WorldWideScience

Sample records for bacterial infections

  1. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  2. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  3. Modeling intraocular bacterial infections.

    Science.gov (United States)

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  4. Rheumatoid arthritis and bacterial infections

    OpenAIRE

    N L Prokopjeva; N N Vesikova; I M Marusenko; V A Ryabkov

    2008-01-01

    To study features of bacterial infections course in pts with rheumatoid arthritis (RA) and changes of laboratory measures after focus of infection sanation. Material and methods. 46 pts with definite rheumatoid arthritis were examined at the time of comorbid infection (Cl) detection and after infection focus sanation. Bacteriological test with evaluation of flora sensitivity to antibiotics by disco-diffusion method was performed at baseline and after the course of antibacterial therapy to ass...

  5. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  6. Mast cells in bacterial infections

    OpenAIRE

    Rönnberg, Elin

    2014-01-01

    Mast cells are implicated in immunity towards bacterial infection, but the molecular mechanisms by which mast cells contribute to the host response are only partially understood. Previous studies have examined how mast cells react to purified bacterial cell wall components, such as peptidoglycan and lipopolysaccharide. To investigate how mast cells react to live bacteria we co-cultured mast cells and the gram-positive bacteria Streptococcus equi (S. equi) and Staphylococcus aureus (S. aureus)...

  7. Bacterial Nasal Infections

    Science.gov (United States)

    ... the Nose Sinusitis Bacteria may cause pimples and boils (furuncles) to form just inside the opening of ... weeks. Nasal furuncles More serious infections result in boils (furuncles) in the nasal vestibule. Boils may develop ...

  8. Rheumatoid arthritis and bacterial infections

    Directory of Open Access Journals (Sweden)

    N L Prokopjeva

    2008-01-01

    Full Text Available To study features of bacterial infections course in pts with rheumatoid arthritis (RA and changes of laboratory measures after focus of infection sanation. Material and methods. 46 pts with definite rheumatoid arthritis were examined at the time of comorbid infection (Cl detection and after infection focus sanation. Bacteriological test with evaluation of flora sensitivity to antibiotics by disco-diffusion method was performed at baseline and after the course of antibacterial therapy to assess its efficacy. Hemogram, serum fibrinogen, rheumatoid factor, circulating immune complexes (CIC, C-reactive protein levels were assessed. Serum interleukin (IL 1(3, IL6 and neopterin concentrations were examined by immune-enzyme assay in a part of pts. Typical clinical features of Cl were present in only 28 (60,9% pts. 13 (28,3% pts had fever, 12 (26,0% — leukocytosis, 15 (32,6% — changes of leucocyte populations. Some laboratory measures (thrombocytes, fibrinogen, CIC, neopterin levels significantly decreased (p<0,05 after infection focus sanation without correction of disease modifying therapy. Cl quite often develop as asymptomatic processes most often in pts with high activity and can induce disturbances promoting appearance of endothelial dysfunction, atherothrombosis and reduction of life duration. So timely detection and proper sanation of infection focuses should be performed in pts with RA

  9. Sustainable strategies for treatment of bacterial infections

    DEFF Research Database (Denmark)

    Molin, Søren

    2014-01-01

    not in a foreseeable future develop novel approaches and strategies to combat bacterial infections, many people will be at risk of dying from even trivial infections for which we until recently had highly effective antibiotics. We have for a number of years investigated chronic bacterial lung infections in patients...

  10. Tobacco use increases susceptibility to bacterial infection

    Directory of Open Access Journals (Sweden)

    Demuth Donald R

    2008-12-01

    Full Text Available Abstract Active smokers and those exposed to secondhand smoke are at increased risk of bacterial infection. Tobacco smoke exposure increases susceptibility to respiratory tract infections, including tuberculosis, pneumonia and Legionnaires disease; bacterial vaginosis and sexually transmitted diseases, such as chlamydia and gonorrhoea; Helicobacter pylori infection; periodontitis; meningitis; otitis media; and post-surgical and nosocomial infections. Tobacco smoke compromises the anti-bacterial function of leukocytes, including neutrophils, monocytes, T cells and B cells, providing a mechanistic explanation for increased infection risk. Further epidemiological, clinical and mechanistic research into this important area is warranted.

  11. Respiratory bacterial infections in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Hansen, Christine R; Høiby, Niels

    2013-01-01

    PURPOSE OF REVIEW: Bacterial respiratory infections are the main cause of morbidity and mortality in patients with cystic fibrosis (CF). Pseudomonas aeruginosa remains the main pathogen in adults, but other Gram-negative bacteria such as Achromobacter xylosoxidans and Stenotrophomonas maltophilia...... respiratory tract (nasal sampling) should be investigated and both infection sites should be treated....

  12. Glucocorticosteroids: as Adjuvant Therapy for Bacterial Infections

    Directory of Open Access Journals (Sweden)

    WONDIM MELKAM

    2015-01-01

    Full Text Available Glucocorticoids (GCs, synthetic analogues of the natural steroid hormones, are well known for their antiinflammatory and immunosuppressive properties in the periphery. They are widely and successfully used in the treatment of autoimmune diseases, chronic inflammation, and transplant rejection. Nowadays, GCs are claimed to have a beneficial role being as adjunct therapy in various infections. Different studies have been conducted to investigate their use as adjuvant therapy for different bacterial infection. This review, therefore, summarizes various bacterial infections for which glucocorticoids are reported to be used as adjuvant therapy, strategies for administration of glucocorticoids, and challenges of using glucocorticoids as adjuvant therapy.

  13. Citrobacter rodentium mouse model of bacterial infection.

    Science.gov (United States)

    Crepin, Valerie F; Collins, James W; Habibzay, Maryam; Frankel, Gad

    2016-10-01

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete. PMID:27606775

  14. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available BACKGROUND: Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. METHODOLOGY/PRINCIPAL FINDINGS: Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. CONCLUSION: Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  15. [Chemotherapy of severe bacterial infections in pediatrics].

    Science.gov (United States)

    Guggenbichler, J P

    1983-01-01

    Bacterial infections are frequent events in premature and newborn infants. The reason is a defective specific and nonspecific defence of bacterial organisms. Some immunoglobulins like IgM and IgA including secretory IgA are absent. Premature infants also show a decreased level of IgG. Cellular immunity is anatomically intact but functionally defective. A number of complement factors are lacking, the activation of the alternative pathway is impaired. Newborn infants with perinatal problems like asphyxia or difficult delivery, show defects of leucocyte function like decreased deformability, defective chemotaxis and defective killing of ingested bacteria. Certain diseases, like hypoxia and malformations of immature organ functions in this age group (decreased acid production in the stomach), facilitate bacterial colonization of surface epithelia and the invasion of tissues. Consequences of these pathogenetic mechanisms are an unimpaired propagation of bacterial organisms into the blood and meninges without localization of the infecting organisms at the entry site. Bacterial meningitis is not considered a separate disease entity but a complication of bacteremia and sepsis. Clinical symptoms are nonspecific at the onset of the infection. Fever is frequently absent; decreased appetite, vomiting, a bloated abdomen, diarrhea, tachycardia, tachypnea are early signs of a bacterial infection, a grey mottled appearance, cyanosis, jaundice, petechiae, apneic spells, seizure activity and a metabolic acidosis are symptoms of advanced infection. Successful treatment at this stage is often not possible. Every sign of a decreased well being of a newborn of premature infant warrants laboratory and bacteriologic work up for septicemia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6316669

  16. Periodontal diseases as bacterial infection

    Directory of Open Access Journals (Sweden)

    A. Bascones Martínez

    2005-12-01

    Full Text Available The periodontal disease is conformed by a group of illnesses affecting the gums and dental support structures. They are caused by certain bacteria found in the bacterial plaque. These bacteria are essential to the onset of illness; however, there are predisposing factors in both the host and the microorganisms that will have an effect on the pathogenesis of the illness. Periodontopathogenic bacterial microbiota is needed, but by itself, it is not enough to cause the illness, requiring the presence of a susceptible host. These diseases have been classified as gingivitis, when limited to the gums, and periodontitis, when they spread to deeper tissues. Classification of periodontal disease has varied over the years.The one used in this work was approved at the International Workshop for a Classification of Periodontal Diseases and Conditions, held in 1999. This study is an overview of the different periodontal disease syndromes. Later, the systematic use of antibiotic treatment consisting of amoxicillin, amoxicillinclavulanic acid, and metronidazole as first line coadjuvant treatment of these illnesses will be reviewed.

  17. Procalcitonin in sepsis and bacterial infections

    Directory of Open Access Journals (Sweden)

    Abhijit Chaudhury

    2013-10-01

    Full Text Available The differentiation of sepsis and systemic bacterial infections from other causes of systemic inflammatory response is crucial from the therapeutic point of view. The clinical signs and symptoms are non-specific and traditional biomarkers like white cell count, erythrocyte sedimentation rate and C-reactive protein are not sufficiently sensitive or specific to guide therapeutic decisions. Procalcitonin (PCT is considered a reliable marker for the diagnosis and prognosis of moderate to severe bacterial infections, and it has also been evaluated to guide the clinicians in the rational usage of antibiotics. This review describes the diagnostic and prognostic role of PCT as a biomarker in various clinical settings along with the laboratory aspects and its usefulness in risk stratification and antibiotic stewardship.

  18. BACTERIAL INFECTIONS IN RECIPIENTS OF RENAL ALLOGRAFT

    Directory of Open Access Journals (Sweden)

    A. V. Vatazin

    2012-01-01

    Full Text Available The study is devoted to analysis of microflora spectrum in various biological materials in patients after renal transplantation. The character of the flora is strongly dependent on the infectious process localization. Gram- positive and gram-negative bacteria are found in approximately equal proportions with a slight predominance of gram-positive flora. Isolated bacteria in most cases had pronounced polyvalent antibiotic resistance. The performed analysis substantiated recommendations for rational antibiotic therapy of various bacterial infections

  19. Targeted imaging of bacterial infections : advances, hurdles and hopes

    NARCIS (Netherlands)

    van Oosten, Marleen; Hahn, Markus; Crane, Lucia M. A.; Pleijhuis, Rick G.; Francis, Kevin P.; van Dijl, Jan Maarten; van Dam, Gooitzen M.

    2015-01-01

    Bacterial infections represent an increasing problem in modern health care, in particular due to ageing populations and accumulating bacterial resistance to antibiotics. Diagnosis is rarely straightforward and consequently treatment is often delayed or indefinite. Therefore, novel tools that can be

  20. A Survey of Bacterial Infections in Bone Marrow Transplant Recipients

    OpenAIRE

    Shirazi MH; R Ranjbar; A. Ghasemi; S Paktarigh; N Sadeghifard; Pourmand MR

    2007-01-01

    "nBackground: Bone marrow transplant (BMT) recipients are prone to bacterial, viral and fungal infections. Bacterial infec­tion is considered as one of the common and serious complications in bone marrow transplant recipients. The aim of this study was to determine the rate of bacterial infections in bone marrow transplant recipients."nMethods: Fifty-two blood and 25 catheter samples were obtained from 23 patients who were hospitalized in bone marrow trans­plantation...

  1. Bacterial infections in cirrhosis: A critical review andpractical guidance

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Bacterial infection is common and accounts for majormorbidity and mortality in cirrhosis. Patients withcirrhosis are immunocompromised and increased susceptibilityto develop spontaneous bacterial infections,hospital-acquired infections, and a variety of infectionsfrom uncommon pathogens. Once infection develops,the excessive response of pro-inflammatory cytokineson a pre-existing hemodynamic dysfunction in cirrhosisfurther predispose the development of serious complicationssuch as shock, acute-on-chronic liver failure, renalfailure, and death. Spontaneous bacterial peritonitisand bacteremia are common in patients with advancedcirrhosis, and are important prognostic landmarks inthe natural history of cirrhosis. Notably, the incidenceof infections from resistant bacteria has increasedsignificantly in healthcare-associated settings. Serumbiomarkers such as procalcitonin may help to improvethe diagnosis of bacterial infection. Preventive measures(e.g. , avoidance, antibiotic prophylaxis, and vaccination),early recognition, and proper management are requiredin order to minimize morbidity and mortality of infectionsin cirrhosis.

  2. Virus-induced secondary bacterial infection: a concise review

    Science.gov (United States)

    Hendaus, Mohamed A; Jomha, Fatima A; Alhammadi, Ahmed H

    2015-01-01

    Respiratory diseases are a very common source of morbidity and mortality among children. Health care providers often face a dilemma when encountering a febrile infant or child with respiratory tract infection. The reason expressed by many clinicians is the trouble to confirm whether the fever is caused by a virus or a bacterium. The aim of this review is to update the current evidence on the virus-induced bacterial infection. We present several clinical as well in vitro studies that support the correlation between virus and secondary bacterial infections. In addition, we discuss the pathophysiology and prevention modes of the virus–bacterium coexistence. A search of the PubMed and MEDLINE databases was carried out for published articles covering bacterial infections associated with respiratory viruses. This review should provide clinicians with a comprehensive idea of the range of bacterial and viral coinfections or secondary infections that could present with viral respiratory illness. PMID:26345407

  3. The role of temperate bacteriophages in bacterial infection.

    Science.gov (United States)

    Davies, Emily V; Winstanley, Craig; Fothergill, Joanne L; James, Chloe E

    2016-03-01

    Bacteriophages are viruses that infect bacteria. There are an estimated 10(31) phage on the planet, making them the most abundant form of life. We are rapidly approaching the centenary of their identification, and yet still have only a limited understanding of their role in the ecology and evolution of bacterial populations. Temperate prophage carriage is often associated with increased bacterial virulence. The rise in use of technologies, such as genome sequencing and transcriptomics, has highlighted more subtle ways in which prophages contribute to pathogenicity. This review discusses the current knowledge of the multifaceted effects that phage can exert on their hosts and how this may contribute to bacterial adaptation during infection.

  4. Investigation of septins using infection by bacterial pathogens.

    Science.gov (United States)

    Krokowski, S; Mostowy, S

    2016-01-01

    Investigation of the host cytoskeleton during infection by bacterial pathogens has significantly contributed to our understanding of cell biology and host defense. Work has shown that septins are recruited to the phagocytic cup as collarlike structures and enable bacterial entry into host cells. In the cytosol, septins can entrap actin-polymerizing bacteria in cage-like structures for targeting to autophagy, a highly conserved intracellular degradation process. In this chapter, we describe methods to investigate septin assembly and function during infection by bacterial pathogens. Use of these methods can lead to in-depth understanding of septin biology and suggest therapeutic approaches to combat infectious disease.

  5. Neonatal intensive care unit nosocomial bacterial infections

    Directory of Open Access Journals (Sweden)

    Ghazvini

    2008-08-01

    Full Text Available Background: Nosocomial infections increase patients' morbidity, mortality and length of hospital stay especially in neonatal intensive care units (NICUs and have become a matter of major concern. Controlling and preventing nosocomial infections need enough information about epidemiology of these infections. This study aims at estimating the incidence rate and the most frequent bacteria which cause these infections in neonatal intensive care unit of Ghaem university hospital, Mashhad. Methods: In this study which is performed during a twelve month period in 2004 and 2005 at neonatal intensive care unit of Ghaem hospital, 971 hospitalized neonates were studied. Data were collected considering the standard surveillance protocols. Early onset neonatal nosocomial infections and late onset neonatal infections were defined as illness appearing from birth to seven days and from eight to twenty-eight days postnatal age respectively. Statistical analysis was performed using the χ2 test. Results: In this study 32 cases of nosocomial infections were identified so the incidence rate of nosocomial infection in this ward was 3.29%. Fifteen babies identified with early onset neonatal nosocomial infection and the rest have presented with late onset neonatal infections. In order of frequency, the sites of infection were: primary bloodstream (84.4% and pneumonia (15.62%. Coagulase negative staphylococci were the most common bacteria (43.74% isolated in these patients. Other isolated bacteria were Klebsiella pneumonia (31.42% and other gram negative bacilli such as E.coli, Pseudomonas aeroginosa and Acintobacter spp. The mechanical ventilation and umbilical catheter were associated with nosocomial infections as risk factors in our study (p<0.01. Conclusion: Our findings show that the neonatal intensive care unit of Ghaem hospital has low rate of nosocomial infections. However, as neonatal intensive care unit is an area of great concern in terms of nosocomial

  6. Do bacterial vaginosis and chlamydial infection affect serum cytokine level?

    Directory of Open Access Journals (Sweden)

    Bogavac Mirjana

    2010-01-01

    Full Text Available Introduction. Serbia is the country with extremely low birth rate and a relatively high percentage of preterm deliveries (8%. With this in mind, discovering new diagnostic methods that could be used for the prediction of preterm delivery is of great importance. In this study we tried to determine whether bacterial vaginosis and chlamydial infection could provoke preterm delivery by activation of systemic cytokine network. Objective. The aim of this study was to determine serum levels of proinflammatory cytokines (IL-1β, IL-8, IFN-γ, IL-6 and TNF-α in pregnant women with symptoms of preterm delivery and to make correlation between these parameters and the presence of bacterial vaginosis or chlamydial infection. Method. In the serum of 35 pregnant women, which were divided in groups according to the presence or absence of bacterial vaginosis and chlamydial infection, commercial ELISA tests for proinflammatory cytokines were performed. Results. The serum level of IFN-γ was significantly increased in pregnant women having chlamydial infection, as well as the level of IL-1β in women with bacterial vaginosis. The levels of TNF-α, IL-6 and IL-8 were not significantly different between the investigated groups. Conclusion. The preliminary results obtained in this research point out the possibility that not only intrauterine or systemic infections, but also bacterial vaginosis and chlamydial infection can cause a partial activation of systemic cytokine network and contribute to the occurrence of preterm delivery.

  7. Multiple drug resistance and bacterial infection

    Institute of Scientific and Technical Information of China (English)

    Asad U Khan

    2008-01-01

    Drug resistance is becoming a great problem in developing countries due to excessive use and misuse of antibi-otics.The emergence of new pathogenic strains with resistance developed against most of the antibiotics which may cause,difficult to treat infection.To understand the current scenario in different mode of infection is most important for the clinicians and medical practitioners.This article summarized some common infections and an-tibiotic resistance pattern found among these pathogens.

  8. Strategies for combating bacterial biofilm infections

    Institute of Scientific and Technical Information of China (English)

    Hong Wu; Claus Moser; Heng-Zhuang Wang; Niels Hiby; Zhi-Jun Song

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.

  9. Relationship between Intrauterine Bacterial Infection and Early Embryonic Developmental Arrest

    Institute of Scientific and Technical Information of China (English)

    Shao-Fei Yan; Xin-Yan Liu; Yun-Fei Cheng; Zhi-Yi Li; Jie Ou; Wei Wang; Feng-Qin Li

    2016-01-01

    Background:Early embryonic developmental arrest is the most commonly understudied adverse outcome of pregnancy.The relevance of intrauterine infection to spontaneous embryonic death is rarely studied and remains unclear.This study aimed to investigate the relationship between intrauterine bacterial infection and early embryonic developmental arrest.Methods:Embryonic chorion tissue and uterine swabs for bacterial detection were obtained from 33 patients who underwent artificial abortion (control group) and from 45 patients who displayed early embryonic developmental arrest (trial group).Results:Intrauterine bacterial infection was discovered in both groups.The infection rate was 24.44% (11/45) in the early embryonic developmental arrest group and 9.09% (3/33) in the artificial abortion group.Classification analysis revealed that the highest detection rate for Micrococcus luteus in the early embryonic developmental arrest group was 13.33% (6/45),and none was detected in the artificial abortion group.M.luteus infection was significantly different between the groups (P < 0.05 as shown by Fisher's exact test).In addition,no correlation was found between intrauterine bacterial infection and history of early embryonic developmental arrest.Conclusions:M.luteus infection is related to early embryonic developmental arrest and might be one of its causative factors.

  10. TBK1 protects vacuolar integrity during intracellular bacterial infection.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    2007-03-01

    Full Text Available TANK-binding kinase-1 (TBK1 is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella, more extensive bacterial proliferation was observed in tbk1(-/- than tbk1(+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.

  11. Update and actual trends on bacterial infections following liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Jose Luis del Pozo

    2008-01-01

    Recent advances in effective antimicrobial prophylactic strategies have led to a decline in the incidence of opportunistic infections in liver transplant recipients.However, morbidity and mortality due to infectious diseases remain as major problems. Bacterial infections occurring early after transplant are mainly related to the technical aspects of the procedure. By contrast,after the first postoperative days and beyond, the nature and variety of infectious complications change.Opportunistic bacterial infections are uncommon after 6 mo in patients receiving stable and reduced maintenance doses of immunosuppression with good graft function and little is documented about these cases in the literature. Transplant recipients may be more susceptible to some pathogens, such as the Nocardia species, Legionella species, Listeria monocytogenes , Mycoplasma species, Salmonella species or Rhodococcus equi. Respiratory infections due to capsulated bacteria, such as Streptococcus pneumoniae and Haemophilus influenza, can be lifethreatening if not promptly treated in this population.These late bacterial infections may be very difficult to recognize and treat in this population. In this article,we review what has been described in the literature with regards to late bacterial infections following liver transplantation.

  12. Virus-induced secondary bacterial infection: a concise review

    Directory of Open Access Journals (Sweden)

    Hendaus MA

    2015-08-01

    Full Text Available Mohamed A Hendaus,1 Fatima A Jomha,2 Ahmed H Alhammadi3 1Department of Pediatrics, Academic General Pediatrics Division, Weill-Cornell Medical College, Hamad Medical Corporation, Doha, Qatar; 2School of Pharmacy, Lebanese International University, Khiara, Lebanon; 3Department of Pediatrics, Academic General Pediatrics Division, Weill-Cornell Medical College, Hamad Medical Corporation, Doha, Qatar Abstract: Respiratory diseases are a very common source of morbidity and mortality among children. Health care providers often face a dilemma when encountering a febrile infant or child with respiratory tract infection. The reason expressed by many clinicians is the trouble to confirm whether the fever is caused by a virus or a bacterium. The aim of this review is to update the current evidence on the virus-induced bacterial infection. We present several clinical as well in vitro studies that support the correlation between virus and secondary bacterial infections. In addition, we discuss the pathophysiology and prevention modes of the virus–bacterium coexistence. A search of the PubMed and MEDLINE databases was carried out for published articles covering bacterial infections associated with respiratory viruses. This review should provide clinicians with a comprehensive idea of the range of bacterial and viral coinfections or secondary infections that could present with viral respiratory illness. Keywords: bacteria, infection, risk, virus

  13. Catabolism of host-derived compounds during extracellular bacterial infections.

    Science.gov (United States)

    Meadows, Jamie A; Wargo, Matthew J

    2014-02-01

    Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.

  14. Liposomes as novel anti-infectives targeting bacterial virulence factors?

    Science.gov (United States)

    Azeredo da Silveira, Samareh; Perez, Antonio

    2015-05-01

    A recent report commissioned by Prime Minister David Cameron and chaired by former Goldman Sachs chief economist Jim O'Neill warns that the emergence, persistence and spread of antimicrobial resistance could lead to 10 million deaths per year and cause an economic burden as much as US$100 trillion by 2050. In the midst of this global crisis, unprecedented paths are being explored to combat bacterial infection. Virulence factors, and more particularly pore-forming toxins, play a key role in increasing morbidity and mortality caused by drug-resistant bacterial infections. Novel anti-infective liposomes specifically targeting and neutralizing these cytotoxic toxins are potential game-changers in the fight against deadly infections. PMID:25850805

  15. [Phage therapy for bacterial infection of burn].

    Science.gov (United States)

    Peng, Y Z; Huang, G T

    2016-09-20

    With the long-term and widespread use of antibiotics, drug resistance of bacteria has become a major problem in the treatment of burn infection. For treating multidrug resistant bacteria, phage therapy has become the focus of attention. Development of phage therapy to fill the blank of this field in China is extremely urgent. PMID:27647065

  16. A Survey of Bacterial Infections in Bone Marrow Transplant Recipients

    Directory of Open Access Journals (Sweden)

    MH Shirazi

    2007-09-01

    Full Text Available "nBackground: Bone marrow transplant (BMT recipients are prone to bacterial, viral and fungal infections. Bacterial infec­tion is considered as one of the common and serious complications in bone marrow transplant recipients. The aim of this study was to determine the rate of bacterial infections in bone marrow transplant recipients."nMethods: Fifty-two blood and 25 catheter samples were obtained from 23 patients who were hospitalized in bone marrow trans­plantation unit in Shariati Hospital in Tehran. Bacterial strains were isolated and identified by the standard conven­tional bacteriological methods. Antimicrobial susceptibility was performed according to the guidelines from NCCLS using 18 different antibiotics."nResults:  The strains of Staphylococci, Streptococcus viridans, Pseudomonas aeruginosa and Escherichia coli were isolated from 8(66.7%, 1(8.3%, 2 (16.7% and the 1(8.3% cases, respectively."nConclusion: Current study indicated that the bacterial infections particularly those caused by the Gram-positive cocci were still as important problem in bone marrow transplant.

  17. BACTERIAL VAGINOSIS, RECURRENT URINARY TRACT INFECTION AND ITS COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ramachandra Reddy

    2013-10-01

    Full Text Available DEFINITIONS : The term Bacterial Vaginosis is used to describe the condition of a patient complaining of fishy odor, sticky mucopurulent discharge from vagi na adherent to vulva and secretions staining the fomites. The patient is frustrated and not getting a cure for so many a months from the medical practitioners. Finally women who attend to sexually transmitted disease clinic to get a complete cure. The pati ents prone to get Bacterial vaginosis: ( 1 Couple using Condom lubricated with Nanoxynol - 9 a spermicidal, bactericidal destroys the Doderline bacilli ( H 2 O 2 producing lactobacilli a commensal in the vagina which maintain the acid pH in the vagina to preve nt bacterial vaginosis an ascending retrograde infection from perineum and anus. ( 2 perverted sex activities like cunnilingus and both homo and het e ro sexual active couple acquire to get bacterial vaginosis. ( 3 Saline douching of the vagina alters the pH as alkaline and facilitates bacterial vaginosis. ( 4 Tampooing or napkins kept for long duration without knowing the consequences of menstrual bleeding as a culture media for bacterial vaginosis to occur as a retrograde infection

  18. Respiratory viral infection predisposing for bacterial disease : a concise review

    NARCIS (Netherlands)

    Hament, JM; Kimpen, JLL; Fleer, A; Wolfs, TFW

    1999-01-01

    Although bacterial superinfection in viral respiratory disease is a clinically well documented phenomenon, the pathogenic mechanisms are still poorly understood. Recent studies have revealed some of the mechanisms involved. Physical damage to respiratory cells as a result of viral infection may lead

  19. PPARγ in Bacterial Infections: A Friend or Foe?

    Science.gov (United States)

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is now recognized as an important modulator of leukocyte inflammatory responses and function. Its immunoregulatory function has been studied in a variety of contexts, including bacterial infections of the lungs and central nervous system, sepsis, and conditions such as chronic granulomatous disease. Although it is generally believed that PPARγ activation is beneficial for the host during bacterial infections via its anti-inflammatory and antibacterial properties, PPARγ agonists have also been shown to dampen the host immune response and in some cases exacerbate infection by promoting leukocyte apoptosis and interfering with leukocyte migration and infiltration. In this review we discuss the role of PPARγ and its activation during bacterial infections, with focus on the potential of PPARγ agonists and perhaps antagonists as novel therapeutic modalities. We conclude that adjustment in the dosage and timing of PPARγ agonist administration, based on the competence of host antimicrobial defenses and the extent of inflammatory response and tissue injury, is critical for achieving the essential balance between pro- and anti-inflammatory effects on the immune system.

  20. The role of bacterial biofilms in chronic infections.

    Science.gov (United States)

    Bjarnsholt, Thomas

    2013-05-01

    Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most research into bacterial pathogenesis has focused on acute infections, but these diseases have now been supplemented by a new category of chronic infections caused by bacteria growing in slime-enclosed aggregates known as biofilms. Biofilm infections, such as pneumonia in cystic fibrosis patients, chronic wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial

  1. Severe bacterial infections in patients with non-transfusion-dependent thalassemia: prevalence and clinical risk factors

    Directory of Open Access Journals (Sweden)

    Nattiya Teawtrakul

    2015-10-01

    Conclusion: The prevalence of bacterial infection in patients with NTDT was found to be moderate. Time after splenectomy >10 years, deferoxamine therapy, and iron overload may be clinical risk factors for severe bacterial infection in patients with NTDT. Bacterial infection should be recognized in splenectomized patients with NTDT, particularly those who have an iron overload.

  2. 99mTc-ciprofloxacin for diagnosis of bacterial infection

    Science.gov (United States)

    Aungurarat, A.; Ngamprayad, T.; Dangprasert, M.; Phumkem, S.; Jowanaridhi, B.

    2015-05-01

    Preparation of 99mTc-ciprofloxacin for diagnosis of bacterial infection was investigated by varying factors which affected this compound. The optimum conditions for preparation of 99mTc-ciprofloxacin and a lyophilized kit for Tc-99m labelling were studied. The results from biodistribution study showed that the percentages of the injected dose per gram tissues of infected area at 1 and 3 hours after injection were around 0.25-0.56. 99mTc-ciprofloxacin was found sterile, pyrogen-free and non-toxic. Radiochemical purity was greater than 90% with greater than 6 hours of stability.

  3. A bacterial pathogen infecting gametophytes of Saccharina japonica (Laminariales, Phaeophyceae)

    Institute of Scientific and Technical Information of China (English)

    PENG Yanting; LI Wei

    2013-01-01

    A newly identified bacterial disease of kelp (Saccharinajaponica) gametophytes was found in clone cultures.It is characterized by swollen gametophyte cells in the early period of infection followed by filamentous fading.An alginolytic marine bacterium referred to as A-1 was isolated from the diseased gametophytes.On the basis of 16S rDNA sequencing and morphological,physiological and biochemical characteristics,the bacterium was identified as a strain of the genus Alteromonas.By testing Koch's postulates,Alteromonas sp.A-1 was further confirmed as the pathogen.The infection process was also investigated using both scanning electron and light microscopy.

  4. Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections.

    Science.gov (United States)

    Cohen, Taylor S; Hilliard, Jamese J; Jones-Nelson, Omari; Keller, Ashley E; O'Day, Terrence; Tkaczyk, Christine; DiGiandomenico, Antonio; Hamilton, Melissa; Pelletier, Mark; Wang, Qun; Diep, Binh An; Le, Vien T M; Cheng, Lily; Suzich, JoAnn; Stover, C Kendall; Sellman, Bret R

    2016-03-01

    Broad-spectrum antibiotic use may adversely affect a patient's beneficial microbiome and fuel cross-species spread of drug resistance. Although alternative pathogen-specific approaches are rationally justified, a major concern for this precision medicine strategy is that co-colonizing or co-infecting opportunistic bacteria may still cause serious disease. In a mixed-pathogen lung infection model, we find that the Staphylococcus aureus virulence factor α toxin potentiates Gram-negative bacterial proliferation, systemic spread, and lethality by preventing acidification of bacteria-containing macrophage phagosomes, thereby reducing effective killing of both S. aureus and Gram-negative bacteria. Prophylaxis or early treatment with a single α toxin neutralizing monoclonal antibody prevented proliferation of co-infecting Gram-negative pathogens and lethality while also promoting S. aureus clearance. These studies suggest that some pathogen-specific, antibody-based approaches may also work to reduce infection risk in patients colonized or co-infected with S. aureus and disparate drug-resistant Gram-negative bacterial opportunists.

  5. New determinants of prognosis in bacterial infections in cirrhosis

    Science.gov (United States)

    Acevedo, Juan; Fernández, Javier

    2014-01-01

    Despite major advances in the knowledge and management of liver diseases achieved in recent decades, decompensation of cirrhosis still carries a high burden of morbidity and mortality. Bacterial infections are one of the main causes of decompensation. It is very important for clinical management to be aware of the population with the highest risk of poor outcome. This review deals with the new determinants of prognosis in patients with cirrhosis and bacterial infections reported recently. Emergence of multiresistant bacteria has led to an increasing failure rate of the standard empirical antibiotic therapy recommended by international guidelines. Moreover, it has been recently reported that endothelial dysfunction is associated with the degree of liver dysfunction and, in infected patients, with the degree of sepsis. It has also been reported that relative adrenal insufficiency is frequent in the non-critically ill cirrhotic population and it is associated with a higher risk of developing infection, severe sepsis, hepatorenal syndrome and death. We advise a change in the standard empirical antibiotic therapy in patients with high risk for multiresistant infections and also to take into account endothelial and adrenal dysfunction in prognostic models in hospitalized patients with decompensated cirrhosis. PMID:24966596

  6. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology

    Directory of Open Access Journals (Sweden)

    Francesca Grasso

    2015-08-01

    Full Text Available Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.

  7. Diverse roles of endoplasmic reticulum stress sensors in bacterial infection.

    Science.gov (United States)

    Pillich, Helena; Loose, Maria; Zimmer, Klaus-Peter; Chakraborty, Trinad

    2016-12-01

    Bacterial infection often leads to cellular damage, primarily marked by loss of cellular integrity and cell death. However, in recent years, it is being increasingly recognized that, in individual cells, there are graded responses collectively termed cell-autonomous defense mechanisms that induce cellular processes designed to limit cell damage, enable repair, and eliminate bacteria. Many of these responses are triggered not by detection of a particular bacterial effector or ligand but rather by their effects on key cellular processes and changes in homeostasis induced by microbial effectors when recognized. These in turn lead to a decrease in essential cellular functions such as protein translation or mitochondrial respiration and the induction of innate immune responses that may be specific to the cellular deficit induced. These processes are often associated with specific cell compartments, e.g., the endoplasmic reticulum (ER). Under non-infection conditions, these systems are generally involved in sensing cellular stress and in inducing and orchestrating the subsequent cellular response. Thus, perturbations of ER homeostasis result in accumulation of unfolded proteins which are detected by ER stress sensors in order to restore the normal condition. The ER is also important during bacterial infection, and bacterial effectors that activate the ER stress sensors have been discovered. Increasing evidence now indicate that bacteria have evolved strategies to differentially activate different arms of ER stress sensors resulting in specific host cell response. In this review, we will describe the mechanisms used by bacteria to activate the ER stress sensors and discuss their role during infection. PMID:26883353

  8. Bacterial sensitivity to fosfomycin in pregnant women with urinary infection

    Directory of Open Access Journals (Sweden)

    Rodrigo Batista Souza

    2015-06-01

    Full Text Available The aim this study was to determine the in vitrosusceptibility to fosfomycin of bacteria isolated from urine samples of pregnant women with urinary tract infection. Samples of urine culture with bacterial growth of pregnant women were collected from clinical laboratories in Tubarão, state of Santa Catarina, Brazil, between September 2012 and May 2013. In the experimental stage, the colonies were tested for sensitivity to fosfomycin by using the Kirby-Bauer method. The following information relating to the samples was also collected: patients' age, colony count, type(s of identified bacterial(s and result of the antimicrobial sensitivity test. Student's t-test was used for mean comparison. A total of 134 samples were selected for the study. The age of the subjects ranged from 15 to 40 years (mean 26.7. Escherichia coli(Gram-negative and Staphylococcus aureus(Gram-positive were the most commonly identified species. In 89% of cases, the microorganisms were sensitive to fosfomycin. E. coliand S. aureuswere the main species of bacteria responsible for urinary tract infections in women in the study area. The most prevalent microorganisms in pregnant women with urinary tract infection were susceptible to fosfomycin.

  9. A STUDY OF SECONDARY BACTERIAL INFECTIONS IN DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Tirupati Reddy Chirra

    2016-09-01

    cystitis, 9 patients had acute pyelonephritis. In Bacterial skin and mucous membrane infection, 7 otitis externa patients were there, 2 cellulitis and 4 furuncles or abscess on nose were present. In mycotic skin and mucous membrane infections, 3 were thought to have skin candida infections. There is a strong association of the infections in the diabetic mellitus patients (P<0.05. CONCLUSION Diabetes Mellitus depresses the immunity and causes a plethora of infections. This study helps the practising physicians to understand the common secondary infections and thus help them to take immediate measures to prevent further complications and arrest the natural progression of the disease.

  10. Transcriptional response of Musca domestica larvae to bacterial infection.

    Directory of Open Access Journals (Sweden)

    Ting Tang

    Full Text Available The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs, various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin, which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.

  11. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    Science.gov (United States)

    Wang, Qi

    As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost 35.7 billion to 45 billion, and contribute to 88,000 deaths in hospitals annually. The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country. The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 μg daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals. Therefore, the objectives of

  12. Detection of intracellular bacterial communities in human urinary tract infection.

    Directory of Open Access Journals (Sweden)

    David A Rosen

    2007-12-01

    Full Text Available BACKGROUND: Urinary tract infections (UTIs are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC. While UTIs are typically considered extracellular infections, it has been recently demonstrated that UPEC bind to, invade, and replicate within the murine bladder urothelium to form intracellular bacterial communities (IBCs. These IBCs dissociate and bacteria flux out of bladder facet cells, some with filamentous morphology, and ultimately establish quiescent intracellular reservoirs that can seed recurrent infection. This IBC pathogenic cycle has not yet been investigated in humans. In this study we sought to determine whether evidence of an IBC pathway could be found in urine specimens from women with acute UTI. METHODS AND FINDINGS: We collected midstream, clean-catch urine specimens from 80 young healthy women with acute uncomplicated cystitis and 20 asymptomatic women with a history of UTI. Investigators were blinded to culture results and clinical history. Samples were analyzed by light microscopy, immunofluorescence, and electron microscopy for evidence of exfoliated IBCs and filamentous bacteria. Evidence of IBCs was found in 14 of 80 (18% urines from women with UTI. Filamentous bacteria were found in 33 of 80 (41% urines from women with UTI. None of the 20 urines from the asymptomatic comparative group showed evidence of IBCs or filaments. Filamentous bacteria were present in all 14 of the urines with IBCs compared to 19 (29% of 66 samples with no evidence of IBCs (p < 0.001. Of 65 urines from patients with E. coli infections, 14 (22% had evidence of IBCs and 29 (45% had filamentous bacteria, while none of the gram-positive infections had IBCs or filamentous bacteria. CONCLUSIONS: The presence of exfoliated IBCs and filamentous bacteria in the urines of women with acute cystitis suggests that the IBC pathogenic pathway characterized in the murine model may occur in humans. The

  13. 99mTc-Ciprofloxacin for diagnosis of bacterial infection

    International Nuclear Information System (INIS)

    Preparation of '9'9'mTc-Ciprofloxacin for diagnosis of bacterial infection was investigated in this research. Factors including pH, injected dose and the purity of 99mTc-Ciprofloxacin were determined. The optimal labeling condition of 99mTc-Ciprofloxacin was found to be at pH 4.0-5.0. In terms of efficiency, the injected dose per gram of infected area was 0.25-0.56, which lasted for the duration of 1-3 h after injection. The radiochemical purity remained >90% with stability for the duration of 6 h. Therefore, this study has demonstrated the preparation of sterile, pyrogen-free and non-toxic 99mTc-Ciprofloxacin.

  14. Prevalence and bacterial susceptibility of hospital acquired urinary tract infection

    Directory of Open Access Journals (Sweden)

    Dias Neto José Anastácio

    2003-01-01

    Full Text Available PURPOSE: Urinary tract infection is the most common nosocomially acquired infection. It is important to know the etiology and antibiotic susceptibility infectious agents to guide the initial empirical treatment. OBJECTIVE: To determine the prevalence of bacterial strains and their antibiotic susceptibility in nosocomially acquired urinary tract infection in a university hospital between January and June 2003. METHODS: We analyzed the data of 188 patients with positive urine culture (= 10(5 colony-forming units/mL following a period of 48 hours after admission. RESULTS: Half of patients were male. Mean age was 50.26 ± 22.7 (SD, range 3 months to 88 years. Gram-negative bacteria were the agent in approximately 80% of cases. The most common pathogens were E. coli (26%, Klebsiella sp. (15%, P. aeruginosa (15% and Enterococcus sp. (11%. The overall bacteria susceptibility showed that the pathogens were more sensible to imipenem (83%, second or third generation cephalosporin and aminoglycosides; and were highly resistant to ampicillin (27% and cefalothin (30%. It is important to note the low susceptibility to ciprofloxacin (42% and norfloxacin (43%. CONCLUSION: This study suggests that if one can not wait the results of urine culture, the best choices to begin empiric treatment are imipenem, second or third generation cephalosporin and aminoglycosides. Cefalothin and ampicillin are quite ineffective to treat these infections.

  15. Antimicrobial Nanoparticle for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya

    Liposomes are spherical lipid vesicles with bilayered membrane structure, which have been recognized as one of the most widely used carriers for delivering a myriad of pharmaceuticals. Liposomes can carry both hydrophilic and hydrophobic agents with high efficiency and protect them from undesired effects of external conditions. However, the applications of liposomes are usually limited by their instability during storage. They are inclined to fuse with one another immediately after preparation, resulting in undesired mixing, increase in size, and payload loss. To overcome this limitation, this dissertation will focus on the technology to stabilize liposomes during storage and destabilize at specific conditions in order to allow controllable therapeutic release, as well as demonstrate their application to treat one of the bacterial infection diseases, acne vulgaris. The first area of this research is stimuli-responsive liposomes development, where the liposomes are stabilized by introducing gold nanoparticles to adsorb to their surface. As a result, the liposomes are prevented from fusing with one another and undesirable payload release during storage or physiological environments. Moreover, therapeutic is controllably released depending on environment conditions, such as acidic pH and bacterial virulence factor. In case of acid-responsive liposomes, the bound gold nanoparticles can effectively prevent liposomes from fusing with one another at neutral pH value, while at acidic environment (e.g. pHacne vulgaris by delivering therapeutics to the acne-causing bacteria, named Propionibacterium acnes (P.acnes). First, lauric acid (LA), an antimicrobial with strong activity against P. acnes, is encapsulated in liposomes (LipoLA), which is shown to effectively kill the bacteria by fusion with the bacterial membrane, resulting in a direct insertion of LA molecules to the membrane and destruction of its surface structure in vitro and in vivo. The system is then further

  16. The burden of invasive bacterial infections in Pemba, Zanzibar.

    Directory of Open Access Journals (Sweden)

    Kamala Thriemer

    Full Text Available BACKGROUND: We conducted a surveillance study to determine the leading causes of bloodstream infection in febrile patients seeking treatment at three district hospitals in Pemba Island, Zanzibar, Tanzania, an area with low malaria transmission. METHODS: All patients above two months of age presenting to hospital with fever were screened, and blood was collected for microbiologic culture and malaria testing. Bacterial sepsis and malaria crude incidence rates were calculated for a one-year period and were adjusted for study participation and diagnostic sensitivity of blood culture. RESULTS: Blood culture was performed on 2,209 patients. Among them, 166 (8% samples yielded bacterial growth; 87 (4% were considered as likely contaminants; and 79 (4% as pathogenic bacteria. The most frequent pathogenic bacteria isolated were Salmonella Typhi (n = 46; 58%, followed by Streptococcus pneumoniae (n = 12; 15%. The crude bacteremia rate was 6/100,000 but when adjusted for potentially missed cases the rate may be as high as 163/100,000. Crude and adjusted rates for S. Typhi infections and malaria were 4 and 110/100,000 and 4 and 47/100,000, respectively. Twenty three (51%, 22 (49% and 22 (49% of the S. Typhi isolates were found to be resistant toward ampicillin, chloramphenicol and cotrimoxazole, respectively. Multidrug resistance (MDR against the three antimicrobials was detected in 42% of the isolates. CONCLUSIONS: In the presence of very low malaria incidence we found high rates of S. Typhi and S. pneumoniae infections on Pemba Island, Zanzibar. Preventive measures such as vaccination could reduce the febrile disease burden.

  17. Viral and atypical bacterial infections in the outpatient pediatric cystic fibrosis clinic

    DEFF Research Database (Denmark)

    Olesen, Hanne Vebert; Nielsen, Lars P; Schiotz, Peter Oluf

    2006-01-01

    BACKGROUND: Respiratory viral and atypical bacterial infections are associated with pulmonary exacerbations and hospitalisations in cystic fibrosis patients. We wanted to study the impact of such infections on children attending the outpatient clinic. METHODS: Seventy-five children were followed...

  18. Severe bacterial non-aids infections in HIV-positive persons

    DEFF Research Database (Denmark)

    Søgaard, O S; Reekie, J; Ristola, M;

    2013-01-01

    This study aimed to determine incidence rates (IR) and identify risk factors for severe bacterial non-AIDS infections (SBnAI) requiring hospital admission.......This study aimed to determine incidence rates (IR) and identify risk factors for severe bacterial non-AIDS infections (SBnAI) requiring hospital admission....

  19. In Vivo Evaluation of Bacterial Infection Involving Morphologically Different Surgical Meshes

    NARCIS (Netherlands)

    Engelsman, Anton F.; van Dam, Gooitzen M.; van der Mei, Henny C.; Busscher, Henk J.; Ploeg, Rutger J.

    2010-01-01

    Objective: To study the influence of morphology of surgical meshes on the course of bacterial infection under the influence of the host immune system in an in vivo chronic bacterial infection model. Background: The use of prosthetic meshes has increased dramatically the last decades in abdominal wal

  20. Parasitic infection protects wasp larvae against a bacterial challenge.

    Science.gov (United States)

    Manfredini, Fabio; Beani, Laura; Taormina, Mauro; Vannini, Laura

    2010-09-01

    Host antibacterial defense after Strepsiptera parasitization is a complex and rather unexplored topic. The way how these parasites interact with bacteria invading into the host insect during an infection is completely unknown. In the present study we demonstrate that larvae of the paper wasp Polistes dominulus are more efficient at eliminating bacteria when they are parasitized by the strepsipteran insect Xenos vesparum. We looked at the expression levels of the antimicrobial peptide defensin and we screened for the activity of other hemolymph components by using a zone of inhibition assay. Transcription of defensin is triggered by parasitization, but also by mechanical injury (aseptic injection). Inhibitory activity in vitro against the Gram positive bacterium Staphylococcus aureus is not influenced by the presence of the parasite in the wasp or by a previous immune challenge, suggesting a constitutive power of killing this bacterium by wasp hemolymph. Our results suggest either direct involvement of the parasite or that defensin and further immune components not investigated in this paper, for example other antimicrobial peptides, could play a role in fighting off bacterial infections in Polistes. PMID:20546915

  1. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections

    Directory of Open Access Journals (Sweden)

    Karl Krupp

    2015-01-01

    Full Text Available The emergence of multi-drug resistant sexually transmitted infections (STIs is causing a treatment crisis across the globe. While cephalosporin-resistant gonorrhea is one of the most pressing issues, extensively antibiotic resistant Chlamydia trachomatis and Mycoplasma hominis are also becoming commonplace. Experts have suggested that the failure of current treatment regimens are "largely inevitable" and have called for entirely new classes of antimicrobial agents. With the exception of several new classes of drugs primarily targeting nosocomial infections, progress has been slow. While pharmaceutical companies continue to introduce new drugs, they are based on decade-old discoveries. While there is disagreement about what constitutes new classes of antibiotics, many experts suggest that the last truly new family of antimicrobials was discovered in 1987. This review summarizes the existing literature on antibiotic resistance in common bacterial and protozoal STIs. It also briefly discusses several of the most promising alternatives to current therapies, and further examines how advances in drug delivery, formulation, concentration, and timing are improving the efficacy of existing treatments. Finally, the paper discusses the current state of pharmaceutical development for multidrug-resistant STI.

  2. An overview of the role of bacterial infection in male infertility

    Directory of Open Access Journals (Sweden)

    Hamed Fanaei

    2013-03-01

    Full Text Available An important cause of male infertility is the bacterial infections of the genitourinary tract. These infections affect sperm cell function and whole spermatogenesis and also cause deterioration in spermatogenesis, obstruction of the seminal tract, and impairment of spermatozoa function. The most important bacteria associated with genitourinary tract infections include chlamydia trachomatis, Neisseria gonorrhoeae, and genital mycoplasma species. Inappropriate or delayed therapy of the bacterial infections of the genitourinary tract will lead to reduced fertility and, subsequently in severe cases, infertility. In other words, a good understanding of the interaction between bacterial infections and the reproductive system plays an important role in the treatment of infertile men. In this review article, we will discuss clinical and laboratory findings related to the bacterial infection of the genitourinary tract and its effects on male infertility.

  3. Comparison on Serum Levels of Procalcitonin of Children with Viral and Bacterial Infection

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Wang; Su-nan Cui; Yan-xue Gong

    2013-01-01

    Objective To compare and analyze serum levels of procalcitonin (PCT) of children with viral and bacterial infection and probe into the importance of determining the level of serum PCT in the diagnosis of bacterial infection in order to provide evidences of the clinical use of antibiotics. Methods A total of 85 cases of children with an average age of 8.9 years (10 months-12 years) were enrolled in this study, 53 cases were with viral infection and 32 cases with bacterial infection. We determined serum levels of PCT by semi-quantitative solid phase immunoassay, and the serum levels of PCT were divided into four grades as Results The serum level of PCT of the group with bacterial infection were signiifcantly higher than that of the group with viral infection (P Conclusions Serum PCT is a bacterial sensitive marker of bacterial infection in children, and the determination of the level of serum PCT is helpful for the diagnosis of bacterial infection, which can also be a basis for the use of antibiotics.

  4. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary MRSA infection

    Science.gov (United States)

    Sun, Keer; Metzger, Dennis W.

    2014-01-01

    Methicillin-resistant S. aureus (MRSA) has emerged as a leading contributor to mortality during recent influenza pandemics. The mechanism for this influenza-induced susceptibility to secondary S. aureus infection is poorly understood. Here we show that innate antibacterial immunity was significantly suppressed during the recovery stage of influenza infection, despite the fact that MRSA super-infection had no significant effect on viral burdens. Compared to mice infected with bacteria alone, post-influenza MRSA infected mice exhibited impaired bacterial clearance, which was not due to defective phagocyte recruitment, but rather coincided with reduced intracellular reactive oxygen species (ROS) levels in alveolar macrophages and neutrophils. NADPH oxidase is responsible for ROS production during phagocytic bacterial killing, a process also known as oxidative burst. We found that gp91phox-containing NADPH oxidase activity in macrophages and neutrophils was essential for optimal bacterial clearance during respiratory MRSA infections. In contrast to WT animals, gp91phox−/− mice exhibited similar defects in MRSA clearance before and after influenza infection. Using gp91phox+/− mosaic mice, we further demonstrate that influenza infection inhibits a cell-intrinsic contribution of NADPH oxidase to phagocyte bactericidal activity. Together, our results establish that influenza infection suppresses NADPH oxidase-dependent bacterial clearance and leads to susceptibility to secondary MRSA infection. PMID:24563256

  5. Viral Co-infections are Common and are Associated with Higher Bacterial Burden in Children with C. difficile Infection

    OpenAIRE

    El Feghaly, Rana E.; Stauber, Jennifer L.; Tarr, Phillip I.; Haslam, David B.

    2013-01-01

    Clostridium difficile infections in children are increasing. In this cohort study, we enrolled 62 children with diarrhea and C. difficile. We performed polymerase chain reaction (PCR) assays to detect viral agents of gastroenteritis and quantify C. difficile burden. Fifteen (24%) children diagnosed with C. difficile infection had a concomitant viral co-infection. These patients tended to be younger and had a higher C. difficile bacterial burden than children with no viral co-infections (media...

  6. Neuroimaging of pediatric intracranial infection--part 1: techniques and bacterial infections.

    Science.gov (United States)

    Nickerson, Joshua P; Richner, Beat; Santy, Ky; Lequin, Maarten H; Poretti, Andrea; Filippi, Christopher G; Huisman, Thierry A G M

    2012-04-01

    Conventional and advanced neuroimaging have become central to the diagnosis of infectious diseases of the pediatric central nervous system. Imaging modalities used by (pediatric) neuroradiologists include cranial ultrasound, computed tomography, and magnetic resonance imaging, including advanced techniques such as diffusion weighted or tensor imaging, perfusion weighted imaging, susceptibility weighted imaging, and (1) H magnetic resonance spectroscopy. In this first of a two part review, imaging techniques in general and the imaging findings of bacterial infections of the intracranial compartment including epidural empyema, subdural empyema, meningitis, cerebritis, cerebral abscess, and pyogenic intraventricular empyema (ventriculitis) are discussed. PMID:22304299

  7. Multiresistant bacterial infections in liver cirrhosis: Clinical impact and new empirical antibiotic treatment policies

    Science.gov (United States)

    Acevedo, Juan

    2015-01-01

    Recently, important changes have been reported regarding the epidemiology of bacterial infections in liver cirrhosis. There is an emergence of multiresistant bacteria in many European countries and also worldwide, including the United States and South Korea. The classic empirical antibiotic treatment (third-generation cephalosporins, e.g., ceftriaxone, cefotaxime or amoxicillin-clavulanic acid) is still effective in infections acquired in the community, but its failure rate in hospital acquired infections and in some health-care associated infections is high enough to ban its use in these settings. The current editorial focuses on the different epidemiology of bacterial infections in cirrhosis across countries and on its therapeutic implications. PMID:25954474

  8. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections

    DEFF Research Database (Denmark)

    Hentzer, Morten; Givskov, Michael Christian

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. The discovery of bacterial-communication systems (quorum......-sensing systems), which orchestrate important temporal events during the infection process, has afforded a novel opportunity to ameliorate bacterial infection by means other than growth inhibition. Compounds able to override bacterial signaling are present in nature. Herein we discuss the known signaling...... mechanisms and potential antipathogenic drugs that specifically target quorum-sensing systems in a manner unlikely to pose a selective pressure for the development of resistant mutants....

  9. Cytokines and Chemokines as Biomarkers of Community-Acquired Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Michal Holub

    2013-01-01

    Full Text Available Routinely used biomarkers of bacterial etiology of infection, such as C-reactive protein and procalcitonin, have limited usefulness for evaluation of infections since their expression is enhanced by a number of different conditions. Therefore, several inflammatory cytokines and chemokines were analyzed with sera from patients hospitalized for moderate bacterial and viral infectious diseases. In total, 57 subjects were enrolled: 21 patients with community-acquired bacterial infections, 26 patients with viral infections, and 10 healthy subjects (control cohorts. The laboratory analyses were performed using Luminex technology, and the following molecules were examined: IL-1Ra, IL-2, IL-4, IL-6, IL-8, TNF-α, INF-γ, MIP-1β, and MCP-1. Bacterial etiology of infection was associated with significantly (P<0.001 elevated serum concentrations of IL-1Ra, IL-2, IL-6, and TNF-α in comparison to levels observed in the sera of patients with viral infections. In the patients with bacterial infections, IL-1Ra and IL-8 demonstrated positive correlation with C-reactive protein, whereas, IL-1Ra, TNF-α, and MCP-1 correlated with procalcitonin. Furthermore, elevated levels of IL-1Ra, IL-6, and TNF-α decreased within 3 days of antibiotic therapy to levels observed in control subjects. The results show IL-1Ra as a potential useful biomarker of community-acquired bacterial infection.

  10. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Zhijun Song

    2013-06-01

    Full Text Available Prosthesis-related infection is a serious complication for patients after orthopedic joint replacement, which is currently difficult to treat with antibiotic therapy. Consequently, in most cases, removal of the infected prosthesis is the only solution to cure the infection. It is, therefore, important to understand the comprehensive interaction between the microbiological situation and the host immune responses that lead to prosthesis infections. Evidence indicates that prosthesis infections are actually biofilm-correlated infections that are highly resistant to antibiotic treatment and the host immune responses. The authors reviewed the related literature in the context of their clinical experience, and discussed the possible etiology and mechanism leading to the infections, especially problems related to bacterial biofilm, and prophylaxis and treatment of infection, including both microbiological and surgical measures. Recent progress in research into bacterial biofilm and possible future treatment options of prosthesis-related infections are discussed.

  11. Pulmonary bacterial and fungal infections in human immunodeficiency virus patients: A study from India

    Directory of Open Access Journals (Sweden)

    K Shreevidya

    2012-01-01

    Full Text Available Background: Human Immunodeficiency Virus (HIV-reactive patients are more prone to infections. The morbidity and mortality in HIV-reactive patients is due to opportunistic infections. Most of the infections seen in Acquired Immunodeficiency Syndrome are endemic to that geographical region. Hence, this study was undertaken to document the occurrence of pulmonary bacterial and fungal infections in HIV patients. Materials and Methods: Expectorated and induced sputum samples were collected from 100 HIV-reactive patients and processed for bacterial and fungal pathogens including Pneumocystis carinii. Results: Of 100 samples, 66 were culture positive. Among the isolates, Mycobacterium tuberculosis constituted the highest number, 55 (83.3%, followed by other bacterial infections, 11 (16.6%, and fungi, 2 (3.03%. Tuberculosis patients had a CD4 count of less than 250 cells/μl with a mean count of 186 cells/μl and those with bacterial infections had a CD4 count of more than 300 cells/μl. The study showed that males were infected with HIV more than females and most of them belonged to the adult age group in the prime of their working life. Weight loss followed by fever and cough were the most common symptoms. Conclusion: M. tuberculosis is the most common opportunistic pathogen followed by bacterial pathogens infecting the lung in HIV. Low CD4 count is a dangerous signal of decreased immune status and higher chances of opportunistic infections and high mortality.

  12. The Essential Role of Neutrophils during Infection with the Intracellular Bacterial Pathogen Listeria monocytogenes.

    Science.gov (United States)

    Witter, Alexandra R; Okunnu, Busola M; Berg, Rance E

    2016-09-01

    Neutrophils have historically been characterized as first responder cells vital to host survival because of their ability to contain and eliminate bacterial and fungal pathogens. However, recent studies have shown that neutrophils participate in both protective and detrimental responses to a diverse array of inflammatory and infectious diseases. Although the contribution of neutrophils to extracellular infections has been investigated for decades, their specific role during intracellular bacterial infections has only recently been appreciated. During infection with the Gram-positive intracellular pathogen Listeria monocytogenes, neutrophils are recruited from the bone marrow to sites of infection where they use novel bacterial-sensing pathways leading to phagocytosis and production of bactericidal factors. This review summarizes the requirement of neutrophils during L. monocytogenes infection by examining both neutrophil trafficking and function during primary and secondary infection. PMID:27543669

  13. Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes?

    Science.gov (United States)

    Delevaux, I; Andre, M; Colombier, M; Albuisson, E; Meylheuc, F; Begue, R; Piette, J; Aumaitre, O

    2003-01-01

    Objective: To study the levels of procalcitonin (PCT) in various inflammatory states seen in an internal medicine department and to evaluate the possible discriminative role of PCT in differentiating bacterial infection from other inflammatory processes. Methods: PCT, C reactive protein (CRP), and white blood cell count (WBC) were measured in patients admitted to the department for fever or biological inflammatory syndrome, or both. The serum of 173 consecutive patients was analysed according to the aetiological diagnosis. The patients were divided into two groups: group I (n=60) with documented bacterial or fungal infection; group II (n=113) with abacterial inflammatory disease. Results: PCT levels were >0.5 ng/ml in 39/60 (65%) patients in group I. In group II, three patients with a viral infection had slightly increased PCT levels (0.7, 0.8, and 1.1 ng/ml) as did two others, one with crystal arthritis and the other with vasculitis (0.7 ng/ml in both cases). All other patients in group II had PCT levels 0.5 ng/ml was taken as the marker of bacterial infection (sensitivity 65%, specificity 96%). PCT values were more discriminative than WBC and CRP in distinguishing a bacterial infection from another inflammatory process. Conclusion: PCT levels only rose significantly during bacterial infections. In this study PCT levels >1.2 ng/ml were always evidence of bacterial infection and the cue for starting antibiotic treatment. PMID:12634233

  14. The clinical analysis of three methods in the treatment of intracranial bacterial infection

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To analyze the effect of three therapeutic methods to find an optimal approach to the treatment of intracranial bacterial infection by retrospectively reviewing 33 intracranial bacterial infection patients who were admitted from 1995 to 2008 in our hospital.Methods The treatments by intermittent lumbar puncture,continuous lumbar subarachnoid space drainage,and embedment of Ommaya cyst for continuous drainage from the ventricles were performed in 15 cases,12 cases,and 6 cases respectively along wit...

  15. High specificity ZnO quantum dots for diagnosis and treatment in bacterial infection

    Science.gov (United States)

    Zhang, Min; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    Early diagnosis and effective treatment of bacterial infection has become increasingly important. Herein, we developed a fluorescent nano-probe MPA@ZnO-PEP by conjugating SiO2-stabilized ZnO quantum dot (ZnO@SiO2) with bacteria-targeting peptide PEP, which was encapsulated with MPA, a near infrared (NIR) dye. The nanoprobe MPA@ZnO-PEP showed excellent fluorescence property and could specifically distinguish bacterial infection from sterile inflammation both in vitro and in vivo. The favorable biocompatability of MPA@ZnO-PEP was verified by MTT assay. This probe was further modified with antibiotic methicillin to form the theranostic nanoparticle MPA/Met@ZnO-PEP with amplified antibacterial activity. These results promised the great potential of MPA@ZnO-PEP for efficient non-invasive early diagnosis of bacterial infections and effective bacterial-targeting therapy.

  16. The Role of Bacterial Vaginosis in Infection After Major Gynecologic Surgery

    Directory of Open Access Journals (Sweden)

    L. Lin

    1999-01-01

    Full Text Available Purpose: Previous studies have reported an association between bacterial vaginosis (BV and postoperative fever and infection. This prospective study investigated whether the intermediate or definite stages of BV are risk factors for postoperative infection after major gynecologic surgery.

  17. Procalcitonin and C-reactive protein as markers of bacterial infection in patients with solid tumours

    DEFF Research Database (Denmark)

    Diness, Laura V; Maraldo, Maja V; Mortensen, Christiane E;

    2014-01-01

    infection. In this prospective study, we wanted to investigate the value of procalcitonin (PCT) compared with C-reactive protein (CRP) as an indicator of bacterial infection in adult patients with solid tumours. METHODS: A total of 41 patients with solid tumours admitted to hospital due to fever or clinical...

  18. Recurrent Osteomyelitis Caused by Infection with Different Bacterial Strains without Obvious Source of Reinfection

    Science.gov (United States)

    Uçkay, Ilker; Assal, Mathieu; Legout, Laurence; Rohner, Peter; Stern, Richard; Lew, Daniel; Hoffmeyer, Pierre; Bernard, Louis

    2006-01-01

    Recurrence of osteomyelitis by the same bacterial strain is well known. We report three patients with a second episode of osteomyelitis at the same site caused by different strains of bacteria from the original. Formerly infected and altered bone surface might present a region of diminished resistance for a new infection. PMID:16517930

  19. Recurrent Osteomyelitis Caused by Infection with Different Bacterial Strains without Obvious Source of Reinfection

    OpenAIRE

    Uckay, Ilker; Assal, Mathieu; Legout, Laurence; Rohner, Peter; Stern, Richard; Lew, Daniel Pablo; Hoffmeyer, Pierre; Bernard, Louis

    2006-01-01

    Recurrence of osteomyelitis by the same bacterial strain is well known. We report three patients with a second episode of osteomyelitis at the same site caused by different strains of bacteria from the original. Formerly infected and altered bone surface might present a region of diminished resistance for a new infection.

  20. Recurrent osteomyelitis caused by infection with different bacterial strains without obvious source of reinfection.

    Science.gov (United States)

    Uçkay, Ilker; Assal, Mathieu; Legout, Laurence; Rohner, Peter; Stern, Richard; Lew, Daniel; Hoffmeyer, Pierre; Bernard, Louis

    2006-03-01

    Recurrence of osteomyelitis by the same bacterial strain is well known. We report three patients with a second episode of osteomyelitis at the same site caused by different strains of bacteria from the original. Formerly infected and altered bone surface might present a region of diminished resistance for a new infection. PMID:16517930

  1. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  2. Global Analysis of Host and Bacterial Ubiquitinome in Response to Salmonella Typhimurium Infection.

    Science.gov (United States)

    Fiskin, Evgenij; Bionda, Tihana; Dikic, Ivan; Behrends, Christian

    2016-06-16

    Ubiquitination serves as a critical signal in the host immune response to infection. Many pathogens have evolved strategies to exploit the ubiquitin (Ub) system to promote their own survival through a complex interplay between host defense machinery and bacterial virulence factors. Here we report dynamic changes in the global ubiquitinome of host epithelial cells and invading pathogen in response to Salmonella Typhimurium infection. The most significant alterations in the host ubiquitinome concern components of the actin cytoskeleton, NF-κB and autophagy pathways, and the Ub and RHO GTPase systems. Specifically, infection-induced ubiquitination promotes CDC42 activity and linear ubiquitin chain formation, both being required for NF-κB activation. Conversely, the bacterial ubiquitinome exhibited extensive ubiquitination of various effectors and several outer membrane proteins. Moreover, we reveal that bacterial Ub-modifying enzymes modulate a unique subset of host targets, affecting different stages of Salmonella infection. PMID:27211868

  3. The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

    Directory of Open Access Journals (Sweden)

    Brittany E Goldberg

    Full Text Available The oral microbial community (microbiota plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are

  4. The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

    Science.gov (United States)

    Goldberg, Brittany E; Mongodin, Emmanuel F; Jones, Cheron E; Chung, Michelle; Fraser, Claire M; Tate, Anupama; Zeichner, Steven L

    2015-01-01

    The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better

  5. The impact of HIV infection on blood leukocyte responsiveness to bacterial stimulation in asymptomatic patients and patients with bloodstream infection

    Science.gov (United States)

    Huson, Michaëla A M; Hoogendijk, Arie J; de Vos, Alex F; Grobusch, Martin P; van der Poll, Tom

    2016-01-01

    Introduction HIV-induced changes in cytokine responses to bacteria may influence susceptibility to bacterial infections and the consequent inflammatory response. Methods We examined the impact of HIV on whole blood responsiveness to bacterial stimulation in asymptomatic subjects and patients with bacterial bloodstream infection (BSI). Whole blood was stimulated ex vivo with two bacterial Toll-like receptor agonists (lipopolysaccharide and lipoteichoic acid) and two pathogens (Streptococcus pneumoniae and non-typhoidal Salmonella), which are relevant in HIV-positive patients. Production of interferon-γ, tumour necrosis factor-α, interleukin-1β and interleukin-6 was used as a read-out. Results In asymptomatic subjects, HIV infection was associated with reduced interferon-γ, release after stimulation and priming of the pro-inflammatory cytokine response to non-typhoidal Salmonella. In patients with BSI, we found no such priming effect, nor was there evidence for more profound sepsis-induced immunosuppression in BSI patients with HIV co-infection. Conclusions These results suggest a complex effect of HIV on leukocyte responses to bacteria. However, in patients with sepsis, leukocyte responses were equally blunted in patients with and without HIV infection. PMID:27189532

  6. [Microbiological diagnosis of bacterial infection associated with delivery and postpartum].

    Science.gov (United States)

    Padilla-Ortega, Belén; Delgado-Palacio, Susana; García-Garrote, Fernando; Rodríguez-Gómez, Juan Miguel; Romero-Hernández, Beatriz

    2016-05-01

    The newborn may acquire infections during delivery due to maternal colonization of the birth canal, by microorganisms such as Streptococcus agalactiae that caused early neonatal infection, or acquisition through the placenta, amniotic fluid or birth products. After birth, the newborn that needs hospitalization can develop nosocomial infections during their care and exceptionally through lactation by infectious mastitis or incorrect handling of human milk, which does not require to stop breastfeeding in most cases. It is important and necessary to perform microbiological diagnosis for the correct treatment of perinatal infections, especially relevant in preterm infants with low or very low weight with high mortality rates.

  7. [Microbiological diagnosis of bacterial infection associated with delivery and postpartum].

    Science.gov (United States)

    Padilla-Ortega, Belén; Delgado-Palacio, Susana; García-Garrote, Fernando; Rodríguez-Gómez, Juan Miguel; Romero-Hernández, Beatriz

    2016-05-01

    The newborn may acquire infections during delivery due to maternal colonization of the birth canal, by microorganisms such as Streptococcus agalactiae that caused early neonatal infection, or acquisition through the placenta, amniotic fluid or birth products. After birth, the newborn that needs hospitalization can develop nosocomial infections during their care and exceptionally through lactation by infectious mastitis or incorrect handling of human milk, which does not require to stop breastfeeding in most cases. It is important and necessary to perform microbiological diagnosis for the correct treatment of perinatal infections, especially relevant in preterm infants with low or very low weight with high mortality rates. PMID:26706393

  8. Comparative study of bacterial infection prevalence between cirrhotic patients with and without upper gastrointestinal bleeding

    Directory of Open Access Journals (Sweden)

    Delvone Almeida

    2001-06-01

    Full Text Available Bacterial infection is a frequent complication in patients with chronic liver disease, mainly during the advanced stages. There is evidence that the main factors that contribute to a predisposition to infection in cirrhotic patients are related to hepatic failure with consequent immunodeficiency. Invasive procedures (diagnostic or therapeutic can predispose to bacterial infections, and upper gastrointestinal bleeding (UGB is considered a potentially important risk factor. A group of cirrhotic patients (child B and C Pugh groups were evaluated retrospectively by chart reviews regarding the prevalence of bacterial infection during hospitalization to determine whether UGB was a risk factor. An infection was considered present if a specific organ system was identified or if fever (>38ºC persisted for more than 24 hours with associated leukocytosis. Spontaneous bacterial peritonitis was based on classical criteria. Eighty-nine patients were evaluated. Fourty-six patients presented with UGB, and 43 patients had no UGB (control. There were infections recorded in 25/46 (54% patients with UGB, and 15/43 (35% in those without UGB (p=0.065. The ratio of the number of infections/admitted patients, was significantly larger in the group with UGB (0.78 ± 0.89 vs. 0.39 ± 0.62; p=0.028 since patients had more than one infection. In the UGB group compared to non UGB group, ascites was more frequent (67% vs. 42%; p=0.027; they were more likely to have undergone endoscopic procedures (p<0.001 and the mean ± SD for platelets count was smaller (96,114 ± 57,563 vs. 145,674 ± 104,083; p=0.007. The results show that UGB is an important contribution to bacterial infection among Child B and C cirrhotic patients.

  9. Inadequate clearance of translocated bacterial products in HIV-infected humanized mice.

    Directory of Open Access Journals (Sweden)

    Ursula Hofer

    2010-04-01

    Full Text Available Bacterial translocation from the gut and subsequent immune activation are hallmarks of HIV infection and are thought to determine disease progression. Intestinal barrier integrity is impaired early in acute retroviral infection, but levels of plasma lipopolysaccharide (LPS, a marker of bacterial translocation, increase only later. We examined humanized mice infected with HIV to determine if disruption of the intestinal barrier alone is responsible for elevated levels of LPS and if bacterial translocation increases immune activation. Treating uninfected mice with dextran sodium sulfate (DSS induced bacterial translocation, but did not result in elevated plasma LPS levels. DSS-induced translocation provoked LPS elevation only when phagocytic cells were depleted with clodronate liposomes (clodrolip. Macrophages of DSS-treated, HIV-negative mice phagocytosed more LPS ex vivo than those of control mice. In HIV-infected mice, however, LPS phagocytosis was insufficient to clear the translocated LPS. These conditions allowed higher levels of plasma LPS and CD8+ cell activation, which were associated with lower CD4+/CD8+ cell ratios and higher viral loads. LPS levels reflect both intestinal barrier and LPS clearance. Macrophages are essential in controlling systemic bacterial translocation, and this function might be hindered in chronic HIV infection.

  10. The role of bacterial biofilms in chronic infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas

    2013-01-01

    wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent......Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most...... cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful...

  11. Chronic filarial infection provides protection against bacterial sepsis by functionally reprogramming macrophages.

    Directory of Open Access Journals (Sweden)

    Fabian Gondorf

    2015-01-01

    Full Text Available Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s. and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases

  12. Clinical efficacy of dalbavancin for the treatment of acute bacterial skin and skin structure infections (ABSSSI)

    OpenAIRE

    Leuthner KD; Buechler KA; Kogan D; Saguros A; Lee HS

    2016-01-01

    Kimberly D Leuthner,1 Kristin A Buechler,1 David Kogan,1 Agafe Saguros,1 H Stephen Lee2 1Department of Pharmaceutical Services, University Medical Center of Southern Nevada, Las Vegas, NV, USA; 2Roseman University of Health Sciences College of Pharmacy, Henderson, NV, USA Abstract: Acute bacterial skin and skin structure infections (ABSSSI) are a common disease causing patients to seek treatment through the health care system. With the continued increase of drug-resistant bacterial pathogen...

  13. Interferon in resistance to bacterial and protozoan infections

    Science.gov (United States)

    Sonnenfeld, Gerald; Gould, Cheryl L.; Kierszenbaum, Felipe; Degee, Antonie L. W.; Mansfield, John M.

    1986-01-01

    The effects of genetic differences in mouse strains on the modulation of protozoan infections by interferon (IFN) were investigated. In one set of experiments, three different strains of mice were injected with T. cruzi, and their sera were assayed at five time intervals for IFN titer. A greater quantity of IFN was produced by mouse strains that were susceptible to T. cruzi infection than by the more resistant strain. In another set of experiments, spleen cell cultures from inbred strains of mice were challenged with an antigen made from T.b. rhodesiense. The cells from mice resistant to infection, produced greater amounts of IFN-gamma than did cells from the susceptible mice. In a third set of experiments, it was found that mice injected with T.b. rhodesiense before being infected with a diabetogenic virus (EMC-D) were resistant to the effects of the virus and did not produce virus-specific antibody.

  14. Search for MicroRNAs Expressed by Intracellular Bacterial Pathogens in Infected Mammalian Cells

    Science.gov (United States)

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A.; Xet-Mull, Ana M.; Sisk, Dana M.; Smith, Kristen L. Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H.; Tobin, David M.; Cullen, Bryan R.

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin. PMID:25184567

  15. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  16. Findings of bacterial microflora in piglets infected with conventional swine plague

    Directory of Open Access Journals (Sweden)

    Prodanov Jasna

    2002-01-01

    Full Text Available Piglets infected with the conventional swine plague virus as a result of secondary bacterial infections sometimes show an insufficiently clear clinical and pathoanatomical picture, which is why the very procedure of diagnosis is complex and the final diagnosis unreliable. That is why these investigations were aimed at examining the presence of bacterial microflora in diseased and dead pilgets which were found to have the viral antigen for CSP using the fluorescent antibody technique, in cases where the pathomorphological finding was not characteristic for conventional swine plague. Autopsies of dead piglets most often showed changes in the digestive tract and lungs, with resulting technopathy and diseases of infective nature. Such findings on knowledge of a present bacterial microflora are especially important in cases when conventional swine plague is controlled on farms and an announcement that the disease has been contained is in the offing.

  17. Spontaneous Bacterial Peritonitis Caused by Infection with Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Michael Vincent F. Tablang

    2008-11-01

    Full Text Available Spontaneous bacterial peritonitis is a severe and life-threatening complication in patients with ascites caused by advanced liver disease. The organisms most commonly involved are coliform bacteria and third-generation cephalosporins are the empiric antibiotics of choice. This is an uncommon case of spontaneous bacterial peritonitis caused by Listeria monocytogenes in a female patient with liver cirrhosis from autoimmune hepatitis. She did not improve with ceftriaxone and her course was complicated by hepatic encephalopathy, seizures and multi-organ failure. This case emphasizes that a high index of suspicion should be maintained for timely diagnosis and treatment. Listerial peritonitis should be suspected in patients with end-stage liver disease and inadequate response to conventional antibiotics within 48–72 h. Ampicillin/sulbactam should be initiated while awaiting results of ascitic fluid or blood culture.

  18. Intracellular bacterial infection in Agaricus bisponts (Lange) Sing..

    OpenAIRE

    Janusz Kalbarczyk

    2014-01-01

    Rod-shaped Gram-bacteria were observed in preparations made from the sporocarp or mummy - diseased Agaricus bisporus in the electron microscope. In cells of diseased rhizomorphs from several to a few dozen bacteria were found. Cells filled with a large number of bacteria were dead and the cellular wall was degraded. Probable the entrace of bacterie penetration into the mushroom ccll was observed. The bacterium. after its isolation, was identified as Pseudomonas sp.

  19. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.

    OpenAIRE

    Matthysse, A G

    1983-01-01

    During the attachment of Agrobacterium tumefaciens to carrot tissue culture cells, the bacteria synthesize cellulose fibrils. We examined the role of these cellulose fibrils in the attachment process by determining the properties of bacterial mutants unable to synthesize cellulose. Such cellulose-minus bacteria attached to the carrot cell surface, but, in contrast to the parent strain, with which larger clusters of bacteria were seen on the plant cell, cellulose-minus mutant bacteria were att...

  20. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten;

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways...... to control certain bacterial infections. Furanone compounds capable of inhibiting bacterial quorum-sensing systems have been isolated from the marine macro alga Delisea pulchra. Objectives: Two synthetic furanones were tested for their ability to attenuate bacterial virulence in the mouse models of chronic...... lung infection by targeting bacterial quorum-sensing without directly killing bacteria or inhibiting their growth. Methods: Study I. Mice with Escherichia coli MT102 [luxR-PluxI-gfp(ASV)] lung infection were injected intravenously with N-acyl homoserine lactones with or without furanones to test...

  1. [The role of chronic dental bacterial infections in the aetiopathogenesis of ischaemic heart disease].

    Science.gov (United States)

    Stypułkowska, Jadwiga; Lyszczarz, Robert; Błazowska, Katarzyna

    2002-01-01

    Chronic dental infections, even of low intensity, may cause the development of atherosclerotic changes in arteries, that lead to coronary heart disease. There are many risk factors for atherosclerosis, but the most important are endothelium function disturbances, platelets activation and oxidative changes of plasmatic lipoproteins. Among factors that can induce the epithelium lesions bacterial factor may play an important role. In consequence of the bacterial cell breakdown place the release of endotoxins takes, that lead directly to the damage of endothelial cells. Apart from this direct effect endotoxins activate the fagocytes releasing superoxide reactive radicals, that cause lesions of endothelium. Probably the most widespread chronic bacterial infections in human are the diseases of periodontium and teeth and their inflammatory complications. Oral cavity is colonized by 300-400 bacterial species. In the case of dental bacterial infections bacteriemia occurs after such procedures as tooth extraction, endodontic treatment, therapeutic and hygienic interventions on periodontal tissues. The results of many investigations show the relationship between the oral status (dental and periodontal diseases as chronic oral infections) and disorders of cardiovascular system. PMID:17474623

  2. Maggot microRNA: A new inhibitory pathway to bacterial infection.

    Science.gov (United States)

    Wang, Shouyu; Zhang, Zhen

    2011-02-01

    Refractory bacterial infectious diseases are clinically common and troublesome in the treatment. The traditional antibiotics could not be used to control bacterial infection with the indiscriminate use or abuse of drugs. Maggot therapy is a simple and highly successful method for healing of drug-resistant bacterial infected and necrotic wounds. It has been proved maggot can reduce the bacterial load within wounds effectively. However, the anti-bacterial mechanism of maggot is not clear. So far, most previous researches only focus on the anti-bacterial peptides from maggot, ignoring other possible anti-bacterial molecules such as nucleotides. MicroRNAs are endogenous small non-coding RNAs that can bind to the 3'-untranslated regions of the messenger RNA of the target genes. The binding by imperfect base pairing leads to post-transcriptional gene silencing, so that the expression of target gene is down-regulated. Combined understand of maggot and microRNA theory may give us a new method inhibiting bacteria growth and treating infectious diseases. It is hypothesized that finding an effective microRNA from maggot to down-regulate expression of bacteria pathogenic protein may open a new window to cure clinical infectious diseases.

  3. Steroidal regulation of uterine resistance to bacterial infection in livestock

    Directory of Open Access Journals (Sweden)

    Lewis Gregory S

    2003-11-01

    Full Text Available Abstract Postpartum uterine infections reduce reproductive efficiency and have significant animal welfare and economic consequences. Postpartum uterine infections are classified as nonspecific, but Arcanobacterium pyogenes and Escherichia coli are usually associated with them in cattle and sheep. Pyometra is the most common type of uterine infection in dairy cattle, and it is detected almost exclusively in cows with active corpora lutea. Luteal progesterone typically down-regulates uterine immune functions and prevents the uterus from resisting infections. Progesterone also can down-regulate uterine eicosanoid synthesis. This seems to be a critical event in the onset of uterine infections, because eicosanoids can up-regulate immune cell functions in vitro. In addition, exogenous prostaglandin F2 alpha stimulates uterine secretion of prostaglandin F2 alpha and enhances immune functions in vivo. Thus, one may hypothesize that eicosanoids can override the negative effects of progesterone and that the up-regulatory effects of exogenous prostaglandin F2 alpha allow the uterus to resolve an infection, regardless of progesterone concentrations. Based on the results of studies to test that hypothesis, cows, sheep, and pigs in various physiological statuses are resistant to intrauterine infusions of Arcanobacterium pyogenes and Escherichia coli, unless progesterone concentrations are increased. In sheep and pigs, exogenous prostaglandin F2 alpha stimulates uterine production of prostaglandin F2 alpha and allows the uterus to resolve Arcanobacterium pyogenes-Escherichia coli-induced infections, even when progesterone is maintained at luteal phase concentrations before and after treatment. Prostaglandin F2 alpha is a proinflammatory molecule that stimulates the production of various proinflammatory cytokines, and it may enhance uterine production of leukotriene B4. Proinflammatory cytokines and leukotriene B4 enhance phagocytosis and lymphocyte functions

  4. Early diagnosis of bacterial and fungal infection in chronic cholestatic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Xiong-Zhi Wu; Dan Chen; Lian-San Zhao; Xiao-Hui Yu; Mei Wei; Yan Zhao; Qing Fang; Qian Xu

    2004-01-01

    AIM: To investigate the early diagnostic methods of bacterial and fungal infection in patients with chronic cholestatic hepatitis B.METHODS: One hundred and one adult in-patients with chronic hepatitis B were studied and divided into 3 groups:direct bilirubin (DBil)/total bilirubin (TBil)≥0.5, without bacterial and fungal infection (group A, n=38); DBil/TBil <0.5, without bacterial and fungal infection (group B, n=23);DBil/TBil≥0.5, with bacterial or fungal infection (group C,n=40). The serum biochemical index and pulse rate were analyzed.RESULTS: Level of TBil, DBil, alkaline phosphatase (ALP)and DBil/ALP in group A increased compared with that in group B. The level of ALP in group C decreased compared with that in group A, whereas the level of TBil, DBil and DBil/ALP increased (ALP: 156±43, 199±68, respectively,P<0.05; TBil: 370±227, 220±206, respectively, P<0.01;DBil: 214±143, 146±136, respectively, P<0.01; DBil/ALP:1.65±1.05, 0.78±0.70, respectively, P<0.001). The level of DBil and infection affected DBil/ALP. Independent of the effect of DBil, infection caused DBil/ALP to rise (P<0.05).The pulse rate in group A decreased compared with that in group B (63.7±6.4, 77.7±11.4, respectively, P<0.001),and the pulse rate in group C increased compared with that in group A (81.2±12.2, 63.7±6.4, respectively, P<0.001).The equation (infection=0.218 pusle rate +1.064 DBil/ALP -16.361), with total accuracy of 85.5%, was obtained from stepwise logistic regression. Pulse rate (≥80/min) and DBil/ALP (≥1.0) were used to screen infection. The sensitivity was 62.5% and 64.7% respectively, and the specificity was 100% and 82.8% respectively.CONCLUSION: Bacterial and fungal infection deteriorate jaundice and increase pulse rate, decrease serum ALP and increase DBil/ALP. Pulse rate, DBil/ALP and the equation (infection=0.218 pusle rate+1.064 DBil/ALP-16.361) are helpful to early diagnosis of bacterial and fungal infection in patients with chronic

  5. Perinatal Exposure to Environmental Tobacco Smoke (ETS Enhances Susceptibility to Viral and Secondary Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Jocelyn A. Claude

    2012-10-01

    Full Text Available Studies suggest childhood exposure to environmental tobacco smoke (ETS leads to increased incidence of infections of the lower respiratory tract. The objective of this study was to determine whether perinatal exposure to ETS increases the incidence, morbidity and severity of respiratory influenza infection and whether a secondary bacterial challenge at the peak of a pre-existing viral infection creates an enhanced host-pathogen susceptibility to an opportunistic infection. Timed-pregnant female Balb/c mice were exposed to either ETS for 6 h/day, 7 d/week beginning on gestation day 14 and continuing with the neonates to 6 weeks of age. Control animals were exposed to filtered air (FA. At the end of exposure, mice were intranasally inoculated with a murine-adapted influenza A. One week later, an intranasal inoculation of S. aureus bacteria was administered. The respective treatment groups were: bacteria only, virus only or virus+bacteria for both FA and ETS-exposed animals for a total of six treatment groups. Animal behavior and body weights were documented daily following infection. Mice were necropsied 1-day post-bacterial infection. Bronchoalveolar lavage fluid (BALF cell analysis demonstrated perinatal exposure to ETS, compared to FA, leads to delayed but enhanced clinical symptoms and enhanced total cell influx into the lungs associated with viral infection followed by bacterial challenge. Viral infection significantly increases the number of neutrophils entering the lungs following bacterial challenge with either FA or ETS exposure, while the influx of lymphocytes and monocytes is significantly enhanced only by perinatal ETS exposure. There is a significant increase in peribronchiolar inflammation following viral infection in pups exposed to ETS compared with pups exposed to FA, but no change is noted in the degree of lung injury between FA and ETS-exposed animals following bacterial challenge. The data suggests perinatal exposure to ETS

  6. Organelle targeting during bacterial infection: insights from Listeria.

    Science.gov (United States)

    Lebreton, Alice; Stavru, Fabrizia; Cossart, Pascale

    2015-06-01

    Listeria monocytogenes, a facultative intracellular bacterium responsible for severe foodborne infections, is now recognized as a multifaceted model in infection biology. Comprehensive studies of the molecular and cellular basis of the infection have unraveled how the bacterium crosses the intestinal and feto-placental barriers, invades several cell types in which it multiplies and moves, and spreads from cell to cell. Interestingly, although Listeria does not actively invade host cell organelles, it can interfere with their function. We discuss the effect of Listeria on the endoplasmic reticulum (ER) and the mechanisms leading to the fragmentation of the mitochondrial network and its consequences, and review the strategies used by Listeria to subvert nuclear functions, more precisely to control host gene expression at the chromatin level.

  7. Impact of bacterial infections on aging and cancer

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Madsen, Claus Desler; Rasmussen, Lene Juel

    2014-01-01

    The commensal floras that inhabit the gastrointestinal tract play critical roles in immune responses, energy metabolism, and even cancer prevention. Pathogenic and out of place commensal bacteria, can however have detrimental effects on the host, by introducing genomic instability and mitochondrial...... DNA repair subunits of major DNA repair pathways and increase production of reactive oxygen species (ROS). Defects in DNA repair cause mutations and genomic instability and are found in several cancers as well as in progeroid syndromes. This review describes our contemporary view on how bacterial...

  8. Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

    OpenAIRE

    Wai, Khin Pa Pa; Siddique, Muhammad Irfan; Mo, Hwang-Sung; Yoo, Hee Ju; Byeon, Si-Eun; Jegal, Yoonhyuk; Mekuriaw, Alebel A.; Kim, Byung-Soo

    2015-01-01

    Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying Bs1 , Bs2 and Bs3 , and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 ...

  9. Association between prenatal exposure to bacterial infection and risk of schizophrenia

    DEFF Research Database (Denmark)

    Mortensen, Erik Lykke; Sørensen, Holger J; Mortensen, Erik L;

    2009-01-01

    Recent research suggests that prenatal exposure to nonviral infection may be associated with increased risk of schizophrenia, and we hypothesized an association between maternal bacterial infection during pregnancy and elevated offspring risk of schizophrenia. Data on maternal infections from...... the Copenhagen Perinatal Cohort were linked with the Danish National Psychiatric Register. Offspring cases of narrowly defined schizophrenia (International Classification of Diseases, Eighth Revision [ICD-8]) and more broadly defined schizophrenia (ICD-8 and ICD-10) were identified before the ages of 32......-34 and 45-47 years, respectively. The effect of prenatal exposure to bacterial infections was adjusted for prenatal exposure to analgesics and parental social status. In a risk set of 7941 individuals, 85 cases (1.1%) of ICD-8 schizophrenia were identified by the age of 32-34 years and 153 cases (1...

  10. Influenza A virus and secondary bacterial infection in swine

    Science.gov (United States)

    Influenza A virus (IAV) infection alone causes significant disease characterized by respiratory distress and poor growth in pigs. Endemic strains of IAV in North America pigs consist of the subtypes H1N1, H1N2, and H3N2. These circulating strains contain the triple reassortant internal gene (TRIG) c...

  11. [Bacterial infection as a cause of infertility in humans].

    Science.gov (United States)

    Sleha, Radek; Boštíková, Vanda; Salavec, Miloslav; Mosio, Petra; Kusáková, Eva; Kukla, Rudolf; Mazurová, Jaroslava; Spliňo, Miroslav

    2013-04-01

    Microorganisms which are present in the human urogenital tract may be involved in the development of inflammatory changes negatively affecting the genitals in both men and women. Pathological conditions due to inflammatory alterations may result in complete loss of fertility. Infections of the urogenital tract are responsible for 15% of all cases of infertility in couples. Negative impact on the human reproduction is mainly caused by direct damage to the genital tract mucosa by metabolic products of microorganisms or by induction of pro-inflammatory responses of the body. Another mechanism is indirect impact of microorganisms on the genital function. Moreover, the effect of bacteria on spermatogenesis and semen quality is important in men. Infections mainly caused by Chlamydia trachomatis or Neisseria gonorrhoeae represent the greatest risk in terms of permanent consequences for human reproduction. As for other sexually transmitted disorders, such as infections caused by Gardnerella vaginalis, urogenital mycoplasmas or ureaplasmas, the link between infection and infertility has been intensively researched. PMID:23768092

  12. Gene expression in response to bacterial blight infection in rice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@After a comprehensive screening of 47 rice lines inoculat_ed at different development stages with 7 different strains of Xanthomonas oryzae pv. oryzae , we selected 2 strains CR1 and CR7 from CNRRI,China. They gave a resistant and susceptible interaction respectively, when they were used to infect 15 d old seedlings of C101PKT.

  13. Localized bacterial infection in a distributed model for tissue inflammation.

    Science.gov (United States)

    Lauffenburger, D A; Kennedy, C R

    1983-01-01

    Phagocyte motility and chemotaxis are included in a distributed mathematical model for the inflammatory response to bacterial invasion of tissue. Both uniform and non-uniform steady state solutions may occur for the model equations governing bacteria and phagocyte densities in a macroscopic tissue region. The non-uniform states appear to be more dangerous because they allow large bacteria densities concentrated in local foci, and in some cases greater total bacteria and phagocyte populations. Using a linear stability analysis, it is shown that a phagocyte chemotactic response smaller than a critical value can lead to a non-uniform state, while a chemotactic response greater than this critical value stabilizes the uniform state. This result is the opposite of that found for the role of chemotaxis in aggregation of slimemold amoebae because, in the inflammatory response, the chemotactic population serves as an inhibitor rather than an activator. We speculate that these non-uniform steady states could be related to the localized cell aggregation seen in chronic granulomatous inflammation. The formation of non-uniform states is not necessarily a consequence of defective phagocyte chemotaxis, however. Rather, certain values of the kinetic parameters can yield values for the critical chemotactic response which are greater than the normal response. Numerical computations of the transient inflammatory response to bacterial challenge are presented, using parameter values estimated from the experimental literature wherever possible. PMID:6827185

  14. Procalcitonin as a biomarker of bacterial infection in pediatric patients after congenital heart surgery

    OpenAIRE

    Chakravarti, Sujata B; Diane A Reformina; Lee, Timothy M; Malhotra, Sunil P; Mosca, Ralph S; Puneet Bhatla

    2016-01-01

    Background: Bacterial infection (BI) after congenital heart surgery (CHS) is associated with increased morbidity and is difficult to differentiate from systemic inflammatory response syndrome caused by cardiopulmonary bypass (CPB). Procalcitonin (PCT) has emerged as a reliable biomarker of BI in various populations. Aim: To determine the optimal PCT threshold to identify BI among children suspected of having infection following CPB. Setting and Design: Single-center retrospective observationa...

  15. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis

    OpenAIRE

    De Sutter Philippe; Bosire Carolyne; Verstraelen Hans; Meys Joris FA; Gillet Evy; Temmerman Marleen; Broeck Davy

    2011-01-01

    Abstract Background Bacterial vaginosis (BV), an alteration of vaginal flora involving a decrease in Lactobacilli and predominance of anaerobic bacteria, is among the most common cause of vaginal complaints for women of childbearing age. It is well known that BV has an influence in acquisition of certain genital infections. However, association between BV and cervical human papillomavirus (HPV) infection has been inconsistent among studies. The objective of this meta-analysis of published stu...

  16. Fluorescence in situ hybridization for the tissue detection of bacterial pathogens associated with porcine infections

    DEFF Research Database (Denmark)

    Jensen, Henrik Elvang; Jensen, Louise Kruse; Barington, Kristiane;

    2015-01-01

    sequences within intact cells. FISH allows direct histological localization of the bacteria in the tissue and thereby a correlation between the infection and the histopathological changes present. This chapter presents protocols for FISH identification of bacterial pathogens in fixed deparaffinized tissue......Fluorescence in situ hybridization (FISH) is an efficient technique for the identification of specific bacteria in tissue of both experimental and spontaneous infections. The method detects specific sequences of nucleic acids by hybridization of fluorescently labeled probes to complementary target...

  17. Procalcitonin Identifies Cell Injury, Not Bacterial Infection, in Acute Liver Failure.

    Directory of Open Access Journals (Sweden)

    Jody A Rule

    Full Text Available Because acute liver failure (ALF patients share many clinical features with severe sepsis and septic shock, identifying bacterial infection clinically in ALF patients is challenging. Procalcitonin (PCT has proven to be a useful marker in detecting bacterial infection. We sought to determine whether PCT discriminated between presence and absence of infection in patients with ALF.Retrospective analysis of data and samples of 115 ALF patients from the United States Acute Liver Failure Study Group randomly selected from 1863 patients were classified for disease severity and ALF etiology. Twenty uninfected chronic liver disease (CLD subjects served as controls.Procalcitonin concentrations in most samples were elevated, with median values for all ALF groups near or above a 2.0 ng/mL cut-off that generally indicates severe sepsis. While PCT concentrations increased somewhat with apparent liver injury severity, there were no differences in PCT levels between the pre-defined severity groups-non-SIRS and SIRS groups with no documented infections and Severe Sepsis and Septic Shock groups with documented infections, (p = 0.169. PCT values from CLD patients differed from all ALF groups (median CLD PCT value 0.104 ng/mL, (p ≤0.001. Subjects with acetaminophen (APAP toxicity, many without evidence of infection, demonstrated median PCT >2.0 ng/mL, regardless of SIRS features, while some culture positive subjects had PCT values <2.0 ng/mL.While PCT appears to be a robust assay for detecting bacterial infection in the general population, there was poor discrimination between ALF patients with or without bacterial infection presumably because of the massive inflammation observed. Severe hepatocyte necrosis with inflammation results in elevated PCT levels, rendering this biomarker unreliable in the ALF setting.

  18. The role of prophylaxis of bacterial infections in children with acute leukemia/non-Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    Elio Castagnola

    2014-06-01

    Full Text Available Infections represent a well-known complication of antineoplastic chemotherapy that may cause delay of treatment, with alteration of the antineoplastic program and dose-intensity, or even the death of a patient that could heal from his/her neoplasia. Bacterial infections are a major cause of morbidity and mortality in patients who are neutropenic following chemotherapy for malignancy. Therefore a program of antibiotic prophylaxis for febrile neutropenia may be considered in the management strategy of cancer patients.

  19. The Role of Prophylaxis of Bacterial Infections in Children With Acute Leukemia/Non-Hodgkin Lymphoma

    OpenAIRE

    Elio Castagnola

    2014-01-01

    Infections represent a well-known complication of antineoplastic chemotherapy that may cause delay of treatment, with alteration of the antineoplastic program and dose-intensity, or even the death of a patient that could heal from his/her neoplasia. Bacterial infections are a major cause of morbidity and mortality in patients who are neutropenic following chemotherapy for malignancy. Therefore a program of antibiotic prophylaxis for febrile neutropenia may be considered in the management stra...

  20. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    OpenAIRE

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette; Poulsen, Karin T.; Campbell, Fiona M; Eckersall, P. David; Heegaard, Peter M.H.

    2009-01-01

    International audience The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we st...

  1. PROCALCITONIN AS A BIOMARKER OF BACTERIAL INFECTION IN SICKLE CELL VASO-OCCLUSIVE CRISIS.

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Patel

    2014-02-01

    Full Text Available Bacterial infection is an important trigger of vaso-occlusive crisis (VOC in sickle cell anaemia (SCA. SCA Patients with VOC have signs of inflammation and it is difficult to diagnose bacterial infection in them. This study was undertaken to evaluate serum procalcitonin (PCT as a biomarker of bacterial infection in acute sickle cell vaso-occlusive crisis. Hundred SCA patients were studied at Sickle Cell Clinic and Molecular Biology Laboratory, V.S.S. Medical College, Burla, Odisha, India. SCA was diagnosed by haemoglobin electrophoresis, HPLC and molecular analysis. Patients were divided into 3categories namely Category-A (VOC/ACS with fever but without evidence of bacterial infection-66 patients; Category-B (VOC with fever and documentedbacterial infection-24 patients; and Category-C (Patients in steady statewithout VOC/ACS or fever-10 patients. Investigations like complete blood count, C-reactive protein estimation and PCT measurement was done in all the cases. There was no significant difference in total leucocytes count and C-reactiveprotein values between category A and B. In category A the PCT level was 0.5ng/mL with 87.5% of cases having >2ng/mL. In category C, PCT value was 2ng/mL is indicative of bacterial infection necessitating antimicrobial therapy. Patients with indeterminate PCT value of0.5-2ng/mL, need a repeat PCT estimation or an empirical antibiotic therapyawaiting the availability of microbiological report as deemed necessary.

  2. (68) Ga-labeled Ciprofloxacin Conjugates as Radiotracers for Targeting Bacterial Infection.

    Science.gov (United States)

    Satpati, Drishty; Arjun, Chanda; Krishnamohan, Repaka; Samuel, Grace; Banerjee, Sharmila

    2016-05-01

    With an aim of developing a bacteria-specific molecular imaging agent, ciprofloxacin has been modified with a propylamine spacer and linked to two common bifunctional chelators, p-SCN-Bz-DOTA and p-SCN-Bz-NOTA. The two ciprofloxacin conjugates, CP-PA-SCN-Bz-DOTA (1) and CP-PA-SCN-Bz-NOTA (2), were radiolabeled with (68) Ga in >90% radiochemical yield and were moderately stable in vitro for 4 h. The efficacy of (68) Ga-1 and (68) Ga-2 has been investigated in vitro in Staphylococcus aureus cells where bacterial binding of the radiotracers (0.9-1.0% for (68) Ga-1 and 1.6-2.3% for (68) Ga-2) could not be blocked in the presence of excess amount of unlabeled ciprofloxacin. However, uptake of radiotracers in live bacterial cells was significantly higher (p < 0.01) than that in non-viable bacterial cells. Bacterial infection targeting efficacy of (68) Ga-1 and (68) Ga-2 was tested in vivo in rats where the infected muscle-to-inflamed muscle ((68) Ga-1: 2 ± 0.2, (68) Ga-2: 3 ± 0.5) and infected muscle-to-normal muscle ratios ((68) Ga-1: 3 ± 0.4, (68) Ga-2: 6.6 ± 0.8) were found to improve at 120 min p.i. Fast blood clearance and renal excretion was observed for both the radiotracers. The two (68) Ga-labeled infection targeting radiotracers could discriminate between bacterial infection and inflammation in vivo and are worthy of further detailed investigation as infection imaging agents at the clinical level. PMID:26647765

  3. Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea.

    Science.gov (United States)

    Wai, Khin Pa Pa; Siddique, Muhammad Irfan; Mo, Hwang-Sung; Yoo, Hee Ju; Byeon, Si-Eun; Jegal, Yoonhyuk; Mekuriaw, Alebel A; Kim, Byung-Soo

    2015-12-01

    Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying Bs1 , Bs2 and Bs3 , and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047. PMID:26674555

  4. Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

    Directory of Open Access Journals (Sweden)

    Khin Pa Pa Wai

    2015-12-01

    Full Text Available Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp. collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum pepper plants carrying Bs₁, Bs₂ and Bs₃, and PI235047 (C. pubescens were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047.

  5. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...hilpott DJ, Girardin SE. Mol Immunol. 2004 Nov;41(11):1099-108. (.png) (.svg) (.html) (.csml) Show The role ...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-lik

  6. Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Seth Davis

    Full Text Available Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1 plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2 herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3 plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.

  7. Duration of fever and serious bacterial infections in children : a systematic review

    NARCIS (Netherlands)

    Elshout, Gijs; Monteny, Miriam; van der Wouden, Johannes C.; Koes, Bart W.; Berger, Marjolein Y.

    2011-01-01

    Background: Parents of febrile children frequently contact primary care. Longer duration of fever has been related to increased risk for serious bacterial infections (SBI). However, the evidence for this association remains controversial. We assessed the predictive value of duration of fever for SBI

  8. Acute bacterial infections of the lower respiratory tract in children from low-income countries

    NARCIS (Netherlands)

    Fleer, A; Wolf, B.H.M.

    2000-01-01

    Acute bacterial infection of the lower respiratory tract is a major cause of morbidity and mortality in children and is responsible for 4 million childhood deaths each year. Most of these deaths are caused by pneumonia and occur in the youngest children in the poorest parts of the world. Severe pneu

  9. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection.

    Science.gov (United States)

    Golda-Cepa, M; Syrek, K; Brzychczy-Wloch, M; Sulka, G D; Kotarba, A

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function-bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. PMID:27207043

  10. Responses of the coastal bacterial community to viral infection of the algae

    NARCIS (Netherlands)

    Sheik, A.R.; Brussaard, C.P.D.; Lavik, G.; Lam, P.; Musat, N.; Krupke, A.; Littmann, S.; Strous, M.; Kuypers, M.M.M.

    2014-01-01

    The release of organic material upon algal cell lyses has a key role in structuring bacterial communities and affects the cycling of biolimiting elements in the marine environment. Here we show that already before cell lysis the leakage or excretion of organic matter by infected yet intact algal cel

  11. Delayed metamorphosis and recurrence of bacterial infection in irradiated Rana clamitans tadpoles

    International Nuclear Information System (INIS)

    X-ray doses of 5 and 10 Gy (1 Gy/min) given to premetamorphic Green Frog (Rana clamitans) tadpoles delayed their metamorphosis relative to unirradiated controls. Previous pathogenic bacterial infections recurred in irradiated animals prior to metamorphic climax. Limited mortality occurred during metamorphic climax, 80-105 days after irradiation

  12. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections

    Directory of Open Access Journals (Sweden)

    Adrian eRangel-Vega

    2015-04-01

    Full Text Available Bacterial infections remain one of the leading causes of death worldwide, and the therapeutic outlook for these infections is worsening, due the rise of antibiotic resistant strains. The pharmaceutical industry has produced few new types of antibiotics in more than a decade. Researchers are taking several approaches towards developing new classes of antibiotics, including (1 focusing on new targets and processes, such as bacterial cell-cell communication that upregulates virulence; (2 designing inhibitors of bacterial resistance, such as blockers of multi-drug efflux pumps; and (3 using alternative antimicrobials such as bacteriophages. In addition, the strategy of finding new uses for existing drugs is beginning to produce results: antibacterial properties have been discovered in existing anticancer, antifungal, anthelmintic, and anti-inflammatory drugs. In this work we discuss the antimicrobial properties of gallium based compounds, 5-fluorouracil, ciclopirox, diflunisal, and some other FDA-approved drugs.

  13. The Role of Bacterial Biofilms in Chronic Infections

    OpenAIRE

    Do, Danh Cong

    2014-01-01

    Biofilm is the virulence factor that is responsible for chronic infection in diseases such as Cystic Fibrosis (CF) and chronic wounds. In this thesis, we examine the role of AlgX, a required protein for alginate biosynthesis in P. aeruginosa. We show that the absence of AlgX resulted in the loss of mucoidy and in silico studies demonstrated that AlgX binds alginate. Alanine mutations demonstrated that K396, T398, W400, and R406 are important for alginate binding. Alginate rescue assays confir...

  14. Autophagy and bacterial infection: an evolving arms race.

    Science.gov (United States)

    Choy, Augustine; Roy, Craig R

    2013-09-01

    Autophagy is an important membrane transport pathway that is conserved among eukaryotic cells. Although first described as an intracellular catabolic pathway used to break down self-components, autophagy has been found to play an important role in the elimination of intracellular pathogens. A variety of host mechanisms exist for recognizing and targeting intracellular bacteria to autophagosomes. Several intracellular bacteria have evolved ways to manipulate, inhibit, or avoid autophagy in order to survive in the cell. Thus, the autophagy pathway can be viewed as an evolutionarily conserved host response to infection.

  15. Immunoenhancing therapy with interleukin-18 against bacterial infection in immunocompromised hosts after severe surgical stress.

    Science.gov (United States)

    Kinoshita, Manabu; Miyazaki, Hiromi; Ono, Satoshi; Seki, Shuhji

    2013-05-01

    IL-18 has a potential to up-regulate the Th1 and Th2 immune responses. It is known that IL-18, in synergy with IL-12, augments the Th1 response to bacterial infections, but it also augments the Th2 response to allergic disorders in the absence of IL-12. Although the Th1 and Th2 immune responses cross-regulate each other, our recent murine studies have demonstrated that multiple, alternate-day IL-18 injections (but not a single injection) could augment not only the Th1 immune response but also the Th2 immune response, including IgM production against bacterial infection in mice. In addition, critically ill patients who suffer from severe surgical stresses, e.g., trauma injury, burn injury, and major surgery, are known to be highly susceptible to bacterial infections/sepsis, and their outcomes become extremely poor as a result of infectious complications. Their host defense systems against infections, such as Th1-mediated cellular immunity, Th2-mediated humoral immunity, and neutrophil-mediated immunity, are impaired severely and multifactorially. Although simultaneous enhancement of these immune responses may be ideal for such immunocompromised patients, its achievement appears to be difficult because of the cross-regulating effect of the Th1 and Th2 responses. However, multiple IL-18 injections into mice can effectively restore these impaired immune responses in the immunocompromised mice receiving severe burn injury or splenectomy, thus improving their survival after bacterial infections. Therefore, IL-18 treatment may be an attractive and useful therapeutic tool against bacterial complications in immunocompromised hosts after severe surgical stress. PMID:23407120

  16. Molecular pathogenesis of Helicobacter pylori infection: the role of bacterial virulence factors.

    Science.gov (United States)

    Molnar, Bela; Galamb, Orsolya; Sipos, Ferenc; Leiszter, Katalin; Tulassay, Zsolt

    2010-01-01

    Helicobacter pylori is one of the most common pathogens affecting humankind, infecting approximately 50% of the world's population. Of those infected, many will develop asymptomatic gastritis, but 10% develop gastric or duodenal ulcers. The clinical outcome of the infection may involve a combination of bacterial factors, host factors and environmental factors. In the process of development of gastritis, ulceration and cancer, several cellular and molecular steps follow each other. Infection, acid survival, adhesion, cytotoxicity, epithelial cell turnover changes, inflammation, regeneration or pathological alteration towards erosions, ulceration, and cancer can be observed on the cellular level. Bacterial factors like urease, AmiE, AmiF, hydrogenase and arginase are needed for survival in the acidic gastric environment. The bacterial flagellae are essential to move the bacteria towards the epithelial surface. Adhesive factors like BabA, SabA and ureaseA are necessary for adhesion against MHC-II complexes and Le antigens. The bacteria VacA and CagA are cytotoxic factors. The Cag type IV secretion system delivers these proteins inside the epithelial cells. After disruption of epithelial cell junctions, the bacteria can pass through the gastric wall facing direct immune response from neutrophils, lymphocytes, mast cells and dendritic cells. This review describes and summarizes our present molecular biological information and knowledge about the Helicobacter infective component, cell functions and processes. The possible role of host counter responses and interactions with gastric epithelia and immune cells are also detailed. PMID:21088410

  17. Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species.

    Science.gov (United States)

    Kandi, Venkataramana; Palange, Padmavali; Vaish, Ritu; Bhatti, Adnan Bashir; Kale, Vinod; Kandi, Maheshwar Reddy; Bhoomagiri, Mohan Rao

    2016-01-01

    Recently there have been reports of gram-positive cocci which are morphologically similar to both Staphylococci and the Micrococci. These bacteria have been identified as Kocuria species with the help of automated identification system and other molecular methods including 16S rRNA (ribosomal ribonucleic acid) evaluation. Kocuria belongs to the family Micrococcaceae which also includes Staphylococcus species and Micrococcus species. Isolation and clinical significance of these bacteria from human specimens warrant great caution as it does not necessarily confirm infection due to their ubiquitous presence, and as a normal flora of skin and mucous membranes in human and animals. Most clinical microbiology laboratories ignore such bacteria as laboratory and specimen contaminants. With increasing reports of infections associated with these bacteria, it is now important for clinical microbiologists to identify and enumerate the virulence and antibiotic susceptibility patterns of such bacteria and assist clinicians in improving the patient care and management. We review the occurrence and clinical significance of Kocuria species. PMID:27630804

  18. Secretome, surfome and immunome: emerging approaches for the discovery of new vaccine candidates against bacterial infections.

    Science.gov (United States)

    Dwivedi, Pratistha; Alam, Syed Imteyaz; Tomar, Rajesh Singh

    2016-09-01

    Functional genomics has made possible advanced structure-to-function investigation of pathogens and helped characterize virulence mechanisms. Proteomics has been become a tool for large-scale identification of proteins involved during invasion and infection by the pathogens. Bacterial surface and secreted proteins play key role in the interaction between the bacterial cell and the host environment. Thus exoproteome and surface proteome of a microorganism are hypothesized to contain components of effective vaccines. Surfome and exoproteome analysis strategy facilitates identification of novel vaccine antigen and overall helps in progress of discovery of vaccine. The study of the antibody response can advance how proteomics is used, because it investigates antibody-antigen interactions and also unravel the relationship of antibody responses to pathogen and host characteristics. System immunology integrating with proteome i.e. immunoproteomics is applicable to those infections that are having tendency of diverse antibody target recognition and thus accurately reflects progression of the infection. PMID:27465855

  19. Scintigraphic images of bacterial infection using aptamers directly labeled with {sup 99m}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.R.; Correa, C.R.; Andrade, A.S.R., E-mail: sararoberta7@hotmail.com, E-mail: crisrcorrea@gmail.com, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, A.L.B.; Diniz, S.O.F.; Cardoso, V.N., E-mail: brancodebarros@yahoo.com.br, E-mail: valbertcardoso@yahoo.com.br, E-mail: simoneodilia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Departamento de Analises Clinicas e Toxicologicas

    2015-07-01

    Staphylococcus aureus is specie of great medical importance and is the most commonly agent found in infections of soft tissues, bone infections and bone prostheses. In this study, aptamers selected to S. aureus were labeled by the direct method with {sup 99m}Tc and used for bacterial infection identification by scintigraphy. The radiolabeled aptamers radiochemical purity and stability were assessed by thin-layer chromatography (TLC). Three groups of Swiss mice (n=6) were used for the scintigraphic imaging studies. The first group was infected intramuscularly in the right thigh with S. aureus, the second group with C. albicans and the third group received zymosan to induce aseptic inflammation. After 24 h, radiolabeled aptamers (18 MBq) were injected by the tail vein. Scintigraphic images were acquired at 1 h and 4 h postinjection. The radiolabeling yield with {sup 99m}Tc was over 90%. The radiolabeled aptamers were stable in 0.9% saline, plasma and cysteine excess. The scintigraphic image profiles showed high uptake in the kidneys and bladder in all groups, indicating a main renal excretion consistent with the hydrophilic nature of the molecule. No accumulation of radioactivity was observed in the thyroid, stomach, liver and spleen, indicating acceptable levels of radiochemical impurities. The group infected with S. aureus showed a visible uptake in the infected right thigh at 1 h post-injection. For the control groups (C. albicans and zymosan) visible differences between the right and left thighs were not observed. The radiolabeled aptamers were able to distinguish aseptic inflammation from bacterial infection and bacterial from fungal infection. (author)

  20. Scintigraphic images of bacterial infection using aptamers directly labeled with 99mTc

    International Nuclear Information System (INIS)

    Staphylococcus aureus is specie of great medical importance and is the most commonly agent found in infections of soft tissues, bone infections and bone prostheses. In this study, aptamers selected to S. aureus were labeled by the direct method with 99mTc and used for bacterial infection identification by scintigraphy. The radiolabeled aptamers radiochemical purity and stability were assessed by thin-layer chromatography (TLC). Three groups of Swiss mice (n=6) were used for the scintigraphic imaging studies. The first group was infected intramuscularly in the right thigh with S. aureus, the second group with C. albicans and the third group received zymosan to induce aseptic inflammation. After 24 h, radiolabeled aptamers (18 MBq) were injected by the tail vein. Scintigraphic images were acquired at 1 h and 4 h postinjection. The radiolabeling yield with 99mTc was over 90%. The radiolabeled aptamers were stable in 0.9% saline, plasma and cysteine excess. The scintigraphic image profiles showed high uptake in the kidneys and bladder in all groups, indicating a main renal excretion consistent with the hydrophilic nature of the molecule. No accumulation of radioactivity was observed in the thyroid, stomach, liver and spleen, indicating acceptable levels of radiochemical impurities. The group infected with S. aureus showed a visible uptake in the infected right thigh at 1 h post-injection. For the control groups (C. albicans and zymosan) visible differences between the right and left thighs were not observed. The radiolabeled aptamers were able to distinguish aseptic inflammation from bacterial infection and bacterial from fungal infection. (author)

  1. Community acquired urinary tract infection: etiology and bacterial susceptibility

    Directory of Open Access Journals (Sweden)

    Dias Neto José Anastácio

    2003-01-01

    Full Text Available PURPOSE: Urinary tract infections (UTI are one of the most common infectious diseases diagnosed. UTI account for a large proportion of antibacterial drug consumption and have large socio-economic impacts. Since the majority of the treatments begins or is done completely empirically, the knowledge of the organisms, their epidemiological characteristics and their antibacterial susceptibility that may vary with time is mandatory. OBJECTIVE: The aim of this study was to report the prevalence of uropathogens and their antibiotic susceptibility of the community acquired UTI diagnosed in our institution and to provide a national data. METHODS: We analyzed retrospectively the results of urine cultures of 402 patients that had community acquired urinary tract infection in the year of 2003. RESULTS: The mean age of the patients in this study was 45.34 ± 23.56 (SD years. There were 242 (60.2% females and 160 (39.8% males. The most commonly isolated organism was Escherichia coli (58%. Klebsiella sp. (8.4% and Enterococcus sp.(7.9% were reported as the next most common organisms. Of all bacteria isolated from community acquired UTI, only 37% were sensitive to ampicillin, 51% to cefalothin and 52% to trimethoprim/sulfamethoxazole. The highest levels of susceptibility were to imipenem (96%, ceftriaxone (90%, amikacin (90%, gentamicin (88%, levofloxacin (86%, ciprofloxacin (73%, nitrofurantoin (77% and norfloxacin (75%. CONCLUSION: Gram-negative agents are the most common cause of UTI. Fluoroquinolones remains the choice among the orally administered antibiotics, followed by nitrofurantoin, second and third generation cephalosporins. For severe disease that require parenteral antibiotics the choice should be aminoglycosides, third generation cephalosporins, fluoroquinolones or imipenem, which were the most effective.

  2. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study.

    Science.gov (United States)

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-01-01

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose (e-nose) could fit this profile but has never been tested in this setting before. In a single-center registered trial (NTR 4601) patients admitted with AECOPD were tested with the Aeonose(®) electronic nose, and a diagnosis of viral or bacterial infection was obtained by bacterial culture on sputa and viral PCR on nose swabs. A neural network with leave-10%-out cross-validation was used to assess the e-nose data. Forty three patients were included. In the bacterial infection model, 22 positive cases were tested versus the negatives; and similarly 18 positive cases were tested in the viral infection model. The Aeonose was able to distinguish between COPD-subjects suffering from a viral infection and COPD patients without infection, showing an area under the curve (AUC) of 0.74. Similarly, for bacterial infections, an AUC of 0.72 was obtained. The Aeonose e-nose yields promising results in 'smelling' the presence or absence of a viral or bacterial respiratory infection during an acute exacerbation of COPD. Validation of these results using a new and large cohort is required before introduction into clinical practice. PMID:27310311

  3. Acute bacterial skin and skin structure infections in internal medicine wards: old and new drugs.

    Science.gov (United States)

    Falcone, Marco; Concia, Ercole; Giusti, Massimo; Mazzone, Antonino; Santini, Claudio; Stefani, Stefania; Violi, Francesco

    2016-08-01

    Skin and soft tissue infections (SSTIs) are a common cause of hospital admission among elderly patients, and traditionally have been divided into complicated and uncomplicated SSTIs. In 2010, the FDA provided a new classification of these infections, and a new category of disease, named acute bacterial skin and skin structure infections (ABSSSIs), has been proposed as an independent clinical entity. ABSSSIs include three entities: cellulitis and erysipelas, wound infections, and major cutaneous abscesses This paper revises the epidemiology of SSTIs and ABSSSIs with regard to etiologies, diagnostic techniques, and clinical presentation in the hospital settings. Particular attention is owed to frail patients with multiple comorbidities and underlying significant disease states, hospitalized on internal medicine wards or residing in nursing homes, who appear to be at increased risk of infection due to multi-drug resistant pathogens and treatment failures. Management of ABSSSIs and SSTIs, including evaluation of the hemodynamic state, surgical intervention and treatment with appropriate antibiotic therapy are extensively discussed. PMID:27084183

  4. Use of Multiplex PCR for Diagnosis of Bacterial Infection Respiratory Mixed

    Directory of Open Access Journals (Sweden)

    Al-ssum, R. M.

    2010-01-01

    Full Text Available Atypical bacteria grow very slowly in culture or they do not grow at all leading to delays in detection and diagnosis. PCR multiplex was performed on template DNAs extracted from seventy three collected specimens. Thirty seven showed positive indication for the presence of bacterial infection. The incidence of Mycoplasma pneumoniae, Chlamydia pneumonia and Legionella pneumophila as a single infecting agent was 31.5%, 27.5% and 20 % respectively. Dual agent infection caused by Mycoplasma + Chlamydia, Mycoplasma + Legionella and Legionella + Chlamydia was 24%, 20% and 15% respectively. Triple agent infection caused by Legionella + Mycoplasma + Chlamydia was 17.5%. The etiology of the infection was M. pneumoniae, L. pneumophila or C. pneumoniae as a single etiology or in combination of two or three organisms.

  5. Bacterial Infection in Chronic Obstructive Pulmonary Disease in 2000: a State-of-the-Art Review

    Science.gov (United States)

    Sethi, Sanjay; Murphy, Timothy F.

    2001-01-01

    Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States. The precise role of bacterial infection in the course and pathogenesis of COPD has been a source of controversy for decades. Chronic bacterial colonization of the lower airways contributes to airway inflammation; more research is needed to test the hypothesis that this bacterial colonization accelerates the progressive decline in lung function seen in COPD (the vicious circle hypothesis). The course of COPD is characterized by intermittent exacerbations of the disease. Studies of samples obtained by bronchoscopy with the protected specimen brush, analysis of the human immune response with appropriate immunoassays, and antibiotic trials reveal that approximately half of exacerbations are caused by bacteria. Nontypeable Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae are the most common causes of exacerbations, while Chlamydia pneumoniae causes a small proportion. The role of Haemophilus parainfluenzae and gram-negative bacilli remains to be established. Recent progress in studies of the molecular mechanisms of pathogenesis of infection in the human respiratory tract and in vaccine development guided by such studies promises to lead to novel ways to treat and prevent bacterial infections in COPD. PMID:11292642

  6. Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women

    Directory of Open Access Journals (Sweden)

    George Louis Mendz

    2013-10-01

    Full Text Available Infection-related preterm birth is a leading cause of infant mortality and morbidity; knowledge of bacterial populations invading the amniotic cavity and the routes of invasion is required to make progress in the prevention of preterm birth. Significant advances have been made in understanding bacterial communities in the vagina, but much less studied are intra-uterine bacterial populations during pregnancy. A systematic review of data published on the intra-uterine microbiome was performed; molecular information and summaries of species found in healthy individuals and in women with diagnosed infections served to construct a database and to analyse results to date. Thirteen studies fulfilled the review's inclusion criteria. The data of various investigations were collated, organised and re-analysed to achieve a more comprehensive understanding of microbial populations in the intra-amniotic space. The most common intra-amniotic bacterial taxa were species that can colonise the vagina in health and disease; there were others associated with the habitats of the mouth, gastrointestinal tract and respiratory tract. The results suggest a central role for the ascending route of infections during pregnancy, and points to a possible secondary contribution via haematogenous invasion of the intra-amniotic space. The census of the intra-uterine microbiome awaits completion.

  7. Infections and infestations of the gastrointestinal tract. Part 1: Bacterial, viral and fungal infections

    International Nuclear Information System (INIS)

    The purpose of this article is to review the imaging findings of various infections affecting the gastrointestinal tract. Barium examinations, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasonography all play an important role in the diagnostic workup of gastrointestinal tract infections. Knowledge of differential diagnosis, sites of involvement, and typical imaging features of different infections can help in accurate diagnosis and guide treatment.

  8. Infections and infestations of the gastrointestinal tract. Part 1: Bacterial, viral and fungal infections

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R., E-mail: rakslide@gmail.com [Department of Clinical Radiology, South Warwickshire NHS Foundation Trust, Warwick (United Kingdom); Rajesh, A. [Department of Radiology, University Hospitals of Leicester NHS Trust (United Kingdom); Rawat, S. [Department of Radiology, Ruby Hall Clinic, Pune (India); Rajiah, P. [Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Ramachandran, I. [Department of Clinical Radiology, South Warwickshire NHS Foundation Trust, Warwick (United Kingdom)

    2012-05-15

    The purpose of this article is to review the imaging findings of various infections affecting the gastrointestinal tract. Barium examinations, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasonography all play an important role in the diagnostic workup of gastrointestinal tract infections. Knowledge of differential diagnosis, sites of involvement, and typical imaging features of different infections can help in accurate diagnosis and guide treatment.

  9. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections.

    Science.gov (United States)

    Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W

    2015-05-01

    Host defense (antimicrobial) peptides, produced by all complex organisms, typically contain an abundance of positively charged and hydrophobic amino acid residues. A small synthetic peptide termed innate defense regulator (IDR-)1018 was derived by substantial modification of the bovine neutrophil host defense peptide bactenecin. Here, we review its intriguing properties that include anti-infective, anti-inflammatory, wound healing, and anti-biofilm activities. It was initially developed as an immune modulator with an ability to selectively enhance chemokine production and polarize cellular differentiation while suppressing/balancing the pro-inflammatory response. In this regard, it has demonstrated in vivo activity in murine models including enhancement of wound healing and an ability to protect against Staphylococcus aureus, multidrug resistant Mycobacterium tuberculosis, herpes virus, and inflammatory disorders, including cerebral malaria and neuronal damage in a pre-term birth model. More recently, IDR-1018 was shown, in a broad-spectrum fashion, to selectively target bacterial biofilms, which are adaptively resistant to many antibiotics and represent the most common growth state of bacteria in human infections. Furthermore, IDR-1018 demonstrated synergy with conventional antibiotics to both prevent biofilm formation and treat pre-existing biofilms. These data are consistent with a strong potential as an adjunctive therapy against antibiotic-resistant infections. PMID:25358509

  10. Surveillance of acute community acquired urinary tract bacterial infections

    Institute of Scientific and Technical Information of China (English)

    Sibanarayan Rath; Rabindra N. Padhy

    2015-01-01

    Objective: To record the antibiotic resistance of community acquired uropathogens over a period of 24 months (May 2011-April 2012). Methods: Urine samples from patients of outpatient department (OPD) were used for isolating urinary tract infection (UTI)-causing bacteria that were cultured on suitable selective media and identified by biochemical tests. Their antibiograms were ascertained by Kirby-Bauer’s disc diffusion method, using 17 antibiotics of 5 different classes. Results: From 2137 urine samples 1332 strains of pathogenic bacteria belonging to 11 species were isolated. Two Gram-positives, Staphylococcus aureus and Enterococcus faecalis and nine Gram-negatives, Acinetobacter baumannii, Citrobacter sp., Escherichia coli, Enterobacter aerogenes, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Proteus vulgaris and Pseudomonas aeruginosa were isolated. Both S. aureus and E. faecalis were vancomycin resistant, and resistant-strains of all pathogens increased in each 6-month period of study. Particularly, all Gram-negatives were resistant to nitrofurantoin and co-trimoxazole, the most preferred antibiotics of empiric therapy for UTI, but were moderately resistant to gentamicin, ampicillin, amoxyclav, ofloxacin and gatifloxacin. Most Gram-negatives produced extended spectrum β-lactamase. Conclusions: It was concluded that periodic surveillance of pathogens is an essential corollary in effective health management in any country, as empiric therapy is a common/essential practice in effective clinical management.

  11. Salmonella Infection Enhances Erythropoietin Production by the Kidney and Liver, Which Correlates with Elevated Bacterial Burdens.

    Science.gov (United States)

    Li, Lin-Xi; Benoun, Joseph M; Weiskopf, Kipp; Garcia, K Christopher; McSorley, Stephen J

    2016-10-01

    Salmonella infection profoundly affects host erythroid development, but the mechanisms responsible for this effect remain poorly understood. We monitored the impact of Salmonella infection on erythroid development and found that systemic infection induced anemia, splenomegaly, elevated erythropoietin (EPO) levels, and extramedullary erythropoiesis in a process independent of Salmonella pathogenicity island 2 (SPI2) or flagellin. The circulating EPO level was also constitutively higher in mice lacking the expression of signal-regulatory protein α (SIRPα). The expression level of EPO mRNA was elevated in the kidney and liver but not increased in the spleens of infected mice despite the presence of extramedullary erythropoiesis in this tissue. In contrast to data from a previous report, mice lacking EPO receptor (EPOR) expression on nonerythroid cells (EPOR rescued) had bacterial loads similar to those of wild-type mice following Salmonella infection. Indeed, treatment to reduce splenic erythroblasts and mature red blood cells correlated with elevated bacterial burdens, implying that extramedullary erythropoiesis benefits the host. Together, these findings emphasize the profound effect of Salmonella infection on erythroid development and suggest that the modulation of erythroid development has both positive and negative consequences for host immunity.

  12. Evaluation of Diagnostic Value of Procalcitonin as a Marker of Neonatal Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Alireza Monsef

    2012-09-01

    Full Text Available Objective: This study tried to assess sensitivity, specificity, positive and negative predictive value of procalcitonin for diagnosis of neonatal bacterial infections.Methods: This prospective cross sectional study was carried out during an 18-month period in NICU and neonatal wards of Besat Hospital in Hamedan province, Iran. 39 symptomatic infants with clinical and laboratory findings in favor of bacterial infection with a positive blood, CSF, and/or supra pubic urine cultureentered the study; 32 newborns without any bacterial infection served as control group. Quantitative procalcitonin level ≥0.5 ng/ml was accepted as pathological. Finally sensitivity, specificity, positive (PPV and negative predictive value (NPV were calculated for procalcitonin test.Findings: 20 blood cultures, 17 urine cultures and 8 CSF cultures were positive. Sensitivity, specificity, PPV and NPV for procalcitonin test was 76.9%, 100%, 100% and 78% respectively. Diagnostic value of procalcitonin test in accordance with blood culture for mentioned items was 85%, 100%, 100% and 91.4%respectively. Its diagnostic value according to urine culture was: sensitivity 70.6%, specificity 100%, PPV 100% and NPV 86.4%, and according to CSF culture was: sensitivity 75%, specificity 100%, PPV 100% and NPV 94.1% respectively.Conclusion: The results show that the procalcitonin test has high sensitivity, specificity, PPV and NPV for diagnosis of neonatal infections.

  13. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.

    Science.gov (United States)

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Juergen

    2013-11-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance.

  14. [Epidemiology of nosocomial bacterial infection in a neonatal intensive care unit in Morocco].

    Science.gov (United States)

    Maoulainine, F-M-R; Elidrissi, N-S; Chkil, G; Abba, F; Soraa, N; Chabaa, L; Amine, M; Aboussad, A

    2014-09-01

    In neonatal intensive care units, the incidence of nosocomial infection is high. This study aimed to determine the epidemiology of a nosocomial bacterial infection in the neonatal intensive care unit of Mohamed VI university hospital. A total of 702 newborns were included in this study. Of the 702 neonates studied, 91 had developed a nosocomial infection. The incidence rate was 13% and incidence density was 21.2 per 1000 patient-days. The types of infection were: bloodstream infections (89%), pneumonia (6.6%), meningitis (3.3%), and urinary tract infections (1.1%). Nosocomial infection was particularly frequent in cases of low birth weight, prematurity, young age at admission, umbilical venous catheter, and mechanical ventilation. Multiresistant bacteria included enterobacteria producing betalactamase (76.9%), especially enterobacteria that were dominated by Klebsiella pneumoniae (39.7%). The mortality rate was 52.7% in nosocomial infections, 19 (20.87%) of whom had septic shock. The results of this study show that nosocomial infection is an intrahospital health problem that could be remedied by a prevention strategy.

  15. Asymptomatic cattle naturally infected with Mycobacterium bovis present exacerbated tissue pathology and bacterial dissemination.

    Directory of Open Access Journals (Sweden)

    Álvaro Menin

    Full Text Available Rational discovery of novel immunodiagnostic and vaccine candidate antigens to control bovine tuberculosis (bTB requires knowledge of disease immunopathogenesis. However, there remains a paucity of information on the Mycobacterium bovis-host immune interactions during the natural infection. Analysis of 247 naturally PPD+ M. bovis-infected cattle revealed that 92% (n = 228 of these animals were found to display no clinical signs, but presented severe as well as disseminated bTB-lesions at post-mortem examination. Moreover, dissemination of bTB-lesions positively correlated with both pathology severity score (Spearman r = 0.48; p<0.0001 and viable tissue bacterial loads (Spearman r = 0.58; p = 0.0001. Additionally, granuloma encapsulation negatively correlated with M. bovis growth as well as pathology severity, suggesting that encapsulation is an effective mechanism to control bacterial proliferation during natural infection. Moreover, multinucleated giant cell numbers were found to negatively correlate with bacterial counts (Spearman r = 0.25; p = 0.03 in lung granulomas. In contrast, neutrophil numbers in the granuloma were associated with increased M. bovis proliferation (Spearman r = 0.27; p = 0.021. Together, our findings suggest that encapsulation and multinucleated giant cells control M. bovis viability, whereas neutrophils may serve as a cellular biomarker of bacterial proliferation during natural infection. These data integrate host granuloma responses with mycobacterial dissemination and could provide useful immunopathological-based biomarkers of disease severity in natural infection with M. bovis, an important cattle pathogen.

  16. Isolation of bacteria causing secondary bacterial infection in the lesions of cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ziaie Hengameh

    2008-01-01

    Full Text Available Background: Cutaneous Leishmaniasis (CL is a parasitic disease characterized by single or multiple ulcerations. Secondary bacterial infection is one of the complications of the disease that can increase the tissue destruction and the resulting scar. Objective: To effectively determine the incidence of real secondary bacteria infection in cutaneous leishmaniasis, we designed the current study. Methods and Materials: This was a cross-sectional study performed in Skin Diseases and Leishmaniasis Research Centre, Isfahan, Iran. In this study, 854 patients with confirmed CL were enrolled. Samples were taken from all the patients. Sterile swaps were achieved for the ulcer exudates and scraping was used for nonulcerated lesions. All the samples were transferred to tryptic soy broth medium. After 24 h of incubation in 37°C, they were transferred to eosin methylene blue agar (EBM and blood agar. Laboratory tests were used to determine the species of bacteria. All of the collected data were analyzed by SPSS software and chi-square. Results: Among 854 patients with confirmed cutaneous leishmaniasis, 177 patients (20.7% had positive cultures for secondary bacterial infection. Bacteria isolated from the lesions were as follows: Staphylococcus aureus - 123 cases (69.4%, coagulase negative Staphylococcus - 41 cases (23.1%, E. coil - 7 cases (3.9%, Proteus - 3 cases (1.7% and Klebsiella - 3 cases (1.7%. Conclusions: The incidence of secondary bacterial infection in lesions of CL was 20.7%. The most common isolated pathogen was Staphylococcus aureus . The incidence of secondary bacterial infection was significantly more in the ulcerated lesions as compared with nonulcerated lesions ( P = 0.00001.

  17. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Makoka Mwai H

    2012-03-01

    Full Text Available Abstract Background Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Methods Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Results Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. Conclusions There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  18. DMPD: Lipopolysaccharide sensing an important factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available se toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. Freudenberg MA, Tchapt...portant factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of L...une response toGram-negative bacterial infections: benefits and hazards of LPShyp

  19. Neutrophils of Scophthalmus maximus produce extracellular traps that capture bacteria and inhibit bacterial infection.

    Science.gov (United States)

    Chi, Heng; Sun, Li

    2016-03-01

    Neutrophils constitute an essential part of the innate immune system. Recently, neutrophils have been found to produce a complex extracellular structure called neutrophil extracellular traps (NETs) that capture bacteria, fungi, and parasites. In fish, a few studies on NETs production have been reported, however, the function of fish NETs is unknown. In this study, we examined the ability of turbot (Scophthalmus maximus) neutrophils to produce NETs and investigated the effect of turbot NETs on bacterial infection. We found that upon lipopolysaccharides treatment, turbot head kidney neutrophils produced typical NETs structures that contained DNA and histones. Bacteria treatment also induced production of NETs, which in turn entrapped the bacterial cells and inhibited bacterial replication. Furthermore, when introduced into turbot, NETs-trapped bacteria exhibited significantly weakened ability of tissue dissemination and colonization. These results indicate for the first time that teleost NETs possess apparent antibacterial effect both in vitro and in vivo. PMID:26586641

  20. Review of moxifloxacin hydrochloride ophthalmic solution in the treatment of bacterial eye infections

    Directory of Open Access Journals (Sweden)

    Darlene Miller

    2008-03-01

    Full Text Available Darlene MillerAbrams Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Anne Bates Leach Eye Hospital, Miller School of Medicine-University of Miami, FL, USAAbstract: Moxifloxacin hydrochloride ophthalmic solution 0.5% (Vigamox® is the ocular formulation/adaptation of moxifloxacin. Moxifloxacin is a broad spectrum 8-methoxyfluoroquinolone which terminates bacterial growth by binding to DNA gyrase (topoisomerase II and topoisomerase IV, essential bacterial enzymes involved in the replication, translation, repair and recombination of deoxyribonucleic acid. Affinity for both enzymes improves potency and reduces the probability of selecting resistant bacterial subpopulations. Vigamox is a bactericidal, concentration dependent, anti-infective. It is preservative free, and well tolerated with minimal ocular side effects. It provides increased penetration into ocular tissues and fluids with improved activity against Streptococci and Staphylococci species and moderate to excellent activity against clinically relevant, gram- negative ocular pathogens.Keywords: moxifloxacin, vigamox, pharmacodynamic indices, minimal inhibitory concentrations

  1. Tissue characterization of skin ulcer for bacterial infection by multiple statistical analysis of echo amplitude envelope

    Science.gov (United States)

    Omura, Masaaki; Yoshida, Kenji; Kohta, Masushi; Kubo, Takabumi; Ishiguro, Toshimichi; Kobayashi, Kazuto; Hozumi, Naohiro; Yamaguchi, Tadashi

    2016-07-01

    To characterize skin ulcers for bacterial infection, quantitative ultrasound (QUS) parameters were estimated by the multiple statistical analysis of the echo amplitude envelope based on both Weibull and generalized gamma distributions and the ratio of mean to standard deviation of the echo amplitude envelope. Measurement objects were three rat models (noninfection, critical colonization, and infection models). Ultrasound data were acquired using a modified ultrasonic diagnosis system with a center frequency of 11 MHz. In parallel, histopathological images and two-dimensional map of speed of sound (SoS) were observed. It was possible to detect typical tissue characteristics such as infection by focusing on the relationship of QUS parameters and to indicate the characteristic differences that were consistent with the scatterer structure. Additionally, the histopathological characteristics and SoS of noninfected and infected tissues were matched to the characteristics of QUS parameters in each rat model.

  2. Pyogenic Bacterial Infections in Humans with MyD88 Deficiency

    Science.gov (United States)

    von Bernuth, Horst; Picard, Capucine; Jin, Zhongbo; Pankla, Rungnapa; Xiao, Hui; Ku, Cheng-Lung; Chrabieh, Maya; Mustapha, Imen Ben; Ghandil, Pegah; Camcioglu, Yildiz; Vasconcelos, Júlia; Sirvent, Nicolas; Guedes, Margarida; Vitor, Artur Bonito; Herrero-Mata, María José; Aróstegui, Juan Ignacio; Rodrigo, Carlos; Alsina, Laia; Ruiz-Ortiz, Estibaliz; Juan, Manel; Fortuny, Claudia; Yagüe, Jordi; Antón, Jordi; Pascal, Mariona; Chang, Huey-Hsuan; Janniere, Lucile; Rose, Yoann; Garty, Ben-Zion; Chapel, Helen; Issekutz, Andrew; Maródi, László; Rodriguez-Gallego, Carlos; Banchereau, Jacques; Abel, Laurent; Li, Xiaoxia; Chaussabel, Damien; Puel, Anne; Casanova1, Jean-Laurent

    2009-01-01

    MyD88 is a key downstream adapter for most Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 deficiency in mice leads to susceptibility to a broad range of pathogens in experimental settings of infection. We describe a distinct situation in a natural setting of human infection. Nine children with autosomal recessive MyD88 deficiency suffered from life-threatening, often recurrent pyogenic bacterial infections, including invasive pneumococcal disease. However, these patients were otherwise healthy, with normal resistance to other microbes. Their clinical status improved with age, but not due to any cellular leakiness in MyD88 deficiency. The MyD88-dependent TLRs and IL-1Rs are therefore essential for protective immunity to a small number of pyogenic bacteria, but redundant for host defense to most natural infections. PMID:18669862

  3. SECONDARY BACTERIAL INFECTION IN ADULT PATIENTS WITH PROLONGED AND SEVERE DENGUE FEVER

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-05-01

    Full Text Available INTRODUCTION Generally, in dengue shock syndrome antibiotics are not advised. But unrecognised bacterial infection is likely to contribute to morbidity and mortality, probably because of increased vascular permeability. OBJECTIVES To assess the incidence of secondary bacterial infection in adult patients with prolonged and severe dengue fever. METHODS A prospective study was conducted recruiting patients with confirmed acute dengue infection who had prolonged fever (>5 days. Prior to institution of antibiotic therapy, two sets of blood cultures were taken from patients. Demographic, clinical, haematological and biochemical parameters were recorded. Severity of fever & associated symptoms assessed. Ultrasonography done to find out development of ascites and pleural effusions. RESULTS Sixty patients (60.0% males with a mean age of 33.5 years (SD 12.1 were studied. The average duration of fever was 6.9 days (SD 1.6. Fifteen patients (25% had bacterial isolates in their blood cultures; Staphylococcus aureus (n=3, coliforms (n=7, pseudomonas (n=2 and 3 had mixed growths. The culture positive group had severe body aches and joints paint at admission and high grade fever, third space fluid accumulation and significant drop in platelets compared to culture-negative group. CONCLUSIONS A quarter of dengue patients with prolonged fever had a bacterial isolate. Culture-positive patients appeared more ill with body aches and had higher degrees of fever during the course of the illness. Increased vascular permeability may predispose to bacterial seepage into blood. Although white cell count is not helpful in detecting bacteraemia in dengue fever, low platelet count and severe symptoms at presentation may be helpful.

  4. Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections.

    Directory of Open Access Journals (Sweden)

    Minghong Li

    Full Text Available A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.

  5. Selective intestinal decontamination for the prevention of early bacterial infections after liver transplantation

    Science.gov (United States)

    Resino, Elena; San-Juan, Rafael; Aguado, Jose Maria

    2016-01-01

    Bacterial infection in the first month after liver transplantation is a frequent complication that poses a serious risk for liver transplant recipients as contributes substantially to increased length of hospitalization and hospital costs being a leading cause of death in this period. Most of these infections are caused by gram-negative bacilli, although gram-positive infections, especially Enterococcus sp. constitute an emerging infectious problem. This high rate of early postoperative infections after liver transplant has generated interest in exploring various prophylactic approaches to surmount this problem. One of these approaches is selective intestinal decontamination (SID). SID is a prophylactic strategy that consists of the administration of antimicrobials with limited anaerobicidal activity in order to reduce the burden of aerobic gram-negative bacteria and/or yeast in the intestinal tract and so prevent infections caused by these organisms. The majority of studies carried out to date have found SID to be effective in the reduction of gram-negative infection, but the effect on overall infection is limited due to a higher number of infection episodes by pathogenic enterococci and coagulase-negative staphylococci. However, difficulties in general extrapolation of the favorable results obtained in specific studies together with the potential risk of selection of multirresistant microorganisms has conditioned controversy about the routinely application of these strategies in liver transplant recipients.

  6. Preparation of 99mTc Radiopharmaceuticals for Diagnosis of Bacterial Infection

    International Nuclear Information System (INIS)

    Full text: Preparation of 99mTc-ciprofloxacin by Radioisotope Center, Thailand Institute of Nuclear Technology, for diagnosis of bacterial infection proceeded by varying the factors which affected this compound. The resulted 99mTc-ciprofloxacin had a pH of 4.0 - 5.0, 0.25 ≅ 0.56 % injected dose per gram of infected area (1 and 3 hours after injection) and at least 9 5% radiochemical purity with 6-hour stability. 99mTc-ciprofloxacin was found sterile, pyrogen-free and non-toxic

  7. The Use of Atomic Force Microscopy for Cytomorphological Analysis of Bacterial Infection Agents.

    Science.gov (United States)

    Nemova, I S; Falova, O E; Potaturkina-Nesterova, N I

    2016-02-01

    Cytomorphological signs of bacterial infection agents were studied by atomic force microscopy. Analysis of the elastic mechanical characteristics of Staphylococcus spp. from the skin of patients with chronic dermatoses showed lower elasticity of S. aureus cell membrane in comparison with that of transitory flora representatives. Significant differences in characteristics of cell membrane relief and presence of fimA pathogenicity factor were detected in E. coli isolated from the reproductive tract mucosa of clinically healthy women and patients with inflammatory urogenital infections. PMID:26899849

  8. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo.

    Science.gov (United States)

    Wu, Huixia; Jones, Rheinallt M; Neish, Andrew S

    2012-01-01

    The enteric pathogen Salmonella typhimurium secretes the preformed AvrA effector protein into host cells. This acetyltransferase has been shown to modulate mammalian intestinal immune and survival responses by inhibition of JNK MAPK. To study the role of this effector in natural enteric infection, we used a mouse model to compare wild-type S. typhimurium to an isogenic AvrA null Salmonella mutant. Salmonella lacking AvrA induced increased intestinal inflammation, more intense systemic cytokine responses, and increased apoptosis in epithelial cells. Increased apoptosis was also observed in extra epithelial macrophages. AvrA null-infected mice consistently showed higher bacterial burden within mucosal lymphoid tissues, spleen and liver by 5 days post infection, which indicated a more severe clinical course. To study the molecular mechanisms involved, recombinant adenoviruses expressing AvrA or mutant AvrA proteins were constructed, which showed appropriate expression and mediated the expected inhibition of JNK signalling. Cultured epithelial cells and macrophages transduced with AvrA expressing adenovirus were protected from apoptosis induced by exogenous stimuli. In conclusion, the results demonstrated that Salmonella AvrA modulates survival of infected macrophages likely via JNK suppression, and prevents macrophage death and rapid bacterial dissemination. AvrA suppression of apoptosis in infected macrophages may allow for establishment of a stable intracellular niche typical of intracellular pathogens.

  9. Prevalence of Bacterial Urinary Tract Infections in Patients before and after of Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Esmaeili, R.

    2014-06-01

    Full Text Available Background and Objective: Urinary tract infections and bacteremia are the major problems in renal transplant patients, which are mostly due to immunesuppressive regimens, surgery, and exposure to the germs in hospital. The aim of this study was to determine the prevalence of bacterial agents in the blood and urine samples of kidney transplant candidates. Material and Methods: In this one-year-long study, thirty-three renal transplant candidates were assessed for urine and blood cultures. One urine and blood samples from each patient before transplantation and three samples after transplantation were collected. The Samples, using standard microbiological methods, were investigated and infectious organisms identified. Results: In 133 urine samples, Escherichia coli (20.5%, Enterobacter spp. (5.3%, Klebsiella spp. (3 % and Staphylococcus epidermidis (1.5% were isolated. In the blood samples, Enterobacter spp. (9.1%, Escherichia coli (6.8%, Staphylococcus epidermidis (3.8% and Klebsiella spp. (0.8% were isolated. Conclusion: The results indicate that urinary tract infection was high in patients with transplanted kidney, and E. coli is the most common cause of this infection. Keywords: Kidney Transplantation; Bacterial infections; Urinary Tract and Blood Infections; Escherichia Coli

  10. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility.

    Science.gov (United States)

    Carneiro, Luísa Cunha; Cronin, James Graham; Sheldon, Iain Martin

    2016-03-01

    Bacterial infections of the endometrium after parturition commonly cause metritis and endometritis in dairy cattle, and these diseases are important because they compromise animal welfare and incur economic costs, as well as delaying or preventing conception. Here we highlight that uterine infections cause infertility, discuss which bacteria cause uterine disease, and review the evidence for mechanisms of inflammation and tissue damage in the endometrium. Bacteria cultured from the uterus of diseased animals include Escherichia coli, Trueperella pyogenes, and several anaerobic species, but their causative role in disease is challenged by the discovery of many other bacteria in the uterine disease microbiome. Irrespective of the species of bacteria, endometrial cell inflammatory responses to infection initially depend on innate immunity, with Toll-like receptors binding pathogen-associated molecular patterns, such as lipopolysaccharide and bacterial lipopeptides. In addition to tissue damage associated with parturition and inflammation, endometrial cell death is caused by a cholesterol-dependent cytolysin secreted by T. pyogenes, called pyolysin, which forms pores in plasma membranes of endometrial cells. However, endometrial cells surprisingly do not sense damage-associated molecular patterns, but a combination of infections followed by cell damage leads to release of the intracellular cytokine interleukin (IL)-1 alpha from endometrial cells, which then acts to scale inflammatory responses. To develop strategies to limit the impact of uterine disease on fertility, future work should focus on determining which bacteria and virulence factors cause endometritis, and understanding how the host response to infection is regulated in the endometrium. PMID:26952747

  11. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  12. A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity.

    Directory of Open Access Journals (Sweden)

    Kevin J McHugh

    Full Text Available Influenza viruses pose a significant health risk and annually impose a great cost to patients and the health care system. The molecular determinants of influenza severity, often exacerbated by secondary bacterial infection, are largely unclear. We generated a novel outbred mouse model of influenza virus, Staphylococcus aureus, and co-infection utilizing influenza A/CA/07/2009 virus and S. aureus (USA300. Outbred mice displayed a wide range of pathologic phenotypes following influenza virus or co-infection ranging broadly in severity. Influenza viral burden positively correlated with weight loss although lung histopathology did not. Inflammatory cytokines including IL-6, TNF-α, G-CSF, and CXCL10 positively correlated with both weight loss and viral burden. In S. aureus infection, IL-1β, G-CSF, TNF-α, and IL-6 positively correlated with weight loss and bacterial burden. In co-infection, IL-1β production correlated with decreased weight loss suggesting a protective role. The data demonstrate an approach to identify biomarkers of severe disease and to understand pathogenic mechanisms in pneumonia.

  13. TLR2-induced IL-10 production impairs neutrophil recruitment to infected tissues during neonatal bacterial sepsis.

    Science.gov (United States)

    Andrade, Elva B; Alves, Joana; Madureira, Pedro; Oliveira, Liliana; Ribeiro, Adília; Cordeiro-da-Silva, Anabela; Correia-Neves, Margarida; Trieu-Cuot, Patrick; Ferreira, Paula

    2013-11-01

    Sepsis is the third most common cause of neonatal death, with Group B Streptococcus (GBS) being the leading bacterial agent. The pathogenesis of neonatal septicemia is still unsolved. We described previously that host susceptibility to GBS infection is due to early IL-10 production. In this study, we investigated whether triggering TLR2 to produce IL-10 is a risk factor for neonatal bacterial sepsis. We observed that, in contrast to wild-type (WT) pups, neonatal TLR2-deficient mice were resistant to GBS-induced sepsis. Moreover, if IL-10 signaling were blocked in WT mice, they also were resistant to sepsis. This increased survival rate was due to an efficient recruitment of neutrophils to infected tissues that leads to bacterial clearance, thus preventing the development of sepsis. To confirm that IL-10 produced through TLR2 activation prevents neutrophil recruitment, WT pups were treated with the TLR2 agonist Pam3CSK4 prior to nebulization with the neutrophil chemotactic agent LTB4. Neutrophil recruitment into the neonatal lungs was inhibited in pups treated with Pam3CSK4. However, the migration was restored in Pam3CSK4-treated pups when IL-10 signaling was blocked (either by anti-IL-10R mAb treatment or by using IL-10-deficient mice). Our findings highlight that TLR2-induced IL-10 production is a key event in neonatal susceptibility to bacterial sepsis. PMID:24078699

  14. Establishment of a Multiplex PCR System to Diagnose Tuberculosis and Other Bacterial Infections

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to rapidly diagnose and differentiate tuberculosis from other bacterial infections, a 16S rRNA gene (16s rDNA)-directed multiplex PCR system was developed. In this system, a pair of universal primers and a tubercle bacillus (Tb)-specific primer were designed based on highly conserved regions and Tb species-specific variable region of bacterial 16s rDNA. A 360bp fragment was detected in all bacteria tested, and a 210bp fragment was found only in Tb. 19 species of known bacteria including Tb were used for evaluating specificity, universality and sensitivity of the PCR. Candida albicans and human diploid cell served as controls. It was found that both 210bp and 360bp fragments were amplified only in Tb, and only 360 bp fragment was detected in other 18 species of general bacteria. Candida albicans and human cells were negative for both 360bp and 210bp fragments.The lowest detectable level of the PCR was 10 fg of DNA for Escherichia coli and 100 fg of DNA for Tb. The results indicated that this multiplex PCR system for the simultaneous detection of Tb and other common bacteria had higher specificity and sensitivity, as well as good universality and might be useful to rapidly diagnose bacterial infections and effectively distinguish tuberculosis from other bacterial involvement.

  15. A portable immunomagnetic cell capture system to accelerate culture diagnosis of bacterial infections.

    Science.gov (United States)

    Singh, Saurabh; Upadhyay, Mohita; Sharma, Jyoti; Gupta, Shalini; Vivekanandan, Perumal; Elangovan, Ravikrishnan

    2016-05-23

    Bacterial infections continue to be a major cause of deaths globally, particularly in resource-poor settings. In the absence of rapid and affordable diagnostic solutions, patients are mostly administered broad spectrum antibiotics leading to antibiotics resistance and poor recovery. Culture diagnosis continues to be a gold standard for diagnosis of bacterial infection, despite its long turnaround time of 24 to 48 h. We have developed a portable immunomagnetic cell capture (iMC(2)) system that allows rapid culture diagnosis of bacterial pathogens. Our approach involves the culture growth of the blood samples in broth media for 6 to 8 h, followed by immunomagnetic enrichment of the target cells using the iMC(2) device. The device comprises a disposable capture chip that has two chambers of 5 ml and 50 μl volume connected through a channel with a manual valve. Bacterial cells bound to antibody coated magnetic nanoparticles are swept from the 5 ml sample chamber into the 50 μl recovery chamber by moving an external magnetic field with respect to the capture chip using a linear positioner. This enables specific isolation and up to 100× enrichment of the target cells. The presence of bacteria in the recovered sample is confirmed visually using a lateral flow immunoassay. The system is demonstrated in buffer and blood samples spiked with S. typhi. The method has high sensitivity (10 CFU ml(-1)), specificity and a rapid turnaround time of less than 7 h, a significant improvement over conventional methods. PMID:27118505

  16. Drosophila embryos as model systems for monitoring bacterial infection in real time.

    Directory of Open Access Journals (Sweden)

    Isabella Vlisidou

    2009-07-01

    Full Text Available Drosophila embryos are well studied developmental microcosms that have been used extensively as models for early development and more recently wound repair. Here we extend this work by looking at embryos as model systems for following bacterial infection in real time. We examine the behaviour of injected pathogenic (Photorhabdus asymbiotica and non-pathogenic (Escherichia coli bacteria and their interaction with embryonic hemocytes using time-lapse confocal microscopy. We find that embryonic hemocytes both recognise and phagocytose injected wild type, non-pathogenic E. coli in a Dscam independent manner, proving that embryonic hemocytes are phagocytically competent. In contrast, injection of bacterial cells of the insect pathogen Photorhabdus leads to a rapid 'freezing' phenotype of the hemocytes associated with significant rearrangement of the actin cytoskeleton. This freezing phenotype can be phenocopied by either injection of the purified insecticidal toxin Makes Caterpillars Floppy 1 (Mcf1 or by recombinant E. coli expressing the mcf1 gene. Mcf1 mediated hemocyte freezing is shibire dependent, suggesting that endocytosis is required for Mcf1 toxicity and can be modulated by dominant negative or constitutively active Rac expression, suggesting early and unexpected effects of Mcf1 on the actin cytoskeleton. Together these data show how Drosophila embryos can be used to track bacterial infection in real time and how mutant analysis can be used to genetically dissect the effects of specific bacterial virulence factors.

  17. Platelet concentrates: reducing the risk of transfusion-transmitted bacterial infections

    Directory of Open Access Journals (Sweden)

    de Korte D

    2014-06-01

    Full Text Available Dirk de Korte,1 Jan H Marcelis2 1Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, 2Department of Microbiology, St Elisabeth Hospital, Tilburg, the Netherlands Abstract: The introduction of a combination of interventions during collection of whole-blood or platelet concentrates has been successful in lowering the degree of bacterial contamination in the final product, the platelet concentrate, by 50%–75%. These interventions were improved donor questionnaires, best-practice skin disinfection, and diversion of first blood volume. These interventions have reduced the number of bacteria present in the platelet concentrates. In combination with screening for bacterial contamination of platelet concentrates with a culture method, the degree of transfusion-transmitted bacterial infection has been reduced significantly. Due to the very low initial bacteria counts upon collection of the products, the need for improved sensitivity of early screenings tests or highly selective point-of-issue tests remains. The latter should be rapid and easy to perform. An alternative approach might be the implementation of pathogen-inactivation methods for cellular blood products to reduce the amount of pathogens. However, these methods are costly, and so far not proved to be cost-effective, especially in countries with an already-low incidence of transfusion-transmitted infections by viruses, parasites, or bacteria. Keywords: blood products, bacterial contamination, screening, point of issue, pathogen inactivation

  18. [The bacterial microflora of diabetic foot infection and factors determining its spectrum in Ouagadougou (Burkina Faso)].

    Science.gov (United States)

    Guira, O; Tiéno, H; Traoré, S; Diallo, I; Ouangré, E; Sagna, Y; Zabsonré, J; Yanogo, D; Traoré, S S; Drabo, Y J

    2015-12-01

    The aim of the study was to describe the bacterial microflora of diabetic foot infection and to identify the factors which determine the bacterial spectrum in order to increase empiric antibiotic prescription in Ouagadougou. The study was a cross-sectional one, carried from July 1st, 2011 to June 30, 2012 in the departments of internal medicine and general and digestive surgery in Yalgado Ouédraogo teaching hospital. Samples for bacteriological tests consisted of aspiration of pus through the healthy skin, curettage and swab of the base of the ulceration or tissue biopsy from foot lesions. The bacteria's sensitivity to antibiotics has been tested by the qualitative method (Kirby-Bauer). The frequency of diabetic foot infection was 14.45% and the monthly incidence 5.33. The mean age of patients was 56 years and the sex ratio 1.37. Foot ulcerations were chronic in 33 (51.56%), necrotic in 51 (79.69%) and associated with osteitis in 40 (62.5%) patients. Infection was grade 3 in 70.3% cases. Thirty-nine patients had received antibiotics before hospital admission. Among the 71 samples, 62 (87.32%) cultures were positive: 53 (85.48%) monomicrobial and 9 (14.52%) bimicrobial. Aerobic Gram-positive cocci (76%) were the most frequent from ulcerations: Staphylococcus aureus (32.39%), Streptococcus sp (18.30%). Negative coagulase staphylococci have been found in 23.94% cases. Aerobic gram-negative bacilli have been isolated from 24% ulcerations. No factor was associated with the type of bacteria. Gram-positive pathogen cocci showed a high sensitivity to amoxicillin-clavulanic acid and oxacillin. No methicillin-resistant Staphylococcus aureus (MRSA) or extended-spectrum beta lactamase Enterobacteriaceae (ESBL) have been isolated. A better design is necessary to a clarification of bacterial flora in diabetic foot infections. Prevention of bacterial resistance is also needed.

  19. Bacterial infection of mudfish Clarias gariepinus (Siluriformes: Clariidae) fingerlings in tropical nursery ponds.

    Science.gov (United States)

    Ikpi, Gabriel; Offem, Benedict

    2011-06-01

    Bacterial infection among the most common cultured mudfish Clarias gariepinus in Africa, has become a cause of concern, because it constitutes the largest economic loss in fish farms. In order to provide useful biological data of the pathogens for good management practices, samples were collected monthly between January 2008 and December 2009 in three monoculture nursery ponds, located in three different positions: upriver (A, grassland), mid-river (B, mixed forest and grassland) and downriver (C, rainforest) along 200 km length of Cross River floodplains, Nigeria. A total of 720 fingerlings between 15.1 and 20.7 g were analyzed to determine the degree of infection. The bacterial pathogens were taken from their external surfaces, and were isolated and identified by standard methods. The caudal fins of fingerlings from pond A had the highest bacterial load (5.8 x 10(3) cfu/g), while the least counts (1.2 x 103 cfu/g) were identified on the head of fish from pond C, with Flexibacter columnaris as the major etiological agent. Pseudomonas fluorescens, Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus and Micrococcus luteus were identified as co-isolates with P. fluorescens as dominant (0.7 x 10(2) cfu/mL) co-isolates in pond water. Clinical signs of five white spots with red periphery appeared on the external surface of infected fish. All the fish sampled, died after 4 to 9 days. There was no significant difference in the bacterial counts between different ponds, but the difference between fish organs/parts examined was significant. Fish from these ponds are therefore potentially dangerous to consumers and highly devalued, with the economic impact to producers. Preventive methods to avoid these infections are recommended.

  20. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Tanner M Johanns

    Full Text Available The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3-4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3(GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3(+ Treg suppressive potency. In complementary experiments using Foxp3(DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.

  1. The effects of vaccination and immunity on bacterial infection dynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Chris Coward

    2014-09-01

    Full Text Available Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.

  2. Seasonal Evaluation of Antigenic Bacterial Infections Among Working Class in the Inner City of Houston

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2004-01-01

    Full Text Available This paper evaluates the monthly, quarterly, and seasonal variation of antigenic bacterial infections among the working class in the inner city of Houston using the Wellcogen Rapid Test methods. One of the aims was to demonstrate how this method could be used effectively in screening patients at risk and preventing the spread of antigenic bacteria such as Streptococcus pneumoniae, Haemophilus influenzae b, Streptococcus (Strep b, and Neisseria meningitidis (mainly group c and b. A total of 2,837 patients were screened for bacterial infections; 908 (32% were male and 1,929 (68% were female. The age range was between 2 and 70 years. Of the total group, 356 (12.5% patients were positive; 203 (57% were female while 153 (43% were male (male/female ratio of 1:1.3. Medically underserved and immune suppressed populations are the most affected by these bacterial infections. Blacks are the most affected (48% compared to Native Americans (1%, but children under 10 years of age have the highest incidence. This research showed, in addition, that the Wellcogen Rapid Tests are effective (356 cases identified for a rapid screening of infectious bacteria. Explanation for these results was probably due to poor living conditions, poor hygiene, and viral immune suppression in adults and immature immune systems in neonates and children under 10 years of age.

  3. Development of fatal intestinal inflammation in MyD88 deficient mice co-infected with helminth and bacterial enteropathogens.

    Directory of Open Access Journals (Sweden)

    Libo Su

    2014-07-01

    Full Text Available Infections with intestinal helminth and bacterial pathogens, such as enteropathogenic Escherichia coli, continue to be a major global health threat for children. To determine whether and how an intestinal helminth parasite, Heligomosomoides polygyrus, might impact the TLR signaling pathway during the response to a bacterial enteropathogen, MyD88 knockout and wild-type C57BL/6 mice were infected with H. polygyrus, the bacterial enteropathogen Citrobacter rodentium, or both. We found that MyD88 knockout mice co-infected with H. polygyrus and C. rodentium developed more severe intestinal inflammation and elevated mortality compared to the wild-type mice. The enhanced susceptibility to C. rodentium, intestinal injury and mortality of the co-infected MyD88 knockout mice were found to be associated with markedly reduced intestinal phagocyte recruitment, decreased expression of the chemoattractant KC, and a significant increase in bacterial translocation. Moreover, the increase in bacterial infection and disease severity were found to be correlated with a significant downregulation of antimicrobial peptide expression in the intestinal tissue in co-infected MyD88 knockout mice. Our results suggest that the MyD88 signaling pathway plays a critical role for host defense and survival during helminth and enteric bacterial co-infection.

  4. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  5. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis

    Science.gov (United States)

    Conover, Matt S.; Hadjifrangiskou, Maria; Palermo, Joseph J.; Hibbing, Michael E.; Dodson, Karen W.

    2016-01-01

    ABSTRACT Uropathogenic Escherichia coli (UPEC) is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs). Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs) of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies. PMID:27073089

  6. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis

    Directory of Open Access Journals (Sweden)

    Matt S. Conover

    2016-04-01

    Full Text Available Uropathogenic Escherichia coli (UPEC is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs. Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies.

  7. Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection

    Science.gov (United States)

    Moya, Andrés; Vázquez-Castellanos, Jorge F.; Artacho, Alejandro; Chen, Xinhua; Kelly, Ciaran

    2016-01-01

    ABSTRACT The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCE C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin

  8. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    Directory of Open Access Journals (Sweden)

    Justyna Nowakowska

    2014-08-01

    Full Text Available The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials.

  9. The red flour beetle as a model for bacterial oral infections.

    Directory of Open Access Journals (Sweden)

    Barbara Milutinović

    Full Text Available Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus thuringiensis (Bt are widely used and tractable model organisms. However, they have not been employed yet as an efficient experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T. castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt bacteria. We found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution.

  10. Impact of bacterial biofilm on the treatment of prosthetic joint infections.

    Science.gov (United States)

    Jacqueline, Cédric; Caillon, Jocelyne

    2014-09-01

    Microbial biofilm contributes to chronic infection and is involved in the pathogenesis of prosthetic joint infections. Biofilms are structurally complex and should be considered a dynamic system able to protect the bacteria from host defence mechanisms and from antibacterial agents. Despite the use of antibiotics recognized as effective against acute infections, prosthetic joint infections require long-term suppressive treatment acting on adherent bacteria. Conventional in vitro susceptibility testing methods are not suitable for biofilm-associated infections given that these tests do not take into account the physiological parameters of bacterial cells in vivo. Most anti-staphylococcal drugs are able to inhibit in vitro the adhesion of bacteria to a surface, considered to be the first step in biofilm formation. Recent studies suggest that the lack of activity of antibiotics against biofilm-embedded bacteria seems to be more related to the decreased effect of the drug on the pathogen than to the poor penetration of the drug into the biofilm. Eradication of biofilm-embedded bacteria is a very difficult task and combination therapy is required in the treatment of persistent infections involving biofilm. Although several combinations demonstrate potent efficacy, rifampicin is the most common partner drug of effective combinations against staphylococcal biofilms. Considering the complexity of biofilm-related infections, further studies are needed to assess the activity of new therapeutic agents in combination with antibiotics (quorum-sensing inhibitors, biofilm disruptors and specific anti-biofilm molecules). PMID:25135088

  11. In vitro and in vivo evaluation of [{sup 18}F]ciprofloxacin for the imaging of bacterial infections with PET

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Brunner, Martin; Zeitlinger, Markus; Mueller, Ulrich; Lackner, Edith; Joukhadar, Christian; Mueller, Markus [Medical University Vienna, Division of Clinical Pharmacokinetics, Department of Clinical Pharmacology, Vienna (Austria); Ziegler, Sophie; Minar, Erich [Medical University Vienna, Division of Angiology, Department of Internal Medicine II, Vienna (Austria); Dobrozemsky, Georg [Medical University Vienna, Department of Nuclear Medicine, Vienna (Austria); Medical University Vienna, Department of Biomedical Engineering and Physics, Vienna (Austria); Mitterhauser, Markus; Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt [Medical University Vienna, Department of Nuclear Medicine, Vienna (Austria)

    2005-02-01

    The suitability of the{sup 18}F-labelled fluoroquinolone antibiotic ciprofloxacin ([{sup 18}F]ciprofloxacin) for imaging of bacterial infections with positron emission tomography (PET) was assessed in vitro and in vivo. For the in vitro experiments, suspensions of various E. colistrains were incubated with different concentrations of [{sup 18}F]ciprofloxacin (0.01-5.0 {mu}g/ml) and radioactivity retention was measured in a gamma counter. For the in vivo experiments, 725 {+-} 9 MBq [{sup 18}F]ciprofloxacin was injected intravenously into four patients with microbiologically proven bacterial soft tissue infections of the lower extremities and time-radioactivity curves were recorded in infected and uninfected tissue for 5 h after tracer injection. Binding of [{sup 18}F]ciprofloxacin to bacterial cells was rapid, non-saturable and readily reversible. Moreover, bacterial binding of the agent was similar in ciprofloxacin-resistant and ciprofloxacin-susceptible clinical isolates. These findings suggest that non-specific binding rather than specific binding to bacterial type II topoisomerase enzymes is the predominant mechanism of bacterial retention of the radiotracer. PET studies in the four patients with microbiologically proven bacterial soft tissue infections demonstrated locally increased radioactivity uptake in infected tissue, with peak ratios between infected and uninfected tissue ranging from 1.8 to 5.5. Radioactivity was not retained in infected tissue and appeared to wash out with a similar elimination half-life as in uninfected tissue, suggesting that the kinetics of [{sup 18}F]ciprofloxacin in infected tissue are governed by increased blood flow and vascular permeability due to local infection rather than by a binding process. Taken together, our results indicate that [{sup 18}F]ciprofloxacin is not suited as a bacteria-specific infection imaging agent for PET. (orig.)

  12. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET

    International Nuclear Information System (INIS)

    The suitability of the18F-labelled fluoroquinolone antibiotic ciprofloxacin ([18F]ciprofloxacin) for imaging of bacterial infections with positron emission tomography (PET) was assessed in vitro and in vivo. For the in vitro experiments, suspensions of various E. colistrains were incubated with different concentrations of [18F]ciprofloxacin (0.01-5.0 μg/ml) and radioactivity retention was measured in a gamma counter. For the in vivo experiments, 725 ± 9 MBq [18F]ciprofloxacin was injected intravenously into four patients with microbiologically proven bacterial soft tissue infections of the lower extremities and time-radioactivity curves were recorded in infected and uninfected tissue for 5 h after tracer injection. Binding of [18F]ciprofloxacin to bacterial cells was rapid, non-saturable and readily reversible. Moreover, bacterial binding of the agent was similar in ciprofloxacin-resistant and ciprofloxacin-susceptible clinical isolates. These findings suggest that non-specific binding rather than specific binding to bacterial type II topoisomerase enzymes is the predominant mechanism of bacterial retention of the radiotracer. PET studies in the four patients with microbiologically proven bacterial soft tissue infections demonstrated locally increased radioactivity uptake in infected tissue, with peak ratios between infected and uninfected tissue ranging from 1.8 to 5.5. Radioactivity was not retained in infected tissue and appeared to wash out with a similar elimination half-life as in uninfected tissue, suggesting that the kinetics of [18F]ciprofloxacin in infected tissue are governed by increased blood flow and vascular permeability due to local infection rather than by a binding process. Taken together, our results indicate that [18F]ciprofloxacin is not suited as a bacteria-specific infection imaging agent for PET. (orig.)

  13. Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: Diagnostic study

    NARCIS (Netherlands)

    R.G. Nijman (Ruud); Y. Vergouwe (Yvonne); M.J. Thompson (Matthew); M.V. Veen (Mirjam Van); A.H.J. van Meurs (Alfred); J. van der Lei (Johan); E.W. Steyerberg (Ewout); H.A. Moll (Henriëtte); R. Oostenbrink (Rianne)

    2013-01-01

    textabstractObjective: To derive, cross validate, and externally validate a clinical prediction model that assesses the risks of different serious bacterial infections in children with fever at the emergency department. Design: Prospective observational diagnostic study. Setting: Three paediatric em

  14. Integrating chemical and genetic silencing strategies to identify host kinase-phosphatase inhibitor networks that control bacterial infection

    NARCIS (Netherlands)

    Albers, Harald M H G; Kuijl, Coenraad; Bakker, Jeroen; Hendrickx, Loes; Wekker, Sharida; Farhou, Nadha; Liu, Nora; Blasco-Moreno, Bernat; Scanu, Tiziana; den Hertog, Jeroen; Celie, Patrick; Ovaa, Huib; Neefjes, Jacques

    2014-01-01

    Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more

  15. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens.

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions. PMID:25699030

  16. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Yamilé eLópez Hernández

    2015-02-01

    Full Text Available Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as a valuate tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio, and non-vertebrate insects and nematodes (e.g. Caenorhabditis elegans in the study of diverse infectious agents that affect humans. Here we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favour of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.

  17. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    Science.gov (United States)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  18. Dietary plant phenolic improves survival of bacterial infection in Manduca sexta caterpillars.

    Science.gov (United States)

    Del Campo, Marta L; Halitschke, Rayko; Short, Sarah M; Lazzaro, Brian P; Kessler, André

    2013-03-01

    Plant phenolics are generally thought to play significant roles in plant defense against herbivores and pathogens. Many plant taxa, including Solanaceae, are rich in phenolic compounds and some insect herbivores have been shown to acquire phenolics from their hosts to use them as protection against their natural enemies. Here we demonstrate that larvae of an insect specialist on Solanaceae, the tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae), acquire the plant phenolic chlorogenic acid (CA), and other caffeic acid derivatives as they feed on one of their hosts, Nicotiana attenuata L. (Solanaceae), and on artificial diet supplemented with CA. We test the hypothesis that larvae fed on CA-supplemented diet would have better resistance against bacterial infection than larvae fed on a standard CA-free diet by injecting bacteria into the hemocoel of fourth instars. Larvae fed CA-supplemented diet show significantly higher survival of infection with Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper-Bälz, but not of infection with the more virulent Pseudomonas aeruginosa (Schroeter) Migula. Larvae fed on CA-supplemented diet possess a constitutively higher number of circulating hemocytes than larvae fed on the standard diet, but we found no other evidence of increased immune system activity, nor were larvae fed on CA-supplemented diet better able to suppress bacterial proliferation early in the infection. Thus, our data suggest an additional defensive function of CA to the direct toxic inhibition of pathogen proliferation in the gut. PMID:23420018

  19. Post-splenectomy infections in chronic schistosomiasis as a consequence of bacterial translocation

    Directory of Open Access Journals (Sweden)

    Kedma de Magalhães Lima

    2015-06-01

    Full Text Available INTRODUCTION : Bacterial translocation is the invasion of indigenous intestinal bacteria through the gut mucosa to normally sterile tissues and internal organs. Schistosomiasis may cause alterations in the immune system and damage to the intestines, portal system and mesenteric lymph nodes. This study investigated bacterial translocation and alterations in the intestinal microbiota and mucosa in schistosomiasis and splenectomized mice. METHODS : Forty female 35-day-old Swiss Webster mice were divided into the following four groups with 10 animals each: schistosomotic (ESF, splenectomized schistosomotic (ESEF, splenectomized (EF and control (CF. Infection was achieved by introduction of 50 Schistosoma mansoni (SLM cercariae through the skin. At 125 days after birth, half of the parasitized and unparasitized mice were subjected to splenectomy. Body weights were recorded for one week after splenectomy; then, the mice were euthanized to study bacterial translocation, microbiota composition and intestinal morphometry. RESULTS : We observed significant reductions in the weight increases in the EF, ESF and ESEF groups. There were increases of at least 1,000 CFU of intestinal microbiota bacteria in these groups compared with the CF. The EF, ESF and ESEF mice showed decreases in the heights and areas of villi and the total villus areas (perimeter. We observed frequent co-infections with various bacterial genera. CONCLUSIONS : The ESEF mice showed a higher degree of sepsis. This finding may be associated with a reduction in the immune response associated with the absence of the spleen and a reduction in nutritional absorption strengthened by both of these factors (Schistosoma infection and splenectomy.

  20. Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection

    Directory of Open Access Journals (Sweden)

    Rhen Mikael

    2011-02-01

    Full Text Available Abstract Background Mucosal infections elicit inflammatory responses via regulated signaling pathways. Infection outcome depends strongly on early events occurring immediately when bacteria start interacting with cells in the mucosal membrane. Hitherto reported transcription profiles on host-pathogen interactions are strongly biased towards in vitro studies. To detail the local in vivo genetic response to infection, we here profiled host gene expression in a recent experimental model that assures high spatial and temporal control of uropathogenic Escherichia coli (UPEC infection within the kidney of a live rat. Results Transcriptional profiling of tissue biopsies from UPEC-infected kidney tissue revealed 59 differentially expressed genes 8 h post-infection. Their relevance for the infection process was supported by a Gene Ontology (GO analysis. Early differential expression at 3 h and 5 h post-infection was of low statistical significance, which correlated to the low degree of infection. Comparative transcriptomics analysis of the 8 h data set and online available studies of early local infection and inflammation defined a core of 80 genes constituting a "General tissue response to early local bacterial infections". Among these, 25% were annotated as interferon-γ (IFN-γ regulated. Subsequent experimental analyses confirmed a systemic increase of IFN-γ in rats with an ongoing local kidney infection, correlating to splenic, rather than renal Ifng induction and suggested this inter-organ communication to be mediated by interleukin (IL-23. The use of comparative transcriptomics allowed expansion of the statistical data handling, whereby relevant data could also be extracted from the 5 h data set. Out of the 31 differentially expressed core genes, some represented specific 5 h responses, illustrating the value of comparative transcriptomics when studying the dynamic nature of gene regulation in response to infections. Conclusion Our hypothesis

  1. Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes

    International Nuclear Information System (INIS)

    Epidemiology suggests that inhalation of welding fumes increases the susceptibility to lung infection. The effects of chemically distinct welding fumes on lung defense responses after bacterial infection were compared. Fume was collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two consumable electrodes: stainless steel (SS) or mild steel (MS). The fumes were separated into water-soluble and -insoluble fractions. The GMA-SS and GMA-MS fumes were found to be relatively insoluble, whereas the MMA-SS was highly water soluble, with the soluble fraction comprised of 87% Cr and 11% Mn. On day 0, male Sprague-Dawley rats were intratracheally instilled with saline (vehicle control) or the different welding fumes (0.1 or 2 mg/rat). At day 3, the rats were intratracheally inoculated with 5 x 103 Listeria monocytogenes. On days 6, 8, and 10, left lungs were removed, homogenized, cultured overnight, and colony-forming units were counted to assess pulmonary bacterial clearance. Bronchoalveolar lavage (BAL) was performed on right lungs to recover phagocytes and BAL fluid to measure the production of nitric oxide (NO) and immunomodulatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-2, IL-6, and IL-10. In contrast to the GMA-SS, GMA-MS, and saline groups, pretreatment with the highly water soluble MMA-SS fume caused significant body weight loss, extensive lung damage, and a dramatic reduction in pulmonary clearance of L. monocytogenes after infection. NO concentrations in BAL fluid and lung immunostaining of inducible NO synthase were dramatically increased in rats pretreated with MMA-SS before and after infection. MMA-SS treatment caused a significant decrease in IL-2 and significant increases in TNF-α, IL-6, and IL-10 after infection. In conclusion, pretreatment with MMA-SS increased production of NO and proinflammatory cytokines (TNF-α and IL-6) after infection, which are likely responsible for the elevation

  2. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    Science.gov (United States)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic

  3. Osteomyelitis in a Paleozoic reptile: ancient evidence for bacterial infection and its evolutionary significance

    Science.gov (United States)

    Reisz, Robert R.; Scott, Diane M.; Pynn, Bruce R.; Modesto, Sean P.

    2011-06-01

    We report on dental and mandibular pathology in Labidosaurus hamatus, a 275 million-year-old terrestrial reptile from North America and associate it with bacterial infection in an organism that is characterized by reduced tooth replacement. Analysis of the surface and internal mandibular structure using mechanical and CT-scanning techniques permits the reconstruction of events that led to the pathology and the possible death of the individual. The infection probably occurred as a result of prolonged exposure of the dental pulp cavity to oral bacteria, and this exposure was caused by injury to the tooth in an animal that is characterized by reduced tooth replacement cycles. In these early reptiles, the reduction in tooth replacement is an evolutionary innovation associated with strong implantation and increased oral processing. The dental abscess observed in L. hamatus, the oldest known infection in a terrestrial vertebrate, provides clear evidence of the ancient association between terrestrial vertebrates and their oral bacteria.

  4. Synthesis and biodistribution of {sup 99m}Tc-Vancomycin in a model of bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Roohi, S.; Mushtaq, A. [Isotope Production Div., Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan); Malik, S.A. [Dept. of Biological Sciences, Quaid-e-Azam Univ., Islamabad (Pakistan)

    2005-07-01

    Vancomycin Hydrochloride is an antibiotic produced by the growth of certain strains of Streptomyces orientalis. As vancomycin hydrochloride is poorly absorbed after oral administration; it is given intravenously for therapy of systemic infections. Vancomycin was labeled with technetium-99m pertechnetate using SnCl{sub 2} . 2H{sub 2}O as reducing agent. The labeling efficiency depends on ligand/reductant ratio, pH, and volume of reaction mixture. Radiochemical purity and stability of {sup 99m}Tc-Vancomycin was determined by thin layer chromatography. Biodistribution studies of {sup 99m}Tc-Vancomycin were performed in a model of bacterial infection in Sprague-Dawley rats. A significantly higher accumulation of {sup 99m}Tc-Vancomycin was seen at sites of S. aureus infected animals. Whereas uptake of {sup 99m}Tc-Vancomycin in turpentine inflamed rats were quite low. (orig.)

  5. Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis.

    Directory of Open Access Journals (Sweden)

    Nicole M Gilbert

    Full Text Available Bacterial vaginosis (BV is a dysbiosis of the vaginal flora characterized by a shift from a Lactobacillus-dominant environment to a polymicrobial mixture including Actinobacteria and gram-negative bacilli. BV is a common vaginal condition in women and is associated with increased risk of sexually transmitted infection and adverse pregnancy outcomes such as preterm birth. Gardnerella vaginalis is one of the most frequently isolated bacterial species in BV. However, there has been much debate in the literature concerning the contribution of G. vaginalis to the etiology of BV, since it is also present in a significant proportion of healthy women. Here we present a new murine vaginal infection model with a clinical isolate of G. vaginalis. Our data demonstrate that this model displays key features used clinically to diagnose BV, including the presence of sialidase activity and exfoliated epithelial cells with adherent bacteria (reminiscent of clue cells. G. vaginalis was capable of ascending uterine infection, which correlated with the degree of vaginal infection and level of vaginal sialidase activity. The host response to G. vaginalis infection was characterized by robust vaginal epithelial cell exfoliation in the absence of histological inflammation. Our analyses of clinical specimens from women with BV revealed a measureable epithelial exfoliation response compared to women with normal flora, a phenotype that, to our knowledge, is measured here for the first time. The results of this study demonstrate that G. vaginalis is sufficient to cause BV phenotypes and suggest that this organism may contribute to BV etiology and associated complications. This is the first time vaginal infection by a BV associated bacterium in an animal has been shown to parallel the human disease with regard to clinical diagnostic features. Future studies with this model should facilitate investigation of important questions regarding BV etiology, pathogenesis and

  6. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal.

    Science.gov (United States)

    Martini, Xavier; Hoffmann, Mark; Coy, Monique R; Stelinski, Lukasz L; Pelz-Stelinski, Kirsten S

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  7. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    Science.gov (United States)

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  8. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal.

    Directory of Open Access Journals (Sweden)

    Xavier Martini

    Full Text Available The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama. CLas is the putative causal agent of huanglongbing (HLB, which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.

  9. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections

    Science.gov (United States)

    Le, Anh-Tuan; Tam Le, Thi; Quy Nguyen, Van; Hoang Tran, Huy; Dang, Duc Anh; Tran, Quang Huy; Vu, Dinh Lam

    2012-12-01

    In this work we have demonstrated a powerful disinfectant ability of colloidal silver nanoparticles (NPs) for the prevention of gastrointestinal bacterial infections. The silver NPs colloid was synthesized by a UV-enhanced chemical precipitation. Two gastrointestinal bacterial strains of Escherichia coli (ATCC 43888-O157:k-:H7) and Vibrio cholerae (O1) were used to verify the antibacterial activity of the as-prepared silver NPs colloid by means of surface disinfection assay in agar plates and turbidity assay in liquid media. Transmission electron microscopy was also employed to analyze the ultrastructural changes of bacterial cells caused by silver NPs. Noticeably, our silver NPs colloid displayed a highly effective bactericidal effect against two tested gastrointestinal bacterial strains at a silver concentration as low as ∼3 mg l‑1. More importantly, the silver NPs colloid showed an enhancement of antibacterial activity and long-lasting disinfectant effect as compared to conventional chloramin B (5%) disinfection agent. These advantages of the as-prepared colloidal silver NPs make them very promising for environmental treatments contaminated with gastrointestinal bacteria and other infectious pathogens. Moreover, the powerful disinfectant activity of silver-containing materials can also help in controlling and preventing further outbreak of diseases.

  10. Relationship between bacterial infection and evaluation using a laser fluorescence device, DIAGNOdent.

    Science.gov (United States)

    Iwami, Yukiteru; Shimizu, Ayako; Narimatsu, Masahiro; Hayashi, Mikako; Takeshige, Fumio; Ebisu, Shigeyuki

    2004-10-01

    The aim of this in vitro study was to investigate the relationship between bacterial infections in carious dentin when detected by two different methods -- polymerase chain reaction (PCR), and a laser fluorescence device, DIAGNOdent. Dentin was removed every 300 micro m in the direction of the pulp chamber in 10 extracted molars with occlusal dentin caries and 3 extracted sound molars. Dentin surfaces were evaluated using DIAGNOdent, and dentinal tissue samples were removed by using a round bur before and after each removal. Bacterial DNA in the dentinal tissues was detected by PCR, using primers based on the nucleotide sequence of a conserved region of the 16S rDNA, and yielded a PCR product of 466 bp. The rates of bacterial detection increased as the DIAGNOdent values increased. In the 10 specimens, the lowest DIAGNOdent value at which bacteria were detected was 15.6; at DIAGNOdent values below 15.6, no bacteria were detected. The results of a receiver operating characteristic (ROC) curve for the DIAGNOdent values showed that the area under the ROC curve was 0.91. This study clarified the relationship between the DIAGNOdent values of dentin caries and the rates of bacterial detection.

  11. Elucidating Sources and Roles of Granzymes A and B during Bacterial Infection and Sepsis

    Directory of Open Access Journals (Sweden)

    Maykel A. Arias

    2014-07-01

    Full Text Available During bacterial sepsis, proinflammatory cytokines contribute to multiorgan failure and death in a process regulated in part by cytolytic cell granzymes. When challenged with a sublethal dose of the identified mouse pathogen Brucella microti, wild-type (WT and granzyme A (gzmA−/− mice eliminate the organism from liver and spleen in 2 or 3 weeks, whereas the bacteria persist in mice lacking perforin or granzyme B as well as in mice depleted of Tc cells. In comparison, after a fatal challenge, only gzmA−/− mice exhibit increased survival, which correlated with reduced proinflammatory cytokines. Depletion of natural killer (NK cells protects WT mice from sepsis without influencing bacterial clearance and the transfer of WT, but not gzmA−/− NK, cells into gzmA−/− recipients restores the susceptibility to sepsis. Therefore, infection-related pathology, but not bacterial clearance, appears to require gzmA, suggesting the protease may be a therapeutic target for the prevention of bacterial sepsis without affecting immune control of the pathogen.

  12. The use of C-reactive protein in predicting bacterial co-Infection in children with bronchiolitis

    Directory of Open Access Journals (Sweden)

    Mohamad Fares

    2011-03-01

    Full Text Available Background: Bronchiolitis is a potentially life-threatening respiratory illness commonly affecting children who are less than two years of age. Patients with viral lower respiratory tract infection are at risk for co-bacterial infection. Aim: The aim of our study was to evaluate the use of C-reactive protein (CRP in predicting bacterial co-infection in patients hospitalized for bronchiolitis and to correlate the results with the use of antibiotics. Patients and Methods: This is a prospective study that included patients diagnosed with bronchiolitis admitted to Makassed General Hospital in Beirut from October 2008 to April 2009. A tracheal aspirate culture was taken from all patients with bronchiolitis on admission to the hospital. Blood was drawn to test C-reactive protein level, white cell count, transaminases level, and blood sugar level. Results: Forty-nine patients were enrolled in the study and were divided into two groups. Group 1 included patients with positive tracheal aspirate culture and Group 2 included those with negative culture. All patients with a CRP level ≥2 mg/dL have had bacterial co-infection. White cell count, transaminases and blood sugar levels were not predictive for bacterial co-infection. The presence of bacterial co-infection increased the length of hospital stay in the first group by 2 days compared to those in the second group. Conclusion: Bacterial co-infection is frequent in infants with moderate to severe bronchiolitis and requires admission. Our data showed that a CRP level greater than 1.1 mg/dL raised suspicion for bacterial co-infection. Thus, a tracheal aspirate should be investigated microbiologically in all hospitalized patients in order to avoid unnecessary antimicrobial therapy and to shorten the duration of the hospital stay.

  13. [Autochthonous acute viral and bacterial infections of the central nervous system (meningitis and encephalitis)].

    Science.gov (United States)

    Pérez-Ruiz, Mercedes; Vicente, Diego; Navarro-Marí, José María

    2008-07-01

    Rapid diagnosis of acute viral and bacterial infections of the central nervous system (meningitis and encephalitis) is highly important for the clinical management of the patient and helps to establish early therapy that may solve life-threatening situations, to avoid unnecessary empirical treatments, to reduce hospital stay, and to facilitate appropriate interventions in the context of public health. Molecular techniques, especially real-time polymerase chain reaction, have become the fastest and most sensitive diagnostic procedures for autochthonous viral meningitis and encephalitis, and their role is becoming increasingly important for the diagnosis and control of most frequent acute bacterial meningitides. Automatic and closed systems may encourage the widespread and systematic use of molecular techniques for the diagnosis of these neurological syndromes in most laboratories.

  14. mTORC1-Activated Monocytes Increase Tregs and Inhibit the Immune Response to Bacterial Infections

    Science.gov (United States)

    Tu, Huaijun; Guo, Wei; Wang, Shixuan; Xue, Ting; Yang, Fei; Zhang, Xiaoyan; Yang, Yazhi; Wan, Qian; Shi, Zhexin; Zhan, Xulong

    2016-01-01

    The TSC1/2 heterodimer, a key upstream regulator of the mTOR, can inhibit the activation of mTOR, which plays a critical role in immune responses after bacterial infections. Monocytes are an innate immune cell type that have been shown to be involved in bacteremia. However, how the mTOR pathway is involved in the regulation of monocytes is largely unknown. In our study, TSC1 KO mice and WT mice were infected with E. coli. When compared to WT mice, we found higher mortality, greater numbers of bacteria, decreased expression of coactivators in monocytes, increased numbers of Tregs, and decreased numbers of effector T cells in TSC1 KO mice. Monocytes obtained from TSC1 KO mice produced more ROS, IL-6, IL-10, and TGF-β and less IL-1, IFN-γ, and TNF-α. Taken together, our results suggest that the inhibited immune functioning in TSC1 KO mice is influenced by mTORC1 activation in monocytes. The reduced expression of coactivators resulted in inhibited effector T cell proliferation. mTORC1-activated monocytes are harmful during bacterial infections. Therefore, inhibiting mTORC1 signaling through rapamycin administration could rescue the harmful aspects of an overactive immune response, and this knowledge provides a new direction for clinical therapy.

  15. Profile of oritavancin and its potential in the treatment of acute bacterial skin structure infections

    Science.gov (United States)

    Mitra, Subhashis; Saeed, Usman; Havlichek, Daniel H; Stein, Gary E

    2015-01-01

    Oritavancin, a semisynthetic derivative of the glycopeptide antibiotic chloroeremomycin, received the US Food and Drug Administration approval for the treatment of acute bacterial skin and skin structure infections caused by susceptible Gram-positive bacteria in adults in August 2014. This novel second-generation semisynthetic lipoglycopeptide antibiotic has activity against a broad spectrum of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate S. aureus (VISA), and vancomycin-resistant Enterococcus. Oritavancin inhibits bacterial cell wall synthesis and is rapidly bactericidal against many Gram-positive pathogens. The long half-life of this drug enables a single-dose administration. Oritavancin is not metabolized in the body, and the unchanged drug is slowly excreted by the kidneys. In two large Phase III randomized, double-blind, clinical trials, oritavancin was found to be non-inferior to vancomycin in achieving the primary composite end point in the treatment of acute Gram-positive skin and skin structure infections. Adverse effects noted were mostly mild with nausea, headache, and vomiting being the most common reported side effects. Oritavancin has emerged as another useful antimicrobial agent for treatment of acute Gram-positive skin and skin structure infections, including those caused by MRSA and VISA. PMID:26185459

  16. Profile of oritavancin and its potential in the treatment of acute bacterial skin structure infections

    Directory of Open Access Journals (Sweden)

    Mitra S

    2015-07-01

    Full Text Available Subhashis Mitra, Usman Saeed, Daniel H Havlichek, Gary E Stein Department of Infectious Diseases, Michigan State University, East Lansing, MI, USA Abstract: Oritavancin, a semisynthetic derivative of the glycopeptide antibiotic chloroeremomycin, received the US Food and Drug Administration approval for the treatment of acute bacterial skin and skin structure infections caused by susceptible Gram-positive bacteria in adults in August 2014. This novel second-generation semisynthetic lipoglycopeptide antibiotic has activity against a broad spectrum of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-intermediate S. aureus (VISA, and vancomycin-resistant Enterococcus. Oritavancin inhibits bacterial cell wall synthesis and is rapidly bactericidal against many Gram-positive pathogens. The long half-life of this drug enables a single-dose administration. Oritavancin is not metabolized in the body, and the unchanged drug is slowly excreted by the kidneys. In two large Phase III randomized, double-blind, clinical trials, oritavancin was found to be non-inferior to vancomycin in achieving the primary composite end point in the treatment of acute Gram-positive skin and skin structure infections. Adverse effects noted were mostly mild with nausea, headache, and vomiting being the most common reported side effects. Oritavancin has emerged as another useful antimicrobial agent for treatment of acute Gram-positive skin and skin structure infections, including those caused by MRSA and VISA. Keywords: antibiotic, Gram-positive bacteria, MRSA, VRSA, vancomycin, MIC

  17. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Directory of Open Access Journals (Sweden)

    Püntener Ursula

    2012-06-01

    Full Text Available Abstract Background Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against overactivity of the immune system. In this study, we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods Mice were given repeated doses of lipopolysaccharide (LPS or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry. To assess priming of the innate immune response in the brain, mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral intracerebral injection of LPS. Results Repeated systemic LPS challenges resulted in increased brain IL-1β, TNF-α and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1β and IL-12 levels in Salmonella typhimurium-infected mice increased over three weeks, with high interferon-γ levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS four weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have a profound effect on the onset and/or progression of pre-existing neurodegenerative disease.

  18. Study of Bacterial Infections among Burn Patients Hospitalized in Isfahan Burn Center

    Directory of Open Access Journals (Sweden)

    J. Faghri

    2007-10-01

    Full Text Available Introduction & Objective: Burn patients are at risk of acquiring infection because of destroy skin barrier, suppression of immunity, prolonged hospitalization, and invasive therapeutic and diagnostic procedure, risk of acquiring infection is high among burned patients. The aim of this study was to assess the incidence rate of bacterial etiology and infections among burn patients in the burn center of Isfahan. Materials & Methods: The study was conducted descriptive – cross sectional during a period of one year, (from august 2004 until September 2005. A total of 106 patients presenting with no signs and symptoms of infection within the first 48 hours of admission were included. CDC definition for nosocomial infections was applied. Each patient’s clinical examinations and records investigated daily. Swab culture, blood culture (during fever time, tissue culture from biopsy specimen of burn wound and urine culture obtained. The data were analyzed and interpreted using SPSS 10 Software, using Chi – square and Kappa Coefficient. P.value < 0.05 was significant. Results: One-hundred and six patients met the inclusion criteria, 91 (85/8% acquired at least one type of infection, including, urinary tract 28 (26/4%, blood stream 30 (28/3%, and burn wound 91(85/8%. Pseudomonas aeroginosa was the most common causative agent isolated from blood culture and swab culture, 27/42% and 54/4% respectively. Also, E.coli was the major casautive agent of urinary tract infections (6.4% isolated from urine culture of these burn patients.Conclusion: The results indicated that, biopsy from burn wounds and study of histopathologic specimen day by other day depends on blood and urine culture conditions overall can be effective for early detection of burn wounds infections.

  19. Effects of low intensity laser in in vitro bacterial culture and in vivo infected wounds

    Directory of Open Access Journals (Sweden)

    Pâmela Rosa Pereira

    2014-01-01

    Full Text Available OBJECTIVE: to compare the effects of low intensity laser therapy on in vitro bacterial growth and in vivo in infected wounds, and to analyze the effectiveness of the AsGa Laser technology in in vivo wound infections. METHODS: in vitro: Staphylococcus aureus were incubated on blood agar plates, half of them being irradiated with 904 nm wavelength laser and dose of 3J/cm2 daily for seven days. In vivo: 32 male Wistar rats were divided into control group (uninfected and Experimental Group (Infected. Half of the animals had their wounds irradiated. RESULTS: in vitro: there was no statistically significant variation between the experimental groups as for the source plates and the derived ones (p>0.05. In vivo: there was a significant increase in the deposition of type I and III collagen in the wounds of the infected and irradiated animals when assessed on the fourth day of the experiment (p=0.034. CONCLUSION: low-intensity Laser Therapy applied with a wavelength of 904nm and dose 3J/cm2 did not alter the in vitro growth of S. aureus in experimental groups; in vivo, however, it showed significant increase in the deposition of type I and III collagen in the wound of infected and irradiated animals on the fourth day of the experiment.

  20. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis

    Directory of Open Access Journals (Sweden)

    De Sutter Philippe

    2011-01-01

    Full Text Available Abstract Background Bacterial vaginosis (BV, an alteration of vaginal flora involving a decrease in Lactobacilli and predominance of anaerobic bacteria, is among the most common cause of vaginal complaints for women of childbearing age. It is well known that BV has an influence in acquisition of certain genital infections. However, association between BV and cervical human papillomavirus (HPV infection has been inconsistent among studies. The objective of this meta-analysis of published studies is to clarify and summarize published literature on the extent to which BV is associated with cervical HPV infection. Methods Medline and Web of Science were systematically searched for eligible publications until December 2009. Articles were selected based on inclusion and exclusion criteria. After testing heterogeneity of studies, meta-analysis was performed using random effect model. Results Twelve eligible studies were selected to review the association between BV and HPV, including a total of 6,372 women. The pooled prevalence of BV was 32%. The overall estimated odds ratio (OR showed a positive association between BV and cervical HPV infection (OR, 1.43; 95% confidence interval, 1.11-1.84. Conclusion This meta-analysis of available literature resulted in a positive association between BV and uterine cervical HPV infection.

  1. Distinct immune responses of juvenile and adult oysters (Crassostrea gigas) to viral and bacterial infections.

    Science.gov (United States)

    Green, Timothy J; Vergnes, Agnes; Montagnani, Caroline; de Lorgeril, Julien

    2016-01-01

    Since 2008, massive mortality events of Pacific oysters (Crassostrea gigas) have been reported worldwide and these disease events are often associated with Ostreid herpesvirus type 1 (OsHV-1). Epidemiological field studies have also reported oyster age and other pathogens of the Vibrio genus are contributing factors to this syndrome. We undertook a controlled laboratory experiment to simultaneously investigate survival and immunological response of juvenile and adult C. gigas at different time-points post-infection with OsHV-1, Vibrio tasmaniensis LGP32 and V. aestuarianus. Our data corroborates epidemiological studies that juveniles are more susceptible to OsHV-1, whereas adults are more susceptible to Vibrio. We measured the expression of 102 immune-genes by high-throughput RT-qPCR, which revealed oysters have different transcriptional responses to OsHV-1 and Vibrio. The transcriptional response in the early stages of OsHV-1 infection involved genes related to apoptosis and the interferon-pathway. Transcriptional response to Vibrio infection involved antimicrobial peptides, heat shock proteins and galectins. Interestingly, oysters in the later stages of OsHV-1 infection had a transcriptional response that resembled an antibacterial response, which is suggestive of the oyster's microbiome causing secondary infections (dysbiosis-driven pathology). This study provides molecular evidence that oysters can mount distinct immune response to viral and bacterial pathogens and these responses differ depending on the age of the host.

  2. Distinct immune responses of juvenile and adult oysters (Crassostrea gigas) to viral and bacterial infections.

    Science.gov (United States)

    Green, Timothy J; Vergnes, Agnes; Montagnani, Caroline; de Lorgeril, Julien

    2016-01-01

    Since 2008, massive mortality events of Pacific oysters (Crassostrea gigas) have been reported worldwide and these disease events are often associated with Ostreid herpesvirus type 1 (OsHV-1). Epidemiological field studies have also reported oyster age and other pathogens of the Vibrio genus are contributing factors to this syndrome. We undertook a controlled laboratory experiment to simultaneously investigate survival and immunological response of juvenile and adult C. gigas at different time-points post-infection with OsHV-1, Vibrio tasmaniensis LGP32 and V. aestuarianus. Our data corroborates epidemiological studies that juveniles are more susceptible to OsHV-1, whereas adults are more susceptible to Vibrio. We measured the expression of 102 immune-genes by high-throughput RT-qPCR, which revealed oysters have different transcriptional responses to OsHV-1 and Vibrio. The transcriptional response in the early stages of OsHV-1 infection involved genes related to apoptosis and the interferon-pathway. Transcriptional response to Vibrio infection involved antimicrobial peptides, heat shock proteins and galectins. Interestingly, oysters in the later stages of OsHV-1 infection had a transcriptional response that resembled an antibacterial response, which is suggestive of the oyster's microbiome causing secondary infections (dysbiosis-driven pathology). This study provides molecular evidence that oysters can mount distinct immune response to viral and bacterial pathogens and these responses differ depending on the age of the host. PMID:27439510

  3. Usefulness of clinical data and rapid diagnostic tests to identify bacterial etiology in adult respiratory infections

    Directory of Open Access Journals (Sweden)

    Pilar Toledano-Sierra

    2015-01-01

    Full Text Available Respiratory tract infections are a common complaint and most of them, such as common cold and laryngitis, are viral in origin, so antibiotic use should be exceptional. However, there are other respiratory tract infections (sinusitis, pharyngitis, lower respiratory tract infections, and exacerbations of chronic obstructive pulmonary disease where a bacterial etiology is responsible for a non-negligible percentage, and antibiotics are often empirically indicated. The aim of the study is to identify the strength of the data obtained from the symptoms, physical examination and rapid diagnostic methods in respiratory infections in which antibiotic use is frequently proposed in order to improve diagnosis and influence the decision to prescribe these drugs. The review concludes that history, physical examination and rapid tests are useful to guide the need for antibiotic treatment in diseases such as acute sinusitis, acute pharyngitis, exacerbation of lower respiratory tract infection and chronic obstructive pulmonary disease. However, no isolated data is accurate enough by itself to confirm or rule out the need for antibiotics. Therefore, clinical prediction rules bring together history and physical examination, thereby improving the accuracy of the decision to indicate or not antibiotics.

  4. Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection.

    Science.gov (United States)

    Sistrunk, Jeticia R; Nickerson, Kourtney P; Chanin, Rachael B; Rasko, David A; Faherty, Christina S

    2016-10-01

    Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens. PMID:27464994

  5. Viral-bacterial interactions and risk of acute otitis media complicating upper respiratory tract infection.

    Science.gov (United States)

    Pettigrew, Melinda M; Gent, Janneane F; Pyles, Richard B; Miller, Aaron L; Nokso-Koivisto, Johanna; Chonmaitree, Tasnee

    2011-11-01

    Acute otitis media (AOM) is a common complication of upper respiratory tract infection whose pathogenesis involves both viruses and bacteria. We examined risks of acute otitis media associated with specific combinations of respiratory viruses and acute otitis media bacterial pathogens. Data were from a prospective study of children ages 6 to 36 months and included viral and bacterial culture and quantitative PCR for respiratory syncytial virus (RSV), human bocavirus, and human metapneumovirus. Repeated-measure logistic regression was used to assess the relationship between specific viruses, bacteria, and the risk of acute otitis media complicating upper respiratory tract infection. In unadjusted analyses of data from 194 children, adenovirus, bocavirus, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis were significantly associated with AOM (P virus loads (≥3.16 × 10(7) copies/ml) experienced increased acute otitis media risk. Higher viral loads of bocavirus and metapneumovirus were not significantly associated with acute otitis media. In adjusted models controlling for the presence of key viruses, bacteria, and acute otitis media risk factors, acute otitis media risk was independently associated with high RSV viral load with Streptococcus pneumoniae (odds ratio [OR], 4.40; 95% confidence interval [CI], 1.90 and 10.19) and Haemophilus influenzae (OR, 2.04; 95% CI, 1.38 and 3.02). The risk was higher for the presence of bocavirus and H. influenzae together (OR, 3.61; 95% CI, 1.90 and 6.86). Acute otitis media risk differs by the specific viruses and bacteria involved. Acute otitis media prevention efforts should consider methods for reducing infections caused by respiratory syncytial virus, bocavirus, and adenovirus in addition to acute otitis media bacterial pathogens.

  6. Elevation of serum thymidine kinase 1 in a bacterial infection: canine pyometra.

    Science.gov (United States)

    Sharif, H; Hagman, R; Wang, L; Eriksson, S

    2013-01-01

    Pyometra is a bacterial infection of the uterus that is common in dogs and is potentially life-threatening if delayed in diagnosis and/or treatment. Thymidine kinase 1 (TK1) is a cytosolic enzyme involved in DNA precursor synthesis, and it is also present in serum from patients with malignant diseases. TK1 has been used as a cell proliferation biomarker for many years in human medicine and recently in dogs. However, little is known regarding serum TK1 levels in individuals with bacterial infection. The objective of this study was to determine the activity of serum TK1 in dogs with pyometra and compare it with hematologic and biochemical parameters, e.g., acute phase proteins and inflammatory mediators such as C-reactive protein and Prostaglandin F(2α). Serum and plasma TK1 activity of 40 healthy female dogs and 54 dogs with pyometra were analyzed using an optimized [(3)H]-thymidine phosphorylation assay. TK1 activities in serum or plasma were significantly higher in dogs with pyometra as compared with healthy female dogs (mean ± SD: 4.0 ± 7.3 pmol/min/mL in the pyometra group and 1.07 ± 0.34 pmol/min/mL in healthy control group). However, there was no difference in TK1 activity between systemic inflammatory response syndrome (SIRS) positive (n = 38) and SIRS negative (n = 16) pyometra cases. Furthermore, the plasma TK1 activity decreased in six and increased in one pyometra patients (n = 10), 24 h after ovariohysterectomy. No significant correlations (P > 0.05) were found between TK1 activity and hematological or other biochemical parameters. In conclusion, the TK1 activity was significantly elevated in dogs with pyometra. Further studies are needed to evaluate the mechanism and role of serum TK1 activity in bacterial infections and its possible diagnostic or prognostic value. PMID:23102844

  7. Serum interleukin-6 in the diagnosis of bacterial infection in cirrhotic patients

    Science.gov (United States)

    Wu, Yinlian; Wang, Mingfang; Zhu, Yueyong; Lin, Su

    2016-01-01

    Abstract Background: The diagnostic accuracy of interleukin-6 (IL-6) in predicting bacterial infection in cirrhotic patients remains unclear. The aim of this meta-analysis is to explore the potential diagnostic value of IL-6 in cirrhotic patients. Methods: We systematically searched PubMed, Embase (via OvidSP), Web of Science, the Cochrane Library, and Scopus for studies published from inception to October 2015. Studies were enrolled if they included assessment of the accuracy of IL-6 in the diagnosis of bacterial infection in cirrhotic patients and provided sufficient data to construct a 2 × 2 contingency table. Results: Totally, 535 studies were searched in the initial database and finally 6 studies involving 741 patients were included for the final analysis. The pooled sensitivity, specificity and diagnostic odds ratio were 0.85 (95% confidence interval [CI], 0.64–0.94), 0.91 (95% CI, 0.80–0.96) and 52.89 (95% CI, 15.21–183.86), respectively. The pooled positive likelihood ratio was 8.99 (95% CI, 4.13–19.55) and the pooled negative likelihood ratio was 0.17 (95% CI, 0.07–0.43). The area under the receiver operating characteristic curve was 0.94 (95% CI, 0.92–0.96). Conclusion: This meta-analysis suggests IL-6 has a high diagnostic value for the differentiation of bacterial infection in patients with cirrhosis. PMID:27741137

  8. Persistence of uterine bacterial infection, and its associations with endometritis and ovarian function in postpartum dairy cows.

    Science.gov (United States)

    Ghanem, Mohamed Elshabrawy; Tezuka, Erisa; Devkota, Bhuminand; Izaike, Yoshiaki; Osawa, Takeshi

    2015-01-01

    We investigated the relationship between the persistence of uterine bacterial infections with cytologically determined endometritis and ovarian function in 65 postpartum Holstein cows. Vaginal mucus discharges were collected, and endometrial smear samples (n = 130) were collected for cytological and bacteriological examinations from the cows at weeks 5 and 7 postpartum (pp). Blood samples were collected at weeks 3, 5 and 7 pp to determine plasma progesterone concentrations to monitor ovarian activity. According to the bacteriological examination, cows were classified into four groups. The first group (n = 32; 49%) comprised cows negative for bacteria at weeks 5 and 7 pp. The second group (n = 11; 17%) comprised cows with bacterial infections at week 5 pp but that were clear of infection at week 7 pp. The third group (n = 12; 19%) comprised cows without bacteria at week 5 pp but that acquired an infection by week 7 pp. The fourth group (n = 10; 15%) comprised cows with bacterial infections at weeks 5 and 7 pp (persistence of infection). A positive correlation (P < 0.001) was noted between the severity of cytologically determined endometritis, purulent vaginal discharge and the persistence of infection. Cows with persistent infections had a significantly (P < 0.01) prolonged luteal phase compared with cows without infection. In conclusion, the prevalence of cytologically determined endometritis and prolonged luteal phase were significantly increased in cows with persistent infections. PMID:25482111

  9. Peripheral T Cell Apoptosis and Its Role in Generalized Bacterial Infections: A Minireview.

    Science.gov (United States)

    Chernykh, Helen R.; Norkin, Maxim N.; Leplina, Olga Yu.; Khonina, Nataliya A.; Tihonova, Marina A.; Ostanin, Alexander A.

    2001-07-01

    In the present review we have attempted to analyze recent findings concerning apoptosis of mature peripheral T cells. The great attention is made to the factors underlying resistance or sensitivity of mature T lymphocytes to activation-induced cell death. The role of preactivation and altered costimulation is discussed in this regard. Besides, the possible role of cytokines in the modulation of T cell apoptosis is emphasized. Particular attention is paid to the studies of apoptosis disorders in the pathogenesis of generalized bacterial infections. In this connection some own results are summarized as well. To characterize T cell death and its role in the pathogenesis of bacterial infections an anti-CD3-mAb or Con A-induced apoptosis in patients with severe and generalized forms of surgical infections have been investigated. We have found a significant increase of activation-induced lymphocyte apoptosis and a high level of apoptosis in freshly isolated lymphocytes in patients with surgical infections. Alternatively, peripheral blood mononuclear cells from surgical patients without infectious complications did not exhibit a marked enhancement of activation-induced cell death. Activation-induced T cell death in surgical infections appeared to be Fas-dependent, involved reactive oxygen intermediates and was partly prevented by pro-inflammatory cytokines, among which IL-2 exhibited the most pronounced anti-apoptotic activity. Likewise, APACHE II score, as a marker of the infection severity, directly correlated with a rate of activation-induced T cell apoptosis. Accelerated T cell apoptosis at the early stage of infection was revealed in survivors and non-survivors, that appears to designate a common pathway for the restriction of systemic inflammation. At the late stage of infection altered T cell apoptosis could account for different outcomes, since the patients with lethal outcome showed 2-fold increase in activation-induced cell death compared to the opposite group

  10. Photodynamic therapy can induce non-specific protective immunity against a bacterial infection

    Science.gov (United States)

    Tanaka, Masamitsu; Mroz, Pawel; Dai, Tianhong; Kinoshita, Manabu; Morimoto, Yuji; Hamblin, Michael R.

    2012-03-01

    Photodynamic therapy (PDT) for cancer is known to induce an immune response against the tumor, in addition to its well-known direct cell-killing and vascular destructive effects. PDT is becoming increasingly used as a therapy for localized infections. However there has not to date been a convincing report of an immune response being generated against a microbial pathogen after PDT in an animal model. We have studied PDT as a therapy for bacterial arthritis caused by Staphylococcus aureus infection in the mouse knee. We had previously found that PDT of an infection caused by injection of MRSA (5X107 CFU) into the mouse knee followed 3 days later by 1 μg of Photofrin and 635- nm diode laser illumination with a range of fluences within 5 minutes, gave a biphasic dose response. The greatest reduction of MRSA CFU was seen with a fluence of 20 J/cm2, whereas lower antibacterial efficacy was observed with fluences that were either lower or higher. We then tested the hypothesis that the host immune response mediated by neutrophils was responsible for most of the beneficial antibacterial effect. We used bioluminescence imaging of luciferase expressing bacteria to follow the progress of the infection in real time. We found similar results using intra-articular methylene blue and red light, and more importantly, that carrying out PDT of the noninfected joint and subsequently injecting bacteria after PDT led to a significant protection from infection. Taken together with substantial data from studies using blocking antibodies we believe that the pre-conditioning PDT regimen recruits and stimulates neutrophils into the infected joint which can then destroy bacteria that are subsequently injected and prevent infection.

  11. The survey of bacterial etiology and their resistance to antibiotics of urinary tract infections in children of Birjand city

    OpenAIRE

    Azita Fesharakinia; Mohammad Malekaneh; Hashem Hooshyar; Marzieh Aval; Fahimeh Gandomy-Sany

    2012-01-01

    Background and Aim: Urinary tract infection is one of the most prevalent bacterial infections in childhood, which due to an inapproto determine the common bacteria and their antibiotic susceptibility in children with urinary tract infection.   Materials and Methods: This descriptive-analytical and prospective study was done in 2009-2010 on urine samples of all children under 13 years who had been referred to Emmam-Reza hospital laboratory in Birjand and had positive urine culture. Sex and age...

  12. Effect of Long-Term Voluntary Exercise Wheel Running on Susceptibility to Bacterial Pulmonary Infections in a Mouse Model

    OpenAIRE

    Pauline B van de Weert-van Leeuwen; de Vrankrijker, Angélica M. M.; Joachim Fentz; Oana Ciofu; Wojtaszewski, Jørgen F. P.; Arets, Hubertus G. M.; Hulzebos, Hendrikus J.; Cornelis K van der Ent; Jeffrey M Beekman; Johansen, Helle K.

    2013-01-01

    Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune f...

  13. Clinical efficacy of dalbavancin for the treatment of acute bacterial skin and skin structure infections (ABSSSI

    Directory of Open Access Journals (Sweden)

    Leuthner KD

    2016-06-01

    Full Text Available Kimberly D Leuthner,1 Kristin A Buechler,1 David Kogan,1 Agafe Saguros,1 H Stephen Lee2 1Department of Pharmaceutical Services, University Medical Center of Southern Nevada, Las Vegas, NV, USA; 2Roseman University of Health Sciences College of Pharmacy, Henderson, NV, USA Abstract: Acute bacterial skin and skin structure infections (ABSSSI are a common disease causing patients to seek treatment through the health care system. With the continued increase of drug-resistant bacterial pathogens, these infections are becoming more difficult to successfully cure. Lipoglycopeptides have unique properties that allow the drug to remain active toward both common and challenging pathogens at the infected site for lengthy periods of time. Dalbavancin, a new lipoglycopeptide, provides two unique dosing regimens for the treatment of ABSSSI. The original regimen of 1,000 mg intravenous infusion followed by a 500 mg intravenous infusion after a week has been shown as safe and effective in multiple, randomized noninferiority trials. These studies also demonstrated that dalbavancin was similar to standard regimens in terms of both safety and tolerability. Recently a single 1,500 mg dose was demonstrated to be equivalent to the dalbavancin two-dose regimen for treating ABSSSI. With the introduction of dalbavancin, clinicians have the option to provide an intravenous antimicrobial agent shown to be as effective as traditional therapies, without requiring admission into the hospitals or prescribing a medication which may not be utilized optimally. Further understanding of dalbavancin and its unusual properties can provide unique treatment situations with potential benefits for both the patient and the overall health care system, which should be further explored. Keywords: dalbavancin, lipoglycopeptide, ABSSSI, skin and skin structure infection, dosing schedule, Gram-positive resistance

  14. Aerobic bacterial profile and antibiotic resistance in patients with diabetic foot infections

    Directory of Open Access Journals (Sweden)

    Michele Cezimbra Perim

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC].RESULTS: The most common location of ulceration was the toe (54%, followed by the plantar surface (27% and dorsal portion (19%. A total of 89 bacterial isolates were obtained from 30 patients. The infections were predominantly due to Gram-positive bacteria and polymicrobial bacteremia. The most commonly isolated Gram-positive bacteria were Staphylococcus aureus, followed by Staphylococcus saprophyticus, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus pneumoniae. The most commonly isolated Gram-negative bacteria were Proteus spp. and Enterobacterspp., followed by Escherichia coli, Pseudomonasspp., and Citrobacterspp. Nine cases of methicillin-resistant Staphylococcus aureus (MRSA had cefoxitin resistance, and among these MRSA isolates, 3 were resistant to vancomycin with the MIC technique. The antibiotic imipenem was the most effective against both Gram-positive and Gram-negative bacteria, and gentamicin was effective against Gram-negative bacteria.CONCLUSIONS: The present study confirmed the high prevalence of multidrug-resistant pathogens in diabetic foot ulcers. It is necessary to evaluate the different microorganisms infecting the wound and to know the antibiotic susceptibility patterns of the isolates from the infected wound. This knowledge is crucial for planning treatment with the appropriate antibiotics, reducing resistance patterns, and minimizing healthcare costs.

  15. Ascites bacterial burden and immune cell profile are associated with poor clinical outcomes in the absence of overt infection.

    Directory of Open Access Journals (Sweden)

    Kevin J Fagan

    Full Text Available Bacterial infections, most commonly spontaneous bacterial peritonitis in patients with ascites, occur in one third of admitted patients with cirrhosis, and account for a 4-fold increase in mortality. Bacteria are isolated from less than 40% of ascites infections by culture, necessitating empirical antibiotic treatment, but culture-independent studies suggest bacteria are commonly present, even in the absence of overt infection. Widespread detection of low levels of bacteria in ascites, in the absence of peritonitis, suggests immune impairment may contribute to higher susceptibility to infection in cirrhotic patients. However, little is known about the role of ascites leukocyte composition and function in this context. We determined ascites bacterial composition by quantitative PCR and 16S rRNA gene sequencing in 25 patients with culture-negative, non-neutrocytic ascites, and compared microbiological data with ascites and peripheral blood leukocyte composition and phenotype. Bacterial DNA was detected in ascitic fluid from 23 of 25 patients, with significant positive correlations between bacterial DNA levels and poor 6-month clinical outcomes (death, readmission. Ascites leukocyte composition was variable, but dominated by macrophages or T lymphocytes, with lower numbers of B lymphocytes and natural killer cells. Consistent with the hypothesis that impaired innate immunity contributes to susceptibility to infection, high bacterial DNA burden was associated with reduced major histocompatibility complex class II expression on ascites (but not peripheral blood monocytes/macrophages. These data indicate an association between the presence of ascites bacterial DNA and early death and readmission in patients with decompensated cirrhosis. They further suggest that impairment of innate immunity contributes to increased bacterial translocation, risk of peritonitis, or both.

  16. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection.

    Directory of Open Access Journals (Sweden)

    Piotr Mydel

    2006-07-01

    Full Text Available The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase-null mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase-null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection.

  17. Short-term starvation of immune deficient Drosophila improves survival to gram-negative bacterial infections.

    Directory of Open Access Journals (Sweden)

    Anthony E Brown

    Full Text Available BACKGROUND: Primary immunodeficiencies are inborn errors of immunity that lead to life threatening conditions. These predispositions describe human immunity in natura and highlight the important function of components of the Toll-IL-1- receptor-nuclear factor kappa B (TIR-NF-kappaB pathway. Since the TIR-NF-kappaB circuit is a conserved component of the host defence in higher animals, genetically tractable models may contribute ideas for clinical interventions. METHODOLOGY/PRINCIPAL FINDINGS: We used immunodeficient fruit flies (Drosophila melanogaster to address questions pertaining to survival following bacterial infection. We describe here that flies lacking the NF-kappaB protein Relish, indispensable for countering Gram-negative bacteria, had a greatly improved survival to such infections when subject to dietary short-term starvation (STS prior to immune challenge. STS induced the release of Nitric Oxide (NO, a potent molecule against pathogens in flies, mice and humans. Administering the NO Synthase-inhibitory arginine analog N-Nitro-L-Arginine-Methyl-Ester (L-NAME but not its inactive enantiomer D-NAME increased once again sensitivity to infection to levels expected for relish mutants. Surprisingly, NO signalling required the NF-kappaB protein Dif, usually needed for responses against Gram-positive bacteria. CONCLUSIONS/SIGNIFICANCE: Our results show that NO release through STS may reflect an evolutionary conserved process. Moreover, STS could be explored to address immune phenotypes related to infection and may offer ways to boost natural immunity.

  18. The host type Ⅰ interferon response to viral and bacterial infections

    Institute of Scientific and Technical Information of China (English)

    Andrea K. PERRY; Gang CHEN; Dahai ZHENG; Hong TANG; Genhong CHENG

    2005-01-01

    Type Ⅰ interferons (IFN) are well studied cytokines with anti-viral and immune-modulating functions. Type Ⅰ IFNs are produced following viral infections, but until recently, the mechanisms of viral recognition leading to IFN production were largely unknown. Toll like receptors (TLRs) have emerged as key transducers of type Ⅰ IFN during viral infections by recognizing various viral components. Furthermore, much progress has been made in defining the signaling pathways downstream of TLRs for type Ⅰ IFN production. TLR7 and TLR9 have become apparent as universally important in inducing type Ⅰ IFN during infection with most viruses, particularly by plasmacytoid dendritic cells. New intracellular viral pattern recognition receptors leading to type Ⅰ IFN production have been identified. Many bacteria can also induce the up-regulation of these cytokines. Interestingly, recent studies have found a detrimental effect on host cells if type Ⅰ IFN is produced during infection with the intracellular gram-positive bacterial pathogen, Listeria monocytogenes. This review will discuss the recent advances made in defining the signaling pathways leading to type Ⅰ IFN production.

  19. Molecular Imaging of Bacterial Infections in vivo: The Discrimination between Infection and Inflammation

    Directory of Open Access Journals (Sweden)

    Heather Eggleston

    2014-05-01

    Full Text Available Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.

  20. Reduction of bacterial infections in newly hatched chicks by the use of antimicrobial dips: preliminary approaches.

    Science.gov (United States)

    Barbour, E K; Nabbut, N H; Hinners, S W; Al-Nakhli, H M

    1985-01-01

    Bacteriological examination of hatchery waste eggs, identification of the isolated bacteria, and susceptibility testing against seven antimicrobial agents were used in an attempt to establish a rational basis for reducing bacterial infections in newly hatched chicks. Chloramphenicol at 1000 ppm was selected as the antibiotic for preliminary dipping trials and 0.45% iodophore (Wescodyne) was added for later trials. The control treatment consisted of formaldehyde fumigation. The following conclusions can be drawn: Hatchery waste eggs are highly contaminated (69.1%) and enterobacteriaceae predominate (26.6%). Chloramphenicol is the most effective antimicrobial tested. Dip treatments with either chloramphenicol alone or chloramphenicol plus Wescodyne result in a reduced percentage of abnormal navels (8.4% and 10.4%), as compared with 21.9% for the control treatment. Hatchability of either group of dipped eggs is reduced in comparison with fumigated eggs. Dip treatment with chloramphenicol plus Wescodyne significantly reduces the anal carrier rates for Escherichia coli, Pseudomonas aeruginosa, Salmonella spp., and Staphylococcus aureus. This treatment reduces the incidence of bacterial infection in abnormal navels to zero. PMID:3919494

  1. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivative for bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Li, Linsen; Zhou, Shanyong; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2014-09-01

    Folliculitis, furunculosis and acne vulgaris are very common skin disorders of the hair follicles and are associated with large grease-producing (sebaceous) glands. Although the detailed mechanisms involved these skin disorders are not fully understood, it is believed that the bacteria Propionibacterium acnes and Staphylococcus aureus are the key pathogenic factors involved. Conventional treatments targeting the pathogenic factors include a variety of topical and oral medications such as antibiotics. The wide use of antibiotics leads to bacterial resistance, and hence there is a need for new alternatives in above bacterial skin treatment. Photodynamic antimicrobial chemotherapy (PACT) is based on an initial photosensitization of the infected area, followed by irradiation with visible light, producing singlet oxygen which is cytotoxic to bacteria. Herein we reported a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5) and its PACT effect for the bacteria involved in these skin infections. Our results demonstrated strong bactericidal effects of this photosensitizer on both strains of the bacteria, suggesting ZnPc-(Lys)5 as a promising antimicrobial photosensitizer for the treatment of infectious diseases caused by these bacteria.

  2. Preliminary molecular analysis of bacterial composition in periapical lesions with primary endodontic infections of deciduous teeth

    Institute of Scientific and Technical Information of China (English)

    SHANG Jia-jian; YANG Qiu-bo; ZHAO Huan-ying; CAI Shuang; ZHOU Yan; SUN Zheng

    2013-01-01

    Background The bacterial composition of periapical lesions in deciduous teeth has not been well documented.This study was designed to explore the bacterial compositions,especially the dominant bacteria in periapical lesions using 16S rRNA sequencing.Methods Tissue samples were collected from 11 periapical lesions in deciduous teeth with primary endodontic infections.DNA was extracted from each sample and analyzed using 16S rRNA cloning and sequencing for the identification of bacteria.Results All DNA samples were positive for 16S rRNA gene PCR.One hundred and fifty-one phylotypes from 810 clones were identified to eight phyla,and each sample contained an average of 25.9 phylotypes.In addition,59 phylotypes were detected in more than two samples,and Fusobacterium (F.) nucleatum (8/11),Dialister (D.) invisus (8/11),Campylobacter (C.) gracilis (7/11),Escherichia (E.) coil DH1 (6/11),Aggregatibacter (A.) segnis (6/11),and Streptococcus (S.) mitis (6/11) were the most prevalent species.Furthermore,45 as-yet-uncultivated phylotypes were also identified.Conclusions Chronic periapical lesions in deciduous teeth contained polymicrobial infections.F.nucleatum,D.invisus,C.gracilis,E.coli DH1,A.segnis,and S.mitis were the most prevalent species detected by 16S rRNA sequencing.

  3. The effect of bacterial infection on the biomechanical properties of biological mesh in a rat model.

    Directory of Open Access Journals (Sweden)

    Charles F Bellows

    Full Text Available BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM and porcine small intestine submucosa (SIS were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5, 10(9 colony-forming units] or saline (control prior to wound closure (n = 6 per group. After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p0.05. After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment.

  4. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    Directory of Open Access Journals (Sweden)

    Ashkan Javid

    Full Text Available Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  5. The Risk of Serious Bacterial Infection in Neutropenic Immunocompetent Febrile Children.

    Science.gov (United States)

    Barg, Assaf A; Kozer, Eran; Mordish, Yair; Lazarovitch, Tsilia; Kventsel, Iris; Goldman, Michael

    2015-08-01

    Only few reports have looked into the risk of invasive bacterial infection in children with neutropenia that is not malignancy related. The objective of the current study was to determine the clinical significance of neutropenia as a predictor of serious bacterial infection (SBI) in immunocompetent children. We conducted a retrospective case-control study including children 3 months to 18 years of age with fever ≥ 38°C hospitalized or presenting to the emergency department. Patients who had neutropenia ≤ 1000 ANC/μL and had a blood culture taken were matched for age with the consecutive febrile patients for whom a blood culture was taken. The main outcome was the rate of SBI. SBIs were more prevalent among the control group than in the group of children with neutropenia, 19/71 and 6/71, respectively (P = 0.0005). More children were treated with antibiotics among the control group than in the group of children with neutropenia, 39/71 and 20/71, respectively (P neutropenia do not carry a higher risk for SBIs compared with patients with fever who do not have neutropenia.

  6. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen

    Science.gov (United States)

    Javid, Ashkan; Zlotnikov, Nataliya; Pětrošová, Helena; Tang, Tian Tian; Zhang, Yang; Bansal, Anil K.; Ebady, Rhodaba; Parikh, Maitry; Ahmed, Mijhgan; Sun, Chunxiang; Newbigging, Susan; Kim, Yae Ram; Santana Sosa, Marianna; Glogauer, Michael

    2016-01-01

    Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted. PMID:27340827

  7. Diagnosis of Upper and Lower Respiratory Tract Bacterial Infections with the Use of Multiplex PCR Assays

    Directory of Open Access Journals (Sweden)

    Jenny Kourea-Kremastinou

    2013-03-01

    Full Text Available The investigation of respiratory infections by molecular techniques provides important information about the epidemiology of respiratory disease, especially during the post-vaccination era. The objective of the present study was the detection of bacterial pathogens directly in clinical samples from patients with upper and lower respiratory tract infections using multiplex polymerase chain reaction (PCR assays developed in our laboratory. Clinical samples taken over a three-year period (2007–2009 and obtained from 349 patients (adults (n = 66; children (n = 283 with signs and symptoms of certain upper or lower respiratory tract infections, consisted of: bronchoalveolar lavages (BAL, n = 83, pleural fluids (n = 29, and middle-ear aspirates (n = 237. Overall, 212 samples (61% were confirmed by culture and/or PCR. Among the positive samples, Streptococcus pneumoniae (mainly serotype 3 was predominant (104/212; 49.0%, followed by non-typable Haemophilus influenzae (NTHi 59/212; 27.8% and Streptococcus pyogenes (47/212; 22%. Haemophilus influenzae type b was detected in only three samples. The underlying microbiology of respiratory infections is gradually changing in response to various selective pressures, such as vaccine use and antibiotic consumption. The application of multiplex PCR (mPCR assays is particularly useful since it successfully identified the microorganisms implicated in acute otitis media or lower respiratory tract infections in nearly 75% of patients with a positive result compared to conventional cultures. Non-culture identification of the implicated pneumococcal serotypes is also an important issue for monitoring pneumococcal infections in the era of conjugate pneumococcal vaccines.

  8. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  9. Pre-infection physical exercise decreases mortality and stimulates neurogenesis in bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Liebetanz David

    2012-07-01

    Full Text Available Abstract Physical exercise has been shown to increase neurogenesis, to decrease neuronal injury and to improve memory in animal models of stroke and head trauma. Therefore, we investigated the effect of voluntary wheel running on survival, neuronal damage and cell proliferation in a mouse model of pneumococcal meningitis. Mice were housed in cages equipped with voluntary running wheels or in standard cages before induction of bacterial meningitis by a subarachnoid injection of a Streptococcus pneumoniae type 3 strain. 24 hours later antibiotic treatment was initiated with ceftriaxone (100 mg/kg twice daily. Experiments were terminated either 30 hours or 4 days (short-term or 7 weeks (long-term after infection, and the survival time, inflammatory cytokines and corticosterone levels, neurogenesis in the dentate gyrus of the hippocampal formation and the cognitive function were evaluated in surviving mice. Survival time was significantly increased in running mice compared to control animals (p = 0.0087 in short-term and p = 0.016 in long-term experiments, log-rank test. At the end of the long-term experiment, mortality was lower in trained than in sedentary animals (p = 0.031, Fisher’s Exact test. Hippocampal neurogenesis – assessed by the density of doublecortin-, TUC-4- and BrdU + NeuN-colabeled cells - was significantly increased in running mice in comparison to the sedentary group after meningitis. However, Morris water maze performance of both groups 6 weeks after bacterial meningitis did not reveal differences in learning ability. In conclusion, physical exercise prior to infection increased survival in a mouse model of bacterial meningitis and stimulated neurogenesis in the dentate gyrus of the hippocampal formation.

  10. Why Children with Severe Bacterial Infection Die: A Population–Based Study of Determinants and Consequences of Suboptimal Care with a Special Emphasis on Methodological Issues

    OpenAIRE

    Elise Launay; Christèle Gras-Le Guen; Alain Martinot; Rémy Assathiany; Elise Martin; Thomas Blanchais; Catherine Deneux-Tharaux; Jean-Christophe Rozé; Martin Chalumeau

    2014-01-01

    INTRODUCTION: Suboptimal care is frequent in the management of severe bacterial infection. We aimed to evaluate the consequences of suboptimal care in the early management of severe bacterial infection in children and study the determinants. METHODS: A previously reported population-based confidential enquiry included all children (3 months- 16 years) who died of severe bacterial infection in a French area during a 7-year period. Here, we compared the optimality of the management of these cas...

  11. Predictors of time to recovery in infants with probable serious bacterial infection.

    Directory of Open Access Journals (Sweden)

    Prashant Singh

    Full Text Available Serious bacterial infections continue to be an important cause of death and illness among infants in developing countries. Time to recovery could be considered a surrogate marker of severity of the infection. We therefore aimed to identify clinical and laboratory predictors of time to recovery in infants with probable serious bacterial infection (PSBI.We used the dataset of 700 infants (7-120 days enrolled in a randomised controlled trial in India in which 10mg of oral zinc or placebo was given to infants with PSBI. PSBI was defined as signs/symptoms of possible serious bacterial infection along with baseline C-reactive protein(CRP level >12mg/L. Time to recovery was defined as time from enrolment to the end of a 2-day period with no symptoms/signs of PSBI and daily weight gain of at least 10g over 2 succesive days on exclusive oral feeding. Cox proportional hazard regression was used to measure the associations between relevant variables and time to recovery.Infants who were formula fed prior to illness episode had 33% longer time to recovery (HR-0.67, 95%CI-0.52, 0.87 than those who were not. Being underweight (HR-0.84, 95%CI-0.70, 0.99, lethargic (HR-0.77, 95%CI-0.62, 0.96 and irritable (HR-0.81, 95%CI-0.66, 0.99 were independent predictors of time to recovery. Baseline CRP was significantly associated with time to recovery (P<0.001, higher CRP was associated with longer time to recovery and this association was nearly linear.Simple clinical and laboratory parameters such as formula feeding prior to the illness, being underweight, lethargic, irritable and having elevated CRP levels could be used for early identification of infants with PSBI at risk for protracted illness and could guide prompt referral to higher centers in resource limited settings. This also provides prognostic information to clinicians and family as longer recovery time has economic and social implications on the family in our setting.ClinicalTrials.gov NCT00347386.

  12. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    Science.gov (United States)

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection. PMID:24983508

  13. Biofilms bacterianos e infección Bacterial biofilms and infection

    Directory of Open Access Journals (Sweden)

    I. Lasa

    2005-08-01

    describe el papel que juegan los biofilms en infecciones humanas persistentes.In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths and cancer (7.1 million deaths (WHO report 2004. The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  14. Some viral and bacterial respiratory tract infections of dairy cattle during the summer season

    Directory of Open Access Journals (Sweden)

    Kale M.

    2013-01-01

    Full Text Available In this research, dairy cattle with respiratory system problems that were brought to a private slaughterhouse in Burdur province were investigated for viral and bacterial infections present in the summer season. The blood samples were collected from 56 animals. The samples were tested for antibodies against bovine herpesvirus 1 (BoHV-1, bovine viral diarrhea virus (BVDV, bovine respiratory syncytial virus (BRSV, bovine parainfluenza virus 3 (BPIV-3 and bovine adenovirus 3 (BAV-3 by ELISA. Bacteriological cultivation was carried out from lung samples taken after cutting the same animals. The seropositivity rates which were determined for 5 viruses in cattle (BoHV- 1, BVDV, BRSV, BPIV-3 and BAV-3 were 7.14%, 50%, 94.64%, 94.64% and 82.14% respectively. The presence of antibodies against the viruses was as follows; 5.36% of cattle had antibodies against only one virus, 14.29% against two, 30.36% against three, 44.64% against four and 5.36% against five viruses. A total of 36 bacterial agents were isolated from 30 out of 56 lung samples. From the lung samples, only one bacterium was isolated from 39.3% (22/56 samples, and more than one bacterium from 14.3% (8/56. Escherichia coli, Staphylococcus aureus and Streptococcus spp. were detected as the most often isolated agents. Compared to bacteria, the rates of viral infections associated with Escherichia coli (BRSV+BPIV-3+BAV- 3+Escherichia coli; 8.92% and BRSV+BPIV-3+Escherichia coli; 5.35% were higher. As a consequence, it was thought that primary agents which were the viruses and bacteria may have attended as secondary factors in respiratory tract infections of dairy cattle.

  15. Canine uterine bacterial infection induces upregulation of proteolysis-related genes and downregulation of homeobox and zinc finger factors.

    Directory of Open Access Journals (Sweden)

    Ragnvi Hagman

    Full Text Available BACKGROUND: Bacterial infection with the severe complication of sepsis is a frequent and serious condition, being a major cause of death worldwide. To cope with the plethora of occurring bacterial infections there is therefore an urgent need to identify molecular mechanisms operating during the host response, in order both to identify potential targets for therapeutic intervention and to identify biomarkers for disease. Here we addressed this issue by studying global gene expression in uteri from female dogs suffering from spontaneously occurring uterine bacterial infection. PRINCIPAL FINDINGS: The analysis showed that almost 800 genes were significantly (p2-fold in the uteri of diseased animals. Among these were numerous chemokine and cytokine genes, as well as genes associated with inflammatory cell extravasation, anti-bacterial action, the complement system and innate immune responses, as well as proteoglycan-associated genes. There was also a striking representation of genes associated with proteolysis. Robust upregulation of immunoglobulin components and genes involved in antigen presentation was also evident, indicating elaboration of a strong adaptive immune response. The bacterial infection was also associated with a significant downregulation of almost 700 genes, of which various homeobox and zinc finger transcription factors were highly represented. CONCLUSIONS/SIGNIFICANCE: Together, these finding outline the molecular patterns involved in bacterial infection of the uterus. The study identified altered expression of numerous genes not previously implicated in bacterial disease, and several of these may be evaluated for potential as biomarkers of disease or as therapeutic targets. Importantly, since humans and dogs show genetic similarity and develop diseases that share many characteristics, the molecular events identified here are likely to reflect the corresponding situation in humans afflicted by similar disease.

  16. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model

    DEFF Research Database (Denmark)

    van de Weert-van Leeuwen, Pauline B; de Vrankrijker, Angélica M M; Fentz, Joachim;

    2013-01-01

    moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be......Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this...... study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28...

  17. Molecular Diagnosis of Periprosthetic Joint Infection by Quantitative RT-PCR of Bacterial 16S Ribosomal RNA

    Directory of Open Access Journals (Sweden)

    Mel S. Lee

    2013-01-01

    Full Text Available The diagnosis of periprosthetic joint infection is sometimes straightforward with purulent discharge from the fistula tract communicating to the joint prosthesis. However it is often difficult to differentiate septic from aseptic loosening of prosthesis because of the high culture-negative rates in conventional microbiologic culture. This study used quantitative reverse transcription polymerase chain reaction (RT-qPCR to amplify bacterial 16S ribosomal RNA in vitro and in 11 clinical samples. The in vitro analysis demonstrated that the RT-qPCR method was highly sensitive with the detection limit of bacterial 16S rRNA being 0.148 pg/μl. Clinical specimens were analyzed using the same protocol. The RT-qPCR was positive for bacterial detection in 8 culture-positive cases (including aerobic, anaerobic, and mycobacteria and 2 culture-negative cases. It was negative in one case that the final diagnosis was confirmed without infection. The molecular diagnosis of bacterial infection using RT-qPCR to detect bacterial 16S rRNA around a prosthesis correlated well with the clinical findings. Based on the promising clinical results, we were attempting to differentiate bacterial species or drug-resistant strains by using species-specific primers and to detect the persistence of bacteria during the interim period before the second stage reimplantation in a larger scale of clinical subjects.

  18. An evaluation of 99Tcm -phosphomycin for the localization of bacterial infection

    International Nuclear Information System (INIS)

    Full text: Phosphomycin is a member of the group of phosphonic acid derivatives which have been used successfully as broad-spectrum antibiotics in man. The disodium salt can be used as a ligand in the preparation of a cold kit containing stannous chloride as the reducing agent. The aim of the study was to determine the suitability of 99Tcm-phosphomycin for infection imaging in a mouse model of infection, with a view to clinical use in humans. The final pH of the cold kit dictates the biodistribution of the labelled product. At pH 2.5 the product exhibited considerable bone uptake, while at pH 6.8 this uptake was markedly reduced. The higher pH kit was used. Radiochemical purity of the reconstituted cold kits was 98.7 ± 0.3 % (n 10) with little decrease over 24 h. Female Balb/c mice were injected intramuscularly into the right thigh with Staphylococcus aureus (1 x 108 colony-forming units), and the infection was allowed to develop over 20 h. Quantitative mouse biodistribution studies and whole-body imaging were performed at 1, 4 and 24 h after intravenous injection of 99Tcm-phosphomycin. The ratio of activity in the right thigh over the left thigh was 1.72, 1.75 and 1.77 at 1, 4 and 24 h respectively. Although renal uptake was observed, the local infection was clearly visible on the images. Based on this initial finding, further experiments will be done with other phosphonic acid derivatives as potential bacterial infection imaging agents

  19. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    Directory of Open Access Journals (Sweden)

    Leonardo De La Fuente

    Full Text Available Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

  20. Epidemiology of urinary tract infections, bacterial species and resistances in primary care in France.

    Science.gov (United States)

    Malmartel, A; Ghasarossian, C

    2016-03-01

    General practitioners often have to manage urinary tract infections (UTI) with probabilistic treatments, although bacterial resistances are increasing. Therefore, the French Society of Infectious Diseases published new guidelines in 2014. The aim of this study was to investigate the bacterial epidemiology of UTI in the general population in primary care and analyse risk factors for Escherichia coli resistance to antibiotics. A cross-sectional study was conducted in 12 ambulatory laboratories. Patients over 18 years of age coming for urinalysis were included. Risk factors for UTI were collected using a questionnaire and the laboratory records. Bacteria meeting criteria for UTI were analysed. A positive urinalysis was found in 1119 patients, corresponding to 1125 bacterial isolates. The bacterial species were: E. coli (73 %), Enterococcus spp. (7 %), Klebsiella spp. (6 %), Proteus spp. (4 %), Staphylococcus spp. (3 %) and Pseudomonas spp. (2 %). Regardless of the bacteria, the most common resistance was that to co-trimoxazole: 27 % (95 % confidence interval [CI] = [0.24; 0.30]), followed by ofloxacin resistance: 16 % [0.14; 0.18]. Escherichia coli resistances to co-trimoxazole, ofloxacin, cefixime, nitrofurantoin and fosfomycin were, respectively, 25.5 % [0.23; 0.28], 17 % [0.14; 0.20], 5.6 % [0.04; 0.07], 2.2 % [0.01; 0.03] and 1.2 % [0.005; 0.02]. Independent risk factors for E. coli resistance to ofloxacin were age over 85 years (odds ratio [OR] = 3.08; [1.61; 5.87]) and a history of UTI in the last 6 months (OR = 2.34; [1.54; 3.52]). Our findings support the guidelines recommending fluoroquinolone sparing. The scarcity of E. coli resistance to fosfomycin justifies its use as a first-line treatment in acute cystitis. These results should be reassessed in a few years to identify changes in the bacterial epidemiology of UTI. PMID:26740324

  1. Previous bacterial infection affects textural quality parameters of heat-treated fillets from rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Hyldig, Grethe; Przybylska, Dominika Alicja;

    2012-01-01

    Sensory quality of fish meat is influenced by many parameters prior to slaughter. In the present study, it was examined if previous infections or damages in the muscle tissue influence product quality parameters in fish. Fillets from rainbow trout (Oncorhynchus mykiss) reared in seawater...... at a commercial fish farm were sensory evaluated for more than a year after recovery following physical tissue damage or infection by the bacterial pathogens Yersinia ruckeri and Vibrio anguillarum. The effect of vaccination was also included as some fish were vaccinated before bacterial challenge. The fish....... This article was the first to describe a correlation between previous infections in fish and changes in sensory-quality parameters. PRACTICAL APPLICATIONS. This work contributes with knowledge about sensory-quality parameters of fish meat after recovery from infections and physical-tissue damage. Because...

  2. Neonatal Bacterial Colonization Predispose to Lower Respiratory Infections in Early Childhood

    DEFF Research Database (Denmark)

    Vissing, Nadja Hawwa

    2014-01-01

    Lower respiratory infections (LRI) in childhood are common and account for considerable morbidity and health care utilization. The frequency of LRI varies significantly between otherwise healthy children, but extrinsic and intrinsic triggers of such variation are poorly understood. Traditionally...... neonatal airway colonization and risk of the LRI in a validated study cohort, and whether a possible association could be reflected in the early immune response to airway pathogens. In study I we aimed to ascertain the quality of information on child’s health, including asthma, allergy, eczema, respiratory...... of concurrent or later asthma. This suggests a role of pathogenic bacterial colonization of the airways in neonates for subsequent susceptibly to LRI. In Study III we studied a possible association with the immune response to pathogenic bacteria and incidence of LRI during the first 3 years of life. We assessed...

  3. Tyrothricin--An underrated agent for the treatment of bacterial skin infections and superficial wounds?

    Science.gov (United States)

    Lang, C; Staiger, C

    2016-06-01

    The antimicrobial agent tyrothricin is a representative of the group of antimicrobial peptides (AMP). It is produced by Bacillus brevis and consists of tyrocidines and gramicidins. The compound mixture shows activity against bacteria, fungi and some viruses. A very interesting feature of AMPs is the fact, that even in vitro it is almost impossible to induce resistances. Therefore, this class of molecules is discussed as one group that could serve as next generation antibiotics and overcome the increasing problem of bacterial resistances. In daily practice, the application of tyrothricin containing formulations is relatively limited: It is used in sore throat medications and in agents for the healing of infected superficial and small-area wounds. However, due to the broad spectrum antimicrobial activity and the low risk of resistance development it is worth to consider further fields of application. PMID:27455547

  4. Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients.

    Science.gov (United States)

    Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M

    2016-11-15

    Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis.

  5. Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients.

    Science.gov (United States)

    Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M

    2016-11-15

    Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis. PMID:27183281

  6. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  7. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology.

    Science.gov (United States)

    Bergmann, Simone; Steinert, Michael

    2015-01-01

    Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms. PMID:26404465

  8. Bacterial isolates from burn wound infections and their antibiograms: A eight-year study

    Directory of Open Access Journals (Sweden)

    Mehta Manjula

    2007-01-01

    Full Text Available Background: Infection is an important cause of mortality in burns. Rapidly emerging nosocomial pathogens and the problem of multi-drug resistance necessitates periodic review of isolation patterns and antibiogram in the burn ward. Aim: Keeping this in mind, the present retrospective study from wounds of patients admitted to burns unit was undertaken to determine the bacteriological profile and the resistance pattern from the burn ward over a period of three years (June 2002 to May 2005 and was compared with the results obtained during the previous five years (June 1997-May 2002, to ascertain any change in the bacteriological profile and antimicrobial resistance pattern. Materials and Methods: Bacterial isolates from 268 wound swabs taken from burn patients were identified by conventional biochemical methods and antimicrobial susceptibility was performed. Statistical comparison of bacterial isolates and their resistance pattern with previous five years data was done using c2 test. Results and Conclusions: During the period from 2002 to 2005 Pseudomonas species was the commonest pathogen isolated (51.5% followed by Acinetobacter species (14.28%, Staph. aureus (11.15%, Klebsiella species (9.23% and Proteus species (2.3%. When compared with the results of the previous five years i.e., 1997 to 2002, Pseudomonas species was still the commonest pathogen in the burns unit. However, the isolation of this organism and other gram-negative organisms had decreased in comparison to previous years. Newer drugs were found to be effective.

  9. Piperine Suppresses Pyroptosis and Interleukin-1β Release upon ATP Triggering and Bacterial Infection

    Science.gov (United States)

    Liang, Yi-Dan; Bai, Wen-Jing; Li, Chen-Guang; Xu, Li-Hui; Wei, Hong-Xia; Pan, Hao; He, Xian-Hui; Ouyang, Dong-Yun

    2016-01-01

    Piperine is a phytochemical present in black pepper (Piper nigrum Linn) and other related herbs, possessing a wide array of pharmacological activities including anti-inflammatory effects. Previously, we demonstrated that piperine has therapeutic effects on bacterial sepsis in mice, but the underlying mechanism has not been fully elucidated. In this study, we aimed to investigate the influences of piperine on pyroptosis in murine macrophages. The results showed that piperine dose-dependently inhibited ATP-induced pyroptosis, thereby suppressing interleukin-1β (IL-1β) or high mobility group box-1 protein (HMGB1) release in LPS-primed bone marrow-derived macrophages and J774A.1 cells. Accompanying this, ATP-induced AMP-activated protein kinase (AMPK) activation was greatly suppressed by piperine, whereas AMPK agonist metformin counteracted piperine’s inhibitory effects on pyroptosis. Moreover, piperine administration greatly reduced both peritoneal and serum IL-1β levels in the mouse model intraperitoneally infected with Escherichia coli, suggestive of suppressing systemic inflammation and pyroptosis. Our data indicated that piperine could protect macrophages from pyroptosis and reduced IL-1β and HMGB1 release by suppressing ATP-induced AMPK activation, suggesting that piperine may become a potential therapeutic agent against bacterial sepsis.

  10. IgG subclass deficiency and sinopulmonary bacterial infections in patients with alcoholic liver disease.

    Science.gov (United States)

    Spinozzi, F; Cimignoli, E; Gerli, R; Agea, E; Bertotto, A; Rondoni, F; Grignani, F

    1992-01-01

    Abnormalities in IgG subclass distribution were sought in serum samples and bronchoalveolar lavage fluid from 15 patients with alcoholic liver disease to explain their increased susceptibility to bacterial respiratory infections. Serum IgG4 deficiency alone or in association with low IgG2 levels was revealed in approximately 30% of patients with alcoholic liver disease. This fact prompted us to further investigate the immunoglobulin concentrations in broncho-alveolar lavage fluid, paying special attention to the distribution of IgA and IgG subclasses. IgA levels were found to be normal or slightly elevated. However, there were substantial defects in total IgG and IgG1 concentrations, often associated with reduced IgG2 and IgG4 levels, in approximately 70% of patients with alcoholic liver disease, which proved to be closely correlated with the number and type (pneumonia) of bacterial respiratory infections. A prospective study of intravenous immunoglobulin substitutive therapy involving two patients with recurrent pneumonia and very low serum IgG2 values demonstrated a reduction in the number of respiratory infectious episodes as well as an increase in both serum and, to a lesser extent, bronchoalveolar lavage fluid IgG1 and IgG2 levels. We identified immune defects that may represent an important pathogenetic mechanism that, when considered together with the alcohol-related suppression of alveolar macrophage and ciliary functions and the inhibition of leukocyte migration into the lungs, should help clarify the complex relationships between alcohol and immune defense. PMID:1728935

  11. Bacterial, Fungal, and Parasitic Infections of the Central Nervous System: Radiologic-Pathologic Correlation and Historical Perspectives.

    Science.gov (United States)

    Shih, Robert Y; Koeller, Kelly K

    2015-01-01

    Despite remarkable progress in prevention and treatment, infectious diseases affecting the central nervous system remain an important source of morbidity and mortality, particularly in less-developed countries and in immunocompromised persons. Bacterial, fungal, and parasitic pathogens are derived from living organisms and affect the brain, spinal cord, or meninges. Infections due to these pathogens are associated with a variety of neuroimaging patterns that can be appreciated at magnetic resonance imaging in most cases. Bacterial infections, most often due to Streptococcus, Haemophilus, and Neisseria species, cause significant meningitis, whereas the less common cerebritis and subsequent abscess formation have well-documented progression, with increasingly prominent altered signal intensity and corresponding contrast enhancement. Atypical bacterial infections are characterized by the development of a granulomatous response, classically seen in tuberculosis, in which the tuberculoma is the most common parenchymal form of the disease; spirochetal and rickettsial diseases are less common. Fungal infections predominate in immunocompromised hosts and are caused by yeasts, molds, and dimorphic fungi. Cryptococcal meningitis is the most common fungal infection, whereas candidiasis is the most common nosocomial infection. Mucormycosis and aspergillosis are characterized by angioinvasiveness and are associated with high morbidity and mortality among immunocompromised patients. In terms of potential exposure in the worldwide population, parasitic infections, including neurocysticercosis, toxoplasmosis, echinococcosis, malaria, and schistosomiasis, are the greatest threat. Rare amebic infections are noteworthy for their extreme virulence and high mortality. The objective of this article is to highlight the characteristic neuroimaging manifestations of bacterial, fungal, and parasitic diseases, with emphasis on radiologic-pathologic correlation and historical perspectives

  12. Quieting cross talk-the quorum sensing regulator LsrR as a possible target for fighting bacterial infections

    Institute of Scientific and Technical Information of China (English)

    Christopher M Byrd; William E Bentley

    2009-01-01

    @@ Antibiotic-resistant bacteria continue to emerge at alarming rates and all aspects of the infection process are being re-examined so that new procedures for prevention,diagnosis,and treatment of bacterial infections can be developed that reduce their occurrence and severity as well as the economic impact on health care systems.One of the most problematic pathogens is methicillin-resistant Staphylococcus aureus(MRSA).

  13. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Directory of Open Access Journals (Sweden)

    Marc Daigneault

    Full Text Available Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+ T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+ T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+ T-cells in PBMC cultures required 'classical' CD14(+ monocytes, which enhanced T-cell activation. CD3(+ T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+ T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease.

  14. Multi-species bacterial biofilm and intracellular infection in otitis media

    Directory of Open Access Journals (Sweden)

    Thornton Ruth B

    2011-10-01

    Full Text Available Abstract Background Bacteria which are metabolically active yet unable to be cultured and eradicated by antibiotic treatment are present in the middle ear effusion of children with chronic otitis media with effusion (COME and recurrent acute otitis media (rAOM. These observations are suggestive of biofilm presence or intracellular sequestration of bacteria and may play a role in OM pathogenesis. The aim of this project is to provide evidence for the presence of otopathogenic bacteria intracellularly or within biofilm in the middle ear mucosa of children with COME or rAOM. Methods Middle ear mucosal biopsies from 20 children with COME or rAOM were examined for otopathogenic bacteria (either in biofilm or located intracellularly using transmission electron microscopy (TEM or species specific fluorescent in situ hybridisation (FISH and confocal laser scanning microscopy (CLSM. One healthy control biopsy from a child undergoing cochlear implant surgery was also examined. Results No bacteria were observed in the healthy control sample. In 2 of the 3 biopsies imaged using TEM, bacteria were observed in mucus containing vacuoles within epithelial cells. Bacterial species within these could not be identified and biofilm was not observed. Using FISH with CLSM, bacteria were seen in 15 of the 17 otitis media mucosal specimens. In this group, 11 (65% of the 17 middle ear mucosal biopsies showed evidence of bacterial biofilm and 12 demonstrated intracellular bacteria. 52% of biopsies were positive for both biofilm and intracellular bacteria. At least one otopathogen was identified in 13 of the 15 samples where bacteria were present. No differences were observed between biopsies from children with COME and those with rAOM. Conclusion Using FISH and CLSM, bacterial biofilm and intracellular infection with known otopathogens are demonstrated on/in the middle ear mucosa of children with COME and/or rAOM. While their role in disease pathogenesis remains to be

  15. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  16. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model.

    Directory of Open Access Journals (Sweden)

    Pauline B van de Weert-van Leeuwen

    Full Text Available Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28 days, mice were intranasally infected with P. aeruginosa. Our study showed that regular exercise resulted in a higher sickness severity score and bacterial (P. aeruginosa loads in the lungs. The phagocytic capacity of monocytes and neutrophils from spleen and lungs was not affected. Although regular moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be encouraged to engage in exercise and physical activities with caution requires further research.

  17. Deciphering the bacterial microbiome of citrus plants in response to ‘Candidatus Liberibacter asiaticus’-infection and antibiotic treatment

    Science.gov (United States)

    Huanglongbing (HLB), the most devastating citrus disease worldwide, is vectored by phloem-feeding insects, and the pathogen in the USA is Candidatus Liberibacter asiaticus (Las). The bacterial microbiome of citrus after Las-infection and treatments with ampicillin (Amp) and gentamicin (Gm) was chara...

  18. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections.

    NARCIS (Netherlands)

    Nehme, N.T.; Quintin, J.; Cho, J.H.; Lee, J.; Lafarge, M.C.; Kocks, C.; Ferrandon, D.

    2011-01-01

    BACKGROUND: Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial pepti

  19. Experimental Salmonella typhimurium infections in rats. II. Active and passive immunization as protection against a lethal bacterial dose

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T; Klausen, B

    1990-01-01

    nude rats died after the second and lethal bacterial challenge. Passive immunization with plasma from immunized euthymic animals did not protect any of the animals against the lethal bacterial dose. However, all animals survived when treated with large doses of spleen cells from immunized euthymic rats...... from immunized thymus grafted animals provided only limited protective effect, and treatment with cells from athymic animals had no effect. The study shows that although isogeneic thymus-grafted nude rats become resistent to reinfection with S. typhimurium, only large doses of spleen cells from...... animals produced antibodies against S.typhimurium, but neither the euthymic nor the athymic animals survived the infection. After non-lethal infection euthymic and thymus-grafted nude rats were not affected by the second and otherwise lethal bacterial dose, and had high antibody titres. All the athymic...

  20. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    Science.gov (United States)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  1. Prevalence of Selected Bacterial Infections Associated with the Use of Animal Waste in Louisiana

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-04-01

    Full Text Available Human health is a major concern when considering the disposal of large quantities of animal waste. Health concerns could arise from exposure to pathogens and excess nitrogen associated with this form of pollution. The objective was to collect and analyze health data related to selected bacterial infections associated with the use of animal waste in Louisiana. An analysis of adverse health effects has been conducted based on the incidence/prevalence rates of campylobacteriosis, E. coli O157:H7 infection, salmonellosis and shigellosis. The number of reported cases increased during the summer months. Analysis of health data showed that reported disease cases of E. coli O157:H7 were highest among Caucasian infants in the 0-4 year old age category and in Caucasian children in the 5-9 year old age category. Fatalities resulting from salmonellosis are low and increases sharply with age. The number of reported cases of shigellosis was found to be higher in African American males and females than in Caucasians. The high rate of identification in the younger population may result from the prompt seeking of medical care, as well as the frequent ordering of stool examination when symptoms become evident among this group of the population. The association with increasing age and fatality due to salmonellosis could be attributed to declining health and weaker immune systems often found in the older population. It is concluded that both animal waste and non-point source pollution may have a significant impact on human health.

  2. Prevalence and antibiogram of bacterial isolates from urinary tract infections at Dessie Health Research Laboratory, Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Mulugeta Kibret; Bayeh Abera

    2014-01-01

    Objective: To determine the prevalence and antimicrobial susceptibility of bacteria from suspected urinary tract infections.Methods:A retrospective analysis of bacterial pathogens and their antimicrobial susceptibility was done on urine samples at Dessie Regional Laboratory in the period 2003 to 2010. Antimicrobial susceptibility tests were done using disc diffusion technique as per the standard of Kirby-Bauer method.Results:The male to female ratio of the patients was 1:1.96. Of the total 1404 samples, 319 (22.7%) were culture positive. Escherichia coli was the dominant isolate (63.6%) followed by Klebsiella spp. (8.5%) and Proteus spp. (8.2%). The overall resistance rates to erythromycin, amoxycillin, and tetracycline were 85.6%, 88.9% and 76.7%, respectively. The three most frequently isolated bacteria had resistance rates of 80.1%-90.0% to, amoxycillin, and tetracycline and sensitivity rates of 0 to 25% to nitrofurantoin, ciprofloxacin and gentamicin. Antibiogram of isolates showed that 152 (47.85%) isolates were resistance to two and more antimicrobials.Conclusions:In the study area resistance rates to erythromycin, amoxycillin and tetracycline were high. Since most isolates were sensitive to nitrofurantoin and gentamicin, they are considered as appropriate antimicrobials for empirical treatment urinary tract infections.

  3. Inflammasomes in Pneumococcal Infection: Innate Immune Sensing and Bacterial Evasion Strategies.

    Science.gov (United States)

    Rabes, Anne; Suttorp, Norbert; Opitz, Bastian

    2016-01-01

    Streptococcus pneumoniae frequently colonizes the upper respiratory tract of healthy individuals, but also commonly causes severe invasive infections such as community-acquired pneumonia and meningitis. One of the key virulence factors of pneumococci is the pore-forming toxin pneumolysin which stimulates cell death and is involved in the evasion of some defense mechanisms. The immune system, however, employs different inflammasomes to sense pneumolysin-induced pore formation, cellular membrane damage, and/or subsequent leakage of bacterial nucleic acid into the host cell cytosol. Canonical inflammasomes are cytosolic multiprotein complexes consisting of a receptor molecule such as NLRP3 or AIM2, the adapter ASC, and caspase-1. NLRP3 and AIM2 inflammasomes mediate cell death and production of important IL-1 family cytokines to recruit leukocytes and defend against S. pneumoniae. Here, we review recent evidence that highlights inflammasomes as critical sensors of S. pneumoniae-induced cellular perturbations, summarize their role in pneumococcal infections, and discuss potential evasion strategies of some emerging pneumococcal strains. PMID:27460812

  4. The role of T cell subsets and cytokines in the regulation of intracellular bacterial infection

    Directory of Open Access Journals (Sweden)

    Oliveira S.C.

    1998-01-01

    Full Text Available Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

  5. Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Shimei eWu

    2016-02-01

    Full Text Available Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium Pseudomonas stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of Pseudomonas aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2 and extracellular DNA (eDNA, which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to two weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling.

  6. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa.

    Science.gov (United States)

    Wu, Shimei; Liu, Ge; Jin, Weihua; Xiu, Pengyuan; Sun, Chaomin

    2016-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination, and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium P. stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed biofilm of P. aeruginosa PAO1. High performance liquid chromatography traces of the hydrolyzed polysaccharides shows that EPS273 primarily consists of glucosamine, rhamnose, glucose and mannose. Further investigation demonstrates that EPS273 reduces the production of the virulence factors pyocyanin, exoprotease, and rhamnolipid, and the virulence of P. aeruginosa PAO1 to human lung cells A549 and zebrafish embryos is also obviously attenuated by EPS273. In addition, EPS273 also greatly reduces the production of hydrogen peroxide (H2O2) and extracellular DNA (eDNA), which are important factors for biofilm formation. Furthermore, EPS273 exhibits strong antioxidant potential by quenching hydroxyl and superoxide anion radicals. Notably, the antibiofouling activity of EPS273 is observed in the marine environment up to 2 weeks according to the amounts of bacteria and diatoms in the glass slides submerged in the ocean. Taken together, the properties of EPS273 indicate that it has a promising prospect in combating bacterial biofilm-associated infection, food-processing contamination and marine biofouling. PMID:26903981

  7. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country

    Science.gov (United States)

    Lim, Cherry; Takahashi, Emi; Hongsuwan, Maliwan; Wuthiekanun, Vanaporn; Thamlikitkul, Visanu; Hinjoy, Soawapak; Day, Nicholas PJ; Peacock, Sharon J; Limmathurotsakul, Direk

    2016-01-01

    Little is known about the excess mortality caused by multidrug-resistant (MDR) bacterial infection in low- and middle-income countries (LMICs). We retrospectively obtained microbiology laboratory and hospital databases of nine public hospitals in northeast Thailand from 2004 to 2010, and linked these with the national death registry to obtain the 30-day mortality outcome. The 30-day mortality in those with MDR community-acquired bacteraemia, healthcare-associated bacteraemia, and hospital-acquired bacteraemia were 35% (549/1555), 49% (247/500), and 53% (640/1198), respectively. We estimate that 19,122 of 45,209 (43%) deaths in patients with hospital-acquired infection due to MDR bacteria in Thailand in 2010 represented excess mortality caused by MDR. We demonstrate that national statistics on the epidemiology and burden of MDR in LMICs could be improved by integrating information from readily available databases. The prevalence and mortality attributable to MDR in Thailand are high. This is likely to reflect the situation in other LMICs. DOI: http://dx.doi.org/10.7554/eLife.18082.001 PMID:27599374

  8. Intravaginal practices, bacterial vaginosis, and HIV infection in women: individual participant data meta-analysis.

    Directory of Open Access Journals (Sweden)

    Nicola Low

    Full Text Available BACKGROUND: Identifying modifiable factors that increase women's vulnerability to HIV is a critical step in developing effective female-initiated prevention interventions. The primary objective of this study was to pool individual participant data from prospective longitudinal studies to investigate the association between intravaginal practices and acquisition of HIV infection among women in sub-Saharan Africa. Secondary objectives were to investigate associations between intravaginal practices and disrupted vaginal flora; and between disrupted vaginal flora and HIV acquisition. METHODS AND FINDINGS: We conducted a meta-analysis of individual participant data from 13 prospective cohort studies involving 14,874 women, of whom 791 acquired HIV infection during 21,218 woman years of follow-up. Data were pooled using random-effects meta-analysis. The level of between-study heterogeneity was low in all analyses (I(2 values 0.0%-16.1%. Intravaginal use of cloth or paper (pooled adjusted hazard ratio [aHR] 1.47, 95% confidence interval [CI] 1.18-1.83, insertion of products to dry or tighten the vagina (aHR 1.31, 95% CI 1.00-1.71, and intravaginal cleaning with soap (aHR 1.24, 95% CI 1.01-1.53 remained associated with HIV acquisition after controlling for age, marital status, and number of sex partners in the past 3 months. Intravaginal cleaning with soap was also associated with the development of intermediate vaginal flora and bacterial vaginosis in women with normal vaginal flora at baseline (pooled adjusted odds ratio [OR] 1.24, 95% CI 1.04-1.47. Use of cloth or paper was not associated with the development of disrupted vaginal flora. Intermediate vaginal flora and bacterial vaginosis were each associated with HIV acquisition in multivariable models when measured at baseline (aHR 1.54 and 1.69, p<0.001 or at the visit before the estimated date of HIV infection (aHR 1.41 and 1.53, p<0.001, respectively. CONCLUSIONS: This study provides evidence to

  9. Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus

    Science.gov (United States)

    Dittrich, Sabine; Tadesse, Birkneh Tilahun; Moussy, Francis; Chua, Arlene; Zorzet, Anna; Tängdén, Thomas; Dolinger, David L.; Page, Anne-Laure; Crump, John A.; D’Acremont, Valerie; Bassat, Quique; Lubell, Yoel; Newton, Paul N.; Heinrich, Norbert; Rodwell, Timothy J.; González, Iveth J.

    2016-01-01

    Acute fever is one of the most common presenting symptoms globally. In order to reduce the empiric use of antimicrobial drugs and improve outcomes, it is essential to improve diagnostic capabilities. In the absence of microbiology facilities in low-income settings, an assay to distinguish bacterial from non-bacterial causes would be a critical first step. To ensure that patient and market needs are met, the requirements of such a test should be specified in a target product profile (TPP). To identify minimal/optimal characteristics for a bacterial vs. non-bacterial fever test, experts from academia and international organizations with expertise in infectious diseases, diagnostic test development, laboratory medicine, global health, and health economics were convened. Proposed TPPs were reviewed by this working group, and consensus characteristics were defined. The working group defined non-severely ill, non-malaria infected children as the target population for the desired assay. To provide access to the most patients, the test should be deployable to community health centers and informal health settings, and staff should require 90% and >80% for sensitivity and specificity, respectively. Other key characteristics, to account for the challenging environment at which the test is targeted, included: i) time-to-result <10 min (but maximally <2 hrs); ii) storage conditions at 0–40°C, ≤90% non-condensing humidity with a minimal shelf life of 12 months; iii) operational conditions of 5–40°C, ≤90% non-condensing humidity; and iv) minimal sample collection needs (50–100μL, capillary blood). This expert approach to define assay requirements for a bacterial vs. non-bacterial assay should guide product development, and enable targeted and timely efforts by industry partners and academic institutions. PMID:27559728

  10. The Value of the “Lab-Score” Method in Identifying Febrile Infants at Risk for Serious Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Moldovan Diana Aniela

    2015-03-01

    Full Text Available Introduction: Most children with fever without source will have a self limited viral infection though a small percent will develop a serious bacterial infection (SBI like urinary tract infection, pneumonia, bacteraemia, meningitis or sepsis. The challenge facing practitioners is to distinguish between these two groups and currently biomarkers, like C-reactive protein (CRP and Procalcitonin (PCT, are available for this purpose. The aim of the current study was to identify SBI in infants with fever without an identifiable cause using the recently introduced “Lab-score” combining C-reactive protein, procalcitonin and urine dipstick results.

  11. 噬菌体治疗创面细菌感染研究进展%Advances in the treatment of wound bacterial infection with phage

    Institute of Scientific and Technical Information of China (English)

    崔泽龙

    2015-01-01

    The treatment of wound bacterial infection is an extremely difficult problem in clinic, especially in patients with large wounds which are infected by multidrug resistant, pan-resistant or omni-resistant bacteria.In recent years, with a grim prospect of antibiotic resistance, phage therapy is re-valued by researchers after being ignored for nearly half a century.Phage therapy has made great achievements in prevention and control of bacterial infection of open wounds.This review is mainly focused on the latest research progress of phage therapy in wound bacterial infection.

  12. Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus.

    Science.gov (United States)

    Dittrich, Sabine; Tadesse, Birkneh Tilahun; Moussy, Francis; Chua, Arlene; Zorzet, Anna; Tängdén, Thomas; Dolinger, David L; Page, Anne-Laure; Crump, John A; D'Acremont, Valerie; Bassat, Quique; Lubell, Yoel; Newton, Paul N; Heinrich, Norbert; Rodwell, Timothy J; González, Iveth J

    2016-01-01

    Acute fever is one of the most common presenting symptoms globally. In order to reduce the empiric use of antimicrobial drugs and improve outcomes, it is essential to improve diagnostic capabilities. In the absence of microbiology facilities in low-income settings, an assay to distinguish bacterial from non-bacterial causes would be a critical first step. To ensure that patient and market needs are met, the requirements of such a test should be specified in a target product profile (TPP). To identify minimal/optimal characteristics for a bacterial vs. non-bacterial fever test, experts from academia and international organizations with expertise in infectious diseases, diagnostic test development, laboratory medicine, global health, and health economics were convened. Proposed TPPs were reviewed by this working group, and consensus characteristics were defined. The working group defined non-severely ill, non-malaria infected children as the target population for the desired assay. To provide access to the most patients, the test should be deployable to community health centers and informal health settings, and staff should require 90% and >80% for sensitivity and specificity, respectively. Other key characteristics, to account for the challenging environment at which the test is targeted, included: i) time-to-result targeted and timely efforts by industry partners and academic institutions.

  13. NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection.

    Science.gov (United States)

    Zhang, Min; Li, Mo-fei; Sun, Li

    2014-01-01

    NK-lysin is an antimicrobial protein produced by cytotoxic T lymphocytes and natural killer cells. In this study, we examined the biological property of a peptide, NKLP27, derived from tongue sole (Cynoglossus semilaevis) NK-lysin. NKLP27 is composed of 27 amino acids and shares little sequence identity with known NK-lysin peptides. NKLP27 possesses bactericidal activity against both Gram-negative and Gram-positive bacteria including common aquaculture pathogens. The bactericidal activity of NKLP27 was dependent on the C-terminal five residues, deletion of which dramatically reduced the activity of NKLP27. During its interaction with the target bacterial cells, NKLP27 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA. In vivo study showed that administration of tongue sole with NKLP27 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. Further study revealed that fish administered with NKLP27 exhibited significantly upregulated expression of the immune genes including those that are known to be involved in antibacterial and antiviral defense. These results indicate that NKLP27 is a novel antimicrobial against bacterial and viral pathogens, and that the observed effect of NKLP27 on bacterial DNA and host gene expression adds new insights to the action mechanism of fish antimicrobial peptides.

  14. NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available NK-lysin is an antimicrobial protein produced by cytotoxic T lymphocytes and natural killer cells. In this study, we examined the biological property of a peptide, NKLP27, derived from tongue sole (Cynoglossus semilaevis NK-lysin. NKLP27 is composed of 27 amino acids and shares little sequence identity with known NK-lysin peptides. NKLP27 possesses bactericidal activity against both Gram-negative and Gram-positive bacteria including common aquaculture pathogens. The bactericidal activity of NKLP27 was dependent on the C-terminal five residues, deletion of which dramatically reduced the activity of NKLP27. During its interaction with the target bacterial cells, NKLP27 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA. In vivo study showed that administration of tongue sole with NKLP27 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. Further study revealed that fish administered with NKLP27 exhibited significantly upregulated expression of the immune genes including those that are known to be involved in antibacterial and antiviral defense. These results indicate that NKLP27 is a novel antimicrobial against bacterial and viral pathogens, and that the observed effect of NKLP27 on bacterial DNA and host gene expression adds new insights to the action mechanism of fish antimicrobial peptides.

  15. Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus.

    Science.gov (United States)

    Dittrich, Sabine; Tadesse, Birkneh Tilahun; Moussy, Francis; Chua, Arlene; Zorzet, Anna; Tängdén, Thomas; Dolinger, David L; Page, Anne-Laure; Crump, John A; D'Acremont, Valerie; Bassat, Quique; Lubell, Yoel; Newton, Paul N; Heinrich, Norbert; Rodwell, Timothy J; González, Iveth J

    2016-01-01

    Acute fever is one of the most common presenting symptoms globally. In order to reduce the empiric use of antimicrobial drugs and improve outcomes, it is essential to improve diagnostic capabilities. In the absence of microbiology facilities in low-income settings, an assay to distinguish bacterial from non-bacterial causes would be a critical first step. To ensure that patient and market needs are met, the requirements of such a test should be specified in a target product profile (TPP). To identify minimal/optimal characteristics for a bacterial vs. non-bacterial fever test, experts from academia and international organizations with expertise in infectious diseases, diagnostic test development, laboratory medicine, global health, and health economics were convened. Proposed TPPs were reviewed by this working group, and consensus characteristics were defined. The working group defined non-severely ill, non-malaria infected children as the target population for the desired assay. To provide access to the most patients, the test should be deployable to community health centers and informal health settings, and staff should require 90% and >80% for sensitivity and specificity, respectively. Other key characteristics, to account for the challenging environment at which the test is targeted, included: i) time-to-result development, and enable targeted and timely efforts by industry partners and academic institutions. PMID:27559728

  16. Role of trophallaxis in the dispersal of radioactive I131 and of bacterial infections in the termite, Bifiditermes beesoni

    International Nuclear Information System (INIS)

    Dispersal and localisation of radioactive iodine (I131) through trophallaxis was studied in various organs of healthy or bacteria-infected pseudergates of Bifiditermes beesoni. The breakdown of the defence system by bacterial pathogens was also studied by means of I131. Individual groups of pseudergates of B. beesoni were infected by various bacterial pathogens, i.e. Thuricide-HP (commercial preparation of Bacillus thuringiensis), B. thuringiensis 11-toumanoffi, B. thuringiensis serotype 3a, 3b, Pseudomonas fluorescens and Serratia marcescens, respectively. Healthy pseudergates retained more radioactivity in their guts and less in their exoskeletons. However, bacteria-infected 'donor' and 'recipient' pseudergates and soldiers retained less radioactivity in their guts and more in their exoskeletons. The flow of radioactivity from gut towards exoskeleton or other parts of B. beesoni pseudergates occurred after destruction and breakdown of the inestinal defence system of the host. (orig.)

  17. Development of aptamers for use as radiopharmaceuticals in the bacterial infection identification

    International Nuclear Information System (INIS)

    The difficulty in early detection of specific foci caused by bacteria in the bacterial infection has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy had the advantage that a whole body image could be obtained, since specific tracers were available. This study aims to obtain aptamers specific for bacteria identification for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as 99mTc, 18F and 32P. In this study, aptamers anti-peptidoglycan, the main component of the bacterial outer cell wall, were obtained through SELEX. Whole cells of Staphylococcus aureus were also used to perform the SELEX to cells (cell-SELEX). The selection of aptamers was performed by two different procedures (A and B). The A process has been accomplished by 15 SELEX rounds in which the separation of the oligonucleotides bound to the peptidoglycan of unbound ones was performed by filtration. In the B process 15 SELEX rounds were performed using the centrifugation for this separation, followed by 5 rounds cell-SELEX. The SELEX started with a pool of ssDNA (single stranded DNA). For A process, initially a library of ssDNA was incubated with peptidoglycan and the amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reation). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 selection rounds the selected oligonucleotides were cloned. The

  18. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection.

    Science.gov (United States)

    Li, Hui; Huang, Xiaoyan; Zeng, Zaohai; Peng, Xuan-Xian; Peng, Bo

    2016-09-01

    Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes. PMID:27458055

  19. Adaptive Remodeling of the Bacterial Proteome by Specific Ribosomal Modification Regulates Pseudomonas Infection and Niche Colonisation.

    Directory of Open Access Journals (Sweden)

    Richard H Little

    2016-02-01

    Full Text Available Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG. Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome.

  20. Aminomethyl spectinomycins as therapeutics for drug-resistant respiratory tract and sexually transmitted bacterial infections.

    Science.gov (United States)

    Bruhn, David F; Waidyarachchi, Samanthi L; Madhura, Dora B; Shcherbakov, Dimitri; Zheng, Zhong; Liu, Jiuyu; Abdelrahman, Yasser M; Singh, Aman P; Duscha, Stefan; Rathi, Chetan; Lee, Robin B; Belland, Robert J; Meibohm, Bernd; Rosch, Jason W; Böttger, Erik C; Lee, Richard E

    2015-05-20

    The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A series of N-benzyl-substituted 3'-(R)-3'-aminomethyl-3'-hydroxy spectinomycins was developed on the basis of a computational analysis of the aminomethyl spectinomycin binding site and structure-guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against the common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis, as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non-ribosome-binding 3'-(S) isomers of the lead compounds demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target against the ribosome. Compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series exhibited excellent chemical stability superior to spectinomycin; no interaction with a panel of human receptors and drug metabolism enzymes, suggesting low potential for adverse reactions or drug-drug interactions in vivo; activity in vitro against a panel of penicillin-, macrolide-, and cephalosporin-resistant S. pneumoniae clinical isolates; and the ability to cure mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate that N-benzyl aminomethyl spectinomycins are suitable for further development to treat drug-resistant respiratory tract and sexually transmitted bacterial infections. PMID:25995221

  1. Selection of aptamers for use as radiopharmaceuticals in bacterial infection diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ieda Mendes; Faria, Ligia Santana de; Correa, Cristiane Rodrigues; Andrade, Antero Silva Ribeiro de, E-mail: imendesf@yahoo.com.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The difficulty in early detection of specific foci in the bacterial infection caused by bacteria has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy has the advantage that an image of the whole body could be obtained. This study aims to obtain aptamers specific bacteria for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as {sup 99m}Tc, {sup 18}F and {sup 32}P. In this study aptamers anti-peptidoglycan, the main component of the outer cell wall of bacteria, were obtained through SELEX. The SELEX started with a pool of ssDNA that had 10{sup 15}different sequences (library), each oligo has two fixed regions merging a portion of 25 random nucleotides. Initially, the library of ssDNA was incubated with peptidoglycan, for 1h at 37 dec C with stirring. Subsequently, amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reaction). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 rounds of selection the oligonucleotides were cloned using TOPO plasmid and Escherichia coli strain Top10F'. The plasmid DNA from 40 colonies were extracted and quantified. The plasmids were sequenced using the sequencing MegaBase, and two different aptamers sequences were obtained from all clones. The aptamers obtained were synthesized and subsequently labeled with {sup 32}P in the 5' end. The labeled aptamers were incubated

  2. Bacterial endophthalmitis in the age of outpatient intravitreal therapies and cataract surgeries: host-microbe interactions in intraocular infection.

    Science.gov (United States)

    Sadaka, Ama; Durand, Marlene L; Gilmore, Michael S

    2012-07-01

    Bacterial endophthalmitis is a sight threatening infection of the interior structures of the eye. Incidence in the US has increased in recent years, which appears to be related to procedures being performed on an aging population. The advent of outpatient intravitreal therapy for management of age-related macular degeneration raises yet additional risks. Compounding the problem is the continuing progression of antibiotic resistance. Visual prognosis for endophthalmitis depends on the virulence of the causative organism, the severity of intraocular inflammation, and the timeliness of effective therapy. We review the current understanding of the pathogenesis of bacterial endophthalmitis, highlighting opportunities for the development of improved therapeutics and preventive strategies. PMID:22521570

  3. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.

    Science.gov (United States)

    Baelo, Aida; Levato, Riccardo; Julián, Esther; Crespo, Anna; Astola, José; Gavaldà, Joan; Engel, Elisabeth; Mateos-Timoneda, Miguel Angel; Torrents, Eduard

    2015-07-10

    Infections caused by biofilm-forming bacteria are a major threat to hospitalized patients and the main cause of chronic obstructive pulmonary disease and cystic fibrosis. There is an urgent necessity for novel therapeutic approaches, since current antibiotic delivery fails to eliminate biofilm-protected bacteria. In this study, ciprofloxacin-loaded poly(lactic-co-glycolic acid) nanoparticles, which were functionalized with DNase I, were fabricated using a green-solvent based method and their antibiofilm activity was assessed against Pseudomonas aeruginosa biofilms. Such nanoparticles constitute a paradigm shift in biofilm treatment, since, besides releasing ciprofloxacin in a controlled fashion, they are able to target and disassemble the biofilm by degrading the extracellular DNA that stabilize the biofilm matrix. These carriers were compared with free-soluble ciprofloxacin, and ciprofloxacin encapsulated in untreated and poly(lysine)-coated nanoparticles. DNase I-activated nanoparticles were not only able to prevent biofilm formation from planktonic bacteria, but they also successfully reduced established biofilm mass, size and living cell density, as observed in a dynamic environment in a flow cell biofilm assay. Moreover, repeated administration over three days of DNase I-coated nanoparticles encapsulating ciprofloxacin was able to reduce by 95% and then eradicate more than 99.8% of established biofilm, outperforming all the other nanoparticle formulations and the free-drug tested in this study. These promising results, together with minimal cytotoxicity as tested on J774 macrophages, allow obtaining novel antimicrobial nanoparticles, as well as provide clues to design the next generation of drug delivery devices to treat persistent bacterial infections. PMID:25913364

  4. Value of bacterial culture of vaginal swabs in diagnosis of vaginal infections

    Directory of Open Access Journals (Sweden)

    Nenadić Dane

    2015-01-01

    Full Text Available Bacground/Aim. Vaginal and cervical swab culture is still very common procedure in our country’s everyday practice whereas simple and rapid diagnostic methods have been very rarely used. The aim of this study was to show that the employment of simple and rapid diagnostic tools [vaginal fluid wet mount microscopy (VFWMM, vaginal pH and potassium hydroxide (KOH test] offers better assessment of vaginal environment than standard microbiologic culture commonly used in Serbia. Methods. This prospective study included 505 asymptomatic pregnant women undergoing VFWMM, test with 10% KOH, determination of vaginal pH and standard culture of cervicovaginal swabs. Combining findings from the procedures was used to make diagnoses of bacterial vaginosis (BV and vaginitis. In addition, the number of polymorphonuclear leukocytes (PMN was determined in each sample and analyzed along with other findings. Infections with Candida albicans and Trichomonas vaginalis were confirmed or excluded by microscopic examination. Results. In 36 (6% patients cervicovaginal swab cultures retrieved several aerobes and facultative anaerobes, whereas in 52 (11% women Candida albicans was isolated. Based on VFWMM findings and clinical criteria 96 (19% women had BV, 19 (4% vaginitis, and 72 (14% candidiasis. Of 115 women with BV and vaginitis, pH 4.5 was found in 5, and of 390 with normal findings 83 (21% had vaginal pH 4.5. Elevated numbers of PMN were found in 154 (30% women - in 83 (54% of them VFWMM was normal. Specificity and sensitivity of KOH test and vaginal pH determination in defining pathological vaginal flora were 95% and 81%, and 79% and 91%, respectively. Conclusion. Cervicovaginal swab culture is expensive but almost non-informative test in clinical practice. The use of simpler and rapid methods as vaginal fluid wet mount microscopy, KOH test and vaginal pH offers better results in diagnosis, and probably in the treatment and prevention of sequels of vaginal

  5. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jennifer C Regan

    2013-10-01

    Full Text Available Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of

  6. Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection.

    Science.gov (United States)

    Song, Lin; Li, Chao; Xie, Yangjie; Liu, Shikai; Zhang, Jiaren; Yao, Jun; Jiang, Chen; Li, Yun; Liu, Zhanjiang

    2016-02-01

    Heat shock proteins 70/110 (Hsp70/110) are a family of conserved ubiquitously expressed heat shock proteins which are produced by cells in response to exposure to stressful conditions. Besides the chaperone and housekeeping functions, they are also known to be involved in immune response during infection. In this study, we identified 16 Hsp70/110 geness in channel catfish (Ictalurus punctatus) through in silico analysis using RNA-Seq and genome databases. Among them 12 members of Hsp70 (Hspa) family and 4 members of Hsp110 (Hsph) family were identified. Phylogenetic and syntenic analyses provided strong evidence in supporting the orthologies of these HSPs. In addition, we also determined the expression patterns of Hsp70/110 genes after Flavobacterium columnare and Edwardsiella ictaluri infections by meta-analyses, for the first time in channel catfish. Ten out of sixteen genes were significantly up/down-regulated after bacterial challenges. Specifically, nine genes were found significantly expressed in gill after F. columnare infection. Two genes were found significantly expressed in intestine after E. ictaluri infection. Pathogen-specific pattern and tissue-specific pattern were found in the two infections. The significantly regulated expressions of catfish Hsp70 genes after bacterial infections suggested their involvement in immune response in catfish. PMID:26693666

  7. Antimicrobial proteins from snake venoms: direct bacterial damage and activation of innate immunity against Staphylococcus aureus skin infection.

    Science.gov (United States)

    Samy, R P; Stiles, B G; Gopalakrishnakone, P; Chow, V T K

    2011-01-01

    The innate immune system is the first line of defense against microbial diseases. Antimicrobial proteins produced by snake venoms have recently attracted significant attention due to their relevance to bacterial infection and potential development into new therapeutic agents. Staphylococcus aureus is one of the major human pathogens causing a variety of infections involving pneumonia, toxic shock syndrome, and skin lesions. With the recent emergence of methicillin (MRSA) and vancomycin (VRSA) resistance, S. aureus infection is a serious clinical problem that will have a grave socio-economic impact in the near future. Although S. aureus susceptibility to innate antimicrobial peptides has been reported recently, the protective effect of snake venom phospholipase A₂ (svPLA₂) proteins on the skin from S. aureus infection has been understudied. This review details the protective function of svPLA₂s derived from venoms against skin infections caused by S. aureus. We have demonstrated in vivo that local application of svPLA₂ provides complete clearance of S. aureus within 2 weeks after treatment compared to fusidic acid ointment (FAO). In vitro experiments also demonstrate that svPLA₂ proteins have inhibitory (bacteriostatic) and killing (bactericidal) effects on S. aureus in a dose-dependant manner. The mechanism of bacterial membrane damage and perturbation was clearly evidenced by electron microscopic studies. In summary, svPLA₂s from Viperidae and Elapidae snakes are novel molecules that can activate important mechanisms of innate immunity in animals to endow them with protection against skin infection caused by S. aureus.

  8. SIV Infection-Mediated Changes in Gastrointestinal Bacterial Microbiome and Virome Are Associated with Immunodeficiency and Prevented by Vaccination.

    Science.gov (United States)

    Handley, Scott A; Desai, Chandni; Zhao, Guoyan; Droit, Lindsay; Monaco, Cynthia L; Schroeder, Andrew C; Nkolola, Joseph P; Norman, Megan E; Miller, Andrew D; Wang, David; Barouch, Dan H; Virgin, Herbert W

    2016-03-01

    AIDS caused by simian immunodeficiency virus (SIV) infection is associated with gastrointestinal disease, systemic immune activation, and, in cross-sectional studies, changes in the enteric virome. Here we performed a longitudinal study of a vaccine cohort to define the natural history of changes in the fecal metagenome in SIV-infected monkeys. Matched rhesus macaques were either uninfected or intrarectally challenged with SIV, with a subset receiving the Ad26 vaccine, an adenovirus vector expressing the viral Env/Gag/Pol antigens. Progression of SIV infection to AIDS was associated with increased detection of potentially pathogenic viruses and bacterial enteropathogens. Specifically, adenoviruses were associated with an increased incidence of gastrointestinal disease and AIDS-related mortality. Viral and bacterial enteropathogens were largely absent from animals protected by the vaccine. These data suggest that the SIV-associated gastrointestinal disease is associated with the presence of both viral and bacterial enteropathogens and that protection against SIV infection by vaccination prevents enteropathogen emergence. PMID:26962943

  9. A human pathogenic bacterial infection model using the two-spotted cricket, Gryllus bimaculatus.

    Science.gov (United States)

    Kochi, Yuto; Miyashita, Atsushi; Tsuchiya, Kohsuke; Mitsuyama, Masao; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-08-01

    Invertebrate animal species that can withstand temperatures as high as 37°C, the human body temperature, are limited. In the present study, we utilized the two-spotted cricket, Gryllus bimaculatus, which lives in tropical and subtropical regions, as an animal model of human pathogenic bacterial infection. Injection of Pseudomonas aeruginosa or Staphylococcus aureus into the hemolymph killed crickets. Injected P. aeruginosa or S. aureus proliferated in the hemolymph until the cricket died. The ability of these pathogenic bacteria to kill the crickets was blocked by the administration of antibiotics. S. aureus gene-knockout mutants of virulence factors, including cvfA, agr and srtA, exhibited decreased killing ability compared with the parent strain. The dose at which 50% of crickets were killed by P. aeruginosa or S. aureus was not decreased at 37°C compared with that at 27°C. Injection of Listeria monocytogenes, which upregulates toxin expression at 37°C, killed crickets, and the dose at which 50% of crickets were killed was decreased at 37°C compared with that at 27°C. These findings suggest that the two-spotted cricket is a useful model animal for evaluating the virulence properties of various human pathogenic bacteria at variable temperature including 37°C. PMID:27377894

  10. Susceptibility of Caenorhabditis elegans to Burkholderia infection depends on prior diet and secreted bacterial attractants.

    Directory of Open Access Journals (Sweden)

    Vaughn S Cooper

    Full Text Available The nematode Caenorhabditis elegans may be killed by certain pathogenic bacteria and thus is a model organism for studying interactions between bacteria and animal hosts. However, growing nematodes on prey bacteria may influence their susceptibility to potential pathogens. A method of axenic nematode culture was developed to isolate and quantify interactions between C. elegans and potentially pathogenic strains of the Burkholderia cepacia complex. Studying these dynamics in liquid solution rather than on agar surfaces minimized nematode avoidance behavior and resolved more differences among isolates. Most isolates of B. cenocepacia, B. ambifaria and B. cepacia caused 60-80% mortality of nematodes after 7 days, whereas isolates of B. multivorans caused less mortality (<25% and supported nematode reproduction. However, some B. cenocepacia isolates recovered from chronic infections were much less virulent (5-28% mortality. As predicted, prior diet altered the outcome of interactions between nematodes and bacteria. When given the choice between Burkholderia and E. coli as prey on agar, axenically raised nematodes initially preferred most lethal Burkholderia isolates to E. coli as a food source, but this was not the case for nematodes fed E. coli, which avoided toxic Burkholderia. This food preference was associated with the cell-free supernatant and thus secreted compounds likely mediated bacterial-nematode interactions. This model, which isolates interactions between bacteria and nematodes from the effects of prior feeding, demonstrates that bacteria can influence nematode behavior and their susceptibility to pathogens.

  11. Aptamers: Novel Molecules as Diagnostic Markers in Bacterial and Viral Infections?

    Directory of Open Access Journals (Sweden)

    Flávia M. Zimbres

    2013-01-01

    Full Text Available Worldwide the entire human population is at risk of infectious diseases of which a high degree is caused by pathogenic protozoans, worms, bacteria, and virus infections. Moreover the current medications against pathogenic agents are losing their efficacy due to increasing and even further spreading drug resistance. Therefore, there is an urgent need to discover novel diagnostic as well as therapeutic tools against infectious agents. In view of that, the Systematic Evolution of Ligands by Exponential Enrichment (SELEX represents a powerful technology to target selectively pathogenic factors as well as entire bacteria or viruses. SELEX uses a large combinatorial oligonucleic acid library (DNA or RNA which is processed a by high-flux in vitro screen of iterative cycles. The selected ligands, termed aptamers, are characterized by high specificity and affinity to their target molecule, which are already exploited in diagnostic and therapeutic applications. In this minireview we will discuss the current status of the SELEX technique applied on bacterial and viral pathogens.

  12. The inflammasomes: Molecular effectors of host resistance against bacterial, viral, parasitic and fungal infections

    Directory of Open Access Journals (Sweden)

    Alexander eSkeldon

    2011-02-01

    Full Text Available The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns (MAMPs or host-derived danger signals (danger-associated molecular patterns or DAMPs by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1β (IL-1β and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of alarmins and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defence against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic and fungal infections and the beneficial or detrimental effects of inflammasome signalling in host resistance.

  13. Spatial and Temporal Shifts in Bacterial Biogeography and Gland Occupation during the Development of a Chronic Infection

    Science.gov (United States)

    Zavros, Yana; Shepherd, Benjamin; Salama, Nina R.

    2016-01-01

    ABSTRACT Gland colonization may be one crucial route for bacteria to maintain chronic gastrointestinal infection. We developed a quantitative gland isolation method to allow robust bacterial population analysis and applied it to the gastric pathobiont Helicobacter pylori. After infections in the murine model system, H. pylori populations multiply both inside and outside glands in a manner that requires the bacteria to be motile and chemotactic. H. pylori is able to achieve gland densities averaging 25 to 40 bacteria/gland after 2 to 4 weeks of infection. After 2 to 4 weeks of infection, a primary infection leads to colonization resistance for a secondary infection. Nonetheless, about ~50% of the glands remained unoccupied, suggesting there are as-yet unappreciated parameters that prevent gastric gland colonization. During chronic infections, H. pylori populations collapsed to nearly exclusive gland localization, to an average of <8 bacteria/gland, and only 10% of glands occupied. We analyzed an H. pylori chemotaxis mutant (Che−) to gain mechanistic insight into gland colonization. Che− strains had a severe inability to spread to new glands and did not protect from a secondary infection but nonetheless achieved a chronic gland colonization state numerically similar to that of the wild type. Overall, our analysis shows that bacteria undergo substantial population dynamics on the route to chronic colonization, that bacterial gland populations are maintained at a low level during chronic infection, and that established gland populations inhibit subsequent colonization. Understanding the parameters that promote chronic colonization will allow the future successful design of beneficial microbial therapeutics that are able to maintain long-term mammalian colonization. PMID:27729513

  14. [Empirical therapeutic approach to infection by resistant gram positive (acute bacterial skin and skin structure infections and health care pneumonia). Value of risk factors].

    Science.gov (United States)

    González-DelCastillo, J; Núñez-Orantos, M J; Candel, F J; Martín-Sánchez, F J

    2016-09-01

    Antibiotic treatment inadequacy is common in these sites of infection and may have implications for the patient's prognosis. In acute bacterial skin and skin structure infections, the document states that for the establishment of an adequate treatment it must be assessed the severity, the patient comorbidity and the risk factors for multidrug-resistant microorganism. The concept of health care-associated pneumonia is discussed and leads to errors in the etiologic diagnosis and therefore in the selection of antibiotic treatment. This paper discusses how to perform this approach to the possible etiology to guide empirical treatment. PMID:27608306

  15. Gram-Negative Bacterial Infection in Thigh Abscess Can Migrate to Distant Burn Depending on Burn Depth

    Directory of Open Access Journals (Sweden)

    Victoria Hamrahi

    2012-01-01

    Full Text Available Sepsis remains the major cause of death in patients with major burn injuries. In the present investigation we evaluated the interaction between burn injuries of varying severity and preexisting distant infection. We used Gram-negative bacteria (Pseudomonas aeruginosa and Proteus mirabilis that were genetically engineered to be bioluminescent, which allowed for noninvasive, sequential optical imaging of the extent and severity of the infection. The bioluminescent bacteria migrated from subcutaneous abscesses in the leg to distant burn wounds on the back depending on the severity of the burn injury, and this migration led to increased mortality of the mice. Treatment with ciprofloxacin, injected either in the leg with the bacterial infection or into the burn eschar, prevented this colonization of the wound and decreased mortality. The present data suggest that burn wounds can readily become colonized by infections distant from the wound itself.

  16. Investigation of potential correlations between the antiphospholipid syndrome and some parasitary and bacterial infections in Romanian patients

    Directory of Open Access Journals (Sweden)

    Marian Ghervan

    2013-12-01

    Full Text Available The association of the antiphospholipid syndrome (APS with some parasitary and bacterial infections was investigated on a statistically significant group of 6,657 patients with various vasculary disorders (ocular and neurological, from district clinics of Bucharest and throughout the country. Patients were investigated in the ambulatory service of the Clinic of Neurosurgery of Saint Pantelimon Emergency Hospital, Bucharest, over a period of six years (2004-2009. Most of them (96.4 % were diagnosed with antiphospholipid syndrome, in the Clinic of Hematology, Fundeni Clinical Institute, Bucharest, using specific blood tests. The patients diagnised with antiphospholipid syndrome have been tested for nine visceral parasitary diseases and bacterial sepsis by three ways: i serological investigations (ELISA IgM for Toxoplasma gondii, Larva migrans visceralis, Cysticercus sp., Trichinella sp., Giardia intestinalis, Chlamydia trachomatis, Chlamydia pneumoniae, Mycoplasma pneumoniae, Borrelia burgdorferi sensu lato, and IgG for Toxoplasma gondii ii statistical analyses (Bravais-Pearson correlation coefficient R2 and iii evaluation of the effect of the anti-parasitary and antimicrobial treatments upon the symptoms of the antiphospholipid syndrome. A statistically significant positive linear correlation was established between the antiphospholipid syndrome and eight of the nine etiological agents, i.e. (Giardia intestinalis, Borrelia burgdorferi, Chlamydia trachomatis, Chlamydia pneumoniae, Larva migrans visceralis, Mycoplasma pneumoniae, Toxoplasma gondii, Cysticercus sp.. The etiologic treatments for parasitoses and bacterial sepsis have proved to eliminate the respective parasitic and bacterial agents, and also to improve the health status and to turn specific antiphospholipid syndrome tests into negative. Coexistence of the antiphospholipid syndrome with some parasitic and bacterial infection in 96.6 % of patients, the statistically positive

  17. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections.

    Science.gov (United States)

    Jones, Travis M; Johnson, Steven W; DiMondi, V Paul; Wilson, Dustin T

    2016-01-01

    JNJ-Q2 is a novel, fifth-generation fluoroquinolone that has excellent in vitro and in vivo activity against a variety of Gram-positive and Gram-negative organisms. In vitro studies indicate that JNJ-Q2 has potent activity against pathogens responsible for acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP), such as Staphylococcus aureus and Streptococcus pneumoniae. JNJ-Q2 also has been shown to have a higher barrier to resistance compared to other agents in the class and it remains highly active against drug-resistant organisms, including methicillin-resistant S. aureus, ciprofloxacin-resistant methicillin-resistant S. aureus, and drug-resistant S. pneumoniae. In two Phase II studies, the efficacy of JNJ-Q2 was comparable to linezolid for ABSSSI and moxifloxacin for CABP. Furthermore, JNJ-Q2 was well tolerated, with adverse event rates similar to or less than other fluoroquinolones. With an expanded spectrum of activity and low potential for resistance, JNJ-Q2 shows promise as an effective treatment option for ABSSSI and CABP. Considering its early stage of development, the definitive role of JNJ-Q2 against these infections and its safety profile will be determined in future Phase III studies. PMID:27354817

  18. Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2

    OpenAIRE

    Roy, Badal C.; Subramaniam, Dharmalingam; Ahmed, Ishfaq; Jala, Venkatakrishna R.; Hester, Christina; Greiner, K. Allen; Haribabu, Bodduluri; Anant, Shrikant; Umar, Shahid

    2014-01-01

    The Enhancer of Zeste Homolog-2 (EZH2) represses gene transcription through histone H3 lysine-27-trimethylation (H3K27me3). Citrobacter rodentium (CR) promotes crypt hyperplasia and tumorigenesis by aberrantly regulating Wnt/β-catenin signaling. We aimed at investigating EZH2’s role in epigenetically regulating Wnt/β-catenin signaling following bacterial infection. NIH:Swiss outbred and Apc Min/+ mice were infected with CR (108cfu); BLT1−/−ApcMin/+ mice, AOM/DSS-treated mice and de-identified...

  19. Liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy

    DEFF Research Database (Denmark)

    Xu, Ming-Jiang; Feng, Dechun; Wu, Hailong;

    2015-01-01

    knockout (Lcn2(Hep-/-)) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2(Hep-/-) mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼ 62 ng/mL) but were...... responsible for more than 90% of the highly elevated serum LCN2 protein level (∼ 6,000 ng/mL) postinfection and more than 60% post-PHx (∼ 700 ng/mL). Interestingly, both Lcn2(Hep-/-) and global Lcn2 knockout (Lcn2(-/-)) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae...

  20. A rapidly progressing, deadly disease of Actias selene (Indianmoonmoth) larvae associated with a mixed bacterial and baculoviral infection

    Indian Academy of Sciences (India)

    Marta A Skowron; Beata Guzow-Krzemińska; Sylwia Barańska; Paulina Jędrak; Grzegorz Węgrzyn

    2015-09-01

    The outbreak of an infectious disease in captive-bred Lepidoptera can cause death of all the caterpillars within days. A mixed baculoviral–bacterial infection observed among Actias selene (Hübner 1807), the Indian moon moth (Insecta: Lepidoptera: Saturniidae), larvae was characterized and followed by a photographic documentation of the disease progression. The etiological agents were determined using mass spectrometry and polymerase chain reaction (PCR). It appeared that the disease was caused by a mixed infection of larvae with a baculovirus and Morganella morganii. A molecular phylogenetic analysis of the virus and microbiological description of the pathogenic bacterium are presented.

  1. Modulation of Inducible Nitric Oxide Synthase Expression by the Attaching and Effacing Bacterial Pathogen Citrobacter rodentium in Infected Mice

    Science.gov (United States)

    Vallance, Bruce A.; Deng, Wanyin; De Grado, Myriam; Chan, Crystal; Jacobson, Kevan; Finlay, B. Brett

    2002-01-01

    Citrobacter rodentium belongs to the attaching and effacing family of enteric bacterial pathogens that includes both enteropathogenic and enterohemorrhagic Escherichia coli. These bacteria infect their hosts by colonizing the intestinal mucosal surface and intimately attaching to underlying epithelial cells. The abilities of these pathogens to exploit the cytoskeleton and signaling pathways of host cells are well documented, but their interactions with the host's antimicrobial defenses, such as inducible nitric oxide synthase (iNOS), are poorly understood. To address this issue, we infected mice with C. rodentium and found that iNOS mRNA expression in the colon significantly increased during infection. Immunostaining identified epithelial cells as the major source for immunoreactive iNOS. Finding that nitric oxide (NO) donors were bacteriostatic for C. rodentium in vitro, we examined whether iNOS expression contributed to host defense by infecting iNOS-deficient mice. Loss of iNOS expression caused a small but significant delay in bacterial clearance without affecting tissue pathology. Finally, immunofluorescence staining was used to determine if iNOS expression was localized to infected cells by staining for the C. rodentium virulence factor, translocated intimin receptor (Tir), as well as iNOS. Interestingly, while more than 85% of uninfected epithelial cells expressed iNOS, fewer than 15% of infected (Tir-positive) cells expressed detectable iNOS. These results demonstrate that both iNOS and intestinal epithelial cells play an active role in host defense during C. rodentium infection. However, the selective expression of iNOS by uninfected but not infected cells suggests that this pathogen has developed mechanisms to locally limit its exposure to host-derived NO. PMID:12379723

  2. Association between early airway damage-associated molecular patterns and subsequent bacterial infection in patients with inhalational and burn injury.

    Science.gov (United States)

    Maile, Robert; Jones, Samuel; Pan, Yinghao; Zhou, Haibo; Jaspers, Ilona; Peden, David B; Cairns, Bruce A; Noah, Terry L

    2015-05-01

    Bacterial infection is a major cause of morbidity affecting outcome following burn and inhalation injury. While experimental burn and inhalation injury animal models have suggested that mediators of cell damage and inflammation increase the risk of infection, few studies have been done on humans. This is a prospective, observational study of patients admitted to the North Carolina Jaycee Burn Center at the University of North Carolina who were intubated and on mechanical ventilation for treatment of burn and inhalational injury. Subjects were enrolled over a 2-yr period and followed till discharge or death. Serial bronchial washings from clinically indicated bronchoscopies were collected and analyzed for markers of tissue injury and inflammation. These include damage-associated molecular patterns (DAMPs) such as hyaluronic acid (HA), double-stranded DNA (dsDNA), heat-shock protein 70 (HSP-70), and high-mobility group protein B-1 (HMGB-1). The study population was comprised of 72 patients who had bacterial cultures obtained for clinical indications. Elevated HA, dsDNA, and IL-10 levels in bronchial washings obtained early (the first 72 h after injury) were significantly associated with positive bacterial respiratory cultures obtained during the first 14 days postinjury. Independent of initial inhalation injury severity and extent of surface burn, elevated levels of HA dsDNA and IL-10 in the central airways obtained early after injury are associated with subsequent positive bacterial respiratory cultures in patients intubated after acute burn/inhalation injury.

  3. The Relationship Between Invasive Nontyphoidal Salmonella Disease, Other Bacterial Bloodstream Infections, and Malaria in Sub-Saharan Africa.

    OpenAIRE

    Park, Se Eun; Pak, Gi Deok; Aaby, Peter; Adu-Sarkodie, Yaw; Ali, Mohammad; Aseffa, Abraham; Biggs, Holly M.; Bjerregaard-andersen, Morten; Breiman, Robert F.; Crump, John A.; Cruz Espinoza, Ligia Maria; Eltayeb, Muna Ahmed; Gasmelseed, Nagla; Julian T Hertz; Im, Justin

    2016-01-01

    Country-specific studies in Africa have indicated that Plasmodium falciparum is associated with invasive nontyphoidal Salmonella (iNTS) disease. We conducted a multicenter study in 13 sites in Burkina Faso, Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar, Senegal, South Africa, Sudan, and Tanzania to investigate the relationship between the occurrence of iNTS disease, other systemic bacterial infections, and malaria. Febrile patients received a blood culture and a malaria test. Isolated bac...

  4. Antibiotics for gram-positive bacterial infections: vancomycin, teicoplanin, quinupristin/dalfopristin, oxazolidinones, daptomycin, dalbavancin, and telavancin.

    Science.gov (United States)

    Nailor, Michael D; Sobel, Jack D

    2009-12-01

    An overview of the mechanism of action, dosing, clinical indications, and toxicities of the glycopeptide vancomycin is provided. The emerging gram-positive bacterial resistance to antimicrobials and its mechanisms are reviewed. Strategies to control this emergence of resistance are expected to be proposed. Newer antimicrobial agents that have activity against vancomycin-resistant organisms are now available and play a critical role in the treatment of life-threatening infections. PMID:19909893

  5. Antibiotics for gram-positive bacterial infection: vancomycin, teicoplanin, quinupristin/dalfopristin, oxazolidinones, daptomycin, telavancin, and ceftaroline.

    Science.gov (United States)

    Nailor, Michael D; Sobel, Jack D

    2011-07-01

    An overview of the mechanism of action, dosing, clinical indications, and toxicities of the glycopeptide vancomycin is provided. The emerging gram-positive bacterial resistance to antimicrobials and its mechanisms are reviewed. Strategies to control this emergence of resistance are expected to be proposed. Newer antimicrobial agents that have activity against vancomycin-resistant organisms are now available and play a critical role in the treatment of life-threatening infections. PMID:21679789

  6. Bacterial endophthalmitis in the age of outpatient intravitreal therapies and cataract surgeries: Host-microbe interactions in intraocular infection

    OpenAIRE

    Sadaka, Ama; Durand, Marlene L.; Gilmore, Michael S.

    2012-01-01

    Bacterial endophthalmitis is a sight threatening infection of the interior structures of the eye. Incidence in the US has increased in recent years, which appears to be related to procedures being performed on an aging population. The advent of outpatient intravitreal therapy for management of age-related macular degeneration raises yet additional risks. Compounding the problem is the continuing progression of antibiotic resistance. Visual prognosis for endophthalmitis depends on the virulenc...

  7. Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection.

    Science.gov (United States)

    Muturi, Ephantus J; Bara, Jeffrey J; Rooney, Alejandro P; Hansen, Allison K

    2016-08-01

    Understanding how midgut microbial communities of field-collected mosquitoes interact with pathogens is critical for controlling vector infection and disease. We used 16S rRNA and internal transcribed spacer sequencing to characterize the midgut bacterial and fungal communities of adult females of Aedes triseriatus and Aedes japonicus collected as pupae in tree holes, plastic bins and waste tires and their response to La Crosse virus (LACV) infection. For both mosquito species and across all habitat and virus treatments, a total of 62 bacterial operational taxonomic units (OTUs) from six phyla and 21 fungal OTUs from two phyla were identified. The majority of bacterial (92%) and fungal (71%) OTUs were shared between the mosquito species; however, several OTUs were unique to each species. Bacterial and fungal communities of individuals that took either infectious or noninfectious bloodmeals were less diverse and more homogeneous compared to those of newly emerged adults. Interestingly, LACV-infected A. triseriatus and A. japonicus had higher bacterial richness and lower fungal richness compared to individuals that took a noninfectious bloodmeal, suggesting that viral infection was associated with an increase in bacterial OTUs and a decrease in fungal OTUs. For both mosquito species, several OTUs were identified that had both high fidelity and specificity to mosquito midguts that were infected with LACV. Overall, these findings demonstrate that bacterial and fungal communities that reside in mosquito midguts respond to host diet and viral infection and could play a role in modulating vector susceptibility to LACV. PMID:27357374

  8. Clinical Evaluation of ERCP and Naobiliary Drainage for Biliary Fungal Infection--A Report of Five Cases of Severe Combined Bacterial and Fungal Infection of Biliary Tract

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiu; LIAO Jiazhi; QIN Hua; WANG Jialong

    2005-01-01

    This study studied the use of ERCP and nasobiliary tube in the diagnosis of fungal infection of biliary tract and the efficacy of combined use of local administration via nasobiliary tube and intravenous antifungal treatment for severe biliary tract fungal infection. 5 patients in our series,with age ranging from 47 to 68 y (mean 55.8), were diagnosed as having mixed bacterial and fungal infection of biliary tract as confirmed by smear or/and culture of bile obtained by ERCP and nasobiliary drainage. Besides routine anti-bacteria therapy, all patients received local application of fluconazole through nasobiliary tube and intravenous administration of fluconazole or itraconazole in terms of the results of in vitro sensitivity test. The mean duration of intravenous fluconazole or itraconazole was 30 days (24-40 days), and that of local application of fluconazole through nasobiliary drainage tube was 19 days (8-24 days). During a follow-up period of 3-42 months, all patient's fungal infection of biliary tract was cured. It is concluded that on the basis of typical clinical features of biliary tract infection, fungal detection of smear/culture of bile obtained by ERCP was the key for the diagnosis of fungal infection of biliary tract. Local application antifungal drug combined with intravenous anti-fungal drugs might be an effective and safe treatment for fungal infection of biliary tract.

  9. Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections

    OpenAIRE

    Liu, Zhuoming; Petersen, Robert; Devireddy, L.

    2013-01-01

    Lipocalin 24p3 (24p3) is a neutrophil secondary granule protein. 24p3 is also a siderocalin, which binds several bacterial siderophores. It was therefore proposed that synthesis and secretion of 24p3 by stimulated macrophages or release of 24p3 upon neutrophil degranulation sequesters iron-laden siderophores to attenuate bacterial growth. Accordingly, 24p3-deficient mice are susceptible to bacterial pathogens whose siderophores would normally be chelated by 24p3. Specific granule deficiency (...

  10. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP.

    Directory of Open Access Journals (Sweden)

    Scot E Dowd

    Full Text Available BACKGROUND: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections. METHODS AND FINDINGS: Using a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP approach we have evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers, comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp. CONCLUSIONS: In this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP. Here we introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this hypothesis, individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections

  11. Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study

    Directory of Open Access Journals (Sweden)

    Andreas eDix

    2015-03-01

    Full Text Available Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97% for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83% for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.

  12. Lab-score is a valuable predictor of serious bacterial infection in infants admitted to hospital.

    Science.gov (United States)

    Markic, Josko; Kovacevic, Tanja; Krzelj, Vjekoslav; Bosnjak, Nada; Sapunar, Ada

    2015-12-01

    Parents frequently bring their children to the Emergency Department (ED) because of the fever without apparent source (FWAS). To avoid possible complications, it is important to recognize serious bacterial infection (SBI) as early as possible. Various tests, including different clinical scores and scales, are used in the laboratory evaluation of patients. However, it is still impossible to predict the presence of SBI with complete certainty. Galetto-Lacour et al. developed and validated a risk index score, named Lab-score. Lab-score is based on the three predictive variables independently associated with SBI: procalcitonin (PCT), C-reactive protein (CRP), and urinary dipstick. The objective of this study was to assess the performance of the Lab-score in predicting SBI in well-appearing infants ≤ 180 days of age with FWAS, who presented to ED and were hospitalized with suspicion of having SBI. Based on this study findings, white blood cells count (WBC), CRP, PCT, and lab-score ≥ 3 were confirmed as useful biomarkers for differentiation between SBI and non-SBI. Also, receiver operating characteristic curve (ROC) analysis confirmed that all of them were useful for differentiation between SBI and non-SBI patients with the highest area under curve (AUC) calculated for the Lab-score. The results of this research confirmed its value, with calculated sensitivity of 67.7% and specificity of 98.6% in prediction of SBI in infants aged ≤ 180 days. Its value was even better in infants aged ≤ 90 days with sensitivity of 75% and specificity of 97.7%. In conclusion, we demonstrated the high value of lab-score in detecting SBI in infants under 6 months of age with FWAS.

  13. Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens.

    Science.gov (United States)

    Kortman, Guus A M; Mulder, Michelle L M; Richters, Thijs J W; Shanmugam, Nanda K N; Trebicka, Estela; Boekhorst, Jos; Timmerman, Harro M; Roelofs, Rian; Wiegerinck, Erwin T; Laarakkers, Coby M; Swinkels, Dorine W; Bolhuis, Albert; Cherayil, Bobby J; Tjalsma, Harold

    2015-09-01

    Orally administrated iron is suspected to increase susceptibility to enteric infections among children in infection endemic regions. Here we investigated the effect of dietary iron on the pathology and local immune responses in intestinal infection models. Mice were held on iron-deficient, normal iron, or high iron diets and after 2 weeks they were orally challenged with the pathogen Citrobacter rodentium. Microbiome analysis by pyrosequencing revealed profound iron- and infection-induced shifts in microbiota composition. Fecal levels of the innate defensive molecules and markers of inflammation lipocalin-2 and calprotectin were not influenced by dietary iron intervention alone, but were markedly lower in mice on the iron-deficient diet after infection. Next, mice on the iron-deficient diet tended to gain more weight and to have a lower grade of colon pathology. Furthermore, survival of the nematode Caenorhabditis elegans infected with Salmonella enterica serovar Typhimurium was prolonged after iron deprivation. Together, these data show that iron limitation restricts disease pathology upon bacterial infection. However, our data also showed decreased intestinal inflammatory responses of mice fed on high iron diets. Thus additionally, our study indicates that the effects of iron on processes at the intestinal host-pathogen interface may highly depend on host iron status, immune status, and gut microbiota composition.

  14. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites.

    Science.gov (United States)

    Renzi, Marsilio; Copini, Paul; Taddei, Anna R; Rossetti, Antonio; Gallipoli, Lorenzo; Mazzaglia, Angelo; Balestra, Giorgio M

    2012-09-01

    The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae is a severe threat to kiwifruit production worldwide. Many aspects of P. syringae pv. actinidiae biology and epidemiology still require in-depth investigation. The infection by and spread of P. syringae pv. actinidiae in xylem and phloem was investigated by carrying out artificial inoculation experiments with histological and dendrochronological analyses of naturally diseased plants in Italy. We found that the bacterium can infect host plants by entering natural openings and lesions. In naturally infected kiwifruit plants, P. syringae pv. actinidiae is present in the lenticels as well as in the dead phloem tissue beneath the lenticels, surrounded by a lesion in the periderm which appears to indicate the importance of lenticels to kiwifruit infection. Biofilm formation was observed outside and inside plants. In cases of advanced stages of P. syringae pv. actinidiae infection, neuroses of the phloem occur, which are followed by cambial dieback and most likely by infection of the xylem. Anatomical changes in wood such as reduced ring width, a drastic reduction in vessel size, and the presence of tyloses were observed within several infected sites. In the field, these changes occur only a year after the first leaf symptoms are observed suggesting a significant time lapse between primary and secondary symptoms. It was possible to study the temporal development of P. syringae pv. actinidiae-induced cambial dieback by applying dendrochronology methods which revealed that cambial dieback occurs only during the growing season.

  15. Procalcitonin and C-reactive protein cannot differentiate bacterial or viral infection in COPD exacerbation requiring emergency department visits

    Directory of Open Access Journals (Sweden)

    Chang CH

    2015-04-01

    Full Text Available Chih-Hao Chang,1 Kuo-Chien Tsao,2,3 Han-Chung Hu,1,4 Chung-Chi Huang,1,4 Kuo-Chin Kao,1,4 Ning-Hung Chen,1,4 Cheng-Ta Yang,1,4 Ying-Huang Tsai,4,5 Meng-Jer Hsieh4,51Department of Pulmonary and Critical Care Medicine, Linkou Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chang-Gung University College of Medicine, Taoyuan, Taiwan; 2Department of Laboratory Medicine, Linkou Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation; 3Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; 4Department of Respiratory Therapy, Chang-Gung University, Taoyuan, Taiwan; 5Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Puzi City, TaiwanBackground: Viral and bacterial infections are the most common causes of chronic obstructive pulmonary disease (COPD exacerbations. Whether serum inflammatory markers can differentiate bacterial from virus infection in patients with COPD exacerbation requiring emergency department (ED visits remains controversial.Methods: Viral culture and polymerase chain reaction (PCR were used to identify the viruses in the oropharynx of patients with COPD exacerbations. The bacteria were identified by the semiquantitative culture of the expectorated sputum. The peripheral blood white blood cell (WBC counts, serum C-reactive protein (CRP, procalcitonin (PCT, and clinical symptoms were compared among patients with different types of infections.Results: Viruses were isolated from 16 (22.2% of the 72 patients enrolled. The most commonly identified viruses were parainfluenza type 3, influenza A, and rhinovirus. A total of 30 (41.7% patients had positive bacterial cultures, with the most commonly found bacteria being Haemophilus influenzae and Haemophilus parainfluenzae. Five patients (6.9% had both positive sputum cultures and virus identification. The WBC, CRP, and PCT levels of the bacteria-positive and bacteria

  16. The survey of bacterial etiology and their resistance to antibiotics of urinary tract infections in children of Birjand city

    Directory of Open Access Journals (Sweden)

    Azita Fesharakinia

    2012-08-01

    Full Text Available Background and Aim: Urinary tract infection is one of the most prevalent bacterial infections in childhood, which due to an inapproto determine the common bacteria and their antibiotic susceptibility in children with urinary tract infection.   Materials and Methods: This descriptive-analytical and prospective study was done in 2009-2010 on urine samples of all children under 13 years who had been referred to Emmam-Reza hospital laboratory in Birjand and had positive urine culture. Sex and age of children, the kind of isolated bacteria in urine culture, susceptibility and resistance of these bacteria to current antibiotics were studied.The obtained data was analyzed by means of SPSS using Fisher exact- test.   Results: 100 children (84 girls and 16 boys with positive urine culture were studied. The most common age of urinary tract infection was under two years. In all ages the rate of urinary tract infection in females was more than males. E.coli was the most common cause in both sexes. There was a significant relationship between kind of microorganism and age of infection. The most prevalent cause of urinary tract infection in all ages was E.coli (75% ,infection by Proteus was 11%, and other microorganism caused 14% of the cases. E.coli had the most susceptibility to ceftriaxone and ceftazidime and the most resistance to cephalexin and co-trimoxazol. Not taking the type of microorganism into consideration, the most sensitive antibiotics were ceftazidime, ceftriaxone, cefexim and nalidixic acid and the most resistance was against co-trimoxasol and cefalexin.   Conclusion: Regarding the results, it is recommended to use cefexime and nalidixic acid for outpatient treatment of urinary infection , and ceftazidime and ceftriaxon for inpatient treatment.Selecting of antibiotics for urinary infection therapy should be based on the local prevalence of pathogenic bacteria and antibiotic sensitivities rather than on a universal guideline.

  17. Serum level of C-reactive protein is not a parameter to determine the difference between viral and atypical bacterial infections.

    Science.gov (United States)

    Durán, Anyelo; González, Andrea; Delgado, Lineth; Mosquera, Jesús; Valero, Nereida

    2016-02-01

    C-reactive protein (CRP) is an acute-phase reactant that increases in the circulation in response to a variety of inflammatory stimuli. Elevated levels in serum during several infectious diseases have been reported. In this study, a highly sensitive CRP enzyme immunoassay was used to evaluate serum CRP values in patients with viral and atypical bacterial infections. Patients (n = 139) with different viral or atypical bacterial infections (systemic or respiratory) and healthy controls (n = 40) were tested for circulating CRP values. High levels of IgM antibodies against several viruses: Dengue virus (n = 36), Cytomegalovirus (n = 9), Epstein Barr virus (n = 17), Parvovirus B19 (n = 26), Herpes simplex 1 and 2 virus (n = 3) and Influenza A and B (n = 8) and against atypical bacteria: Legionella pneumophila (n = 15), Mycoplasma pneumoniae (n = 21) and Coxiella burnetii (n = 4) were found. High values of CRP in infected patients compared with controls (P < 0.001) were found; however, no significant differences between viral and atypical bacterial infections were found. Low levels of CRP in respiratory and Coxiella burnetii infections compared with exanthematic viral and other atypical bacterial infections were found. This study suggests that CRP values are useful to define viral and atypical bacterial infections compared with normal values, but, it is not useful to define type of infection. PMID:26241406

  18. EFFECTIVENESS OF CLOSTRIDIUM ISOLATES ON AEROPONICALLY CULTIVATED POTATO TO PROTECT AGAINST RALSTONIA SOLANACEARUM (BACTERIAL WILT) AND PCR DETECTION ON LATEN INFECTION ON TUBERS.

    OpenAIRE

    Baharuddin.

    2012-01-01

    Aeroponic technology was used to optimize production of potato mini tubers. Several adventage was the production 5-10 times higher and tuber size was bigger than covensional methods, but unfortunatelly some times yield loss was present caused by bacterial wilt Ralstonia solanacearum. Although not all of plants were died and some of plants still produce tubers, but laten infection of bacterial wilt was occured. Early observation on microbes diversity on healthy and on infected plants ...

  19. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    International Nuclear Information System (INIS)

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 x 104 Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses

  20. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  1. Synthetic Cationic Peptide IDR-1002 Provides Protection against Bacterial Infections through Chemokine Induction and Enhanced Leukocyte Recruitment

    DEFF Research Database (Denmark)

    Nijnik, Anastasia; Madera, Laurence; Ma, Shuhua;

    2010-01-01

    With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial...... activity and diverse immunomodulatory properties. We have previously developed an innate defense regulator (IDR) 1, with protective activity against bacterial infection mediated entirely through its effects on the immunity of the host, as a novel approach to anti-infective therapy. In this study......, an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus...

  2. Enhancement of Urinary Bladder Carcinogenesis by the Role of Chronic Bacterial Infection-induced Inflammation (Imunnohistochemical and Biochemical studies

    Directory of Open Access Journals (Sweden)

    Gabri MS*, Ashmawy AM**, Ibrahim MA*, Hosny RM

    2012-07-01

    Full Text Available Background: Bacterial infections traditionally have not been considered major causes of cancer. Recently, however, bacteria have been linked to cancer by two mechanisms: induction of chronic inflammation and production of carcinogenic bacterial metabolites. The most specific example of the inflammatory mechanism of carcinogenesis is Escherichia coli infection. E. coli has been epidemiologically linked to urothelial carcinoma of the urinary bladder by its propensity to cause lifelong inflammation. This inflammation is in turn thought to cause cancer by inducing cell proliferation and production of mutagenic free radicals and N-nitroso compounds.Material and methods: After each 3, 6 and 9 months of daily oral administration of dibutyl amine (DBA plus sodium nitrate (nitrosamine precursors in drinking water, curcuma in grinding diet and bladder injection with E. coli, rats were sacrificed. The excited bladder were dissected, processed and stained with H&E and anti-Ki67 immunohistochemical stains. This was followed by Elisa for caspse-3 and statistical analysis.Results: The current results indicated that E. coli infection in the bladder tissues increases the carcinogenic ability of nitrosamine precursors through caused marked alteration in the form hyperplastic, dysplastic and metaplastic urothelium. Also, there was a statistically significant increase in ki67 immunoreactivity in urothelium. However, a statistically significant decrease in the concentration of caspase-3 in bladder tissue consequently caused the process of carcinogenesis. All these changes were less marked after curcuma treatment when compared with the group that not treated with curcuma. Conclusion: Bacterial infection of the urinary bladder may play a major additive and possible role in bladder carcinogenesis. Rhizome of curcuma may have a protective action during induction of urinary bladder tumors.

  3. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication.

    Directory of Open Access Journals (Sweden)

    Maura De Simone

    Full Text Available Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s may have a role in the reduction of cell-mediated immunity playing a critical role in

  4. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication.

    Science.gov (United States)

    De Simone, Maura; Spagnuolo, Lorenza; Lorè, Nicola Ivan; Rossi, Giacomo; Cigana, Cristina; De Fino, Ida; Iraqi, Fuad A; Bragonzi, Alessandra

    2014-01-01

    Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P

  5. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Science.gov (United States)

    Mittal, Rohit; Wagener, Maylene; Breed, Elise R; Liang, Zhe; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Coopersmith, Craig M; Ford, Mandy L

    2014-01-01

    While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation. PMID:24796533

  6. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Directory of Open Access Journals (Sweden)

    Rohit Mittal

    Full Text Available While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.

  7. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection

    DEFF Research Database (Denmark)

    Song, Z; Kong, K F; Wu, H;

    2010-01-01

    immune systems and cystic fibrosis. The QS systems of P. aeruginosa use N-acylated homoserine lactone (AHL) as signal molecules. Previously we have demonstrated that Panax ginseng treatment allowed the animals with P. aeruginosa pneumonia to effectively clear the bacterial infection. We postulated......A and LasB and down-regulated the synthesis of the AHL molecules. Ginseng has a negative effect on the QS system of P. aeruginosa, may explain the ginseng-dependent bacterial clearance from the animal lungs in vivo in our previous animal study. It is possible that enhancing and repressing activities...... of ginseng are mutually exclusive as it is a complex mixture, as shown with the HPLC analysis of the hot water extract. Though ginseng is a promising natural synergetic remedy, it is important to isolate and evaluate the ginseng compounds associated with the anti-QS activity....

  8. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections

    Directory of Open Access Journals (Sweden)

    Jones TM

    2016-06-01

    Full Text Available Travis M Jones,1,2 Steven W Johnson,1,3 V Paul DiMondi,1,4 Dustin T Wilson,1,2 1Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, 2Department of Pharmacy, Duke University Hospital, Durham, 3Department of Pharmacy, Forsyth Medical Center, Novant Health, Winston-Salem, 4Department of Pharmacy, Durham VA Medical Center, Durham, NC, USA Abstract: JNJ-Q2 is a novel, fifth-generation fluoroquinolone that has excellent in vitro and in vivo activity against a variety of Gram-positive and Gram-negative organisms. In vitro studies indicate that JNJ-Q2 has potent activity against pathogens responsible for acute bacterial skin and skin structure infections (ABSSSI and community-acquired bacterial pneumonia (CABP, such as Staphylococcus aureus and Streptococcus pneumoniae. JNJ-Q2 also has been shown to have a higher barrier to resistance compared to other agents in the class and it remains highly active against drug-resistant organisms, including methicillin-resistant S. aureus, ciprofloxacin-resistant methicillin-resistant S. aureus, and drug-resistant S. pneumoniae. In two Phase II studies, the efficacy of JNJ-Q2 was comparable to linezolid for ABSSSI and moxifloxacin for CABP. Furthermore, JNJ-Q2 was well tolerated, with adverse event rates similar to or less than other fluoroquinolones. With an expanded spectrum of activity and low potential for resistance, JNJ-Q2 shows promise as an effective treatment option for ABSSSI and CABP. Considering its early stage of development, the definitive role of JNJ-Q2 against these infections and its safety profile will be determined in future Phase III studies. Keywords: JNJ-Q2, fluoroquinolone, ABSSSI, CABP, MRSA

  9. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City

    Science.gov (United States)

    Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high. PMID:27667998

  10. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City.

    Science.gov (United States)

    Nzalie, Rolf Nyah-Tuku; Gonsu, Hortense Kamga; Koulla-Shiro, Sinata

    2016-01-01

    Introduction. Community-acquired urinary tract infections (CAUTIs) are usually treated empirically. Geographical variations in etiologic agents and their antibiotic sensitivity patterns are common. Knowledge of antibiotic resistance trends is important for improving evidence-based recommendations for empirical treatment of UTIs. Our aim was to determine the major bacterial etiologies of CAUTIs and their antibiotic resistance patterns in a cosmopolitan area of Cameroon for comparison with prescription practices of local physicians. Methods. We performed a cross-sectional descriptive study at two main hospitals in Yaoundé, collecting a clean-catch mid-stream urine sample from 92 patients having a clinical diagnosis of UTI. The empirical antibiotherapy was noted, and identification of bacterial species was done on CLED agar; antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results. A total of 55 patients had samples positive for a UTI. Ciprofloxacin and amoxicillin/clavulanic acid were the most empirically prescribed antibiotics (30.9% and 23.6%, resp.); bacterial isolates showed high prevalence of resistance to both compounds. Escherichia coli (50.9%) was the most common pathogen, followed by Klebsiella pneumoniae (16.4%). Prevalence of resistance for ciprofloxacin was higher compared to newer quinolones. Conclusions. E. coli and K. pneumoniae were the predominant bacterial etiologies; the prevalence of resistance to commonly prescribed antibiotics was high. PMID:27667998

  11. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice

    Science.gov (United States)

    Ozanic, Mateja; Gobin, Ivana; Brezovec, Martin; Marecic, Valentina; Trobonjaca, Zlatko; Abu Kwaik, Yousef; Santic, Marina

    2016-01-01

    Francisella tularensis is a facultative intracellular bacterium that causes tularemia in humans and animals. Epidemiology of tularemia worldwide is often associated with water-borne transmission, which includes mosquitoes and amoebae as the potential host reservoirs of the bacteria in water environment. In vitro studies showed intracellular replication of F. tularensis within Acanthamoeba castellanii and Hartmanella vermiformis cells. While infection of amoeba by Legionella pneumophila has been shown to enhance infectivity of L. pneumophila the role of F. tularensis-infected protozoa in the pathogenesis of tularemia is not known. We used 6 h coculture of A. castellanii and F. novicida for investigation of the effect of inhaled amoeba on the pathogenesis of tularemia on in vivo model. Balb/c mice were infected intratracheally with F. novicida or with F. novicida-infected A. castellanii. Surprisingly, infection with F. novicida-infected A. castellanii did not lead to bronchopneumonia in Balb/c mice, and Francisella did not disseminate into the liver and spleen. Upon inhalation, F. novicida infects a variety of host cells, though neutrophils are the predominant cells early during infection in the lung infiltrates of pulmonary tularemia. The numbers of neutrophils in the lungs of Balb/c mice were significantly lower in the infection of mice with F. novicida-infected A. castellanii in comparison to group of mice infected only with F. novicida. These results demonstrate that following inoculation of mice with F. novicida-infected A. castellanii, mice did not develop tularemia. PMID:27242974

  12. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice.

    Science.gov (United States)

    Ozanic, Mateja; Gobin, Ivana; Brezovec, Martin; Marecic, Valentina; Trobonjaca, Zlatko; Abu Kwaik, Yousef; Santic, Marina

    2016-01-01

    Francisella tularensis is a facultative intracellular bacterium that causes tularemia in humans and animals. Epidemiology of tularemia worldwide is often associated with water-borne transmission, which includes mosquitoes and amoebae as the potential host reservoirs of the bacteria in water environment. In vitro studies showed intracellular replication of F. tularensis within Acanthamoeba castellanii and Hartmanella vermiformis cells. While infection of amoeba by Legionella pneumophila has been shown to enhance infectivity of L. pneumophila the role of F. tularensis-infected protozoa in the pathogenesis of tularemia is not known. We used 6 h coculture of A. castellanii and F. novicida for investigation of the effect of inhaled amoeba on the pathogenesis of tularemia on in vivo model. Balb/c mice were infected intratracheally with F. novicida or with F. novicida-infected A. castellanii. Surprisingly, infection with F. novicida-infected A. castellanii did not lead to bronchopneumonia in Balb/c mice, and Francisella did not disseminate into the liver and spleen. Upon inhalation, F. novicida infects a variety of host cells, though neutrophils are the predominant cells early during infection in the lung infiltrates of pulmonary tularemia. The numbers of neutrophils in the lungs of Balb/c mice were significantly lower in the infection of mice with F. novicida-infected A. castellanii in comparison to group of mice infected only with F. novicida. These results demonstrate that following inoculation of mice with F. novicida-infected A. castellanii, mice did not develop tularemia.

  13. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  14. Imaging of bacterial infections of the sacroiliac joint; Darstellung bakterieller Infektionen im Sakroiliakalgelenk

    Energy Technology Data Exchange (ETDEWEB)

    Groves, C.; Cassar-Pullicino, V. [Radiology Department, Robert Jones and Agnes Hunt Orthopaedic Hospital Oswestry (United Kingdom)

    2004-03-01

    Infection of the sacroiliac joint can be pyogenic or granulomatous and is usually unilateral. There are a number of predisposing conditions including drug abuse and intra articular steroid injection, but in 44% of cases, no definite predisposing factors can be identified. Considerable delay between presentation and diagnosis is recognized. The clinical picture may be non-specific and variable, and clinical suspicion may be low due to the relatively low incidence of the condition. This is compounded by difficulties in clinical examination of the SIJs. The diagnosis is based on a history suggestive of infection, clinical or radiographic localization to the SIJs, and a positive blood culture or joint aspirate. The pathology of pyogenic sacroiliitis is reviewed with respect to the anatomy of the SIJ, and the differential diagnoses considered. The imaging findings, and relative merits of all the modalities are discussed with particular consideration given to changes over the course of the disease. Imaging strategies are evaluated and proposed. As the commonest presenting symptom is low back pain, consideration should be given to the addition of a STIR sequence covering the SIJs on all routine lumbar spine MR examinations. MR imaging is the most sensitive and specific imaging modality, while CT-guided arthrocentesis improves diagnostic confidence. Tc{sup 99}MDP blood pool imaging mirrors the clinical features of resolution, and scintigraphy may be the best method to monitor response to treatment. Targeted antibiotic therapy usually leads to a full recovery. A high incidence of clinical suspicion, with MR imaging at an early stage are the essential prerequisites to an accurate diagnosis of bacterial sacroiliitis. (orig.) [German] Infektionen des Sakroiliakalgelenks koennen entweder pyogener oder granulomatoeser Natur sein und treten gewoehnlich einseitig auf. Praedisponierende Faktoren sind Drogenmissbrauch und Steroidinjektionen, aber in 44% der Faelle sind keine

  15. Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection.

    Science.gov (United States)

    Simpson, A J; Wallace, W A; Marsden, M E; Govan, J R; Porteous, D J; Haslett, C; Sallenave, J M

    2001-08-01

    During acute pulmonary infection, tissue injury may be secondary to the effects of bacterial products or to the effects of the host inflammatory response. An attractive strategy for tissue protection in this setting would combine antimicrobial activity with inhibition of human neutrophil elastase (HNE), a key effector of neutrophil-mediated tissue injury. We postulated that genetic augmentation of elafin (an endogenous inhibitor of HNE with intrinsic antimicrobial activity) could protect the lung against acute inflammatory injury without detriment to host defense. A replication-deficient adenovirus encoding elafin cDNA significantly protected A549 cells against the injurious effects of both HNE and whole activated human neutrophils in vitro. Intratracheal replication-deficient adenovirus encoding elafin cDNA significantly protected murine lungs against injury mediated by Pseudomonas aeruginosa in vivo. Genetic augmentation of elafin therefore has the capacity to protect the lung against the injurious effects of both bacterial pathogens resistant to conventional antibiotics and activated neutrophils. PMID:11466403

  16. Pattern of Bacterial Pathogens and Their Susceptibility Isolated from Surgical Site Infections at Selected Referral Hospitals, Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    Walelign Dessie

    2016-01-01

    Full Text Available Background. The emergence of multidrug resistant bacterial pathogens in hospitals is becoming a challenge for surgeons to treat hospital acquired infections. Objective. To determine bacterial pathogens and drug susceptibility isolated from surgical site infections at St. Paul Specialized Hospital Millennium Medical College and Yekatit 12 Referral Hospital Medical College, Addis Ababa, Ethiopia. Methods. A cross-sectional study was conducted between October 2013 and March 2014 on 107 surgical site infected patients. Wound specimens were collected using sterile cotton swab and processed as per standard operative procedures in appropriate culture media; and susceptibility testing was done using Kirby-Bauer disc diffusion technique. The data were analyzed by using SPSS version 20. Result. From a total of 107 swabs collected, 90 (84.1% were culture positive and 104 organisms were isolated. E. coli (24 (23.1% was the most common organism isolated followed by multidrug resistant Acinetobacter species (23 (22.1%. More than 58 (75% of the Gram negative isolates showed multiple antibiotic resistance (resistance ≥ 5 drugs. Pan-antibiotic resistance was noted among 8 (34.8% Acinetobacter species and 3 (12.5% E. coli. This calls for abstinence from antibiotic abuse. Conclusion. Gram negative bacteria were the most important isolates accounting for 76 (73.1%. Ampicillin, amoxicillin, penicillin, cephazoline, and tetracycline showed resistance while gentamicin and ciprofloxacin were relatively effective antimicrobials.

  17. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections.

    Science.gov (United States)

    Gauthier, David T

    2015-01-01

    Human contact with and consumption of fishes presents hazards from a range of bacterial zoonotic infections. Whereas many bacterial pathogens have been presented as fish-borne zoonoses on the basis of epidemiological and phenotypic evidence, genetic identity between fish and human isolates is not frequently examined or does not provide support for transmission between these hosts. In order to accurately assess the zoonotic risk from exposure to fishes in the context of aquaculture, wild fisheries and ornamental aquaria, it is important to critically examine evidence of linkages between bacteria infecting fishes and humans. This article reviews bacteria typically presented as fish-borne zoonoses, and examines the current strength of evidence for this classification. Of bacteria generally described as fish-borne zoonoses, only Mycobacterium spp., Streptococcus iniae, Clostridium botulinum, and Vibrio vulnificus appear to be well-supported as zoonoses in the strict sense. Erysipelothrix rhusiopathiae, while transmissible from fishes to humans, does not cause disease in fishes and is therefore excluded from the list. Some epidemiological and/or molecular linkages have been made between other bacteria infecting both fishes and humans, but more work is needed to elucidate routes of transmission and the identity of these pathogens in their respective hosts at the genomic level. PMID:25466575

  18. Association between Reduction of Plasma Adiponectin Levels and Risk of Bacterial Infection after Gastric Cancer Surgery

    OpenAIRE

    Hiroshi Yamamoto; Kazuhisa Maeda; Yoshitaka Uji; Hiroshi Tsuchihashi; Tsuyoshi Mori; Tomoharu Shimizu; Yoshihiro Endo; Aya Kadota; Katsuyuki Miura; Yusuke Koga; Toshinori Ito; Tohru Tani

    2013-01-01

    BACKGROUND AND PURPOSE: Infections are important causes of postoperative morbidity after gastric surgery; currently, no factors have been identified that can predict postoperative infection. Adiponectin (ADN) mediates energy metabolism and functions as an immunomodulator. Perioperative ADN levels and perioperative immune functioning could be mutually related. Here we evaluated a potential biological marker to reliably predict the incidence of postoperative infections to prevent such comorbidi...

  19. Review of moxifloxacin hydrochloride ophthalmic solution in the treatment of bacterial eye infections

    OpenAIRE

    Darlene Miller

    2008-01-01

    Darlene MillerAbrams Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Anne Bates Leach Eye Hospital, Miller School of Medicine-University of Miami, FL, USAAbstract: Moxifloxacin hydrochloride ophthalmic solution 0.5% (Vigamox®) is the ocular formulation/adaptation of moxifloxacin. Moxifloxacin is a broad spectrum 8-methoxyfluoroquinolone which terminates bacterial growth by binding to DNA gyrase (topoisomerase II) and topoisomerase IV, essential bacterial enzymes involved ...

  20. Pregnancy-Related Group A Streptococcal Infections: Temporal Relationships Between Bacterial Acquisition, Infection Onset, Clinical Findings, and Outcome

    OpenAIRE

    Stephanie M Hamilton; Stevens, Dennis L.; Bryant, Amy E.

    2013-01-01

    The development and outcome of pregnancy-related group A streptococcal infections are dependent upon the stage of pregnancy or puerperium, epidemiologic factors of the patient's home and hospital environments, and virulence of the prevalent pathogens.

  1. Antimicrobial susceptibility pattern of bacterial isolates from surgical wound infections in Tertiary Care Hospital in Allahabad, India

    Directory of Open Access Journals (Sweden)

    A K Kapoor

    2012-01-01

    Full Text Available The aim of present study to analyze the occurrence and in-vitro antimicrobial susceptibility of bacterial pathogens isolated from surgical wound infections. Specimens from a total of 129 patients undergoing either emergency or elective surgery were collected from infected sites or stitch lines and inoculated onto appropriate media. The bacterial cultures were identified utilizing standard microbiological and biochemical methods. Isolates were tested for susceptibility to antimicrobials using the Kirby Bauer disk diffusion method. Statistical analysis was performed using the chi-square test. Of 129 patients investigated (62 emergency and 67 elective surgery cases, bacterial isolates were isolated with almost equal frequency both from emergency and elective surgery cases. Of 108 (83.72% culture positive samples, 62 (57.41% were Gram negative, 39 (36.11% Gram positive, and 7 (6.48% showed multiple organisms. Of total 115 bacteria isolated (101 single and 7 double organisms culture positive, 33 (28.69% were Escherichia coli and were also the commonest; followed by Staphylococcus aureus, 30 (26.09% cases. S. aureus and Streptococcus spp. showed maximum susceptibility (100% to linezolid and vancomycin. Maximum susceptibility of E. coli was observed to ciprofloxacin (75.7%, followed by gentamicin (54.5%; of Klebsiella spp. to ceftriaxone and gentamicin (66.6% each, of Proteus spp. to gentamicin (70% followed by ciprofloxacin (60%, and of Pseudomonas aeruginosa to piperacillin (100% and tobramycin (71.4%. E. coli and S. aureus were the most common and Salmonella spp. and Acinetobacter spp. were the least common organism causing surgical site infections. The definitive therapy included ciprofloxacin and gentamicin for E. coli; linezolid and vancomycin for S. aureus and Streptococcus spp; ceftriaxone and ciprofloxacin for Klebsiella spp., Citrobacter spp., acinetobacter spp and Salmonella spp.

  2. Perioperative management for the prevention of bacterial infection in cardiac implantable electronic device placement.

    Science.gov (United States)

    Imai, Katsuhiko

    2016-08-01

    Cardiac implantable electronic devices (CIEDs) have become important in the treatment of cardiac disease and placement rates increased significantly in the last decade. However, despite the use of appropriate antimicrobial prophylaxis, CIED infection rates are increasing disproportionately to the implantation rate. CIED infection often requires explantation of all hardware, and at times results in death. Surgical site infection (SSI) is the most common cause of CIED infection as a pocket infection. The best method of combating CIED infection is prevention. Prevention of CIED infections comprises three phases: before, during, and after device implantation. The most critical factors in the prevention of SSIs are detailed operative techniques including the practice of proper technique by the surgeon and surgical team. PMID:27588150

  3. Activation of p38α in T cells regulates the intestinal host defense against attaching and effacing bacterial infections

    OpenAIRE

    Shim, Eun-Jin; Bang, Bo Ram; Kang, Seung-Goo; Ma, Jianhui; Otsuka, Motoyuki; Kang, Jiman; Stahl, Martin; Han, Jiahuai; Xiao, Changchun; Vallance, Bruce A.; Kang, Young Jun

    2013-01-01

    Intestinal infections by attaching and effacing (A/E) bacterial pathogens cause severe colitis and bloody diarrhea. Although p38α in intestine epithelial cells (IEC) plays an important role in promoting protection against A/E bacteria by regulating T cell recruitment, its impact on immune responses remains unclear. In this study, we show that activation of p38α in T cells is critical for the clearance of the A/E pathogen Citrobacter rodentium. Mice deficient of p38α in T cells, but not in mac...

  4. Efficacy of a twelve-hourly ceftriaxone regimen in the treatment of serious bacterial infections.

    Science.gov (United States)

    Maslow, M J; Levine, J F; Pollock, A A; Simberkoff, M S; Rahal, J J

    1982-01-01

    Eighteen patients with 21 serious infections were treated with ceftriaxone, 1 g intravenously every 12 h, for a mean duration of 8 days. Eighteen gram-negative and two gram-positive organisms were isolated. Sites of infection included blood (three patients), urinary tract (six patients), respiratory tract (seven patients), biliary tract (three patients), ascitic fluid (one patient), and skin (one patient). Serum, bile, and ascitic fluid concentrations of ceftriaxone were in excess of the minimal bactericidal concentration required for the infecting organism in all cases. A bacteriological response was demonstrated in 94% of the infections. A clinical response occurred in four infections from which no pathogens were recovered. In one patient, ceftriaxone failed to eradicate a peritoneal infection due to Bacteroides fragilis. In two patients, superinfection with enterococci developed both during and after therapy. Systemic tolerance to ceftriaxone was excellent. PMID:6289735

  5. Transcriptional profiling at different sites in lungs of pigs during acute bacterial respiratory infection

    DEFF Research Database (Denmark)

    Mortensen, Shila; Skovgaard, Kerstin; Hedegaard, Jakob;

    2011-01-01

    The local transcriptional response was studied in different locations of lungs from pigs experimentally infected with the respiratory pathogen Actinobacillus pleuropneumoniae serotype 5B, using porcine cDNA microarrays. This infection gives rise to well-demarcated infection loci in the lung......, characterized by necrotic and haemorrhagic lesions. Lung tissue was sampled from necrotic areas, from visually unaffected areas and from areas bordering on necrotic areas. Expression pattern of these areas from infected pigs was compared to healthy lung tissue from un-infected pigs. Transcription of selected...... genes important in the innate defence response were further analysed by quantitative realtime reverse-transcriptase PCR. A clear correlation was observed between the number of differentially expressed genes as well as the magnitude of their induction and the sampling location in the infected lung...

  6. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    OpenAIRE

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the vir...

  7. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    OpenAIRE

    Justyna Nowakowska; Regine Landmann; Nina Khanna

    2014-01-01

    The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI) animal models that closely resemble human d...

  8. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    Science.gov (United States)

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  9. Elevated postoperative serum procalcitonin is not indicative of bacterial infection in cardiac surgical patients

    Directory of Open Access Journals (Sweden)

    Murali Chakravarthy

    2015-01-01

    Full Text Available Background: Identifying infections early, commencing appropriate empiric antibiotic not only helps gain control early, but also reduces mortality and morbidity. Conventional cultures take about 5 days to identify infections. To identify the infections early biomarker like serum procalcitonin (SPC. Aims: We studied the correlation of an elevated level of SPC and positive culture in elective adult patients undergoing cardiac surgery. Methods: This prospective study was conducted from January to December 2013. SPC was checked in patients showing evidence of sepsis. Simultaneously, relevant culture was also undertaken. Correlation, specificity, and sensitivity of elevated SPC were checked. Results: A total of 819 adult patients were included in the study. 43 of them had signs of infection and SPC levels were checked. Based on the level of SPC criteria, 10 patients were diagnosed as "nil", out of them, 4 had culture-positive infections, 17 were suggested to have "mild infection," 3 out those had culture positivity. None among the eleven patients suggested to have "moderate infection," had a positive culture, and one among the five suggested to have a severe infection had a positive culture. The sensitivity was 50% and the specificity 17%. The positive predictive value was 12% and the negative predictive value 60%. Conclusions: We failed to elicit positive correlation between elevated SPC levels and postoperative infection in cardio surgical patients.

  10. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations

    OpenAIRE

    San Millan, Alvaro; Heilbron, Karl; MacLean, R. Craig

    2014-01-01

    Plasmids have a key role in the horizontal transfer of genes among bacteria. Although plasmids are catalysts for bacterial evolution, it is challenging to understand how they can persist in bacterial populations over the long term because of the burden they impose on their hosts (the ‘plasmid paradox'). This paradox is especially perplexing in the case of ‘small' plasmids, which are unable to self-transfer by conjugation. Here, for the first time, we investigate how interactions between co-in...

  11. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    Science.gov (United States)

    Flaherty, Rebecca A; Lee, Shaun W

    2016-08-19

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.

  12. Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12- neutrophil polarization.

    Directory of Open Access Journals (Sweden)

    Crystal J Neely

    Full Text Available Severe trauma renders patients susceptible to infection. In sepsis, defective bacterial clearance has been linked to specific deviations in the innate immune response. We hypothesized that innate immune modulations observed during sepsis also contribute to increased bacterial susceptibility after severe trauma. A well-established murine model of burn injury, used to replicate infection following trauma, showed that wound inoculation with P. aeruginosa quickly spreads systemically. The systemic IL-10/IL-12 axis was skewed after burn injury with infection as indicated by a significant elevation in serum IL-10 and polarization of neutrophils into an anti-inflammatory ("N2"; IL-10(+ IL-12(- phenotype. Infection with an attenuated P. aeruginosa strain (ΔCyaB was cleared better than the wildtype strain and was associated with an increased pro-inflammatory neutrophil ("N1"; IL-10(-IL-12(+ response in burn mice. This suggests that neutrophil polarization influences bacterial clearance after burn injury. Administration of a TLR5 agonist, flagellin, after burn injury restored the neutrophil response towards a N1 phenotype resulting in an increased clearance of wildtype P. aeruginosa after wound inoculation. This study details specific alterations in innate cell populations after burn injury that contribute to increased susceptibility to bacterial infection. In addition, for the first time, it identifies neutrophil polarization as a therapeutic target for the reversal of bacterial susceptibility after injury.

  13. Possible implication of bacterial infection in acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Shigeo eFuji

    2014-04-01

    Full Text Available Graft-versus-host disease (GVHD is still one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (HSCT. In the pathogenesis of acute GVHD, it has been established that donor-derived T cells activated in the recipient play a major role in GVHD in initiation and maintenance within an inflammatory cascade. To reduce the risk of GVHD, intensification of GVHD prophylaxis like T cell depletion is effective, but it inevitably increases the risk of infectious diseases and abrogates beneficial graft-versus-leukemia effects. Although various cytokines are considered to play an important role in the pathogenesis of GVHD, GVHD initiation is such a complex process that cannot be prevented by means of single inflammatory cytokine inhibition. Thus, efficient methods to control the whole inflammatory milieu both on cellular and humoral view are needed. In this context, infectious diseases can theoretically contribute to an elevation of inflammatory cytokines after allogeneic HSCT and activation of various subtypes of immune effector cells, which might in summary lead to an aggravation of acute GVHD. The appropriate treatments or prophylaxis of bacterial infection during the early phase after allogeneic HSCT might be beneficial to reduce not only infectious-related but also GVHD-related mortality. Here, we aim to review the literature addressing the interactions of bacterial infections and GVHD after allogeneic HSCT.

  14. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms.

    Science.gov (United States)

    Borges, Anabela; Abreu, Ana Cristina; Dias, Carla; Saavedra, Maria José; Borges, Fernanda; Simões, Manuel

    2016-01-01

    The majority of current infectious diseases are almost untreatable by conventional antibiotic therapy given the advent of multidrug-resistant bacteria. The degree of severity and the persistence of infections are worsened when microorganisms form biofilms. Therefore, efforts are being applied to develop new drugs not as vulnerable as the current ones to bacterial resistance mechanisms, and also able to target bacteria in biofilms. Natural products, especially those obtained from plants, have proven to be outstanding compounds with unique properties, making them perfect candidates for these much-needed therapeutics. This review presents the current knowledge on the potentialities of plant products as antibiotic adjuvants to restore the therapeutic activity of drugs. Further, the difficulties associated with the use of the existing antibiotics in the treatment of biofilm-related infections are described. To counteract the biofilm resistance problems, innovative strategies are suggested based on literature data. Among the proposed strategies, the use of phytochemicals to inhibit or eradicate biofilms is highlighted. An overview on the use of phytochemicals to interfere with bacterial quorum sensing (QS) signaling pathways and underlying phenotypes is provided. The use of phytochemicals as chelating agents and efflux pump inhibitors is also reviewed.

  15. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms

    Directory of Open Access Journals (Sweden)

    Anabela Borges

    2016-07-01

    Full Text Available The majority of current infectious diseases are almost untreatable by conventional antibiotic therapy given the advent of multidrug-resistant bacteria. The degree of severity and the persistence of infections are worsened when microorganisms form biofilms. Therefore, efforts are being applied to develop new drugs not as vulnerable as the current ones to bacterial resistance mechanisms, and also able to target bacteria in biofilms. Natural products, especially those obtained from plants, have proven to be outstanding compounds with unique properties, making them perfect candidates for these much-needed therapeutics. This review presents the current knowledge on the potentialities of plant products as antibiotic adjuvants to restore the therapeutic activity of drugs. Further, the difficulties associated with the use of the existing antibiotics in the treatment of biofilm-related infections are described. To counteract the biofilm resistance problems, innovative strategies are suggested based on literature data. Among the proposed strategies, the use of phytochemicals to inhibit or eradicate biofilms is highlighted. An overview on the use of phytochemicals to interfere with bacterial quorum sensing (QS signaling pathways and underlying phenotypes is provided. The use of phytochemicals as chelating agents and efflux pump inhibitors is also reviewed.

  16. "ETIOLOGY AND ANTIBACTERIAL RESISTANCE OF BACTERIAL URINARY TRACT INFECTIONS IN CHILDREN’S MEDICAL CENTER, TEHRAN, IRAN"

    Directory of Open Access Journals (Sweden)

    M. Haghi-Ashteiani

    2007-06-01

    Full Text Available Urinary tract infection (UTI is a common bacterial illness in children. Knowledge of the antimicrobial resistance patterns of common uropathogens in children according to local epidemiology is essential for providing clinically appropriate, cost effective therapy for UTI. The aim of this study was to determine the distribution of urinary tract infections in a referral hospital, Children’s Medical Center, and determination of in vitro susceptibility of these organisms to antimicrobial agents. Of the 1231 bacterial isolates the most frequent isolates were Escherichia coli (38.66%, Klebsiella spp. (22.25%, Coagulase-negative staphylococci (10.1%, Pseudomonas spp. (8.7%, enterococci (8.28%, Enterobacter spp. (4.1%, staphylococcus aureus (3.24%, and proteus mirabilis (2.9%. Among Enterobacteriaceae, 79.80% of E. coli were amikacin-sensitive. Of Gram-positive cocci, 66.66% of staphylococcus aureus were vancomycin-sensitive. Our data show the original distribution of uropathogens from UTIs in children referred to Children’s Medical Center in Tehran and the emergence of multidrug resistant strains.

  17. Identification of Genes Induced in Lolium multiflorum by Bacterial Wilt Infection

    DEFF Research Database (Denmark)

    Wichmann, Fabienne; Asp, Torben; Widmer, Franco;

    2010-01-01

    was hybridized to a cDNA microarray containing 10,000 unique genes from L. perenne. Comparisons and statistical analyses of the gene expression profiles revealed 0, 20, 52 and 124 differentially regulated genes 8, 48, 192 and 288 h after infection compared to non-infected controls and considering a p...

  18. Interleukin-35 is upregulated in response to influenza virus infection and secondary bacterial pneumonia.

    Science.gov (United States)

    Chen, Yi; Wang, Chuan-jiang; Lin, Shi-hui; Zhang, Mu; Li, Sheng-yuan; Xu, Fang

    2016-05-01

    Postinfluenza pneumococcal pneumonia is an important cause of global morbidity and mortality. What causes this increased susceptibility is not well elucidated. IL-35 is a newly described cytokine in infectious tolerance. A murine model was established to study postinfluenza pneumococcal pneumonia and evaluate the role of IL-35 in host defense against postinfluenza pneumococcal pneumonia. Pulmonary IL-35 was rapidly up-regulated during murine influenza infection, which was partially mediated by type I IFN-α/β receptor signaling pathway. Secondary pneumococcal infection led to a synergistic IL-35 response in influenza-infected mice. Clinical analysis showed that IL-35 levels were significantly elevated in the patients with influenza infection compared with healthy individuals and influenza infection could induce IL-35 production from human peripheral blood mononuclear cells. These data suggest that IL-35 contributes to the increased susceptibility to secondary pneumococcal pneumonia at least in part by inhibiting the early immune response.

  19. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette;

    2009-01-01

    infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented......The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other...... with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...

  20. White blood cell count, absolute neutrophil count, as predictors of hidden bacterial infections in febrile children 1-18 months of age without focus

    International Nuclear Information System (INIS)

    Objectives: To study the relationship between White Blood Cell (WBC), Absolute Neutrophil Count (ANC) in febrile children 1-18 months of age as predictor of bacterial infection, so as to improve our predictability of bacterial infections in emergency room to decrease unnecessary admissions and antibiotic use. Methods: Retrospective review was performed on febrile patients 1-18 months of age that were admitted to hospital between August 2002 and March 2003 on the presumptive diagnosis of fever without focus, Complete septic work up was done for all patients according to local hospital protocol including Complete blood count (CBC), blood culture, urine culture, Chest X-Ray (CXR) and lumbar puncture, Patients who had history of antibiotics use within 48 hours of admission were excluded from the study, History, physical examination, laboratory and radiology data were reviewed. Data about the age, sex, temperature, presence or absence of focal bacterial infection, WBC, ANC, CXR report and body fluid culture results were collected and analyzed. Results: Thirty-four patients were reviewed in this study, Eight patients (23.5%) had bacterial infection: classified as group (2 patchy pneumonia, 3 Urinary tract infection (UTI), 2 meningitis, 1 Occult bacteremia (OB) and 26 patients (76.5%) had no evidence of bacterial infection, classified as group 2, No significant difference was found between the two groups in respect to age, sex, temperature and WBC P>0.05, while there was a significant difference between the two groups in respect to the ANC P = 0.02, also ANC had better sensitivity (78%) and specificity (89%) than WBC (sensitivity 77%, specificity 62%). Conclusion: ANC is a good predictive test for determining bacterial infection in young febrile children without focus, However there is need for other more reliable rapid cost effective measures in dealing with young febrile children at emergency department. (author)

  1. Evaluation of a Multiplex Real-Time PCR Assay for Detecting Major Bacterial Enteric Pathogens in Fecal Specimens: Intestinal Inflammation and Bacterial Load Are Correlated in Campylobacter Infections.

    Science.gov (United States)

    Wohlwend, Nadia; Tiermann, Sacha; Risch, Lorenz; Risch, Martin; Bodmer, Thomas

    2016-09-01

    A total of 1,056 native or Cary-Blair-preserved stool specimens were simultaneously tested by conventional stool culturing and by enteric bacterial panel (EBP) multiplex real-time PCR for Campylobacter jejuni, Campylobacter coli, Salmonella spp., and shigellosis disease-causing agents (Shigella spp. and enteroinvasive Escherichia coli [EIEC]). Overall, 143 (13.5%) specimens tested positive by PCR for the targets named above; 3 coinfections and 109 (10.4%) Campylobacter spp., 17 (1.6%) Salmonella spp., and 20 (1.9%) Shigella spp./EIEC infections were detected. The respective positive stool culture rates were 75 (7.1%), 14 (1.3%), and 7 (0.7%). The median threshold cycle (CT) values of culture-positive specimens were significantly lower than those of culture-negative ones (CT values, 24.3 versus 28.7; P Campylobacter infections, the respective median fecal calprotectin concentrations in PCR-negative/culture-negative (n = 40), PCR-positive/culture-negative (n = 14), and PCR-positive/culture-positive (n = 15) specimens were 134 mg/kg (interquartile range [IQR], 30 to 1,374 mg/kg), 1,913 mg/kg (IQR, 165 to 3,813 mg/kg), and 5,327 mg/kg (IQR, 1,836 to 18,213 mg/kg). Significant differences were observed among the three groups (P Campylobacter spp., Salmonella spp., and Shigella spp./EIEC using the BD Max EBP assay will result in timely diagnosis and improved sensitivity. The determination of inflammatory markers, such as calprotectin, in fecal specimens may aid in the interpretation of PCR results, particularly for enteric pathogens associated with mucosal damage and colonic inflammation. PMID:27307458

  2. Enhanced resistance of mice to bacterial infection induced by recombinant human interleukin-1a.

    OpenAIRE

    Ozaki, Y.; Ohashi, T.; Minami, A.; Nakamura, S.

    1987-01-01

    The effect of recombinant human interleukin-1a on the survival rate of Std-ddY male mice systemically infected with Pseudomonas aeruginosa 12 or Klebsiella pneumoniae P-5709 was evaluated. In P. aeruginosa infection, interleukin-1a given intramuscularly twice, 3 days and 1 day before inoculation of bacteria, most effectively protected animals from death due to infection. The effect was dose dependent, with a maximum survival rate of 92.5% at 10 micrograms per mouse, while only 8.3% of the con...

  3. Bacterial profile and patterns of antimicrobial drug resistance in intra-abdominal infections: Current experience in a teaching hospital

    Directory of Open Access Journals (Sweden)

    Neetu Shree

    2013-01-01

    Full Text Available Context: Bacterial isolates from intra-abdominal infections, in particular, peritonitis and their unpredictable antimicrobial resistance patterns, continue to be a matter of concern not only globally but regionally too. Aim: An attempt in the present study was made to study the patterns of drug resistance in bacterial isolates, especially gram negative bacilli in intra-abdominal infections (IAI in our hospital. Materials and Methods: From 100 cases of peritonitis, identification of isolates was done as per recommended methods. Antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL testing were performed following the CLSI guidelines. Results: A total of 133 clinical isolates were obtained, of which 108 were aerobes and 22 anaerobes. Fungal isolates were recovered in only three cases. Escherichia coli (47/108 emerged as the most predominant pathogen followed by Klebsiella spp. (27/108, while Bacteroides fragilis emerged as the predominant anaerobe (12/22. Among coliforms, 61.7% E. coli and 74.1% Klebsiella spp. were ESBL positive. A high level of resistance was observed for beta lactams, ciprofloxacin, amikacin, and ertapenem. Ertapenem resistance (30-41% seen in coliforms, appears as an important issue. Imipenem, tigecycline, and colistin were the most consistently active agents tested against ESBL producers. Conclusion: Drug resistance continues to be a major concern in isolates from intra-abdominal infections. Treatment with appropriate antibiotics preceded by antimicrobial resistance testing aided by early diagnosis, adequate surgical management, and knowledge of antibiotic - resistant organisms appears effective in reducing morbidity and mortality in IAI cases.

  4. Local and disseminated acute phase response during bacterial respiratory infection in pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Heegaard, Peter M. H.

    2010-01-01

    The acute phase response is playing an important role, aiming to restore the healthy state after tissue injury, inflammation and infection. The biological function of this response and its interplay with other parts of innate defense reactions remain somewhat elusive. Expression of acute phase...... proteins (APP) outside the liver is increasingly recognized, still little is known of extra-hepatic production of APP in pigs. 14-18 h after experimental infection with Actinobacillus pleuropneumoniae, causing acute pleuropneumonia in pigs, we studied local APP gene expression changes in different...... differentially expressed between infected and control animals. We demonstrated that acute pleuropneumonia caused by A. pleuropneumoniae leads to a rapid disseminated local intra-lung APP response, also in apparently unaffected areas of the infected lung. Further extrahepatic expression of several acute-phase...

  5. Six cases of Aerococcus sanguinicola infection: Clinical relevance and bacterial identification

    DEFF Research Database (Denmark)

    Ibler, K.; Jensen, K.T.; Ostergaard, C.;

    2008-01-01

    Aerococcus sanguinicola is a Gram-positive coccus first described in 2001. Infections in humans are rare but the use of 16S rRNA gene sequencing and improved phenotypic methods has facilitated the identification of A. sanguinicola. We report here 6 cases of A. sanguinicola bacteraemia, 2 of which...... were associated with infective endocarditis. Most patients were elderly (median age 70 y) and had underlying neurological disorders including dementia, cerebral degeneration, and myelomeningocele. The primary focus of infection was the urinary tract in 3 cases and the gallbladder in 1; no focus...... was detected in 2 cases. Long-term prognosis was poor reflecting the frailty of the patients. All strains were susceptible to penicillin, ampicillin, cefuroxime, vancomycin, erythromycin, and rifampicin. The optimal treatment of infection with A. sanguinicola has yet to be determined Udgivelsesdato: 2008...

  6. Fluorescence In Situ Hybridization for the Tissue Detection of Bacterial Pathogens Associated with Porcine Infections

    DEFF Research Database (Denmark)

    Elvang Jensen, Henrik; Jensen, Louise Kruse; Barington, Kristiane;

    2015-01-01

    Fluorescence in situ hybridization (FISH) is an efficient technique for the identification of specific bacteria in tissue of both experimental and spontaneous infections. The method detects specific sequences of nucleic acids by hybridization of fluorescently labeled probes to complementary targe...

  7. Moxifloxacin in Preventing Bacterial Infections in Patients Who Have Undergone Donor Stem Cell Transplant

    Science.gov (United States)

    2013-03-14

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Infection; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor

  8. AADNMR: A Simple Method for Rapid Identification of Bacterial/Mycobacterial Infections in Antibiotic Treated Peritoneal Dialysis Effluent Samples for Diagnosis of Infectious Peritonitis

    CERN Document Server

    Guleria, Anupam; Rawat, Atul; Khetrapal, C L; Prasad, Narayan; Kumar, Dinesh

    2014-01-01

    An efficient method is reported for rapid identification of bacterial or mycobacterial infection in a suspected clinical/biological sample. The method is based on the fact that the ring methylene protons of cyclic fatty acids (constituting the cell membrane of several species of bacteria and mycobacteria) resonate specifically between -0.40 and 0.68 ppm region of the 1H NMR spectrum. These cyclic fatty acids are rarely found in the eukaryotic cell membranes. Therefore, the signals from cyclic ring moiety of these fatty acids can be used as markers (a) for the identification of bacterial and mycobacterial infections and (b) for differential diagnosis of bacterial and fungal infections. However, these microbial fatty acids when present inside the membrane are not easily detectable by NMR owing to their fast T2 relaxation. Nonetheless, the problem can easily be circumvented if these fatty acids become suspended in solution. This has been achieved by abolishing the membrane integrity using broad spectrum antibiot...

  9. The Importance of Serum Procalcitonin in Diagnosis and Treatment of Serious Bacterial Infections and Sepsis

    Science.gov (United States)

    Mehanic, Snjezana; Baljic, Rusmir

    2013-01-01

    The clinical utility of serum procalcitonin (PCT) levels continues to evolve. PCT is regarded as a promising candidate marker for making a diagnosis and antibiotic stewardship in patients with systemic infections. The aim of this review is to summarize the current evidence for PCT in different infections and clinical settings, and to discuss the reliability of this marker when used with validated diagnostic algorithms. PMID:24511275

  10. Efficacy of a twelve-hourly ceftriaxone regimen in the treatment of serious bacterial infections.

    OpenAIRE

    Maslow, M J; Levine, J F; Pollock, A A; Simberkoff, M S; Rahal, J J

    1982-01-01

    Eighteen patients with 21 serious infections were treated with ceftriaxone, 1 g intravenously every 12 h, for a mean duration of 8 days. Eighteen gram-negative and two gram-positive organisms were isolated. Sites of infection included blood (three patients), urinary tract (six patients), respiratory tract (seven patients), biliary tract (three patients), ascitic fluid (one patient), and skin (one patient). Serum, bile, and ascitic fluid concentrations of ceftriaxone were in excess of the mini...

  11. Bacteria: a new player in gastrointestinal motility disorders--infections, bacterial overgrowth, and probiotics.

    LENUS (Irish Health Repository)

    Quigley, Eamonn M M

    2012-02-03

    Irritable bowel syndrome (IBS) may result from a dysfunctional interaction between the indigenous flora and the intestinal mucosa, which in turn leads to immune activation in the colonic mucosa. Some propose that bacterial overgrowth is a common causative factor in the pathogenesis of symptoms in IBS; others point to evidence suggesting that the cause stems from more subtle qualitative changes in the colonic flora. Bacterial overgrowth will probably prove not to be a major factor in what will eventually be defined as IBS. Nevertheless, short-term therapy with either antibiotics or probiotics seems to reduce symptoms among IBS patients. However, in the long term, safety issues will favor the probiotic approach; results of long-term studies with these agents are eagerly awaited.

  12. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections

    OpenAIRE

    Labby, Kristin J.; Garneau-Tsodikova, Sylvie

    2013-01-01

    Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new...

  13. Bacterial vaginosis: a synthesis of the literature on etiology, prevalence, risk factors, and relationship with chlamydia and gonorrhea infections.

    Science.gov (United States)

    Bautista, Christian T; Wurapa, Eyako; Sateren, Warren B; Morris, Sara; Hollingsworth, Bruce; Sanchez, Jose L

    2016-01-01

    Bacterial vaginosis (BV) is a common vaginal disorder in women of reproductive age. Since the initial work of Leopoldo in 1953 and Gardner and Dukes in 1955, researchers have not been able to identify the causative etiologic agent of BV. There is increasing evidence, however, that BV occurs when Lactobacillus spp., the predominant species in healthy vaginal flora, are replaced by anaerobic bacteria, such as Gardenella vaginalis, Mobiluncus curtisii, M. mulieris, other anaerobic bacteria and/or Mycoplasma hominis. Worldwide, it estimated that 20-30 % of women of reproductive age attending sexually transmitted infection (STI) clinics suffer from BV, and that its prevalence can be as high as 50-60 % in high-risk populations (e.g., those who practice commercial sex work (CSW). Epidemiological data show that women are more likely to report BV if they: 1) have had a higher number of lifetime sexual partners; 2) are unmarried; 3) have engaged in their first intercourse at a younger age; 4) have engaged in CSW, and 5) practice regular douching. In the past decade, several studies have provided evidence on the contribution of sexual activity to BV. However, it is difficult to state that BV is a STI without being able to identify the etiologic agent. BV has also emerged as a public health problem due to its association with other STIs, including: human immunodeficiency virus (HIV), herpes simplex virus type 2 (HSV-2), Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG). The most recent evidence on the association between BV and CT/NG infection comes from two secondary analyses of cohort data conducted among women attending STI clinics. Based on these studies, women with BV had a 1.8 and 1.9-fold increased risk for NG and CT infection, respectively. Taken together, BV is likely a risk factor or at least an important contributor to subsequent NG or CT infection in high-risk women. Additional research is required to determine whether this association is also present in

  14. Antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to antibiotic agents at super specialty hospital, Amravati city, India

    Directory of Open Access Journals (Sweden)

    Hrishikesh Sawdekar

    2015-02-01

    Full Text Available Background: Wound infection is one of the health problems that is caused and aggravated by the invasion of pathogenic organisms. Information on local pathogens and sensitivity to antimicrobial agent is crucial for successful treatment of wounds. So the present study was conducted to determine antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to antimicrobial agents. Methods: A retrospective study was conducted among patients with wound infection in Suyash super speciality hospital, from January 2012 to December 2013. Wound swab was collected using sterile cotton swabs and processed for bacterial isolation and susceptibility testing to Systemic antimicrobial agents. Results: In this study 78 bacterial isolates were recovered from 258 specimens showing an isolation rate of 31.2%. The predominant bacteria isolated from wounds were gram positive staphylococci 36 (46.2%, followed by gram negative streptococci 18 (23.1% gram negative pseudomonas 12 (15.4 % and gram negative proteus 8 (10.4%. The gram positive and gram negative bacteria constituted 68 (87.2% and 10 (12.8% of bacterial isolates; respectively. Conclusion: In the present study most of the pathogens isolated from wound isolates showed high rate of resistance to most commonly used newer antibiotics used to treat bacterial infections. Therefore, rational use of antibiotics should be practiced. [Int J Res Med Sci 2015; 3(2.000: 433-439

  15. Antibiotic sensitivity profile of bacterial pathogens in postoperative wound infections at a tertiary care hospital in Gujarat, India

    Directory of Open Access Journals (Sweden)

    Nutanbala N Goswami

    2011-01-01

    Full Text Available Objective: To find out the most common bacterial pathogens responsible for post-operative wound infection and their antibiotic sensitivity profile. Materials and Methods: This prospective, observational study was carried out in patients of postoperative wound infection. Samples from wound discharge were collected using a sterile swab and studied for identification of isolates by Gram stains and culture growth followed by in vitro antibiotic susceptibility testing performed by disc diffusion method on Mueller Hinton agar. Results: Out of 183 organisms, 126 (68.85% isolated organisms were gram negative. Staphylococcus aureus, 48 (26.23%, was the predominant organism. S. aureus was sensitive to rifampicin (89.58%, levofloxacin (60.42%, and vancomycin (54.17%. Pseudomonas aeruginosa was sensitive to ciprofloxacin (83.78%, gatifloxacin (51.35%, and meropenem (51.35%. Escherichia coli was sensitive to levofloxacin (72.41% and ciprofloxacin (62.07%. Klebsiella pneumoniae was sensitive to ciprofloxacin (63.16%, levofloxacin (63.16%, gatifloxacin (63.16%, and linezolid (56.52%. Proteus mirabilis was sensitive to ciprofloxacin (75% and linezolid (62.50. Proteus vulgaris was sensitive to ampicillin+sulbactam (57.14% followed by levofloxacin (50%. Conclusions: There is an alarming increase of infections caused by antibiotic-resistant bacteria, particularly in the emergence of VRSA/VISA, meropenem, and third generation cephalosporin resistant Pseudomonas aeruginosa. Linezolid showing sensitivity against Gram negative bacteria.

  16. Development of a broad spectrum polymer-released antimicrobial coating for the prevention of resistant strain bacterial infections.

    Science.gov (United States)

    Sinclair, K D; Pham, T X; Farnsworth, R W; Williams, D L; Loc-Carrillo, C; Horne, L A; Ingebretsen, S H; Bloebaum, R D

    2012-10-01

    More than 400,000 primary hip and knee replacement surgeries are performed each year in the United States. From these procedures, approximately 0.5-3% will become infected and when considering revision surgeries, this rate has been found to increase significantly. Antibiotic-resistant bacterial infections are a growing problem in patient care. This in vitro research investigated the antimicrobial potential of the polymer released, broad spectrum, Cationic Steroidal Antimicrobial-13 (CSA-13) for challenges against 5 × 10(8) colony forming units (CFU) of methicillin-resistant Staphylococcus aureus (MRSA). It was hypothesized that a weight-to-weight (w/w) concentration of 18% CSA-13 in silicone would exhibit potent bactericidal potential when used as a controlled release device coating. When incorporated into a polymeric device coating, the 18% (w/w) broad-spectrum polymer released CSA-13 antimicrobial eliminated 5 × 10(8) CFU of MRSA within 8 h. In the future, these results will be utilized to develop a sheep model to assess CSA-13 for the prevention of perioperative device-related infections in vivo.

  17. Bacterial urinary tract infection in renal transplant recipients and their antibiotic resistance pattern: A four-year study.

    Directory of Open Access Journals (Sweden)

    Azar Dokht Khosravi

    2014-04-01

    Full Text Available Urinary tract infections (UTIs are the most common infections in renal transplant recipients and are considered a potential cause of bacteremia, sepsis, and affects graft outcomes. The aim of the present study was to determine the incidence of UTI among renal transplant recipients and investigation of antimicrobial susceptibility pattern of causative agents.In total, 1165 patients from March 2009 to December 2012, in transplant center of Golestan Hospital, Ahvaz, Iran, were investigated. Qualitative urine cultures were performed for all cases, causative microorganisms were identified and colony count was performed according to the standard protocol. Antibiotic susceptibility testing was then performed to determine the susceptibility pattern of recovered bacteria from confirmed UTIs.UTI was diagnosed in 391 patients(33.56%. Gram-negative bacteria were the most prevalent isolated microorganisms with E. coli (43.53%, followed by Enterobacter spp. (35.37% as the major organisms. Among Gram positives, Coagulase-negative Staphylococci was isolated from 6.8% of cases. The rate of resistance to all tested antibiotics was highest in Enterobacter spp., however the most common resistance were seen against cefixime, cephalotin, and cotrimoxazole in all tested gram negatives.the rate of UTIs among renal transplant recipients was noticeable in this study with high antibiotic resistance. Multi-resistant bacterial infections are potentially life-threatening emerging problem in renal transplantation. Prophylactic measures must be applied to patients at greater risk.

  18. DNA Sequencing Diagnosis of Off-Season Spirochetemia with Low Bacterial Density in Borrelia burgdorferi and Borrelia miyamotoi Infections

    Directory of Open Access Journals (Sweden)

    Sin Hang Lee

    2014-06-01

    Full Text Available A highly conserved 357-bp segment of the 16S ribosomal RNA gene (16S rDNA of Borrelia burgdorferi sensu lato and the correspondent 358-bp segment of the Borrelia miyamotoi gene were amplified by a single pair of nested polymerase chain reaction (PCR primers for detection, and the amplicons were used as the templates for direct Sanger DNA sequencing. Reliable molecular diagnosis of these borreliae was confirmed by sequence alignment analysis of the hypervariable regions of the PCR amplicon, using the Basic Local Alignment Search Tool (BLAST provided by the GenBank. This methodology can detect and confirm B. burgdorferi and B. miyamotoi in blood samples of patients with off-season spirochetemia of low bacterial density. We found four B. miyamotoi infections among 14 patients with spirochetemia, including one patient co-infected by both B. miyamotoi and B. burgdorferi in a winter month when human exposure to tick bites is very limited in the Northeast of the U.S.A. We conclude that sensitive and reliable tests for these two Borrelia species should be implemented in the microbiology laboratory of hospitals located in the disease-endemic areas, for timely diagnosis and appropriate treatment of the patients at an early stage of the infection to prevent potential tissue damages.

  19. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections.

    Science.gov (United States)

    Lebeaux, David; Chauhan, Ashwini; Rendueles, Olaya; Beloin, Christophe

    2013-05-13

    The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30-40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.

  20. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2013-05-01

    Full Text Available The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.

  1. Correlation between plasma component levels of cultured fish and resistance to bacterial infection

    Science.gov (United States)

    Maita, M.; Satoh, K.-I.; Fukuda, Y.; Lee, H.-K.; Winton, J.R.; Okamoto, N.

    1998-01-01

    Mortalities of yellowtail Seriola quinqueradiata artificially infected with Lactococcus garvieae and of rainbow trout Oncorhynchus mykiss artificially infected with Vibrio anguillarum were compared with the levels of plasma components measured prior to challenge. The levels of plasma total cholesterol, free cholesterol and phospholipid of fish surviving infection were significantly higher in both yellowtail and rainbow trout than those of fish which died during the challenge test. Mortality of yellowtail with plasma total cholesterol levels lower than 250 mg/100 ml was significantly higher than that of fish which had cholesterol levels higher than 275 mg/100 ml (p < 0.05). Rainbow trout whose cholesterol was lower than 520 mg/100 ml suffered a significantly higher mortality due to vibriosis than fish having cholesterol levels higher than 560 mg/100 ml (p < 0.005). These results indicate that low levels of plasma lipid components may be an indicator of lowered disease resistance in cultured fish.

  2. Association between reduction of plasma adiponectin levels and risk of bacterial infection after gastric cancer surgery.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamamoto

    Full Text Available BACKGROUND AND PURPOSE: Infections are important causes of postoperative morbidity after gastric surgery; currently, no factors have been identified that can predict postoperative infection. Adiponectin (ADN mediates energy metabolism and functions as an immunomodulator. Perioperative ADN levels and perioperative immune functioning could be mutually related. Here we evaluated a potential biological marker to reliably predict the incidence of postoperative infections to prevent such comorbidities. METHODS: We analyzed 150 consecutive patients who underwent elective gastric cancer surgery at the Shiga University of Medical Science Hospital (Shiga, Japan from 1997 to 2009; of these, most surgeries (n = 100 were performed 2008 onwards. The patient characteristics and surgery-related factors between two groups (with and without infection were compared by the paired t-test and χ(2 test, including preoperative ADN levels, postoperative day 1 ADN levels, and ADN ratio (postoperative ADN levels/preoperative ADN levels as baseline factors. Logistic regression analysis was performed to access the independent association between ADN ratio and postoperative infection. Finally, receiver operating curves (ROCs were constructed to examine its clinical utility. RESULTS: Sixty patients (40% experienced postoperative infections. The baseline values of age, American Society of Anesthesiologists physical status, total operating time, blood loss, surgical procedure, C-reactive protein (CRP levels, preoperative ADN levels, and ADN ratio were significantly different between groups. Logistic regression analysis using these factors indicated that type 2 diabetes mellitus (T2DM and ADN ratio were significantly independent variables (*p<0.05, ** p<0.01, respectively. ROC analysis revealed that the useful cutoff values (sensitivity/specificity for preoperative ADN levels, ADN ratio, blood loss, operating time, and CRP levels were 8.81(0.567/0.568, 0.76 (0

  3. Small Molecule Restores Itaconate Sensitivity in Salmonella enterica: A Potential New Approach to Treating Bacterial Infections.

    Science.gov (United States)

    Hammerer, Fabien; Chang, Justin H; Duncan, Dustin; Castañeda Ruiz, Angel; Auclair, Karine

    2016-08-17

    In the context of increasing global antibiotic resistance, the need for alternative therapeutic targets is great. Although new antibiotics and resistance inhibitors provide temporary solutions, they are bound to become obsolete. In this work, we propose a new approach, coined "bacterio-modulation" that aims to restore macrophage potency towards bacterial strains that are able to survive in phagolysosomes. One key defense in the macrophage's arsenal is itaconate, an endogenous molecule with antimicrobial activity. Some intracellular pathogens have evolved to produce itaconate-degrading enzymes, which are required for intracellular proliferation and to promote pathogenicity. We herein present the first molecule able to resensitize Salmonella enterica to itaconate. PMID:27254798

  4. Comparative usefulness of inflammatory markers to indicate bacterial infection-analyzed according to blood culture results and related clinical factors.

    Science.gov (United States)

    Nishikawa, Hirokazu; Shirano, Michinori; Kasamatsu, Yu; Morimura, Ayumi; Iida, Ko; Kishi, Tomomi; Goto, Tetsushi; Okamoto, Saki; Ehara, Eiji

    2016-01-01

    To assess relationships of inflammatory markers and 2 related clinical factors with blood culture results, we retrospectively investigated inpatients' blood culture and blood chemistry findings that were recorded from January to December 2014 using electronic medical records and analyzed the data of 852 subjects (426 culture-positive and 426 culture-negative). Results suggested that the risk of positive blood culture statistically increased as inflammatory marker levels and the number of related factors increased. Concerning the effectiveness of inflammatory markers, when the outcome definition was also changed for C-reactive protein (CRP), the odds ratio had a similar value, whereas when the outcome definition of blood culture positivity was used for procalcitonin (PCT), the greatest effectiveness of that was detected. Therefore, the current results suggest that PCT is more useful than CRP as an auxiliary indication of bacterial infection.

  5. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Selena Gimenez-Ibanez

    2014-02-01

    Full Text Available Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR, which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile. Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.

  6. Mediation analysis to estimate direct and indirect milk losses associated with bacterial load in bovine subclinical mammary infections.

    Science.gov (United States)

    Detilleux, J; Theron, L; Duprez, J-N; Reding, E; Moula, N; Detilleux, M; Bertozzi, C; Hanzen, C; Mainil, J

    2016-08-01

    Milk losses associated with mastitis can be attributed to either effects of pathogens per se (i.e. direct losses) or to effects of the immune response triggered by the presence of mammary pathogens (i.e. indirect losses). Test-day milk somatic cell counts (SCC) and number of bacterial colony forming units (CFU) found in milk samples are putative measures of the level of immune response and of the bacterial load, respectively. Mediation models, in which one independent variable affects a second variable which, in turn, affects a third one, are conceivable models to estimate direct and indirect losses. Here, we evaluated the feasibility of a mediation model in which test-day SCC and milk were regressed toward bacterial CFU measured at three selected sampling dates, 1 week apart. We applied this method on cows free of clinical signs and with records on up to 3 test-days before and after the date of the first bacteriological samples. Most bacteriological cultures were negative (52.38%), others contained either staphylococci (23.08%), streptococci (9.16%), mixed bacteria (8.79%) or were contaminated (6.59%). Only losses mediated by an increase in SCC were significantly different from null. In cows with three consecutive bacteriological positive results, we estimated a decreased milk yield of 0.28 kg per day for each unit increase in log2-transformed CFU that elicited one unit increase in log2-transformed SCC. In cows with one or two bacteriological positive results, indirect milk loss was not significantly different from null although test-day milk decreased by 0.74 kg per day for each unit increase of log2-transformed SCC. These results highlight the importance of milk losses that are mediated by an increase in SCC during mammary infection and the feasibility of decomposing total milk loss into its direct and indirect components. PMID:26923826

  7. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    Science.gov (United States)

    Alekseeva, Ludmila; Rault, Lucie; Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia

    2013-01-01

    Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  8. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    Directory of Open Access Journals (Sweden)

    Ludmila Alekseeva

    Full Text Available Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  9. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Kenichi Ishii

    Full Text Available Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes into the hemocoel of honeybee (Apis mellifera L. workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics.

  10. PPARγ Expression and Function in Mycobacterial Infection: Roles in Lipid Metabolism, Immunity, and Bacterial Killing

    Directory of Open Access Journals (Sweden)

    Patricia E. Almeida

    2012-01-01

    Full Text Available Tuberculosis continues to be a global health threat, with drug resistance and HIV coinfection presenting challenges for its control. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a highly adapted pathogen that has evolved different strategies to subvert the immune and metabolic responses of host cells. Although the significance of peroxisome proliferator-activated receptor gamma (PPARγ activation by mycobacteria is not fully understood, recent findings are beginning to uncover a critical role for PPARγ during mycobacterial infection. Here, we will review the molecular mechanisms that regulate PPARγ expression and function during mycobacterial infection. Current evidence indicates that mycobacterial infection causes a time-dependent increase in PPARγ expression through mechanisms that involve pattern recognition receptor activation. Mycobacterial triggered increased PPARγ expression and activation lead to increased lipid droplet formation and downmodulation of macrophage response, suggesting that PPARγ expression might aid the mycobacteria in circumventing the host response acting as an escape mechanism. Indeed, inhibition of PPARγ enhances mycobacterial killing capacity of macrophages, suggesting a role of PPARγ in favoring the establishment of chronic infection. Collectively, PPARγ is emerging as a regulator of tuberculosis pathogenesis and an attractive target for the development of adjunctive tuberculosis therapies.

  11. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    Science.gov (United States)

    Ishii, Kenichi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) into the hemocoel of honeybee (Apis mellifera L.) workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics. PMID:24587122

  12. The importance of mobile phones in the possible transmission of bacterial infections in the community.

    Science.gov (United States)

    Bhoonderowa, A; Gookool, S; Biranjia-Hurdoyal, S D

    2014-10-01

    Mobile phones have become indispensable accessories in today's life. However, they might act as fomites as they have travelled with their owner to places such as toilets, hospitals and kitchens which are loaded with microorganisms. A cross-sectional study was carried out to isolate and identify bacteria from mobile phones of volunteers in the community. A total of 192 mobile phones from 102 males and 90 females were swabbed and cultured. The bacteria were identified by gram staining and conventional biochemical tests. A total of 176 mobile phones (91.7 %) showed bacterial contamination. Coagulase negative Staphylococcus was the most prevalent (69.3 %) followed by Micrococci (51.8 %), Klebsiella (1.5 %) and Pseudomonas (1 %). The mean colony forming units was higher among females than males (p < 0.05; 95 % CI 0.021-0.365) and higher on mobile phones which were kept in bags than in pockets (p < 0.05; 95 % CI 0.019-0.369). Furthermore, the use of phone cover was found to reduce microbial growth (OR 4.2; 95 % CI 1.423-12.39; p < 0.05). Significant associations were also found between bacterial growth and female participants, agricultural workers, mobile phones older than 6 months and sharing of mobile phones (p < 0.05). Mobile phones from the community carry potential pathogens. Cleaning of mobile phones should be encouraged and should be preferably stored in pockets or carry cases.

  13. [Pediatric Patient with anaerobic Bacterial Meningitis Who was Infected through a Spinal Congenital Dermal Sinus Route].

    Science.gov (United States)

    Okui, Hideyuki; Fukasawa, Chie; Tokutake, Shoko; Takei, Haruka; Sato, Junichi; Hoshino, Tadashi

    2016-05-01

    We report the case of a pediatric patient in whom a spinal congenital dermal sinus was detected after the onset of anaerobic bacterial meningitis. The patient was a 4-month-old boy. He had a recurrent fever for 2 weeks before admission. On admission, he presented with a convulsive status and a bulging anterior fontanel. The previously consulted physician had made a diagnosis of bacterial meningitis. Spinal fluid cultures tested positive for Peptoniphilus asaccharolyticus. Magnetic resonance imaging (MRI) showed a spinal subdural abscess and cranial subdural hydrops; therefore, the patient was transported to our hospital for surgical treatment. A sacral dimple was noted on his lower back, and an MRI showed a spinal congenital dermal sinus. Antimicrobial therapy, cranial subdural aspiration, dermal sinus excision, and drainage were performed. He was discharged on the 60th hospital day. When pathogens such as Staphylococcus aureus or Escherichia coli, Proteus sp. or anaerobic bacteria invade through a dermal sinus, it can result in meningitis. Involvement of a dermal sinus should be suspected when meningitis is caused by these pathogens or when recurrent meningitis occurs. PMID:27529968

  14. Periodontal diseases as bacterial infection Las enfermedades periodontales como infecciones bacterianas

    Directory of Open Access Journals (Sweden)

    A. Bascones Martínez

    2005-12-01

    Full Text Available The periodontal disease is conformed by a group of illnesses affecting the gums and dental support structures. They are caused by certain bacteria found in the bacterial plaque. These bacteria are essential to the onset of illness; however, there are predisposing factors in both the host and the microorganisms that will have an effect on the pathogenesis of the illness. Periodontopathogenic bacterial microbiota is needed, but by itself, it is not enough to cause the illness, requiring the presence of a susceptible host. These diseases have been classified as gingivitis, when limited to the gums, and periodontitis, when they spread to deeper tissues. Classification of periodontal disease has varied over the years.The one used in this work was approved at the International Workshop for a Classification of Periodontal Diseases and Conditions, held in 1999. This study is an overview of the different periodontal disease syndromes. Later, the systematic use of antibiotic treatment consisting of amoxicillin, amoxicillinclavulanic acid, and metronidazole as first line coadjuvant treatment of these illnesses will be reviewed.

  15. Bacterial-binding chitosan microspheres for gastric infection treatment and prevention.

    Science.gov (United States)

    Gonçalves, Inês C; Magalhães, Ana; Fernandes, Mariana; Rodrigues, Inês V; Reis, Celso A; Martins, M Cristina L

    2013-12-01

    Helicobacter pylori (H. pylori) colonizes the gastric mucosa of over 50% of the world population, causing several pathologies, such as gastric ulcers and gastric cancer. Since current antibiotic treatments are inefficient in 20% of cases alternative therapies are needed. This work reports the ability of chitosan microspheres to adhere to H. pylori and prevent/remove H. pylori colonization. Adhesion of H. pylori strains with different functional adhesins (BabA and/or SabA) to chitosan microspheres (diameter 167 ± 27 μm) occurs at both pH 2.6 and 6.0, but is higher at pH 6.0. Bacterial adhesion to a gastric cell line expressing sialylated carbohydrates (SabA receptors) was performed at the same pH values using H. pylori strains with and without SabA. At both pH values addition of microspheres to gastric cells before and after pre-incubation with H. pylori decreased bacterial adhesion to cells. Furthermore, the chitosan microspheres were non-cytotoxic. These findings reveal the potential of chitosan microspheres as an alternative or complementary treatment for H. pylori gastric eradication or prevention of H. pylori colonization.

  16. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland.

    Science.gov (United States)

    Stefaniuk, E; Suchocka, U; Bosacka, K; Hryniewicz, W

    2016-08-01

    Urinary tract infections (UTIs) are some of the most common infections in both community and hospital settings infections. With their high rate of incidence, recurrence, complications, diverse etiologic agents, as well as growing antibiotic resistance, UTIs have proven to be a serious challenge for medical professionals. The aim of this study was to obtain data on the susceptibility patterns of pathogens responsible for UTIs in Poland to currently used antibiotics. A total of 396 bacterial isolates were collected between March and May 2013 from 41 centers in all regions of Poland. The majority of isolates were from adult patients (96.2 %); 144 (37.8 %) patients were diagnosed with uncomplicated UTI, while the remaining 237 (62.2 %) had a complicated infection. The most prevalent pathogen was Escherichia coli (71.4 %), followed by Klebsiella spp. (10.8 %) and the Proteae group (7.6 %). Escherichia coli was responsible for 80.6 % of cases of uncomplicated and 65.8 % of complicated infections. Only 65.8 % of E. coli isolates were susceptible to ciprofloxacin (uncomplicated 75.9 %, complicated 58.3 %), 64.0 % to nitrofurantoin (67.2 %, 62.8 %), 65.1 % to trimethoprim/sulfamethoxazole (68.1 %, 62.8 %), and 66.4 % to fosfomycin (77.6 %, 62.2 %). Among E. coli isolates from all UTIs, only 43.4 % were susceptible to ampicillin, with 47.4 % from uncomplicated compared with 40.4 % from complicated infections; 88.2 % to amoxicillin/clavulanic acid (91.4 % vs. 85.9 % complicated); 90.1 % to cefuroxime (93.1 %, 87.8 %); and 94.1 % to cefotaxime (98.2 %, 91.0 %). Thirty-five strains (10.4 %) were capable of producing extended-spectrum β-lactamases (ESBLs). This study demonstrates an increase in multidrug-resistant strains, especially among the leading pathogens associated with UTIs, including E. coli, Klebsiella spp., and Proteus spp. PMID:27189078

  17. Country-to-country transfer of patients and the risk of multi-resistant bacterial infection.

    Science.gov (United States)

    Rogers, Benjamin A; Aminzadeh, Zohreh; Hayashi, Yoshiro; Paterson, David L

    2011-07-01

    Management of patients with a history of healthcare contact in multiple countries is now a reality for many clinicians. Leisure tourism, the burgeoning industry of medical tourism, military conflict, natural disasters, and changing patterns of human migration may all contribute to this emerging epidemiological trend. Such individuals may be both vectors and victims of healthcare-associated infection with multiresistant bacteria. Current literature describes intercountry transfer of multiresistant Acinetobacter spp and Klebsiella pneumoniae (including Klebsiella pneumoniae carbapenemase- and New Delhi metallo-β-lactamase-producing strains), methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and hypervirulent Clostridium difficile. Introduction of such organisms to new locations has led to their dissemination within hospitals. Healthcare institutions should have sound infection prevention strategies to mitigate the risk of dissemination of multiresistant organisms from patients who have been admitted to hospitals in other countries. Clinicians may also need to individualize empiric prescribing patterns to reflect the risk of multiresistant organisms in these patients. PMID:21653302

  18. Bacterial Respiratory Tract Infections are Promoted by Systemic Hyperglycemia after Severe Burn Injury in Pediatric Patients

    Science.gov (United States)

    Kraft, Robert; Herndon, David N; Mlcak, Ronald P; Finnerty, Celeste C; Cox, Robert A; Williams, Felicia N; Jeschke, Marc G

    2014-01-01

    Background Burn injuries are associated with hyperglycemia leading to increased incidence of infections with pneumonia being one of the most prominent and adverse complication. Recently, various studies in critically ill patients indicated that increased pulmonary glucose levels with airway/blood glucose threshold over 150 mg/dl lead to an overwhelming growth of bacteria in the broncho-pulmonary system, subsequently resulting in an increased risk of pulmonary infections. The aim of the present study was to determine whether a similar cutoff value exists for severely burned pediatric patients. Methods One-hundred six severely burned pediatric patients were enrolled in the study. Patients were divided in two groups: high (H) defined as daily average glucose levels >75% of LOS >150 mg/dl), and low (L) with daily average glucose levels >75% of the LOS <150 mg/dl). Incidences of pneumonia, atelectasis, and acute respiratory distress syndrome (ARDS) were assessed. Incidence of infections, sepsis, and respiratory parameters were recorded. Blood was analyzed for glucose and insulin levels. Statistical analysis was performed using Student’s t-test and chi-square test. Significance was set at p<0.05. Results Patient groups were similar in demographics and injury characteristics. Pneumonia in patients on the mechanical ventilation (L: 21% H: 32%) and off mechanical ventilation (L: 5% H: 15%), as well as ARDS were significantly higher in the high group (L: 3% H: 19%), p<0.05, while atelectasis was not different. Patients in the high group required significantly longer ventilation compared to low patients (p<0.05). Furthermore, incidence of infection and sepsis were significantly higher in the high group, p<0.05. Conclusion Our results indicate that systemic glucose levels over 150 mg/dl are associated with a higher incidence of pneumonia confirming the previous studies in critically ill patients. PMID:24074819

  19. Bacterial Isolation and their antibiogram from non-specific infection in poultry of Marathwada region

    Directory of Open Access Journals (Sweden)

    M.A.Siddiqui

    2008-04-01

    Full Text Available A total of 103 samples of poultry of different age groups of non specific infections were tested. The cultural examination revealed presence of the organisms in descending order E. coli, Staphylococci, Enterobactor, Pseudomonas, Bacillus, Streptococci and Klebsiella. Antibiogram of these samples showed Chloramphenicol, Gentamicin and Ampicillin as most effective antibiotics while Doxycycline, Streptomycin and Oxytetracycline are moderately effective. [Veterinary World 2008; 1(2.000: 52-53

  20. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa

    OpenAIRE

    Wu, Shimei; Liu, Ge; Jin, Weihua; Xiu, Pengyuan; Sun, Chaomin

    2016-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors, thus leading to major problems in many fields, such as clinical infection, food contamination, and marine biofouling. In this study, we report the purification and characterization of an exopolysaccharide EPS273 from the culture supernatant of marine bacterium P. stutzeri 273. The exopolysaccharide EPS273 not only effectively inhibits biofilm formation but also disperses preformed b...

  1. Clinical severity of Mycoplasma pneumoniae (MP infection is associated with bacterial load in oropharyngeal secretions but not with MP genotype

    Directory of Open Access Journals (Sweden)

    Widell Anders

    2010-02-01

    Full Text Available Abstract Background Disease severity in Mycoplasma pneumoniae (MP infection could potentially be related to bacterial factors such as MP genotype (MP1 or MP2; distinguished by different adhesions proteins or bacterial load in airway secretions. We have compared these parameters in patients who were hospitalized for MP pneumonia, with outpatients with mild MP disease. Methods MP bacterial load was measured by real-time PCR in 45 in- and outpatients ("clinical study group" in whom MP DNA had been detected in oropharyngeal secretions by PCR. In addition, genotype and phylogenetic relationships were determined. The phylogenetical assessment was done by partial DNA sequencing of the P1 gene on isolates from 33 patients in the clinical study-group where sufficient DNA was available. The assessment was further extended to isolates from 13 MP-positive family members and 37 unselected MP positive patients from the two subsequent years and two different geographical locations. In total 83 strains were molecular characterized. Results Mean MP loads were significantly higher in 24 hospitalized patients than in 21 outpatients (1600 vs. 170 genomic equivalents/μL, p = 0.009. This difference remained significant after adjustment for age and days between disease onset and sampling. Hospitalized patients also had higher C-reactive protein levels. Mean levels were 188 vs 20 mg/L (p = 0,001. The genotype assessment showed MP genotype 1 in 17 of the 33 sequenced strains from the clinical study-group, and type 2 in 16 of these patients. Within each genotype, sequence differences were minimal. No association between disease severity and MP genotype was observed. In the extended genotype assessment, MP1 was found in similar proportions. In family contacts it was found in 53% and among patients from the two subsequent years 53% and 40%. Conclusions A higher MP bacterial load in throat secretions at diagnosis was associated with more advanced respiratory disease in

  2. Bacterial profile and antimicrobial susceptibility pattern in catheter related nosocomial infections.

    Directory of Open Access Journals (Sweden)

    Tullu M

    1998-01-01

    Full Text Available This prospective study was carried out over a period of 6 months in the Paediatric Intensive Care Unit (PICU of a tertiary care teaching hospital. The aim of the study was to determine the organisms causing catheter related nosocomial infections in the PICU and to study their antimicrobial susceptibility pattern. Patients with endotracheal intubation, indwelling urinary catheters and central venous catheters (CVC/venous cutdown catheters were included in the study. Colonization of the endotracheal tube, urinary catheter related infections (UCRI and colonization of the CVC/venous cutdown catheters was studied. E. coli was the commonest organism colonizing the endotracheal tube tip with maximum susceptibility to cefotaxime and amikacin. E. coli was also was the commonest organism causing UCRI with maximum susceptibility to nitrofurantoin and amikacin. Acinetobacter was the commonest organism colonizing the CVC/venous cutdown catheters with maximum susceptibility to ciprofloxacin. All these sites of catheter related infections considered together, E. coli and Klebsiella were the commonest nosocomial organisms. Both had maximum susceptibility to amikacin. Methicillin resistant Staphylococcus aureus (MRSA was isolated only from one culture. All the organisms had a poor susceptibility to cefazolin and amoxycillin. A knowledge of the resident microbial flora and their antimicrobial susceptibility pattern is necessary for formulating a rational antibiotic policy in an ICU.

  3. Bacterial Respiratory Tract Infections are Promoted by Systemic Hyperglycemia after Severe Burn Injury in Pediatric Patients

    Science.gov (United States)

    Kraft, Robert; Herndon, David N; Mlcak, Ronald P; Finnerty, Celeste C; Cox, Robert A; Williams, Felicia N; Jeschke, Marc G

    2014-01-01

    Background Burn injuries are associated with hyperglycemia leading to increased incidence of infections with pneumonia being one of the most prominent and adverse complication. Recently, various studies in critically ill patients indicated that increased pulmonary glucose levels with airway/blood glucose threshold over 150 mg/dl lead to an overwhelming growth of bacteria in the broncho-pulmonary system, subsequently resulting in an increased risk of pulmonary infections. The aim of the present study was to determine whether a similar cutoff value exists for severely burned pediatric patients. Methods One-hundred six severely burned pediatric patients were enrolled in the study. Patients were divided in two groups: high (H) defined as daily average glucose levels >75% of LOS >150 mg/dl), and low (L) with daily average glucose levels >75% of the LOS mechanical ventilation (L: 21% H: 32%) and off mechanical ventilation (L: 5% H: 15%), as well as ARDS were significantly higher in the high group (L: 3% H: 19%), p<0.05, while atelectasis was not different. Patients in the high group required significantly longer ventilation compared to low patients (p<0.05). Furthermore, incidence of infection and sepsis were significantly higher in the high group, p<0.05. Conclusion Our results indicate that systemic glucose levels over 150 mg/dl are associated with a higher incidence of pneumonia confirming the previous studies in critically ill patients. PMID:24074819

  4. Infecton is not specific for bacterial osteo-articular infective pathology

    Energy Technology Data Exchange (ETDEWEB)

    Dumarey, Nicolas; Blocklet, Didier; Schoutens, Andre [Division of Nuclear Medicine, Universite Libre de Bruxelles, Brussels (Belgium); Appelboom, Thierry; Tant, Laure [Division of Rheumatology, Universite Libre de Bruxelles, Brussels (Belgium)

    2002-04-01

    The aim of this study was to re-examine, by retrospective analysis of our case material, the specificity and sensitivity of technetium-99m ciprofloxacin scan in discriminating between infection and other conditions. {sup 99m}Tc-ciprofloxacin scintigraphy was performed in 71 patients: 30 patients referred for suspicion of osteomyelitis (OM) or septic arthritis (SA) (group 1) and 41 controls (group 2). Imaging was performed at 4 h post injection and, when possible, at 8 or 24 h post injection. Tracer uptake was visually assessed in different joint groups, and in the sites suspicious for infection. Several soft tissue sites were also evaluated. In the group referred for osteo-articular infection, we found a lower specificity (54.5%) than has previously been reported in the literature. Evaluation of tracer uptake at late imaging did not improve discrimination between sterile and non-sterile inflammation. Additionally, articular uptake was seen in many control patients. Infecton uptake in growth cartilage, thyroid gland, vascular pool, lungs, liver and intestines is discussed. (orig.)

  5. Cerebrospinal fluid analysis, predictors of bacterial meningitis: a study in 312 patients with suspected meningial infection

    Institute of Scientific and Technical Information of China (English)

    Seyed Mohammad Alavi; Naser Moshiri

    2009-01-01

    Objective:Patients with cerebrospinal fluid (CSF) pleocytosis are routinely admitted to the hospital and treated with parenteral antibiotics, although few have bacterial meningitis (BM). The aim of this study was to evaluate predictors to dif-ferentiate BM from aseptic meningitis (ASM). Methods:The study was conducted in Razi hospital, a training center affiliated to Ahvaz Joundishapoor University of Medical Sciences in Iran. And all patients were 18 years old or above and were treated in the hospital between 2003 and 2007. Data of those who had meningitis, tested as CSF pleocytosis but had not received antibiotic treatment before lumbar puncture were retrospectively analyzed. Results: Among 312 patients with CSF pleocytosis, two hundred fifteen (68.9%) had BM and ninety seven (31.1%) had ASM. The mean age for patients with BM was (34.7±17.7) years (P=0.22, NS). Sixty percent of the BM cases and 61.2% of the ASM cases occurred in men (P=0.70, NS). We identified the following predictors of BM:CSF-WBC count > 100 per micro liter, CSF-glucose level 80 mg/dL. Sensitivity, specificity, PPV, NPV of these predictors, and LR for BM are 86.5% ,52.6% ,80.2%, 63.7% and 104. 1 for CSF-WBC count and 72.1%, 83.5%, 90.6% ,57.4% and 164.2% for CSF glucose, and 49.7%, 91.8%, 93.4% ,45. 2% and 104.5% for CSF protein. Conclusion:The CSF WBC count should not be used alone to rule out bacterial meningitis. When it is combined with other factors such as CSF glucose and protein improved decision making in patients with suspected BM may occur.

  6. The prophylactic effect of ceftazidime on early bacterial infection after autologous peripheral blood stem cell transplantation: a prospective randomized controlled trial

    Institute of Scientific and Technical Information of China (English)

    段明辉

    2013-01-01

    Objective To evaluate the efficacy and safety of prophylactic ceftazidime on early bacterial infection in APBSCT recipients during neutropenia.Methods APBSCT recipients were prospectively randomly assigned to intravenous ceftazidime treatment group and control group (no prophylaxis of antibiotics) .The treatment started from the first day until resolution of neutropenia or the

  7. The diagnostic value of CRP, IL-8, PCT, and sTREM-1 in the detection of bacterial infections in pediatric oncology patients with febrile neutropenia

    NARCIS (Netherlands)

    Miedema, Karin G. E.; de Bont, Eveline S. J. M.; Elferink, Rob F. M. Oude; van Vliet, Michel J.; Nijhuis, Claudi S. M. Oude; Kamps, Willem A.; Tissing, Wim J. E.

    2011-01-01

    In this study, we evaluated C-reactive protein (CRP), interleukin (IL)-8, procalcitonin (PCT), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as predictors for bacterial infection in febrile neutropenia, plus their usefulness in febrile neutropenia during chemotherapy-induced

  8. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F; Velvis, H; Zachow, C; Berg, G; Van Elsas, JD; Sessitsch, A

    2006-01-01

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4 lysozyme

  9. Bacterial vaginosis, alterations in vaginal flora and HIV genital shedding among HIV-1-infected women in Mozambique

    Directory of Open Access Journals (Sweden)

    Robert D Kirkcaldy

    2011-05-01

    Full Text Available Objectives. We investigated whether abnormal vaginal flora, including bacterial vaginosis (BV, are associated with detection of cervical HIV-1 RNA among HIV-infected women in Mozambique. Methods. We obtained clinical data and vaginal specimens from HIV-infected women registering for their first visit at one of two HIV care clinics in Mozambique. We compared women with detectable cervical HIV viral load (≥40 copies/ml with women with undetectable cervical HIV. Results. We enrolled 106 women. Women with abnormal vaginal flora (intermediate Nugent scores, 4 - 6 were more likely to have detectable cervical HIV RNA then women with normal vaginal flora (adjusted odds ratio 7.2 (95% confidence interval 1.8 - 29.1, adjusted for CD4 count. Women with BV had a non-significantly higher likelihood of detectable cervical HIV than women with normal flora. Conclusions. Abnormal vaginal flora were significantly associated with cervical HIV expression. Further research is needed to confirm this relationship.

  10. Increasing secondary bacterial infections with Enterobacteriaceae harboring blaCTX-M-15 and blaCMY-6 in patients with bronchogenic carcinoma:an emerging point of concern

    Institute of Scientific and Technical Information of China (English)

    Mohammed Shahid; Abida Malik; Rakesh Bhargava

    2011-01-01

    Objective: To look for secondary bacterial infections in bronchogenic carcinoma (BCA) with resistant organisms harboring bla genes considering the paucity of relevant studies. Methods:A total of 137 confirmed cases of BCA and 34 healthy volunteers were studied for the occurrence and prevalence of blaCTX-M and and blaAmpC harboring-enterobacteriaceae. A subset of these patients (n=69) was previously reported for the secondary infection with the Aspergillus species. Bronchoalveolar lavages (BAL) were subjected for bacterial and fungal cultures and the bacterial isolates were screened by multiplex PCRs for the presence of blaCTX-M and blaAmpC. The isolates were also screened for the association of insertion sequence (IS26) by PCR and characterized by RAPD for any clonal relatedness. Results: A total of 143 bacterial isolates were obtained from 137 BAL specimens of BCA patients. The Enterobacteriaceae-isolates were multidrug-resistant showing concomitant resistance to fluoroquinolones and aminoglycosides. Both blaCTX-M and blaAmpC of CIT family were detected in 77.4% and 27.4% isolates, respectively. Sequencing revealed the presence of blaCTX-M-15 and blaCMY-6. Twenty one percent of the isolates were simultaneously harboring blaampC and blaCTX-M-15. IS26 PCR and RAPD typing revealed the presence of diverse bacterial population but no predominant clone was identified. The present study also suggests strong association of aspergillosis with lung cancer and further strengthens the potential use of non-validated serological tests suggested earlier. Conclusions: We emphasize that all patients of bronchogenic carcinoma should also be screened for secondary bacterial infections, along with secondary fungal infections, so as to introduce early and specific antimicrobial therapy and to prevent unwanted deaths.

  11. Deciphering the bacterial microbiome of citrus plants in response to 'Candidatus Liberibacter asiaticus'-infection and antibiotic treatments.

    Directory of Open Access Journals (Sweden)

    Muqing Zhang

    Full Text Available The bacterial microbiomes of citrus plants were characterized in response to 'Candidatus Liberibacter asiaticus' (Las-infection and treatments with ampicillin (Amp and gentamicin (Gm by Phylochip-based metagenomics. The results revealed that 7,407 of over 50,000 known Operational Taxonomic Units (OTUs in 53 phyla were detected in citrus leaf midribs using the PhyloChip™ G3 array, of which five phyla were dominant, Proteobacteria (38.7%, Firmicutes (29.0%, Actinobacteria (16.1%, Bacteroidetes (6.2% and Cyanobacteria (2.3%. The OTU62806, representing 'Candidatus Liberibacter', was present with a high titer in the plants graft-inoculated with Las-infected scions treated with Gm at 100 mg/L and in the water-treated control (CK1. However, the Las bacterium was not detected in the plants graft-inoculated with Las-infected scions treated with Amp at 1.0 g/L or in plants graft-inoculated with Las-free scions (CK2. The PhyloChip array demonstrated that more OTUs, at a higher abundance, were detected in the Gm-treated plants than in the other treatment and the controls. Pairwise comparisons indicated that 23 OTUs from the Achromobacter spp. and 12 OTUs from the Methylobacterium spp. were more abundant in CK2 and CK1, respectively. Ten abundant OTUs from the Stenotrophomonas spp. were detected only in the Amp-treatment. These results provide new insights into microbial communities that may be associated with the progression of citrus huanglongbing (HLB and the potential effects of antibiotics on the disease and microbial ecology.

  12. Bacterial isolate and antibacterial resistance pattern of ear infection among patients attending at Hawassa university referral Hospital, Hawassa, Ethiopia

    Directory of Open Access Journals (Sweden)

    Mesfin Worku

    2014-01-01

    Full Text Available Background: Ear infection is highly prevalent worldwide. In the older child, long-standing Chronic Supparative Ottitis Media can result in a severe conductive hearing loss with significant drawbacks in learning, communication, and social adjustment. It is associated with hearing impairment, death, and severe disability due to central nervous system involvement in developing countries. Objective: To determine the bacteriological profile and antibacterial resistance of ear infection from patients seen at Ear Nose and Throat clinic of Hawassa University Referral Hospital. Materials and Methods: A cross-sectional study was conducted at clinic of Hawassa University Referal Hospital. Result: A total 117 study subjects included in this study from June 2013 to October 2013. Among these, 57 (48.7% were male and 53 (45.3% were children. Bacteria identified from positive ear swabs were: Staphylococcus aureus 24 (20.5%, Pseudomonas aeroginosa 17 (14.5%, Klebsiella species 10 (8.5%, Proteus species 7 (6.0%, Entrobacter species 4 (3.4%, Escherchia coli 3 (2.6%, Citrobacter species 2 (1.7%, and Providentia species 2 (1.7%. The overall sensitivity and resistance profile of antibacterial agent, Amikacin (90.0% and Gentamycin (89.1 showed high level of antibacterial effect on all identified bacterial species. On other hand, all isolates were highly resistance to ampicilin (87.5%, oxacillin (84.0%, ceftriaxone (82.8%, cephalotin (81.4%, and penicillin G (73.8%. Conclusion: Most of the isolates were resistant to commonly prescribed drug in the area. However, Amikacin and Gentamycin were highly active against the isolated organism, whereas Ciprofloxacilin was moderately active. Therefore, culture and susceptibility test is vital for appropriate management of ear infection in study area.

  13. Remote screening and direct control of the bacterial infection of gardens

    Science.gov (United States)

    Starodub, Nickolaj F.; Shavanova, Kateryna E.; Son'ko, Roman V.

    2014-10-01

    In last time gardens are often at the dangerous of viruses and bacteria infections. To preserve not only the coming harvest, but, in generally, to provide stability and growing horticultures the development of new generation of the analytical techniques for remote express screening vegetative state arrays and direct control of the appropriate infection if appearance of its maybe expected on the basis of previous surveys are very actually and important. For continuous monitoring we propose the application of the complex of the optical analytical devices as "Floratest" and "Plasmatest" (both produced in Ukraine) which is able to control step by step general situation with vegetable state and verify concrete situation with infection. General screening is accomplished on the control of the intensity of chlorophyll induction (IChF), namely, registration of so called Kautsky curve which testifies about physiological mechanisms of energy generation, accumulation and effective ways of its realization in cells. The measuring may be done by direct way on the number of individual vegetables and remote screening of massive with transferring registered signal direct in the laboratory. Next step of control connected with the application of the surface plasmon resonance (SPR) based immune biosensor which is able to determine concrete bacteria (for example, Erwinia amilovora) with the limit detection about 0.2 μg/ml, the overall time of the analysis within 30 min (5 min of the duration of one measurement). The traditional ELISA-method showed the sensitivity to this pathogen about 0.5 μg/ml, overall time of the analysis several hours and obligatory using additional expensive reagents.

  14. Detection of bacterial infection of agave plants by laser-induced fluorescence

    Science.gov (United States)

    Cervantes-Martinez, Jesus; Flores-Hernandez, Ricardo; Rodriguez-Garay, Benjamin; Santacruz-Ruvalcaba, Fernando

    2002-05-01

    Greenhouse-grown plants of Agave tequilana Weber var. azul were inoculated with Erwinia carotovora, the causal agent of stem soft rot. We investigated the laser-induced fluorescence (LIF) of agave plants to determine whether LIF can be used as a noninvasive sensing tool for pathological studies. The LIF technique was also investigated as a means of detecting the effect of the polyamine biosynthesis inhibitor beta-hydroxyethylhydrazine as a bactericide against the pathogenic bacterium Erwinia carotovora. A He-Ne laser at 632.8 nm was used as the excitation source, and in vivo fluorescence emission spectra were recorded in the 660-790-range. Fluorescence maxima were at 690 and 740 nm. The infected plants that were untreated with the bactericide showed a definite increase in fluorescence intensity at both maxima within the first three days after infection. Beginning on the fifth day, a steady decrease in fluorescence intensity was observed, with a greater effect at 740 than at 690 nm. After 30 days there was no fluorescence. The infected plants that had been treated with the bactericide showed no significant change in fluorescence compared with that of the uninfected plants. The ratio of fluorescence intensities was determined to be F 690 nm/F 740 nm for all treatments. These studies indicate that LIF measurements of agave plants may be used for the early detection of certain types of disease and for determining the effect of a bactericide on bacteria. The results also showed that fluorescence intensity ratios can be used as a reliable indicator of the progress of disease.

  15. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  16. Why children with severe bacterial infection die: a population-based study of determinants and consequences of suboptimal care with a special emphasis on methodological issues.

    Directory of Open Access Journals (Sweden)

    Elise Launay

    Full Text Available INTRODUCTION: Suboptimal care is frequent in the management of severe bacterial infection. We aimed to evaluate the consequences of suboptimal care in the early management of severe bacterial infection in children and study the determinants. METHODS: A previously reported population-based confidential enquiry included all children (3 months- 16 years who died of severe bacterial infection in a French area during a 7-year period. Here, we compared the optimality of the management of these cases to that of pediatric patients who survived a severe bacterial infection during the same period for 6 types of care: seeking medical care by parents, evaluation of sepsis signs and detection of severe disease by a physician, timing and dosage of antibiotic therapy, and timing and dosage of saline bolus. Two independent experts blinded to outcome and final diagnosis evaluated the optimality of these care types. The effect of suboptimal care on survival was analyzed by a logistic regression adjusted on confounding factors identified by a causal diagram. Determinants of suboptimal care were analyzed by multivariate multilevel logistic regression. RESULTS: Suboptimal care was significantly more frequent during early management of the 21 children who died as compared with the 93 survivors: 24% vs 13% (p = 0.003. The most frequent suboptimal care types were delay to seek medical care (20%, under-evaluation of severity by the physician (20% and delayed antibiotic therapy (24%. Young age (under 1 year was independently associated with higher risk of suboptimal care, whereas being under the care of a paediatric emergency specialist or a mobile medical unit as compared with a general practitioner was associated with reduced risk. CONCLUSIONS: Suboptimal care in the early management of severe bacterial infection had a global independent negative effect on survival. Suboptimal care may be avoided by better training of primary care physicians in the specifics of

  17. New Insight on Epidemiology and Management of Bacterial Bloodstream Infection in Patients with Hematological Malignancies.

    Science.gov (United States)

    Menzo, Sara Lo; la Martire, Giulia; Ceccarelli, Giancarlo; Venditti, Mario

    2015-01-01

    Bloodstream infections (BSI) are a significant cause of morbidity and mortality in onco-hematologic patients. The Gram-negative bacteria were the main responsible for the febrile neutropenia in the sixties; their impact declined due to the use of fluoroquinolone prophylaxis. This situation was followed by the gradual emergence of Gram-positive bacteria also following the increased use of intravascular devices and the introduction of new chemotherapeutic strategies. In the last decade, the Gram-negative etiology is raising again because of the emergence of resistant strains that make questionable the usefulness of current strategies for prophylaxis and empirical treatment. Gram-negative BSI attributable mortality is relevant, and the appropriate empirical treatment significantly improves the prognosis; on the other hand the adequate delayed treatment of Gram-positive BSI does not seem to have a high impact on survival. The clinician has to be aware of the epidemiology of his institution and colonizations of his patients to choose the most appropriate empiric therapy. In a setting of high endemicity of multidrug-resistant infections also the choice of targeted therapy can be a challenge, often requiring strategies based on off-label prescriptions and low grade evidence. In this review, we summarize the current evidence for the best targeted therapies for difficult to treat bacteria BSIs and future perspectives in this topic. We also provide a flow chart for a rational approach to the empirical treatment of febrile neutropenia in a multidrug resistant, high prevalence setting. PMID:26185609

  18. Transcriptome analysis reveals novel genes involved in nonhost response to bacterial infection in tobacco.

    Science.gov (United States)

    Daurelio, Lucas Damián; Petrocelli, Silvana; Blanco, Francisca; Holuigue, Loreto; Ottado, Jorgelina; Orellano, Elena Graciela

    2011-03-01

    Plants are continuously exposed to pathogen challenge. The most common defense response to pathogenic microorganisms is the nonhost response, which is usually accompanied by transcriptional changes. In order to identify genes involved in nonhost resistance, we evaluated the tobacco transcriptome profile after infection with Xanthomonas axonopodis pv. citri (Xac), a nonhost phytopathogenic bacterium. cDNA-amplified fragment length polymorphism was used to identify differentially expressed transcripts in tobacco leaves infected with Xac at 2, 8 and 24h post-inoculation. From a total of 2087 transcript-derived fragments (TDFs) screened (approximately 20% of the tobacco transcriptome), 316 TDFs showed differential expression. Based on sequence similarities, 82 differential TDFs were identified and assigned to different functional categories: 56 displayed homology to genes with known functions, 12 to proteins with unknown functions and 14 did not have a match. Real-time PCR was carried out with selected transcripts to confirm the expression pattern obtained. The results reveal novel genes associated with nonhost resistance in plant-pathogen interaction in tobacco. These novel genes could be included in future strategies of molecular breeding for nonhost disease resistance. PMID:20828873

  19. Influence of oxidative homeostasis on bacterial density and cost of infection in Drosophila-Wolbachia symbioses.

    Science.gov (United States)

    Monnin, D; Kremer, N; Berny, C; Henri, H; Dumet, A; Voituron, Y; Desouhant, E; Vavre, F

    2016-06-01

    The evolution of symbioses along the continuum between parasitism and mutualism can be influenced by the oxidative homeostasis, that is the balance between reactive oxygen species (ROS) and antioxidant molecules. Indeed, ROS can contribute to the host immune defence to regulate symbiont populations, but are also toxic. This interplay between ROS and symbiosis is notably exemplified by recent results in arthropod-Wolbachia interactions. Wolbachia are symbiotic bacteria involved in a wide range of interactions with their arthropods hosts, from facultative, parasitic associations to obligatory, mutualistic ones. In this study, we used Drosophila-Wolbachia associations to determine whether the oxidative homeostasis plays a role in explaining the differences between phenotypically distinct arthropod-Wolbachia symbioses. We used Drosophila lines with different Wolbachia infections and measured the effects of pro-oxidant (paraquat) and antioxidant (glutathione) treatments on the Wolbachia density and the host survival. We show that experimental manipulations of the oxidative homeostasis can reduce the cost of the infection through its effect on Wolbachia density. We discuss the implication of this result from an evolutionary perspective and argue that the oxidative homeostasis could underlie the evolution of tolerance and dependence on Wolbachia. PMID:26999590

  20. Multidrug-resistant Escherichia coli soft tissue infection investigated with bacterial whole genome sequencing

    Science.gov (United States)

    Buchanan, Ruaridh; Stoesser, Nicole; Crook, Derrick; Bowler, Ian C J W

    2014-01-01

    A 45-year-old man with dilated cardiomyopathy presented with acute leg pain and erythema suggestive of necrotising fasciitis. Initial surgical exploration revealed no necrosis and treatment for a soft tissue infection was started. Blood and tissue cultures unexpectedly grew a Gram-negative bacillus, subsequently identified by an automated broth microdilution phenotyping system as an extended-spectrum β-lactamase producing Escherichia coli. The patient was treated with a 3-week course of antibiotics (ertapenem followed by ciprofloxacin) and debridement for small areas of necrosis, followed by skin grafting. The presence of E. coli triggered investigation of both host and pathogen. The patient was found to have previously undiagnosed liver disease, a risk factor for E. coli soft tissue infection. Whole genome sequencing of isolates from all specimens confirmed they were clonal, of sequence type ST131 and associated with a likely plasmid-associated AmpC (CMY-2), several other resistance genes and a number of virulence factors. PMID:25331151

  1. Bacterial Profile of Blood Stream Infection and Antibiotic Resistance Pattern of Isolates.

    Directory of Open Access Journals (Sweden)

    Usha Arora, Pushpa Devi

    2007-10-01

    Full Text Available Blood samples from 2542 clinically diagnosed cases of septicemia were processed. Out of these 946(76.55% were from Pediatric Department and rest from other Departments. Growth was obtained in509(20.02% cases . Candida spp were isolated from 23 (4.57 cases Out of 486 bacterial isolates 52.67% were gram positive bacteria whereas 47.33% were gram negative bacilli . Staph aureus 133 (27.37%wasthe predominant organisms followed by CONS 98 (20.1%. Amongst gram negative organismsEnterobacter 69 (14.19 % was the most predominant followed by Esch coli 45 (9.27 % Pseudomonas 37(7.62 % and Acinetobacter spp 34 (6.69 %. Amongst gram positive organisms maximum resistancewas seen with ampicillin (74.61% and erythromycin (69.67 %. Most of the gram negative bacilli wereMDR (71%. Maximum resistance was observed with ampicillin (86.1% cephalexin (68.07% andpiperacillin (57.71%. Most successful drugs were amikacin,gentamicin and cefotaxime. 34.35% of theisolates were ESBL producers.

  2. Prostatic inflammation induces fibrosis in a mouse model of chronic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Letitia Wong

    Full Text Available Inflammation of the prostate is strongly correlated with development of lower urinary tract symptoms and several studies have implicated prostatic fibrosis in the pathogenesis of bladder outlet obstruction. It has been postulated that inflammation induces prostatic fibrosis but this relationship has never been tested. Here, we characterized the fibrotic response to inflammation in a mouse model of chronic bacterial-induced prostatic inflammation. Transurethral instillation of the uropathogenic E. coli into C3H/HeOuJ male mice induced persistent prostatic inflammation followed by a significant increase in collagen deposition and hydroxyproline content. This fibrotic response to inflammation was accompanied with an increase in collagen synthesis determined by the incorporation of 3H-hydroxyproline and mRNA expression of several collagen remodeling-associated genes, including Col1a1, Col1a2, Col3a1, Mmp2, Mmp9, and Lox. Correlation analysis revealed a positive correlation of inflammation severity with collagen deposition and immunohistochemical staining revealed that CD45+VIM+ fibrocytes were abundant in inflamed prostates at the time point coinciding with increased collagen synthesis. Furthermore, flow cytometric analysis demonstrated an increased percentage of these CD45+VIM+ fibrocytes among collagen type I expressing cells. These data show-for the first time-that chronic prostatic inflammation induces collagen deposition and implicates fibrocytes in the fibrotic process.

  3. Capsular Sialic Acid of Streptococcus suis Serotype 2 Binds to Swine Influenza Virus and Enhances Bacterial Interactions with Virus-Infected Tracheal Epithelial Cells

    Science.gov (United States)

    Wang, Yingchao; Gagnon, Carl A.; Savard, Christian; Music, Nedzad; Srednik, Mariela; Segura, Mariela; Lachance, Claude; Bellehumeur, Christian

    2013-01-01

    Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease. Influenza virus produces a contagious infection in pigs which is frequently complicated by bacterial coinfections, leading to significant economic impacts. In this study, the effect of a preceding swine influenza H1N1 virus (swH1N1) infection of swine tracheal epithelial cells (NTPr) on the ability of S. suis serotype 2 to adhere to, invade, and activate these cells was evaluated. Cells preinfected with swH1N1 showed bacterial adhesion and invasion levels that were increased more than 100-fold compared to those of normal cells. Inhibition studies confirmed that the capsular sialic acid moiety is responsible for the binding to virus-infected cell surfaces. Also, preincubation of S. suis with swH1N1 significantly increased bacterial adhesion to/invasion of epithelial cells, suggesting that S. suis also uses swH1N1 as a vehicle to invade epithelial cells when the two infections occur simultaneously. Influenza virus infection may facilitate the transient passage of S. suis at the respiratory tract to reach the bloodstream and cause bacteremia and septicemia. S. suis may also increase the local inflammation at the respiratory tract during influenza infection, as suggested by an exacerbated expression of proinflammatory mediators in coinfected cells. These results give new insight into the complex interactions between influenza virus and S. suis in a coinfection model. PMID:24082069

  4. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  5. Polycystic kidney disease in four British shorthair cats with successful treatment of bacterial cyst infection.

    Science.gov (United States)

    Nivy, R; Lyons, L A; Aroch, I; Segev, G

    2015-09-01

    Polycystic kidney disease is the most common inherited disorder in cats. Renal cysts progressively increase in size and number, resulting in a gradual decrease in kidney function. An autosomal dominant mutation in exon 29 of the polycystin-1 gene has been identified, mostly in Persian and Persian-related breeds. This case study describes polycystic kidney disease in four British shorthair cats, of which two had the same genetic mutation reported in Persian and Persian-related cats. This likely reflects introduction of this mutation into the British shorthair breeding line because of previous outcrossing with Persian cats. An infected renal cyst was diagnosed and successfully treated in one of the cats. This is a commonly reported complication in human polycystic kidney disease, and to the authors' knowledge has not previously been reported in cats with polycystic kidney disease. PMID:25677715

  6. Polycystic kidney disease in four British shorthair cats with successful treatment of bacterial cyst infection.

    Science.gov (United States)

    Nivy, R; Lyons, L A; Aroch, I; Segev, G

    2015-09-01

    Polycystic kidney disease is the most common inherited disorder in cats. Renal cysts progressively increase in size and number, resulting in a gradual decrease in kidney function. An autosomal dominant mutation in exon 29 of the polycystin-1 gene has been identified, mostly in Persian and Persian-related breeds. This case study describes polycystic kidney disease in four British shorthair cats, of which two had the same genetic mutation reported in Persian and Persian-related cats. This likely reflects introduction of this mutation into the British shorthair breeding line because of previous outcrossing with Persian cats. An infected renal cyst was diagnosed and successfully treated in one of the cats. This is a commonly reported complication in human polycystic kidney disease, and to the authors' knowledge has not previously been reported in cats with polycystic kidney disease.

  7. NEW INSIGHT ON EPIDEMIOLOGY AND MANAGEMENT OF BACTERIAL BLOODSTREAM INFECTION IN PATIENTS WITH HEMATOLOGICAL MALIGNACIES

    Directory of Open Access Journals (Sweden)

    Sara Lo Menzo

    2015-07-01

    Full Text Available Bloodstream infections (BSI are an important cause of morbidity and mortality in onco-hematologic patients. The Gram-negative etiology was the main responsible of the febrile neutropenia in the sixties and its impact declined due to the use of fluoroquinolone prophylaxis; this situation was followed by the gradual emergence of Gram-positive bacteria also following of the increased use of intravascular devices and the introduction of new chemotherapeutic strategies. In the last decade the Gram-negative etiology is raising again because of the emergence of resistant strains that make questionable the usefulness of currentstrategies for prophylaxis and empirical treatment. Gram-negative BSI attributable mortality is relevant and the appropriate empirical treatment significantly improves the prognosis; on the other hand the delayed adequate treatment of Gram-positive BSI does not seem to have an high impact on survival. The clinician has to be aware of the epidemiology of his institution and of colonizations of his patients in order to choose the most appropriate empiric therapy. Ina setting of high endemicity of multidrug-resistant infections, even the choice of a targeted therapy can be a challenge, often requiring strategies based on off-label prescriptions and low grade evidences. In this review we summarize the current evidences for the best targeted therapies for difficult to treat bacteria BSIs and future perspectives in this topic. We also provide a flow chart for a rational approach to the empirical treatment of febrile neutropenia in a multidrug resistant high prevalence setting.

  8. Advance of Bacteriophages as Therapeutic Agents in Bacterial Infection%噬茵体制剂治疗细菌感染的研究进展

    Institute of Scientific and Technical Information of China (English)

    张娜; 李书光; 陈金龙; 王金良; 沈志强

    2011-01-01

    Bacteriophage are bacterial parasites,and the use of phage as therapeutics to treat bacterial infection effectually, particularly in an era where antibiotic resistance has become so problematic. Bacteriophagic therapy will educt positive effect in bacterial infection with further research of phage. The progress in research on antisepticize mechanism, advantage as therapeutics , research of treatment bacterial infection and research of phage lysins were reviewed in this article.%噬菌体是一类细菌依赖性病毒,可有效地治疗细菌性感染,尤其是大量耐药菌株的出现使抗生素对细菌病的治疗越来越棘手,噬菌体疗法将对细菌病的控制起更加积极的作用.作者就噬菌体抗菌机理、治疗优势、噬菌体治疗细菌感染的研究及噬菌体裂解素的研究进展进行综述.

  9. BACTERIAL UROPATHOGENS IN URINARY TRACT INFECTION AND ANTIBIOTIC SUSCEPTIBILITY PATTERN OF PATIENTS ATTENDING JNIMS HOSPITAL, IMPHAL

    Directory of Open Access Journals (Sweden)

    Urvashi

    2013-12-01

    Full Text Available ABSTR ACT : The present study was conductedto determine the antibiotic susceptibility patterns of the organism isolated from patients with urinary tract infections (UTIs . This study was carried out in the Department of Microbiology , Jawaharlal Nehru Institute of Medical Sciences (JNIMS , Imphal , Manipur for a period of one year. A total of 946 mid - stream urine samples were collected , out of which 285 (30.13% showed growth of bacteria with significant count. Escherichia coli 123(43.16% was the commonest bacteria l pathogen followed by Klebsiellapneumoniae 51(77.89% , Staphylococcus aureus 43(15.09% , Enterococcus species 26 (9.12% , Proteus species 18 (6.3% Pseudomonas aeruginosa 14 (4.9% and Coagulase negative Staphylococcus 10 (3.5% . Most of the strains of Escherichia coli , Klebsiellapneumoniae , Staphylococcusaureus showed resistant to ciprofloxaci n and norfloxacin. Sensitivity wa s highest with gentamicin and netilmicin. Enterococcus , Proteus , Pseudomonas and Coagulase negative Staphy lococcus showed resistant to cotrimaxazole and is sensitive to nitrofurantoin , gentamicin and netilmicin

  10. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections.

    Directory of Open Access Journals (Sweden)

    Nadine T Nehme

    Full Text Available BACKGROUND: Two NF-kappaB signaling pathways, Toll and immune deficiency (imd, are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. METHODOLOGY/PRINCIPAL FINDINGS: In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus, we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. CONCLUSIONS/SIGNIFICANCE: Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen.

  11. Impact of hepatic function on serum procalcitonin for the diagnosis of bacterial infections in patients with chronic liver disease: A retrospective analysis of 324 cases.

    Science.gov (United States)

    Qu, Junyan; Feng, Ping; Luo, Yan; Lü, Xiaoju

    2016-07-01

    Although procalcitonin (PCT) is a valid marker for early diagnosis of bacterial infections, it is unclear whether its accuracy in predicting bacterial infections is affected by impaired liver function. This study aimed to assess the impact of compromised liver function on the diagnostic value of PCT.This retrospective study was conducted between January 2013 and May 2015. A total of 324 patients with chronic liver disease were enrolled. Routine laboratory measurements and PCT were performed. Patients were divided into 3 groups according to clinical diagnosis: chronic hepatitis (group 1), decompensated cirrhosis (group 2), and acute-on-chronic liver failure/chronic liver failure (group 3). The correlation between PCT and liver function was analyzed. The area under the receiver operating characteristic (AUCROC) curve of PCT was analyzed according to infection status and liver function.PCT was more accurate than white blood cell count (P PCT had a moderate positive correlation with serum total bilirubin (TBIL) (r = 0.592), and a weak correlation with model for end-stage liver disease score (r = 0.483) and international normalized ratio (r = 0.389). The AUCROC and optimum thresholds of PCT and for predicting bacterial infections at different levels of TBIL were 0.907 (95% CI 0.828-0.958) and 0.38 ng/mL, respectively, for TBIL PCT was a valuable marker of bacterial infection in patients with chronic liver diseases. TBIL affected PCT threshold, so different cut-offs should be used according to different TBIL values. PMID:27472699

  12. BACTERIAL PROFILE, ANTIBIOTIC SENSITIVITY AND RESISTANCE OF LOWER RESPIRATORY TRACT INFECTIONS IN UPPER EGYPT

    Directory of Open Access Journals (Sweden)

    Gamal Agmy

    2013-09-01

    Full Text Available BACKGROUND: Lower respiratory tract infections (LRTI account for a considerable proportion of morbidity and antibiotic use. We aimed to identify the causative bacteria, antibiotic sensitivity and resistance of hospitalized adult patients due to LRTI in Upper Egypt. METHODS: A multicentre prospective study was performed at 3 University Hospitals for 3 years. Samples included sputum or bronchoalveolar lavage (BAL for staining and culture, and serum for serology. Samples were cultured on 3 bacteriological media (Nutrient, Chocolate ,MacConkey's agars.Colonies were identified via MicroScan WalkAway-96. Pneumoslide IgM kit was used for detection of atypical pathogens via indirect immunofluorescent assay. RESULTS: The predominant isolates in 360 patients with CAP were S.pneumoniae (36%, C. pneumoniae (18%, and M. pneumoniae (12%. A higher sensitivity was recorded for moxifloxacin, levofloxacin, macrolides, and cefepime. A higher of resistance was recorded for doxycycline, cephalosporins, and β-lactam-β-lactamase inhibitors. The predominant isolates in 318 patients with HAP were, methicillin-resistant Staphylococcus aureus; MRSA (23%, K. pneumoniae (14%, and polymicrobial in 12%. A higher sensitivity was recorded for vancomycin, ciprofloxacin, and moxifloxacin. Very high resistance was recorded for β-lactam-β-lactamase inhibitors and cephalosporins. The predominant organisms in 376 patients with acute exacerbation of chronic obstructive pulmonary diseases (AECOPD were H. influnzae (30%, S. pneumoniae (25%, and M. catarrhalis(18%. A higher sensitivity was recorded for moxifloxacin, macrolides and cefepime. A higher rate of resistance was recorded for aminoglycosides and cephalosporins CONCLUSIONS: The most predominant bacteria for CAP in Upper Egypt are S. pneumoniae and atypical organisms, while that for HAP are MRSA and Gram negative bacteria. For acute exacerbation of COPD,H.influnzae was the commonest organism. Respiratory quinolones

  13. DNA microarray analysis of Staphylococcus aureus causing bloodstream infection: bacterial genes associated with mortality?

    Science.gov (United States)

    Blomfeldt, A; Aamot, H V; Eskesen, A N; Monecke, S; White, R A; Leegaard, T M; Bjørnholt, J V

    2016-08-01

    Providing evidence for microbial genetic determinants' impact on outcome in Staphylococcus aureus bloodstream infections (SABSI) is challenging due to the complex and dynamic microbe-host interaction. Our recent population-based prospective study reported an association between the S. aureus clonal complex (CC) 30 genotype and mortality in SABSI patients. This follow-up investigation aimed to examine the genetic profiles of the SABSI isolates and test the hypothesis that specific genetic characteristics in S. aureus are associated with mortality. SABSI isolates (n = 305) and S. aureus CC30 isolates from asymptomatic nasal carriers (n = 38) were characterised by DNA microarray analysis and spa typing. Fisher's exact test, least absolute shrinkage and selection operator (LASSO) and elastic net regressions were performed to discern within four groups defined by patient outcome and characteristics. No specific S. aureus genetic determinants were found to be associated with mortality in SABSI patients. By applying LASSO and elastic net regressions, we found evidence suggesting that agrIII and cna were positively and setC (=selX) and seh were negatively associated with S. aureus CC30 versus non-CC30 isolates. The genes chp and sak, encoding immune evasion molecules, were found in higher frequencies in CC30 SABSI isolates compared to CC30 carrier isolates, indicating a higher virulence potential. In conclusion, no specific S. aureus genes were found to be associated with mortality by DNA microarray analysis and state-of-the-art statistical analyses. The next natural step is to test the hypothesis in larger samples with higher resolution methods, like whole genome sequencing. PMID:27177754

  14. Antimicrobial Evaluation of Bacterial Isolates from Urine Specimen of Patients with Complaints of Urinary Tract Infections in Awka, Nigeria

    Directory of Open Access Journals (Sweden)

    Perpetua A. Ekwealor

    2016-01-01

    Full Text Available Urinary tract infections (UTIs account for one of the major reasons for most hospital visits and the determination of the antimicrobial susceptibility patterns of uropathogens will help to guide physicians on the best choice of antibiotics to recommend to affected patients. This study is designed to isolate, characterize, and determine the antimicrobial susceptibility patterns of the pathogens associated with UTI in Anambra State Teaching Hospital, Amaku, Anambra State, Nigeria. Clean catch urine samples of inpatient and outpatient cases of UTI were collected and bacteriologically analyzed using standard microbiological procedures. Antibiogram was done by the Kirby-Bauer disc diffusion method. The most prevalent isolates were S. aureus (28%, E. coli (24.6%, and S. saprophyticus (20%. The antibacterial activities of the tested agents were in the order of Augmentin < Ceftazidime < Cefuroxime < Cefixime < Gentamicin < Ofloxacin < Ciprofloxacin < Nitrofurantoin. It was found that all the organisms were susceptible in varying degrees to Nitrofurantoin, Ciprofloxacin, and Ofloxacin. It was also observed that all the bacterial species except Streptococcus spp. have a Multiple Antibiotic Resistance Index (MARI greater than 0.2. For empiric treatment of UTIs in Awka locality, Nitrofurantoin, Ciprofloxacin, and Ofloxacin are the first line of choice.

  15. Bacterial microbiota profiling in gastritis without Helicobacter pylori infection or non-steroidal anti-inflammatory drug use.

    Directory of Open Access Journals (Sweden)

    Xiao-Xing Li

    Full Text Available Recent 16S ribosomal RNA gene (rRNA molecular profiling of the stomach mucosa revealed a surprising complexity of microbiota. Helicobacter pylori infection and non-steroidal anti-inflammatory drug (NSAID use are two main contributors to gastritis and peptic ulcer. However, little is known about the association between other members of the stomach microbiota and gastric diseases. In this study, cloning and sequencing of the 16S rRNA was used to profile the stomach microbiota from normal and gastritis patients. One hundred and thirty three phylotypes from eight bacterial phyla were identified. The stomach microbiota was found to be closely adhered to the mucosa. Eleven Streptococcus phylotypes were successfully cultivated from the biopsies. One to two genera represented a majority of clones within any of the identified phyla. We further developed two real-time quantitative PCR assays to quantify the relative abundance of the Firmicutes phylum and the Streptococcus genus. Significantly higher abundance of the Firmicutes phylum and the Streptococcus genus within the Firmicutes phylum was observed in patients with antral gastritis, compared with normal controls. This study suggests that the genus taxon level can largely represent much higher taxa such as the phylum. The clinical relevance and the mechanism underlying the altered microbiota composition in gastritis require further functional studies.

  16. A novel functional T cell hybridoma recognizes macrophage cell death induced by bacteria: a possible role for innate lymphocytes in bacterial infection.

    Science.gov (United States)

    Kubota, Koichi

    2006-06-15

    We have established a novel TCRalphabeta (TCRVbeta6)(+)CD4(-)CD8(-) T cell hybridoma designated B6HO3. When the B6HO3 cells were cocultured with bacterial-infected J774 macrophage-like cells, IFN-gamma production by B6HO3 cells was triggered through direct cell-cell contact with dying J774 cells infected with Listeria monocytogenes (LM), Shigella flexneri, or Salmonella typhimurium that expressed the type III secretion system, but not with intact J774 cells infected with heat-killed LM, nonhemolytic lysteriolysin O-deficient (Hly(-)) LM, plasmid-cured Shigella, or stationary-phase Salmonella. However, the triggering of B6HO3 cells for IFN-gamma production involved neither dying hepatoma cells infected with LM nor dying J774 cells caused by gliotoxin treatment or freeze thawing. Cycloheximide and Abs to H-2K(d), H-2D(d), Ia(d), CD1d, TCRVbeta6, and IL-12 did not inhibit the contact-dependent IFN-gamma response, indicating that this IFN-gamma response did not require de novo protein synthesis in bacterial-infected J774 cells and was TCR and IL-12 independent. Thus, in an as yet undefined way, B6HO3 hybridoma recognizes a specialized form of macrophage cell death resulting from bacterial infection and consequently produces IFN-gamma. Moreover, contact-dependent interaction of minor subsets of splenic alphabeta T cells, including NKT cells with dying LM-infected J774 and bone marrow-derived macrophage (BMM) cells, proved to provide an IFN-gamma-productive stimulus for these minor T cell populations, to which the parental T cell of the B6HO3 hybridoma appeared to belong. Unexpectedly, subsets of gammadelta T and NK cells similarly responded to dying LM-infected macrophage cells. These results propose that innate lymphocytes may possess a recognition system sensing macrophage cell "danger" resulting from bacterial infection. PMID:16751404

  17. Disease interactions in a shared host plant: effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease.

    Directory of Open Access Journals (Sweden)

    Lori R Shapiro

    Full Text Available Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV. We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host

  18. Decreased plasma Chromogranin A361-372 (Catestatin) but not Chromogranin A17-38 (Vasostatin) in female dogs with bacterial uterine infection (pyometra).

    OpenAIRE

    Jitpean, Supranee; Stridsberg, Mats; Pettersson, Ann; Höglund, Odd V; Ström, Bodil Holst; Hagman, Ragnvi

    2015-01-01

    Background Pyometra often induces systemic inflammatory response syndrome (SIRS) and early diagnosis is crucial for survival. Chromogranin A (CgA) is a neuroendocrine secretory protein that is co-released with catecholamines from the adrenal medulla and sympathetic nerve endings. A prognostic value of CgA has been found in humans that are critically ill or that have SIRS associated with infection. CgA has not yet been studied in dogs with bacterial infection. The aim of the study was to inves...

  19. CHARACTERISATION OF BACTERIAL ISOLATES FROM INFECTE D BURN WOUNDS OF PATIENTS ADMITTED IN A TERTIARY LEVEL HEA LTH CARE FACILITY IN NORTHERN REGION OF INDIA

    Directory of Open Access Journals (Sweden)

    Antariksh

    2013-04-01

    Full Text Available ABSTRACT: Infection is an important cause of mortality in bur ns. Emergence of multi drug resistant pathogens in hospital setting has seriously constrained the available therapeutic options. This necessitates periodic review of the iso lation pattern and study of antibiogram of the isolates to strengthen surveillance activities. To determine the bacteriological profile and antimic robial susceptibility pattern of pathogens isolated from infected burn wounds of pati ents admitted in the burns care unit. The present study was carried out over a duration of six months. Pus samples from infected burn wounds were processed following standard protocols. A ntimicrobial susceptibility of the bacterial isolates was performed by Kirby- Bauer dis c diffusion method. A total of 408 bacterial pathogens were isolated from 340 samples. The most fr equent cause of infection was found to be Pseudomonas aeruginosa (53%, followed by Staphyl ococcus aureus (9%, Escherichia coli (9%, Enterobacter spp. (8%, Citrobacter spp. (8%, Kl ebsiella spp. (5%, Acinetobacter spp. (3% and Proteus spp. (3%. High level of drug resist ance (95-100% was observed for cefepime, ceftazidime, amoxyclav, cotrimoxazole and doxycycline among gram negative pathogens. Meropenem, amikacin and ciprofloxacin were found to be most effective. Twenty one percent of the S. aureus isolates were resistant to methicillin. The high prevalence of antimicrobial resistance emphasizes the need for str engthening the infection control practices and regular and periodical surveillance activities t o contain the upward trend of resistance.

  20. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    Science.gov (United States)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  1. Urinary infection in patients of public health care of Campo Mourão-PR, Brazil: bacterial prevalence and sensitivity profile

    Directory of Open Access Journals (Sweden)

    Josiane dos Santos Bitencourt

    2014-10-01

    Full Text Available Introduction: Cases of bacterial resistance in urinary tract infections (UTIs have increased significantly, mainly due to indiscriminate use of antimicrobials. Objective: Objective: To evaluate the prevalence and antimicrobial susceptibility of microorganisms isolated in urine cultures of patients of Consórcio Intermunicipal de Saúde da Comunidade dos Municípios da Região de Campo Mourão (CISCOMCAM clinical laboratory. Method: We performed a retrospective study of data from urine culture and sensitivity done between January 2012 and December 2013. Results: The most prevalent bacteria were Escherichia coli; women were the most affected gender and people 16-45 years, the most affected age group. The sensitivity profile showed that the antimicrobial combination trimethoprim/ sulfamethoxazole was not associated with the highest rate of bacterial resistance (59.7% and the combination of amoxicillin/clavulanic acid showed the lowest resistance rate (15.3%. For most antimicrobials, including ciprofloxacin and norfloxacin, the rates of bacterial resistance have increased from 2012 to 2013 with statistical significance (p < 0.05 in some cases. Discussion: The prevalence of Gram-negative bacilli in urinary infections is due to the fact that intestinal flora is rich in enterobacteria, and women are most affected by anatomical factors. The development of bacterial resistance to antimicrobials probably arises from their indiscriminate use. Conclusion: The rate of microbial resistance has risen, showing the need for a more effective control of antimicrobial use.

  2. Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases

    OpenAIRE

    Saad Musbah Alasil; Rahmat Omar; Salmah Ismail; Mohd Yasim Yusof; Ghulam N. Dhabaan; Mahmood Ameen Abdulla

    2013-01-01

    Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of...

  3. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    Directory of Open Access Journals (Sweden)

    Ruolin Li

    2016-05-01

    Full Text Available OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1 patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2 patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01. The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01 at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%; a specificity of 73.7% (56.9-86.6%; positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the

  4. Broad-spectrum antibiotic or G-CSF as potential countermeasures for impaired control of bacterial infection associated with an SPE exposure during spaceflight.

    Directory of Open Access Journals (Sweden)

    Minghong Li

    Full Text Available A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body's defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS conditions and exposed to solar particle event (SPE-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic and Granulocyte colony stimulating factor (G-CSF (Neulasta on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure.

  5. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    Science.gov (United States)

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. PMID:26386058

  6. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    Science.gov (United States)

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen.

  7. New radiosynthesis of 2-deoxy-2-[{sup 18}F]fluoroacetamido-D-glucopyranose and its evaluation as a bacterial infections imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Miguel E. [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Yoshida, Fukui, 910-1193 (Japan); Kiyono, Yasushi, E-mail: ykiyono@u-fukui.ac.jp [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Yoshida, Fukui, 910-1193 (Japan); Noriki, Sakon [Department of Tumor Pathology, University of Fukui, Fukui, 910-1193 (Japan); Inai, Kunihiro [Department of Molecular Pathology, University of Fukui, Fukui, 910-1193 (Japan); Mandap, Katheryn S. [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Yoshida, Fukui, 910-1193 (Japan); Kobayashi, Masato [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Yoshida, Fukui, 910-1193 (Japan); School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-0942 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Yoshida, Fukui, 910-1193 (Japan); Tokunaga, Yuji [Department of Materials Science and Engineering, University of Fukui, Fukui, 910-8507 (Japan); Tiwari, Vijay N.; Okazawa, Hidehiko [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Yoshida, Fukui, 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Yoshida, Fukui, 910-1193 (Japan); Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Ido, Tatsuo [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Yoshida, Fukui, 910-1193 (Japan); Japan Radioisotope Association, Tokyo, 113-8941 (Japan)

    2011-08-15

    Introduction: The diagnosis of infection and the ability to distinguish bacterial infection from nonbacterial inflammation by positron emission tomography (PET) have gained interest in recent years, but still few specific radiopharmaceuticals are available for use. In this study, we developed a new radiosynthesis method of 2-deoxy-2-[{sup 18}F]fluoroacetamido-D-glucopyranose ([{sup 18}F]FAG) by applying microwave irradiation and demonstrated that [{sup 18}F]FAG could be a potential radiopharmaceutical to distinguish bacterial infection from nonbacterial inflammation. Methods: 1,3,4,6-Tetra-O-acetyl-2-deoxy-2-bromoacetamido-D-glucopyranose was used as precursor, and labeling was performed under microwave irradiation conditions followed by alkaline hydrolysis and high-performance liquid chromatography (HPLC) purification. In vitro uptake of [{sup 18}F]FAG by Escherichia coli was performed. Tissue biodistribution of [{sup 18}F]FAG was performed in mice. Moreover, PET imaging acquisition of E. coli infection and nonbacterial inflammation models was performed in rats. Tissue radiotracer-accumulated sites were analyzed by hematoxylin and eosin staining and anti-E.coli immunostaining. Results: The radiosynthesis of [{sup 18}F]FAG was achieved with microwave irradiation, and the radiochemical yield was 9.7%{+-}2.8% end of bombardment (EOB); the radiochemical purity was more than 98%, and the total synthesis time was 62 min. Compared with control group, in vitro uptake of [{sup 18}F]FAG by E. coli was significantly decrease in inhibition group (P<.05). Biodistribution studies in mice showed rapid clearance of [{sup 18}F]FAG from the animal body. [{sup 18}F]FAG clearly visualized the infection areas but not nonbacterial inflammation areas in PET studies. Quantitative analysis revealed that the uptake of [{sup 18}F]FAG into infection areas was significantly higher than that of [{sup 18}F]FAG into inflammation areas (P<.05). Histological analysis demonstrated the presence of

  8. Etiology and antibacterial susceptibility pattern of community-acquired bacterial ocular infections in a tertiary eye care hospital in south India

    Directory of Open Access Journals (Sweden)

    Bharathi M

    2010-01-01

    Full Text Available Aims: To identify the etiology, incidence and prevalence of ocular bacterial infections, and to assess the in vitro susceptibility of these ocular bacterial isolates to commonly used antibiotics. Materials and Methods: Retrospective analysis of consecutive samples submitted for microbiological evaluation from patients who were clinically diagnosed with ocular infections and were treated at a tertiary eye care referral center in South India between January 2002 and December 2007. Results: A total of 4417 ocular samples was submitted for microbiological evaluation, of which 2599 (58.8% had bacterial growth, 456 (10.3% had fungal growth, 15 (0.34% had acanthamoebic growth, 14 (0.32% had mixed microbial growth and the remaining 1333 (30.2% had negative growth. The rate of culture-positivity was found to be 88% (P < 0.001 in eyelids′ infection, 70% in conjunctival, 69% in lacrimal apparatus, 67.4% in corneal, 51.6% in intraocular tissues, 42.9% in orbital and 39.2% in scleral infections. The most common bacterial species isolated were Staphylococcus aureus (26.69% followed by Streptococcus pneumoniae (22.14%. Sta. aureus was more prevalent more in eyelid infections (51.22%; P = 0.001 coagulase-negative staphylococci in endophthalmitis (53.1%; P = 0.001, Str. pneumoniae in lacrimal apparatus and corneal infections (64.19%; P = 0.001, Corynebacterium species in blepharitis and conjunctivitis (71%; P = 0.001, Pseudomonas aeruginosa in keratitis and dacryocystitis (66.5%; P = 0.001, Haemophilus species in dacryocystitis and conjunctivitis (66.7%; P = 0.001, Moraxella lacunata in blepharitis (54.17%; P = 0.001 and Moraxella catarrhalis in dacryocystitis (63.83%; P = 0.001. The largest number of gram-positive isolates was susceptible to moxifloxacin (98.7% and vancomycin (97.9%, and gram-negative isolates to amikacin (93.5% and gatifloxacin (92.7%. Conclusions: Gram-positive cocci were the most frequent bacteria isolated from ocular infections and were

  9. Molecular characterization of Galectin-8 from Nile tilapia (Oreochromis niloticus Linn.) and its response to bacterial infection.

    Science.gov (United States)

    Unajak, Sasimanas; Pholmanee, Nutthida; Songtawee, Napat; Srikulnath, Kornsorn; Srisapoome, Prapansak; Kiataramkul, Asama; Kondo, Hidehiro; Hirono, Ikuo; Areechon, Nontawith

    2015-12-01

    Galectins belong to the family of galactoside-binding proteins and play a major role in the immune and inflammatory responses of vertebrates and invertebrates. The galectin family is divided into three subtypes based on molecular structure; prototypes, chimera types, and tandem-repeated types. We isolated and characterized the cDNA of galectin-8 (OnGal-8) in Nile tilapia (Oreochromis niloticus). OnGal-8 consisted of a 966 bp open reading frame (ORF) that encoded a 321 amino acid protein (43.47 kDa). Homology and phylogenetic tree analysis suggested the protein was clustered with galectin-8s from other animal species and shared at least 56.8% identity with salmon galectin-8. Structurally, the amino acid sequence included two distinct N- and C- terminus carbohydrate recognition domains (CRDs) of 135 and 133 amino acids, respectively, that were connected by a 39 amino acid polypeptide linker. The N- and C-CRDs contained two conserved WG-E-I and WG-E-T motifs, suggesting they have an important role in mediating the specific interactions between OnGal-8 and saccharide moieties such as β-galactoside. The structure of OnGal-8 was characterized by a two-fold symmetric pattern of 10-and 12-stranded antiparallel ß-sheets of both N- and C-CRDs, and the peptide linker presumably formed a random coil similar to the characteristic tandem-repeat type galectin. The expression of OnGal-8 in healthy fish was highest in the skin, intestine, and brain. Experimental challenge of Nile tilapia with S. agalactiae resulted in significant up-regulation of OnGal-8in the spleen after 5 d. Our results suggest that OnGal-8 is involved in the immune response to bacterial infection.

  10. Biodistribution and dosimetry of 99mTc-ciprofloxacin, a promising agent for the diagnosis of bacterial infection

    International Nuclear Information System (INIS)

    This study reports on the biodistribution and dosimetry of technetium-99m ciprofloxacin, a radio-ligand developed for the visualisation of bacterial infection. Whole body scans were performed up to 24 h after intravenous injection of 370 MBq 99mTc-ciprofloxacin in three male and three female volunteers. Blood samples were taken at various times up to 24 h after injection. Urine was also collected up to 24 h after injection, allowing calculation of renal clearance and interpretation of whole body clearance. Time-activity curves were generated for the thyroid, heart, liver and whole body by fitting the organ-specific geometric mean counts, obtained from regions of interest. The MIRD formulation was applied to calculate the absorbed radiation doses for various organs. The images showed rapid, predominantly urinary excretion of 99mTc ciprofloxacin, with low to absent brain, lung and bone marrow uptake and low liver uptake and excretion. Accordingly, imaging conditions are excellent for both the thoracic and the abdominal region, even at early time points (60 min) post injection. In none of the volunteers was the gallbladder visualised. Approximately 60% of the injected activity was recovered in urine by 24 h post injection. The highest absorbed doses were received by the urinary bladder wall, the thyroid, the upper large intestine, the lower large intestine and the uterus. The estimated mean effective dose for the adult subject, taking into account the weight factors of the ICRP60 publication, was 0.0083 mSv/MBq. The amount of 99mTc ciprofloxacin required for adequate planar and tomographic imaging results in an acceptable effective dose to the patient. (orig.)

  11. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    Science.gov (United States)

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  12. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  13. Occurrence of glucocorticoids discharged from a sewage treatment plant in Japan and the effects of clobetasol propionate exposure on the immune responses of common carp (Cyprinus carpio) to bacterial infection.

    Science.gov (United States)

    Nakayama, Kei; Sato, Kentaro; Shibano, Takazumi; Isobe, Tomohiko; Suzuki, Go; Kitamura, Shin-Ichi

    2016-04-01

    The present study evaluated the environmental risks to common carp (Cyprinus carpio) posed by glucocorticoids present in sewage treatment plant (STP) effluent. To gather information on the seasonal variations in glucocorticoid concentration, the authors sampled the effluent of a Japanese STP every other week for 12 mo. Six of 9 selected glucocorticoids were detected in the effluent, with clobetasol propionate and betamethasone 17-valerate detected at the highest concentrations and frequencies. The present study's results indicated that effluent glucocorticoid concentration may depend on water temperature, which is closely related to the removal efficiency of the STP or to seasonal variations in the public's use of glucocorticoids. In a separate experiment, to clarify whether glucocorticoids in environmental water increase susceptibility to bacterial infection in fish, the authors examined the responses to bacterial infection (Aeromonas veronii) of common carp exposed to clobetasol propionate. Clobetasol propionate exposure did not affect bacterial infection-associated mortality. In fish infected with A. veronii but not exposed to clobetasol propionate, head kidney weight and number of leukocytes in the head kidney were significantly increased (p < 0.05), whereas these effects were not observed in infected fish exposed to clobetasol. This suggests that clobetasol propionate alleviated bacterial infection-associated inflammation. Together, these results indicate that susceptibility to bacterial infection in common carp is not affected by exposure to glucocorticoids at environmentally relevant concentrations.

  14. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    Energy Technology Data Exchange (ETDEWEB)

    Mahadtanapuk, S. [Faculty of Agriculture and Natural Resources, University of Phayao, Maeka, Muang, Phayao 56000 (Thailand); Teraarusiri, W. [Central Laboratory, University of Phayao, Maeka, Muang, Phayao 56000 (Thailand); Nanakorn, W. [The Crown Property Bureau, 173 Nakhonratchasrima Road, Dusit, Bangkok 10300 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S., E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion beam bombardment induced mutation in bacterial B. licheniformis. • A mutant lost antifungal activity. • DNA fingerprint of the mutant was analyzed. • The lost gene was indentified to code for TrxR gene. • TrxR gene from B. licheniformis expressed the flower antagonism to fungi. - Abstract: This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  15. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    International Nuclear Information System (INIS)

    Highlights: • Ion beam bombardment induced mutation in bacterial B. licheniformis. • A mutant lost antifungal activity. • DNA fingerprint of the mutant was analyzed. • The lost gene was indentified to code for TrxR gene. • TrxR gene from B. licheniformis expressed the flower antagonism to fungi. - Abstract: This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection

  16. Proteolytic Pathways of Activation and Degradation of a Bacterial Phospholipase C during Intracellular Infection by Listeria monocytogenes

    OpenAIRE

    Marquis, Hélène; Goldfine, Howard; Portnoy, Daniel A.

    1997-01-01

    Listeria monocytogenes is a facultative intracellular bacterial pathogen that spreads cell to cell without exposure to the extracellular environment. Bacterial cell-to-cell spread is mediated in part by two secreted bacterial phospholipases C (PLC), a broad spectrum PLC (PC-PLC) and a phosphatidylinositolspecific PLC (PI-PLC). PI-PLC is secreted in an active state, whereas PC-PLC is secreted as an inactive proenzyme (proPC-PLC) whose activation is mediated in vitro by an L. monocytogenes meta...

  17. Infection

    Science.gov (United States)

    ... Potential Hazards Exposure of employees to community and nosocomial infections, e.g., Methicillin-resistant Staphylococcus aureus (MRSA) . Nosocomial infections are infections that occur from exposure to infectious ...

  18. Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases

    Directory of Open Access Journals (Sweden)

    Saad Musbah Alasil

    2013-01-01

    Full Text Available Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of tonsillar diseases. Therefore, a total of 140 palatine tonsils were collected from 70 patients undergoing tonsillectomy at University Malaya Medical Centre. The most recovered isolate was Staphylococcus aureus (39.65% followed by Haemophilus influenzae (18.53%. There was high susceptibility against all selected antibiotics except for cotrimoxazole. Bacterial biofilms were detected in 60% of patients and a significant percentage of patients demonstrated infection manifestation rather than obstruction. In addition, an association between clinical symptoms like snore, apnea, nasal obstruction, and tonsillar hypertrophy was found to be related to the microbiology of tonsils particularly to the presence of biofilms. In conclusion, evidence of biofilms in tonsils in correlation with the demonstrated clinical symptoms explains the recalcitrant nature of tonsillar diseases and highlights the importance of biofilm’s early detection and prevention towards better therapeutic management of biofilm-related infections.

  19. Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases.

    Science.gov (United States)

    Alasil, Saad Musbah; Omar, Rahmat; Ismail, Salmah; Yusof, Mohd Yasim; Dhabaan, Ghulam N; Abdulla, Mahmood Ameen

    2013-01-01

    Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of tonsillar diseases. Therefore, a total of 140 palatine tonsils were collected from 70 patients undergoing tonsillectomy at University Malaya Medical Centre. The most recovered isolate was Staphylococcus aureus (39.65%) followed by Haemophilus influenzae (18.53%). There was high susceptibility against all selected antibiotics except for cotrimoxazole. Bacterial biofilms were detected in 60% of patients and a significant percentage of patients demonstrated infection manifestation rather than obstruction. In addition, an association between clinical symptoms like snore, apnea, nasal obstruction, and tonsillar hypertrophy was found to be related to the microbiology of tonsils particularly to the presence of biofilms. In conclusion, evidence of biofilms in tonsils in correlation with the demonstrated clinical symptoms explains the recalcitrant nature of tonsillar diseases and highlights the importance of biofilm's early detection and prevention towards better therapeutic management of biofilm-related infections. PMID:24454384

  20. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  1. Bacterial load and inflammation in fetal tissues is not dependent on IL-17a or IL-22 in 10-14 day pregnant mice infected with Listeria monocytogenes

    Science.gov (United States)

    Poulsen, Keith P.; Faith, Nancy G.; Steinberg, Howard; Czuprynski, Charles J.

    2012-01-01

    In this study, we first assessed the effect of intragastric infection of pregnant mice with Listeria monocytogenes on relative expression of select genes associated with T cell subsets. Relative gene expression was moderately increased in placental tissues for IFNγ, IL-4, IL-17a, IL-22, CD3, and FoxP3. To assess the roles of IL-17a and IL-22 in resistance to listeriosis during pregnancy, we compared the severity of maternal and fetal infection in IL-17a(−/−), IL-22(−/−), and IL-17a(−/−)/IL-22(−/−) mice with that of wild type C57BL/6 mice. Intragastric infection with modest numbers of bacterial cells (105 CFU) caused reproducible maternal and fetal infection in all four mouse strains. We recovered greater numbers of CFU from the bloodstream of pregnant IL-22(−/−) mice than pregnant wild type mice. Otherwise we found no significant difference in bacterial load in maternal or fetal tissues (spleen, liver, fetoplacental units) from pregnant IL-17a(−/−), IL-22(−/−), or IL-17a(−/−)/IL-22(−/−) or wild type mice. Nor did we observe histopathologic differences in severity of inflammation in maternal or fetal tissues from the various groups of mice. Although IL-17a and IL-22 are up-regulated in placental tissue, our study suggests that antibacterial resistance and the host inflammatory response are not dependent on IL-17a or IL-22 during infection of mice with L. monocytogenes at 10-14 days of gestation. PMID:23178254

  2. Flow cytometry analysis using sysmex UF-1000i classifies uropathogens based on bacterial, leukocyte, and erythrocyte counts in urine specimens among patients with urinary tract infections.

    Science.gov (United States)

    Monsen, Tor; Rydén, Patrik

    2015-02-01

    Urinary tract infections (UTIs) are the second most common bacterial infection. Urine culture is the gold standard for diagnosis, but new techniques, such as flow cytometry analysis (FCA), have been introduced. The aim of the present study was to evaluate FCA characteristics regarding bacteriuria, leukocyturia, and erythrocyturia in relation to cultured uropathogens in specimens from patients with a suspected UTI. We also wanted to evaluate whether the FCA characteristics can identify uropathogens prior to culture. From a prospective study, 1,587 consecutive urine specimens underwent FCA prior to culture during January and February 2012. Outpatients and inpatients (79.6% and 19.4%, respectively) were included, of whom women represented 67.5%. In total, 620 specimens yielded growth, of which Escherichia coli represented 65%, Enterococcus spp. 8%, Klebsiella spp. 7%, and Staphylococcus spp. 5%. For the uropathogens, the outcome of FCA was compared against the results for specimens with E. coli and those with a negative culture. E. coli had high bacterial (median, 17,914/μl), leukocyte (median, 348/μl), and erythrocyte (median, 23/μl) counts. With the exception of Klebsiella spp., the majority of the uropathogens had considerable or significantly lower bacterial counts than that of E. coli. High leukocyte counts were found in specimens with Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and group C streptococci. Elevated erythrocyte counts were found for P. vulgaris, P. aeruginosa, and group C streptococci, as well as for Staphylococcus saprophyticus. In essence, FCA adds new information about the bacterial, leukocyte, and erythrocyte counts in urine specimens for different uropathogens. Based on FCA characteristics, uropathogens can be classified and identified prior to culture. E. coli and Klebsiella spp. have similar FCA characteristics. PMID:25472486

  3. 细胞自噬治疗细菌感染的潜在价值%The potential application of autophagy in the treatment of bacterial infections

    Institute of Scientific and Technical Information of China (English)

    熊励晶; 童煜; 毛萌

    2011-01-01

    As a highly evolutionarily conserved cellular process, autophagy plays a critical role in maintaining cell homeostasis and promoting cellular survival via degradation of long-life proteins and damaged organdies. Autophagy induced by certain bacteria not only benefits the elimination of pathogen, but also limits toxin-induced cellular damage. Therefore, utilization of autophagy as a therapeutic and prophylactic approach for bacterial infections is in accordonce with its function of cell-autonomous defense mechanism. In this paper, we review the recent progress for the association between autophagy and bacterial infections in order to explore the potential application in treatment of bacterial infections.%细胞自噬是具进化保守性的细胞适应性机制,能降解细胞内容物,维持细胞稳态,保证细胞的生存.当细胞面临某些细菌感染时,自噬通过直接包裹胞质内游离的细菌、帮助吞噬体清除其包含的细菌、抵抗细菌毒素等方式保护受感染细胞.因此,将自噬抵抗细菌的作用应用于治疗和预防感染性疾病具有一定的可行性.本文将自噬在细菌感染中的作用及其治疗感染性疾病的潜在价值进行综述.

  4. The clinical utility of induced sputum for the diagnosis of bacterial community-acquired pneumonia in HIV-infected patients: a prospective cross-sectional study

    Directory of Open Access Journals (Sweden)

    Rosemeri Maurici da Silva

    2006-04-01

    Full Text Available BACKGROUND: Bacterial pneumonias have been overcoming pneumocytosis in frequency. Controversy still remains about how to manage immunocompromised patients and those with lung diseases. Sputum analysis is a noninvasive and simple method, and when interpreted according to specific criteria it may help with diagnosis. We conducted a study to evaluate sensitivity, specificity, positive and negative predicted values, and the accuracy of induced sputum (IS for bacterial community-acquired pneumonia diagnosis in HIV-positive patients. MATERIAL AND METHODS: This cross sectional study evaluated a diagnostic procedure in a reference hospital for HIV patients in Florianópolis, SC, Brazil. From January 1, 2001 to September 30, 2002, 547 HIV-positive patients were analyzed and 54 inpatients with pulmonary infection were selected. Bronchoalveolar lavage (BAL and transbronchial lung biopsy (TBLB were considered the gold standards. Gram stains and quantitative cultures of IS and BAL were obtained. The cut-offs for quantitative cultures were 10(6 CFU/mL for IS and 10(4 CFU/mL for BAL. RESULTS: The mean age was 35.7 years, 79.6% were males and 85.2% were caucasians. The mean lymphocyte count was 124.8/mm³. Bacterial pneumonia was diagnosed in 20 patients. The most prevalent bacteria was Streptococcus pneumoniae. Considering IS for the diagnosis of bacterial pneumonia, sensitivity was 60%, specificity 40%, the positive predictive value was 80%, negative predictive value 20% and accuracy 56%. CONCLUSION: IS with quantitative culture can be helpful for the diagnosis of bacterial pneumonia in HIV-positive patients.

  5. The Analysis of the Relationship between Pregnancy Bacterial and Non-bacterial Infection and Premature Rupture of Membranes%孕期细菌性及非细菌感染