4000με.

  14. Bacterial Mitosis: ParM of Plasmid R1 Moves Plasmid DNA by an Actin-like Insertional Polymerization Mechanism

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette;

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid...... movement is powered by insertional polymerization of ParM. Consistently, we find that segregating plasmids are positioned at the ends of extending ParM filaments. Thus, the process of R1 plasmid segregation in E. coli appears to be mechanistically analogous to the actin-based motility operating...

  15. Nickel-hydrogen battery self-discharge mechanism and methods for its inhibition

    Science.gov (United States)

    Visintin, Arnaldo; Anani, Anaba; Srinivasan, Supramaniam; Appleby, A. J.; Lim, Hong S.

    1992-01-01

    A review of our studies on the elucidation of the self-discharge mechanism of the Ni/H2 battery and methods to inhibit this phenomena is presented. The results show that (1) the rate of heat generation from nickel hydroxide powders and from electrodes increases with increase of hydrogen pressure, simultaneously, the open-circuit potential of the nickel hydroxide electrode is shifted in a negative direction more rapidly, indicating the transformation of NiOOH to Ni(OH)2; (2) heat generation rates measured in the microcalorimeter are considerably faster for electrolyte starved electrodes than for electrolyte-flooded electrodes; (3) there is a good correlation between the extent of self-discharge, as determined by heat generation in microcalorimetric measurement and capacity change; and (4) the self-discharge in Ni/H2 battery occurs via direct reduction of the active material by pressurized hydrogen. The addition of cadmium to the electrode reduces the self-discharge.

  16. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    Science.gov (United States)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  17. Matrix polymer species have distinct effects on the mechanics of bacterial biofilms

    Science.gov (United States)

    Kovach, Kristin; Davis-Fields, Megan; Gordon, Vernita

    2015-03-01

    Biofilms are aggregates of microorganisms embedded in a self-produced extracellular polymer matrix. The matrix confers protection to these microorganisms against mechanical and chemical stresses that they may experience in their environment. The bacterium Pseudomonas aeruginosa is widely used as a model biofilm-forming organism because it is an opportunistic human pathogen common in hospital-acquired infections, in chronic wounds, and in cystic fibrosis lung disease. P. aeruginosa strain PA01 forms biofilms that are primarily structured by the extracellular polysaccharides Pel and Psl. Using bulk rheological measurements, we show that these polysaccharides each play a unique role in the mechanical robustness of the biofilm. Psl increases the elastic storage modulus while Pel increases the ductility of the biofilm. Increased expression of either Psl or Pel increases the yield stress by about the same amount. Identifying the mechanism(s) by which these polymers contribute to the mechanical toughness of the biofilm could allow new approaches to effective biofilm clearance, by revealing targets for disruption that would weaken the biofilm.

  18. Varicella Viruses Inhibit Interferon-Stimulated JAK-STAT Signaling through Multiple Mechanisms.

    Directory of Open Access Journals (Sweden)

    Marieke C Verweij

    2015-05-01

    Full Text Available Varicella zoster virus (VZV causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG. Here, we demonstrate that SVV inhibits type I IFN-activated signal transduction via the JAK-STAT pathway. SVV-infected rhesus fibroblasts were refractory to IFN stimulation displaying reduced protein levels of IRF9 and lacking STAT2 phosphorylation. Since previous work implicated involvement of the VZV immediate early gene product ORF63 in preventing ISG-induction we studied the role of SVV ORF63 in generating resistance to IFN treatment. Interestingly, SVV ORF63 did not affect STAT2 phosphorylation but caused IRF9 degradation in a proteasome-dependent manner, suggesting that SVV employs multiple mechanisms to counteract the effect of IFN. Control of SVV ORF63 protein levels via fusion to a dihydrofolate reductase (DHFR-degradation domain additionally confirmed its requirement for viral replication. Our results also show a prominent reduction of IRF9 and inhibition of STAT2 phosphorylation in VZV-infected cells. In addition, cells expressing VZV ORF63 blocked IFN-stimulation and displayed reduced levels of the IRF9 protein. Taken together, our data suggest that varicella ORF63 prevents ISG-induction both directly via IRF9 degradation and indirectly via transcriptional control of viral proteins that interfere with STAT2 phosphorylation. SVV and VZV thus encode multiple viral gene products that tightly control IFN-induced anti-viral responses.

  19. Kinetics and mechanism of jack bean urease inhibition by Hg2+

    Directory of Open Access Journals (Sweden)

    Du Nana

    2012-12-01

    Full Text Available Abstract Background Jack bean urease (EC 3.5.1.5 is a metalloenzyme, which catalyzes the hydrolysis of urea to produce ammonia and carbon dioxide. The heavy metal ions are common inhibitors to control the rate of the enzymatic urea hydrolysis, which take the Hg2+ as the representative. Hg2+ affects the enzyme activity causing loss of the biological function of the enzyme, which threatens the survival of many microorganism and plants. However, inhibitory kinetics of urease by the low concentration Hg2+ has not been explored fully. In this study, the inhibitory effect of the low concentration Hg2+ on jack bean urease was investigated in order to elucidate the mechanism of Hg2+ inhibition. Results According to the kinetic parameters for the enzyme obtained from Lineweaver–Burk plot, it is shown that the Km is equal to 4.6±0.3 mM and Vm is equal to 29.8±1.7 μmol NH3/min mg. The results show that the inhibition of jack bean urease by Hg2+ at low concentration is a reversible reaction. Equilibrium constants have been determined for Hg2+ binding with the enzyme or the enzyme-substrate complexes (Ki =0.012 μM. The results show that the Hg2+ is a noncompetitive inhibitor. In addition, the kinetics of enzyme inhibition by the low concentration Hg2+ has been studied using the kinetic method of the substrate reaction. The results suggest that the enzyme first reversibly and quickly binds Hg2+ and then undergoes a slow reversible course to inactivation. Furthermore, the rate constant of the forward reactions (k+0 is much larger than the rate constant of the reverse reactions (k-0. By combining with the fact that the enzyme activity is almost completely lost at high concentration, the enzyme is completely inactivated when the Hg2+ concentration is high enough. Conclusions These results suggest that Hg2+ has great impacts on the urease activity and the established inhibition kinetics model is suitable.

  20. Cycle inhibiting factors (CIFs are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Grégory Jubelin

    Full Text Available The cycle inhibiting factor (Cif produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G(1 and G(2 cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs p21(waf1/cip1 and p27(kip1 and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans.

  1. Molecular mechanism of bundle formation by the bacterial actin ParM

    Energy Technology Data Exchange (ETDEWEB)

    Popp, David, E-mail: dpopp@imcb.a-star.edu.sg [ERATO ' Actin Filament Dynamics' Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673 Singapore (Singapore); Narita, Akihiro [ERATO ' Actin Filament Dynamics' Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Nagoya University Graduate School of Science, Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Iwasa, Mitsusada [ERATO ' Actin Filament Dynamics' Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Maeda, Yuichiro [ERATO ' Actin Filament Dynamics' Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Nagoya University Graduate School of Science, Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Robinson, Robert C. [Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673 Singapore (Singapore)

    2010-01-22

    The actin homolog ParM plays a microtubule-like role in segregating DNA prior to bacterial cell division. Fluorescence and cryo-electron microscopy have shown that ParM forms filament bundles between separating DNA plasmids in vivo. Given the lack of ParM bundling proteins it remains unknown how ParM bundles form at the molecular level. Here we show using time-lapse TIRF microscopy, under in vitro molecular crowding conditions, that ParM-bundle formation consists of two distinct phases. At the onset of polymerization bundle thickness and shape are determined in the form of nuclei of short helically disordered filaments arranged in a liquid-like lattice. These nuclei then undergo an elongation phase whereby they rapidly increase in length. At steady state, ParM bundles fuse into one single large aggregate. This behavior had been predicted by theory but has not been observed for any other cytomotive biopolymer, including F-actin. We employed electron micrographs of ParM rafts, which are 2-D analogs of 3-D bundles, to identify the main molecular interfilament contacts within these suprastructures. The interface between filaments is similar for both parallel and anti-parallel orientations and the distribution of filament polarity is random within a bundle. We suggest that the interfilament interactions are not due to the interactions of specific residues but rather to long-range, counter ion mediated, electrostatic attractive forces. A randomly oriented bundle ensures that the assembly is rigid and that DNA may be captured with equal efficiency at both ends of the bundle via the ParR binding protein.

  2. Bacterial tethering analysis reveals a "run-reverse-turn" mechanism for Pseudomonas species motility.

    Science.gov (United States)

    Qian, Chen; Wong, Chui Ching; Swarup, Sanjay; Chiam, Keng-Hwee

    2013-08-01

    We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call "pause." In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new "run-reverse-turn" paradigm for polar-flagellated Pseudomonas motility that is different from the "run-and-tumble" paradigm established for peritrichous Escherichia coli. PMID:23728820

  3. Medial olivocochlear efferent inhibition of basilar-membrane responses to clicks: Evidence for two modes of cochlear mechanical excitation

    OpenAIRE

    Guinan, John J.; Cooper, Nigel P.

    2008-01-01

    Conceptualizations of mammalian cochlear mechanics are based on basilar-membrane (BM) traveling waves that scale with frequency along the length of the cochlea, are amplified by outer hair cells (OHCs), and excite inner hair cells and auditory-nerve (AN) fibers in a simple way. However, recent experimental work has shown medial-olivocochlear (MOC) inhibition of AN responses to clicks that do not fit with this picture. To test whether this AN-initial-peak (ANIP) inhibition might result from hi...

  4. A preconditioning nerve lesion inhibits mechanical pain hypersensitivity following subsequent neuropathic injury

    Directory of Open Access Journals (Sweden)

    Wu Ann

    2011-01-01

    Full Text Available Abstract Background A preconditioning stimulus can trigger a neuroprotective phenotype in the nervous system - a preconditioning nerve lesion causes a significant increase in axonal regeneration, and cerebral preconditioning protects against subsequent ischemia. We hypothesized that a preconditioning nerve lesion induces gene/protein modifications, neuronal changes, and immune activation that may affect pain sensation following subsequent nerve injury. We examined whether a preconditioning lesion affects neuropathic pain and neuroinflammation after peripheral nerve injury. Results We found that a preconditioning crush injury to a terminal branch of the sciatic nerve seven days before partial ligation of the sciatic nerve (PSNL; a model of neuropathic pain induced a significant attenuation of pain hypersensitivity, particularly mechanical allodynia. A preconditioning lesion of the tibial nerve induced a long-term significant increase in paw-withdrawal threshold to mechanical stimuli and paw-withdrawal latency to thermal stimuli, after PSNL. A preconditioning lesion of the common peroneal induced a smaller but significant short-term increase in paw-withdrawal threshold to mechanical stimuli, after PSNL. There was no difference between preconditioned and unconditioned animals in neuronal damage and macrophage and T-cell infiltration into the dorsal root ganglia (DRGs or in astrocyte and microglia activation in the spinal dorsal and ventral horns. Conclusions These results suggest that prior exposure to a mild nerve lesion protects against adverse effects of subsequent neuropathic injury, and that this conditioning-induced inhibition of pain hypersensitivity is not dependent on neuroinflammation in DRGs and spinal cord. Identifying the underlying mechanisms may have important implications for the understanding of neuropathic pain due to nerve injury.

  5. Possible mechanism for the inhibition of gastric (H+ + K+)-adenosine triphosphatase by the proton pump inhibitor AG-1749

    International Nuclear Information System (INIS)

    Mechanisms related to the inhibition of (H+ + K+)-adenosine triphosphatase (ATPase) by 2-[[[3-methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methyl] sulfinyl]-1H-benzimidazole (AG-1749) were studied using canine gastric microsomes. AG-1749 (1-100 microM) inhibited the K+-stimulated ATP hydrolysis and vesicular accumulation of H+. AG-1749 bound to the microsomes concentration-dependently and decreased the number of free SH groups; the binding correlating with the enzyme inhibition. Both the binding and inhibition were antagonized by dithiothreitol. N-ethylmaleimide inhibited the (H+ + K+)-ATPase and decreased the binding of [14C]AG-1749 to the microsomes. The inhibitory effect of AG-1749 gradually increased with incubation time, and was enhanced by lowering the pH. AG-2000 and AG-1812, acid-induced rearrangement products of AG-1749, inhibited (H+ + K+)-ATPase potently, rapidly and independently of pH; the inhibition was antagonized by dithiothreitol. We propose that AG-1749 is transformed into its active forms within the acidic compartment of the parietal cells and that the active compounds inhibit (H+ + K+)-ATPase activity by reacting with the SH groups of the enzyme

  6. Preparation of bacterial cellulose/graphene nanosheets composite films with enhanced mechanical performances.

    Science.gov (United States)

    Shao, Wei; Wang, Shuxia; Liu, Hui; Wu, Jimin; Zhang, Rui; Min, Huihua; Huang, Min

    2016-03-15

    Graphene has been considered to be a promising nanofiller material for building polymeric nanocomposites because it has large specific surface area and unique mechanical property. In the study, BC/graphene composites were prepared by a simple blending method. The resulting structure and thermal stability of the composites were investigated by several techniques including TEM, SEM, XRD, TG and Raman spectrum. These results indicate graphene nanosheets were successfully impregnated and uniformly dispersed in the BC matrix. Water contact angles result showed that the addition of graphene decreased hydrophilic property since water contact angle of BC increased from 51.2° to 84.3° with 4wt% graphene added. The mechanical performances of BC/graphene composites were highly evaluated. When compared to pristine BC, the incorporation of 4wt% graphene improved the tensile strength from 96MPa to 155MPa and Young's modulus from 369MPa to 530MPa, respectively. PMID:26794749

  7. A randomized trial of chlorhexidine gluconate on oral bacterial pathogens in mechanically ventilated patients

    OpenAIRE

    Scannapieco, Frank A.; Yu, Jihnhee; Raghavendran, Krishnan; Vacanti, Angela; Owens, Susan I; Wood, Kenneth; Mylotte, Joseph M.

    2009-01-01

    Introduction Dental plaque biofilms are colonized by respiratory pathogens in mechanically-ventilated intensive care unit patients. Thus, improvements in oral hygiene in these patients may prevent ventilator-associated pneumonia. The goal of this study was to determine the minimum frequency (once or twice a day) for 0.12% chlorhexidine gluconate application necessary to reduce oral colonization by pathogens in 175 intubated patients in a trauma intensive care unit. Methods A randomized, doubl...

  8. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  9. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    Science.gov (United States)

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics. PMID:16078853

  10. Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues ☆

    OpenAIRE

    Hammond, Edward; Handley, Paul; Dredge, Keith; Bytheway, Ian

    2013-01-01

    The tetrasaccharide heparan sulfate (HS) mimetic PG545, a clinical anti-cancer candidate, is an inhibitor of the HS-degrading enzyme heparanase. The kinetics of heparanase inhibition by PG545 and three structural analogues were investigated to understand their modes of inhibition. The cholestanol aglycon of PG545 significantly increased affinity for heparanase and also modified the inhibition mode. For the tetrasaccharides, competitive inhibition was modified to parabolic competition by the a...

  11. The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway

    Science.gov (United States)

    Michard, Céline; Sperandio, Daniel; Baïlo, Nathalie; Pizarro-Cerdá, Javier; LeClaire, Lawrence; Chadeau-Argaud, Elise; Pombo-Grégoire, Isabel; Hervet, Eva; Vianney, Anne; Gilbert, Christophe; Faure, Mathias; Cossart, Pascale

    2015-01-01

    ABSTRACT Legionella pneumophila, the etiological agent of legionellosis, replicates within phagocytic cells. Crucial to biogenesis of the replicative vacuole is the Dot/Icm type 4 secretion system, which translocates a large number of effectors into the host cell cytosol. Among them is LegK2, a protein kinase that plays a key role in Legionella infection. Here, we identified the actin nucleator ARP2/3 complex as a target of LegK2. LegK2 phosphorylates the ARPC1B and ARP3 subunits of the ARP2/3 complex. LegK2-dependent ARP2/3 phosphorylation triggers global actin cytoskeleton remodeling in cells, and it impairs actin tail formation by Listeria monocytogenes, a well-known ARP2/3-dependent process. During infection, LegK2 is addressed to the Legionella-containing vacuole surface and inhibits actin polymerization on the phagosome, as revealed by legK2 gene inactivation. Consequently, LegK2 prevents late endosome/lysosome association with the phagosome and finally contributes to remodeling of the bacterium-containing phagosome into a replicative niche. The inhibition of actin polymerization by LegK2 and its effect on endosome trafficking are ARP2/3 dependent since it can be phenocopied by a specific chemical inhibitor of the ARP2/3 complex. Thus, LegK2-ARP2/3 interplay highlights an original mechanism of bacterial virulence with an unexpected role in local actin remodeling that allows bacteria to control vesicle trafficking in order to escape host defenses. PMID:25944859

  12. Black colored sandy sediments caused by bacterial action, and the mechanism for arsenic enrichment of groundwater in Inner Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, H., E-mail: h.hagiwara@silk.plala.or.jp [Graduate School of Science and Technology, Niigata University, Ikarashi-2, Niigata 950-2181 (Japan); Akai, J. [Department of Geology, Faculty of Science, Niigata University, Ikarashi-2, Niigata 950-2181 (Japan); Terasaki, K. [6379-72, Ikarashi-1, Niigata 950-2101 (Japan); Yoshimura, T. [Department of Geology, Faculty of Science, Niigata University, Ikarashi-2, Niigata 950-2181 (Japan); Luo, H. [Department of Applied Chemistry, South China University of Technology, Wushan, Guangzhou 510640 (China)

    2011-03-15

    Research highlights: {yields} Arsenic enrichment of groundwater in Inner Mongolia is described. {yields} Characteristic black sands by FeS are always associated with this enrichment. {yields} Bacterial activity plays a key role in forming highly reducing environments and H{sub 2}S. {yields} Arsenic is released from Fe oxyhydroxide and H{sub 2}S reacts with Fe{sup 2+}, resulting in formation of black FeS. {yields} Black sands are indicative of As release in this region. - Abstract: High As concentrations in groundwater were detected in the village of Ershe, Jianshe but were not detected in the village of Qishe, Fengle in Inner Mongolia. In this study, core samples from two comparable regions were mineralogically examined. Results of X-ray diffractometry (XRD) showed that the principal minerals present in the drill core samples are quartz, micas, feldspars, calcite and clay minerals. Variation of these mineral species does not correlate with depth but to lithofacies; minerals were As-rich in muddy sediments and As-poor in sandy sediments. The results of X-ray fluorescence analysis (XRF) are consistent with those of XRD. The As content shows a positive correlation with total Fe{sub 2}O{sub 3}, V and loss of ignition (LOI). In order to identify the chemical forms of As present, a selective sequential extraction (SSE) method was carried out. The results of the SSE experiment suggested that in highly reducing environments, As that is adsorbed on Fe oxyhydroxides is released. Extremely black sand was found in deep drill core samples. To investigate the cause of black sands, inorganic and bacterial culture experiments were carried out. The black color in sands is due to the Fe sulfide greigite evolved from the Fe oxyhydroxide film coating the sand grains. This change in color occurred upon reaction with H{sub 2}S gas most probably associated with bacterial activity. Transmission electron microscope (TEM) observations clarified that the sulfide structure of black sand

  13. Black colored sandy sediments caused by bacterial action, and the mechanism for arsenic enrichment of groundwater in Inner Mongolia

    International Nuclear Information System (INIS)

    Research highlights: → Arsenic enrichment of groundwater in Inner Mongolia is described. → Characteristic black sands by FeS are always associated with this enrichment. → Bacterial activity plays a key role in forming highly reducing environments and H2S. → Arsenic is released from Fe oxyhydroxide and H2S reacts with Fe2+, resulting in formation of black FeS. → Black sands are indicative of As release in this region. - Abstract: High As concentrations in groundwater were detected in the village of Ershe, Jianshe but were not detected in the village of Qishe, Fengle in Inner Mongolia. In this study, core samples from two comparable regions were mineralogically examined. Results of X-ray diffractometry (XRD) showed that the principal minerals present in the drill core samples are quartz, micas, feldspars, calcite and clay minerals. Variation of these mineral species does not correlate with depth but to lithofacies; minerals were As-rich in muddy sediments and As-poor in sandy sediments. The results of X-ray fluorescence analysis (XRF) are consistent with those of XRD. The As content shows a positive correlation with total Fe2O3, V and loss of ignition (LOI). In order to identify the chemical forms of As present, a selective sequential extraction (SSE) method was carried out. The results of the SSE experiment suggested that in highly reducing environments, As that is adsorbed on Fe oxyhydroxides is released. Extremely black sand was found in deep drill core samples. To investigate the cause of black sands, inorganic and bacterial culture experiments were carried out. The black color in sands is due to the Fe sulfide greigite evolved from the Fe oxyhydroxide film coating the sand grains. This change in color occurred upon reaction with H2S gas most probably associated with bacterial activity. Transmission electron microscope (TEM) observations clarified that the sulfide structure of black sand grains is that of greigite. In summary, based on water chemistry

  14. Bacterial gastroenteritis

    Science.gov (United States)

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... Bacterial gastroenteritis can affect 1 person or a group of people who all ate the same food. It is ...

  15. Cathepsin K Inhibition: A New Mechanism for the Treatment of Osteoporosis.

    Science.gov (United States)

    Duong, Le T; Leung, Albert T; Langdahl, Bente

    2016-04-01

    Cathepsin K (CatK), a cysteine protease, is highly expressed by osteoclasts and very efficiently degrades type I collagen, the major component of the organic bone matrix. Robust genetic and pharmacological preclinical studies consistently demonstrate that CatK inhibition increases bone mass, improves bone microarchitecture and strength. Recent advances in the understanding of the molecular and cellular mechanisms involved in bone modeling and remodeling suggest that inhibition of CatK decreases bone resorption, but increases the number of cells of osteoclast lineage. This in turn maintains the signals for bone formation, and perhaps may even increase bone formation on some cortical surfaces. Several CatK inhibitors, including relacatib, balicatib, odanacatib and ONO-5334 had entered clinical development for metabolic bone disorders with increased bone resorption, such as postmenopausal osteoporosis. However, odanacatib (ODN) is the only candidate continuing in development. ODN is a highly selective oral CatK inhibitor dosed once-weekly in humans. In a Phase 2 clinical trial, postmenopausal women treated with ODN had sustained reductions of bone resorption markers, while bone formation markers returned to normal after an initial decline within the first 2 years on treatment. In turn areal bone mineral density increased continuously at both spine and hip for up to 5 years. ODN has also been demonstrated to improve bone mass in women with postmenopausal osteoporosis previously treated with alendronate and in men with osteoporosis. ODN is currently in a worldwide Phase 3 fracture outcome trial for the treatment of postmenopausal osteoporosis with interim results supporting its anti-fracture efficacy at the spine, hip and non-vertebral sites. PMID:26335104

  16. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin.

    Science.gov (United States)

    Gu, Yuan; Scheuer, Claudia; Feng, Dilu; Menger, Michael D; Laschke, Matthias W

    2013-09-01

    Arctigenin, a functional ingredient of several traditional Chinese herbs, has been reported to have potential antitumor activity. However, its mechanisms of action are still not well elucidated. Because the establishment and metastatic spread of tumors is crucially dependent on angiogenesis, here we investigated whether arctigenin inhibits tumor growth by disturbing blood vessel formation. For this purpose, human dermal microvascular endothelial cells were exposed to different arctigenin doses to study their viability, proliferation, protein expression, migration, and tube formation compared with vehicle-treated controls. In addition, arctigenin action on vascular sprouting was analyzed in an aortic ring assay. Furthermore, we studied direct arctigenin effects on CT26.WT colon carcinoma cells. Spheroids of these tumor cells were transplanted into the dorsal skinfold chamber of arctigenin-treated and vehicle-treated BALB/c mice for the in-vivo analysis of tumor vascularization and growth by intravital fluorescence microscopy, histology, and immunohistochemistry. We found that noncytotoxic doses of arctigenin dose dependently reduced the proliferation of human dermal microvascular endothelial cells without affecting their migratory and tube-forming capacity. Arctigenin treatment also resulted in a decreased cellular expression of phosphorylated serine/threonine protein kinase AKT, vascular endothelial growth factor receptor 2, and proliferating cell nuclear antigen and inhibited vascular sprouting from aortic rings. In addition, proliferation, but not secretion of vascular endothelial growth factor, was decreased in arctigenin-treated tumor cells. Finally, arctigenin suppressed the vascularization and growth of engrafting CT26.WT tumors in the dorsal skinfold chamber model. Taken together, these results show for the first time an antiangiogenic action of arctigenin, which may contribute considerably toward its antitumor activity. PMID:23744558

  17. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase.

    Science.gov (United States)

    Pala, Daniele; Rivara, Silvia; Mor, Marco; Milazzo, Ferdinando Maria; Roscilli, Giuseppe; Pavoni, Emiliano; Giannini, Giuseppe

    2016-06-01

    Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (IC50 ≈ 3 nM) and showed, at higher concentrations, a Hill coefficient consistent with the engagement of two molecules of inhibitor. A homology model of human heparanase GS3 construct was built and used for docking experiments with inhibitor fragments. The model has high structural similarity with the recently reported crystal structure of human heparanase. Different interaction schemes are proposed, which support the hypothesis of a complex binding mechanism involving the recruitment of one or multiple roneparstat chains, depending on its concentration. In particular, docking solutions were obtained in which (i) a single roneparstat molecule interacts with both heparin-binding domains (HBDs) of heparanase or (ii) two fragments of roneparstat interact with either HBD-1 or HBD-2, consistent with the possibility of different inhibitor:enzyme binding stoichiometries. This study provides unique insights into the mode of action of roneparstat as well as clues of its interaction with heparanase at a molecular level, which could be exploited to design novel potential inhibitor molecules. PMID:26762172

  18. New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies.

    Science.gov (United States)

    Liu, Yao; Rodrigues, João P G L M; Bonvin, Alexandre M J J; Zaal, Esther A; Berkers, Celia R; Heger, Michal; Gawarecka, Katarzyna; Swiezewska, Ewa; Breukink, Eefjan; Egmond, Maarten R

    2016-07-15

    Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide. PMID:27226570

  19. Mechanisms of neuroblastoma cell growth inhibition by CARP-1 functional mimetics.

    Directory of Open Access Journals (Sweden)

    Magesh Muthu

    Full Text Available Neuroblastomas (NBs are a clinically heterogeneous group of extra cranial pediatric tumors. Patients with high-risk, metastatic NBs have a long-term survival rate of below 40%, and are often resistant to current therapeutic modalities. Due to toxic side effects associated with radiation and chemotherapies, development of new agents is warranted to overcome resistance and effectively treat this disease in clinic. CARP-1 functional mimetics (CFMs are an emerging class of small molecule compounds that inhibit growth of diverse cancer cell types. Here we investigated NB inhibitory potential of CFMs and the molecular mechanisms involved. CFM-1, -4, and -5 inhibited NB cell growth, in vitro, independent of their p53 and MYCN status. CFM-4 and -5 induced apoptosis in NB cells in part by activating pro-apoptotic stress-activated kinases (SAPKs p38 and JNK, stimulating CARP-1 expression and cleavage of PARP1, while promoting loss of the oncogenes C and N-myc as well as mitotic cyclin B1. Treatments of NB cells with CFM-4 or -5 also resulted in loss of Inhibitory κB (IκB α and β proteins. Micro-RNA profiling revealed upregulation of XIAP-targeting miR513a-3p in CFM-4-treated NB, mesothelioma, and breast cancer cells. Moreover, exposure of NB and breast cancer cells to CFM-4 or -5 resulted in diminished expression of anti-apoptotic XIAP1, cIAP1, and Survivin proteins. Expression of anti-miR513a-5p or miR513a-5p mimic, however, interfered with or enhanced, respectively, the breast cancer cell growth inhibition by CFM-4. CFMs also impacted biological properties of the NB cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated membranes. Our studies indicate anti-NB properties of CFM-4 and 5, and suggest that these CFMs and/or their future analogs have potential as anti-NB agents.

  20. Structure and Mechanism of the S Component of a Bacterial ECF Transporter

    Energy Technology Data Exchange (ETDEWEB)

    P Zhang; J Wang; Y Shi

    2011-12-31

    The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-{angstrom} resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.

  1. Comparative genomics analysis of the companion mechanisms of Bacillus thuringiensis Bc601 and Bacillus endophyticus Hbe603 in bacterial consortium.

    Science.gov (United States)

    Jia, Nan; Ding, Ming-Zhu; Gao, Feng; Yuan, Ying-Jin

    2016-01-01

    Bacillus thuringiensis and Bacillus endophyticus both act as the companion bacteria, which cooperate with Ketogulonigenium vulgare in vitamin C two-step fermentation. Two Bacillus species have different morphologies, swarming motility and 2-keto-L-gulonic acid productivities when they co-culture with K. vulgare. Here, we report the complete genome sequencing of B. thuringiensis Bc601 and eight plasmids of B. endophyticus Hbe603, and carry out the comparative genomics analysis. Consequently, B. thuringiensis Bc601, with greater ability of response to the external environment, has been found more two-component system, sporulation coat and peptidoglycan biosynthesis related proteins than B. endophyticus Hbe603, and B. endophyticus Hbe603, with greater ability of nutrients biosynthesis, has been found more alpha-galactosidase, propanoate, glutathione and inositol phosphate metabolism, and amino acid degradation related proteins than B. thuringiensis Bc601. Different ability of swarming motility, response to the external environment and nutrients biosynthesis may reflect different companion mechanisms of two Bacillus species. Comparative genomic analysis of B. endophyticus and B. thuringiensis enables us to further understand the cooperative mechanism with K. vulgare, and facilitate the optimization of bacterial consortium. PMID:27353048

  2. Micro-robot design based on swimming mechanism of bacterial flagella

    Institute of Scientific and Technical Information of China (English)

    HANG Lu-bin; WU Jun; CUI Jun-wen

    2009-01-01

    Nanomachines are controllable machines at the nano meter or molecular scale that are composed of nano-scale components. They have their own mechanochemistry, dynamics, workspace, and usability and are composed of natures building blocks: namely proteins, DNA, and other compounds. Some bacteria (i. e. Escherichia coli) swim by rotating helical flagella. The structure and motion character of the flagellum are introduced. Through the study, a micro-robot was designed and its mechanical structure was explained in this paper. In the future, the bionic micro-robot is expected tobe built, which can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery, highly localized drug delivery, and screening for diseases that are in their very early stages. It is important to medicine and could be applied in other areas, including space exploration, electronics and military.

  3. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    Science.gov (United States)

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study. PMID:26699928

  4. Inhibition of human cAMP-phosphodiesterase as a mechanism of the spasmolytic effect of Matricaria recutita L.

    Science.gov (United States)

    Maschi, Omar; Cero, Esther Dal; Galli, Germana V; Caruso, Donatella; Bosisio, Enrica; Dell'Agli, Mario

    2008-07-01

    Mechanisms underlying the spasmolytic activity of chamomile still remain unclear. Inhibition of cAMP- and cGMP-phosphodiesterases (PDE) is one of the mechanisms operated by spasmolytic drugs. In this study, the effect of chamomile on PDE was investigated. Human platelet cAMP-PDE and recombinant PDE5A1 were assayed in the presence of infusions prepared from sifted flowers and capitula. LC-ESI-MS/MS analysis showed different compositions in infusions made with sifted flowers and capitula. Chamomile inhibited cAMP-PDE activity (IC50 = 17.9-40.5 microg/mL), while cGMP-PDE5 was less affected (-15% at 50 microg/mL). Among the individual compounds tested, only flavonoids showed an inhibitory effect (IC50 = 1.3-14.9 microM), contributing to around 39% of the infusion inhibition; other compounds responsible for cAMP-PDE inhibition still remain unknown. Although experimental evidence supporting the use of chamomile for gastrointestinal minor spasms dates back to the fifties, cAMP-PDE inhibition as a likely mechanism underlying the spasmolytic activity is reported for the first time. PMID:18553893

  5. Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing.

    Science.gov (United States)

    Jee, Justin; Rasouly, Aviram; Shamovsky, Ilya; Akivis, Yonatan; Steinman, Susan R; Mishra, Bud; Nudler, Evgeny

    2016-06-30

    In 1943, Luria and Delbrück used a phage-resistance assay to establish spontaneous mutation as a driving force of microbial diversity. Mutation rates are still studied using such assays, but these can only be used to examine the small minority of mutations conferring survival in a particular condition. Newer approaches, such as long-term evolution followed by whole-genome sequencing, may be skewed by mutational ‘hot’ or ‘cold’ spots. Both approaches are affected by numerous caveats. Here we devise a method, maximum-depth sequencing (MDS), to detect extremely rare variants in a population of cells through error-corrected, high-throughput sequencing. We directly measure locus-specific mutation rates in Escherichia coli and show that they vary across the genome by at least an order of magnitude. Our data suggest that certain types of nucleotide misincorporation occur 10(4)-fold more frequently than the basal rate of mutations, but are repaired in vivo. Our data also suggest specific mechanisms of antibiotic-induced mutagenesis, including downregulation of mismatch repair via oxidative stress, transcription–replication conflicts, and, in the case of fluoroquinolones, direct damage to DNA. PMID:27338792

  6. Mechanisms of fetal and neonatal renal impairment by pharmacologic inhibition of angiotensin.

    Science.gov (United States)

    Chevalier, Robert L

    2012-01-01

    The renin-angiotensin system is highly conserved through evolutionary history, and has multiple functions in addition to maintaining cardiovascular homeostasis: these include the regulation of renal cell survival and cell death, and development of the kidney. The importance of angiotensin (ANG) in normal kidney development was first recognized in infants with renal maldevelopment born to mothers treated with angiotensin converting enzyme (ACE) inhibitors or with ANG AT1 receptor blockers. The molecular role of ANG in renal development has been elucidated using gene targeting in mice, revealing major effects in branching morphogenesis, vasculogenesis, development of the papilla and renal concentrating mechanism. Although exposure of the fetus to ANG inhibitors is potentially harmful throughout pregnancy, effects are greater in late compared to early gestation. Significant differences between humans and rodents in placental transfer of ANG and timing of renal development contributed to initial delays in recognizing the teratogenic effects of ANG inhibitors. Although administration of ACE or AT1 receptor inhibitors can slow progression of renal disease in older children, ANG inhibition in the neonatal period can aggravate renal injury due to congenital urinary tract obstruction. Neonates are also far more sensitive than older children to the hypotensive actions these agents and doses must be markedly reduced to avoid precipitating oliguria. Understanding the complex interactions of the maturing renin-angiotensin system in the perinatal period is essential in the use of ANG or renin inhibitors in women during childbearing years or in neonates with cardiovascular or renal disease. PMID:22876894

  7. Will the Amaranthus tuberculatus Resistance Mechanism to PPO-Inhibiting Herbicides Evolve in Other Amaranthus Species?

    Directory of Open Access Journals (Sweden)

    Chance W. Riggins

    2012-01-01

    Full Text Available Resistance to herbicides that inhibit protoporphyrinogen oxidase (PPO has been slow to evolve and, to date, is confirmed for only four weed species. Two of these species are members of the genus Amaranthus L. Previous research has demonstrated that PPO-inhibitor resistance in A. tuberculatus (Moq. Sauer, the first weed to have evolved this type of resistance, involves a unique codon deletion in the PPX2 gene. Our hypothesis is that A. tuberculatus may have been predisposed to evolving this resistance mechanism due to the presence of a repetitive motif at the mutation site and that lack of this motif in other amaranth species is why PPO-inhibitor resistance has not become more common despite strong herbicide selection pressure. Here we investigate inter- and intraspecific variability of the PPX2 gene—specifically exon 9, which includes the mutation site—in ten amaranth species via sequencing and a PCR-RFLP assay. Few polymorphisms were observed in this region of the gene, and intraspecific variation was observed only in A. quitensis. However, sequencing revealed two distinct repeat patterns encompassing the mutation site. Most notably, A. palmeri S. Watson possesses the same repetitive motif found in A. tuberculatus. We thus predict that A. palmeri will evolve resistance to PPO inhibitors via the same PPX2 codon deletion that evolved in A. tuberculatus.

  8. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate.

    Science.gov (United States)

    Hu, Guiqing; Lin, Gang; Wang, Ming; Dick, Lawrence; Xu, Rui-Ming; Nathan, Carl; Li, Huilin

    2006-03-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 A resolution reveals a substrate-binding pocket with composite features of the distinct beta1, beta2 and beta5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the alpha-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapetides of the alpha-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-beta-(1-naphthyl)-L-alanine-L-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis. PMID:16468986

  9. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    Energy Technology Data Exchange (ETDEWEB)

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  10. Classification and possible mechanisms of action of some drugs that inhibit platelet aggregation

    International Nuclear Information System (INIS)

    Aggregating agents usually activate the 'basic platelet reaction' which induces the functions of shape change, aggregation, dense granule secretion and α-granule secretion in platelets. The process is subdivided into induction, transmission and execution. During induction the agents interact with membrane receptors that are specific for each indicidual agent. The subsequent transmission is identical for all inducers and is believed to make Ca2+ available in the cytosol which may trigger ATP-dependent processes, perhaps contractile mechanisms. It is hypothesized that the degree of the propagation of the basic platelet reaction is proportional to the concentration of cytocolic Ca2+ and that this concentration is proportional to the strength of the induction phase. At an early stage in this propagation, the membrane is induced to alter its form and at a later stage it is made adhesive toward other platelets' membranes. At still later stages, the process brings the membrane into contact with dense granules and α-granules. The execution of the measurable platelet functions can occur at these stages, but only when certain conditions are fulfilled. The dense granule secretion process is important, since the platelet aggregating agents ADP and cyclic endoperoxides are made available and increase the overall stimulus of the basic platelet reaction (positive feedback). Drugs and substances that inhibit aggregation can be subdivided into extrinsic and intrisic inhibitors. (author)

  11. Multiple Molecular and Cellular Mechanisms of Action of Lycopene in Cancer Inhibition

    Directory of Open Access Journals (Sweden)

    Cristina Trejo-Solís

    2013-01-01

    Full Text Available Epidemiological studies suggest that including fruits, vegetables, and whole grains in regular dietary intake might prevent and reverse cellular carcinogenesis, reducing the incidence of primary tumours. Bioactive components present in food can simultaneously modulate more than one carcinogenic process, including cancer metabolism, hormonal balance, transcriptional activity, cell-cycle control, apoptosis, inflammation, angiogenesis and metastasis. Some studies have shown an inverse correlation between a diet rich in fruits, vegetables, and carotenoids and a low incidence of different types of cancer. Lycopene, the predominant carotenoid found in tomatoes, exhibits a high antioxidant capacity and has been shown to prevent cancer, as evidenced by clinical trials and studies in cell culture and animal models. In vitro studies have shown that lycopene treatment can selectively arrest cell growth and induce apoptosis in cancer cells without affecting normal cells. In vivo studies have revealed that lycopene treatment inhibits tumour growth in the liver, lung, prostate, breast, and colon. Clinical studies have shown that lycopene protects against prostate cancer. One of the main challenges in cancer prevention is the integration of new molecular findings into clinical practice. Thus, the identification of molecular biomarkers associated with lycopene levels is essential for improving our understanding of the mechanisms underlying its antineoplastic activity.

  12. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    International Nuclear Information System (INIS)

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a 11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2 ) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2 A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.

  13. The HCV Non-Nucleoside Inhibitor Tegobuvir Utilizes a Novel Mechanism of Action to Inhibit NS5B Polymerase Function

    OpenAIRE

    Hebner, Christy M.; Han, Bin; Brendza, Katherine M.; Nash, Michelle; Sulfab, Maisoun; Tian, Yang; Hung, Magdeleine; Fung, Wanchi; Vivian, Randall W.; Trenkle, James; Taylor, James; Bjornson, Kyla; Bondy, Steven; Liu, Xiaohong; Link, John

    2012-01-01

    Tegobuvir (TGV) is a novel non-nucleoside inhibitor (NNI) of HCV RNA replication with demonstrated antiviral activity in patients with genotype 1 chronic HCV infection. The mechanism of action of TGV has not been clearly defined despite the identification of resistance mutations mapping to the NS5B polymerase region. TGV does not inhibit NS5B enzymatic activity in biochemical assays in vitro, suggesting a more complex antiviral mechanism with cellular components. Here, we demonstrate that TGV...

  14. Gamma radiation induced oxidative stress and apoptosis inhibiting properties of bacterial secondary metabolite RK-IP-006.G in J774A.1 murine cell line

    International Nuclear Information System (INIS)

    Redox imbalance due to radiation induced oxidation of vital bio-macromolecules activates inflammatory response cascade leading to cell death. In present study, bacterial secondary metabolite, RK-IP-006.G, was evaluated for its oxidative stress and apoptosis inhibiting activities in irradiated J774A.1 murine macrophage cell line. Radiation induced intracellular ROS generation and its inhibition upon RK-IP-006.G pretreatment was estimated using 2',7'dichlorodihydroflurescein diacetate (DCFDA). Modulation in mitochondrial membrane potential (MMP) in irradiated cells and its protection by RK-IP-006.G pretreatment was evaluated using Rhodamine-123. Modulation in protein expression in irradiated and RK-IP-006.G treated J774A.1 cells was assessed by SDS-PAGE. Compensatory effect of RK-IP-006.G treatment on TNF-α expression in irradiated cells was estimated using ELISA assay. APO-BrDU assay was performed to evaluate radiation-induced apoptosis in irradiated cells. Radiation-induced cell damage and protective ability of RK-IP-006.G was also evaluated using Differential Interference Contrast Microscopy. Results of the study indicated significant (p< 0.05) decrease in DCFDA fluorescence in irradiated cells that were pretreated (∼2h) with RK-IP-006.G (0.25 μg/ml) as compared to irradiated cells. Similarly, significant (p<0.05) decrease in MMP was observed in irradiated cells pretreated with RK-IP-006.G (0.25 μg/ml) as compared to only irradiated cells at 1 h time point. SDS-PAGE analysis clearly demonstrated up-regulation of some prominent proteins in irradiated cells pretreated with RK-IP-006.G at 2-4h after treatment as compared to irradiated control. Significant (p<0.05) down regulation in TNF-α expression was observed in irradiated cells that pretreated with RK-IP-006.G compared to irradiated controls. APO-BrDU assay revealed significant reduction in apoptosis in irradiated cells pretreated with RK-IP-006.G when compared to irradiated control. The findings

  15. Physical-chemical principles of corrosion inhibitors for metals and metallic alloys and the inhibition mechanisms

    International Nuclear Information System (INIS)

    The usage of corrosion inhibitors is one of the most important cheapest, easy and efficient methods for controlling the process of the metallic corrosion. This method relies on adding one or more chemical substance at certain concentration to the corroding mediums for retarding of the corrosion process of surfaces corrosion of the metals and alloys. The corrosion inhibitors are considered as a first line of defense against the corrosion process in the petroleum, chemical industrial plants and in the water treating stations. The inhibitor is a complicated subject and applied successfully only in special cases. For example some inhibitors may be effective for one metal or more. The optimum efficiency of each inhibitor can be achieved at certain conditions (such as concentration, temperature and ph). The effective inhibitor for a metal (in the special conditions) may be a corrosive media for another metal (or in other conditions). There are a lot of inhibitors used for preventing process of the corrosion but there is no classification of the inhibitors until now. Several attempts for the classification of inhibitors in accordance to their chemical nature (organic, inorganic, biological and green), to their properties (an oxidizer or inoxidizer) or to their application field (cleaning, or peeling). On the other hand, the incorrect utilization of inhibitors could lead to an increase in the corrosion rate and/or in the hydrogenous creep of the metals and alloys. The inhibition mechanism of the inorganic inhibitors depends on the forming of protective layers on metals surface which retard the corrosion process. organic inhibitors mechanism depends on the surfactant's group adsorption like N, S, COOH, NH2 SH on the metal surface forming micelle which act as physical barrier for protecting the surface against the corrosive media or forming a stable surface complexes. The efficiency of the inhibitors performance can be measured by extent of the adhesion of their molecules on

  16. Insights into the Antimicrobial Mechanism of Action of Human RNase6: Structural Determinants for Bacterial Cell Agglutination and Membrane Permeation.

    Science.gov (United States)

    Pulido, David; Arranz-Trullén, Javier; Prats-Ejarque, Guillem; Velázquez, Diego; Torrent, Marc; Moussaoui, Mohammed; Boix, Ester

    2016-01-01

    Human Ribonuclease 6 is a secreted protein belonging to the ribonuclease A (RNaseA) superfamily, a vertebrate specific family suggested to arise with an ancestral host defense role. Tissue distribution analysis revealed its expression in innate cell types, showing abundance in monocytes and neutrophils. Recent evidence of induction of the protein expression by bacterial infection suggested an antipathogen function in vivo. In our laboratory, the antimicrobial properties of the protein have been evaluated against Gram-negative and Gram-positive species and its mechanism of action was characterized using a membrane model. Interestingly, our results indicate that RNase6, as previously reported for RNase3, is able to specifically agglutinate Gram-negative bacteria as a main trait of its antimicrobial activity. Moreover, a side by side comparative analysis with the RN6(1-45) derived peptide highlights that the antimicrobial activity is mostly retained at the protein N-terminus. Further work by site directed mutagenesis and structural analysis has identified two residues involved in the protein antimicrobial action (Trp1 and Ile13) that are essential for the cell agglutination properties. This is the first structure-functional characterization of RNase6 antimicrobial properties, supporting its contribution to the infection focus clearance. PMID:27089320

  17. Mechanism-based inhibition of CYP3A4 and CYP2D6 by Indonesian medicinal plants.

    Science.gov (United States)

    Subehan; Usia, Tepy; Iwata, Hiroshi; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2006-05-24

    Thirty samples of Indonesian medicinal plants were tested for their mechanism-based inhibition on cytochrome P450 3A4 (CYP3A4) and CYP2D6 via erythromycin N-demethylation and dextromethorphan O-demethylation activities in human liver microsomes. From screening with 0 and 20min preincubation at 0.5mg/ml of methanol extracts, five plants (Cinnamomum burmani bark, Foeniculum vulgare seed, Strychnos ligustrina wood, Tinospora crispa stem, and Zingiber cassumunar rhizome) showed more than 30% increase of CYP3A4 inhibition, while three (Alpinia galanga rhizome, Melaleuca leucadendron leaf, and Piper nigrum fruit) showed more than 30% increase of CYP2D6 inhibition. In these eight plants, Foeniculum vulgare seed, Cinnamomum burmani bark, and Strychnos ligustrina wood showed time-dependent inhibition on CYP3A4 and Piper nigrum fruit and Melaleuca leucadendron leaf on CYP2D6. Among these, four plants other than Melaleuca leucadendron revealed NADPH-dependent inhibition. Thus, Foeniculum vulgare, Cinnamomum burmani, and Strychnos ligustrina should contain mechanism-based inhibitors on CYP3A4 and Piper nigrum contain that on CYP2D6. PMID:16414224

  18. Simulations of Cellulose Translocation in the Bacterial Cellulose Synthase Suggest a Regulatory Mechanism for the Dimeric Structure of Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; Zimmer, Jochen; Beckham, Gregg T.

    2016-05-01

    The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations to the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs

  19. Mechanisms of inhibition of DNA replication by ultraviolet light in normal human and xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher cytotoxic fluences inhibited DNA synthesis in operating replicons. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences, indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation despite their ability to remove pyrimidine dimers. The analysis suggested that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery. (author)

  20. Contribution of opioid and metabotropic glutamate receptor mechanisms to inhibition of bladder overactivity by tibial nerve stimulation.

    Science.gov (United States)

    Matsuta, Yosuke; Mally, Abhijith D; Zhang, Fan; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2013-07-15

    The contribution of metabotropic glutamate receptors (mGluR) and opioid receptors to inhibition of bladder overactivity by tibial nerve stimulation (TNS) was investigated in cats under α-chloralose anesthesia using LY341495 (a group II mGluR antagonist) and naloxone (an opioid receptor antagonist). Slow infusion cystometry was used to measure the volume threshold (i.e., bladder capacity) for inducing a large bladder contraction. After measuring the bladder capacity during saline infusion, 0.25% acetic acid (AA) was infused to irritate the bladder, activate the nociceptive C-fiber bladder afferents, and induce bladder overactivity. AA significantly (P < 0.0001) reduced bladder capacity to 26.6 ± 4.7% of saline control capacity. TNS (5 Hz, 0.2 ms) at 2 and 4 times the threshold (T) intensity for inducing an observable toe movement significantly increased bladder capacity to 62.2 ± 8.3% at 2T (P < 0.01) and 80.8 ± 9.2% at 4T (P = 0.0001) of saline control capacity. LY341495 (0.1-5 mg/kg iv) did not change bladder overactivity, but completely suppressed the inhibition induced by TNS at a low stimulus intensity (2T) and partially suppressed the inhibition at high intensity (4T). Following administration of LY341495, naloxone (0.01 mg/kg iv) completely eliminated the high-intensity TNS-induced inhibition. However, without LY341495 treatment a 10 times higher dose (0.1 mg/kg) of naloxone was required to completely block TNS inhibition. These results indicate that interactions between group II mGluR and opioid receptor mechanisms contribute to TNS inhibition of AA-induced bladder overactivity. Understanding neurotransmitter mechanisms underlying TNS inhibition of bladder overactivity is important for the development of new treatments for bladder disorders. PMID:23576608

  1. CD44 Antibody Inhibition of Macrophage Phagocytosis Targets Fcγ Receptor- and Complement Receptor 3-Dependent Mechanisms.

    Science.gov (United States)

    Amash, Alaa; Wang, Lin; Wang, Yawen; Bhakta, Varsha; Fairn, Gregory D; Hou, Ming; Peng, Jun; Sheffield, William P; Lazarus, Alan H

    2016-04-15

    Targeting CD44, a major leukocyte adhesion molecule, using specific Abs has been shown beneficial in several models of autoimmune and inflammatory diseases. The mechanisms contributing to the anti-inflammatory effects of CD44 Abs, however, remain poorly understood. Phagocytosis is a key component of immune system function and can play a pivotal role in autoimmune states where CD44 Abs have shown to be effective. In this study, we show that the well-known anti-inflammatory CD44 Ab IM7 can inhibit murine macrophage phagocytosis of RBCs. We assessed three selected macrophage phagocytic receptor systems: Fcγ receptors (FcγRs), complement receptor 3 (CR3), and dectin-1. Treatment of macrophages with IM7 resulted in significant inhibition of FcγR-mediated phagocytosis of IgG-opsonized RBCs. The inhibition of FcγR-mediated phagocytosis was at an early stage in the phagocytic process involving both inhibition of the binding of the target RBC to the macrophages and postbinding events. This CD44 Ab also inhibited CR3-mediated phagocytosis of C3bi-opsonized RBCs, but it did not affect the phagocytosis of zymosan particles, known to be mediated by the C-type lectin dectin-1. Other CD44 Abs known to have less broad anti-inflammatory activity, including KM114, KM81, and KM201, did not inhibit FcγR-mediated phagocytosis of RBCs. Taken together, these findings demonstrate selective inhibition of FcγR and CR3-mediated phagocytosis by IM7 and suggest that this broadly anti-inflammatory CD44 Ab inhibits these selected macrophage phagocytic pathways. The understanding of the immune-regulatory effects of CD44 Abs is important in the development and optimization of therapeutic strategies for the potential treatment of autoimmune conditions. PMID:26944929

  2. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    International Nuclear Information System (INIS)

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 μM Na2SeO3 (selenium) or with 7 μM α-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism

  3. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borek, C.; Ong, A.; Mason, H.; Donahue, L.; Biaglow, J.E.

    1986-03-01

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo(a)pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 ..mu..M Na/sup 2/SeO/sup 3/ (selenium) or with 7 ..mu..M ..cap alpha..-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism.

  4. Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces.

    Science.gov (United States)

    Gopal, Judy; Chun, Sechul; Doble, Mukesh

    2016-08-01

    Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces. PMID:27412653

  5. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes

    DEFF Research Database (Denmark)

    Gual, Philippe; Gonzalez, Teresa; Grémeaux, Thierry;

    2003-01-01

    In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1....... Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation....... In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces...

  6. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    Energy Technology Data Exchange (ETDEWEB)

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  7. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2014-09-01

    Full Text Available Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84 cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+-K(+ ATPases and Na(+-K(+-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+ channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+-activated basolateral K(+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  8. Biosorption behavior and mechanism of lead (II) from aqueous solution by aerobic granules (AG) and bacterial alginate (BA)

    Science.gov (United States)

    Wang, Lin; Li, Yu

    2012-12-01

    Lead (Pb) and its compounds are common pollutants in industrial wastewaters. To develop appropriate Pb2+ treatment technologies, aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions. The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption. In this paper, the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH, contact time, and initial Pb2+ concentration. The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150 mg L-1). The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass). When the initial pH was 5, the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1). During the process of Pb2+ biosorption, K+, Ca2+, and Mg2+ were released. The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA. This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG. At the same optimal pH, AG cultivated with different carbon source has different Pb2+ biosorption capacity. The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.

  9. Biosorption Behavior and Mechanism of Lead (Ⅱ) from Aqueous Solution by Aerobic Granules (AG) and Bacterial Alginate (BA)

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LI Yu

    2012-01-01

    Lead (Pb) and its compounds are common pollutants in industrial wastewaters.To develop appropriate Pb2+ treatment technologies,aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions.The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption.In this paper,the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH,contact time,and initial Pb2+ concentration.The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150mg L-1).The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass).When the initial pH was 5,the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1).During the process of Pb2+ biosorption,K+,Ca2+,and Mg2+ were released.The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA.This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG.At the same optimal pH,AG cultivated with different carbon source has different Pb2+ biosorption capacity.The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.

  10. Structural and Molecular Mechanism of CdpR Involved in Quorum-Sensing and Bacterial Virulence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Jingru Zhao

    2016-04-01

    Full Text Available Although quorum-sensing (QS systems are important regulators of virulence gene expression in the opportunistic human pathogen Pseudomonas aeruginosa, their detailed regulatory mechanisms have not been fully characterized. Here, we show that deletion of PA2588 resulted in increased production of pyocyanin and biofilm, as well as enhanced pathogenicity in a mouse model. To gain insights into the function of PA2588, we performed a ChIP-seq assay and identified 28 targets of PA2588, including the intergenic region between PA2588 and pqsH, which encodes the key synthase of Pseudomonas quinolone signal (PQS. Though the C-terminal domain was similar to DNA-binding regions of other AraC family members, structural studies revealed that PA2588 has a novel fold at the N-terminal region (NTR, and its C-terminal HTH (helix-turn-helix domain is also unique in DNA recognition. We also demonstrated that the adaptor protein ClpS, an essential regulator of ATP-dependent protease ClpAP, directly interacted with PA2588 before delivering CdpR to ClpAP for degradation. We named PA2588 as CdpR (ClpAP-degradation and pathogenicity Regulator. Moreover, deletion of clpP or clpS/clpA promotes bacterial survival in a mouse model of acute pneumonia infection. Taken together, this study uncovered that CdpR is an important QS regulator, which can interact with the ClpAS-P system to regulate the expression of virulence factors and pathogenicity.

  11. Study on inhibition mechanism of tea catechins on beta-ray-induced lipid peroxidation by examination shapes of liposome

    International Nuclear Information System (INIS)

    Previous studies have indicated that the inhibiting effect decreased with increasing of the concentration of (-)-epigallocatechin gallate (EGCg), which is one of tea catechins, above 5 x 10-5 M, and interaction of EGCg with lipid membrane would induce the decrease of inhibiting effect. In this present study, to elucidate the mechanism of decrease of the inhibiting effect, shape changes of lipid membrane by four kinds of tea catechins (EGCg), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), (-)-epicatechin (EC)) were observed by absorptiometer and transmission electron microscope. These results suggested that EGCg induced aggregation of liposomes and shapes change of the membrane. In addition, the influence of hydrogen peroxide (H2O2) induced by autoxidation of catechin was measured by electron spin resonance to elucidate influence of autoxidation of EGCg on the decrease of inhibiting effect. This result suggested that the decrease of the inhibiting effect didn't be caused by the H2O2, but induced by shapes change of the lipid membrane due to EGCg. (author)

  12. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    Science.gov (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  13. A new mechanism of invader success: Exotic plant inhibits natural vegetation restoration by changing soil microbe community

    Institute of Scientific and Technical Information of China (English)

    YU Xingjun; YU Dan; LU Zhijun; MA Keping

    2005-01-01

    Since the 1950s of the last century, the exotic plant, Eupatorium adenophorum, has spread rapidly across southwest China, damaging native ecosystems and causing great economic losses. We examined the pH, N, P, K, and organic matter concentrations, and the bacterial community character (by Biolog EcoPlateTM) in soils from sites heavily and lightly invaded by this exotic species. Also, soil from the lightly invaded site was treated with a water extract of E. adenophorum roots to examine the effect of the plant on soil properties. We grew three plant species, one native and two exotic, in pot experiment using soil from heavily invaded site to examine the effects of the soil on these plants growth. The soil analysis demonstrated that the pH, organic matter, total N, total P and total K in soils from the heavily invaded site were only slightly different from those of the lightly invaded site, but concentrations of NH4+, NO3? and available P and K in the heavily invaded site were greater than those in the lightly invaded site. The catabolic activity of soil bacterial community in the heavily invaded site was different from that in the lightly invaded site. The catabolic activity of bacterial community in soils treated by the water extract of E. adenophorum roots changed and became similar to that in soils from the heavily invaded site. The pot experiment showed that the exotic plants growth in heavily invaded soil were not different from in lightly invaded soil; however, the native plant biomass decreased dramatically when grown in soil from the heavily invaded site as compared to soil from the lightly invaded site; and the same phenomenon was found when any potential allelopathic effects by E. adenophorum were eliminated by added activated carbon to those soils. Difference in soil nutrient availability and allelopathy could not explain this phenomenon of the native plant in the soils from the heavily and lightly invaded sites. Changes observed in the soil bacterial

  14. Mechanism of Inhibition of Aliphatic Epoxide Carboxylation by the Coenzyme M Analog 2-Bromoethanesulfonate*

    OpenAIRE

    Boyd, Jeffrey M.; Clark, Daniel D.; Kofoed, Melissa A.; Ensign, Scott A.

    2010-01-01

    The bacterial metabolism of epoxypropane formed from propylene oxidation uses the atypical cofactor coenzyme M (CoM, 2-mercaptoethanesulfonate) as the nucleophile for epoxide ring opening and as a carrier of intermediates that undergo dehydrogenation, reductive cleavage, and carboxylation to form acetoacetate in a three-step metabolic pathway. 2-Ketopropyl-CoM carboxylase/oxidoreductase (2-KPCC), the terminal enzyme of this pathway, is the only known member of the disulfide oxidoreductase fam...

  15. Inhibition of DNA restrictive endonucleases by aqueous nanoparticle suspension of methanophosphonate fullerene derivatives and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Aqueous nanoparticle suspension of fullerene and its derivatives are currently attracting much attention. To determine the effects of aqueous nanoparticle suspension of a mono-methanophosphonate fullerene and bis-methanophosphonate fullerene (denoted as n-MMPF and n-BMPF, respectively) on the activities of DNA restrictive endonucleases, plasmid pEGFP-N1 was cleaved at a single but differently restrictive site by EcoR I, BamH I, and isozymes Cfr9 I and Xma I, respectively. Both n-MMPF and n-BMPF inhibited the activity of EcoR I, while n-BMPF exhibited stronger inhibition than n-MMPF. Addition of n-BMPF into reaction mixtures inhibited the activities of all the four enzymes, and IC50 values for EcoR I, BamH I, Cfr9 I and Xma I were 4.3, >30, 11.7 and 8.3 μmol/L, respectively. When EcoR I was completely inhibited by n-BMPF, addition of excess amounts of pEGFP-N1 could not produce the product linear plasmid; however, increase of EcoR I amounts antagonized EcoR I inhibition of n-BMPF. Two scavengers of reactive oxygen species (ROS), mannitol and sodium azide at the concentrations of 2-10 mmol/L, did not reverse inhibition of n-BMPF, implying that this inhibition probably is not correlated to ROS. These results suggested that aqueous nano-fullerenes might act as inhibitors of DNA restrictive endonucleases.

  16. Microsecond molecular dynamics simulations of the open state structure of a bacterial voltage-gated sodium channel reveal mechanisms of ion selectivity and conduction

    OpenAIRE

    Ulmschneider, Martin B.; Bagneris, Claire; McCusker, Emily C.; Ulmschneider, J.P.; Wallace, Bonnie A.

    2013-01-01

    Microsecond atomic detail equilibrium molecular dynamics simulations based on the open-state crystal structure (McCusker et al, 2012, Nature Comm) of a bacterial voltage-gated sodium channel (NavMs) have been employed to characterize the mechanisms underlying ion selectivity and conductance of the channel embedded in a lipid bilayer membrane. This approach captured the full plethora of conduction events, revealing a complex mixture of single and multi-ion phenomena, with decoupled rapid bi-di...

  17. Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis

    OpenAIRE

    Yu, Tao; Tao, Yonghui; Yang, Meiqiang; Chen, Peng; Gao, XiaoBo; Zhang, Yanbo; Zhang,Tao; Chen, Zi; Hou, Jian; Zhang, Yan; Ruan, Kangcheng; Wang, Hongyan; Hu, Ronggui

    2014-01-01

    Global change in protein turnover (protein degradome) constitutes a central part of cellular responses to intrinsic or extrinsic stimuli. However, profiling protein degradome remains technically challenging. Recently, inhibition of the proteasome, e.g., by using bortezomib (BTZ), has emerged as a major chemotherapeutic strategy for treating multiple myeloma and other human malignancies, but systematic understanding of the mechanisms for BTZ drug action and tumor drug resistance is yet to be a...

  18. Mechanism of Concerted Inhibition of α2β2-type Hetero-oligomeric Aspartate Kinase from Corynebacterium glutamicum*

    OpenAIRE

    Yoshida, Ayako; Tomita, Takeo; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2010-01-01

    Aspartate kinase (AK) is the first and committed enzyme of the biosynthetic pathway producing aspartate family amino acids, lysine, threonine, and methionine. AK from Corynebacterium glutamicum (CgAK), a bacterium used for industrial fermentation of amino acids, including glutamate and lysine, is inhibited by lysine and threonine in a concerted manner. To elucidate the mechanism of this unique regulation in CgAK, we determined the crystal structures in several forms: an inhibitory form comple...

  19. Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass

    OpenAIRE

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L. M.; Jarvis, Eric E.; Nagle, Nick J.; Chen, Shulin; Frear, Craig S.

    2015-01-01

    Background Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a ran...

  20. Mechanisms of the Macrolide-Induced Inhibition of Superoxide Generation by Neutrophils.

    Science.gov (United States)

    Nozoe, Kohji; Aida, Yoshitomi; Fukuda, Takao; Sanui, Terukazu; Nishimura, Fusanori

    2016-06-01

    The effect of macrolides on the superoxide (O2 (-)) production by neutrophils was studied. Resting neutrophils become primed by lipopolysaccharide (LPS) or N-formyl-methionyl-leucyl-phenylalanine (fMLP), and primed neutrophils generate O2 (-) in response to fMLP or adhesion, respectively. Both LPS-primed fMLP-stimulated O2 (-) generation by macrolide-treated neutrophils and adhesion-stimulated O2 (-) generation by macrolide-treated fMLP-primed neutrophils were inhibited. Macrolide inhibition of O2 (-) generation was dependent on serum or pH. Serum could be substituted by NaHCO3. The intensity of inhibition was azithromycin = roxithromycin > clarithromycin > erythromycin, in that order. Non-antimicrobial derivatives of erythromycin, that is, EM703 and EM900, inhibited O2 (-) generation at pH 7.4. NH4Cl abolished the activity of azithromycin (AZ) only when added to neutrophils with AZ but not after incubation with AZ, suggesting that NH4Cl prevented the influx of AZ. AZ did not affect the expression of alkaline phosphatase, CD11b, and cytochrome b558 in both resting and LPS-primed neutrophils. These results suggested that macrolides did not affect granule mobilization but inhibited O2 (-) generation selectively. PMID:26983705

  1. Research on the inhibition mechanism of tetraphenylporphyrin on AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Highlights: ► Environment-friendly tetraphenylporphyrin is synthesized in the lab. ► The tetraphenylporphyrin can efficiently inhibit AZ91D corrosion. ► The inhibitor chelates with Mg ions to form a film retarding Mg dissolution. - Abstract: 5,10,15,20-Tetraphenylporphyrin (TPP) is synthesized and its inhibition effect on AZ91D magnesium alloy in 0.05 wt.% NaCl solution is studied. Electrochemical measurement and immersion corrosion test results indicate that the inhibition efficiency of TPP reaches 90%. SEM, FT-IR, ultraviolet–visible absorption spectrum (UV), fluorescent spectrometry and XPS analyses suggest that TPP molecules can chelate with Mg via their N atoms to form a TPP–Mg complex, which can precipitate as a film on AZ91D alloy. The precipitated TPP–Mg reduces the porosity of the original Mg(OH)2 surface film and retards the dissolution of the Mg alloy.

  2. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom

    Science.gov (United States)

    Lee, Seok-Yong; MacKinnon, Roderick

    2004-07-01

    Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by partitioning into the lipid membrane. Lipid membrane partitioning serves two purposes: to localize the toxin in the membrane where the voltage sensor resides and to exploit the free energy of partitioning to achieve apparent high-affinity inhibition. VSTX1, small hydrophobic poisons and anaesthetic molecules reveal a common theme of voltage sensor inhibition through lipid membrane access. The apparent requirement for such access is consistent with the recent proposal that the sensor in voltage-dependent K+ channels is located at the membrane-protein interface.

  3. Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity.

    Science.gov (United States)

    Kadow, Brian T; Lyon, Timothy D; Zhang, Zhaocun; Lamm, Vladimir; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-07-01

    This study investigated the role of the hypogastric nerve and β-adrenergic mechanisms in the inhibition of nociceptive and non-nociceptive reflex bladder activity induced by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats, non-nociceptive reflex bladder activity was induced by slowly infusing saline into the bladder, whereas nociceptive reflex bladder activity was induced by replacing saline with 0.25% acetic acid (AA) to irritate the bladder. PNS was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. During saline infusion, PNS at 2T and 4T significantly (P < 0.01) increased bladder capacity to 184.7 ± 12.6% and 214.5 ± 10.4% of the control capacity. Propranolol (3 mg/kg iv) had no effect on PNS inhibition, but 3-[(2-methyl-4-thiazolyl)ethynyl]pyridine (MTEP; 1-3 mg/kg iv) significantly (P < 0.05) reduced the inhibition. During AA irritation, the control bladder capacity was significantly (P < 0.05) reduced to ∼22% of the saline control capacity. PNS at 2T and 4T significantly (P < 0.01) increased bladder capacity to 406.8 ± 47% and 415.8 ± 46% of the AA control capacity. Propranolol significantly (P < 0.05) reduced the bladder capacity to 276.3% ± 53.2% (at 2T PNS) and 266.5 ± 72.4% (at 4T PNS) of the AA control capacity, whereas MTEP (a metabotropic glutamate 5 receptor antagonist) removed the residual PNS inhibition. Bilateral transection of the hypogastric nerves produced an effect similar to that produced by propranolol. This study indicates that hypogastric nerves and a β-adrenergic mechanism in the detrusor play an important role in PNS inhibition of nociceptive but not non-nociceptive reflex bladder activity. In addition to this peripheral mechanism, a central nervous system mechanism involving metabotropic glutamate 5 receptors also has a role in PNS inhibition. PMID:27170683

  4. Preparation and Mechanism of Cu-Decorated TiO2-ZrO2 Films Showing Accelerated Bacterial Inactivation.

    Science.gov (United States)

    Rtimi, Sami; Pulgarin, Cesar; Sanjines, Rosendo; Nadtochenko, Victor; Lavanchy, Jean-Claude; Kiwi, John

    2015-06-17

    Antibacterial robust, uniform TiO2-ZrO2 films on polyester (PES) under low intensity sunlight irradiation made up by equal amounts of TiO2 and ZrO2 exhibited a much higher bacterial inactivation kinetics compared to pure TiO2 or ZrO2. The TiO2-ZrO2 matrix was found to introduce a drastic increase in the Cu-dopant promoter enhancing bacterial inactivation compared to Cu sputtered in the same amount on PES. Furthermore, the bacterial inactivation was accelerated by a factor close to three, by Cu- on TiO2-ZrO2 at extremely low levels ∼0.01%. Evidence is presented by X-ray photoelectron spectroscopy for redox catalysis taking place during bacterial inactivation. The TiO2-ZrO2-Cu band gap is estimated and the film properties were fully characterized. Evidence is provided for the photogenerated radicals intervening in the bacterial inactivation. The photoinduced TiO2-ZrO2-Cu interfacial charge transfer is discussed in term of the electronic band positions of the binary oxide and the Cu TiO2 intragap state. PMID:26023896

  5. Structural basis for enzyme I inhibition by α-ketoglutarate

    OpenAIRE

    Venditti, Vincenzo; Ghirlando, Rodolfo; Clore, G. Marius

    2013-01-01

    Creating new bacterial strains in which carbon and nitrogen metabolism are uncoupled, is potentially very useful for optimizing yields of microbial produced chemicals from renewable carbon sources. The mechanisms, however, that balance carbon and nitrogen consumption in bacteria are poorly understood. Recently, α-ketoglutarate (αKG), the carbon substrate for ammonia assimilation, has been observed to inhibit Escherichia coli enzyme I (EI), the first component of the bacterial phosphotransfera...

  6. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins

    DEFF Research Database (Denmark)

    Hansen, J A; Lindberg, K; Hilton, D J; Nielsen, Jens Høiriis; Billestrup, N

    1999-01-01

    In this study we have investigated the role of suppressor of cytokine signaling (SOCS) proteins in GH receptor-mediated signaling. GH-induced transcription was inhibited by SOCS-1 and SOCS-3, while SOCS-2 and cytokine inducible SH2-containing protein (CIS) had no effect By using chimeric SOCS pro...

  7. Mechanisms, molecular and sero-epidemiology of antimicrobial resistance in bacterial respiratory pathogens isolated from Japanese children

    Directory of Open Access Journals (Sweden)

    Sunakawa Keisuke

    2007-08-01

    Full Text Available Abstract Background The clinical management of community-acquired respiratory tract infections (RTIs is complicated by the increasing worldwide prevalence of antibacterial resistance, in particular, β-lactam and macrolide resistance, among the most common causative bacterial pathogens. This study aimed to determine the mechanisms and molecular- and sero-epidemiology of antibacterial resistance among the key paediatric respiratory pathogens in Japan. Methods Isolates were collected at 18 centres in Japan during 2002 and 2003 from children with RTIs as part of the PROTEKT surveillance programme. A proportion of Haemophilus influenzae isolates was subjected to sequencing analysis of the ftsI gene; phylogenetic relatedness was assessed using multilocus sequence typing. Streptococcus pneumoniae isolates were screened for macrolide-resistance genotype by polymerase chain reaction and serotyped using the capsular swelling method. Susceptibility of isolates to selected antibacterials was performed using CLSI methodology. Results and Discussion Of the 557 H. influenzae isolates collected, 30 (5.4% were β-lactamase-positive [BL+], 115 (20.6% were BL-nonproducing ampicillin-resistant (BLNAR; MIC ≥ 4 mg/L and 79 (14.2% were BL-nonproducing ampicillin-intermediate (BLNAI; MIC 2 mg/L. Dabernat Group III penicillin binding protein 3 (PBP3 amino acid substitutions in the ftsI gene were closely correlated with BLNAR status but phylogenetic analysis indicated marked clonal diversity. PBP mutations were also found among BL+ and BL-nonproducing ampicillin-sensitive isolates. Of the antibacterials tested, azithromycin and telithromycin were the most active against H. influenzae (100% and 99.3% susceptibility, respectively. A large proportion (75.2% of the 468 S. pneumoniae isolates exhibited macrolide resistance (erythromycin MIC ≥ 1 mg/L; erm(B was the most common macrolide resistance genotype (58.8%, followed by mef(A (37.2%. The most common pneumococcal

  8. Mechanism of Excretion of a Bacterial Proteinase: Demonstration of Two Proteolytic Enzymes Produced by a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    SARNER, NITZA Z; BISSELL, MINA J; GIROLAMO, MARIO Di; GORINI, LUIGI

    1970-06-29

    A Sarcina strain (Coccus P) produces two proteolytic enzymes. One is found only extracellularly, is far more prevalent, and is actively excreted during exponential growth. It is the enzyme responsible for the known strong proteolytic activity of the cultures of this strain. A second protease is, however, produced which remains associated with the intact cells but is released by the protoplasts. The two enzymes appear unrelated in their derivation. Calcium ions play an essential role in preventing autodigestion of the excreted enzyme. Bacterial proteins are found outside the cell boundary as a consequence either of passive processes such as leakage or lysis or of active excretion. Under conditions in which leakage and lysis do not occur, as during exponential growth, the cell boundary is a barrier causing a complete separation of the bulk of the intracellular proteins from the one or very few extracellular proteins, with no trace of either type being detectable on the wrong side of the boundary. Since in bacteria there is no evidence of protein being produced other than internally, the separation into intraand extracellular proteins should occur after peptide chain formation. The question arises as to whether the structure of the cell boundary or that of the excreted proteins themselves determines this separation. Coccus P, a Sarcina closely related to Micrococcus lysodeikticus (3), produces an extracellular proteinase during the exponential phase of growth so that the process appears to be active excretion. The organism grows exponentially in a defined synthetic medium (12) to relatively high cell density (10{sup 9} cells/ml); therefore the mechanism of excretion can be studied over an extended period of time without the difficulties of changing growth rates. Coagulation of reconstituted skim milk provides a simple and sensitive assay for enzyme activity (I 1). The extracellular proteinase has also been purified and partially characterized (6-8). It has been shown

  9. Possible mechanism for the regulation of glucose on proliferation, inhibition and apoptosis of colon cancer cells induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To study the effect of glucose on sodium butyrateinduced proliferation inhibition and apoptosis in HT-29 cell line, and explored its possible mechanisms.METHODS: HT-29 cells were grown in RPMI-1640 medium supplemented with 10% fetal calf serum, and were allowed to adhere for 24 h, and then replaced with experimental medium. Cell survival rates were detected by MTT assay. Apoptosis was detected by TUNEL assay. Glucose transport protein 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) mRNA expression was detected by RT-PCR.RESULTS: Low concentration of glucose induced apoptosis and regulated proliferation in HT-29 cell line, and glucose can obviously inhibit the effect of proliferation inhibition and apoptosis induced by sodium butyrate. Glucose also down-regulated the expression of MCT1mRNA (0.28 ± 0.07 vs 0.19 ± 0.10, P < 0.05), and decreased the expression of GLUT1mRNA slightly (0.18 ± 0.04 vs 0.13 ± 0.03, P < 0.05).CONCLUSION: Glucose can regulate the effect of proliferation inhibition and apoptosis induced by sodium butyrate and this influence may be associated with the intracellular concentration of glucose and sodium butyrate.

  10. High glucose disrupts oligosaccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in diabetes mellitus.

    Science.gov (United States)

    Ilyas, Rebecca; Wallis, Russell; Soilleux, Elizabeth J; Townsend, Paul; Zehnder, Daniel; Tan, Bee K; Sim, Robert B; Lehnert, Hendrik; Randeva, Harpal S; Mitchell, Daniel A

    2011-01-01

    Diabetic complications include infection and cardiovascular disease. Within the immune system, host-pathogen and regulatory host-host interactions operate through binding of oligosaccharides by C-type lectin. A number of C-type lectins recognise oligosaccharides rich in mannose and fucose - sugars with similar structures to glucose. This raises the possibility that high glucose conditions in diabetes affect protein-oligosaccharide interactions via competitive inhibition. Mannose-binding lectin, soluble DC-SIGN and DC-SIGNR, and surfactant protein D, were tested for carbohydrate binding in the presence of glucose concentrations typical of diabetes, via surface plasmon resonance and affinity chromatography. Complement activation assays were performed in high glucose. DC-SIGN and DC-SIGNR expression in adipose tissues was examined via immunohistochemistry. High glucose inhibited C-type lectin binding to high-mannose glycoprotein and binding of DC-SIGN to fucosylated ligand (blood group B) was abrogated in high glucose. Complement activation via the lectin pathway was inhibited in high glucose and also in high trehalose - a nonreducing sugar with glucoside stereochemistry. DC-SIGN staining was seen on cells with DC morphology within omental and subcutaneous adipose tissues. We conclude that high glucose disrupts C-type lectin function, potentially illuminating new perspectives on susceptibility to infectious and inflammatory disease in diabetes. Mechanisms involve competitive inhibition of carbohydrate binding within sets of defined proteins, in contrast to broadly indiscriminate, irreversible glycation of proteins. PMID:20674073

  11. Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action.

    Science.gov (United States)

    Geoghegan, James C; Diedrich, Gundo; Lu, Xiaojun; Rosenthal, Kim; Sachsenmeier, Kris F; Wu, Herren; Dall'Acqua, William F; Damschroder, Melissa M

    2016-01-01

    CD73 (ecto-5'-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states. PMID:26854859

  12. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  13. Mechanism of concerted inhibition of alpha2beta2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum.

    Science.gov (United States)

    Yoshida, Ayako; Tomita, Takeo; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2010-08-27

    Aspartate kinase (AK) is the first and committed enzyme of the biosynthetic pathway producing aspartate family amino acids, lysine, threonine, and methionine. AK from Corynebacterium glutamicum (CgAK), a bacterium used for industrial fermentation of amino acids, including glutamate and lysine, is inhibited by lysine and threonine in a concerted manner. To elucidate the mechanism of this unique regulation in CgAK, we determined the crystal structures in several forms: an inhibitory form complexed with both lysine and threonine, an active form complexed with only threonine, and a feedback inhibition-resistant mutant (S301F) complexed with both lysine and threonine. CgAK has a characteristic alpha(2)beta(2)-type heterotetrameric structure made up of two alpha subunits and two beta subunits. Comparison of the crystal structures between inhibitory and active forms revealed that binding inhibitors causes a conformational change to a closed inhibitory form, and the interaction between the catalytic domain in the alpha subunit and beta subunit (regulatory subunit) is a key event for stabilizing the inhibitory form. This study shows not only the first crystal structures of alpha(2)beta(2)-type AK but also the mechanism of concerted inhibition in CgAK. PMID:20573952

  14. Cardiac Glycosides Inhibit LPS-induced Activation of Pro-inflammatory Cytokines in Whole Blood through an NF-kappa-B-dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Shah VO*

    2011-03-01

    Full Text Available Summary: The process of hemodialysis (HD produces a pro-inflammatory state that can lead to an increased risk for cardiovascular disease. In part, this is the result of activation of the pro-inflammatory transcription factor NF-B in response to uremia as well as in response to HD itself, which not only involves exposure of blood leukocytes to abnormal surfaces but also potentially to any bacterial contamination associated with HD. Previously, we used lipopolysaccharide (LPS to activate isolated peripheral blood mononuclear cells (PBMC, as a model of HD-induced stress, and demonstrated that specific natural products that are known to inhibit the activation of NF-B exhibited a broad anti-inflammatory activity. These natural products, however, were not effective when whole blood was used. In the present study, a natural product library (TimTec NPL480 was screened, using whole blood, for the abilities of these natural products to protect against LPS-induced expression and secretion of the pro-inflammatory cytokines TNF, IL-1 and IL-6. We report here that the cardiac glycosides strophanthidin, ouabain, proscillaridin A, digoxin, digitoxin and lanatoside C are effective natural products that limit the development of a pro-inflammatory state by preventing the activation of these pro-inflammatory signals. These active natural products also inhibited the stress-induced activation of NF-B in a reporter assay, suggesting that inhibition of NF-kappa-B is at least partly the mechanism by which these natural products protect whole blood leukocytes from activation by LPS. Industrial relevance: Media for hemodialysis is used millions of times annually for patients with end stage renal disease, each use representing a potential pro-inflammatory insult. It would be useful to have a drug that could be added to the media which would protect blood leukocytes from any pro-inflammatory activation that may accompany the dialysis procedure. A natural

  15. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  16. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12- neutrophil polarization.

    Directory of Open Access Journals (Sweden)

    Crystal J Neely

    Full Text Available Severe trauma renders patients susceptible to infection. In sepsis, defective bacterial clearance has been linked to specific deviations in the innate immune response. We hypothesized that innate immune modulations observed during sepsis also contribute to increased bacterial susceptibility after severe trauma. A well-established murine model of burn injury, used to replicate infection following trauma, showed that wound inoculation with P. aeruginosa quickly spreads systemically. The systemic IL-10/IL-12 axis was skewed after burn injury with infection as indicated by a significant elevation in serum IL-10 and polarization of neutrophils into an anti-inflammatory ("N2"; IL-10(+ IL-12(- phenotype. Infection with an attenuated P. aeruginosa strain (ΔCyaB was cleared better than the wildtype strain and was associated with an increased pro-inflammatory neutrophil ("N1"; IL-10(-IL-12(+ response in burn mice. This suggests that neutrophil polarization influences bacterial clearance after burn injury. Administration of a TLR5 agonist, flagellin, after burn injury restored the neutrophil response towards a N1 phenotype resulting in an increased clearance of wildtype P. aeruginosa after wound inoculation. This study details specific alterations in innate cell populations after burn injury that contribute to increased susceptibility to bacterial infection. In addition, for the first time, it identifies neutrophil polarization as a therapeutic target for the reversal of bacterial susceptibility after injury.

  17. Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition.

    Directory of Open Access Journals (Sweden)

    Véronique Calleja

    2009-01-01

    Full Text Available Protein kinase B (PKB/Akt belongs to the AGC superfamily of related serine/threonine protein kinases. It is a key regulator downstream of various growth factors and hormones and is involved in malignant transformation and chemo-resistance. Full-length PKB protein has not been crystallised, thus studying the molecular mechanisms that are involved in its regulation in relation to its structure have not been simple. Recently, the dynamics between the inactive and active conformer at the molecular level have been described. The maintenance of PKB's inactive state via the interaction of the PH and kinase domains prevents its activation loop to be phosphorylated by its upstream activator, phosphoinositide-dependent protein kinase-1 (PDK1. By using a multidisciplinary approach including molecular modelling, classical biochemical assays, and Förster resonance energy transfer (FRET/two-photon fluorescence lifetime imaging microscopy (FLIM, a detailed model depicting the interaction between the different domains of PKB in its inactive conformation was demonstrated. These findings in turn clarified the molecular mechanism of PKB inhibition by AKT inhibitor VIII (a specific allosteric inhibitor and illustrated at the molecular level its selectivity towards different PKB isoforms. Furthermore, these findings allude to the possible function of the C-terminus in sustaining the inactive conformer of PKB. This study presents essential insights into the quaternary structure of PKB in its inactive conformation. An understanding of PKB structure in relation to its function is critical for elucidating its mode of activation and discovering how to modulate its activity. The molecular mechanism of inhibition of PKB activation by the specific drug AKT inhibitor VIII has critical implications for determining the mechanism of inhibition of other allosteric inhibitors and for opening up opportunities for the design of new generations of modulator drugs.

  18. Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells.

    Science.gov (United States)

    Fang, Zishui; Jiang, Chengrui; Feng, Yi; Chen, Rixin; Lin, Xiaoying; Zhang, Zhiqiang; Han, Luhao; Chen, Xiaodan; Li, Hongyi; Guo, Yibin; Jiang, Weiying

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been revealed to be involved in the efficacy to anti-cancer therapy but the mechanism remains unclear. We aimed to investigate the anti-cancer mechanism of G6PD deficiency. In our study, dehydroepiandrosterone (DHEA) and shRNA technology were used for inhibiting the activity of G6PD of cervical cancer cells. Peak Force QNM Atomic Force Microscopy was used to assess the changes of topography and biomechanical properties of cells and detect the effects on living cells in a natural aqueous environment. Flow cytometry was used to detect the apoptosis and reactive oxygen species (ROS) generation. Scanning electron microscopy was used to observe cell morphology. Moreover, a laser scanning confocal microscope was used to observe the alterations in cytoskeleton to explore the involved mechanism. When G6PD was inhibited by DHEA or RNA interference, the abnormal Young's modulus and increased roughness of cell membrane were observed in HeLa cells, as well as the idioblasts. Simultaneously, G6PD deficiency resulted in decreased HeLa cells migration and proliferation ability but increased ROS generation inducing apoptosis. What's more, the inhibition of G6PD activity caused the disorganization of microfilaments and microtubules of cytoskeletons and cell shrinkage. Our results indicated the anti-cervix cancer mechanism of G6PD deficiency may be involved with the decreased cancer cells migration and proliferation ability as a result of abnormal reorganization of cell cytoskeleton and abnormal biomechanical properties caused by the increased ROS. Suppression of G6PD may be a promising strategy in developing novel therapeutic methods for cervical cancer. PMID:27217331

  19. Mechanism of cinnamic acid-induced trypsin inhibition: A multi-technique approach

    Science.gov (United States)

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol-1 and 50.70 J mol-1 K-1, respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues.

  20. Will the Amaranthus tuberculatus Resistance Mechanism to PPO-Inhibiting Herbicides Evolve in Other Amaranthus Species?

    OpenAIRE

    Patrick J Tranel; Riggins, Chance W.

    2012-01-01

    Resistance to herbicides that inhibit protoporphyrinogen oxidase (PPO) has been slow to evolve and, to date, is confirmed for only four weed species. Two of these species are members of the genus Amaranthus L. Previous research has demonstrated that PPO-inhibitor resistance in A. tuberculatus (Moq.) Sauer, the first weed to have evolved this type of resistance, involves a unique codon deletion in the PPX2 gene. Our hypothesis is that A. tuberculatus may have been predisposed to evolving this ...

  1. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    OpenAIRE

    Jorge Mansur Medina; Juliany Cola Fernandes Rodrigues; Moreira, Otacilio C.; Geórgia Atella; Wanderley de Souza; Hector Barrabin

    2015-01-01

    Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabi...

  2. Inhibition Mechanism of Pitting Corrosion of Nickel in Aqueous Medium by Some Macrocyclic Compounds

    OpenAIRE

    Fatma Mohamed Mahgoub; Ahmed Mohamed Hefnawy

    2012-01-01

    Anodic polarization of nickel was studied by potentiostatic technique in neutral media in presence of two macrocyclic ligands. Pit initiation was detected by measuring pitting potential, Ep and the charge transfer, Q during the anodic polarization. Initiation of pitting and Q were found to be dependent on the structure and concentrations of inhibitors. Under steady state conditions, the inhibition efficiency was in the order 1, 4, 8, 11 tetraazacyclotetradecane (

  3. Mechanisms of inhibition of HIV replication by nonnucleoside reverse transcriptase inhibitors

    OpenAIRE

    Sluis-Cremer, Nicolas; Tachedjian, Gilda

    2008-01-01

    The nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are a therapeutic class of compounds that are routinely used, in combination with other antiretroviral drugs, to treat HIV-1 infection. NNRTIs primarily block HIV-1 replication by preventing RT from completing reverse transcription of the viral single-stranded RNA genome into DNA. However, some NNRTIs, such as efavirenz, have been shown to inhibit the late stages of HIV-1 replication by interfering with HIV-1 Gag-Pol polyprotein...

  4. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite

    OpenAIRE

    Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.; Xu, Hockin H. K.

    2011-01-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size wer...

  5. Molecular Mechanism for Inhibition of G Protein-Coupled Receptor Kinase 2 by a Selective RNA Aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, Valerie M.; Lennarz, Sabine; Mayer, Günter; Tesmer, John J.G. (Bonn); (Michigan)

    2012-08-31

    Cardiovascular homeostasis is maintained in part by the rapid desensitization of activated heptahelical receptors that have been phosphorylated by G protein-coupled receptor kinase 2 (GRK2). However, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. We have determined crystallographic structures of GRK2 bound to an RNA aptamer that potently and selectively inhibits kinase activity. Key to the mechanism of inhibition is the positioning of an adenine nucleotide into the ATP-binding pocket and interactions with the basic {alpha}F-{alpha}G loop region of the GRK2 kinase domain. Constraints imposed on the RNA by the terminal stem of the aptamer also play a role. These results highlight how a high-affinity aptamer can be used to selectively trap a novel conformational state of a protein kinase.

  6. Inhibition mechanism exploration of investigational drug TAK-441 as inhibitor against Vismodegib-resistant Smoothened mutant.

    Science.gov (United States)

    Ishii, Tsuyoshi; Shimizu, Yuji; Nakashima, Kosuke; Kondo, Shigeru; Ogawa, Kazumasa; Sasaki, Satoshi; Matsui, Hideki

    2014-01-15

    Hedgehog signaling is a driving force in medulloblastoma and basal cell carcinoma (BCC), making it an attractive therapeutic target. Vismodegib recently received FDA approval for the treatment of inoperable BCC, but a drug-resistant Smoothened (Smo) mutant (D473H) was identified in a clinical study. TAK-441 is a pyrrolo[3,2-c]pyridine-4-one derivative that potently inhibits Hh signal transduction and is currently under investigation in clinical trials. We demonstrated that TAK-441 inhibits reporter activity in D473H-transfected cells with an IC50 of 79nM, while Vismodegib showed an IC50=7100nM. In order to investigate the mode of inhibition, we evaluated the Smo inhibitors with three different binding assays, such as [(3)H]-TAK-441 membrane binding assay, affinity selection-MS detection assay, and bodipy-cylopamine whole cell assay. In three different assays, Vismodegib and cyclopamine showed lower affinity for the D473H mutant in comparison with wild-type Smo. On the other hand, TAK-441 showed almost equal binding affinity for the D473H mutant compared with wild-type Smo in the binding assays, although TAK-441 binds to the same binding site as two other well-known inhibitors. These in vitro findings suggest that TAK-441 has the potential for clinical use in cancers that are dependent on Hedgehog signaling, including wild-type tumors and Vismodegib-resistant D473H mutants. PMID:24291104

  7. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    Science.gov (United States)

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases. PMID:25068824

  8. The mechanism of inhibition of endothelin-1-induced stimulation of DNA synthesis in rat articular chondrocytes.

    Science.gov (United States)

    Khatib, A M; Ribault, D; Quintero, M; Barbara, A; Fiet, J; Mitrovic, D R

    1997-09-19

    Endothelin-1 (ET-1) is a potent mitogen for rat articular chondrocytes (AC) in short term culture (24 h). Prolonged incubation (72 h) of AC with ET-1 resulted in inhibition of [3H]thymidine incorporation. This inhibition seemed to be mediated by prostaglandins (PGs) released in response to ET-1, since indomethacin (INDO) enhanced ET-1-induced [3H]thymidine incorporation. In agreement with this hypothesis, exogenous prostaglandins (PGE2, PGF2alpha and TxB2) blocked all basal, ET-1-induced and ET-1 induced-INDO-enhanced [3H]thymidine incorporation and ET-1 stimulated PGE2 release in a time and concentration-dependent manner. INDO also blocked cGMP production and 6-anilino-5,8-quinolinedione, a relatively specific inhibitor of cGMP formation, enhanced the stimulation and suppressed the inhibition of ET-1-induced DNA synthesis. In addition, 8-bromo-cGMP, an analogue of cGMP, blocked at all time periods studied, both basal and ET-1-induced incorporations of [3H]thymidine. Thus, PGs produced in response to ET-1 counteract the ET-1-induced stimulation of [3H]thymidine incorporation into rat AC by increasing cGMP production. PMID:9324043

  9. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    Directory of Open Access Journals (Sweden)

    Jorge Mansur Medina

    2015-02-01

    Full Text Available Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L., which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic, a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT, which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.

  10. Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism

    Institute of Scientific and Technical Information of China (English)

    Peter W. Baas; Andrew J. Matamoros

    2015-01-01

    Microtubules have been identiifed as a powerful target for augmenting regeneration of injured adult axons in the central nervous system. Drugs that stabilize microtubules have shown some promise, but there are concerns that abnormally stabilizing microtubules may have only limited beneifts for regeneration, while at the same time may be detrimental to the normal work that microtubules perform for the axon. Kinesin-5 (also called kif11 or Eg5), a molecular motor protein best known for its crucial role in mitosis, acts as a brake on microtubule movements by other motor proteins in the axon. Drugs that inhibit kinesin-5, originally developed to treat cancer, result in greater mobility of microtubules in the axon and an overall shift in the forces on the microtubule array. As a result, the axon grows faster, retracts less, and more readily enters environments that are inhibitory to axonal regeneration. Thus, drugs that inhibit kinesin-5 offer a novel microtubule-based means to boost axonal regeneration without the concerns that ac-company abnormal stabilization of the microtubule array. Even so, inhibiting kinesin-5 is not without its own caveats, such as potential problems with navigation of the regenerating axon to its target, as well as morphological effects on dendrites that could affect learning and memory if the drugs reach the brain.

  11. Mechanism of mercurial inhibition of sodium-coupled alanine uptake in liver plasma membrane vesicles from Raja erinacea

    International Nuclear Information System (INIS)

    In mammalian hepatocytes the L-alanine carrier contains a sulfhydryl group that is essential for its activity and is inhibited by mercurials. In hepatocytes of the evolutionarily primitive little skate (Raja erinacea), HgCl2 inhibits Na(+)-dependent alanine uptake and Na+/K(+)-ATPase and increase K+ permeability. To distinguish between direct effects of HgCl2 on the Na(+)-alanine cotransporter and indirect effects on membrane permeability, [3H]alanine transport was studied in plasma membrane vesicles. [3H]Alanine uptake was stimulated by an out-to-in Na+ but not K+ gradient and was saturable confirming the presence of Na(+)-alanine cotransport in liver plasma membranes from this species. Preincubation of the vesicles with HgCl2 for 5 min reduced initial rates of Na(+)-dependent but not Na(+)-independent alanine uptake in a dose-dependent manner (10-200 microM). In the presence of equal concentrations of NaCl or KCl inside and outside of the vesicles, 75 microM HgCl2 directly inhibited sodium-dependent alanine-[3H]alanine exchange, demonstrating that HgCl2 directly affected the alanine cotransporter. Inhibition of Na(+)-dependent alanine uptake by 30 microM HgCl2 was reversed by dithiothreitol (1 mM). HgCl2 (10-30 microM) also increased initial rates of 22Na uptake (at 5 sec), whereas 22Na uptake rates were decreased at HgCl2 concentrations greater than 50 microM. Higher concentrations of HgCl2 (100-200 microM) produced nonspecific effects on vesicle integrity. These studies indicate that HgCl2 inhibits Na(+)-dependent alanine uptake in skate hepatocytes by three different concentration-dependent mechanisms: direct interaction with the transporters, dissipation of the driving force (Na+ gradient), and loss of membrane integrity

  12. Bacterial Modulation of Plant Ethylene Levels.

    Science.gov (United States)

    Gamalero, Elisa; Glick, Bernard R

    2015-09-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  13. Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis.

    Science.gov (United States)

    Chen, Sheng-Chia; Huang, Chi-Hung; Lai, Shu-Jung; Yang, Chia Shin; Hsiao, Tzu-Hung; Lin, Ching-Heng; Fu, Pin-Kuei; Ko, Tzu-Ping; Chen, Yeh

    2016-01-01

    The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme. PMID:26980148

  14. Desacetyl nimbinene inhibits breast cancer growth and metastasis through reactive oxygen species mediated mechanisms.

    Science.gov (United States)

    Arumugam, Arunkumar; Subramani, Ramadevi; Nandy, Sushmita; Powell, Sara; Velazquez, Marissa; Orozco, Alexis; Galvez, Adriana; Lakshmanaswamy, Rajkumar

    2016-05-01

    Accumulation of reactive oxygen species (ROS) has been implicated in induction of apoptosis and regulation of key signaling molecules in cancer cells. Phytochemicals are potent source of anticancer drugs as wells as potential inducers of ROS. Neem (Azadirachta indica) is a medicinal plant used for the treatment of various diseases. The main objective of this study is to investigate the anticancer effect of desacetyl nimbinene (DAN; an active ingredient of neem) against breast cancer. Normal and breast cancer cell lines were used for the study. The effect of DAN on cell proliferation, apoptosis, ROS generation, migration, and invasion was analyzed. Antioxidant enzymes superoxide dismutase (SOD)1 and SOD2 were overexpressed to test the effect of DAN-induced ROS generation on breast cancer growth. Key survival and apoptotic protein markers were analyzed to validate the anticancer effect of DAN. Our data demonstrated that DAN inhibited the growth of breast cancer cells by inducing ROS generation. Further investigations revealed that DAN treatment lead to the loss of mitochondrial membrane potential resulting in mitochondria-dependent apoptotic cell death. Increased phosphorylation of c-Jun-N-terminal kinase (JNK) and reduced phosphorylation of p38 were also observed in response to DAN treatment. Inhibition of ROS production by overexpressing antioxidant enzymes SOD1 and SOD2 reduced the DAN-induced cytotoxicity. Additionally, DAN significantly inhibited migration and invasion of MDA-MB-231 breast cancer cells. Overall, our data suggest that DAN exerts its anticancer effect on breast cancer by induction of mitochondria-mediated apoptosis mediated by ROS accumulation. PMID:26637227

  15. Mechanisms of ALA-D inhibition by lead and of its restoration by zinc and dithiothreitol.

    OpenAIRE

    Sakai, T.; Yanagihara, S; Kunugi, Y.; Ushio, K

    1983-01-01

    To induce the inhibition of ALA-D (delta-aminolaevulinic acid dehydratase) activity by lead in vitro, it is necessary to preincubate the enzyme fraction with lead ions and the Hb fraction (factors) together. The combination of two of the three (ALA-D fraction, lead acetate, and Hb fraction) in the preincubation has only a small effect on the activity. Lead preincubated with ALA-D and Hb fractions does not alter the affinity of the enzyme for the substrate, suggesting that the substrate can bi...

  16. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4

    International Nuclear Information System (INIS)

    Accumulation of alcohol during fermentation is accompanied by a progressive decrease in the rate of sugar conversion to ethanol. In this study, the authors provided evidence that inhibition of fermentation by ethanol can be attributed to an indirect effect of ethanol on the enzymes of glycolysis involving the plasma membrane. Ethanol decreased the effectiveness of the plasma membrane as a semipermeable barrier, allowing leakage of essential cofactors and coenzymes. This leakage of cofactors and coenzymes, coupled with possible additional leakage of intermediary metabolites en route to ethanol formation, is sufficient to explain the inhibitory effects of ethanol on fermentation in Zymomonas mobilis

  17. Mechanism of inhibition of the corrosion of steel by methanotrophic bacteria

    International Nuclear Information System (INIS)

    The process of inhibiting the St.3 steel corrosion in a neutral aqueous medium through the methane-oxidizing bacteria, separated from the bottom sediments of the Volga-river is studied. It is established, that the above microorganisms are capable of bringing the corrosion system to the last degree of oxygen exhaustion, whereby the oxygen depolarization in the corrosion balance is practically negligible. Water becomes the next nearest oxidizer at pH∼7, while it can cathodically reduce to hydroxide-ions, settling free the elementary hydrogen

  18. Mechanism for the autogenous control of the crp operon: transcriptional inhibition by a divergent RNA transcript.

    OpenAIRE

    Okamoto, K.; Freundlich, M

    1986-01-01

    Expression of the crp gene is negatively autoregulated by the complex of cyclic AMP and its receptor protein (cAMP-CRP). We find a second promoter in this region that is strongly activated in vitro and in vivo by cAMP-CRP. Transcription from this promoter is initiated 3 nucleotides upstream and on the opposite strand from the start of crp mRNA. The addition of the purified 5' segment of the divergent RNA specifically inhibits crp transcription in vitro. cAMP-CRP does not block crp expression ...

  19. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine*

    OpenAIRE

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2009-01-01

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked ...

  20. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism

    OpenAIRE

    Fowler, T. A.; Crundwell, F. K.

    1998-01-01

    The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox...

  1. An electrochemical and analytical approach to the inhibition mechanism of an amino-alcohol-based corrosion inhibitor for reinforced concrete

    International Nuclear Information System (INIS)

    Laboratory investigations were performed in order to assess the effectiveness and the inhibition mechanism of an amino alcohol-based inhibitor currently used as admixture to prevent corrosion of steel in concrete. The investigation was performed in the presence of chloride ions, using solutions simulating the concrete interstitial solution. Electrochemical measurements allowed to conclude that, an inhibitor film is formed on the surface hindering the anodic activity. Furthermore, the analytical investigation through the use of X-ray photoelectron spectroscopy (XPS) shows that the inhibitor film is able to complex with the chloride ion

  2. Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides

    OpenAIRE

    Fernández, Pablo; Alcántara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo; Osuna, María D.; Prado, Rafael

    2016-01-01

    Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa, and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor)...

  3. Matrix metalloproteinase-9 deficiency impairs host defense mechanisms against Streptococcus pneumoniae in a mouse model of bacterial meningitis.

    Science.gov (United States)

    Böttcher, Tobias; Spreer, Annette; Azeh, Ivo; Nau, Roland; Gerber, Joachim

    2003-03-01

    Matrix metalloproteinase-9 (MMP-9) appears to contribute to blood-brain barrier damage and neuronal injury in bacterial meningitis. To further explore the function of MMP-9 in meningeal inflammation, we injected 10(4) colony forming units (CFU) of a Streptoccocus pneumoniae type 3 strain into the right forebrain of MMP-9 deficient mice (MMP-9(-/-), n=16) and wild-type controls (129 x B6, n=15). The clinical course of the disease, leukocyte recruitment into the subarachnoid space and bacterial titers in the brain did not differ. Yet, clearance of the bacteria from blood (log CFU/ml 4.7 [3.8/5.4] vs. 3.6 [3.0/4.0]; P=0.005) and spleen homogenates (log CFU/ml 5.3 [4.8/5.5] vs. 4.0 [2.8/4.7]; P=0.01) was reduced in MMP-9 deficient mice. A reduced systemic bacterial clearance of MMP-9(-/-) mice was confirmed in experimental S. pneumoniae peritonitis/sepsis. This implies a compromised systemic, but not intracerebral host response against S. pneumoniae in MMP-9 deficiency. PMID:12581831

  4. A novel regulatory mechanism of naringenin through inhibition of T lymphocyte function in contact hypersensitivity suppression

    International Nuclear Information System (INIS)

    Naringenin, a flavonoid in grapefruits and citrus fruits, has been reported to exhibit anti-inflammatory and anti-oxidative activities. Contact hypersensitivity (CHS) is a T cell-mediated immune reaction, and the factors released from macrophages also contribute to this response. Previous studies showed that naringenin suppressed CHS by inhibiting activation and migration of macrophages. However, little is known about naringenin's effects on T lymphocytes. Our study indicated that naringenin potently suppressed picryl chloride (PCl)-induced contact hypersensitivity by inhibiting the proliferation and activation of T lymphocytes. In vitro, both of the activated hapten-specific T cells and the T cells stimulated with anti-CD3/anti-CD28 showed growth arrest after naringenin treatment. Furthermore, naringenin reduced CD69 (the protein level) and cytokines such as IL-2, TNF-α, and IFN-γ (the mRNA level) expressions which highly expressed by activated T cells. Meanwhile, naringenin also induced T cell apoptosis by upregulation of Bax, Bad, PARP, cleaved-caspase 3 and downregulation of phosphorylated Akt, Bcl-2. These findings suggest that, besides its anti-inflammatory activities in macrophages, naringenin also showed inhibitory effects on the activation and proliferation of T cells to alleviate symptoms of contact hypersensitivity.

  5. Inhibition of astrocyte metabolism is not the primary mechanism for anaesthetic hypnosis.

    Science.gov (United States)

    Voss, Logan J; Harvey, Martyn G; Sleigh, James W

    2016-01-01

    Astrocytes have been promoted as a possible mechanistic target for anaesthetic hypnosis. The aim of this study was to explore this using the neocortical brain slice preparation. The methods were in two parts. Firstly, multiple general anaesthetic compounds demonstrating varying in vivo hypnotic potency were analysed for their effect on "zero-magnesium" seizure-like event (SLE) activity in mouse neocortical slices. Subsequently, the effect of astrocyte metabolic inhibition was investigated in neocortical slices, and compared with that of the anaesthetic drugs. The rationale was that, if suppression of astrocytes was both necessary and sufficient to cause hypnosis in vivo, then inhibition of astrocytic metabolism in slices should mimic the anaesthetic effect. In vivo anaesthetic potency correlated strongly with the magnitude of reduction in SLE frequency in neocortical slices (R(2) 37.7 %, p = 0.002). Conversely, SLE frequency and length were significantly enhanced during exposure to both fluoroacetate (23 and 20 % increase, respectively, p hypnosis. PMID:27462489

  6. A novel regulatory mechanism of naringenin through inhibition of T lymphocyte function in contact hypersensitivity suppression

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Feng; Tang, Yijun; Gao, Zhe [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2010-06-25

    Naringenin, a flavonoid in grapefruits and citrus fruits, has been reported to exhibit anti-inflammatory and anti-oxidative activities. Contact hypersensitivity (CHS) is a T cell-mediated immune reaction, and the factors released from macrophages also contribute to this response. Previous studies showed that naringenin suppressed CHS by inhibiting activation and migration of macrophages. However, little is known about naringenin's effects on T lymphocytes. Our study indicated that naringenin potently suppressed picryl chloride (PCl)-induced contact hypersensitivity by inhibiting the proliferation and activation of T lymphocytes. In vitro, both of the activated hapten-specific T cells and the T cells stimulated with anti-CD3/anti-CD28 showed growth arrest after naringenin treatment. Furthermore, naringenin reduced CD69 (the protein level) and cytokines such as IL-2, TNF-{alpha}, and IFN-{gamma} (the mRNA level) expressions which highly expressed by activated T cells. Meanwhile, naringenin also induced T cell apoptosis by upregulation of Bax, Bad, PARP, cleaved-caspase 3 and downregulation of phosphorylated Akt, Bcl-2. These findings suggest that, besides its anti-inflammatory activities in macrophages, naringenin also showed inhibitory effects on the activation and proliferation of T cells to alleviate symptoms of contact hypersensitivity.

  7. Lung cancer-derived Dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation

    International Nuclear Information System (INIS)

    Highlights: •DKK1 level was associated with NSCLC bone metastases. •Lung tumor cells derived DKK1 inhibited osteoblast differentiation. •Lung tumor cells derived DKK1 modulates β-catenin and RUNX2. -- Abstract: Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC

  8. AT1-IR-beta Association: A New Mechanism for the Inhibition of Insulin Receptor Function in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2008-01-01

    Full Text Available Epidemiological evidence show that increased mortality in breast cancer is linked to hypertension and insulin resistance. Because Angiotensin II (Ang II, a hormone implicated in hypertension and insulin resistance, is a normal mitogen for breast tissue and elevated expression of the Ang II receptor AT1 is seen in breast cancer, we analyzed the effects of Ang II exposure on the functions of IR in human breast cancer cell line MCF-7. Exposure of MCF-7 to Ang II for 2 hours a significantly reduced 125I-insulin binding to IR, and b induced co-immuno-precipitation of the AT1 with IR-beta subunit. These Ang II-mediated effects on IR were inhibited by the AT1 antagonist losartan, and were not observed when exposure time was below 1-hour. These observations suggest extended exposure to Ang II have detrimental effects on insulin binding to IR that were not discovered in the previous studies where Ang II-exposure of insulin responsive cells was performed for periods less than one hour. In addition, they suggest a novel mechanism that involves AT1-IR-beta association for the inhibition of insulin binding to IR in response to extended exposure (2-hours of breast cancer cells to elevated levels of Ang II (as seen in hypertensive patients, and provides a molecular link for the inhibition of normal IR signaling by Ang II in breast cancer.

  9. Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition.

    Science.gov (United States)

    Ooya, Tooru; Eguchi, Masaru; Ozaki, Atsushi; Yui, Nobuhiko

    2002-08-21

    A carboxyethylester-polyrotaxane was synthesized as a novel calcium chelating polymer in the field of oral drug delivery and characterized in terms of mechanism of trypsin inhibition. Here, carboxyethylester (CEE) groups are introduced to all the primary hydroxyl groups in alpha-cyclodextrins (alpha-CDs), which are threaded onto a poly(ethylene glycol) chain capped with bulky end-groups (polyrotaxane). The solubility of the CEE-polyrotaxane in physiological conditions increased with pH, indicating ionization-related solubility similar to conventional polyacrylates. The ability of calcium (Ca2+) chelation was found to increase in the order of poly(acrylic acid) (PAA)>CEE-polyrotaxanez.Gt;CEE-alpha-CD, suggesting that the increased density of carboxyl groups enhances the Ca2+ chelating ability. The activity of trypsin was inhibited by these compounds in the same order of the calcium chelation. However, the inhibitory effect of CEE-polyrotaxane was reduced by adding excess Ca2+ without precipitation that was observed in the presence of PAA. Such the reduced inhibition and precipitation by CEE-alpha-CD was not observed. Therefore, the inhibitory effect of CEE-polyrotaxane is due to Ca2+ chelation from trypsin without non-specific interaction. PMID:12176224

  10. Lung cancer-derived Dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tianqing; Teng, Jiajun; Jiang, Liyan; Zhong, Hua; Han, Baohui, E-mail: baohuihan1@163.com

    2014-01-17

    Highlights: •DKK1 level was associated with NSCLC bone metastases. •Lung tumor cells derived DKK1 inhibited osteoblast differentiation. •Lung tumor cells derived DKK1 modulates β-catenin and RUNX2. -- Abstract: Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC.

  11. Ingredients in fruit juices interact with dasatinib through inhibition of BCRP: a new mechanism of beverage-drug interaction.

    Science.gov (United States)

    Fleisher, Brett; Unum, Jesse; Shao, Jie; An, Guohua

    2015-01-01

    Small molecule tyrosine kinase inhibitors (TKIs) are a group of highly novel and target-specific anticancer drugs. Recently, most TKIs are found to be substrates of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP). However, little information is available regarding the Pgp- or BCRP-mediated interaction of TKIs with coadministered drugs/food/beverage. Our objective was to evaluate the effect of the major ingredients of grapefruit juice (GFJ), orange juice (OJ), apple juice (AJ), and green tea on P-gp and BCRP-mediated dasatinib efflux. Among the 14 ingredients screened, only tangeretin and nobiletin moderately inhibited P-gp-mediated dasatinib efflux. In contrast, four ingredients in GFJ [i.e., bergamottin, 6',7'-dihydroxybergamottin (DHB), quercetin, and kaempferol], two ingredients in OJ (tangeretin and nobiletin), and one ingredient in AJ (i.e., hesperetin) greatly inhibited BCRP-mediated dasatinib efflux at the concentration of 50 μM (p CYP3A, P-gp, and OATP. Our novel finding that FJ ingredients strongly inhibit BCRP may represent a new mechanism of beverage-drug interaction. PMID:25418056

  12. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition

    Directory of Open Access Journals (Sweden)

    Huynh Truc

    2007-12-01

    Full Text Available Abstract Mechanical hyperalgesia is a clinically-relevant form of pain sensitization that develops through largely unknown mechanisms. TRPA1, a Transient Receptor Potential ion channel, is a sensor of pungent chemicals that may play a role in acute noxious mechanosensation and cold thermosensation. We have developed a specific small molecule TRPA1 inhibitor (AP18 that can reduce cinnameldehyde-induced nociception in vivo. Interestingly, AP18 is capable of reversing CFA-induced mechanical hyperalgesia in mice. Although TRPA1-deficient mice develop normal CFA-induced hyperalgeisa, AP18 is ineffective in the knockout mice, consistent with an on-target mechanism. Therefore, TRPA1 plays a role in sensitization of nociception, and that compensation in TRPA1-deficient mice masks this requirement.

  13. Methylphenidate and Atomoxetine Inhibit Social Play Behavior through Prefrontal and Subcortical Limbic Mechanisms in Rats

    OpenAIRE

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed t...

  14. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms; Radiosensibilidad bacteriana frente a gamma y ultravioleta. Dependencia composicional y mecanismos de reparacion

    Energy Technology Data Exchange (ETDEWEB)

    Saez Angulo, R. M.; Davila, C. A.

    1974-07-01

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs.

  15. Desensitization-resistant and -sensitive GPCR-mediated inhibition of GABA release occurs by Ca2+-dependent and -independent mechanisms at a hypothalamic synapse.

    Science.gov (United States)

    Pennock, Reagan L; Hentges, Shane T

    2016-06-01

    Whereas the activation of Gαi/o-coupled receptors commonly results in postsynaptic responses that show acute desensitization, the presynaptic inhibition of transmitter release caused by many Gαi/o-coupled receptors is maintained during agonist exposure. However, an exception has been noted where GABAB receptor (GABABR)-mediated inhibition of inhibitory postsynaptic currents (IPSCs) recorded in mouse proopiomelanocortin (POMC) neurons exhibit acute desensitization in ∼25% of experiments. To determine whether differential effector coupling confers sensitivity to desensitization, voltage-clamp recordings were made from POMC neurons to compare the mechanism by which μ-opioid receptors (MORs) and GABABRs inhibit transmitter release. Neither MOR- nor GABABR-mediated inhibition of release relied on the activation of presynaptic K(+) channels. Both receptors maintained the ability to inhibit release in the absence of external Ca(2+) or in the presence of ionomycin-induced Ca(2+) influx, indicating that inhibition of release can occur through a Ca(2+)-independent mechanism. Replacing Ca(2+) with Sr(2+) to disrupt G-protein-mediated inhibition of release occurring directly at the release machinery did not alter MOR- or GABAB -mediated inhibition of IPSCs, suggesting that reductions in evoked release can occur through the inhibition of Ca(2+) channels. Additionally, both receptors inhibited evoked IPSCs in the presence of selective blockers of N- or P/Q-type Ca(2+) channels. Altogether, the results show that MORs and GABABRs can inhibit transmitter release through the inhibition of calcium influx and by direct actions at the release machinery. Furthermore, since both the desensitizing and nondesensitizing presynaptic receptors are similarly coupled, differential effector coupling is unlikely responsible for differential desensitization of the inhibition of release. PMID:26912590

  16. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. VII. Hemoglobin does not inhibit clearance of Escherichia coli from the peritoneal cavity

    International Nuclear Information System (INIS)

    Hemoglobin has been shown to be a potent adjuvant in experimental Escherichia coli peritonitis, although a satisfactory mechanistic rationale is still obscure. Hemoglobin has been thought to impair intraperitoneal neutrophil function, delay clearance of bacteria from the peritoneal cavity by the normal absorptive mechanisms, or directly enhance bacterial growth. Using highly purified stroma-free hemoglobin (SFHgb), we have largely discounted any direct effect of hemoglobin on peritoneal white blood cell function. In the present study, we confirmed that uncontrolled proliferation of bacteria takes place in the presence of hemoglobin in the peritoneal cavity. Nonviable 5-iododeoxyuridine 125I-labelled bacteria were then used to directly study peritoneal clearance kinetics, eliminating the problem of bacterial growth. SFHgb had no influence on the removal of intraperitoneal bacteria. The rate of bloodstream appearance of radiolabel was similar with or without intraperitoneal SFHgb. Thus, SFHgb does not prevent clearance of bacteria from the peritoneal cavity by interfering with normal host clearance mechanisms. SFHgb may act as a bacterial growth adjuvant, either by serving as a bacterial nutrient or by suitably modifying the environment so that extensive bacterial proliferation can occur. The latter hypothesis appears to be an area in which investigation concerning the adjuvant effect of hemoglobin may prove most fruitful

  17. The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm

    OpenAIRE

    Cerca, Nuno; Martins, Silvia; Pier, Gerald B.; Oliveira, Rosário; Azeredo, Joana

    2005-01-01

    Many studies have demonstrated that subminimal inhibitory concentrations (sub-MICs) of antibiotics can inhibit initial microbial adherence to medical device surfaces. It has been suggested that, by inhibiting initial adhesion, biofilm formation might be prevented. However, since initial adherence and subsequent biofilm formation may be two distinct phenomena, conclusions regarding the effects of sub-MIC antibiotics on initial adhesion cannot be extrapolated to biofilm formation. In t...

  18. Differential efficacy of inhibition of mitochondrial and bacterial cytochrome bc1 complexes by center N inhibitors antimycin, ilicicolin H and funiculosin

    OpenAIRE

    Rotsaert, Frederik A. J.; Ding, Martina G.; Trumpower, Bernard L.

    2007-01-01

    We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enz...

  19. Topological effects of charge transfer in telomere G-quadruplex: Mechanism on telomerase activation and inhibition

    CERN Document Server

    Wang, Xin

    2015-01-01

    We explore charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of charge transport in TG4 DNA. The consecutive TG4(CTG4) is semiconducting with 0.2 ~ 0.3eV energy gap. Charges transfers favorably in the consecutive TG4, but are trapped in the non-consecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly ~ 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  20. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    Science.gov (United States)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  1. Recombinant expression and inhibition mechanism analysis of pectin methylesterase from Aspergillus flavus.

    Science.gov (United States)

    Jiang, Xiuping; Jia, Qiulei; Chen, Lei; Chen, Qi; Yang, Qing

    2014-06-01

    Phytopathogenic microorganisms can produce pectin methylesterase (PME) to degrade plant cell walls during plant invasion. This enzyme is thought to be a virulence factor of phytopathogens. In this work, PME from Aspergillus flavus (AFPME) was expressed in Pichia pastoris and an in vitro inhibitor study was performed. The purified AFPME with a yield of 52.2% was resolved as one band with a molecular mass of c. 40 kDa by SDS-PAGE. Optimal activity of the enzyme occurred at a temperature of 55 °C and a pH of 4.8. Epigallocatechin gallate (EGCG) strongly inhibited the activity of recombinant AFPME. The molecular docking analysis indicated that EGCG could form hydrogen bonds and π-π interactions with some amino acid residues in the active site of AFPME. Our studies provide a novel strategy for the control of the plant invasion of A. flavus. PMID:24766423

  2. RhoA inhibits neural differentiation in murine stem cells through multiple mechanisms.

    Science.gov (United States)

    Yang, Junning; Wu, Chuanshen; Stefanescu, Ioana; Jakobsson, Lars; Chervoneva, Inna; Horowitz, Arie

    2016-01-01

    Spontaneous neural differentiation of embryonic stem cells is induced by Noggin-mediated inhibition of bone morphogenetic protein 4 (BMP4) signaling. RhoA is a guanosine triphosphatase (GTPase) that regulates cytoskeletal dynamics and gene expression, both of which control stem cell fate. We found that disruption of Syx, a gene encoding a RhoA-specific guanine nucleotide exchange factor, accelerated retinoic acid-induced neural differentiation in murine embryonic stem cells aggregated into embryoid bodies. Cells from Syx(+/+) and Syx(-/-) embryoid bodies had different abundances of proteins implicated in stem cell pluripotency. The differentiation-promoting proteins Noggin and RARγ (a retinoic acid receptor) were more abundant in cells of Syx(-/-) embryoid bodies, whereas the differentiation-suppressing proteins SIRT1 (a protein deacetylase) and the phosphorylated form of SMAD1 (the active form of this transcription factor) were more abundant in cells of Syx(+/+) embryoid bodies. These differences were blocked by the overexpression of constitutively active RhoA, indicating that the abundance of these proteins was maintained, at least in part, by RhoA activity. The peripheral stress fibers in cells from Syx(-/-) embryoid bodies were thinner than those in Syx(+/+) cells. Furthermore, less Noggin and fewer vesicles containing Rab3d, a GTPase that mediates Noggin trafficking, were detected in cells from Syx(-/-) embryoid bodies, which could result from increased Noggin exocytosis. These results suggested that, in addition to inhibiting Noggin transcription, RhoA activity in wild-type murine embryonic stem cells also prevented neural differentiation by limiting Noggin secretion. PMID:27460990

  3. Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in Vitro.

    Science.gov (United States)

    Jing, N; Marchand, C; Liu, J; Mitra, R; Hogan, M E; Pommier, Y

    2000-07-14

    The G-tetrad-forming oligonucleotides and have been identified as potent inhibitors of human immunodeficiency virus type 1 integrase (HIV-1 IN) activity (Rando, R. F., Ojwang, J., Elbaggari, A., Reyes, G. R., Tinder, R., McGrath, M. S., and Hogan, M. E. (1995) J. Biol. Chem. 270, 1754-1760; Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13762-13771; Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). To understand the inhibition of HIV-1 IN activity by the G-quartet inhibitors, we have designed the oligonucleotides and, composed of three and four G-quartets with stem lengths of 19 and 24 A, respectively. The fact that increasing the G-quartet stem length from 15 to 24 A kept inhibition of HIV-1 IN activity unchanged suggests that the binding interaction occurs between a GTGT loop domain of the G-quartet inhibitors and a catalytic site of HIV-1 IN, referred to as a face-to-face interaction. Docking the NMR structure of (Jing and Hogan (1998)) into the x-ray structure of the core domain of HIV-1 IN, HIV-1 IN-(51-209) (Maignan, S., Guilloteau, J.-P. , Qing, Z.-L., Clement-Mella, C., and Mikol, V. (1998) J. Mol. Biol. 282, 359-368), was performed using the GRAMM program. The statistical distributions of hydrogen bonding between HIV-1 IN and were obtained from the analyses of 1000 random docking structures. The docking results show a high probability of interaction between the GTGT loop residues of the G-quartet inhibitors and the catalytic site of HIV-1 IN, in agreement with the experimental observation. PMID:10801812

  4. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethylpyrazine: mechanisms contributing to the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Cai

    Full Text Available BACKGROUND: Tetramethylpyrazine (TMP is one of the active ingredients extracted from the Chinese herb Chuanxiong, which has been used to treat cerebrovascular and cardiovascular diseases, pulmonary diseases and cancer. However, the molecular mechanisms underlying the actions of TMP have not been fully elucidated. In a previous study we showed that TMP-mediated glioma suppression and neural protection involves the inhibition of CXCR4 expression. The SDF-1/CXCR4 axis plays a fundamental role in many physiological and pathological processes. In this study, we further investigated whether the regulation of the SDF-1/CXCR4 pathway is also involved in the TMP-mediated inhibition of neovascularization or fibrosis and improvement of microcirculation. METHODOLOGY/PRINCIPAL FINDINGS: Using a scratch-wound assay, we demonstrated that TMP significantly suppressed the migration and tubule formation of the human umbilical vein endothelial cell line ECV304 in vitro. The expression of CXCR4 in ECV304 cells is notably down-regulated after TMP treatment. In addition, TMP significantly suppresses corneal neovascularization in a rat model of corneal alkali burn injury. The expression of CXCR4 on days 1, 3 and 7 post-injury was determined through RT-PCR analysis. Consistent with our hypotheses, the expression of CXCR4 in the rat cornea is significantly increased with alkali burn and dramatically down-regulated with TMP treatment. Moreover, TMP treatment significantly attenuates bleomycin-induced rat pulmonary fibrosis, while immunofluorescence shows a notably decreased amount of CXCR4-positive cells in the TMP-treated group. Furthermore, TMP significantly down-regulates the expression of CXCR4 in platelets, lymphocytes and red blood cells. Whole-blood viscosity and platelet aggregation in rats are significantly decreased by TMP treatment. CONCLUSIONS: These results show that TMP exerts potent effects in inhibiting neovascularization, fibrosis and thrombosis under

  5. Dynamic features of apo and bound HIV-Nef protein reveal the anti-HIV dimerization inhibition mechanism.

    Science.gov (United States)

    Moonsamy, Suri; Bhakat, Soumendranath; Soliman, Mahmoud E S

    2015-01-01

    The first account on the dynamic features of Nef or negative factor, a small myristoylated protein located in the cytoplasm believes to increase HIV-1 viral titer level, is reported herein. Due to its major role in HIV-1 pathogenicity, Nef protein is considered an emerging target in anti-HIV drug design and discovery process. In this study, comparative long-range all-atom molecular dynamics simulations were employed for apo and bound protein to unveil molecular mechanism of HIV-Nef dimerization and inhibition. Results clearly revealed that B9, a newly discovered Nef inhibitor, binds at the dimeric interface of Nef protein and caused significant separation between orthogonally opposed residues, namely Asp108, Leu112 and Gln104. Large differences in magnitudes were observed in the radius of gyration (∼1.5 Å), per-residue fluctuation (∼2 Å), C-alpha deviations (∼2 Å) which confirm a comparatively more flexible nature of apo conformation due to rapid dimeric association. Compared to the bound conformer, a more globally correlated motion in case of apo structure of HIV-Nef confirms the process of dimeric association. This clearly highlights the process of inhibition as a result of ligand binding. The difference in principal component analysis (PCA) scatter plot and per-residue mobility plot across first two normal modes further justifies the same findings. The in-depth dynamic analyses of Nef protein presented in this report would serve crucial in understanding its function and inhibition mechanisms. Information on inhibitor binding mode would also assist in designing of potential inhibitors against this important HIV target. PMID:26355431

  6. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: ► The corrosion behavior is significantly affected by the long-term immersion. ► The degradation is inhibited due to the corrosion product layer. ► The corrosion resistance is enhanced by optimized MAO electrolyte concentrations. ► The corrosion inhibition mechanism is presented by a Flash animation. - Abstract: This paper addresses the long-term corrosion behavior of microarc oxidation coated Mg alloys immersed in simulated body fluid for 28 days. The coatings on AZ31 Mg alloys were produced in the electrolyte of sodium phosphate (Na3PO4) at the concentration of 20 g/L, 30 g/L and 40 g/L, respectively. Scanning electron microscope (SEM) and optical micrograph were used to observe the microstructure of the samples before and after corrosion. The composition of the MAO coating and corrosion products were determined by X-Ray Diffraction (XRD). Corrosion product identification showed that hydroxyapatite (HA) was formed on the surface of the corroded samples. The ratio of Ca/P in HA determined by the X-ray Fluorescence (XRF) technique showed that HA is an acceptable biocompatible implant material. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were employed to characterize the corrosion rate and the electrochemical impedance. The corrosion resistance of the coated Mg alloys can be enhanced by optimizing the electrolyte concentrations for fabricating samples, and is enhanced after immersing the coated samples in simulated body fluid for more than 14 days. The enhanced corrosion resistance after long-term immersion is attributed to a corrosion product layer formed on the sample surface. The inhibition mechanism of the corrosion process is discussed and presented with an animation

  7. Inhibition of PARP-1 participates in the mechanisms of propofol-induced amnesia in mice and human.

    Science.gov (United States)

    Jia, Lijie; Wang, Wenyuan; Luo, Yan; Zhang, Fujun; Lu, Han; Xue, Qingsheng; Yu, Buwei

    2016-04-15

    Poly(ADP-ribose) polymerase 1 (PARP-1) has emerged as an important regulator in learning and memory. Propofol leads to amnesia, however, the mechanism remains unclear. The present study was designed to examine whether and how PARP-1 plays a role in propofol-induced amnesia. Mice were injected intraperitoneally with propofol before acquisition training. Cognitive function was evaluated by object recognition test. PARP-1 and PAR expression was determined through Western blot. The protein and mRNA levels of Arc and c-Fos were detected by Western blot and real-time PCR. Thirty volunteers were assigned to three groups according to codon 762 variation of PARP-1 gene (rs1136410). They learned word lists awake and during propofol sedation. Their cognitive traits were evaluated through fMRI. Rodent data demonstrated that propofol inhibited acquisition-induced increase in PARP-1 and PAR, thereby suppressing Arc and c-Fos, which impaired object recognition 24h after learning. Consistent with this, carriers of a low-catalyzing function PARP-1 variant (Val762Ala) exhibited decreased retrieval-induced hippocampal reactivity 24h after learning under propofol-sedative condition. These findings suggested that inhibition of PARP-1 might participate in the mechanism of propofol-induced amnesia in mice and human. More generally, our approach illustrated a potential translational research bridging animal models and human studies. PMID:26921778

  8. The inhibition effect and mechanism of L-cysteine on the corrosion of bronze covered with a CuCl patina

    International Nuclear Information System (INIS)

    Highlights: • CuCl patina was synthesized on bronze electrodes with electrochemical method. • L-cysteine was used as a green inhibitor for bronze covered with CuCl patina. • The inhibition efficiency reached above 90%. • The inhibition mechanism of L-cysteine on CuCl patina was investigated. - Abstract: CuCl patina was synthesized on bronze electrodes with electrochemical method. The inhibition effect and mechanism of L-cysteine (Cys) on bronze covered with CuCl patina have been studied with electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) techniques. The EIS results show that Cys stabilized the CuCl patina to a great extent. The hydrolysis reaction of CuCl was inhibited effectively and an inhibition efficiency of over 90% was achieved. The XPS analyses indicate that the chemisorption of Cys molecules on CuCl surface occurred through sulfur atom in thiol and nitrogen atom in amino group

  9. Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFκB

    OpenAIRE

    Cronstein, Bruce N.; Montesinos, M. Carmen; Weissmann, Gerald

    1999-01-01

    The antiinflammatory action of aspirin generally has been attributed to direct inhibition of cyclooxygenases (COX-1 and COX-2), but additional mechanisms are likely at work. These include aspirin’s inhibition of NFκB translocation to the nucleus as well as the capacity of salicylates to uncouple oxidative phosphorylation (i.e., deplete ATP). At clinically relevant doses, salicylates cause cells to release micromolar concentrations of adenosine, which serves as an endogenous ligand for at leas...

  10. Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Bingyu Zhang

    2015-03-01

    Full Text Available Bone marrow stromal cells (BMSCs, also broadly known as bone marrow-derived mesenchymal stem cells are multipotent stem cells that have a self-renewal capacity and multilineage differentiation potential. Mechanical stretching plays a vital role in regulating the proliferation and differentiation of BMSCs. However, little is known about the effects of cyclic stretching on BMSC migration and invasion. In this study, using a custom-made cell-stretching device, we studied the effects of cyclic mechanical stretching on rat BMSC migration and invasion using a Transwell Boyden Chamber. The protein secretion of matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9 was detected by gelatin zymography, and the activation of focal adhesion kinase (FAK and extracellular signal regulated kinase1/2 (ERK1/2 was measured by western blot. We found that cyclic mechanical stretching with 10% amplitude at 1 Hz frequency for 8 h promotes BMSC migration, but reduces BMSC invasion. FAK and ERK1/2 signals were activated in BMSCs after exposure to cyclic stretching. In the presence of the FAK phosphorylation blocker PF573228 or the ERK1/2 phosphorylation blocker PD98059, the cyclic-stretch-promoted migration of BMSCs was completely suppressed. On the other hand, cyclic mechanical stretching reduced the secretion of MMP-2 and MMP-9 in BMSCs, and PF573228 suppressed the cyclic-stretch-reduced secretion of MMP-2 and MMP-9. The decrease of BMSC invasion induced by mechanical stretching is partially restored by PF573228 but remained unaffected by PD98059. Taken together, these data show that cyclic mechanical stretching promotes BMSC migration via the FAK-ERK1/2 signalling pathway, but reduces BMSC invasion by decreasing secretion of MMP-2 and MMP-9 via FAK, independent of the ERK1/2 signal.

  11. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  12. The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability.

    OpenAIRE

    Antoniani, Davide; Rossi, Elio; Rinaldo, Serena; BOCCI, PAOLA; Lolicato, Marco; Paiardini, Alessandro; Raffaelli, Nadia; Cutruzzolà, Francesca; Landini, Paolo

    2013-01-01

    In Gram-negative bacteria, production of the signal molecule c-di-GMP by diguanylate cyclases (DGCs) is a key trigger for biofilm formation, which, in turn, is often required for the development of chronic bacterial infections. Thus, DGCs represent interesting targets for new chemotherapeutic drugs with anti-biofilm activity. We searched for inhibitors of the WspR protein, a Pseudomonas aeruginosa DGC involved in biofilm formation and production of virulence factors, using a set of microbiolo...

  13. Inhibition of Mg2+ binding and DNA religation by bacterial topoisomerase I via introduction of an additional positive charge into the active site region

    OpenAIRE

    Sorokin, Elena P.; Cheng, Bokun; Rathi, Siddarth; Aedo, Sandra J.; Abrenica, Maria V.; Tse-Dinh, Yuk-Ching

    2008-01-01

    Among bacterial topoisomerase I enzymes, a conserved methionine residue is found at the active site next to the nucleophilic tyrosine. Substitution of this methionine residue with arginine in recombinant Yersinia pestis topoisomerase I (YTOP) was the only substitution at this position found to induce the SOS response in Escherichia coli. Overexpression of the M326R mutant YTOP resulted in ∼4 log loss of viability. Biochemical analysis of purified Y. pestis and E. coli mutant topoisomerase I s...

  14. Evaluation of the Activities of Pyrimethamine Analogs against Plasmodium vivax and Plasmodium falciparum Dihydrofolate Reductase-Thymidylate Synthase Using In Vitro Enzyme Inhibition and Bacterial Complementation Assays▿

    OpenAIRE

    Bunyarataphan, Sasinee ; Leartsakulpanich, Ubolsree; Taweechai, Supannee; Tarnchompoo, Bongkoch; Kamchonwongpaisan, Sumalee; Yuthavong, Yongyuth

    2006-01-01

    Pyrimethamine analogs were examined as potential agents against vivax malaria using a bacterial surrogate system carrying Plasmodium vivax dihydrofolate reductase-thymidylate synthase (PvDHFR-TS), in which the PvDHFR complemented chemically knocked out host dihydrofolate reductase. The system was initially tested with P. falciparum dihydrofolate reductase-thymidylate synthase and was found to have good correlation with the parasite-based system. The 50% inhibitory concentrations derived from ...

  15. Methylphenidate and atomoxetine inhibit social play behavior through prefrontal and subcortical limbic mechanisms in rats

    NARCIS (Netherlands)

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Damsteegt, Ruth; Trezza, Viviana; Vanderschuren, Louk J M J

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidat

  16. New Class of Competitive Inhibitor of Bacterial Histidine Kinases

    OpenAIRE

    Gilmour, Raymond; Foster, J. Estelle; Sheng, Qin; McClain, Jonathan R.; Riley, Anna; Sun, Pei-Ming; Ng, Wai-Leung; Yan, Dalai; Nicas, Thalia I.; Henry, Kenneth; Winkler, Malcolm E.

    2005-01-01

    Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a s...

  17. Bacterial diversity losses: A potential extracellular driving mechanism involving the molecular ecological function of hydrophobic polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Xiaojie Hu

    2015-03-01

    Full Text Available The DNA transformation is vital to the horizontal gene transfer (HGT. The low-efficiency transformation of bare plasmid exposed to hydrophobic polycyclic aromatic hydrocarbons (PAHs decreases the gene transfer level, and is possibly related to the loss of bacterial diversity at present. PAHs have great affinity for bare DNA through dispersion force and π–π overlap between PAHs and bases. These noncovalent interactions between PAHs and bases reduced the transformational efficiency of plasmid into bacterial recipients. Meanwhile these low-efficiency transformations for plasmid are controlled by the ions like Ca2+ in environment, in turn, presence of 0.5 mmol L−1 Ca2+ recovered the efficiency from 3.2 (phenanthrene, 3.5 (pyrene to about 4.45 and 4.75, respectively. The combination of Ca2+ with the –POO−– groups in DNA forms strong electrovalent bonds, weakening the molecular effect of DNA on PAHs and in turn promoting the gene transfer exposed to PAHs.

  18. Inhibition of survivin expression and mechanisms of reversing drug-resistance of human lung adenocarcinoma cells by siRNA

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-lei; WANG Yan; JIANG Ji; KONG Rui; YANG Yan-mei; JI Hong-fei; SHI Yu-zhi

    2010-01-01

    Background Survivin, a member of the inhibitor of apoptosis protein (IAP) family, overexpresses in tumor cells and not expresses in terminally differentiated adult tissues. This study aimed to investigate the effects of survivin-specific siRNA on cell proliferation, apoptosis and chemosensitivity to cisplatin in vitro and in vivo and explore the mechanisms about decreasing expression of survivin in reversing cancer cells resistance to chemotherapeutic drug.Methods Survivin-specific siRNA was transfected into A549/DDP cells. The expression of survivin and lung resistance-related protein (LRP) mRNA levels were determined by RT-PCR, chemosensitivity of A549/DDP (cisplatin)cells to cisplatin was determined by MTT assay, and apoptosis and cell cycle were determined by flow cytometry (FCM).The protein expression levels of survivin, LRP, cyclin-D1, caspase-3 and bcl-2 were determined by Western blotting analyses. The effect of survivin siRNA inhibition on tumor growth was studied in athymic nude mice in vivo.Results Survivin-specific siRNA efficiently down-regulated survivin expression. The cell cycle was arrested at G2/M phase, and apoptosis was obviously found. Inhibition of survivin expression could make the IC50 and drug-resistant index of cisplatin decrease, and enhance the cancer cells sensitivity to cisplatin. After transfection by survivin-specific siRNA, expression of LRP and cyclin-D1 were downregulated, caspase-3 expression was upregulated, bcl-2 expression had no obvious change. The animal experiment confirmed knockdown of survivin could inhibit the tumor growth.Conclusions Survivin-specific siRNA can efficiently suppress the expression of survivin, increase apoptosis, inhibit cells proliferation and enhance the chemosensitivity to cisplatin in vitro and in vivo. Suppression of survivin expression helping to reverse drug-resistance may have relationship with downregulation of LRP and upregulation of caspase-3.Anti-tumor strategies based on the inhibition of

  19. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    Energy Technology Data Exchange (ETDEWEB)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (GUW); (Maryland); (GWU); (Georgia)

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  20. Mechanism of Acetylcholinesterase Inhibition by Fasciculin: A 5-ns Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Kaihsu; Shen, T Y.; Henchman, Richard H.; Bourne, Yves; Marchot, Pascale; Mccammon, Andy

    2002-05-01

    Our previous molecular dynamics simulation (10 ns) of mouse acetylcholinesterase (EC 3.1.1.7) revealed complex fluctuation of the enzyme active site gorge. Now we report a 5-ns simulation of acetylcholinesterase complexed with fasciculin 2. Fasciculin 2 binds to the gorge entrance of acetylcholinesterase with excellent complementarity and many polar and hydrophobic interactions. In this simulation of the protein-protein complex, where fasciculin 2 appears to sterically block access of ligands to the gorge, again we observe a two-peaked probability distribution of the gorge width. When fasciculin is present, the gorge width distribution is altered such that the gorge is more likely to be narrow. Moreover, there are large increases in the opening of alternative passages, namely, the side door (near Thr 75) and the back door (near Tyr 449). Finally, the catalytic triad arrangement in the acetylcholinesterase active site is disrupted with fasciculin bound. These data support that, in addition to the steric obstruction seen in the crystal structure, fasciculin may inhibit acetylcholinesterase by combined allosteric and dynamical means. Additional data from these simulations can be found at http://mccammon.ucsd.edu/.

  1. Mechanism of allosteric inhibition of N-acetyl-L-glutamate synthase by L-arginine.

    Science.gov (United States)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2009-02-20

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by approximately 10 A and decreases its height by approximately 20A(.) AAK dimers move 5A outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by approximately 4 degrees . The NAT domains rotate approximately 109 degrees relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity. PMID:19095660

  2. Mechanism of Akt1 inhibition of breast cancer cell invasionreveals a protumorigenic role for TSC2

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Radisky, Derek C.; Nelson, Celeste M.; Zhang, Hui; Fata, Jimmie; Roth, Richard A.; Bissell, Mina J.

    2006-02-07

    Akt1 is frequently upregulated in human tumors, and has been shown to accelerate cell proliferation and to suppress programmed cell death; consequently, inhibiting the activity of Akt1 has been seen as an attractive target for therapeutic intervention. Paradoxically, hyperactivation of the Akt1 oncogene can also prevent the invasive behavior that underlies progression to metastasis. Here we show that overexpression of activated myr-Akt1 in human breast cancer cells phosphorylates and thereby targets the tumor suppressor tuberous sclerosis complex 2 (TSC2) for degradation, leading to reduced Rho-GTPase activity, decreased actin stress fibers and focal adhesions, and reduced motility and invasion. Overexpression of TSC2 rescues the migration phenotype of myr-Akt1-expressing tumor cells, and high levels of TSC2 in breast cancer patients correlate with increased metastasis and reduced survival. These data indicate that the functional properties of genes designated as oncogenes or tumor suppressor genes depends on the context of the cell type and the tissues studied, and suggest the need for caution in designing therapies targeting the function of individual genes in epithelial tissues.

  3. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    Science.gov (United States)

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-β (Aβ) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and Aβ1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on Aβ1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins. PMID:26444976

  4. Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism.

    Science.gov (United States)

    Lu, Alvin; Li, Yang; Schmidt, Florian I; Yin, Qian; Chen, Shuobing; Fu, Tian-Min; Tong, Alexander B; Ploegh, Hidde L; Mao, Youdong; Wu, Hao

    2016-05-01

    Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1(CARD)) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar Ki on caspase-1(CARD) polymerization in vitro and inflammasome activation in cells. Whereas caspase-1(CARD) uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament. PMID:27043298

  5. Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp

    Directory of Open Access Journals (Sweden)

    Fernanda Arnhold Pagnussatt

    2013-02-01

    Full Text Available The application of natural antifungal substances is motivated by the need for alternatives to existing methods that are not always applicable, efficient, or that do not pose risk to consumers or the environment. Furthermore, studies on the behaviour of toxigenic species in the presence of natural fungicides have enabled their safe application in the food chain In this study, Spirulina LEB-18 phenolic extract was assessed for its antifungal activity on 12 toxigenic strains of Fusarium graminearum isolated from barley and wheat. The susceptible metabolic pathways were assessed through the determination of structural compounds (glucosamine and ergosterol and enzyme activity of the microorganisms' primary metabolism. The results indicate that phenolic extracts reduced the growth rate of the toxigenic species investigated. The IC50 was obtained by applying 3 to 8% (p/p of phenolic compounds in relation to the culture medium. The use of this natural fungicide proved promising for the inhibition of fungal multiplication, especially in terms of the inactivation of enzymatic systems (amylase and protease of Fusarium graminearum.

  6. Mechanisms of VIP-induced inhibition of the lymphatic vessel pump.

    Science.gov (United States)

    von der Weid, Pierre-Yves; Rehal, Sonia; Dyrda, Peter; Lee, Stewart; Mathias, Ryan; Rahman, Mozibur; Roizes, Simon; Imtiaz, Mohammad S

    2012-06-01

    Lymphatic vessels serve as a route by which interstitial fluid, protein and other macromolecules are returned to the blood circulation and immune cells and antigens gain access to lymph nodes. Lymph flow is an active process promoted by rhythmical contraction-relaxation events occurring in the collecting lymphatic vessels. This lymphatic pumping is an intrinsic property of the lymphatic muscles in the vessel wall and consequent to action potentials. Compromised lymphatic pumping may affect lymph and immune cell transport, an action which could be particularly detrimental during inflammation. Importantly, many inflammatory mediators alter lymphatic pumping. Vasoactive intestinal peptide (VIP) is a neuro- and immuno-modulator thought to be released by nerve terminals and immune cells in close proximity to lymphatic vessels. We demonstrated the presence of the peptide in lymphatic vessels and in the lymph and examined the effects of VIP on mesenteric collecting lymphatic vessels of the guinea pig using pharmacological bioassays, intracellular microelectrode electrophysiology, immunofluorescence and quantitative real-time PCR. We showed that VIP alters lymphatic pumping by decreasing the frequency of lymphatic contractions and hyperpolarizing the lymphatic muscle membrane potential in a concentration-dependent manner. Our data further suggest that these effects are mainly mediated by stimulation of the VIP receptor VPAC2 located on the lymphatic muscle and the downstream involvement of protein kinase A (PKA) and ATP-sensitive K⁺ (KATP) channels. Inhibition of lymphatic pumping by VIP may compromise lymph drainage, oedema resolution and immune cell trafficking to the draining lymph nodes. PMID:22451438

  7. The Potential Mechanisms Underlying Aspirin-induced Inhibition of Ovarian Tumor Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Yu LIU; Jin KE; Shi-Quan LIU; Fu-Xiang ZHOU; Cong-Hua XIE; Yun-Feng ZHOU

    2005-01-01

    @@ 1 Introduction Ovarian cancer remains the most lethal disease of the gynecological cancers. Owing to the lack of an effective screening approach combined with inadequate therapeutic approach for advanced disease, fewer than 25% of ovarian cancers are identified at an early curable stage. Thus these make ovarian cancer a strong candidate for chemoprevention. In 2001, Akhmedkhanov et al. demonstrated a 2-3 folds decrease in epithelial ovarian cancer associated with Aspirin use. These epidemiological observations suggest that an improved understanding of the mechanisms by which NSAID may decrease the development of ovarian cancer could lead to improved approaches for chemoprevention of this deadly disease. In this research, we explored the potential mechanism underlying epidemiological observations that ovarian cancer occurs at a lower frequency in women exposed to Aspirin(ASP).

  8. 6-Benzylaminopurine inhibits growth of Monilinia fructicola and induces defense-related mechanism in peach fruit.

    Science.gov (United States)

    Zhang, Yangyang; Zeng, Lizhen; Yang, Jiali; Zheng, Xiaodong; Yu, Ting

    2015-11-15

    This study demonstrated the inhibitory effect of 6-benzylaminopurine (BAP), the first generation synthetic cytokinin, on the invasion of Monilinia fructicola in peach fruit and the possible mechanism involved for the first time. Our results suggested that BAP treatment had a 63% lower disease incidence and approximately 10 times lower lesion diameter compared to the control throughout the incubation period. In vitro BAP showed a direct inhibitory effect on M. fructicola spore germination. BAP could prevent fruit texture deterioration and protect the cell membrane from oxidative stress, while no adverse effects were observed on fruit quality maintenance. Analysis of defense-related enzymes activities indicated that the use of BAP induced higher specific polyphenol oxidase and peroxidase activities which triggered stronger host defensive responses. Thus, our results verified the proposed mechanism of BAP in controlling M. fructicola by direct inhibitory effect, delay peach senescence and activation of defensive enzymes. PMID:25977018

  9. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity

    OpenAIRE

    Ostrand-Rosenberg, Suzanne

    2010-01-01

    Myeloid-derived suppressor cells (MDSC) accumulate in most cancer patients and experimental animals with cancer. They accumulate in response to pro-inflammatory mediators and they use a variety of mechanisms to block both innate and adaptive antitumor immunity. Because of their critical role in obstructing immune responses, MDSC are a strategic obstacle to immunotherapies that require activation of the host’s cell-mediated and innate immune responses. Following a brief description of the fact...

  10. Subarachnoid meloxicam does not inhibit the mechanical hypernociception on carrageenan test in rats

    Directory of Open Access Journals (Sweden)

    Lanucha Fidelis da Luz Moura

    2015-04-01

    Full Text Available BACKGROUND AND OBJECTIVE: Evaluate the antinociceptive effects of subarachnoid meloxicam on the mechanical hypernociception induced by carrageenan in rats. METHODS: Randomized controlled trial. Eighteen adult male Wistar rats underwent a cannula implantation into the subarachnoid space and were randomly divided into two groups: Group I received saline solution 5 µL, while Group II received meloxicam 30 mg. The mechanical hypernociception was induced by intraplantar injection of carrageenan and evaluated using a digital analgesy meter every 30 min during a 4-h period. The results were recorded as the Δ withdrawal threshold (in g, calculated by subtracting the measurement value after treatment from baseline. RESULTS: The Δ withdrawal threshold mean values were lower in the group of patients treated with meloxicam over all time points between 45 and 165 min, however, there was no statistical significance (p = 0.835 for this difference. CONCLUSION: Subarachnoid meloxicam at a dose of 30 µg animal-1 did not suppress the mechanical hypernociception in a model of inflammatory pain induced by intraplantar administration of carrageenan in rats. The data suggest that other dosages should be investigated the drug effect is discarded.

  11. Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens

    Directory of Open Access Journals (Sweden)

    Andreas eVeith

    2011-03-01

    Full Text Available Background: The sulfur oxygenase reductase (SOR is the initial enzyme of the sulfur oxidation pathway in the thermoacidophilic Archaeon Acidianus ambivalens. The SOR catalyzes an oxygen-dependent sulfur disproportionation to H2S, sulfite and thiosulfate. The spherical, hollow, cytoplasmic enzyme is composed of 24 identical subunits with an active site pocket each comprising a mononuclear non-heme iron site and a cysteine persulfide. Substrate access and product exit occur via apolar chimney-like protrusions at the four-fold symmetry axes, via narrow polar pores at the three-fold symmetry axes and via narrow apolar pores within in each subunit. In order to investigate the function of the pores we performed site-directed mutagenesis and inhibitor studies. Results: Truncation of the chimney-like protrusions resulted in an up to seven-fold increase in specific enzyme activity compared to the wild type. Replacement of the salt bridge-forming Arg99 residue by Ala at the three-fold symmetry axes doubled the activity and introduced a bias towards reduced reaction products. Replacement of Met296 and Met297, which form the active site pore, lowered the specific activities by 25-55 % with the exception of an M296V mutant. X-ray crystallography of SOR wild type crystals soaked with inhibitors showed that Hg2+ and iodoacetamide bind to cysteines within the active site, whereas Zn2+ binds to a histidine in a side channel of the enzyme. The Zn2+ inhibition was partially alleviated by mutation of the His residue. Conclusions: The expansion of the pores in the outer shell led to an increased enzyme activity while the integrity of the active site pore seems to be important. Hg2+ and iodoacetamide block cysteines in the active site pocket, while Zn2+ interferes over a distance, possibly by restriction of protein flexibility or substrate access or product exit.

  12. Disruption of the EF-2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin.

    Science.gov (United States)

    Yang, J; Yang, J M; Iannone, M; Shih, W J; Lin, Y; Hait, W N

    2001-05-15

    Glioblastoma multiforme is the most treatment-resistant brain tumor. Elongation factor-2 (EF-2) kinase (calmodulin kinase III) is a unique protein kinase that is overexpressed in glioma cell lines and in human surgical specimens. Several mitogens activate this kinase and inhibitors block mitogen activation and produce cell death. Geldanamycin (GA) is a benzoquinone ansamycin antibiotic that disrupts Hsp90-protein interactions. Because EF-2 kinase is chaperoned by Hsp90, we investigated the effects of GA on the viability of glioma cells, the expression of EF-2 kinase protein, and the interaction between Hsp90 and EF-2 kinase. GA was a potent inhibitor of the clonogenicity of four glioma cells lines with IC(50)s ranging from 1 to 3 nM. 17-allylamino-17-demethoxygeldanamycin (17-AAG), a less toxic and less potent derivative of GA, inhibited the clonogenicity of glioma cells with IC(50) values of 13 nM in C6 cells and 35 nM in T98G cells. Treatment of cell lines for 24-48 h of GA or 17-AAG disrupted EF-2-kinase/Hsp90 interactions as measured by coimmunoprecipitation, resulting in a decreased amount of recoverable kinase in cell lysates. The ability of GA to inhibit the growth of glioma cells was abrogated by overexpressing EF-2 kinase. In addition, 17-AAG significantly inhibited the growth of a glioma xenograft in nude mice. These studies demonstrate for the first time the activity of GAs against human gliomas in vitro and in vivo and suggest that destruction of EF-2 kinase may be an important cytotoxic mechanism of this unique class of drug. PMID:11358819

  13. Identification of the Molecular Mechanisms Responsible for the Inhibition of Homing of AML Cells Triggered by CD44-Ligation

    KAUST Repository

    Al-Jifri, Ablah

    2011-08-03

    Acute Myeloid Leukemia (AML) is a cancerous disease that is defined by the inability to produce functional and mature blood cells, as well as the uncontrolled proliferation due to failure to undergo apoptosis of abnormal cells. The most common therapy for Leukemia, chemotherapy, has proven only to be partially efficient since it does not target the leukemic stem cells (LSCs) that have a high self-renewal and repopulation capacity and result in remission of the disease. Therefore targeting LSCs will provide more efficient therapy. One way to achieve this would be to inhibit their homing capability to the bone marrow. It has recently been shown that CD44, an adhesive molecule, plays a crucial role in cell trafficking and lodgement of both normal and leukemic stem cells. More importantly anti-CD44 monoclonal antibodies, along with its ability to induce differentiation of leukemic blasts, it inhibits specifically the homing capacity of LSCs to their micro-environmental niches. However, these molecular mechanisms that underlie the inhibition of homing have yet to be determined. To address these questions we conducted in vitro adhesion and blot-rolling assays to analyze the adherence and rolling capacity of these LSCs before and after treatment with anti-CD44 monoclonal antibody (mAb). Since glycosyltransferases play a crucial role in post translational carbohydrate decoration on adhesion molecules, we analyzed the expression (using quantitative PCR) of the different glycosyltransferases expressed in LSC\\'s before and after CD44 ligation (mAb treatment). Furthermore, we analyzed differentiation by flow cytometric analysis of treated and non-treated LSC\\'s. We anticipate that our results will set forth new insights into targeted therapies for AML.

  14. Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides.

    Science.gov (United States)

    Fernández, Pablo; Alcántara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo; Osuna, María D; De Prado, Rafael

    2016-01-01

    Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa, and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor) was applied before treatment with DM, the R biotype growth was significantly inhibited (GR50 of 1019.9 g ai ha(-1)) compared with the GR50 (1484.6 g ai ha(-1)) found for the R biotype without pretreatment with amitrole. However, GR50 values for S biotype do not vary with or without amitrole pretreatment. Dose-response experiments carried out to evaluate cross-resistance, showed resistance to aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ) inhibiting herbicides. Both R and S biotypes had a similar (14)C-DM uptake and translocation. The herbicide was poorly distributed among leaves, the rest of the shoot and roots with unappreciable acropetal and/or basipetal DM translocation at 96 h after treatment (HAT). The metabolism of (14)C-DM, D-acid and D-conjugate metabolites were identified by thin-layer chromatography. The results showed that DM resistance in C. echinatus is likely due to enhanced herbicide metabolism, involving Cyt. P450 as was demonstrated by indirect assays (amitrole pretreatment). The ACCase in vitro assays showed that the target site was very sensitive to APP, CHD and PPZ herbicides in the C. echinatus S biotype, while the R biotype was insensitive to the previously mentioned herbicides. DNA sequencing studies confirmed that C. echinatus cross-resistance to ACCase inhibitors has been conferred by specific ACCase double point mutations Ile-2041-Asn and Cys-2088-Arg. PMID:27148285

  15. Inhibition of HMGCoA reductase by simvastatin protects mice from injurious mechanical ventilation

    OpenAIRE

    Manitsopoulos, Nikolaos; Orfanos, Stylianos E; Kotanidou, Anastasia; Nikitopoulou, Ioanna; Siempos, Ilias; Magkou, Christina; Dimopoulou, Ioanna; Zakynthinos, Spyros G.; Armaganidis, Apostolos; Maniatis, Nikolaos A.

    2015-01-01

    Background Mortality from severe acute respiratory distress syndrome exceeds 40% and there is no available pharmacologic treatment. Mechanical ventilation contributes to lung dysfunction and mortality by causing ventilator-induced lung injury. We explored the utility of simvastatin in a mouse model of severe ventilator-induced lung injury. Methods Male C57BL6 mice (n = 7/group) were pretreated with simvastatin or saline and received protective (8 mL/kg) or injurious (25 mL/kg) ventilation for...

  16. Structure of a helicase–helicase loader complex reveals insights into the mechanism of bacterial primosome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Eliason, William K.; Steitz, Thomas A.

    2013-09-19

    During the assembly of the bacterial loader-dependent primosome, helicase loader proteins bind to the hexameric helicase ring, deliver it onto the oriC DNA and then dissociate from the complex. Here, to provide a better understanding of this key process, we report the crystal structure of the ~570-kDa prepriming complex between the Bacillus subtilis loader protein and the Bacillus stearothermophilus helicase, as well as the helicase-binding domain of primase with a molar ratio of 6:6:3 at 7.5 Å resolution. The overall architecture of the complex exhibits a three-layered ring conformation. Moreover, the structure combined with the proposed model suggests that the shift from the ‘open-ring’ to the ‘open-spiral’ and then the ‘closed-spiral’ state of the helicase ring due to the binding of single-stranded DNA may be the cause of the loader release.

  17. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria.......Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...

  18. The importance of a hot-sequential mechanism in triplet-state formation by charge recombination in reaction centers of bacterial photosynthesis

    International Nuclear Information System (INIS)

    In photosynthesis, pigment-excitation energies in the antenna system produced by light harvesting are transferred among antenna pigments toward the core antenna, where they are captured by the reaction center and initially fixed in the form of a charge separation. Primary charge separation between an oxidized special pair (P+) and a reduced bacteriopheohytin (H-) is occasionally intervened by recombination, and a spin-triplet state (3P*) is formed on P in the bacterial reaction center. The 3P* state is harmful to bio-organisms, inducing the formation of the highly damaging singlet oxygen species. Therefore, understanding the 3P*-formation mechanism is important. The 3P* formation is mediated by a state |m> of intermediate charge separation between P and the accessory chlorophyll, which is located between P and H. It will be shown theoretically in the present work that at room temperature, not only the mechanism of superexchange by quantum-mechanical virtual mediation at |m>, but also a hot-sequential mechanism contributes to the mediation. In the latter, although |m> is produced as a real state, the final state 3P* is quickly formed during thermalization of phonons in the protein matrix in |m>. In the former, the final state is formed more quickly before dephasing-thermalization of phonons in |m>. 3P* is unistep formed from the charge-separated state in the both mechanisms

  19. Studies on the mechanisms responsible for inhibition of experimental metastasis of B16-F10 murine melanoma by pentoxifylline.

    Science.gov (United States)

    Gude, R P; Binda, M M; Presas, H L; Klein-Szanto, A J; Bonfil, R D

    1999-01-01

    Pentoxifylline (PTX), a methylxanthine derivative widely used as a hemorheological agent in the treatment of peripheral vascular disease, was studied to unveil the mechanisms responsible for its inhibitory action on B16-F10 experimental metastasis. In vitro pretreatment of B16-F10 cells with noncytotoxic concentrations of PTX significantly inhibited their adhesion to reconstituted basement membrane Matrigel(R) and type IV collagen as well as the relative activity of secreted 92 kD metalloproteinase. However, PTX pretreatment of B16-F10 cells did not affect their in vitro invasiveness. Heterotypic organ adhesion assays carried out with B16-F10 cells and suspended organ tissues demonstrated that pretreatment with noncytotoxic concentrations of PTX of both, tumor cells or lung tissue, brought about a dose-dependent inhibition of melanoma cell adhesion to lung. Immunohistochemical studies using antibodies against CD31 adhesion molecule (PECAM-1) revealed that B16-F10 cells adhere to lung endothelial cells. Our results suggest that PTX may exert its inhibitory effect on tumor lodgment, and as a consequence of that on experimental metastases, through an inhibitory action on cell adhesion molecules. PMID:10087444

  20. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  1. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  2. Molecular Signaling Mechanisms of Natural and Synthetic Retinoids for Inhibition of Pathogenesis in Alzheimer’s Disease

    Science.gov (United States)

    Chakrabarti, Mrinmay; McDonald, Alexander J.; Reed, J. Will; Moss, Melissa A.; Das, Bhaskar C.; Ray, Swapan K.

    2016-01-01

    Retinoids, which are vitamin A derivatives, interact through retinoic acid receptors (RARs) and retinoid X receptors (RXRs) and have profound effects on several physiological and pathological processes in the brain. The presence of retinoic acid signaling is extensively detected in the adult central nervous system, including the amygdala, cortex, hypothalamus, hippocampus, and other brain areas. Retinoids are primarily involved in neural patterning, differentiation, and axon outgrowth. Retinoids also play a key role in the preservation of the differentiated state of adult neurons. Impairment in retinoic acid signaling can result in neurodegeneration and progression of Alzheimer’s disease (AD). Recent studies demonstrated severe deficiencies in spatial learning and memory in mice during retinoic acid (vitamin A) deprivation indicating its significance in preserving memory function. Defective cholinergic neurotransmission plays an important role in cognitive deficits in AD. All-trans retinoic acid is known to enhance the expression and activity of choline acetyltransferase in neuronal cell lines. Activation of RAR and RXR is also known to impede the pathogenesis of AD in mice by inhibiting accumulation of amyloids. In addition, retinoids have been shown to inhibit the expression of chemokines and pro-inflammatory cytokines in microglia and astrocytes, which are activated in AD. In this review article, we have described the chemistry and molecular signaling mechanisms of natural and synthetic retinoids and current understandings of their therapeutic potentials in prevention of AD pathology. PMID:26682679

  3. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  4. Glucosamine synthetase from Escherichia coli: kinetic mechanism and inhibition by N3-fumaroyl-L-2,3-diaminopropionic derivatives

    International Nuclear Information System (INIS)

    N3-(4-Methoxyfumaroyl)-L-2,3-diaminopropionic acid (FMDP; 1, R = OMe), a member of a new class of glutamine analogues, has been investigated as an inhibitor of pure Escherichia coli glucosamine synthetase. Product and dead-end inhibition studies indicate an ordered association to the enzyme with the sugar molecule binding prior to substrate or inhibitor. The inactivation exhibits pseudo-first-order kinetics, is irreversible, and occurs faster in the presence of fructose 6-phosphate, a behavior previously reported for the partially purified enzyme from Salmonella typhimurium. Inhibition occurs with partial covalent incorporation of L-FMDP into glucosamine synthetase. In the presence of fructose 6-phosphate, enzyme inactivation with [2-3H]-DL-FMDP is associated with the incorporation of 0.75 equiv of inhibitor and with the modification of 0.78 thiol residue per enzyme subunit. This result is the first evidence for covalent entrapment of the entire inhibitor molecule following FMDP-mediated glucosamine synthetase inactivation. Preliminary inactivation with 6-diazo-5-oxo-L-norleucine, known to alkylate selectively the NH2-terminal cysteine residue, completely prevents radioactivity incorporation. Therefore, this inhibitor is postulated to covalently modify glucosamine synthetase through direct addition of the thiol nucleophile from the terminal cysteine residue to the Michael acceptor 1, so acting as an affinity label rather than a mechanism-based inhibitor

  5. Defective inhibition of dream event memory formation: a hypothesized mechanism in the onset and progression of symptoms of schizophrenia.

    Science.gov (United States)

    Kelly, P H

    1998-06-01

    An average person normally spends at least 90 min to 2 h per night dreaming. Nevertheless, memories of dream events are not retrieved while awake unless the person awoke shortly after a dream. It is hypothesized here that schizophrenic delusions initially arise because a system that normally inhibits the formation of memories of dream events is defective. Therefore, memories of dream events or fragments would be occasionally made and placed in the normal memory store. The only reason that we really know anything happened to us in the past is that we have a memory of it, and having a memory of an event is sufficient to really believe it. Therefore, the schizophrenic would believe that the dream events actually happened. It is proposed that this is the basis of primary delusions. Because memories are represented by strengthened neural connections there will be an accumulation of connections that do not correspond to reality. This accumulation may account for other symptoms of schizophrenia such as thought disorder, loosening of associations, and hallucinations. The brain trying to draw conclusions from several memories may be the basis of secondary delusions. Evidence is presented for the ideas that primary delusions are due to memories of dream events, that a substance, with vasotocin-like bioactivity, is released in the brain during dreaming and inhibits memory formation, that the lateral habenula is a brain area involved in vasotocin actions and is affected by neuroleptics, and that brain mechanisms involved in vasotocin actions show pathological alterations in schizophrenia. PMID:9667811

  6. Dorsal column inhibition of nociceptive thalamic cells mediated by gamma-aminobutyric acid mechanisms in the cat.

    Science.gov (United States)

    Olausson, B; Xu, Z Q; Shyu, B C

    1994-11-01

    Cells in posterior parts of the cat thalamus were investigated. Responses in single units excited by electrical stimulation in the lateral funiculus (LF), the dorsal column nucleus (DCN) or the canine tooth pulp (TP) were analysed. All cells had a spontaneous resting activity which could be increased by extracellular iontophoretic application of DL-homocysteic acid (DLH) and decreased by gamma-aminobutyric acid (GABA). No effect on the spontaneous firing rate was observed following iontophoresis of the selective GABA-antagonists, picrotoxin (GABA-A receptor antagonist) or saclofen (GABA-B receptor antagonist). However, the decreased firing following GABA application was partially blocked by picrotoxin but not by saclofen. A phasic inhibition induced by DCN stimulation in nociceptive thalamic cells is indicated since simultaneous administration of picrotoxin increased the evoked response. This type of inhibitory mechanism could not be detected following LF or TP stimulation. The extracellular activity evoked by electrical stimulation of LF or TP was significantly depressed by preceding electrical stimulation in the DCN. This inhibition was reversed by simultaneous administration of picrotoxin, indicating an involvement of GABA-A receptors. The reversal of the DCN-induced depression of the late responses following LF stimulation occurred after application of saclofen. It is suggested that this effect is partly mediated via GABA-B receptors. Results from the present study indicate an interaction in the thalamus between presumed low-threshold (DCN) and presumed nociceptive afferents (LF and TP) similar to that previously described in the spinal cord. PMID:7872001

  7. Inhibiting Effect and Its Mechanism of Ibandronate on the Proliferation of Humanized NSCLC A549 Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    YAO Qiang; HUA Dong

    2014-01-01

    Objective:To explore the effect of ibandronate on the proliferation and the expression of human telomerase reverse transcriptase (hTERT) of non-small cell lung cancer (NSCLC) A549 cell line in vitro. Methods: Methyl thiazolyl tetrazolium (MTT) assay, microscope, flow cytometry (FCM) and semi-quantitative RT-PCR were employed to detect the cell proliferation, cell cycle as well as the morphological change and the expression of hTERT mRNA of A549 cell line. Results:The data showed that ibandronate could effectively inhibit the proliferation of A549 cell line in time-and concentration-dependent. Under the microscope, the lfoating cells increased gradually as the drug concentration increasing. FCM detection showed that ibandronate could induce the cell cycle stopped in G0/G1 phase and downregulation expression of hTERT. Conclusion:Ibandronate can inhibit the proliferation of A549 cell line in vitro, whose mechanism may be associated with cell cycle arrestted in phase G0/G1 and downregulation expression of hTERT.

  8. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor

  9. A Dynamic Model for Cellulosic Biomass Hydrolysis: a Comprehensive Analysis and Validation of Hydrolysis and Product Inhibition Mechanisms

    DEFF Research Database (Denmark)

    Tsai, Chien Tai; Morales Rodriguez, Ricardo; Sin, Gürkan;

    2014-01-01

    The objective of this study is to perform a comprehensive enzyme kinetics analysis in view of validating and consolidating a semimechanistic kinetic model consisting of homogeneous and heterogeneous reactions for enzymatic hydrolysis of lignocellulosic biomass proposed by the U.S. National...... product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanisms of the model. A nonlinear least squares method was used to identify the model and estimate kinetic parameters based on the experimental data. The suitable mathematical model for industrial...... application was selected among the proposed models based on statistical information (weighted sum of square errors). The analysis showed that transglycosylation plays a key role at high glucose levels. It also showed that the values of parameters depend on the selected experimental data used for parameter...

  10. Mechanism of low-level ionizing radiation in inhibiting B16 melanoma blood-borne pulmonary metastasis

    International Nuclear Information System (INIS)

    Objective: To study the mechanism of low-level ionizing radiation in inhibiting B16 melanoma blood-borne pulmonary metastasis. Method: 125I-labelled B16 melanoma cells were used to investigate the effect of low dose X-irradiation on the distribution and clearance of tumor cells in mice. Results: After whole body 7.5 cGy x-irradiation, the clearance of tumor cells was significantly increased from lungs of mice. The residual numbers of tumor cells were markedly lower than those of control in blood, spleen, liver and lungs (P<0.05-0.01). The cytotoxicity of murine splenic NK cells, LTR and the phagocytosis of macrophages augmented significantly after the mice were irradiated with low dose X-rays. Conclusion: These results suggest that the enhancement of NK cytotoxicity and macrophage phagocytotic function might be one of the important reasons why low dose radiation can accelerate the clearance of tumor cells from the lungs

  11. Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections.

    Science.gov (United States)

    Cusumano, Zachary T; Klein, Roger D; Hultgren, Scott J

    2016-04-01

    Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies. PMID:27227305

  12. Analysis of Mechanism-Based Inhibition of CYP 3A4 by a Series of Fluoroquinolone Antibacterial Agents.

    Science.gov (United States)

    Watanabe, Akiko; Takakusa, Hideo; Kimura, Takako; Inoue, Shin-Ichi; Kusuhara, Hiroyuki; Ando, Osamu

    2016-10-01

    A series of fluoroquinolone compounds (compounds 1-9), which contain a common quinolone scaffold, inactivated the metabolic activity of CYP3A. The purpose of this study was to identify mechanism-based inhibition (MBI) among these fluoroquinolone compounds by metabolite profiling to elucidate the association of the substructure and MBI potential. Reversibility of MBI after incubation with potassium ferricyanide differed among the test compounds. Representative quasi-irreversible inhibitors form a metabolite-intermediate (MI) complex with the heme of CYP3A4 according to absorption analysis. Metabolite profiling identified the cyclopropane ring-opened metabolites from representative irreversible inhibitors, suggesting irreversible binding of the carbon-centered radical species with CYP3A4. On the other hand, the oxime form of representative quasi-irreversible inhibitors was identified, suggesting generation of a nitroso intermediate that could form the MI complex. Metabolites of compound 10 with a methyl group at the carbon atom at the root of the amine moiety of compound 8 include the oxime form, but compound 10 did not show quasi-irreversible inhibition. The docking study with CYP3A4 suggested that a methyl moiety introduced at the carbon atom at the root of the primary amine disrupts formation of the MI complex between the heme and the nitroso intermediate because of steric hindrance. This study identified substructures of fluoroquinolone compounds associated with the MBI mechanism; introduction of substituted groups inducing steric hindrance with the heme of P450 can prevent formation of an MI complex. Our series of experiments may be broadly applicable to prevention of MBI at the drug discovery stage. PMID:27469000

  13. Mechanisms underlying aspirin-mediated growth inhibition and apoptosis induction of cyclooxygenase-2 negative colon cancer cell line SW480

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the effects of aspirin (acetylsalicylic acid) on proliferation and apoptosis of colorectal can- cer cell line $W480 and its mechanism. METHODS: Cyclooxygenase (COX)-2 negative colorec- tal cancer cell line SW480 was treated with aspirin at concentrations of 2.5 retool/L, 5.0 retool/L, 10.0 mmol/L for different periods in vitro. Anti-proliferation effect of aspirin on SW480 was detected by 3-(4,5-dimeth- ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle and apoptosis were observed by flow cytometry (FCM). Transmission electron microscope (TEM) was used for morphological study. Apoptosis-as- sociated genes were detected by immunohistochemical staining and Western blotting. RESULTS: Aspirin inhibited SW480 proliferation and induced apoptosis in a dose- and time-dependent manner. Treatment with different concentrations of aspirin significantly increased the proportions of cells at the G0/G1 phase and decreased the proportions of cells at the S- and G2/M phases in a concentration- dependent manner. Aspirin not only induced apoptosis but also caused cell necrosis at a high concentration as well. After treatment with aspirin, SW480 cells displayed typically morphological features of apoptosis and necrosis under TEM, and increased the Bcl-2 expression in cells, but the expression of Bax was down regulated. CONCLUSION: Aspirin inhibits proliferation and induces apoptosis of SW480 cells. Its anti-tumor mechanism may arrest cell cycle and shift Bax/Bcl-2 balance in cells.

  14. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms.

    Science.gov (United States)

    Chuang, Cheng-Hung; Yeh, Chiao-Lin; Yeh, Shu-Lan; Lin, En-Shyh; Wang, Li-Yu; Wang, Ying-Hsuna

    2016-07-01

    Our previous study demonstrated that quercetin-metabolite-enriched plasma (QP) but not quercetin itself upregulates peroxisome proliferator-activated receptor gamma (PPAR-γ) expression to induce G2/M arrest in A549 cells. In the present study, we incubated A549 cells with QP as well as quercetin-3-glucuronide (Q3G) and quercetin-3'-sulfate (Q3'S), two major metabolites of quercetin, to investigate the effects of quercetin metabolites on cell invasion and migration, the possible mechanisms and the role of PPAR-γ. We also compared the effects of QP with those of quercetin and troglitazone (TGZ), a PPAR-γ ligand. The results showed that QP significantly suppressed cell invasion and migration, as well as matrix metalloproteinases (MMPs)-2 activity and expression in a dose-dependent manner. The effects of 10% QP on those parameters were similar to those of 10μM quercetin and 20μM TGZ. However, QP and TGZ rather than quercetin itself increased the expressions of nm23-H1 and tissue inhibitor of metalloproteinase (TIMP-2). Furthermore, we demonstrated that Q3G and Q3'S also inhibited the protein expression of MMP-2. GW9662, a PPAR-γ antagonist, significantly diminished such an effect of Q3G and Q3'S. Silencing PPAR-γ expression in A549 cells also significantly diminished the suppression effect of Q3G and Q3'S on MMP-2 expression. Taken together, our study demonstrated that QP inhibited cell invasion and migration through nm23-H1/TIMP-2/MMP-2 associated mechanisms. The upregulation of PPAR-γ by quercetin metabolites such as Q3G and Q3'S could play an important role in the effects of QP. PMID:27260467

  15. Mechanism of Thymosin Beta 10 Inhibiting the Apoptosis 
and Prompting Proliferation in A549 Cells

    Directory of Open Access Journals (Sweden)

    Zixuan LI

    2014-11-01

    Full Text Available Background and objective Thymosin beta 10 (Tβ10 is one of β-thymosin family members, has a highly conserved polar 5 kDa peptides. This peptide is now regarded to be a small actin-binding protein and thereby induce depolymerization of the intracellular F-actin networks. Alteration of Tβ10 expression may alter the balance of cell growth, cell death, cell attachment and cell migration. Tβ10 also affects cell metastasis as well as proliferation, apoptosis and vascularization of cancer cells. But function of Tβ10 appear to be rather different between cancer cells, and the molecular mechanisms of β-thymosins to regulate cell apoptosis and proliferation in NSCLC (non-small cell lung cancer cell lines are unclear. In this study, we used lung adenocarcinoma cell line A549, added Tβ10 or down-regulated the expression of Tβ10. We observed the change of apoptosis, proliferation and cell cyclin ability in A549 and the mechanisms underline them were also identified. Methods After A549 was treated with 100 ng/mL recombinant human Tβ10 or siTβ10, apoptosis rate of A549 and cell cycle distribution were detected by flow cytometry (FCM. CCK-8 assay was employed to determine the proliferation of A549. The mRNA level of P53, Caspase-3, Cyclin A and Cyclin E were determined by real-time PCR. The protein level of P53, Caspase-3, Cyclin A and Cyclin E were detected by Western blot. Results Add Tβ10 can inhibit the apoptosis and prompt the proliferation of A549. It can also increase the cell rates of S-phrase and G2/M-phrase, decrease the expression of P53 and Caspase-3, but increase the expression of Cyclin A and Cyclin E. Interferance of Tβ10 can prompt the apoptosis and inhibit the proliferation of A549. It can also increase the cell rates of G0/G1-phrase, increase the expression of P53 and Caspase-3, but decrease the expression of Cyclin A and Cyclin E. Conclusion In lung cancer cell line, Tβ10 can inhibit the apoptosis by increase P53, drive cells into

  16. Inhibition of Glycoprotein VI Clustering by Collagen as a Mechanism of Inhibiting Collagen-Induced Platelet Responses: The Example of Losartan.

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    Full Text Available Exposure of platelets to collagen triggers the formation of a platelet clot. Pharmacological agents capable of inhibiting platelet activation by collagen are thus of potential therapeutic interest. Thrombus formation is initiated by the interaction of the GPIb-V-IX complex with collagen-bound vWF, while GPVI interaction with collagen triggers platelet activation that is reinforced by ADP and thromboxane A2. Losartan is an angiotensin II (Ang II type I receptor (AT1R antagonist proposed to have an antiplatelet activity via the inhibition of both the thromboxane A2 (TXA2 receptor (TP and the glycoprotein VI (GPVI. Here, we characterized in vitro the effects of losartan at different doses on platelet responses: losartan inhibited platelet aggregation and secretion induced by 1 μg . mL(-1 and 10 μg . mL(-1 of collagen with an IC50 of ~ 6 μM. Losartan inhibited platelet responses induced by the GPVI specific collagen related peptide but not by the α2β1 specific peptide. However, losartan did not inhibit the binding of recombinant GPVI to collagen, which is not in favor of a simple competition. Indeed, the clustering of GPVI observed in flow cytometry and using the Duolink methodology, was inhibited by losartan. The impact of a therapeutic dose of losartan (100 mg/day on platelet responses was analyzed ex vivo in a double blind study. No statistically significant differences were observed between losartan-treated (n=25 and non-treated (n=30 patients in terms of collagen and U46619-induced platelet activation. These data indicate that in treated patients, losartan does not achieve a measurable antiplatelet effect but provide the proof of concept that inhibiting collagen-induced GPVI clustering is of pharmacological interest to obtain an antithrombotic efficacy.ClinicalTrials.gov NCT00763893.

  17. SIGNAL MECHANISM OF INHIBITION OF BIFIDOBACTERIA ON GROWTH OF COLON CANCER

    Institute of Scientific and Technical Information of China (English)

    DAI Jian-yi; WANG Li-sheng; ZHU Hui-ming; PAN Ling-jia; MA Xiao-dong; ZHANG Ya-li; ZHOU Dian-yuan

    2005-01-01

    Objective: To explore the antitumor mechanisms of bifidobacteria adolescence in vivo. Methods: The content of extracellular signal regulated proteins (ERK)1/2, C-Jun N-terminal kinase (JNK), p38, c-fos and c-jun in nude mouse transplanted large bowel carcinoma was detected by using laser confocal microscopy. The expression of NF-kB was determined by immunohistochemistry. Results: After the nude mouse transplanted tumor was treated with bifidobacteria, the average fluorescent strength of ERK1/2, JNK, c-fos and c-jun was significantly lower than that in tumor control group (P0.05). The positive cell density of NF-kB in large bowel carcinoma transplantation tumors in Bifidobacterium injection group was markedly lower than that in tumor group(P<0.01). Conclusion: bifidobacteria adolescence could markedly decrease the activity of ERK1/2 and JNK, the expression c-fos and c-jun, and the activity of NF-kB.

  18. Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses.

    Science.gov (United States)

    Chatterjee, Srirupa; Basler, Christopher F; Amarasinghe, Gaya K; Leung, Daisy W

    2016-08-28

    The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most open reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures. PMID:27487481

  19. Mechanisms of triplex DNA-mediated inhibition of transcription initiation in cells.

    Science.gov (United States)

    Jain, Aklank; Magistri, Marco; Napoli, Sara; Carbone, Giuseppina M; Catapano, Carlo V

    2010-03-01

    Triplex-forming oligonucleotides (TFOs) are attractive tools to control gene expression at the transcriptional level. This anti-gene approach has proven to be successful in various experimental settings. However, the mechanisms leading to transcriptional repression in cells have not been fully investigated yet. Here, we examined the consequence of triplex DNA formation on the binding of transcriptional activators, co-activators and RNA Polymerase II to the ets2 gene promoter using chromatin immunoprecipitation assays. The triplex target sequence was located approximately 40-bp upstream of the transcription start site (TSS) and overlapped an Sp1 binding site relevant for ets2 transcription. We found that the ets2-TFO prevented binding of Sp1, TAF(II)130 and TAF(II)250 to the ets2 promoter, while binding of RNA polymerase II and TBP were not affected. The effects were both sequence and target specific, since the TFO had no effect on the c-myc promoter and a mutated ets2 promoter construct. Thus, triplex DNA formation near a TSS leads to formation of a non-functional pre-initiation complex (PIC) by blocking binding of transcriptional activators and co-activator molecules. This is the first direct demonstration of interference with PIC assembly at the TSS by oligonucleotide-triplex DNA formation in cells. PMID:20045441

  20. Radiotherapy for glioblastoma: reorganization of genome maintenance mechanisms involved in the process of inhibiting cancer

    International Nuclear Information System (INIS)

    Glioblastoma is a very aggressive brain tumor, which occurs in Glial cells. The treatment consists in chemotherapy, surgery and radiotherapy. The radiotherapy is a treatment method that uses ionizing radiation to kill cancer cells. The cells have genome maintenance mechanisms (MMG) distributed in apoptosis, DNA damage response, and cell cycle pathways. These pathways are formed by sets of proteins and perform specific functions within the cell (example: induce cell death). The mutation of these proteins associated with the failure of the MMG can cause the activation of mutations and consequently induce the development of cancer. This work, objective has to identify pathways and proteins expressed in cancer treatment using free software of the statistical analysis, developed in Fortran and R platforms to show the effects caused by radiation in the proteins of cancerous tissues. The results, were fond to pathways of glioblastoma treated with radiotherapy, activation of apoptosis and response to DNA damage pathways, indicating that there is death of carcinogenic tissue caused by radiation and that some cells are triggering a process of DNA repair. (author)