WorldWideScience

Sample records for bacterial gut symbionts

  1. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Science.gov (United States)

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  2. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Directory of Open Access Journals (Sweden)

    Ryo Futahashi

    Full Text Available The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  3. Bacterial symbionts of a devastating coffee plant pest, the stinkbug Antestiopsis thunbergii (Hemiptera: Pentatomidae).

    Science.gov (United States)

    Matsuura, Yu; Hosokawa, Takahiro; Serracin, Mario; Tulgetske, Genet M; Miller, Thomas A; Fukatsu, Takema

    2014-06-01

    Stinkbugs of the genus Antestiopsis, so-called antestia bugs or variegated coffee bugs, are notorious pests of coffee plants in Africa. We investigated the symbiotic bacteria associated with Antestiopsis thunbergii, a major coffee plant pest in Rwanda. PCR, cloning, sequencing, and phylogenetic analysis of bacterial genes identified four distinct bacterial lineages associated with A. thunbergii: a gammaproteobacterial gut symbiont and symbionts representing the genera Sodalis, Spiroplasma, and Rickettsia. In situ hybridization showed that the gut symbiont densely occupied the lumen of midgut crypts, whereas the Sodalis symbiont, the Spiroplasma symbiont, and the Rickettsia symbiont sparsely and sporadically infected various cells and tissues. Diagnostic PCR survey of 154 A. thunbergii individuals collected at 8 localities in Rwanda revealed high infection frequencies (100% for the gut symbiont, 51.3% for the Sodalis symbiont, 52.6% for the Spiroplasma symbiont, and 24.0% for the Rickettsia symbiont). These results suggest that the gut symbiont is the primary symbiotic associate of obligate nature for A. thunbergii, whereas the Sodalis symbiont, the Spiroplasma symbiont, and the Rickettsia symbiont are the secondary symbiotic associates of facultative nature. We observed high coinfection frequencies, i.e., 7.8% of individuals with quadruple infection with all the symbionts, 32.5% with triple infections with the gut symbiont and two of the secondary symbionts, and 39.6% with double infections with the gut symbiont and any of the three secondary symbionts, which were statistically not different from the expected coinfection frequencies and probably reflected random associations. The knowledge of symbiotic microbiota in A. thunbergii will provide useful background information for controlling this devastating coffee plant pest. PMID:24727277

  4. Standard methods for research on apis mellifera gut symbionts

    Science.gov (United States)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  5. Standard methods for research on Apis mellifera gut symbionts

    Science.gov (United States)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  6. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. PMID:26774501

  7. Characterization of Glycosaminoglycan (GAG) Sulfatases from the Human Gut Symbiont Bacteroides thetaiotaomicron Reveals the First GAG-specific Bacterial Endosulfatase*

    Science.gov (United States)

    Ulmer, Jonathan E.; Vilén, Eric Morssing; Namburi, Ramesh Babu; Benjdia, Alhosna; Beneteau, Julie; Malleron, Annie; Bonnaffé, David; Driguez, Pierre-Alexandre; Descroix, Karine; Lassalle, Gilbert; Le Narvor, Christine; Sandström, Corine; Spillmann, Dorothe; Berteau, Olivier

    2014-01-01

    Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973–25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans. PMID:25002587

  8. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs

    Directory of Open Access Journals (Sweden)

    Kamagata Yoichi

    2009-01-01

    Full Text Available Abstract Background Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs. Results Phylogenetic analyses showed that the acanthosomatid symbionts constitute a distinct clade in the γ-Proteobacteria, whose sister groups are the obligate endocellular symbionts of aphids Buchnera and the obligate gut symbionts of plataspid stinkbugs Ishikawaella. In addition to the midgut crypts, the symbionts were located in a pair of peculiar lubricating organs associated with the female ovipositor, by which the symbionts are vertically transmitted via egg surface contamination. The symbionts were detected not from ovaries but from deposited eggs, and surface sterilization of eggs resulted in symbiont-free hatchlings. The symbiont-free insects suffered retarded growth, high mortality, and abnormal morphology, suggesting important biological roles of the symbiont for the host insects. The symbiont phylogeny was generally concordant with the host phylogeny, indicating host-symbiont co-speciation over evolutionary time despite the extracellular association. Meanwhile, some local host-symbiont phylogenetic discrepancies were found, suggesting occasional horizontal symbiont transfers across the host

  9. Bacterial Symbionts of a Devastating Coffee Plant Pest, the Stinkbug Antestiopsis thunbergii (Hemiptera: Pentatomidae)

    OpenAIRE

    Matsuura, Yu; Hosokawa, Takahiro; Serracin, Mario; Tulgetske, Genet M.; Miller, Thomas A.; Fukatsu, Takema

    2014-01-01

    Stinkbugs of the genus Antestiopsis, so-called antestia bugs or variegated coffee bugs, are notorious pests of coffee plants in Africa. We investigated the symbiotic bacteria associated with Antestiopsis thunbergii, a major coffee plant pest in Rwanda. PCR, cloning, sequencing, and phylogenetic analysis of bacterial genes identified four distinct bacterial lineages associated with A. thunbergii: a gammaproteobacterial gut symbiont and symbionts representing the genera Sodalis, Spiroplasma, an...

  10. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J;

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host...

  11. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts

    OpenAIRE

    Kikuchi, Yoshitomo; Hosokawa, Takahiro; Fukatsu, Takema

    2010-01-01

    Here, we investigated 124 stinkbug species representing 20 families and 5 superfamilies for their Burkholderia gut symbionts, of which 39 species representing 6 families of the superfamilies Lygaeoidea and Coreoidea were Burkholderia-positive. Diagnostic PCR surveys revealed high frequencies of Burkholderia infection in natural populations of the stinkbugs, and substantial absence of vertical transmission of Burkholderia infection to their eggs. In situ hybridization confirmed localization of...

  12. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis

    Science.gov (United States)

    Xu, Yao; Buss, Eileen A.; Boucias, Drion G.

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  13. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis.

    Science.gov (United States)

    Xu, Yao; Buss, Eileen A; Boucias, Drion G

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained. PMID:27548682

  14. Host immunostimulation and substrate utilization of the gut symbiont Akkermansia muciniphila

    NARCIS (Netherlands)

    Ottman, N.A.

    2015-01-01

    Host immunostimulation and substrate utilization of the gut symbiont Akkermansia muciniphila Noora A. Ottman The human gastrointestinal tract is colonized by a complex community of micro-organisms, the gut microbiota. The majority of these are bacteria, which perfor

  15. Host immunostimulation and substrate utilization of the gut symbiont Akkermansia muciniphila

    OpenAIRE

    Ottman, N.A.

    2015-01-01

    Host immunostimulation and substrate utilization of the gut symbiont Akkermansia muciniphila Noora A. Ottman The human gastrointestinal tract is colonized by a complex community of micro-organisms, the gut microbiota. The majority of these are bacteria, which perform various functions involved in host energy metabolism and immune system stimulation. The field of gut microbiology is continuously expanding as novel species are isolated and high-throughput techniques are developed. The research ...

  16. Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics.

    Science.gov (United States)

    Paula, Débora P; Linard, Benjamin; Andow, David A; Sujii, Edison R; Pires, Carmen S S; Vogler, Alfried P

    2015-07-01

    DNA methods are useful to identify ingested prey items from the gut of predators, but reliable detection is hampered by low amounts of degraded DNA. PCR-based methods can retrieve minute amounts of starting material but suffer from amplification biases and cross-reactions with the predator and related species genomes. Here, we use PCR-free direct shotgun sequencing of total DNA isolated from the gut of the harlequin ladybird Harmonia axyridis at five time points after feeding on a single pea aphid Acyrthosiphon pisum. Sequence reads were matched to three reference databases: Insecta mitogenomes of 587 species, including H. axyridis sequenced here; A. pisum nuclear genome scaffolds; and scaffolds and complete genomes of 13 potential bacterial symbionts. Immediately after feeding, multicopy mtDNA of A. pisum was detected in tens of reads, while hundreds of matches to nuclear scaffolds were detected. Aphid nuclear DNA and mtDNA decayed at similar rates (0.281 and 0.11 h(-1) respectively), and the detectability periods were 32.7 and 23.1 h. Metagenomic sequencing also revealed thousands of reads of the obligate Buchnera aphidicola and facultative Regiella insecticola aphid symbionts, which showed exponential decay rates significantly faster than aphid DNA (0.694 and 0.80 h(-1) , respectively). However, the facultative aphid symbionts Hamiltonella defensa, Arsenophonus spp. and Serratia symbiotica showed an unexpected temporary increase in population size by 1-2 orders of magnitude in the predator guts before declining. Metagenomics is a powerful tool that can reveal complex relationships and the dynamics of interactions among predators, prey and their symbionts.

  17. Evolutionary Relationships of “Candidatus Endobugula” Bacterial Symbionts and Their Bugula Bryozoan Hosts▿

    OpenAIRE

    Lim-Fong, Grace E.; Regali, Lindsay A.; Haygood, Margo G.

    2008-01-01

    Ribosomal gene sequences were obtained from bryozoans in the genus Bugula and their bacterial symbionts; analyses of host and symbiont phylogenetic trees did not support a history of strict cospeciation. Symbiont-derived compounds known to defend host larvae from predation were only detected in two out of four symbiotic Bugula species.

  18. Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles.

    Science.gov (United States)

    Dohet, Loïc; Grégoire, Jean-Claude; Berasategui, Aileen; Kaltenpoth, Martin; Biedermann, Peter H W

    2016-09-01

    Bark beetles (Curculionidae: Scolytinae) are one of the most species-rich herbivorous insect groups with many shifts in ecology and host-plant use, which may be mediated by their bacterial and fungal symbionts. While symbionts are well studied in economically important, tree-killing species, little is known about parasitic species whose broods develop in living trees. Here, using culture-dependent and independent methods, we provide a comprehensive overview of the associated bacteria, yeasts and filamentous fungi of the parasitic Dendroctonus micans, D. punctatus and D. valens, and compare them to those of other tree-inhabiting insects. Despite inhabiting different geographical regions and/or host trees, the three species showed similar microbial communities. Enterobacteria were the most prevalent bacteria, in particular Rahnella, Pantoea and Ewingella, in addition to Streptomyces Likewise, the yeasts Candida/Cyberlindnera were the most prominent fungi. All these microorganisms are widespread among tree-inhabiting insects with various ecologies, but their high prevalence overall might indicate a beneficial role such as detoxification of tree defenses, diet supplementation or protection against pathogens. As such, our results enable comparisons of symbiont communities of parasitic bark beetles with those of other beetles, and will contribute to our understanding of how microbial symbioses facilitate dietary shifts in insects. PMID:27387908

  19. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts.

    Science.gov (United States)

    Larsen, Thomas; Ventura, Marc; Maraldo, Kristine; Triadó-Margarit, Xavier; Casamayor, Emilio O; Wang, Yiming V; Andersen, Nils; O'Brien, Diane M

    2016-09-01

    Supplementation of nutrients by symbionts enables consumers to thrive on resources that might otherwise be insufficient to meet nutritional demands. Such nutritional subsidies by intracellular symbionts have been well studied; however, supplementation of de novo synthesized nutrients to hosts by extracellular gut symbionts is poorly documented, especially for generalists with relatively undifferentiated intestinal tracts. Although gut symbionts facilitate degradation of resources that would otherwise remain inaccessible to the host, such digestive actions alone cannot make up for dietary insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins of amino acids to bacteria, fungi and plants in enchytraeids. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed on higher fibre diets, whereas most of the enchytraeids' EAA derived from dietary sources when fed on lower fibre diets. Our gene sequencing results of gut microbiota showed that the worms harbour several taxa in their gut lumen absent from their diets and substrates. Almost all gut taxa are candidates for EAA supplementation because almost all belong to clades capable of biosynthesizing EAA. Our study provides the first evidence of extensive symbiotic supplementation of EAA by microbial

  20. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    OpenAIRE

    Martens, Eric C.; Lowe, Elisabeth C.; Herbert Chiang; Nicholas A Pudlo; Meng Wu; McNulty, Nathan P.; D Wade Abbott; Bernard Henrissat; Gilbert, Harry J.; Bolam, David N.; Jeffrey I Gordon

    2011-01-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for cat...

  1. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes

    Directory of Open Access Journals (Sweden)

    Zhou Xuguo

    2009-10-01

    Full Text Available Abstract Background Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i a host gut cDNA library and (ii a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing. Results Over 10,000 expressed sequence tags (ESTs were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450. Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding. Conclusion To our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort

  2. Physical proximity may promote lateral acquisition of bacterial symbionts in vesicomyid clams.

    Directory of Open Access Journals (Sweden)

    Carole Decker

    Full Text Available Vesicomyid clams harbor intracellular sulfur-oxidizing bacteria that are predominantly maternally inherited and co-speciate with their hosts. Genome recombination and the occurrence of non-parental strains were recently demonstrated in symbionts. However, mechanisms favoring such events remain to be identified. In this study, we investigated symbionts in two phylogenetically distant vesicomyid species, Christineconcha regab and Laubiericoncha chuni, which sometimes co-occur at a cold-seep site in the Gulf of Guinea. We showed that each of the two species harbored a single dominant bacterial symbiont strain. However, for both vesicomyid species, the symbiont from the other species was occasionally detected in the gills using fluorescence in situ hybridization and gene sequences analyses based on six symbiont marker genes. Symbiont strains co-occurred within a single host only at sites where both host species were found; whereas one single symbiont strain was detected in C. regab specimens from a site where no L. chuni individuals had been observed. These results suggest that physical proximity favored the acquisition of non-parental symbiont strains in Vesicomyidae. Over evolutionary time, this could potentially lead to genetic exchanges among symbiont species and eventually symbiont displacement. Symbiont densities estimated using 3D fluorescence in situ hybridization varied among host species and sites, suggesting flexibility in the association despite the fact that a similar type of metabolism is expected in all symbionts.

  3. Biomineralization of magnet nanoparticles with bacterial symbionts of man

    Directory of Open Access Journals (Sweden)

    Horobets S.V.

    2014-06-01

    Full Text Available Bioinformational analysis of human’s bacterial symbionts (BS to study the process of biomineralization of biogenic magnetic nanoparticles (BMN was conducted. For this purpose in this paper a comparative analysis of amino acid sequences of proteins of magnetosome island of magnetotactic bacteria (MI MTB with human BS proteins using the program "BLAST-online" was made. A number of human BS may be potential producers of magnetic nanoparticles as evidenced by the experimental work of other authors. Considering obtained results it was shown that the interaction between tumor cells and some strains of human’s BS may occur due to the forces of magnetic dipole interaction, occuring between the endogenous magnetic nanoparticles of tumor cells and endogenous magnetosensitive particles of bacteria.

  4. Complete Genome Sequence of the Intracellular Bacterial Symbiont TC1 in the Anaerobic Ciliate Trimyema compressum

    Science.gov (United States)

    Aoyama, Hiroaki; Saitoh, Seikoh; Nikoh, Naruo; Shimoji, Makiko; Shinzato, Misuzu; Teruya, Kuniko; Hirano, Takashi; Yamada, Takanori; Nobu, Masaru K.; Tamaki, Hideyuki; Shirai, Yumi; Park, Sanghwa; Narihiro, Takashi; Liu, Wen-Tso; Kamagata, Yoichi

    2016-01-01

    A free-living ciliate, Trimyema compressum, found in anoxic freshwater environments harbors methanogenic archaea and a bacterial symbiont named TC1 in its cytoplasm. Here, we report the complete genome sequence of the TC1 symbiont, consisting of a 1.59-Mb chromosome and a 35.8-kb plasmid, which was determined using the PacBio RSII sequencer. PMID:27660797

  5. Complete Genome Sequence of the Intracellular Bacterial Symbiont TC1 in the Anaerobic Ciliate Trimyema compressum.

    Science.gov (United States)

    Shinzato, Naoya; Aoyama, Hiroaki; Saitoh, Seikoh; Nikoh, Naruo; Nakano, Kazuma; Shimoji, Makiko; Shinzato, Misuzu; Satou, Kazuhito; Teruya, Kuniko; Hirano, Takashi; Yamada, Takanori; Nobu, Masaru K; Tamaki, Hideyuki; Shirai, Yumi; Park, Sanghwa; Narihiro, Takashi; Liu, Wen-Tso; Kamagata, Yoichi

    2016-01-01

    A free-living ciliate, Trimyema compressum, found in anoxic freshwater environments harbors methanogenic archaea and a bacterial symbiont named TC1 in its cytoplasm. Here, we report the complete genome sequence of the TC1 symbiont, consisting of a 1.59-Mb chromosome and a 35.8-kb plasmid, which was determined using the PacBio RSII sequencer. PMID:27660797

  6. Direct evidence for maternal inheritance of bacterial symbionts in small deep-sea clams (Bivalvia: Vesicomyidae)

    Science.gov (United States)

    Szafranski, Kamil M.; Gaudron, Sylvie M.; Duperron, Sébastien

    2014-05-01

    Bacterial symbiont transmission is a key step in the renewal of the symbiotic interaction at each host generation, and different modes of transmission can be distinguished. Vesicomyidae are chemosynthetic bivalves from reducing habitats that rely on symbiosis with sulfur-oxidizing bacteria, in which two studies suggesting vertical transmission of symbionts have been published, both limited by the imaging techniques used. Using fluorescence in situ hybridization and transmission electron microscopy, we demonstrate that bacterial symbionts of Isorropodon bigoti, a gonochoristic Vesicomyidae from the Guiness cold seep site, occur intracellularly within female gametes at all stages of gametogenesis from germ cells to mature oocytes and in early postlarval stage. Symbionts are completely absent from the male gonad and gametes. This study confirms the transovarial transmission of symbionts in Vesicomyidae and extends it to the smaller species for which no data were previously available.

  7. The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stal.

    Directory of Open Access Journals (Sweden)

    Christopher M Taylor

    Full Text Available The invasive brown marmorated stink bug, Halyomorpha halys (Stål, has become a severe agricultural pest and nuisance problem since its introduction in the U.S. Research is being conducted to understand its biology and to find management solutions. Its symbiotic relationship with gut symbionts is one aspect of its biology that is not understood. In the family Pentatomidae, the reliance on gut symbionts for successful development seems to vary depending on the species of stink bug. This research assessed the role of gut symbionts in the development, survivorship, and fecundity of H. halys. We compared various fitness parameters of nymphs and adults reared from surface sterilized and untreated egg masses during two consecutive generations under laboratory conditions. Results provided direct evidence that H. halys is negatively impacted by the prevention of vertical transmission of its gut symbionts and that this impact is significant in the first generation and manifests dramatically in the subsequent generation. Developmental time and survivorship of treated cohorts in the first generation were significantly affected during third instar development through to the adult stage. Adults from the sterilized treatment group exhibited longer pre-oviposition periods, produced fewer egg masses, had significantly smaller clutch sizes, and the hatch rate and survivorship of those eggs were significantly reduced. Observations following hatch of surface sterilized eggs also revealed significant effects on wandering behavior of the first instars. The second generation progeny from adults of the sterilized cohorts showed significantly lower survival to adulthood, averaging only 0.3% compared to 20.8% for the control cohorts. Taken together, results demonstrate that H. halys is heavily impacted by deprival of its gut symbionts. Given the economic status of this invasive pest, further investigations may lead to management tactics that disrupt this close symbiotic

  8. The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stål).

    Science.gov (United States)

    Taylor, Christopher M; Coffey, Peter L; DeLay, Bridget D; Dively, Galen P

    2014-01-01

    The invasive brown marmorated stink bug, Halyomorpha halys (Stål), has become a severe agricultural pest and nuisance problem since its introduction in the U.S. Research is being conducted to understand its biology and to find management solutions. Its symbiotic relationship with gut symbionts is one aspect of its biology that is not understood. In the family Pentatomidae, the reliance on gut symbionts for successful development seems to vary depending on the species of stink bug. This research assessed the role of gut symbionts in the development, survivorship, and fecundity of H. halys. We compared various fitness parameters of nymphs and adults reared from surface sterilized and untreated egg masses during two consecutive generations under laboratory conditions. Results provided direct evidence that H. halys is negatively impacted by the prevention of vertical transmission of its gut symbionts and that this impact is significant in the first generation and manifests dramatically in the subsequent generation. Developmental time and survivorship of treated cohorts in the first generation were significantly affected during third instar development through to the adult stage. Adults from the sterilized treatment group exhibited longer pre-oviposition periods, produced fewer egg masses, had significantly smaller clutch sizes, and the hatch rate and survivorship of those eggs were significantly reduced. Observations following hatch of surface sterilized eggs also revealed significant effects on wandering behavior of the first instars. The second generation progeny from adults of the sterilized cohorts showed significantly lower survival to adulthood, averaging only 0.3% compared to 20.8% for the control cohorts. Taken together, results demonstrate that H. halys is heavily impacted by deprival of its gut symbionts. Given the economic status of this invasive pest, further investigations may lead to management tactics that disrupt this close symbiotic relationship in

  9. Beyond the gut bacterial microbiota: The gut virome.

    Science.gov (United States)

    Columpsi, Paola; Sacchi, Paolo; Zuccaro, Valentina; Cima, Serena; Sarda, Cristina; Mariani, Marcello; Gori, Andrea; Bruno, Raffaele

    2016-09-01

    The gastrointestinal tract is colonized with a highly different population of bacterial, viral, ad fungal species; viruses are reported to be dominant. The composition of gut virome is closely related to dietary habits and surrounding environment. Host and their intestinal microbes live in a dynamic equilibrium and viruses stimulate a low degree of immune responses without causing symptoms (host tolerance). However, intestinal phages could lead to a rupture of eubiosis and may contribute to the shift from health to disease in humans and animals. Viral nucleic acids and other products of lysis of bacteria serve as pathogen-associated molecular patterns (PAMPs) and could trigger specific inflammatory modulations. At the same time, phages could elicit innate antiviral immune responses. Toll-like receptors (TLRs) operated as innate antiviral immune sensors and their activation triggers signaling cascades that lead to inflammatory response. J. Med. Virol. 88:1467-1472, 2016. © 2016 Wiley Periodicals, Inc. PMID:26919534

  10. Interspecific competition between entomopathogenic nematodes (Steinernema is modified by their bacterial symbionts (Xenorhabdus

    Directory of Open Access Journals (Sweden)

    Pages Sylvie

    2006-09-01

    Full Text Available Abstract Background Symbioses between invertebrates and prokaryotes are biological systems of particular interest in order to study the evolution of mutualism. The symbioses between the entomopathogenic nematodes Steinernema and their bacterial symbiont Xenorhabdus are very tractable model systems. Previous studies demonstrated (i a highly specialized relationship between each strain of nematodes and its naturally associated bacterial strain and (ii that mutualism plays a role in several important life history traits of each partner such as access to insect host resources, dispersal and protection against various biotic and abiotic factors. The goal of the present study was to address the question of the impact of Xenorhabdus symbionts on the progression and outcome of interspecific competition between individuals belonging to different Steinernema species. For this, we monitored experimental interspecific competition between (i two nematode species: S. carpocapsae and S. scapterisci and (ii their respective symbionts: X. nematophila and X. innexi within an experimental insect-host (Galleria mellonella. Three conditions of competition between nematodes were tested: (i infection of insects with aposymbiotic IJs (i.e. without symbiont of both species (ii infection of insects with aposymbiotic IJs of both species in presence of variable proportion of their two Xenorhabdus symbionts and (iii infection of insects with symbiotic IJs (i.e. naturally associated with their symbionts of both species. Results We found that both the progression and the outcome of interspecific competition between entomopathogenic nematodes were influenced by their bacterial symbionts. Thus, the results obtained with aposymbiotic nematodes were totally opposite to those obtained with symbiotic nematodes. Moreover, the experimental introduction of different ratios of Xenorhabdus symbionts in the insect-host during competition between Steinernema modified the proportion of

  11. Gut flora and bacterial translocation in chronic liver disease

    Institute of Scientific and Technical Information of China (English)

    John Almeida; Sumedha Galhenage; Jennifer Yu; Jelica Kurtovic; Stephen M Riordan

    2006-01-01

    Increasing evidence suggests that derangement of gut flora is of substantial clinical relevance to patients with cirrhosis. Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen, in particular, predispose to an increased potential for bacterial infection in this group. Recent studies suggest that, in addition to their role in the pathogenesis of overt infective episodes and the clinical consequences of sepsis, gut flora contributes to the pro-inflammatory state of cirrhosis even in the absence of overt infection.Furthermore, manipulation of gut flora to augment the intestinal content of lactic acid-type bacteria at the expense of other gut flora species with more pathogenic potential may favourably influence liver function in cirrhotic patients. Here we review current concepts of the various inter-relationships between gut flora, bacterial translocation, bacterial infection, pro-inflammatory cytokine production and liver function in this group.

  12. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri.

    Directory of Open Access Journals (Sweden)

    Steven A Frese

    2011-02-01

    Full Text Available Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.

  13. The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

    Energy Technology Data Exchange (ETDEWEB)

    Frese, Steven A. [University of Nebraska, Lincoln; Benson, Andrew K. [University of Nebraska, Lincoln; Tannock, Gerald W. [University of Otago, Dunedin, New Zealand; Loach, Diane M. [University of Otago, Dunedin, New Zealand; Kim, Jaehyoung [University of Nebraska, Lincoln; Zhang, Min [University of Nebraska, Lincoln; Oh, Phaik Lyn [University of Nebraska, Lincoln; Heng, Nicholas C. K. [University of Otago, Dunedin, New Zealand; Patil, Prabhu [University of Nebraska, Lincoln; Juge, Nathalie [Institute of Food Research, Norwich Research Park, Norwich, United Kingdom; MacKenzie, Donald A. [Institute of Food Research, Norwich Research Park, Norwich, United Kingdom; Pearson, Bruce M. [Institute of Food Research, Norwich Research Park, Norwich, United Kingdom; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Walter, Jens [University of Nebraska, Lincoln

    2011-01-01

    Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.

  14. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    Directory of Open Access Journals (Sweden)

    Eric C Martens

    2011-12-01

    Full Text Available Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target

  15. Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus.

    Science.gov (United States)

    Li, Hongjie; Dietrich, Carsten; Zhu, Na; Mikaelyan, Aram; Ma, Bin; Pi, Ruoxi; Liu, Yu; Yang, Mengyi; Brune, Andreas; Mo, Jianchu

    2016-05-01

    Fungus-cultivating termites (Macrotermitinae) possess an elaborate strategy of lignocellulose digestion. It involves a lignocellulose-degrading fungal symbiont (genus Termitomyces), a diverse gut microbiota and a characteristic labour division in food processing. In this study, using pyrotag sequencing and electron microscopy, we analysed the bacterial microbiota in the hindgut of Odontotermes formosanus and its fungus comb to investigate the spatial organization, establishment and temporal succession of the bacterial communities colonizing specific microhabitats. Our results document strong differences between the communities at the hindgut epithelium and the luminal fluid of newly moulted, young and old worker termites. The differences in community structure were consistent with the density, morphology and spatial distribution of bacterial cells and the pools of microbial metabolites in the hindgut compartment, underlining that both gut development and the age-specific changes in diet affect the composition and functional role of their gut microbiota. These findings provide strong support for the concept that changes in diet and gut environment are important determinants of community structure because they create new niches for microbial symbionts. PMID:26346907

  16. A novel extracellular gut symbiont in the marine worm Priapulus caudatus (Priapulida) reveals an alphaproteobacterial symbiont clade of the Ecdysozoa

    DEFF Research Database (Denmark)

    Kroer, Paul; Kjeldsen, Kasper Urup; Nyengaard, Jens Randel;

    2016-01-01

    Priapulus caudatus (phylum Priapulida) is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over eight years from three sites at the Swedish west coast. Based on their 16S r...... Tenuibacter priapulorum’. Within Rickettsiales, they form a phylogenetically well-defined, family-level clade with uncultured symbionts of marine, terrestrial, and freshwater arthropods. Cand. Tenuibacter priapulorum expands the host range of this candidate family from Arthropoda to the entire Ecdysozoa...

  17. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment.

    Science.gov (United States)

    Otani, Saria; Hansen, Lars H; Sørensen, Søren J; Poulsen, Michael

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from gut deposits and also that environment affects which gut bacteria dominate comb communities at a given point in time. PMID:26518432

  18. Effects of antibiotics on hydrogen production and gut symbionts in the Formosan subterranean termite Coptotermes formosanus (Isoptera: Rhinotermitidae)

    Institute of Scientific and Technical Information of China (English)

    Yueqing Cao; Jian-Zhong Sun; Jose M.Rodriguez

    2012-01-01

    Symbiotic microorganisms that inhabit the gut of Coptoterrnes forrnosanus enable this termite to degrade lignocelluloses and further produce hydrogen as an important intermediate to be recycled in its hindgut or as a byproduct to be emitted to the atmosphere.Both symbiotic protists and prokaryotes in the guts of termites demonstrated some different roles with respect to hydrogen production.In this study,the effects of two antibiotics,ampicillin and tetracycline,on hydrogen emission and the gut symbionts of C.formosanus were investigated.Hydrogen emission from termite guts was significantly enhanced when termites fed on wood diets treated with either ampicillin or tetracycline.The greatest H2 emission rates,2519 ± 74 and 2080 ± 377 nmol/h/g body weight,were recorded with the treatments of ampicillin and tetracycline,respectively,which showed 6-7 times more H2 production than that of controls.Antibiotic-treated diets negatively affected the prokaryotic communities and reduced their abundances,particularly on those ectosymbionts inhabiting the gut walls or in the gut fluid of C.formosanus,such as spirochetes.However,no significant reductions in the counts of gut cellulolytic protists,Pseudotrichonympha grassii and Holonastigotoids hartmanni,were recorded; and with a further observation by confocal laser scanning microscopy,the endosymbionts inhabiting P.grassii generally survived the antibiotic treatments.These results suggest that some prokaryotes may serve as the main hydrogen consumers,while P.grassii,together with its endosymbionts,may function as the main contributors for hydrogen production in the hindgut of C.formosanus.

  19. Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest.

    Science.gov (United States)

    Cass, Bodil N; Himler, Anna G; Bondy, Elizabeth C; Bergen, Jacquelyn E; Fung, Sierra K; Kelly, Suzanne E; Hunter, Martha S

    2016-01-01

    Inherited bacterial symbionts are common in arthropods and can have strong effects on the biology of their hosts. These effects are often mediated by host ecology. The Rickettsia symbiont can provide strong fitness benefits to its insect host, Bemisia tabaci, under laboratory and field conditions. However, the frequency of the symbiont is heterogeneous among field collection sites across the USA, suggesting that the benefits of the symbiont are contingent on additional factors. In two whitefly genetic lines collected from the same location, we tested the effect of Rickettsia on whitefly survival after heat shock, on whitefly competitiveness at different temperatures, and on whitefly competitiveness at different starting frequencies of Rickettsia. Rickettsia did not provide protection against heat shock nor affect the competitiveness of whiteflies at different temperatures or starting frequencies. However, there was a strong interaction between Rickettsia infection and whitefly genetic line. Performance measures indicated that Rickettsia was associated with significant female bias in both whitefly genetic lines, but in the second whitefly genetic line it conferred no significant fitness benefits nor conferred any competitive advantage to its host over uninfected whiteflies in population cages. These results help to explain other reports of variation in the phenotype of the symbiosis. Furthermore, they demonstrate the complex nature of these close symbiotic associations and the need to consider these interactions in the context of host population structure. PMID:26376661

  20. Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest.

    Science.gov (United States)

    Cass, Bodil N; Himler, Anna G; Bondy, Elizabeth C; Bergen, Jacquelyn E; Fung, Sierra K; Kelly, Suzanne E; Hunter, Martha S

    2016-01-01

    Inherited bacterial symbionts are common in arthropods and can have strong effects on the biology of their hosts. These effects are often mediated by host ecology. The Rickettsia symbiont can provide strong fitness benefits to its insect host, Bemisia tabaci, under laboratory and field conditions. However, the frequency of the symbiont is heterogeneous among field collection sites across the USA, suggesting that the benefits of the symbiont are contingent on additional factors. In two whitefly genetic lines collected from the same location, we tested the effect of Rickettsia on whitefly survival after heat shock, on whitefly competitiveness at different temperatures, and on whitefly competitiveness at different starting frequencies of Rickettsia. Rickettsia did not provide protection against heat shock nor affect the competitiveness of whiteflies at different temperatures or starting frequencies. However, there was a strong interaction between Rickettsia infection and whitefly genetic line. Performance measures indicated that Rickettsia was associated with significant female bias in both whitefly genetic lines, but in the second whitefly genetic line it conferred no significant fitness benefits nor conferred any competitive advantage to its host over uninfected whiteflies in population cages. These results help to explain other reports of variation in the phenotype of the symbiosis. Furthermore, they demonstrate the complex nature of these close symbiotic associations and the need to consider these interactions in the context of host population structure.

  1. Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea.

    Science.gov (United States)

    Skaljac, M; Zanić, K; Hrnčić, S; Radonjić, S; Perović, T; Ghanim, M

    2013-02-01

    Several whitefly species (Hemiptera: Aleyrodidae) are cosmopolitan phloem-feeders that cause serious damage in numerous agricultural crops. All whitefly species harbor a primary bacterial symbiont and a diverse array of secondary symbionts which may influence several aspects of the insect's biology. We surveyed infections by secondary symbionts in Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood) and Siphoninus phillyreae (Haliday) from areas in the east cost of the Adriatic Sea. Both the Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) B. tabaci genetic groups were detected in Montenegro, whereas only the MED was confirmed in Croatia. Trialeurodes vaporariorum and S. phillyreae were found in all areas surveyed. MEAM1 and MED exhibited similarity to previously reported infections, while populations of T. vaporariorum from Montenegro harbored Rickettsia, Wolbachia and Cardinium in addition to previously reported Hamiltonella and Arsenopnohus. Siphoninus phillyreae harbored Hamiltonella, Wolbachia, Cardinium and Arsenophonus, with the latter appearing in two alleles. Multiple infections of all symbionts were common in the three insect species tested, with some reaching near fixation. Florescent in situ hybridization showed new localization patterns for Hamiltonella in S. phillyreae, and the morphology of the bacteriosome differed from that observed in other whitefly species. Our results show new infections with bacterial symbionts in the whitefly species studied. Infections with the same symbionts in reproductively isolated whitefly species confirm complex relationships between whiteflies and bacterial symbionts, and suggest possible horizontal transfer of some of these bacteria.

  2. Promiscuous and specific bacterial symbiont acquisition in the amoeboid genus Nuclearia (Opisthokonta).

    Science.gov (United States)

    Dirren, Sebastian; Posch, Thomas

    2016-08-01

    We isolated 17 strains of the amoeboid genus Nuclearia (Opisthokonta) from five Swiss lakes. Eight of these nucleariid isolates were associated with bacterial endosymbionts and/or ectosymbionts. Amoebae were characterized morphologically and by their 18S rRNA genes. Phylogeny based on molecular data resulted in four established monophyletic branches and two new clusters. A heterogeneous picture emerged by highlighting nucleariids with associated bacteria. Apart from one cluster which consisted of only isolates with and three groups of amoebae without symbionts, we also found mixed clusters. The picture got even more 'blurred' by regarding the phylogeny of symbiotic bacteria. Although seven different bacterial strains could be identified, it seems that we still are only scratching the surface of symbionts' diversity. Furthermore, types of symbioses might be different depending on host species. Strains of Nuclearia thermophila harboured the same endosymbiont even when isolated from different lakes. This pointed to a specific and obligate interaction. However, two isolates of N. delicatula were associated with different endosymbiotic bacteria. Here the symbiont acquisition seemed to be rather promiscuous. This behaviour regarding symbiotic associations is especially remarkable considering the phylogenetic position of these basal opisthokonts. PMID:27199347

  3. Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome

    Energy Technology Data Exchange (ETDEWEB)

    McNulty, Nathan [Washington University, St. Louis; Wu, Meng [Washington University, St. Louis; Erickson, Alison L [ORNL; Pan, Chongle [ORNL; Erickson, Brian K [ORNL; Martens, Eric C [University of Michigan; Pudlo, Nicholas A [University of Michigan; Muegge, Brian [Washington University, St. Louis; Henrissat, Bernard [Universite d' Aix-Marseille I & II; Hettich, Robert {Bob} L [ORNL; Gordon, Jeffrey [Washington University, St. Louis

    2013-01-01

    The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising .90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism s 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight

  4. Patterned progression of bacterial populations in the premature infant gut.

    Science.gov (United States)

    La Rosa, Patricio S; Warner, Barbara B; Zhou, Yanjiao; Weinstock, George M; Sodergren, Erica; Hall-Moore, Carla M; Stevens, Harold J; Bennett, William E; Shaikh, Nurmohammad; Linneman, Laura A; Hoffmann, Julie A; Hamvas, Aaron; Deych, Elena; Shands, Berkley A; Shannon, William D; Tarr, Phillip I

    2014-08-26

    In the weeks after birth, the gut acquires a nascent microbiome, and starts its transition to bacterial population equilibrium. This early-in-life microbial population quite likely influences later-in-life host biology. However, we know little about the governance of community development: does the gut serve as a passive incubator where the first organisms randomly encountered gain entry and predominate, or is there an orderly progression of members joining the community of bacteria? We used fine interval enumeration of microbes in stools from multiple subjects to answer this question. We demonstrate via 16S rRNA gene pyrosequencing of 922 specimens from 58 subjects that the gut microbiota of premature infants residing in a tightly controlled microbial environment progresses through a choreographed succession of bacterial classes from Bacilli to Gammaproteobacteria to Clostridia, interrupted by abrupt population changes. As infants approach 33-36 wk postconceptional age (corresponding to the third to the twelfth weeks of life depending on gestational age at birth), the gut is well colonized by anaerobes. Antibiotics, vaginal vs. Caesarian birth, diet, and age of the infants when sampled influence the pace, but not the sequence, of progression. Our results suggest that in infants in a microbiologically constrained ecosphere of a neonatal intensive care unit, gut bacterial communities have an overall nonrandom assembly that is punctuated by microbial population abruptions. The possibility that the pace of this assembly depends more on host biology (chiefly gestational age at birth) than identifiable exogenous factors warrants further consideration. PMID:25114261

  5. Intracolonial differences in gut bacterial community between worker and soldier castes of Coptotermes formosanus

    Institute of Scientific and Technical Information of China (English)

    Hui Xiang; Lei Xie; Jun Zhang; Yan-Hua Long; Ning Liu; Yong-Ping Huang; QianWang

    2012-01-01

    The establishment of symbiotic relationships with intestinal microorganisms enables termites to thrive on recalcitrant substrates such as cellulose and wood.A termite colony is composed of several different castes which have distinct feeding habits.The soldiers,for example,cannot feed by themselves and depend on workers,who feed them with digested or semi-digested foods.To investigate the influence of feeding habits on the bacterial symbionts,a comparative study of gut bacteria between worker and soldier castes of the termite Coptotermesformosanus was conducted.The bacterial communities of both castes were investigated using denaturing gradient gel electrophoresis (DGGE) and clonal analysis of 16S ribosomal DNA (rDNA).Both methods indicated Bacteroidetes was the common predominant group; the common dominant phylotype was affiliated with a reported uncultured Bacteroidetes phylotype (BCfl-03).There were significant differences in Bacteroidetes and Spirochaetes between two castes.Compared to the gut bacteria of workers,those of soldiers were lower in abundance and diversity of Bacteroidetes and slightly higher in Spirochaetes.Two phylotypes (W8,W11) affiliated to Bacteroidetes and two (W26,W29) affiliated to Spirochaetes were exclusively found in the DGGE profile of the worker caste.Bacteroidetes are assumed to be involved in fermentation of sugars and nitrogenous compounds as well as degradation of uric acid.Spirochaetes are supposed to aid in the functions of acetogenesis and N2-fixation.The different feeding habits between workers and soldiers of C.formosanus may explain the observed differences in the gut bacterial community.

  6. Genome sequence of the vertebrate gut symbiont Lactobacillus reuteri ATCC 53608.

    Science.gov (United States)

    Heavens, Darren; Tailford, Louise E; Crossman, Lisa; Jeffers, Faye; Mackenzie, Donald A; Caccamo, Mario; Juge, Nathalie

    2011-08-01

    Lactobacillus reuteri, inhabiting the gastrointestinal tracts of a range of vertebrates, is a true symbiont with effects established as beneficial to the host. Here we describe the draft genome of L. reuteri ATCC 53608, isolated from a pig. The genome sequence provides important insights into the evolutionary changes underlying host specialization. PMID:21622738

  7. Genome Sequence of the Vertebrate Gut Symbiont Lactobacillus reuteri ATCC 53608 ▿

    OpenAIRE

    Heavens, Darren; Tailford, Louise E.; Crossman, Lisa; Jeffers, Faye; MacKenzie, Donald A.; Caccamo, Mario; Juge, Nathalie

    2011-01-01

    Lactobacillus reuteri, inhabiting the gastrointestinal tracts of a range of vertebrates, is a true symbiont with effects established as beneficial to the host. Here we describe the draft genome of L. reuteri ATCC 53608, isolated from a pig. The genome sequence provides important insights into the evolutionary changes underlying host specialization.

  8. Bacterial Impact on the Gut Metabolome

    DEFF Research Database (Denmark)

    Sulek, Karolina; Wilcks, Andrea; Licht, Tine Rask;

    ’s objective is to elucidate the mechanism behind the beneficial effects of pre- and probiotics. This will lead to development of new pre- and probiotics targeting specific lifestyle related disorders. The innovative design of pre- and probiotics will lead to increased value for Danish companies. The major.......  The effects will be different in different gut compartments (e.g. ileum versus colon and mucosa versus lumen).  Also metabolites in blood will be affected by probiotic colonization and/or prebiotic administration. To map metabolites, gnotobiotic animal models and in vitro fermentation tests in an anaerobic...

  9. The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus.

    Science.gov (United States)

    Hendry, Tory A; Dunlap, Paul V

    2011-12-01

    Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron. PMID:21864694

  10. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J. (WU); (Danforth)

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the natural helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.

  11. THE ROLE OF BACTERIAL SYMBIONTS IN AMINO ACID COMPOSITION OF BLACK BEAN APHIDS

    Institute of Scientific and Technical Information of China (English)

    MingGan; De-ChengDing; Xue-xiaMiao

    2003-01-01

    To evaluate the role of bacterial symbionts ( Buchnera spp. ) in the black bean aphids ( Aphis craccivora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the total protein content per mg fresh weight was significantly reduced by 29 %, but free amino acid titers were increased by 17% . The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37% in symbiotic and aposymbiotic aphids, respectively,suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid,threonine represented 21. 6% of essential amino acids in symbiotic aphids, but it was only 16.7% in aposymbiotic aphids. Likewise, two nonessential amino acids, tyrosine and serine, represented 8.9% and 5.6% of total amino acids in symbiontic aphids, respectively, but they enhanced to 21.1% and 13.6% in aposymbiotic aphids. It seems likely that the elevated free amino acid concentration in aposymbiotic aphids was caused by the limited protein anabolism as the result of the unbalanced amino acid composition.

  12. Gut Bacterial Community of the Xylophagous Cockroaches Cryptocercus punctulatus and Parasphaeria boleiriana.

    Science.gov (United States)

    Berlanga, Mercedes; Llorens, Carlos; Comas, Jaume; Guerrero, Ricardo

    2016-01-01

    Cryptocercus punctulatus and Parasphaeria boleiriana are two distantly related xylophagous and subsocial cockroaches. Cryptocercus is related to termites. Xylophagous cockroaches and termites are excellent model organisms for studying the symbiotic relationship between the insect and their microbiota. In this study, high-throughput 454 pyrosequencing of 16S rRNA was used to investigate the diversity of metagenomic gut communities of C. punctulatus and P. boleiriana, and thereby to identify possible shifts in symbiont allegiances during cockroaches evolution. Our results revealed that the hindgut prokaryotic communities of both xylophagous cockroaches are dominated by members of four Bacteria phyla: Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Other identified phyla were Spirochaetes, Planctomycetes, candidatus Saccharibacteria (formerly TM7), and Acidobacteria, each of which represented 1-2% of the total population detected. Community similarity based on phylogenetic relatedness by unweighted UniFrac analyses indicated that the composition of the bacterial community in the two species was significantly different (P termites and other cockroaches, but not with those from other animals or environments. These results suggest that, during their evolution, those cockroaches conserved several bacterial communities from the microbiota of a common ancestor. The ecological stability of those microbial communities may imply the important functional role for the survival of the host of providing nutrients in appropriate quantities and balance. PMID:27054320

  13. Bacterial adaptation to the gut environment favors successful colonization

    Science.gov (United States)

    Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

    2011-01-01

    Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host’s gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents. PMID:22157236

  14. Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production.

    Science.gov (United States)

    Mathew, Gincy Marina; Mathew, Dony Chacko; Lo, Shou-Chen; Alexios, Georgy Mathew; Yang, Jia-Cih; Sashikumar, Jagathala Mahalingam; Shaikh, Tanveer Mahamadali; Huang, Chieh-Chen

    2013-10-01

    In this work, gut microbes from the macrotermitine termite Odontotermes formosanus the cellulolytic Bacillus and fermentative Clostridium were studied in batch experiments using different carbon substrates to bio-mimic the termite gut for hydrogen production. Their fungus comb aging and the in vitro lignocellulosic degradation of the mango tree substrates by the synergistic interaction of Bacillus, Clostridium and Termitomyces were detected by Solid-state NMR. From the results, Bacillus species acted as a mutualist, by initiating an anaerobic environment for the growth of Clostridium, for bio-hydrogen production and the presence of Termitomyces enhanced the lignocellulosic degradation of substrates in vitro and in vivo. Thus, the synergistic collaboration of these three microbes can be used for termite-derived bio-fuel processing technology.

  15. Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals

    Science.gov (United States)

    La Rivière, Marie; Garrabou, Joaquim; Bally, Marc

    2015-12-01

    Gorgonian corals serve as key engineering species within Mediterranean rocky-shore communities that have recently suffered from repeated mortality events during warm temperature anomalies. Among the factors that may link thermal conditions with disease outbreaks, a number of bacterial pathogens have been implicated; they may take advantage of decreases in the defenses and/or overall health of the gorgonian hosts. Considering the beneficial role of the resident bacteria in tropical coral holobionts, a detailed characterization of the gorgonian-associated microbial populations is required to better understand the relationships among native microbiota, host fitness, and pathogen susceptibility. In this study, the bacterial communities associated with three sympatric gorgonian species, Eunicella singularis, Eunicella cavolini, and Corallium rubrum, were investigated to provide insight into the stability and the specificity of host-microbe interactions. Natural variations in bacterial communities were detected using terminal restriction fragment length polymorphism (T-RFLP) of the 16S ribosomal DNA. No major differences were identified between individual colonies sampled in winter or in summer within each gorgonian species. Although hierarchical cluster analysis of the T-RFLP profiles revealed that the three species harbor distinct communities, comparison of the T-RFLP peaks indicated the presence of common bacterial ribotypes. From phylogenetic analysis of 16S rDNA clone libraries, we identified a bacterial lineage related to the Hahellaceae family within the Oceanospirillales that is shared among E. singularis, E. cavolini, and C. rubrum and that dominates the communities of both species of Eunicella. However, distinct clades of Hahellaceae are harbored by various gorgonian species from Mediterranean and tropical waters, suggesting that these bacteria have formed host-specific symbiotic relationships with gorgonian octocorals. In addition, the relatedness of symbionts

  16. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron

    International Nuclear Information System (INIS)

    The crystal structure of a novel MACPF protein, which may play a role in the adaptation of commensal bacteria to host environments in the human gut, was determined and analyzed. Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT-3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment

  17. Onion thrips, Thrips tabaci, have gut bacteria that are closely related to the symbionts of the western flower thrips, Frankliniella occidentalis

    NARCIS (Netherlands)

    Vries, de E.J.; Wurff, van der A.W.G.; Jacobs, G.; Breeuwer, J.A.J.

    2008-01-01

    It has been shown that many insects have Enterobacteriaceae bacteria in their gut system. The western flower thrips, Frankliniella occidentalis Pergande [Thysanoptera: Thripidae], has a symbiotic relation with Erwinia species gut bacteria. To determine if other Thripidae species have similar bacteri

  18. Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria.

    Science.gov (United States)

    Kešnerová, Lucie; Moritz, Roxane; Engel, Philipp

    2016-01-01

    Here, we report the culture and characterization of an alphaproteobacterium of the order Rhizobiales, isolated from the gut of the honey bee Apis mellifera. Strain PEB0122T shares >95 % 16S rRNA gene sequence similarity with species of the genus Bartonella, a group of mammalian pathogens transmitted by bloodsucking arthropods. Phylogenetic analyses showed that PEB0122T and related strains from the honey bee gut form a sister clade of the genus Bartonella. Optimal growth of strain PEB0122T was obtained on solid media supplemented with defibrinated sheep blood under microaerophilic conditions at 35-37 °C, which is consistent with the cultural characteristics of other species of the genus Bartonella. Reduced growth of strain PEB0122T also occurred under aerobic conditions. The rod-shaped cells of strain PEB0122T had a mean length of 1.2-1.8 μm and revealed hairy surface structures. Strain PEB0122T was positive for catalase, cytochrome c oxidase, urease and nitrate reductase. The fatty acid composition was comparable to those of other species of the genus Bartonella, with palmitic acid (C16 : 0) and isomers of 18- and 19-carbon chains being the most abundant. The genomic DNA G+C content of PEB0122T was determined to be about 45.5 mol%. The high 16S rRNA gene sequence similarity with species of Bartonella and its close phylogenetic position suggest that strain PEB0122T represents a novel species within the genus Bartonella, for which we propose the name Bartonella apis sp. nov. The type strain is PEB0122T ( = NCIMB 14961T = DSM 29779T). PMID:26537852

  19. Diverse strategies for vertical symbiont transmission among subsocial stinkbugs.

    Directory of Open Access Journals (Sweden)

    Takahiro Hosokawa

    Full Text Available Sociality may affect symbiosis and vice versa. Many plant-sucking stinkbugs harbor mutualistic bacterial symbionts in the midgut. In the superfamily Pentatomoidea, adult females excrete symbiont-containing materials from the anus, which their offspring ingest orally and establish vertical symbiont transmission. In many stinkbug families whose members are mostly non-social, females excrete symbiont-containing materials onto/beside eggs upon oviposition. However, exceptional cases have been reported from two subsocial species representing the closely related families Cydnidae and Parastrachiidae, wherein females remain nearby eggs for maternal care after oviposition, and provide their offspring with symbiont-containing secretions at later stages, either just before or after hatching. These observations suggested that sociality of the host stinkbugs may be correlated with their symbiont transmission strategies. However, we found that cydnid stinkbugs of the genus Adomerus, which are associated with gammaproteobacterial gut symbionts and exhibit elaborate maternal care over their offspring, smear symbiont-containing secretions onto eggs upon oviposition as many non-social stinkbugs do. Surface sterilization of the eggs resulted in aposymbiotic insects of slower growth, smaller size and abnormal body coloration, indicating vertical symbiont transmission via egg surface contamination and presumable beneficial nature of the symbiosis. The Adomerus symbionts exhibited AT-biased nucleotide compositions, accelerated molecular evolutionary rates and reduced genome size, while these degenerative genomic traits were less severe than those in the symbiont of a subsocial parastrachiid. These results suggest that not only sociality but also other ecological and evolutionary aspects of the host stinkbugs, including the host-symbiont co-evolutionary history, may have substantially affected their symbiont transmission strategies.

  20. Intra- and Interspecific Comparisons of Bacterial Diversity and Community Structure Support Coevolution of Gut Microbiota and Termite Host†

    Science.gov (United States)

    Hongoh, Yuichi; Deevong, Pinsurang; Inoue, Tetsushi; Moriya, Shigeharu; Trakulnaleamsai, Savitr; Ohkuma, Moriya; Vongkaluang, Charunee; Noparatnaraporn, Napavarn; Kudo, Toshiaki

    2005-01-01

    We investigated the bacterial gut microbiota from 32 colonies of wood-feeding termites, comprising four Microcerotermes species (Termitidae) and four Reticulitermes species (Rhinotermitidae), using terminal restriction fragment length polymorphism analysis and clonal analysis of 16S rRNA. The obtained molecular community profiles were compared statistically between individuals, colonies, locations, and species of termites. Both analyses revealed that the bacterial community structure was remarkably similar within each termite genus, with small but significant differences between sampling sites and/or termite species. In contrast, considerable differences were found between the two termite genera. Only one bacterial phylotype (defined with 97% sequence identity) was shared between the two termite genera, while 18% and 50% of the phylotypes were shared between two congeneric species in the genera Microcerotermes and Reticulitermes, respectively. Nevertheless, a phylogenetic analysis of 228 phylotypes from Microcerotermes spp. and 367 phylotypes from Reticulitermes spp. with other termite gut clones available in public databases demonstrated the monophyly of many phylotypes from distantly related termites. The monophyletic “termite clusters” comprised of phylotypes from more than one termite species were distributed among 15 bacterial phyla, including the novel candidate phyla TG2 and TG3. These termite clusters accounted for 95% of the 960 clones analyzed in this study. Moreover, the clusters in 12 phyla comprised phylotypes from more than one termite (sub)family, accounting for 75% of the analyzed clones. Our results suggest that the majority of gut bacteria are not allochthonous but are specific symbionts that have coevolved with termites and that their community structure is basically consistent within a genus of termites. PMID:16269686

  1. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host.

    Science.gov (United States)

    Hongoh, Yuichi; Deevong, Pinsurang; Inoue, Tetsushi; Moriya, Shigeharu; Trakulnaleamsai, Savitr; Ohkuma, Moriya; Vongkaluang, Charunee; Noparatnaraporn, Napavarn; Kudo, Toshiaki

    2005-11-01

    We investigated the bacterial gut microbiota from 32 colonies of wood-feeding termites, comprising four Microcerotermes species (Termitidae) and four Reticulitermes species (Rhinotermitidae), using terminal restriction fragment length polymorphism analysis and clonal analysis of 16S rRNA. The obtained molecular community profiles were compared statistically between individuals, colonies, locations, and species of termites. Both analyses revealed that the bacterial community structure was remarkably similar within each termite genus, with small but significant differences between sampling sites and/or termite species. In contrast, considerable differences were found between the two termite genera. Only one bacterial phylotype (defined with 97% sequence identity) was shared between the two termite genera, while 18% and 50% of the phylotypes were shared between two congeneric species in the genera Microcerotermes and Reticulitermes, respectively. Nevertheless, a phylogenetic analysis of 228 phylotypes from Microcerotermes spp. and 367 phylotypes from Reticulitermes spp. with other termite gut clones available in public databases demonstrated the monophyly of many phylotypes from distantly related termites. The monophyletic "termite clusters" comprised of phylotypes from more than one termite species were distributed among 15 bacterial phyla, including the novel candidate phyla TG2 and TG3. These termite clusters accounted for 95% of the 960 clones analyzed in this study. Moreover, the clusters in 12 phyla comprised phylotypes from more than one termite (sub)family, accounting for 75% of the analyzed clones. Our results suggest that the majority of gut bacteria are not allochthonous but are specific symbionts that have coevolved with termites and that their community structure is basically consistent within a genus of termites.

  2. Gut Bacterial Community of the Xylophagous Cockroaches Cryptocercus punctulatus and Parasphaeria boleiriana

    Science.gov (United States)

    Berlanga, Mercedes; Llorens, Carlos; Comas, Jaume; Guerrero, Ricardo

    2016-01-01

    Cryptocercus punctulatus and Parasphaeria boleiriana are two distantly related xylophagous and subsocial cockroaches. Cryptocercus is related to termites. Xylophagous cockroaches and termites are excellent model organisms for studying the symbiotic relationship between the insect and their microbiota. In this study, high-throughput 454 pyrosequencing of 16S rRNA was used to investigate the diversity of metagenomic gut communities of C. punctulatus and P. boleiriana, and thereby to identify possible shifts in symbiont allegiances during cockroaches evolution. Our results revealed that the hindgut prokaryotic communities of both xylophagous cockroaches are dominated by members of four Bacteria phyla: Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Other identified phyla were Spirochaetes, Planctomycetes, candidatus Saccharibacteria (formerly TM7), and Acidobacteria, each of which represented 1–2% of the total population detected. Community similarity based on phylogenetic relatedness by unweighted UniFrac analyses indicated that the composition of the bacterial community in the two species was significantly different (P host of providing nutrients in appropriate quantities and balance. PMID:27054320

  3. The Population Structure of Antibiotic-Producing Bacterial Symbionts of Apterostigma dentigerum Ants: Impacts of Coevolution and Multipartite Symbiosis

    OpenAIRE

    Caldera, Eric J.; Currie, Cameron R

    2012-01-01

    Fungus-growing ants (Attini) are part of a complex symbiosis with Basidiomycetous fungi, which the ants cultivate for food, Ascomycetous fungal pathogens (Escovopsis), which parasitize cultivars, and Actinobacteria, which produce antibiotic compounds that suppress pathogen growth. Earlier studies that have characterized the association between attine ants and their bacterial symbionts have employed broad phylogenetic approaches, with conclusions ranging from a diffuse coevolved mutualism to n...

  4. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints

    OpenAIRE

    Mouchet, M.A.; Bouvier, C.; Bouvier, T.; Troussellier, Marc; Escalas, A.; Mouillot, D.

    2012-01-01

    Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate (TM) and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) a...

  5. Bacterial Endo-Symbiont Inhabiting Tridax procumbens L. and Their Antimicrobial Potential

    Directory of Open Access Journals (Sweden)

    Syed Baker

    2015-01-01

    Full Text Available Bacterial symbionts inhabiting Tridax procumbens L. were screened for antimicrobial potential with the aim to isolate potent bacteria bearing significant activity against test pathogens. The selected isolate was subjected to large scale fermentation to extract antimicrobial metabolite. The organic phase was reduced under vacuum pressure and crude ethyl acetate extract (10 mg/mL was evaluated for antimicrobial activity against panel of test pathogens. The antibacterial activity was measured as a zone of inhibition and compared with standard antibiotics, gentamicin and tetracycline. Similarly, antifungal activity was compared with miconazole and bavistin. Significant activity was conferred against Shigella flexneri (MTCC 731 with 27±1.5 mm zone across the disc. Partially, purification of antimicrobial metabolite with TLC-bioautography and HPLC resulted in active fraction bearing activity at Rf 0.65 and eluting between 4 and 5 retention times. The obtained results are promising enough for future purification and characterization of antimicrobial metabolite. Thus, the study attributes to the growing knowledge on endophytes as one of the rich sources of antimicrobial potentials.

  6. Associations between bacterial communities of house dust and infant gut

    Energy Technology Data Exchange (ETDEWEB)

    Konya, T.; Koster, B. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Maughan, H. [Department of Cell and Systems Biology, University of Toronto (Canada); Escobar, M. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Azad, M.B. [Department of Pediatrics, University of Alberta (Canada); Guttman, D.S. [Department of Cell and Systems Biology, University of Toronto (Canada); Sears, M.R. [Department of Medicine, McMaster University (Canada); Becker, A.B. [University of Manitoba (Canada); Brook, J.R. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Environment Canada (Canada); Takaro, T.K. [Faculty of Health Science, Simon Fraser University (Canada); Kozyrskyj, A.L. [Department of Pediatrics, University of Alberta (Canada); Scott, J.A., E-mail: james.scott@utoronto.ca [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada)

    2014-05-01

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust–stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership.

  7. Associations between bacterial communities of house dust and infant gut

    International Nuclear Information System (INIS)

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust–stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership

  8. Associations between bacterial communities of house dust and infant gut.

    Science.gov (United States)

    Konya, T; Koster, B; Maughan, H; Escobar, M; Azad, M B; Guttman, D S; Sears, M R; Becker, A B; Brook, J R; Takaro, T K; Kozyrskyj, A L; Scott, J A

    2014-05-01

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust-stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership.

  9. Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae).

    Science.gov (United States)

    Szklarzewicz, Teresa; Grzywacz, Beata; Szwedo, Jacek; Michalik, Anna

    2016-03-01

    Plant sap-feeding hemipterans harbor obligate symbiotic microorganisms which are responsible for the synthesis of amino acids missing in their diet. In this study, we characterized the obligate symbionts hosted in the body of the xylem-feeding leafhopper Evacanthus interruptus (Cicadellidae: Evacanthinae: Evacanthini) by means of histological, ultrastructural and molecular methods. We observed that E. interruptus is associated with two types of symbiotic microorganisms: bacterium 'Candidatus Sulcia muelleri' (Bacteroidetes) and betaproteobacterium that is closely related to symbionts which reside in two other Cicadellidae representatives: Pagaronia tredecimpunctata (Evacanthinae: Pagaronini) and Hylaius oregonensis (Bathysmatophorinae: Bathysmatophorini). Both symbionts are harbored in their own bacteriocytes which are localized between the body wall and ovaries. In E. interruptus, both Sulcia and betaproteobacterial symbionts are transovarially transmitted from one generation to the next. In the mature female, symbionts leave the bacteriocytes and gather around the posterior pole of the terminal oocytes. Then, they gradually pass through the cytoplasm of follicular cells surrounding the posterior pole of the oocyte and enter the space between them and the oocyte. The bacteria accumulate in the deep depression of the oolemma and form a characteristic 'symbiont ball'. In the light of the results obtained, the phylogenetic relationships within modern Cicadomorpha and some Cicadellidae subfamilies are discussed.

  10. Dynamics of bacterial community in the gut of Cornu aspersum

    Directory of Open Access Journals (Sweden)

    ZDRAVKA KOLEVA

    2015-12-01

    Full Text Available The dynamics of the bacterial community in the intestinal tract of Cornu aspersum was investigated during different states of its life cycle. Two approaches were applied – culture and non-culture. The non-culture approach was performed by ARDRA of 16S rDNA using two of the six tested endonucleases. Data were analyzed by hierarchical cluster analysis. The restriction of 16S rDNA samples from the snail of different physiological states with endonucleases HinfI and Csp6I resulted in generation of different profiles depending on the snail states. By the culture approach we found that the total number of cultivable bacteria, representatives of Enterobacteriaceae, lactic acid bacteria, amylolitic and cellulolytic bacteria were the most abundant in active state of the snails. Cellulolytic bacteria were not detected in juveniles of C. aspersum. Escherichia coli, Clostridium perfringens as well as bacteria from the genus Salmonella, Shigella and Pseudomonas were not detected. Bacteria of the genus Aeromonas were found in juveniles of C. aspersum, after that their number decrease and were not found in hibernating snails. On the base of the two applied approaches this study shows that the bacterial flora in the intestinal tract of C. aspersum is affected by the seasonal and environmental variations and undergoes quantitative and qualitative changes during the different states of the life cycle. The snails harbor in their gut intestinal bacteria, which possess biochemical potentiality to degrade the plant components.

  11. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR

    KAUST Repository

    Bayer, Kristina

    2014-07-09

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy. The authors quantified sponge symbionts in eight sponge species from three different locations by real time PCR targetting 16S rRNA genes. Additionally, FISH was performed and diversity and abundance of singularized microbial symbionts from Aplysina aerophoba was determined for a comprehensive quantification work. © 2014 Federation of European Microbiological Societies.

  12. Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts

    DEFF Research Database (Denmark)

    Liberti, Joanito; Sapountzis, Panagiotis; Hansen, Lars H.;

    2015-01-01

    Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated...... nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional...

  13. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts.

    Directory of Open Access Journals (Sweden)

    Helen E Dunbar

    2007-05-01

    Full Text Available Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera aphidicola, which supplies essential nutrients. We report a mutation in Buchnera of the aphid Acyrthosiphon pisum that recurs in laboratory lines and occurs in field populations. This single nucleotide deletion affects a homopolymeric run within the heat-shock transcriptional promoter for ibpA, encoding a small heat-shock protein. This Buchnera mutation virtually eliminates the transcriptional response of ibpA to heat stress and lowers its expression even at cool or moderate temperatures. Furthermore, this symbiont mutation dramatically affects host fitness in a manner dependent on thermal environment. Following a short heat exposure as juveniles, aphids bearing short-allele symbionts produced few or no progeny and contained almost no Buchnera, in contrast to aphids bearing symbionts without the deletion. Conversely, under constant cool conditions, aphids containing symbionts with the short allele reproduced earlier and maintained higher reproductive rates. The short allele has appreciable frequencies in field populations (up to 20%, further supporting the view that lowering of ibpA expression improves host fitness under some conditions. This recurring Buchnera mutation governs thermal tolerance of aphid hosts. Other cases in which symbiont microevolution has a major effect on host ecological tolerance are likely to be widespread because of the high mutation rates of symbiotic bacteria and their crucial roles in host metabolism and development.

  14. A bacterial filter protects and structures the gut microbiome of an insect.

    Science.gov (United States)

    Lanan, Michele Caroline; Rodrigues, Pedro Augusto Pos; Agellon, Al; Jansma, Patricia; Wheeler, Diana Esther

    2016-08-01

    Associations with symbionts within the gut lumen of hosts are particularly prone to disruption due to the constant influx of ingested food and non-symbiotic microbes, yet we know little about how partner fidelity is maintained. Here we describe for the first time the existence of a gut morphological filter capable of protecting an animal gut microbiome from disruption. The proventriculus, a valve located between the crop and midgut of insects, functions as a micro-pore filter in the Sonoran Desert turtle ant (Cephalotes rohweri), blocking the entry of bacteria and particles ⩾0.2 μm into the midgut and hindgut while allowing passage of dissolved nutrients. Initial establishment of symbiotic gut bacteria occurs within the first few hours after pupation via oral-rectal trophallaxis, before the proventricular filter develops. Cephalotes ants are remarkable for having maintained a consistent core gut microbiome over evolutionary time and this partner fidelity is likely enabled by the proventricular filtering mechanism. In addition, the structure and function of the cephalotine proventriculus offers a new perspective on organismal resistance to pathogenic microbes, structuring of gut microbial communities, and development and maintenance of host-microbe fidelity both during the animal life cycle and over evolutionary time. PMID:26872040

  15. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    Science.gov (United States)

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-01

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts. PMID:19206228

  16. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    Science.gov (United States)

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-01

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts.

  17. Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis

    Institute of Scientific and Technical Information of China (English)

    Yaron Ilan

    2012-01-01

    Gut flora and bacterial translocation (BT) play important roles in the pathogenesis of chronic liver disease,including cirrhosis and its complications.Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen predispose patients to bacterial infections,major complications and also play a role in the pathogenesis of chronic liver disorders.Levels of bacterial lipopolysaccharide,a component of gram-negative bacteria,are increased in the portal and/or systemic circulation in several types of chronic liver disease.Impaired gut epithelial integrity due to alterations in tight junction proteins may be the pathological mechanism underlying bacterial translocation.Preclinical and clinical studies over the last decade have suggested a role for BT in the pathogenesis of nonalcoholic steatohepatitis (NASH).Bacterial overgrowth,immune dysfunction,alteration of the luminal factors,and altered intestinal permeability are all involved in the pathogenesis of NASH and its complications.A better understanding of the cell-specific recognition and intracellular signaling events involved in sensing gut-derived microbes will help in the development of means to achieve an optimal balance in the gut-liver axis and ameliorate liver diseases.These may suggest new targets for potential therapeutic interventions for the treatment of NASH.Here,we review some of the mechanisms connecting BT and NASH and potential therapeutic developments.

  18. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

    Science.gov (United States)

    Vences, Miguel; Lyra, Mariana L.; Kueneman, Jordan G.; Bletz, Molly C.; Archer, Holly M.; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J.; Tebbe, Christoph C.; Haddad, Célio F. B.; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.

  19. Gut bacterial symbiont diversity within beneficial insects linked to reductions in local biodiversity

    Science.gov (United States)

    Understanding the factors that constrain or promote symbiotic microbial communities gives a clearer picture of the niches that can be occupied by a host organism. Many insects harbor symbiotic microbes that can alter various aspects of insect behavior and biology including diet digestion, sex determ...

  20. Bacterial Diversity of Gut Content in Sea Cucumber (Apostichopus japonicus) and Its Habitat Surface Sediment

    Institute of Scientific and Technical Information of China (English)

    GAO Fei; TAN Jie; SUN Huiling; YAN Jingping

    2014-01-01

    This study investigated the bacterial diversity of gut content of sea cucumber (Apostichopus japonicus) and its habitat surface sediment in a bottom enhancement area using PCR-based denaturing gradient gel electrophoresis (DGGE) technique. Bacte-rial diversity evaluation showed that the value of the Shannon-Wiener index of gut content in different intestinal segments of A. ja-ponicus varied between 2.88 and 3.00, lower than that of the surrounding sediment (3.23). Phylogenetic analysis showed that bacte-rial phylotypes in gut content and the surrounding sediment of A. japonicus were closely related to Proteobacteria includingγ-,α-,δ-andε-proteobacteria, Bacteroidetes, Firmicute, and Actinobacteria, of whichγ-proteobacteria were predominant. These results sug-gested that the sea cucumber A. japonicus was capable of feeding selectively, and PCR-DGGE was applicable for characterizing the bacterial community composition in gut content and the surrounding sediment of sea cucumber. Further investigation targeting longer 16S rDNA gene fragments and/or functional genes was recommended for obtaining more information of the diversity and function of bacterial community in the gut content of sea cucumber.

  1. [Characterization of the Gut Bacterial Community of the Japanese Sea Cucumber Apostichopus japonicus].

    Science.gov (United States)

    Bogatyrenko, E A; Buzoleva, L S

    2016-01-01

    Comparative analysis of the composition and abundance of the gut bacterial community of the Japanese sea cucumber (trepang) Apostichopus japonicus and the soil from its habitat was carried out. In spite of the presence of strictly aerobic bacteria in the soil, gut microflora of this holothurian was shown to be formed by facultative anaerobes from the environment. Irrespective of the geographical location of the habitat, the sea cucmber gut community had a constant composition considered its normal microflora. Capacity of bactreia isolated from the Japanese sea cucumber for decomposition of starch, sodium alginate, chitin, chondroitin sulfate, Tweens, olive oil, casein, and gelatin was studied. Various degrees of enzymatic activity were shown for 33% of the studied bacterial strains, which indicates a considerable role of the trepang gut microflora in processing and assimilation of organic matter arriving with food. PMID:27301133

  2. Impact of cadmium on the bacterial communities in the gut of Metaphire posthuma

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shih-Hsiung; Chen, Mu-Hsuan; Chen, Chien-Cheng; Chen, Colin S. [Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan (China); Chen, Jiun-Hong [Department of Life Science, National Taiwan University, Taipei, Taiwan (China); Chen, Ssu Ching, E-mail: osycchna@ksts.seed.net.tw [Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)

    2009-12-30

    The effects of cadmium (Cd) contamination in soil onto the bacterial communities of the guts pooled from ten Metaphire posthuma were addressed during 14 days' incubation. We found that about 50% of Cd (5 mg/kg, dry weight soil) in the contaminated soil was bio-accumulated into the earthworms. DNA was extracted from the guts of M. posthuma and their dwelling soil irrespective of Cd treatment for the analysis of the bacterial communities of guts in M. posthuma and in soil by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). A distinctive cluster of bacterial communities of the guts in the earthworm with and without Cd treatment using the analysis of unweighted pair-group method using arithmetic averages (UPGMA) was observed, indicating that the bacterial community of guts could be changed by Cd. However, no differences in the bacterial communities in soil irrespective of Cd treatment were observed, which could be resulted from the bioremediation of Cd by earthworms leading to insignificant effect of Cd on bacterial communities in soil. For the sequencing of some of the dominant bands in the DGGE profile, Bradyrhizobium japonicum, Stenotrophomonas sp. D2, and Labrys, sp. CC-BB4, whose sequences display an identity of more than 97% using blast program against a known sequence in the GeneBank database and Ribosomal database, were identified. Collectively, our results showed that earthworm treatment can decrease the concentrations of Cd in soil, and Cd cause a shift in the bacterial communities in the guts of M. posthuma. The application of M. posthuma for Cd bioremediation would be desired.

  3. Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host

    OpenAIRE

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae; Bae, Jin-Woo

    2014-01-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% dista...

  4. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host.

    Science.gov (United States)

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae; Bae, Jin-Woo

    2014-09-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (± 97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. PMID:24928884

  5. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment

    DEFF Research Database (Denmark)

    Otani, Saria; Hansen, Lars H.; Sørensen, Søren Johannes;

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules......, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over...... time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from...

  6. Evidence for Vertical Transmission of Bacterial Symbionts from Adult to Embryo in the Caribbean Sponge Svenzea zeai

    KAUST Repository

    Lee, O. O.

    2009-07-31

    The Caribbean reef sponge Svenzea zeai was previously found to contain substantial quantities of unicellular photosynthetic and autotrophic microbes in its tissues, but the identities of these symbionts and their method of transfer from adult to progeny are largely unknown. In this study, both a 16S rRNA gene-based fingerprinting technique (denaturing gradient gel electrophoresis [DGGE]) and clone library analysis were applied to compare the bacterial communities associated with adults and embryos of S. zeai to test the hypothesis of vertical transfer across generations. In addition, the same techniques were applied to the bacterial community from the seawater adjacent to adult sponges to test the hypothesis that water column bacteria could be transferred horizontally as sponge symbionts. Results of both DGGE and clone library analysis support the vertical transfer hypothesis in that the bacterial communities associated with sponge adults and embryos were highly similar to each other but completely different from those in the surrounding seawater. Sequencing of prominent DGGE bands and of clones from the libraries revealed that the bacterial communities associated with the sponge, whether adult or embryo, consisted of a large proportion of bacteria in the phyla Chloroflexi and Acidobacteria, while most of the sequences recovered from the community in the adjacent water column belonged to the class Alphaproteobacteria. Altogether, 21 monophyletic sequence clusters, comprising sequences from both sponge adults and embryos but not from the seawater, were identified. More than half of the sponge-derived sequences fell into these clusters. Comparison of sequences recovered in this study with those deposited in GenBank revealed that more than 75% of S. zeai-derived sequences were closely related to sequences derived from other sponge species, but none of the sequences recovered from the seawater column overlapped with those from adults or embryos of S. zeai. In

  7. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice

    Science.gov (United States)

    Verma, Rajkumar; Venna, Venugopal R.; Liu, Fudong; Chauhan, Anjali; Koellhoffer, Edward; Patel, Anita; Ricker, Austin; Maas, Kendra; Graf, Joerg; McCullough, Louise D.

    2016-01-01

    Aging is an important risk factor for post-stroke infection, which accounts for a large proportion of stroke-associated mortality. Despite this, studies evaluating post-stroke infection rates in aged animal models are limited. In addition, few studies have assessed gut microbes as a potential source of infection following stroke. Therefore we investigated the effects of age and the role of bacterial translocation from the gut in post-stroke infection in young (8-12 weeks) and aged (18-20 months) C57Bl/6 male mice following transient middle cerebral artery occlusion (MCAO) or sham surgery. Gut permeability was examined and peripheral organs were assessed for the presence of gut-derived bacteria following stroke. Furthermore, sickness parameters and components of innate and adaptive immunity were examined. We found that while stroke induced gut permeability and bacterial translocation in both young and aged mice, only young mice were able to resolve infection. Bacterial species seeding peripheral organs also differed between young (Escherichia) and aged (Enterobacter) mice. Consequently, aged mice developed a septic response marked by persistent and exacerbated hypothermia, weight loss, and immune dysfunction compared to young mice following stroke. PMID:27115295

  8. Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: a randomised, placebo-controlled intervention trial in South African children.

    Science.gov (United States)

    Dostal, Alexandra; Baumgartner, Jeannine; Riesen, Nathalie; Chassard, Christophe; Smuts, Cornelius M; Zimmermann, Michael B; Lacroix, Christophe

    2014-08-28

    Fe supplementation is a common strategy to correct Fe-deficiency anaemia in children; however, it may modify the gut microbiota and increase the risk for enteropathogenic infection. In the present study, we studied the impact of Fe supplementation on the abundance of dominant bacterial groups in the gut, faecal SCFA concentration and gut inflammation in children living in rural South Africa. In a randomised, placebo-controlled intervention trial of 38 weeks, 6- to 11-year-old children with Fe deficiency received orally either tablets containing 50 mg Fe as FeSO₄ (n 22) for 4 d/week or identical placebo (n 27). In addition, Fe-sufficient children (n 24) were included as a non-treated reference group. Faecal samples were analysed at baseline and at 2, 12 and 38 weeks to determine the effects of Fe supplementation on ten bacterial groups in the gut (quantitative PCR), faecal SCFA concentration (HPLC) and gut inflammation (faecal calprotectin concentration). At baseline, concentrations of bacterial groups in the gut, faecal SCFA and faecal calprotectin did not differ between Fe-deficient and Fe-sufficient children. Fe supplementation significantly improved Fe status in Fe-deficient children and did not significantly increase faecal calprotectin concentration. Moreover, no significant effect of Fe treatment or time × treatment interaction on the concentrations of bacterial groups in the gut or faecal SCFA was observed compared with the placebo treatment. Also, there were no significant differences observed in the concentrations of any of the bacterial target groups or faecal SCFA at 2, 12 or 38 weeks between the three groups of children when correcting for baseline values. The present study suggests that in African children with a low enteropathogen burden, Fe status and dietary Fe supplementation did not significantly affect the dominant bacterial groups in the gut, faecal SCFA concentration or gut inflammation.

  9. Structure of a SusD Homologue, BT1043, Involved in Mucin O-Glycan Utilization in a Prominent Human Gut Symbiont

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J.; (Danforth); (WU-MED)

    2009-05-21

    Mammalian distal gut bacteria have an expanded capacity to utilize glycans. In the absence of dietary sources, some species rely on host-derived mucosal glycans. The ability of Bacteroides thetaiotaomicron, a prominent human gut symbiont, to forage host glycans contributes to both its ability to persist within an individual host and its ability to be transmitted naturally to new hosts at birth. The molecular basis of host glycan recognition by this species is still unknown but likely occurs through an expanded suite of outermembrane glycan-binding proteins that are the primary interface between B. thetaiotaomicron and its environment. Presented here is the atomic structure of the B. thetaiotaomicron protein BT1043, an outer membrane lipoprotein involved in host glycan metabolism. Despite a lack of detectable amino acid sequence similarity, BT1043 is a structural homologue of the B. thetaiotaomicron starch-binding protein SusD. Both structures are dominated by tetratrico peptide repeats that may facilitate association with outer membrane {beta}-barrel transporters required for glycan uptake. The structure of BT1043 complexed with N-acetyllactosamine reveals that recognition is mediated via hydrogen bonding interactions with the reducing end of {beta}-N-acetylglucosamine, suggesting a role in binding glycans liberated from the mucin polypeptide. This is in contrast to CBM 32 family members that target the terminal nonreducing galactose residue of mucin glycans. The highly articulated glycan-binding pocket of BT1043 suggests that binding of ligands to BT1043 relies more upon interactions with the composite sugar residues than upon overall ligand conformation as previously observed for SusD. The diversity in amino acid sequence level likely reflects early divergence from a common ancestor, while the unique and conserved {alpha}-helical fold the SusD family suggests a similar function in glycan uptake.

  10. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Adina; Ringus, Daina L.; Williams, Ryan J.; Choo, Zi-Ning; Greenwald, Stephanie M.; Owens, Sarah M.; Coleman, Maureen L.; Meyer, Folker; Chang, Eugene B.

    2015-10-16

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showed significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. The contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.

  11. Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma Lineatum (Hemiptera: Pentatomidae).

    Science.gov (United States)

    Karamipour, Naeime; Mehrabadi, Mohammad; Fathipour, Yaghoub

    2016-01-01

    Many members of suborder Heteroptra harbor heritable symbiotic bacteria. Here we characterize the gut symbiotic bacterium in Graphosoma lineatum (Hemiptera: Pentatomidae) by using molecular phylogeny, real-time PCR analysis as well as light and electron microscopy observations. The microscopy observations revealed the presence of a large number of rod-shaped bacterial cells in the crypts. A very high prevalence (98 to 100%) of the symbiont infection was found in the insect populations that strongly supports an intimate association between these two organisms. Real-time PCR analysis also showed that the Gammaproteobacteria dominated the crypts. The sequences of 16sr RNA and groEL genes of symbiont showed high levels of similarity (93 to 95%) to Pantoea agglomeranse and Erwinia herbicola Gammaproteobacteria. Phylogenetic analyses placed G. lineatum symbiont in a well-defined branch, divergent from other stink bug bacterial symbionts. Co-evolutionary analysis showed lack of host-symbiont phylogenetic congruence. Surface sterilization of eggs resulted in increased pre-adult stage in the offspring (aposymbionts) in comparison to the normal. Also, fecundity, longevity, and adult stage were significantly decreased in the aposymbionts. Therefore, it seems that the symbiont might play a vital function in the host biology, in which host optimal development depends on the symbiont. PMID:27609055

  12. Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma Lineatum (Hemiptera: Pentatomidae)

    Science.gov (United States)

    Karamipour, Naeime; Mehrabadi, Mohammad; Fathipour, Yaghoub

    2016-01-01

    Many members of suborder Heteroptra harbor heritable symbiotic bacteria. Here we characterize the gut symbiotic bacterium in Graphosoma lineatum (Hemiptera: Pentatomidae) by using molecular phylogeny, real-time PCR analysis as well as light and electron microscopy observations. The microscopy observations revealed the presence of a large number of rod-shaped bacterial cells in the crypts. A very high prevalence (98 to 100%) of the symbiont infection was found in the insect populations that strongly supports an intimate association between these two organisms. Real-time PCR analysis also showed that the Gammaproteobacteria dominated the crypts. The sequences of 16sr RNA and groEL genes of symbiont showed high levels of similarity (93 to 95%) to Pantoea agglomeranse and Erwinia herbicola Gammaproteobacteria. Phylogenetic analyses placed G. lineatum symbiont in a well-defined branch, divergent from other stink bug bacterial symbionts. Co-evolutionary analysis showed lack of host-symbiont phylogenetic congruence. Surface sterilization of eggs resulted in increased pre-adult stage in the offspring (aposymbionts) in comparison to the normal. Also, fecundity, longevity, and adult stage were significantly decreased in the aposymbionts. Therefore, it seems that the symbiont might play a vital function in the host biology, in which host optimal development depends on the symbiont. PMID:27609055

  13. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    Science.gov (United States)

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research. PMID:27147438

  14. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts.

    Science.gov (United States)

    Price, Daniel R G; Feng, Honglin; Baker, James D; Bavan, Selvan; Luetje, Charles W; Wilson, Alex C C

    2014-01-01

    Endosymbiotic associations have played a major role in evolution. However, the molecular basis for the biochemical interdependence of these associations remains poorly understood. The aphid-Buchnera endosymbiosis provides a powerful system to elucidate how these symbioses are regulated. In aphids, the supply of essential amino acids depends on an ancient nutritional symbiotic association with the gamma-proteobacterium Buchnera aphidicola. Buchnera cells are densely packed in specialized aphid bacteriocyte cells. Here we confirm that five putative amino acid transporters are highly expressed and/or highly enriched in Acyrthosiphon pisum bacteriocyte tissues. When expressed in Xenopus laevis oocytes, two bacteriocyte amino acid transporters displayed significant levels of glutamine uptake, with transporter ACYPI001018, LOC100159667 (named here as Acyrthosiphon pisum glutamine transporter 1, ApGLNT1) functioning as the most active glutamine transporter. Transporter ApGLNT1 has narrow substrate selectivity, with high glutamine and low arginine transport capacity. Notably, ApGLNT1 has high binding affinity for arginine, and arginine acts as a competitive inhibitor for glutamine transport. Using immunocytochemistry, we show that ApGLNT1 is localized predominantly to the bacteriocyte plasma membrane, a location consistent with the transport of glutamine from A. pisum hemolymph to the bacteriocyte cytoplasm. On the basis of functional transport data and localization, we propose a substrate feedback inhibition model in which the accumulation of the essential amino acid arginine in A. pisum hemolymph reduces the transport of the precursor glutamine into bacteriocytes, thereby regulating amino acid biosynthesis in the bacteriocyte. Structural similarities in the arrangement of hosts and symbionts across endosymbiotic systems suggest that substrate feedback inhibition may be mechanistically important in other endosymbioses.

  15. Evaluation of five antibiotics on larval gut bacterial diversity of Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Lin, Xiao-Li; Kang, Zhi-Wei; Pan, Qin-Jian; Liu, Tong-Xian

    2015-10-01

    Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method. PMID:25183343

  16. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts

    OpenAIRE

    B. Chouaia; Gaiarsa, S.; Crotti, E.; Comandatore, F.; Degli Esposti, M.; I. RICCI; Alma, A.; Favia, G.; Bandi, C.; D. Daffonchio

    2014-01-01

    Acetic acid bacteria (AAB) live in sugar rich environments, including food matrices, plant tissues, and the gut of sugar-feeding insects. By comparing the newly sequenced genomes of Asaia platycodi and Saccharibacter sp., symbionts of Anopheles stephensi and Apis mellifera, respectively, with those of 14 other AAB, we provide a genomic view of the evolutionary pattern of this bacterial group and clues on traits that explain the success of AAB as insect symbionts. A specific pre-adaptive trait...

  17. Analysis of Inter-Individual Bacterial Variation in Gut of Cicada Meimuna mongolica (Hemiptera: Cicadidae).

    Science.gov (United States)

    Zhou, Wenting; Nan, Xiaoning; Zheng, Zhou; Wei, Cong; He, Hong

    2015-01-01

    Intestinal bacterial community plays a crucial role in the nutrition, development, survival, and reproduction of insects. When compared with other insects with piercing-sucking mouthparts, the habitats of cicada nymphs and adults are totally different. However, little is known about the differences in the gut bacterial communities in the nymphs and adults within any cicada species. The diversity of bacteria in the gut of nymphs and adults of both genders of Meimuna mongolica (Distant) was studied using the denaturing gradient gel electrophoresis (DGGE) method. Few inter-individual variations among gut microbiota were observed, suggesting that M. mongolica typically harbors a limited and consistent suite of bacterial species. Bacteria in the genera Pseudomonas and Enterobacter were the predominant components of the gut microflora of M. mongolica at all life stages. Bacteria of Pantoea, Streptococcus, and Uruburuella were also widespread in the cicada samples but at relatively lower concentrations. The relative stability and similarity of the PCR-DGGE patterns indicate that all individuals of this cicada species harbor a characteristic bacterial community which is independent from developmental stages and genders. Related endosymbionts that could be harbored in bacteromes of cicadas were not detected in any gut samples, which could be related to the cicada species and the distribution of these endosymbionts in the cicada cavity, or due to some of the possible limitations of PCR-DGGE community profiling. It is worthwhile to further address if related cicada endosymbiont clades distribute in the alimentary canals and other internal organs through diagnostic PCR using group-specific primer sets. PMID:26411784

  18. The symbiotic role of O-antigen of Burkholderia symbiont in association with host Riptortus pedestris.

    Science.gov (United States)

    Kim, Jiyeun Kate; Park, Ha Young; Lee, Bok Luel

    2016-07-01

    Riptortus pedestris harboring Burkholderia symbiont is a useful symbiosis model to study the molecular interactions between insects and bacteria. We recently reported that the lipopolysaccharide O-antigen is absent in the Burkholderia symbionts isolated from Riptortus guts. Here, we investigated the symbiotic role of O-antigen comprehensively in the Riptortus-Burkholderia model. Firstly, Burkholderia mutant strains deficient of O-antigen biosynthesis genes were generated and confirmed for their different patterns of the lipopolysaccharide by electrophoretic analysis. The O-antigen-deficient mutant strains initially exhibited a reduction of infectivity, having significantly lower level of symbiont population at the second-instar stage. However, both the wild-type and O-antigen mutant symbionts exhibited a similar level of symbiont population from the third-instar stage, indicating that the O-antigen deficiency did not affect the bacterial persistence in the host midgut. Taken together, we showed that the lipopolysaccharide O-antigen of gut symbiont plays an exclusive role in the initial symbiotic association. PMID:26875632

  19. Effect of Chinese herbal mixture, shock decoction on bacterial translocationfrom the gut

    Institute of Scientific and Technical Information of China (English)

    Ping Zhang; Wu Ming Yang; Wen Xia Shui; Yue Guang Du; Guo Ying Jin

    2000-01-01

    AIM In order to provide the TCM therapeutic basis for MODS in clinical critical patients, the role of shockdecoction in anti-bacterial translocation from the gut was tested in rats.METHODS Based on the pathophysiology of MODS following bacterial translocation from the gut causedby severe injuries such as burn, shock, hemorrhagic shock model that induced obvious bacterial translocationwas established and used to determine whether shock decoction, that is composed of modified WenpiDecoction, reduces bacterial translocation. Bacterial culture for mesenteric lymph nodes, liver and spleen ofrats in shock, treatment and control groups was used to calculate the incidence of bacterial translocation.RESULTS The incidence of intestinal bacteria translocating to mesenteric lymph nodes, liver and spleenwas lower in the shocked rats infused via gastrogavage with shock decoction (3/ 15) than that in thenoninfused shocked rats (11 / 13), (P = 0.0009, 0.05). Histological examination showed that intestinal mucosa edema was severer in the shocked ratsthan in the shocked rats with gastrogavage.CONCLUSION Shock beverage could inhibit the shock-induced enterogenous bacterial translocation in ratsprobably by its protective role in intestinal mucosa structure; and has no effect on the growth of intestinalbacteria.

  20. Bacterial colonization and gut development in preterm neonates

    DEFF Research Database (Denmark)

    Cilieborg, Malene S.; Boye, Mette; Sangild, Per Torp

    2012-01-01

    with no consistent effects of gestational age, delivery mode, diet or probiotic administration, while low bacterial diversity and bacterial overgrowth are commonly associated with NEC. A series of recent studies in preterm pigs show that the mucosa-associated microbiota is affected by delivery method, prematurity...... and NEC progression and that diet has limited effects. Overgrowth of specific groups (e.g. Clostridia) appears to be a consequence of NEC, rather than the cause of NEC. Administration of probiotics either decreases or increases NEC sensitivity in preterm pigs, while in preterm infants probiotics have...

  1. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices.

    Science.gov (United States)

    Battini, Fabio; Cristani, Caterina; Giovannetti, Manuela; Agnolucci, Monica

    2016-02-01

    Arbuscular Mycorrhizal Fungi (AMF) live in symbiosis with most crop plants and represent essential elements of soil fertility and plant nutrition and productivity, facilitating soil mineral nutrient uptake and protecting plants from biotic and abiotic stresses. These beneficial services may be mediated by the dense and active spore-associated bacterial communities, which sustain diverse functions, such as the promotion of mycorrhizal activity, biological control of soilborne diseases, nitrogen fixation, and the supply of nutrients and growth factors. In this work, we utilised culture-dependent methods to isolate and functionally characterize the microbiota strictly associated to Rhizophagus intraradices spores, and molecularly identified the strains with best potential plant growth promoting (PGP) activities by 16S rDNA sequence analysis. We isolated in pure culture 374 bacterial strains belonging to different functional groups-actinobacteria, spore-forming, chitinolytic and N2-fixing bacteria-and screened 122 strains for their potential PGP activities. The most common PGP trait was represented by P solubilization from phytate (69.7%), followed by siderophore production (65.6%), mineral P solubilization (49.2%) and IAA production (42.6%). About 76% of actinobacteria and 65% of chitinolytic bacteria displayed multiple PGP activities. Nineteen strains with best potential PGP activities, assigned to Sinorhizobium meliloti, Streptomyces spp., Arthrobacter phenanthrenivorans, Nocardiodes albus, Bacillus sp. pumilus group, Fictibacillus barbaricus and Lysinibacillus fusiformis, showed the ability to produce IAA and siderophores and to solubilize P from mineral phosphate and phytate, representing suitable candidates as biocontrol agents, biofertilisers and bioenhancers, in the perspective of targeted management of beneficial symbionts and their associated bacteria in sustainable food production systems. PMID:26805620

  2. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils.

    Science.gov (United States)

    Makonde, Huxley M; Mwirichia, Romano; Osiemo, Zipporah; Boga, Hamadi I; Klenk, Hans-Peter

    2015-01-01

    Termites constitute part of diverse and economically important termite fauna in Africa, but information on gut microbiota and their associated soil microbiome is still inadequate. In this study, we assessed and compared the bacterial diversity and community structure between termites' gut, their mounds and surrounding soil using the 454 pyrosequencing-based analysis of 16S rRNA gene sequences. A wood-feeder termite (Microcerotermes sp.), three fungus-cultivating termites (Macrotermes michaelseni, Odontotermes sp. and Microtermes sp.), their associated mounds and corresponding savannah soil samples were analyzed. The pH of the gut homogenates and soil physico-chemical properties were determined. The results indicated significant difference in bacterial community composition and structure between the gut and corresponding soil samples. Soil samples (Chao1 index ranged from 1359 to 2619) had higher species richness than gut samples (Chao1 index ranged from 461 to 1527). The bacterial composition and community structure in the gut of Macrotermes michaelseni and Odontotermes sp. were almost identical but different from that of Microtermes and Microcerotermes species, which had unique community structures. The most predominant bacterial phyla in the gut were Bacteroidetes (40-58 %), Spirochaetes (10-70 %), Firmicutes (17-27 %) and Fibrobacteres (13 %) while in the soil samples were Acidobacteria (28-45 %), Actinobacteria (20-40 %) and Proteobacteria (18-24 %). Some termite gut-specific bacterial lineages belonging to the genera Dysgonomonas, Parabacteroides, Paludibacter, Tannerella, Alistipes, BCf9-17 termite group and Termite Treponema cluster were observed. The results not only demonstrated a high level of bacterial diversity in the gut and surrounding soil environments, but also presence of distinct bacterial communities that are yet to be cultivated. Therefore, combined efforts using both culture and culture-independent methods are suggested to

  3. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

    Energy Technology Data Exchange (ETDEWEB)

    Mahowald, Michael [Washington University, St. Louis; Rey, Frederico E. [Washington University, St. Louis; Seedorf, Henning [Washington University, St. Louis; Turnbaugh, Peter J. [Washington University, St. Louis; Fulton, Robert S. [Washington University, St. Louis; Wollam, Aye [Washington University, St. Louis; Shah, Neha [Washington University, St. Louis; Wang, Chunyan [Washington University, St. Louis; Magrini, Vincent [Washington University, St. Louis; Wilson, Richard K. [Washington University, St. Louis; Cantarel, Brandi L. [Centre National de la Recherche Scientifique, Unite Mixte de Recherche; Coutinho, Pedro M [Universite d' Aix-Marseille I & II; Henrissat, Bernard [Universite d' Aix-Marseille I & II; Crock, Lara W. [Washington University, St. Louis; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Erickson, Alison L [ORNL; Gordon, Jeffrey [Washington University, St. Louis

    2009-01-01

    The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial microbial and microbial host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.

  4. Deterministic Assembly of Complex Bacterial Communities in Guts of Germ-Free Cockroaches.

    Science.gov (United States)

    Mikaelyan, Aram; Thompson, Claire L; Hofer, Markus J; Brune, Andreas

    2016-02-01

    The gut microbiota of termites plays important roles in the symbiotic digestion of lignocellulose. However, the factors shaping the microbial community structure remain poorly understood. Because termites cannot be raised under axenic conditions, we established the closely related cockroach Shelfordella lateralis as a germ-free model to study microbial community assembly and host-microbe interactions. In this study, we determined the composition of the bacterial assemblages in cockroaches inoculated with the gut microbiota of termites and mice using pyrosequencing analysis of their 16S rRNA genes. Although the composition of the xenobiotic communities was influenced by the lineages present in the foreign inocula, their structure resembled that of conventional cockroaches. Bacterial taxa abundant in conventional cockroaches but rare in the foreign inocula, such as Dysgonomonas and Parabacteroides spp., were selectively enriched in the xenobiotic communities. Donor-specific taxa, such as endomicrobia or spirochete lineages restricted to the gut microbiota of termites, however, either were unable to colonize germ-free cockroaches or formed only small populations. The exposure of xenobiotic cockroaches to conventional adults restored their normal microbiota, which indicated that autochthonous lineages outcompete foreign ones. Our results provide experimental proof that the assembly of a complex gut microbiota in insects is deterministic. PMID:26655763

  5. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota.

    Science.gov (United States)

    Audebert, Christophe; Even, Gaël; Cian, Amandine; Loywick, Alexandre; Merlin, Sophie; Viscogliosi, Eric; Chabé, Magali

    2016-01-01

    Alterations in the composition of commensal bacterial populations, a phenomenon known as dysbiosis, are linked to multiple gastrointestinal disorders, such as inflammatory bowel disease and irritable bowel syndrome, or to infections by diverse enteric pathogens. Blastocystis is one of the most common single-celled eukaryotes detected in human faecal samples. However, the clinical significance of this widespread colonization remains unclear, and its pathogenic potential is controversial. To address the issue of Blastocystis pathogenicity, we investigated the impact of colonization by this protist on the composition of the human gut microbiota. For that purpose, we conducted a cross-sectional study including 48 Blastocystis-colonized patients and 48 Blastocystis-free subjects and performed an Ion Torrent 16S rDNA gene sequencing to decipher the Blastocystis-associated gut microbiota. Here, we report a higher bacterial diversity in faecal microbiota of Blastocystis colonized patients, a higher abundance of Clostridia as well as a lower abundance of Enterobacteriaceae. Our results contribute to suggesting that Blastocystis colonization is usually associated with a healthy gut microbiota, rather than with gut dysbiosis generally observed in metabolic or infectious inflammatory diseases of the lower gastrointestinal tract. PMID:27147260

  6. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    International Nuclear Information System (INIS)

    A high-resolution structure of a noncanonical α-mannanase relevant to human health and nutrition has been solved via heavy-atom phasing of a selenomethionine derivative. The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α)6-barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76

  7. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Andrew J. [University of York, Heslington, York YO10 5DD (United Kingdom); Cuskin, Fiona [Newcastle University, Newcastle upon Tyne NE2 4HH (United Kingdom); Spears, Richard J.; Dabin, Jerome; Turkenburg, Johan P. [University of York, Heslington, York YO10 5DD (United Kingdom); Gilbert, Harry J., E-mail: harry.gilbert@newcastle.ac.uk [Newcastle University, Newcastle upon Tyne NE2 4HH (United Kingdom); Davies, Gideon J., E-mail: harry.gilbert@newcastle.ac.uk [University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-02-01

    A high-resolution structure of a noncanonical α-mannanase relevant to human health and nutrition has been solved via heavy-atom phasing of a selenomethionine derivative. The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α){sub 6}-barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76.

  8. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  9. The population structure of antibiotic-producing bacterial symbionts of Apterostigma dentigerum ants: impacts of coevolution and multipartite symbiosis.

    Science.gov (United States)

    Caldera, Eric J; Currie, Cameron R

    2012-11-01

    Fungus-growing ants (Attini) are part of a complex symbiosis with Basidiomycetous fungi, which the ants cultivate for food, Ascomycetous fungal pathogens (Escovopsis), which parasitize cultivars, and Actinobacteria, which produce antibiotic compounds that suppress pathogen growth. Earlier studies that have characterized the association between attine ants and their bacterial symbionts have employed broad phylogenetic approaches, with conclusions ranging from a diffuse coevolved mutualism to no specificity being reported. However, the geographic mosaic theory of coevolution proposes that coevolved interactions likely occur at a level above local populations but within species. Moreover, the scale of population subdivision is likely to impact coevolutionary dynamics. Here, we describe the population structure of bacteria associated with the attine Apterostigma dentigerum across Central America using multilocus sequence typing (MLST) of six housekeeping genes. The majority (90%) of bacteria that were isolated grouped into a single clade within the genus Pseudonocardia. In contrast to studies that have suggested that Pseudonocardia dispersal is high and therefore unconstrained by ant associations, we found highly structured ([Formula: see text]) and dispersal-limited (i.e., significant isolation by distance; [Formula: see text], [Formula: see text]) populations over even a relatively small scale (e.g., within the Panama Canal Zone). Estimates of recombination versus mutation were uncharacteristically low compared with estimates for free-living Actinobacteria (e.g., [Formula: see text] in La Selva, Costa Rica), which suggests that recombination is constrained by association with ant hosts. Furthermore, Pseudonocardia population structure was correlated with that of Escovopsis species ([Formula: see text], [Formula: see text]), supporting the bacteria's role in disease suppression. Overall, the population dynamics of symbiotic Pseudonocardia are more consistent with a

  10. Insect symbionts in food webs.

    Science.gov (United States)

    McLean, Ailsa H C; Parker, Benjamin J; Hrček, Jan; Henry, Lee M; Godfray, H Charles J

    2016-09-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481779

  11. Insect symbionts in food webs

    Science.gov (United States)

    Henry, Lee M.

    2016-01-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481779

  12. SusG: A Unique Cell-Membrane-Associated [alpha]-Amylase from a Prominent Human Gut Symbiont Targets Complex Starch Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Smith, Thomas J. (Danforth)

    2010-09-21

    SusG is an {alpha}-amylase and part of a large protein complex on the outer surface of the bacterial cell and plays a major role in carbohydrate acquisition by the animal gut microbiota. Presented here, the atomic structure of SusG has an unusual extended, bilobed structure composed of amylase at one end and an unprecedented internal carbohydrate-binding motif at the other. Structural studies further demonstrate that the carbohydrate-binding motif binds maltooligosaccharide distal to, and on the opposite side of, the amylase catalytic site. SusG has an additional starch-binding site on the amylase domain immediately adjacent to the active cleft. Mutagenesis analysis demonstrates that these two additional starch-binding sites appear to play a role in catabolism of insoluble starch. However, elimination of these sites has only a limited effect, suggesting that they may have a more important role in product exchange with other Sus components.

  13. Influence of Starvation on the Structure of Gut-Associated Bacterial Communities in the Chinese White Pine Beetle (Dendroctonus armandi

    Directory of Open Access Journals (Sweden)

    Xia Hu

    2016-06-01

    Full Text Available This study investigated the influence of starvation on the structure of the gut bacterial community in the Chinese white pine beetle (Dendroctonus armandi. A total of 14 operational taxonomic units (OTUs0.03 clusters belonging to nine genera were identified. Denaturing gradient gel electrophoresis (DGGE profiles of bacterial PCR-amplified 16S rRNA gene fragments from the guts of starved male and female adults revealed that the bacterial community diversity increased after starvation. The dominant genus Citrobacter decreased significantly, whereas the genus Serratia increased in both starved female and starved male adults. The most predominant bacterial genus in D. armandi adults was Citrobacter, except for starved male adults, in which Serratia was the most abundant genus (27%. Our findings reveal that starvation affects gut bacterial dynamics in D. armandi, as has been observed in other insect species.

  14. Glossina spp. gut bacterial flora and their putative role in fly-hosted trypanosome development

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2013-07-01

    Full Text Available Human African trypanosomiasis is caused by trypanosomes transmitted to humans by the tsetse fly, in which they accomplish their development into their infective metacyclic form. The crucial step in parasite survival occurs when it invades the fly midgut. Insect digestive enzymes and immune defenses may be involved in the modulation of the fly’s vector competence, together with bacteria that could be present in the fly’s midgut.In fact, in addition to the three bacterial symbionts that have previously been characterized, tsetse flies may harbor additional bacterial inhabitants. This review focuses on the diversity of the bacterial flora in Glossina, with regards to the fly species and their geographical distribution. The rationale was i that these newly identified bacteria, associated with tsetse flies, may contribute to vector competence as was shown in other insects and ii that differences may exist according to fly species and geographic area. A more complete knowledge of the bacterial microbiota of the tsetse fly and the role these bacteria play in tsetse biology may lead to novel ways of investigation in view of developing alternative anti-vector strategies for fighting human – and possibly animal – trypanosomiasis.

  15. Glossina spp. gut bacterial flora and their putative role in fly-hosted trypanosome development

    Science.gov (United States)

    Geiger, Anne; Fardeau, Marie-Laure; Njiokou, Flobert; Ollivier, Bernard

    2013-01-01

    Human African trypanosomiasis (HAT) is caused by trypanosomes transmitted to humans by the tsetse fly, in which they accomplish their development into their infective metacyclic form. The crucial step in parasite survival occurs when it invades the fly midgut. Insect digestive enzymes and immune defenses may be involved in the modulation of the fly's vector competence, together with bacteria that could be present in the fly's midgut. In fact, in addition to the three bacterial symbionts that have previously been characterized, tsetse flies may harbor additional bacterial inhabitants. This review focuses on the diversity of the bacterial flora in Glossina, with regards to the fly species and their geographical distribution. The rationale was (i) that these newly identified bacteria, associated with tsetse flies, may contribute to vector competence as was shown in other insects and (ii) that differences may exist according to fly species and geographic area. A more complete knowledge of the bacterial microbiota of the tsetse fly and the role these bacteria play in tsetse biology may lead to novel ways of investigation in view of developing alternative anti-vector strategies for fighting human—and possibly animal—trypanosomiasis. PMID:23898466

  16. Early life dynamics of the human gut virome and bacterial microbiome in infants.

    Science.gov (United States)

    Lim, Efrem S; Zhou, Yanjiao; Zhao, Guoyan; Bauer, Irma K; Droit, Lindsay; Ndao, I Malick; Warner, Barbara B; Tarr, Phillip I; Wang, David; Holtz, Lori R

    2015-10-01

    The early years of life are important for immune development and influence health in adulthood. Although it has been established that the gut bacterial microbiome is rapidly acquired after birth, less is known about the viral microbiome (or 'virome'), consisting of bacteriophages and eukaryotic RNA and DNA viruses, during the first years of life. Here, we characterized the gut virome and bacterial microbiome in a longitudinal cohort of healthy infant twins. The virome and bacterial microbiome were more similar between co-twins than between unrelated infants. From birth to 2 years of age, the eukaryotic virome and the bacterial microbiome expanded, but this was accompanied by a contraction of and shift in the bacteriophage virome composition. The bacteriophage-bacteria relationship begins from birth with a high predator-low prey dynamic, consistent with the Lotka-Volterra prey model. Thus, in contrast to the stable microbiome observed in adults, the infant microbiome is highly dynamic and associated with early life changes in the composition of bacteria, viruses and bacteriophages with age. PMID:26366711

  17. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats.

    Science.gov (United States)

    Verbeke, Len; Farre, Ricard; Verbinnen, Bert; Covens, Kris; Vanuytsel, Tim; Verhaegen, Jan; Komuta, Mina; Roskams, Tania; Chatterjee, Sagnik; Annaert, Pieter; Vander Elst, Ingrid; Windmolders, Petra; Trebicka, Jonel; Nevens, Frederik; Laleman, Wim

    2015-02-01

    Bacterial translocation (BTL) drives pathogenesis and complications of cirrhosis. Farnesoid X-activated receptor (FXR) is a key transcription regulator in hepatic and intestinal bile metabolism. We studied potential intestinal FXR dysfunction in a rat model of cholestatic liver injury and evaluated effects of obeticholic acid (INT-747), an FXR agonist, on gut permeability, inflammation, and BTL. Rats were gavaged with INT-747 or vehicle during 10 days after bile-duct ligation and then were assessed for changes in gut permeability, BTL, and tight-junction protein expression, immune cell recruitment, and cytokine expression in ileum, mesenteric lymph nodes, and spleen. Auxiliary in vitro BTL-mimicking experiments were performed with Transwell supports. Vehicle-treated bile duct-ligated rats exhibited decreased FXR pathway expression in both jejunum and ileum, in association with increased gut permeability through increased claudin-2 expression and related to local and systemic recruitment of natural killer cells resulting in increased interferon-γ expression and BTL. After INT-747 treatment, natural killer cells and interferon-γ expression markedly decreased, in association with normalized permeability selectively in ileum (up-regulated claudin-1 and occludin) and a significant reduction in BTL. In vitro, interferon-γ induced increased Escherichia coli translocation, which remained unaffected by INT-747. In experimental cholestasis, FXR agonism improved ileal barrier function by attenuating intestinal inflammation, leading to reduced BTL and thus demonstrating a crucial protective role for FXR in the gut-liver axis. PMID:25592258

  18. Culture independent analysis of microbiota in the gut of pine weevils

    OpenAIRE

    Ölander, Tobias

    2013-01-01

    In Sweden, the pine weevil causes damages for several hundreds of millions kronor annually. The discouraged use of insecticides has resulted in that other methods to prevent pine weevil feeding needs to be found. Antifeedants found in the pine weevil own feces is one such alternative. The source of the most active antifeedants in the feces is probably from bacterial or fungal lignin degrading symbionts in the pine weevil gut. The aim of the project was to analyze the pine weevil gut microbiot...

  19. Symbiont-mediated functions in insect hosts

    OpenAIRE

    Su, Qi; Zhou, Xiaomao; Zhang, Youjun

    2013-01-01

    The bacterial endosymbionts occur in a diverse array of insect species and are usually rely within the vertical transmission from mothers to offspring. In addition to primary symbionts, plant sap-sucking insects may also harbor several diverse secondary symbionts. Bacterial symbionts play a prominent role in insect nutritional ecology by aiding in digestion of food or supplementing nutrients that insect hosts can’t obtain sufficient amounts from a restricted diet of plant phloem. Currently, s...

  20. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease.

    Directory of Open Access Journals (Sweden)

    Fabio Faria da Mota

    Full Text Available BACKGROUND: Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera. METHODOLOGY/PRINCIPAL FINDINGS: Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster. CONCLUSIONS/SIGNIFICANCE: The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low

  1. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the Southern Gulf of Mexico.

    Science.gov (United States)

    Raggi, L; Schubotz, F; Hinrichs, K-U; Dubilier, N; Petersen, J M

    2013-07-01

    Chemosynthetic life was recently discovered at Chapopote, an asphalt hydrocarbon seep in the southern Gulf of Mexico. Preliminary morphological analyses indicated that one tubeworm and two mussel species colonize Chapopote. Our molecular analyses identified the tubeworm as Escarpia sp., and the mussels as Bathymodiolus heckerae and B. brooksi. Comparative 16S rRNA analysis and FISH showed that all three species harbour intracellular sulfur-oxidizing symbionts highly similar or identical to those found in the same host species from northern Gulf of Mexico (nGoM). The mussels also harbour methane-oxidizing symbionts, and these shared highly similar to identical 16S rRNA sequences to their nGoM conspecifics. We discovered a novel symbiont in B. heckerae, which is closely related to hydrocarbon-degrading bacteria of the genus Cycloclasticus. In B. heckerae, we found key genes for the use of aromatic compounds, and its stable carbon isotope values were consistently higher than B. brooksi, indicating that the novel symbiont might use isotopically heavy aromatic hydrocarbons from the asphalt seep. This discovery is particularly intriguing because until now only methane and reduced sulfur compounds have been shown to power cold-seep chemosynthetic symbioses. The abundant hydrocarbons available at Chapopote would provide these mussel symbioses with a rich source of nutrition. PMID:23279012

  2. Gut microbial communities of social bees.

    Science.gov (United States)

    Kwong, Waldan K; Moran, Nancy A

    2016-06-01

    The gut microbiota can have profound effects on hosts, but the study of these relationships in humans is challenging. The specialized gut microbial community of honey bees is similar to the mammalian microbiota, as both are mostly composed of host-adapted, facultatively anaerobic and microaerophilic bacteria. However, the microbial community of the bee gut is far simpler than the mammalian microbiota, being dominated by only nine bacterial species clusters that are specific to bees and that are transmitted through social interactions between individuals. Recent developments, which include the discovery of extensive strain-level variation, evidence of protective and nutritional functions, and reports of eco-physiological or disease-associated perturbations to the microbial community, have drawn attention to the role of the microbiota in bee health and its potential as a model for studying the ecology and evolution of gut symbionts. PMID:27140688

  3. Antagonistic bacterial interactions help shape host-symbiont dynamics within the fungus-growing ant-microbe mutualism.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    Full Text Available Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i multiple genotypes of microbial species associated with individual hosts, ii multiple species of symbiotic lineages forming cooperative partner pairings, and iii additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia. Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant

  4. Gut bacterial profile in patients newly diagnosed with treatment-naïve Crohn's disease

    Directory of Open Access Journals (Sweden)

    Ricanek P

    2012-09-01

    Full Text Available Petr Ricanek,1,2 Sheba M Lothe,1 Stephan A Frye,1 Andreas Rydning,2 Morten H Vatn,3,4 Tone Tønjum1,51Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, 2Department of Gastroenterology, Akershus University Hospital, Lørenskog and Faculty Division Akershus University Hospital, University of Oslo, Lørenskog, 3EpiGen Institute, Faculty Division Akershus University Hospital, University of Oslo, Lørenskog, 4Department of Medicine, Oslo University Hospital, Rikshospitalet, Oslo, 5Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, NorwayObjectives: The aim of this study was to define the composition of the gut bacterial flora in Norwegian patients with early stage Crohn's disease (CD. Methods: By using a nonselective metagenomics approach, the general bacterial composition in mucosal biopsies from the ileum and the colon of five subjects, four patients with different phenotypes of CD, and one noninflammatory bowel disease control, was characterized. After partial 16S ribosomal RNA (rRNA gene sequencing, BLAST homology searches for species identification and phylogenetic analysis were performed.Results: An overall biodiversity of 106 different bacterial operational taxonomic units (OTUs was detected in the cloned libraries. Nearly all OTUs belonged to the phylae Bacteroidetes (42% in CD, 71% in the control or Firmicutes (42% in CD, 28% in the control, except for some OTUs that belonged to the phylum Proteobacteria (15% in CD, 0% in the control and a few OTUs that could not be assigned to a phylum (2% in CD, 1% in the control.Conclusion: Based on the high incidence of inflammatory bowel disease (IBD in Norway, this pilot study represents a relevant determination of the gut microbiota in Norwegian patients compared to previous findings in other countries. The bacterial profile of Norwegian CD patients was found to be similar

  5. Infection of Bacterial Endosymbionts in Insects: A Comparative Study of Two Techniques viz PCR and FISH for Detection and Localization of Symbionts in Whitefly, Bemisia tabaci.

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Raina

    Full Text Available Bacterial endosymbionts have been associated with arthropods and large number of the insect species show interaction with such bacteria. Different approaches have been used to understand such symbiont- host interactions. The whitefly, Bemisia tabaci, a highly invasive agricultural pest, harbors as many as seven different bacterial endosymbionts. These bacterial endosymbionts are known to provide various nutritional, physiological, environmental and evolutionary benefits to its insect host. In this study, we have tried to compare two techniques, Polymerase chain reaction (PCR and Flourescence in situ Hybridisation (FISH commonly used for identification and localization of bacterial endosymbionts in B. tabaci as it harbors one of the highest numbers of endosymbionts which have helped it in becoming a successful global invasive agricultural pest. The amplified PCR products were observed as bands on agarose gel by electrophoresis while the FISH samples were mounted on slides and observed under confocal microscope. Analysis of results obtained by these two techniques revealed the advantages of FISH over PCR. On a short note, performing FISH, using LNA probes proved to be more sensitive and informative for identification as well as localization of bacterial endosymbionts in B. tabaci than relying on PCR. This study would help in designing more efficient experiments based on much reliable detection procedure and studying the role of endosymbionts in insects.

  6. Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut.

    Directory of Open Access Journals (Sweden)

    Ashley P Good

    Full Text Available The gut microflora of the honey bee, Apis mellifera, is receiving increasing attention as a potential determinant of the bees' health and their efficacy as pollinators. Studies have focused primarily on the microbial taxa that appear numerically dominant in the bee gut, with the assumption that the dominant status suggests their potential importance to the bees' health. However, numerically minor taxa might also influence the bees' efficacy as pollinators, particularly if they are not only present in the gut, but also capable of growing in floral nectar and altering its chemical properties. Nonetheless, it is not well understood whether honey bees have any feeding preference for or against nectar colonized by specific microbial species. To test whether bees exhibit a preference, we conducted a series of field experiments at an apiary using synthetic nectar inoculated with specific species of bacteria or yeast that had been isolated from the bee gut, but are considered minor components of the gut microflora. These species had also been found in floral nectar. Our results indicated that honey bees avoided nectar colonized by the bacteria Asaia astilbes, Erwinia tasmaniensis, and Lactobacillus kunkeei, whereas the yeast Metschnikowia reukaufii did not affect the feeding preference of the insects. Our results also indicated that avoidance of bacteria-colonized nectar was caused not by the presence of the bacteria per se, but by the chemical changes to nectar made by the bacteria. These findings suggest that gut microbes may not only affect the bees' health as symbionts, but that some of the microbes may possibly affect the efficacy of A. mellifera as pollinators by altering nectar chemistry and influencing their foraging behavior.

  7. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    Full Text Available Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.

  8. Co-evolution of marine worms and their chemoautotrophic bacterial symbionts: unexpected host switches explained by ecological fitting?

    Science.gov (United States)

    Brune, A

    2016-07-01

    Mutualistic associations of bacteria and invertebrates are widespread and encompass an enormous diversity on the side of both partners. The advantages gained from the symbiosis favour reciprocal adaptations that increase the stability of the association and can lead to codiversification of symbiont and host. While numerous examples of a strictly vertical transfer of the symbionts from parent to offspring among intracellular associations abound, little is known about the fidelity of the partners in extracellular associations, where symbionts colonize the surface or body cavity of their host. In this issue of Molecular Ecology, Zimmermann et al. () investigated the evolutionary history of the symbiotic association between a monophyletic clade of sulphur-oxidizing Gammaproteobacteria and two distantly related lineages of marine worms (nematodes and annelids). The study supports the surprising conclusion that partner fidelity does not necessarily increase with the intimacy of the association. Ectosymbionts on the cuticle of the nematodes seem to be cospeciating with their hosts, whereas endosymbionts housed in the body cavity of the annelids must have originated multiple times, probably by host switching, from ectosymbionts of sympatric nematodes. This excellent case study on the evolutionary history of invertebrate-microbe interactions supports the emerging concept that the co-evolutionary processes shaping such mutualistic symbioses include both codiversification and ecological fitting. PMID:27373707

  9. Role of DUOX in gut inflammation: Lessons from Drosophila model of gut-microbiota interactions.

    Directory of Open Access Journals (Sweden)

    Won-Jae eLee

    2014-01-01

    Full Text Available It is well known that certain bacterial species can colonize the gut epithelium and induce inflammation in the mucosa, whereas other species are either benign or beneficial to the host. Deregulation of the gut-microbe interactions may lead to a pathogenic condition in the host, such as chronic inflammation, tissue injuries, and even cancer. However, our current understanding of the molecular mechanisms that underlie gut-microbe homeostasis and pathogenesis remains limited. Recent studies have used Drosophila as a genetic model to provide novel insights into the causes and consequences of bacterial-induced colitis in the intestinal mucosa. The present review discusses the interactions that occur between gut-associated bacteria and host gut immunity, particularly the bacterial-induced intestinal dual oxidase (DUOX system. Several lines of evidence showed that the bacterial-modulated DUOX system is involved in microbial clearance, intestinal epithelial cell renewal, redox-dependent modulation of signaling pathways, cross-linking of biomolecules, and discrimination between symbionts and pathogens. Further genetic studies on the Drosophila DUOX system and on gut-associated bacteria with a distinct ability to activate DUOX may provide critical information related to the homeostatic inflammation as well as etiology of chronic inflammatory diseases, which will enhance our understanding on the mucosal inflammatory diseases frequently observed in the microbe-contacting epithelia of humans.

  10. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Narit Thaochan

    2015-12-01

    Full Text Available The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering and Bactrocera tryoni (Froggatt, was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria which was prominent in all clones. The total bacterial community consisted of Proteobacteria (more than 75% of clones, except in the crop of B. cacuminata where more than 50% of clones belonged to Firmicutes. Firmicutes gave the number of the secondary community structure in the fly’s gut. Four orders, Alpha-, Beta-, Delta- and Gammaproteobacteria and the phyla Firmicutes and Actinobacteria were found in both fruit fly species, while the order Epsilonproteobacteria and the phylum Bacteroidetes were found only in B. tryoni. Two phyla, Actinobacteria and Bacteroidetes, were rare and less frequent in the flies. There was a greater diversity of bacteria in the crop of the two fruit fly species than in the midgut. The midgut of B. tryoni females and the midgut of B. cacuminata males had the lowest bacterial diversity.

  11. Transcriptomic immune response of the cotton stainer Dysdercus fasciatus to experimental elimination of vitamin-supplementing intestinal symbionts.

    Directory of Open Access Journals (Sweden)

    Eugen Bauer

    Full Text Available The acquisition and vertical transmission of bacterial symbionts plays an important role in insect evolution and ecology. However, the molecular mechanisms underlying the stable maintenance and control of mutualistic bacteria remain poorly understood. The cotton stainer Dysdercus fasciatus harbours the actinobacterial symbionts Coriobacterium glomerans and Gordonibacter sp. in its midgut. The symbionts supplement limiting B vitamins and thereby significantly contribute to the host's fitness. In this study, we experimentally disrupted the symbionts' vertical transmission route and performed comparative transcriptomic analyses of genes expressed in the gut of aposymbiotic (symbiont-free and control individuals to study the host immune response in presence and absence of the mutualists. Annotation of assembled cDNA reads identified a considerable number of genes involved in the innate immune system, including different protein isoforms of several immune effector proteins (specifically i-type lysozyme, defensin, hemiptericin, and pyrrhocoricin, suggesting the possibility for a highly differentiated response towards the complex resident microbial community. Gene expression analyses revealed a constitutive expression of transcripts involved in signal transduction of the main insect immune pathways, but differential expression of certain antimicrobial peptide genes. Specifically, qPCRs confirmed the significant down-regulation of c-type lysozyme and up-regulation of hemiptericin in aposymbiotic individuals. The high expression of c-type lysozyme in symbiont-containing bugs may serve to lyse symbiont cells and thereby harvest B-vitamins that are necessary for subsistence on the deficient diet of Malvales seeds. Our findings suggest a sophisticated host response to perturbation of the symbiotic gut microbiota, indicating that the innate immune system not only plays an important role in combating pathogens, but also serves as a communication interface

  12. Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts.

    Science.gov (United States)

    Hongoh, Yuichi; Deevong, Pinsurang; Hattori, Satoshi; Inoue, Tetsushi; Noda, Satoko; Noparatnaraporn, Napavarn; Kudo, Toshiaki; Ohkuma, Moriya

    2006-10-01

    Recently we discovered two novel, deeply branching lineages in the domain Bacteria from termite guts by PCR-based analyses of 16S rRNA (Y. Hongoh, P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn, and T. Kudo, Appl. Environ. Microbiol. 71:6590-6599, 2005). Here, we report on the specific detection of these bacteria, the candidate phylum TG3 (Termite Group 3) and a subphylum in the phylum Fibrobacteres, by fluorescence in situ hybridization in the guts of the wood-feeding termites Microcerotermes sp. and Nasutitermes takasagoensis. Both bacterial groups were detected almost exclusively from the luminal fluid of the dilated portion in the hindgut. Each accounted for approximately 10% of the total prokaryotic cells, constituting the second-most dominant groups in the whole-gut microbiota. The detected cells of both groups were in undulate or vibroid forms and apparently resembled small spirochetes. The cell sizes were 0.2 to 0.4 by 1.3 to 6.0 microm and 0.2 to 0.3 by 1.3 to 4.9 microm in the TG3 and Fibrobacteres, respectively. Using PCR screenings with specific primers, we found that both groups are distributed among various termites. The obtained clones formed monophyletic clusters that were delineated by the host genus rather than by the geographic distance, implying a robust association between these bacteria and host termites. TG3 clones were also obtained from a cockroach gut, lake sediment, rice paddy soil, and deep-sea sediments. Our results suggest that the TG3 and Fibrobacteres bacteria are autochthonous gut symbionts of various termites and that the TG3 members are also widely distributed among various other environments.

  13. Isolation and Characterization of Gut Bacterial Proteases Involved in Inducing Pathogenicity of Bacillus thuringiensis Toxin in Cotton Bollworm, Helicoverpa armigera

    Science.gov (United States)

    Regode, Visweshwar; Kuruba, Sreeramulu; Mohammad, Akbar S.; Sharma, Hari C.

    2016-01-01

    Bacillus thuringiensis toxin proteins are deployed in transgenic plants for pest management. The present studies were aimed at characterization of gut bacterial proteases involved in activation of inactive Cry1Ac protoxin (pro-Cry1Ac) to active toxin in Helicoverpa armigera. Bacterial strains were isolated from H. armigera midgut and screened for their proteolytic activation toward pro-Cry1Ac. Among 12 gut bacterial isolates seven isolates showed proteolytic activity, and proteases from three isolates (IVS1, IVS2, and IVS3) were found to be involved in the proteolytic conversion of pro-Cry1Ac into active toxin. The proteases from IVS1, IVS2, and IVS3 isolates were purified to 11.90-, 15.50-, and 17.20-fold, respectively. The optimum pH and temperature for gut bacterial protease activity was 8.0 and 40°C. Maximum inhibition of total proteolytic activity was exerted by phenylmethane sulfonyl fluoride followed by EDTA. Fluorescence zymography revealed that proteases from IVS1, IVS2, and IVS3 were chymotrypsin-like and showing protease band at ~15, 65, and 15 kDa, respectively. Active Cry1Ac formed from processing pro-Cry1Ac by gut bacterial proteases exhibited toxicity toward H. armigera. The gut bacterial isolates IVS1, IVS2, and IVS3 showed homology with B. thuringiensis (CP003763.1), Vibrio fischeri (CP000020.2), and Escherichia coli (CP011342.1), respectively. Proteases produced by midgut bacteria are involved in proteolytic processing of B. thuringiensis protoxin and play a major role in inducing pathogenicity of B. thuringiensis toxins in H. armigera. PMID:27766093

  14. Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCl4-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Isabel Gómez-Hurtado

    Full Text Available BACKGROUND: Gut is the major source of endogenous bacteria causing infections in advanced cirrhosis. Intestinal barrier dysfunction has been described in cirrhosis and account for an increased bacterial translocation rate. HYPOTHESIS AND AIMS: We hypothesize that microbiota composition may be affected and change along with the induction of experimental cirrhosis, affecting the inflammatory response. ANIMALS AND METHODS: Progressive liver damage was induced in Balb/c mice by weight-controlled oral administration of carbon tetrachloride. Laparotomies were performed at weeks 6, 10, 13 and 16 in a subgroup of treated mice (n = 6/week and control animals (n = 4/week. Liver tissue specimens, mesenteric lymph nodes, intestinal content and blood were collected at laparotomies. Fibrosis grade, pro-fibrogenic genes expression, gut bacterial composition, bacterial translocation, host's specific butyrate-receptor GPR-43 and serum cytokine levels were measured. RESULTS: Expression of pro-fibrogenic markers was significantly increased compared with control animals and correlated with the accumulated dose of carbon tetrachloride. Bacterial translocation episodes were less frequent in control mice than in treated animals. Gram-positive anaerobic Clostridia spp count was decreased in treated mice compared with control animals and with other gut common bacterial species, altering the aerobic/anaerobic ratio. This fact was associated with a decreased gene expression of GPR43 in neutrophils of treated mice and inversely correlated with TNF-alpha and IL-6 up-regulation in serum of treated mice along the study protocol. This pro-inflammatory scenario favoured blood bacterial translocation in treated animals, showing the highest bacterial translocation rate and aerobic/anaerobic ratio at the same weeks. CONCLUSIONS: Gut microbiota alterations are associated with the development of an inflammatory environment, fibrosis progression and bacterial translocation in

  15. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    Science.gov (United States)

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health. PMID:24748441

  16. Bacterial species involved in the conversion of dietary flavonoids in the human gut.

    Science.gov (United States)

    Braune, Annett; Blaut, Michael

    2016-05-01

    The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes. PMID:26963713

  17. Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut

    Directory of Open Access Journals (Sweden)

    Cristiano G. Moreira

    2016-06-01

    Full Text Available Enteric pathogens such as enterohemorrhagic Escherichia coli (EHEC and Citrobacter rodentium, which is largely used as a surrogate EHEC model for murine infections, are exposed to several host neurotransmitters in the gut. An important chemical exchange within the gut involves the neurotransmitters epinephrine and/or norepinephrine, extensively reported to increase virulence gene expression in EHEC, acting through two bacterial adrenergic sensors: QseC and QseE. However, EHEC is unable to establish itself and cause its hallmark lesions, attaching and effacing (AE lesions, on murine enterocytes. To address the role of these neurotransmitters during enteric infection, we employed C. rodentium. Both EHEC and C. rodentium harbor the locus of enterocyte effacement (LEE that is necessary for AE lesion formation. Here we show that expression of the LEE, as well as that of other virulence genes in C. rodentium, is also activated by epinephrine and/or norepinephrine. Both QseC and QseE are required for LEE gene activation in C. rodentium, and the qseC and qseE mutants are attenuated for murine infection. C. rodentium has a decreased ability to colonize dopamine β-hydroxylase knockout (Dbh−/− mice, which do not produce epinephrine and norepinephrine. Both adrenergic sensors are required for C. rodentium to sense these neurotransmitters and activate the LEE genes during infection. These data indicate that epinephrine and norepinephrine are sensed by bacterial adrenergic receptors during enteric infection to promote activation of their virulence repertoire. This is the first report of the role of these neurotransmitters during mammalian gastrointestinal (GI infection by a noninvasive pathogen.

  18. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut

    Energy Technology Data Exchange (ETDEWEB)

    Lapanje, Ales, E-mail: ales@ifb.s [Institute of Physical Biology, Ljubljana (Slovenia); Zrimec, Alexis [Institute of Physical Biology, Ljubljana (Slovenia); Drobne, Damjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana (Slovenia); Rupnik, Maja [Institute of Public Health Maribor, Maribor (Slovenia)

    2010-10-15

    In previous studies we detected lower species richness and lower Hg sensitivity of the bacteria present in egested guts of Porcellio scaber (Crustacea, Isopoda) from chronically Hg polluted than from unpolluted environment. Basis for such results were further investigated by sequencing of 16S rRNA genes of mercury-resistant (Hg{sup r}) isolates and clone libraries. We observed up to 385 times higher numbers of Hg{sup r} bacteria in guts of animals from polluted than from unpolluted environment. The majority of Hg{sup r} strains contained merA genes. Sequencing of 16S rRNA clones from egested guts of animals from Hg-polluted environments showed elevated number of bacteria from Pseudomonas, Listeria and Bacteroidetes relatives groups. In animals from pristine environment number of bacteria from Achromobacter relatives, Alcaligenes, Paracoccus, Ochrobactrum relatives, Rhizobium/Agrobacterium, Bacillus and Microbacterium groups were elevated. Such bacterial community shifts in guts of animals from Hg-polluted environment could significantly contribute to P. scaber Hg tolerance. - Chronic environmental mercury pollution induces bacterial community shifts and presence of elevated number as well as increased diversity of Hg-resistant bacteria in guts of isopods.

  19. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs.

    Directory of Open Access Journals (Sweden)

    Marc A Sze

    Full Text Available Previous reports have shown that the gastrointestinal (GI bacterial microbiota can have profound effects on the lungs, which has been described as the "gut-lung axis". However, whether a "lung-gut" axis exists wherein acute lung inflammation perturbs the gut and blood microbiota is unknown.Adult C57/Bl6 mice were exposed to one dose of LPS or PBS instillation (n=3 for each group directly into lungs. Bacterial microbiota of the bronchoalveolar lavage fluid, blood, and cecum were determined using 454 pyrotag sequencing and quantitative polymerase chain reaction (qPCR at 4 through 168 hours post-instillation. We then investigated the effects of oral neomycin and streptomycin (n=8 on the microbiota at 4 and 24 hours post LPS instillation versus control treatment (n=5 at baseline and 4 hours, n=7 at 24 hours.At 24 hours post LPS instillation, the total bacterial count was significantly increased in the cecum (P<0.05; whereas the total bacterial count in blood was increased at 4, 48, and 72 hours (P<0.05. Antibiotic treatment reduced the total bacteria in blood but not in the cecum. The increase in total bacteria in the blood correlated with Phyllobacteriaceae OTU 40 and was significantly reduced in the blood for both antibiotic groups (P<0.05.LPS instillation in lungs leads to acute changes in the bacterial microbiota in the blood and cecum, which can be modulated with antibiotics.

  20. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem

    Science.gov (United States)

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A.; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems. PMID:26421612

  1. Elucidating the richness of bacterial groups in the gut of Nicobarese tribal community - Perspective on their lifestyle transition.

    Science.gov (United States)

    Anwesh, Maile; Kumar, K Vinod; Nagarajan, Muruganandam; Chander, M Punnam; Kartick, C; Paluru, Vijayachari

    2016-06-01

    Lifestyle and dietary habits are crucial features that can alter the gut microbiome of humans. Humans, along with their gut microbes, have coevolved in order to sustain themselves in different environments. They were able to adapt themselves to the dietary sources available in their environment. The relation between humans and their gut microbiota and the link with coevolution forms an interesting aspect of research. To understand this association, the participation of ancient communities with less exposure to urbanization is a prerequisite. The current study quantifies the richness of bacterial groups in the gut of Nicobarese. This group of population is an ethnic community of Nicobar group of islands, who have migrated from the remote to rural and urban areas. Alterations in the dominant bacterial groups in relation to their lifestyle transition were emphasized, by comparing the participants from remote, rural and urban settings. The remote cohort remains diverse and stable than the other two cohorts and had higher numbers of Bacteroidetes. Prevotella forms the dominant genus in the Bacteroidetes phylum, indicating the carbohydrate-rich diet of remote Nicobarese. Whereas, the urban cohort is dominated by Bifidobacterium group rather than the Bacteroidetes. Implications of dietary patterns, the transition to different lifestyles and their impact on the microbiota among these cohorts are discussed. PMID:26946360

  2. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F. (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Fangmei eZhang

    2015-05-01

    Full Text Available Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone and abiotic factors (temperature, humidity, and photoperiod. The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (< 24h old offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests.

  3. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability.

    Science.gov (United States)

    Yassour, Moran; Vatanen, Tommi; Siljander, Heli; Hämäläinen, Anu-Maaria; Härkönen, Taina; Ryhänen, Samppa J; Franzosa, Eric A; Vlamakis, Hera; Huttenhower, Curtis; Gevers, Dirk; Lander, Eric S; Knip, Mikael; Xavier, Ramnik J

    2016-06-15

    The gut microbial community is dynamic during the first 3 years of life, before stabilizing to an adult-like state. However, little is known about the impact of environmental factors on the developing human gut microbiome. We report a longitudinal study of the gut microbiome based on DNA sequence analysis of monthly stool samples and clinical information from 39 children, about half of whom received multiple courses of antibiotics during the first 3 years of life. Whereas the gut microbiome of most children born by vaginal delivery was dominated by Bacteroides species, the four children born by cesarean section and about 20% of vaginally born children lacked Bacteroides in the first 6 to 18 months of life. Longitudinal sampling, coupled with whole-genome shotgun sequencing, allowed detection of strain-level variation as well as the abundance of antibiotic resistance genes. The microbiota of antibiotic-treated children was less diverse in terms of both bacterial species and strains, with some species often dominated by single strains. In addition, we observed short-term composition changes between consecutive samples from children treated with antibiotics. Antibiotic resistance genes carried on microbial chromosomes showed a peak in abundance after antibiotic treatment followed by a sharp decline, whereas some genes carried on mobile elements persisted longer after antibiotic therapy ended. Our results highlight the value of high-density longitudinal sampling studies with high-resolution strain profiling for studying the establishment and response to perturbation of the infant gut microbiome. PMID:27306663

  4. Early Administration of Probiotics Alters Bacterial Colonization and Limits Diet-Induced Gut Dysfunction and Severity of Necrotizing Enterocolitis in Preterm Pigs

    DEFF Research Database (Denmark)

    Siggers, Richard H.; Siggers, Jayda; Boye, Mette;

    2008-01-01

    Following preterm birth, bacterial colonization and interal formula feeding predispose neonates to gut dysfunction and necrotizing enterocilitis (NEC), a serious gastrointestinal inflammatory disease. We hypothesized that administration of probiotics would beneficially influence early bacterial...... colonization, thereby reducing the susceptibility to formula-induced gut atrophy, dysfunction, and NEC. Caesarean-delivered preterm pigs were provided total parenteral nutrition (1.5 d) followed by enteral feeding (2d) with porcine colosstrum (COLOS; n= 5), formula (FORM; n = 9), or formula with probiotics...

  5. Effect of commercially available chemically defined liquid diets on the intestinal microflora and bacterial translocation from the gut.

    Science.gov (United States)

    Alverdy, J C; Aoys, E; Moss, G S

    1990-01-01

    The effect of chemically defined liquid diets on the intestinal microflora and bacterial translocation from the gut was studied in the rat. Seventy-five female Fischer rats were randomized to five groups of 15 animals each. Group I was fed rat chow and water, group II was fed Vivonex TEN, group III was fed Ensure, group IV was fed Enrich, and group V was fed Ensure plus ground corn cobs, a crude fiber source. Animals were fed their respective diets ad libitum for 1 week and then killed. Quantitative culture of the mesenteric lymph nodes (MLN) and cecum was performed to determine bacterial translocation from the gut. A 66% translocation rate (10/15) of bacteria to MLN was observed in the animals fed Ensure and Enrich compared to 21% in the Vivonex TEN group (3/14) and 20% in the animals fed Ensure plus ground corn cobs (3/15). None of the animals in the control group eating their normal diets of rat chow and water developed positive MLN. Statistical significance (p less than 0.001) was achieved between the Ensure and Enrich groups when compared to controls but not between the Vivonex TEN and Ensure plus corn cobs. Cecal culture revealed a statistically significant rise in cecal bacteria in all groups when compared to the control group (group I). These results indicate that chemically defined liquid diets result in altered intestinal microflora and bacterial translocation from the gut. PMID:2325237

  6. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome

    Energy Technology Data Exchange (ETDEWEB)

    Hodkinson, Brendan P [ORNL; Gottel, Neil R [ORNL; Schadt, Christopher Warren [ORNL; Lutzoni, Francois [Duke University

    2011-01-01

    Although common knowledge dictates that the lichen thallus is formed solely by a fungus (mycobiont) that develops a symbiotic relationship with an alga and/or cyanobacterium (photobiont), the non-photoautotrophic bacteria found in lichen microbiomes are increasingly regarded as integral components of lichen thalli. For this study, comparative analyses were conducted on lichen-associated bacterial communities to test for effects of photobiont-types (i.e. green algal vs. cyanobacterial), mycobiont-types and large-scale spatial distances (from tropical to arctic latitudes). Amplicons of the 16S (SSU) rRNA gene were examined using both Sanger sequencing of cloned fragments and barcoded pyrosequencing. Rhizobiales is typically the most abundant and taxonomically diverse order in lichen microbiomes; however, overall bacterial diversity in lichens is shown to be much higher than previously reported. Members of Acidobacteriaceae, Acetobacteraceae, Brucellaceae and sequence group LAR1 are the most commonly found groups across the phylogenetically and geographically broad array of lichens examined here. Major bacterial community trends are significantly correlated with differences in large-scale geography, photobiont-type and mycobiont-type. The lichen as a microcosm represents a structured, unique microbial habitat with greater ecological complexity and bacterial diversity than previously appreciated and can serve as a model system for studying larger ecological and evolutionary principles.

  7. Distribution of Bacterial Symbionts in Brown Planthopper%褐飞虱体内细菌型共生菌的分布

    Institute of Scientific and Technical Information of China (English)

    唐明; 徐小蓉; 洪鲲; 乙引

    2014-01-01

    The distribution of bacterial symbionts in brown planthopper was detected by the universal oligo-nucleotide probes eub338 and non338 of Cy5-labeled bacterial 16S rRNA and fluorescence in situ hybridization (FISH).The results showed that Cy5 fluorescence and weak autofluorescence signals were detected in the abdomen,near ovipositor and around midgut of brown planthopper by eub338 but the autofluorescence signal was only detected by antisense probe non338 in the abdomen,around ovipositor and midgut of brown planthopper.%为弄清褐飞虱体内细菌型共生菌的分布状况,采用荧光原位杂交(FISH)技术,用 Cy5标记真细菌16S ribosomal DNA(rDNA)的通用探针 eub338和 non338对细菌型共生菌在褐飞虱体内的分布进行了检测。结果表明:在褐飞虱虫体腹部、产卵管附近以及中场组织附近均检测到 Cy5荧光信号和微弱的自发荧光信号,而反义探针 non338在这些部位均未检测到 Cy5的荧光信号,只检测到自发荧光信号。

  8. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae based on 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Ailin Wang

    Full Text Available The citrus fruit fly Bactrocera minax is associated with diverse bacterial communities. We used a 454 pyrosequencing technology to study in depth the microbial communities associated with gut and reproductive organs of Bactrocera minax. Our dataset consisted of 100,749 reads with an average length of 400 bp. The saturated rarefaction curves and species richness indices indicate that the sampling was comprehensive. We found highly diverse bacterial communities, with individual sample containing approximately 361 microbial operational taxonomic units (OTUs. A total of 17 bacterial phyla were obtained from the flies. A phylogenetic analysis of 16S rDNA revealed that Proteobacteria was dominant in all samples (75%-95%. Actinobacteria and Firmicutes were also commonly found in the total clones. Klebsiella, Citrobacter, Enterobacter, and Serratia were the major genera. However, bacterial diversity (Chao1, Shannon and Simpson indices and community structure (PCA analysis varied across samples. Female ovary has the most diverse bacteria, followed by male testis, and the bacteria diversity of reproductive organs is richer than that of the gut. The observed variation can be caused by sex and tissue, possibly to meet the host's physiological demands.

  9. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth.

    Science.gov (United States)

    Breton, Jonathan; Tennoune, Naouel; Lucas, Nicolas; Francois, Marie; Legrand, Romain; Jacquemot, Justine; Goichon, Alexis; Guérin, Charlène; Peltier, Johann; Pestel-Caron, Martine; Chan, Philippe; Vaudry, David; do Rego, Jean-Claude; Liénard, Fabienne; Pénicaud, Luc; Fioramonti, Xavier; Ebenezer, Ivor S; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2016-02-01

    The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern. PMID:26621107

  10. Identifying the core microbial community in the gut of fungus-growing termites

    DEFF Research Database (Denmark)

    Otani, Saria; Mikaelyan, Aram; Nobre, Tânia;

    2014-01-01

    biomass-degrading fungus (Termitomyces), and how this symbiont acquisition has affected the fungus-growing termite gut microbiota has remained unclear. The objective of our study was to compare the intestinal bacterial communities of five genera (nine species) of fungus-growing termites to establish...... with specific termite genus-level ecological niches. Finally, we show that gut communities of fungus-growing termites are similar to cockroaches, both at the bacterial phylum level and in a comparison of the core Macrotermitinae taxa abundances with representative cockroach, lower termite, and higher non-fungus......-growing termites. These results suggest that the obligate association with Termitomyces has forced the bacterial gut communities of the fungus-growing termites towards a relatively uniform composition with higher similarity to their omnivorous relatives than to more closely related termites. This article...

  11. Molecular signatures of nicotinoid-pathogen synergy in the termite gut.

    Directory of Open Access Journals (Sweden)

    Ruchira Sen

    Full Text Available Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae, bacteria (Serratia marcescens or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.

  12. The Generalist Inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus sp.

    Science.gov (United States)

    Vilanova, Cristina; Baixeras, Joaquín; Latorre, Amparo; Porcar, Manuel

    2016-01-01

    Some specialist insects feed on plants rich in secondary compounds, which pose a major selective pressure on both the phytophagous and the gut microbiota. However, microbial communities of toxic plant feeders are still poorly characterized. Here, we show the bacterial communities of the gut of two specialized Lepidoptera, Hyles euphorbiae and Brithys crini, which exclusively feed on latex-rich Euphorbia sp. and alkaloid-rich Pancratium maritimum, respectively. A metagenomic analysis based on high-throughput sequencing of the 16S rRNA gene revealed that the gut microbiota of both insects is dominated by the phylum Firmicutes, and especially by the common gut inhabitant Enterococcus sp. Staphylococcus sp. are also found in H. euphorbiae though to a lesser extent. By scanning electron microscopy, we found a dense ring-shaped bacterial biofilm in the hindgut of H. euphorbiae, and identified the most prominent bacterium in the biofilm as Enterococcus casseliflavus through molecular techniques. Interestingly, this species has previously been reported to contribute to the immobilization of latex-like molecules in the larvae of Spodoptera litura, a highly polyphagous lepidopteran. The E. casseliflavus strain was isolated from the gut and its ability to tolerate natural latex was tested under laboratory conditions. This fact, along with the identification of less frequent bacterial species able to degrade alkaloids and/or latex, suggest a putative role of bacterial communities in the tolerance of specialized insects to their toxic diet. PMID:27446044

  13. Characterization of the symbiont Rickettsia in the mirid bug Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae).

    Science.gov (United States)

    Caspi-Fluger, A; Inbar, M; Steinberg, S; Friedmann, Y; Freund, M; Mozes-Daube, N; Zchori-Fein, E

    2014-12-01

    Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is an omnivorous insect used for biological control. Augmentative release and conservation of N. tenuis have been used for pest control in tomato crops. Intracellular bacterial symbionts of arthropods are common in nature and have diverse effects on their hosts; in some cases they can dramatically affect biological control. Fingerprinting methods showed that the symbiotic complex associated with N. tenuis includes Wolbachia and Rickettsia. Rickettsia of N. tenuis was further characterized by sequencing the 16S rRNA and gltA bacterial genes, measuring its amount in different developmental stages of the insect by real-time polymerase chain reaction, and localizing the bacteria in the insect's body by fluorescence in situ hybridization. The Rickettsia in N. tenuis exhibited 99 and 96% similarity of both sequenced genes to Rickettsia bellii and Rickettsia reported from Bemisia tabaci, respectively. The highest amount of Rickettsia was measured in the 5th instar and adult, and the symbionts could be detected in the host gut and ovaries. Although the role played by Rickettsia in the biology of N. tenuis is currently unknown, their high amount in the adults and localization in the gut suggest that they may have a nutritional role in this insect.

  14. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    Science.gov (United States)

    Sabree, Zakee L; Hansen, Allison K; Moran, Nancy A

    2012-01-01

    Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3): e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear. PMID:22829932

  15. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    Directory of Open Access Journals (Sweden)

    Zakee L Sabree

    Full Text Available Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012 Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3: e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear.

  16. Colonic transit time relates to bacterial metabolism and mucosal turnover in the human gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain;

    Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic...... transit time and the gut microbial composition and metabolism, we assessed the colonic transit time of 98 subjects using radiopaque markers, and profiled their gut microbiota by16S rRNA gene sequencingand their urine metabolome by ultra performance liquid chromatography mass spectrometry. Based...... on correlation analyses,we show that colonic transit time is associated with overall gutmicrobial composition, diversity and metabolism. A relatively prolonged colonic transit time associates with high microbial species richness and a shift in colonic metabolismfrom carbohydrate fermentation to protein...

  17. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain;

    2016-01-01

    Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit...... time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation...... to protein catabolism as reflected by higher urinary levels of potentially deleterious protein-derived metabolites. Additionally, shorter colonic transit time correlates with metabolites possibly reflecting increased renewal of the colonic mucosa. Together, this suggests that a high gut microbial richness...

  18. Characterization of the bacterial gut microbiota in new neonatal porcine diarrhoea

    DEFF Research Database (Denmark)

    Hermann-Bank, Marie Louise

    was tested on DNA extracted from ileal or colonic contents from piglets with or without NNPD and verified via 454 next generation sequencing of the PCR amplicons. Bioinformatics was conducted using BION-meta customized for this specific setup. With the Gut Microbiotassay in place gut microbial profiles...... significantly up- or down-regulated reflecting the complex immunological response to being inoculated and/or infected with NNPD-material. Finally, a high abundance of genus Enterococcus (characteristic of case piglets) was associated with high expressions of several transcripts involved in epithelial integrity....... Altogether, the results of the studies included in this thesis reveal that NNPD is associated with a disturbed gut microbial composition, and all points towards members from the genus Enterococcus are involved in the pathogenesis of NNPD....

  19. Helicobacter species and common gut bacterial DNA in gallbladder with cholecystitis

    Institute of Scientific and Technical Information of China (English)

    Peren; H; Karagin; Unne; Stenram; Torkel; Wadstrm; sa; Ljungh

    2010-01-01

    AIM:To analyze the association between Helicobacter spp. and some common gut bacteria in patients with cholecystitis. METHODS:A nested-polymerase chain reaction (PCR), specif ic to 16S rRNA of Helicobacter spp. was performed on paraff in-embedded gallbladder samples of 100 cholecystitis and 102 control cases. The samples were also analyzed for some common gut bacteria by PCR. Positive samples were sequenced for species identif ication. RESULTS: Helicobacter DNA was found in seven out of 100 cases of acute a...

  20. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus, from India and its possible role in indoxacarb degradation

    Directory of Open Access Journals (Sweden)

    Shanivarsanthe Leelesh Ramya

    2016-06-01

    Full Text Available Abstract Diamondback moth (DBM, Plutella xylostella (Linnaeus, is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n = 13 and adults (n = 12 of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%, followed by bacilli (15.4%. Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%, bacilli (16.7% and flavobacteria (16.7%. Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32 µmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus – KC985225 and Pantoea agglomerans – KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26 µmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM.

  1. Christensenella timonensis, a new bacterial species isolated from the human gut.

    Science.gov (United States)

    Ndongo, S; Dubourg, G; Khelaifia, S; Fournier, P-E; Raoult, D

    2016-09-01

    We propose a new species, Christensenella timonensis, strain Marseille-P2437(T) (CSUR P2437(T)), which was isolated from gut microbiota of a 66-year-old patient as a part of culturomics study. C. timonensis represents the second species isolated within the Christensenella genus. PMID:27408737

  2. Gut Microbiotas and Host Evolution: Scaling Up Symbiosis.

    Science.gov (United States)

    Shapira, Michael

    2016-07-01

    Our understanding of species evolution is undergoing restructuring. It is well accepted that host-symbiont coevolution is responsible for fundamental aspects of biology. However, the emerging importance of plant- and animal-associated microbiotas to their hosts suggests a scale of coevolutionary interactions many-fold greater than previously considered. This review builds on current understanding of symbionts and their contributions to host evolution to evaluate recent data demonstrating similar contributions of gut microbiotas. It further considers a multilayered model for microbiota to account for emerging themes in host-microbiota interactions. Drawing on the structure of bacterial genomes, this model distinguishes between a host-adapted core microbiota, and a flexible, environmentally modulated microbial pool, differing in constraints on their maintenance and in their contributions to host adaptation. PMID:27039196

  3. Species-specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota.

    Science.gov (United States)

    Bolaños, Luis M; Rosenblueth, Mónica; Castillo-Ramírez, Santiago; Figuier-Huttin, Gilles; Martínez-Romero, Esperanza

    2016-05-01

    Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species-specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food-deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species. PMID:26058415

  4. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents

    OpenAIRE

    Christian Hoffmann; Serena Dollive; Stephanie Grunberg; Jun De Chen; Hongzhe Li; Wu, Gary D.; Lewis, James D.; Bushman, Frederic D.

    2013-01-01

    Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi w...

  5. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates

    OpenAIRE

    Vandeputte, Doris; Falony, Gwen; Araujo Vieira Da Silva, Sara Manuel; Tito Tadeo, Raul Yhossef; Joossens, Marie; Raes, Jeroen

    2016-01-01

    Objective The assessment of potentially confounding factors affecting colon microbiota composition is essential to the identification of robust microbiome based disease markers. Here, we investigate the link between gut microbiota variation and stool consistency using Bristol Stool Scale classification, which reflects faecal water content and activity, and is considered a proxy for intestinal colon transit time. Design Through 16S rDNA Illumina profiling of faecal samples of 53 healthy women,...

  6. Dietary Regulation of the Gut Microbiota Engineered by a Minimal Defined Bacterial Consortium.

    Directory of Open Access Journals (Sweden)

    Ting-Chin David Shen

    Full Text Available We have recently reported that Altered Schaedler Flora (ASF can be used to durably engineer the gut microbiota to reduce ammonia production as an effective modality to reduce morbidity and mortality in the setting of liver injury. Here we investigated the effects of a low protein diet on ASF colonization and its ability to engineer the microbiota. Initially, ASF inoculation was similar between mice fed a normal protein diet or low protein diet, but the outgrowth of gut microbiota differed over the ensuing month. Notable was the inability of the dominant Parabacteroides ASF taxon to exclude other taxa belonging to the Bacteroidetes phylum in the setting of a low protein diet. Instead, a poorly classified yet highly represented Bacteroidetes family, S24-7, returned within 4 weeks of inoculation in mice fed a low protein diet, demonstrating a reduction in ASF resilience in response to dietary stress. Nevertheless, fecal ammonia levels remained significantly lower than those observed in mice on the same low protein diet that received a transplant of normal feces. No deleterious effects were observed in host physiology due to ASF inoculation into mice on a low protein diet. In total, these results demonstrate that low protein diet can have a pronounced effect on engineering the gut microbiota but modulation of ammonia is preserved.

  7. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients.

    Directory of Open Access Journals (Sweden)

    Fabrice Armougom

    Full Text Available BACKGROUND: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. METHODS AND FINDINGS: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01. We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p=0.0197 or anorexic patients (p=0.0332. The M. smithii concentration was much higher in anorexic patients than in the lean population (p=0.0171. CONCLUSIONS: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population.

  8. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available The composition of the bacterial communities in the contents of the foregut and hindgut of the sea cucumber Apostichopus japonicus and in the ambient surface sediment was surveyed by 16S rRNA gene 454-pyrosequencing. A total of 188,623 optimized reads and 15,527 operational taxonomic units (OTUs were obtained from the ten gut contents samples and four surface sediment samples. The sequences in the sediments, foregut contents, and hindgut contents were assigned to 38.0±4.7, 31.2±6.2 and 27.8±6.5 phyla, respectively. The bacterial richness and Shannon diversity index were both higher in the ambient sediments than in the gut contents. Proteobacteria was the predominant phylum in both the gut contents and sediment samples. The predominant classes in the foregut, hindgut, and ambient sediment were Holophagae and Gammaproteobacteria, Deltaproteobacteria and Gammaproteobacteria, and Gammaproteobacteria and Deltaproteobacteria, respectively. The potential probiotics, including sequences related to Bacillus, lactic acid bacteria (Lactobacillus, Lactococcus, and Streptococcus and Pseudomonas were detected in the gut of A. japonicus. Principle component analysis and heatmap figure showed that the foregut, hindgut, and ambient sediment respectively harbored different characteristic bacterial communities. Selective feeding of A. japonicus may be the primary source of the different bacterial communities between the foregut contents and ambient sediments.

  9. Bacterial Community Composition in the Gut Content and Ambient Sediment of Sea Cucumber Apostichopus japonicus Revealed by 16S rRNA Gene Pyrosequencing

    Science.gov (United States)

    Gao, Fei; Li, Fenghui; Tan, Jie; Yan, Jingping; Sun, Huiling

    2014-01-01

    The composition of the bacterial communities in the contents of the foregut and hindgut of the sea cucumber Apostichopus japonicus and in the ambient surface sediment was surveyed by 16S rRNA gene 454-pyrosequencing. A total of 188,623 optimized reads and 15,527 operational taxonomic units (OTUs) were obtained from the ten gut contents samples and four surface sediment samples. The sequences in the sediments, foregut contents, and hindgut contents were assigned to 38.0±4.7, 31.2±6.2 and 27.8±6.5 phyla, respectively. The bacterial richness and Shannon diversity index were both higher in the ambient sediments than in the gut contents. Proteobacteria was the predominant phylum in both the gut contents and sediment samples. The predominant classes in the foregut, hindgut, and ambient sediment were Holophagae and Gammaproteobacteria, Deltaproteobacteria and Gammaproteobacteria, and Gammaproteobacteria and Deltaproteobacteria, respectively. The potential probiotics, including sequences related to Bacillus, lactic acid bacteria (Lactobacillus, Lactococcus, and Streptococcus) and Pseudomonas were detected in the gut of A. japonicus. Principle component analysis and heatmap figure showed that the foregut, hindgut, and ambient sediment respectively harbored different characteristic bacterial communities. Selective feeding of A. japonicus may be the primary source of the different bacterial communities between the foregut contents and ambient sediments. PMID:24967593

  10. Genome Evolution in the Obligate but Environmentally Active Luminous Symbionts of Flashlight Fish.

    Science.gov (United States)

    Hendry, Tory A; de Wet, Jeffrey R; Dougan, Katherine E; Dunlap, Paul V

    2016-01-01

    The luminous bacterial symbionts of anomalopid flashlight fish are thought to be obligately dependent on their hosts for growth and share several aspects of genome evolution with unrelated obligate symbionts, including genome reduction. However, in contrast to most obligate bacteria, anomalopid symbionts have an active environmental phase that may be important for symbiont transmission. Here we investigated patterns of evolution between anomalopid symbionts compared with patterns in free-living relatives and unrelated obligate symbionts to determine if trends common to obligate symbionts are also found in anomalopid symbionts. Two symbionts, "Candidatus Photodesmus katoptron" and "Candidatus Photodesmus blepharus," have genomes that are highly similar in gene content and order, suggesting genome stasis similar to ancient obligate symbionts present in insect lineages. This genome stasis exists in spite of the symbiont's inferred ability to recombine, which is frequently lacking in obligate symbionts with stable genomes. Additionally, we used genome comparisons and tests of selection to infer which genes may be particularly important for the symbiont's ecology compared with relatives. In keeping with obligate dependence, substitution patterns suggest that most symbiont genes are experiencing relaxed purifying selection compared with relatives. However, genes involved in motility and carbon storage, which are likely to be used outside the host, appear to be under increased purifying selection. Two chemoreceptor chemotaxis genes are retained by both species and show high conservation with amino acid sensing genes, suggesting that the bacteria may actively seek out hosts using chemotaxis toward amino acids, which the symbionts are not able to synthesize. PMID:27389687

  11. Collapse of Insect Gut Symbiosis under Simulated Climate Change

    Science.gov (United States)

    Kikuchi, Yoshitomo; Tada, Akiyo; Musolin, Dmitry L.; Hari, Nobuhiro; Hosokawa, Takahiro; Fujisaki, Kenji

    2016-01-01

    ABSTRACT Global warming impacts diverse organisms not only directly but also indirectly via other organisms with which they interact. Recently, the possibility that elevated temperatures resulting from global warming may substantially affect biodiversity through disrupting mutualistic/parasitic associations has been highlighted. Here we report an experimental demonstration that global warming can affect a pest insect via suppression of its obligate bacterial symbiont. The southern green stinkbug Nezara viridula depends on a specific gut bacterium for its normal growth and survival. When the insects were reared inside or outside a simulated warming incubator wherein temperature was controlled at 2.5°C higher than outside, the insects reared in the incubator exhibited severe fitness defects (i.e., retarded growth, reduced size, yellowish body color, etc.) and significant reduction of symbiont population, particularly in the midsummer season, whereas the insects reared outside did not. Rearing at 30°C or 32.5°C resulted in similar defective phenotypes of the insects, whereas no adult insects emerged at 35°C. Notably, experimental symbiont suppression by an antibiotic treatment also induced similar defective phenotypes of the insects, indicating that the host’s defective phenotypes are attributable not to the heat stress itself but to the suppression of the symbiont population induced by elevated temperature. These results strongly suggest that high temperature in the midsummer season negatively affects the insects not directly but indirectly via the heat-vulnerable obligate bacterial symbiont, which highlights the practical relevance of mutualism collapse in this warming world. PMID:27703075

  12. Distributions of Bacterial Generalists among the Guts of Birds, Fish, and Mammals - abstract

    Science.gov (United States)

    Complex distributions of bacterial taxa within diverse animal microbiomes have inspired ecological and biogeographical approaches to revealing the functions of taxa that may be most important for host health. Of particular interest are bacteria that find many diverse habitats sui...

  13. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae)

    OpenAIRE

    Narit Thaochan; Richard A.I. Drew; Anuchit Chinajariyawong; Anurag Sunpapao; Chaninun Pornsuriya

    2015-01-01

    The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt), was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria w...

  14. Comparative genomics of vesicomyid clam (Bivalvia: Mollusca chemosynthetic symbionts

    Directory of Open Access Journals (Sweden)

    Girguis Peter R

    2008-12-01

    Full Text Available Abstract Background The Vesicomyidae (Bivalvia: Mollusca are a family of clams that form symbioses with chemosynthetic gamma-proteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a reduced gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. Recently, two vesicomyid symbiont genomes were sequenced, illuminating the possible nutritional contributions of the symbiont to the host and making genome-wide evolutionary analyses possible. Results To examine the genomic evolution of the vesicomyid symbionts, a comparative genomics framework, including the existing genomic data combined with heterologous microarray hybridization results, was used to analyze conserved gene content in four vesicomyid symbiont genomes. These four symbionts were chosen to include a broad phylogenetic sampling of the vesicomyid symbionts and represent distinct chemosynthetic environments: cold seeps and hydrothermal vents. Conclusion The results of this comparative genomics analysis emphasize the importance of the symbionts' chemoautotrophic metabolism within their hosts. The fact that these symbionts appear to be metabolically capable autotrophs underscores the extent to which the host depends on them for nutrition and reveals the key to invertebrate colonization of these challenging environments.

  15. Helicobacter species and gut bacterial DNA in Meckel's diverticulum and the appendix

    Institute of Scientific and Technical Information of China (English)

    Peren H Karagin; Unne Stenram; Torkel Wadstr(o)m; (A)sa Ljungh

    2011-01-01

    AIM: To analyse the possible association of various Helicobacter species and certain common gut bacteria in patients with Meckel's diverticulum and appendicitis. METHODS: A nested-polymerase chain reaction (PCR), specific to 16S rRNA of the Helicobacter genus, was performed on paraffin embedded samples, 50 with acute appendicitis, 50 normal appendixes, and 33 Meckel's diverticulum with gastric heterotopia and/or ulcer. Helicobacter genus positive samples were sequenced for species identification. All samples were also analysed for certain gut bacteria by PCR. RESULTS: Helicobacter pullorum DNA was found in one out of 33 cases and Enterobacteria in two cases of Meckel's diverticulum. Helicobacter pylori (H. pylori ) was found in three, Enterobacter in 18, and Bacteroides in 19 out of 100 appendix samples by PCR. Enterococcus was not found in any MD or appendix samples. All H. pylori positive cases were from normal appendixes. CONCLUSION: Helicobacter is not an etiological agent in the pathogenesis of symptomatic Meckel's diverticulum or in acute appendicitis.

  16. Behind every great ant, there is a great gut

    DEFF Research Database (Denmark)

    Poulsen, Michael; Sapountzis, Panagiotis

    2012-01-01

    Ants are quite possibly the most successful insects on Earth, with an estimated 10 000 species worldwide, making up at least a third of the global insect biomass, and comprising several times the biomass of all land vertebrates combined. Ant species have diverse trophic habits, including herbivory...... on the potential contribution of the ants’ gut symbionts. This issue of Molecular Ecology contains a study by Anderson et al. (2012), who take a comparative approach to explore the link between trophic levels and ant microbiomes, specifically, to address three main questions: (i) Do closely related herbivorous...... ants share similar bacterial communities? (ii) Do species of predatory ants share similar bacterial communities? (iii) Do distantly related herbivorous ants tend to share similar bacterial communities? By doing so, the authors demonstrate that ants with similar trophic habits appear to have relatively...

  17. Interaction between workers during a short time window is required for bacterial symbiont transmission in Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Marsh, Sarah E.; Thomas-Poulsen, Michael; Pinto-Tomás, Adrián;

    2014-01-01

    a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclose) symbiont-free, but exhibit visible Actinobacterial coverage within 14 days post-eclosion. Using...... exosymbiont-carrying major workers did not acquire visible Actinobacteria (0% acquiring, n = 73). We further show that the majority of ants exposed to major workers with exosymbionts within 2 hours of eclosion acquired bacteria (60.7% acquiring, n = 28), while normal acquisition did not occur when exposure...

  18. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota

    OpenAIRE

    Audebert, Christophe; Even, Gaël; Cian, Amandine; ,; Safadi, Dima El; Certad, Gabriela; Delhaes, Laurence; Pereira, Bruno; Nourrisson, Céline; Poirier, Philippe; Wawrzyniak, Ivan; Delbac, Frédéric; Morelle, Christelle; Bastien, Patrick; Lachaud, Laurence

    2016-01-01

    Alterations in the composition of commensal bacterial populations, a phenomenon known as dysbiosis, are linked to multiple gastrointestinal disorders, such as inflammatory bowel disease and irritable bowel syndrome, or to infections by diverse enteric pathogens. Blastocystis is one of the most common single-celled eukaryotes detected in human faecal samples. However, the clinical significance of this widespread colonization remains unclear, and its pathogenic potential is controversial. To ad...

  19. Commensal bacterial internalization by epithelial cells: An alternative portal for gut leakiness

    OpenAIRE

    Yu, Linda Chia-Hui

    2015-01-01

    Co-existing paracellular and transcellular barrier defect in intestinal epithelium was documented in inflammatory bowel disease, celiac disease, and intestinal obstruction. Mechanisms regarding tight junction disruption have been extensively studied; however, limited progress has been made in research on bacterial transcytosis. Densely packed brush border (BB), with cholesterol-based lipid rafts in the intermicrovillous membrane invagination, serves as an ultrastructural barrier to prevent di...

  20. Spontaneous bacterial peritonitis: The clinical challenge ofa leaky gut and a cirrhotic liver

    Institute of Scientific and Technical Information of China (English)

    Philipp Lutz; Hans Dieter Nischalke; Christian P Strassburg; Ulrich Spengler

    2015-01-01

    Spontaneous bacterial peritonitis (SBP) is a frequent,life-threatening bacterial infection in patients withliver cirrhosis and ascites. Portal hypertension leadsto increased bacterial translocation from the intestine.Failure to eliminate invading pathogens due to immunedefects associated with advanced liver disease on thebackground of genetic predisposition may result in SBP.The efficacy of antibiotic treatment and prophylaxis hasdeclined due to the spread of multi-resistant bacteria.Patients with nosocomial SBP and with prior antibiotictreatment are at a particularly high risk for infectionwith resistant bacteria. Therefore, it is important toadapt empirical treatment to these risk factors and tothe local resistance profile. Rifaximin, an oral, nonabsorbableantibiotic, has been proposed to preventSBP, but may be useful only in a subset of patients.Since novel antibiotic classes are lacking, we have todevelop prophylactic strategies which do not inducebacterial resistance. Farnesoid X receptor agonistsmay be a candidate, but so far, clinical studies are notavailable. New diagnostic tests which can be carriedout quickly at the patient's site and provide additionalprognostic information would be helpful. Furthermore,we need tools to predict antibiotic resistance in orderto tailor first-line antibiotic treatment of spontaneousbacterial peritonitis to the individual patient and toreduce mortality.

  1. Functional diversity within the simple gut microbiota of the honey bee.

    Science.gov (United States)

    Engel, Philipp; Martinson, Vincent G; Moran, Nancy A

    2012-07-01

    Animals living in social communities typically harbor a characteristic gut microbiota important for nutrition and pathogen defense. Accordingly, in the gut of the honey bee, Apis mellifera, a distinctive microbial community, composed of a taxonomically restricted set of species specific to social bees, has been identified. Despite the ecological and economical importance of honey bees and the increasing concern about population declines, the role of their gut symbionts for colony health and nutrition is unknown. Here, we sequenced the metagenome of the gut microbiota of honey bees. Unexpectedly, we found a remarkable degree of genetic diversity within the few bacterial species colonizing the bee gut. Comparative analysis of gene contents suggests that different species harbor distinct functional capabilities linked to host interaction, biofilm formation, and carbohydrate breakdown. Whereas the former two functions could be critical for pathogen defense and immunity, the latter one might assist nutrient utilization. In a γ-proteobacterial species, we identified genes encoding pectin-degrading enzymes likely involved in the breakdown of pollen walls. Experimental investigation showed that this activity is restricted to a subset of strains of this species providing evidence for niche specialization. Long-standing association of these gut symbionts with their hosts, favored by the eusocial lifestyle of honey bees, might have promoted the genetic and functional diversification of these bee-specific bacteria. Besides revealing insights into mutualistic functions governed by the microbiota of this important pollinator, our findings indicate that the honey bee can serve as a model for understanding more complex gut-associated microbial communities.

  2. Complementary symbiont contributions to plant decomposition in a fungus-farming termite

    NARCIS (Netherlands)

    Poulsen, Michael; Hu, Haofu; Li, Cai; Chen, Zhensheng; Xu, Luohao; Otani, Saria; Nygaard, Sanne; Nobre, Tania; Klaubauf, S.; Schindler, Philipp M; Hauser, Frank; Pan, Hailin; Yang, Zhikai; Sonnenberg, Anton S M; de Beer, Z Wilhelm; Zhang, Yong; Wingfield, Michael J; Grimmelikhuijzen, Cornelis J P; de Vries, Ronald P; Korb, Judith; Aanen, Duur K; Wang, Jun; Boomsma, Jacobus J; Zhang, Guojie; van den Brink, J.

    2014-01-01

    Termites normally rely on gut symbionts to decompose organic matter but the Macrotermitinae domesticated Termitomyces fungi to produce their own food. This transition was accompanied by a shift in the composition of the gut microbiota, but the complementary roles of these bacteria in the symbiosis h

  3. Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral.

    Directory of Open Access Journals (Sweden)

    Dianfeng Liu

    Full Text Available BACKGROUND: Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP. Determination of water-soluble and HNO(3-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. CONCLUSIONS/SIGNIFICANCE: Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals.

  4. Symbiont-mediated protection

    OpenAIRE

    Haine, Eleanor R.

    2007-01-01

    Despite the fact that all vertically transmitted symbionts sequester resources from their hosts and are therefore costly to maintain, there is an extraordinary diversity of them in invertebrates. Some spread through host populations by providing their hosts with fitness benefits or by manipulating host sex ratio, but some do not: their maintenance in host lineages remains an enigma. In this review, I explore the evolutionary ecology of vertically transmitted symbionts and their impact on host...

  5. Complementary symbiont contributions to plant decomposition in a fungus-farming termite

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael; Hu, Haofu; Li, Cai;

    2014-01-01

    Termites normally rely on gut symbionts to decompose organic matter but the Macrotermitinae domesticated Termitomyces fungi to produce their own food. This transition was accompanied by a shift in the composition of the gut microbiota, but the complementary roles of these bacteria in the symbiosis...... have remained enigmatic. We obtained high-quality annotated draft genomes of the termite Macrotermes natalensis, its Termitomyces symbiont, and gut metagenomes from workers, soldiers, and a queen. We show that members from 111 of the 128 known glycoside hydrolase families are represented...

  6. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  7. Some Changes in Gut Bacterial Flora of Field-Grown Peridroma saucia (Lepidoptera: Noctuidae) When Brought into the Laboratory

    OpenAIRE

    Lighthart, Bruce

    1988-01-01

    Removal of Peridroma saucia from the field to the laboratory caused little change in the quantity of facultative and aerobic bacteria in the gut but produced significant qualitative and quantitative changes in distinguishable groups of the family Enterobacteriaceae in the gut.

  8. Some Changes in Gut Bacterial Flora of Field-Grown Peridroma saucia (Lepidoptera: Noctuidae) When Brought into the Laboratory.

    Science.gov (United States)

    Lighthart, B

    1988-07-01

    Removal of Peridroma saucia from the field to the laboratory caused little change in the quantity of facultative and aerobic bacteria in the gut but produced significant qualitative and quantitative changes in distinguishable groups of the family Enterobacteriaceae in the gut. PMID:16347703

  9. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota.

    Science.gov (United States)

    Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte; Foesel, Bärbel U; Meier-Kolthoff, Jan P; Kumar, Neeraj; Bresciani, Anne; Martínez, Inés; Just, Sarah; Ziegler, Caroline; Brugiroux, Sandrine; Garzetti, Debora; Wenning, Mareike; Bui, Thi P N; Wang, Jun; Hugenholtz, Floor; Plugge, Caroline M; Peterson, Daniel A; Hornef, Mathias W; Baines, John F; Smidt, Hauke; Walter, Jens; Kristiansen, Karsten; Nielsen, Henrik B; Haller, Dirk; Overmann, Jörg; Stecher, Bärbel; Clavel, Thomas

    2016-01-01

    Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50-75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota-host interactions in health and disease, as it will facilitate targeted colonization and molecular studies. The resource is available at www.dsmz.de/miBC. PMID:27670113

  10. Characterising the interspecific variations and convergence of gut microbiota in Anseriformes herbivores at wintering areas

    Science.gov (United States)

    Yang, Yuzhan; Deng, Ye; Cao, Lei

    2016-01-01

    Microorganisms in vertebrate guts have been recognized as important symbionts influencing host life. However, it remains unclear about the gut microbiota in long-distance migratory Anseriformes herbivores, which could be functionally important for these wetland-dependent animals. We collected faeces of the greater white-fronted goose (GWFG), bean goose (BG) and swan goose (SG) from Shengjin Lake (SJL) and Poyang Lake (PYL) in the Yangtze River Floodplain, China. High-throughput sequencing of 16S rRNA V4 region was employed to depict the composition and structure of geese gut microbiota during wintering period. The dominant bacterial phyla across all samples were Firmicutes, Proteobacteria and Actinobacteria, but significant variations were detected among different goose species and sampling sites, in terms of α diversity, community structures and microbial interactions. We found a significant correlation between diet and the microbial community structure in GWFG-SJL samples. These results demonstrated that host species and diet are potential drivers of goose gut microbiota assemblies. Despite these variations, functions of geese gut microbiota were similar, with great abundances of potential genes involved in nutrient metabolism. This preliminary study would be valuable for future, exhaustive investigations of geese gut microbiota and their interactions with host. PMID:27600170

  11. Development of an ex vivo model for investigating the bacterial association to the gut epithelium of pigs

    DEFF Research Database (Denmark)

    Sugiharto, Sugiharto; Jensen, Bent Borg; Lauridsen, Charlotte

    2012-01-01

    To study enterotoxigenic Escherichia coli (ETEC) association to the gut of pigs, a simple and reproducible experimental model would be helpful. The aim of this experiment was to establish a model for studying the association of ETEC to the gut epithelium of pigs. Intestinal segments were prepared...... and they associated more (P = 0.10) at distal than mid SI. The E. coli did not differ (P > 0.05) between genotypes in F4-inoculated segment. In conclusion, the ex vivo model may be feasible to investigate the ETEC association to the gut epithelium of pigs....

  12. First report on the bacterial diversity in the distal gut of dholes (Cuon alpinus) by using 16S rRNA gene sequences analysis.

    Science.gov (United States)

    Chen, Lei; Zhang, Honghai; Liu, Guangshuai; Sha, Weilai

    2016-05-01

    The aim of this study was to investigate the bacterial community in the distal gut of dholes (Cuon alpinus) based on the analysis of bacterial 16S rRNA gene sequences. Fecal samples were collected from five healthy unrelated dholes captured from Qilian Mountain in Gansu province of China. The diversity of the fecal bacteria community was investigated by constructing a polymerase chain reaction (PCR)-amplified 16S rRNA gene clone library. Bacterial 16S rRNA gene was amplified by using universal bacterial primers 27F and 1492R. A total of 275 chimera-free near full length 16S rRNA gene sequences were collected, and 78 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified according to the 97 % sequence similarity. Forty-two OTUs (53.8 %) showed less than 98 % sequence similarity to 16S rRNA gene sequences reported previously. Phylogenetic analysis demonstrated that dhole bacterial community comprised five different phyla, with the majority of sequences being classified within the phylum Bacteroidetes (64.7 %), followed by Firmicutes (29.8 %), Fusobacteria (4.7 %),Proteobacteria (0.4 %), and Actinobacteria (0.4 %). The only order Bacteroidales in phylum Bacteroidetes was the most abundant bacterial group in the intestinal bacterial community of dholes. Firmicutes and Bacteroidetes were the two most diverse bacterial phyla with 46.2 and 44.9 % of OTUs contained, respectively. Bacteroidales and Clostridiales were the two most diverse bacterial orders that contained 44.9 and 39.7 % of OTUs, respectively.

  13. Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects

    OpenAIRE

    Moran, Nancy A.; Russell, Jacob A; Koga, Ryuichi; Fukatsu, Takema

    2005-01-01

    Ecological studies on three bacterial lineages symbiotic in aphids have shown that they impose a variety of effects on their hosts, including resistance to parasitoids and tolerance to heat stress. Phylogenetic analyses of partial sequences of gyrB and recA are consistent with previous analyses limited to 16S rRNA gene sequences and yield improved confidence of the evolutionary relationships of these symbionts. All three symbionts are in the Enterobacteriaceae. One of the symbionts, here give...

  14. Bacterial Community Composition in the Gut Content and Ambient Sediment of Sea Cucumber Apostichopus japonicus Revealed by 16S rRNA Gene Pyrosequencing

    OpenAIRE

    Fei Gao; Fenghui Li; Jie Tan; Jingping Yan; Huiling Sun

    2014-01-01

    The composition of the bacterial communities in the contents of the foregut and hindgut of the sea cucumber Apostichopus japonicus and in the ambient surface sediment was surveyed by 16S rRNA gene 454-pyrosequencing. A total of 188,623 optimized reads and 15,527 operational taxonomic units (OTUs) were obtained from the ten gut contents samples and four surface sediment samples. The sequences in the sediments, foregut contents, and hindgut contents were assigned to 38.0±4.7, 31.2±6.2 and 27.8±...

  15. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota

    DEFF Research Database (Denmark)

    Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte;

    2016-01-01

    of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (mi...... species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50-75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota-host interactions in health and disease, as it will facilitate targeted colonization...

  16. Metagenomic Analysis of Microbial Symbionts in a Gutless Worm

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Teeling, Hanno; Ivanova, Natalia N.; Hunteman, Marcel; Richter, Michael; Gloeckner, Frank Oliver; Boeffelli, Dario; Barry, Kerrie W.; Shapiro, Harris J.; Anderson, Iain J.; Szeto, Ernest; Kyrpides, Nikos C.; Mussmann, Marc; Amann, Rudolf; Bergin, Claudia; Ruehland, Caroline; Rubin, Edward M.; Dubilier, Nicole

    2006-05-01

    Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits.

  17. Defensive insect symbiont leads to cascading extinctions and community collapse.

    Science.gov (United States)

    Sanders, Dirk; Kehoe, Rachel; van Veen, Fj Frank; McLean, Ailsa; Godfray, H Charles J; Dicke, Marcel; Gols, Rieta; Frago, Enric

    2016-07-01

    Animals often engage in mutualistic associations with microorganisms that protect them from predation, parasitism or pathogen infection. Studies of these interactions in insects have mostly focussed on the direct effects of symbiont infection on natural enemies without studying community-wide effects. Here, we explore the effect of a defensive symbiont on population dynamics and species extinctions in an experimental community composed of three aphid species and their associated specialist parasitoids. We found that introducing a bacterial symbiont with a protective (but not a non-protective) phenotype into one aphid species led to it being able to escape from its natural enemy and increase in density. This changed the relative density of the three aphid species which resulted in the extinction of the two other parasitoid species. Our results show that defensive symbionts can cause extinction cascades in experimental communities and so may play a significant role in the stability of consumer-herbivore communities in the field. PMID:27282315

  18. Oligotyping reveals differences between gut-microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas on a bacterial species-like level

    Directory of Open Access Journals (Sweden)

    Sebastian eMenke

    2014-10-01

    Full Text Available Recent gut microbiome studies in model organisms emphasize the effects of intrinsic and extrinsic factors on the variation of the bacterial composition and its impact on the overall health status of the host. Species occurring in the same habitat might share a similar microbiome, especially if they overlap in ecological and behavioral traits. So far, the natural variation in microbiomes of free-ranging wildlife species has not been thoroughly investigated. The few existing studies exploring microbiomes through 16S rRNA gene reads clustered sequencing reads into operational taxonomic units (OTUs based on a similarity threshold (e.g. 97%. This approach, in combination with the low resolution of target databases, generally limits the level of taxonomic assignments to the genus level. However, distinguishing natural variation of microbiomes in healthy individuals from abnormal microbial compositions that affect host health requires knowledge of the normal microbial flora at a high taxonomic resolution. This gap can now be addressed using the recently published oligotyping approach, which can resolve closely related organisms into distinct oligotypes by utilizing subtle nucleotide variation. Here, we used Illumina MiSeq to sequence amplicons generated from the V4 region of the 16S rRNA gene to investigate the gut microbiome of two free-ranging sympatric Namibian carnivore species, the cheetah (Acinonyx jubatus and the black-backed jackal (Canis mesomelas. Bacterial phyla with proportions > 0.2 % were identical for both species and included Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria and Actinobacteria. At a finer taxonomic resolution, black-backed jackals exhibited 69 bacterial taxa with proportions ≥ 0.1 %, whereas cheetahs had only 42. Finally, oligotyping revealed that shared bacterial taxa consisted of distinct oligotype profiles. Thus, in contrast to 3 % OTUs, oligotyping can detect fine-scale taxonomic differences between

  19. A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene.

    Science.gov (United States)

    Stallforth, Pierre; Brock, Debra A; Cantley, Alexandra M; Tian, Xiangjun; Queller, David C; Strassmann, Joan E; Clardy, Jon

    2013-09-01

    Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria's host is a "farmer" clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer's spore production and depresses a nonfarmer's spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a "domesticated" food source. PMID:23898207

  20. Environmental and gut Bacteroidetes: the food connection

    Directory of Open Access Journals (Sweden)

    François eThomas

    2011-05-01

    Full Text Available Members of the diverse bacterial phylum Bacteroidetes have colonized virtually all types of habitats on Earth. They are among the major members of the microbiota of animals, especially in the gastro-intestinal tract, can act as pathogens and are frequently found in soils, oceans and freshwater. In these contrasting ecological niches, Bacteroidetes are increasingly regarded as specialists for the degradation of high molecular weight organic matter, i.e. proteins and carbohydrates. This review presents the current knowledge on the role and mechanisms of polysaccharide degradation by Bacteroidetes in their respective habitats. The recent sequencing of Bacteroidetes genomes confirms the presence of numerous carbohydrate-active enzymes covering a large spectrum of substrates from plant, algal and animal origin. Comparative genomics reveal specific Polysaccharide Utilization Loci shared between distantly related members of the phylum, either in environmental or gut-associated species. Moreover, Bacteroidetes genomes appear to be highly plastic and frequently reorganized through genetic rearrangements, gene duplications and lateral gene transfers, a feature that could have driven their adaptation to distinct ecological niches. Evidence is accumulating that the nature of the diet shapes the composition of the intestinal microbiota. We address the potential links between gut and environmental bacteria through food consumption. Lateral gene transfer can provide gut bacteria with original sets of utensils to degrade otherwise refractory substrates found in the diet. A more complete understanding of the genetic gateways between food associated environmental species and intestinal microbial communities sheds new light on the origin and evolution of Bacteroidetes as animals' symbionts. It also raises the question as to how the consumption of increasingly hygienic and processed food deprives our microbiota from useful environmental genes and possibly affects

  1. Occurrence of Photobacterium leiognathi, as the bait organ symbiont in frogfish Antennarius hispidus

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    . Occurrence of P. leiognathi as the bait organ symbiont of A. hispidus is the first report. Being very strong mimics of their surrounding, frogfishes may couple the bacterial bioluminescence originating from their bait organs with that of their camouflaging...

  2. Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly

    Directory of Open Access Journals (Sweden)

    De Vooght Linda

    2012-02-01

    Full Text Available Abstract Background Sodalis glossinidius, a gram-negative bacterial endosymbiont of the tsetse fly, has been proposed as a potential in vivo drug delivery vehicle to control trypanosome parasite development in the fly, an approach known as paratransgenesis. Despite this interest of S. glossinidius as a paratransgenic platform organism in tsetse flies, few potential effector molecules have been identified so far and to date none of these molecules have been successfully expressed in this bacterium. Results In this study, S. glossinidius was transformed to express a single domain antibody, (Nanobody® Nb_An33, that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG of the parasite Trypanosoma brucei. Next, we analyzed the capability of two predicted secretion signals to direct the extracellular delivery of significant levels of active Nb_An33. We show that the pelB leader peptide was successful in directing the export of fully functional Nb_An33 to the periplasm of S. glossinidius resulting in significant levels of extracellular release. Finally, S. glossinidius expressing pelBNb_An33 exhibited no significant reduction in terms of fitness, determined by in vitro growth kinetics, compared to the wild-type strain. Conclusions These data are the first demonstration of the expression and extracellular release of functional trypanosome-interfering Nanobodies® in S. glossinidius. Furthermore, Sodalis strains that efficiently released the effector protein were not affected in their growth, suggesting that they may be competitive with endogenous microbiota in the midgut environment of the tsetse fly. Collectively, these data reinforce the notion for the potential of S. glossinidius to be developed into a paratransgenic platform organism.

  3. 脱共生作用对黑豆蚜氨基酸代谢的影响%THE ROLE OF BACTERIAL SYMBIONTS IN AMINO ACID COMPOSITION OF BLACK BEAN APHIDS

    Institute of Scientific and Technical Information of China (English)

    苗雪霞; 甘明; 丁德诚

    2003-01-01

    为了解共生菌对黑豆蚜蛋白质、氨基酸代谢的影响,用利福平处理黑豆蚜以除去其细胞内共生细菌,产生脱共生蚜虫.结果表明,被脱去共生菌的蚜虫与未经抗生素处理的正常蚜虫相比,7日龄时,脱共生蚜虫每毫克鲜重的总蛋白含量降低了29%,每毫克鲜重的游离氨基酸含量提高了17%.对黑豆蚜取食的蚕豆苗韧皮部组织中必需氨基酸所占的比例进行分析后发现,蚕豆苗韧皮部组织中的必需氨基酸含量仅占20%,而有共生菌的黑豆蚜组织中必需氨基酸已达到44%,脱共生后降低到37%,这些结果证明了黑豆蚜的胞内共生菌为其寄主提供了部分必需氨基酸.通过对游离氨基酸组成的分析发现,在测定的17种氨基酸中,必需氨基酸中的苏氨酸在共生蚜虫中所占的比例为21.6%,在脱共生蚜虫中仅为16.7%.同样,非必需氨基酸中的酪氨酸和丝氨酸,在共生蚜虫中分别占总游离氨基酸的8.9%和5.6%,而在脱共生蚜虫中却分别升高到21.1%和13.6%.这些结果表明,各种氨基酸比例的失调,造成了脱共生蚜虫蛋白质合成受阻和部分游离氨基酸的积累,并因此导致蚜虫发育和繁殖的失调.%To evaluate the role of bacterial symbionts(Buchnera spp.) in the black bean aphids (Aphis crac-civora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the to-tal protein content per mg fresh weight was significantly reduced by 29 %, but free amino acid titers were in-creased by 17% . The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37 % in symbiotic and aposymbiotic aphids, respectively,suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid

  4. The human gut resistome

    OpenAIRE

    van Schaik, Willem

    2015-01-01

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological ad...

  5. Heritability of symbiont density reveals distinct regulatory mechanisms in a tripartite symbiosis.

    Science.gov (United States)

    Parkinson, Jasmine F; Gobin, Bruno; Hughes, William O H

    2016-04-01

    Beneficial eukaryotic-bacterial partnerships are integral to animal and plant evolution. Understanding the density regulation mechanisms behind bacterial symbiosis is essential to elucidating the functional balance between hosts and symbionts. Citrus mealybugs, Planococcus citri (Risso), present an excellent model system for investigating the mechanisms of symbiont density regulation. They contain two obligate nutritional symbionts, Moranella endobia, which resides inside Tremblaya princeps, which has been maternally transmitted for 100-200 million years. We investigate whether host genotype may influence symbiont density by crossing mealybugs from two inbred laboratory-reared populations that differ substantially in their symbiont density to create hybrids. The density of the M. endobia symbiont in the hybrid hosts matched that of the maternal parent population, in keeping with density being determined either by the symbiont or the maternal genotype. However, the density of the T. princeps symbiont was influenced by the paternal host genotype. The greater dependency of T. princeps on its host may be due to its highly reduced genome. The decoupling of T. princeps and M. endobia densities, in spite of their intimate association, suggests that distinct regulatory mechanisms can be at work in symbiotic partnerships, even when they are obligate and mutualistic. PMID:27099709

  6. Asymmetric interaction specificity between two sympatric termites and their fungal symbionts.

    NARCIS (Netherlands)

    Fine Licht, De H.H.; Boomsma, J.J.

    2007-01-01

    1. Fungus-growing termites live in an obligate mutualistic symbiosis with Termitomyces fungi. The functions of the fungal symbiont have been hypothesised to differ between species and to range from highly specific roles of providing plant-degrading enzymes complementary to termite gut enzymes, to no

  7. Effects on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age.

    Science.gov (United States)

    Karlsson, Caroline L J; Molin, Göran; Fåk, Frida; Johansson Hagslätt, Marie-Louise; Jakesevic, Maja; Håkansson, Åsa; Jeppsson, Bengt; Weström, Björn; Ahrné, Siv

    2011-09-01

    The aim of the present study was to assess the long-term effects of a high-energy-dense diet, supplemented with Lactobacillus plantarum (Lp) or Escherichia coli (Ec), on weight gain, fattening and the gut microbiota in rats. Since the mother's dietary habits can influence offspring physiology, dietary regimens started with the dams at pregnancy and throughout lactation and continued with the offspring for 6 months. The weight gain of group Lp was lower than that of groups C (control) and Ec (P = 0·086). More retroperitoneal adipose tissue (P = 0·030) and higher plasma leptin (P = 0·035) were observed in group Ec compared with group Lp. The viable count of Enterobacteriaceae was higher in group Ec than in group Lp (P = 0·019), and when all animals were compared, Enterobacteriaceae correlated positively with body weight (r 0·428, P = 0·029). Bacterial diversity was lower in group Ec than in groups C (P ≤ 0·05) and Lp (P ≤ 0·05). Firmicutes, Bacteroidetes and Verrucomicrobia dominated in all groups, but Bacteroidetes were more prevalent in group C than in groups Lp (P = 0·036) and Ec (P = 0·056). The same five bacterial families dominated the microbiota of groups Ec and C, and four of these were also present in group Lp. The other five families dominating in group Lp were not found in any of the other groups. Multivariate data analysis pointed in the same directions as the univariate statistics. The present results suggest that supplementation of L. plantarum or E. coli can have long-term effects on the composition of the intestinal microbiota, as well as on weight gain and fattening.

  8. GUTs without guts

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.nl [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2014-06-15

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts.

  9. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model.

    Science.gov (United States)

    Bian, Gaorui; Ma, Shouqing; Zhu, Zhigang; Su, Yong; Zoetendal, Erwin G; Mackie, Roderick; Liu, Junhua; Mu, Chunlong; Huang, Ruihua; Smidt, Hauke; Zhu, Weiyun

    2016-05-01

    A reciprocal cross-fostering model with an obese typical Chinese piglet breed and a lean Western breed was used to identify genetic and maternal effects on the acquisition and development gut bacteria from birth until after weaning. Pyrosequencing of 16S rRNA genes results revealed an age- and diet-dependent bacterial succession process in piglets. During the first 3 days after birth, the bacterial community was relatively simple and dominated by Firmicutes with 79% and 65% relative abundance for Meishan and Yorkshire piglets, respectively. During the suckling period until day 14, the piglet breed and the nursing mother lead to increasing differentiation of the fecal bacterial community, with specific bacteria taxa associated with breed, and others with the nursing sow most likely due to its milk composition. Although the effect of nursing mother and the breed were evident through the suckling period, the introduction of solid feed and subsequent weaning were the major events occurring that dominated succession of the gut microbiota in the early life of piglets. This piglet cross-fostering model is a useful tool for studying the effects of diet, host genetics and the environment on the development and acquisition of the gut microbiota and over longer studies the subsequent impact on growth, health and performance of pigs.

  10. Phylogenetic analysis of symbionts in feather-feeding lice of the genus Columbicola: evidence for repeated symbiont replacements

    OpenAIRE

    Smith, Wendy A; Oakeson, Kelly F.; Johnson, Kevin P.; Reed, David L; Carter, Tamar; Smith, Kari L; Koga, Ryuichi; Fukatsu, Takema; Clayton, Dale H.; Dale, Colin

    2013-01-01

    Background Many groups of insects have obligate bacterial symbionts that are vertically transmitted. Such associations are typically characterized by the presence of a monophyletic group of bacteria living in a well-defined host clade. In addition the phylogeny of the symbiotic bacteria is typically congruent with that of the host, signifying co-speciation. Here we show that bacteria living in a single genus of feather lice, Columbicola (Insecta: Phthiraptera), present an exception to this ty...

  11. Metagenomic Surveys of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Rahul Shubhra Mandal

    2015-06-01

    Full Text Available Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational taxonomic unit (OTU levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ultimately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interaction among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe interaction networks.

  12. Metagenomic Surveys of Gut Microbiota

    Institute of Scientific and Technical Information of China (English)

    Rahul Shubhra Mandal; Sudipto Saha; Santasabuj Das

    2015-01-01

    Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational tax-onomic unit (OTU) levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ulti-mately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interac-tion among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe inter-action networks.

  13. Evidence of horizontal gene transfer between obligate leaf nodule symbionts.

    Science.gov (United States)

    Pinto-Carbó, Marta; Sieber, Simon; Dessein, Steven; Wicker, Thomas; Verstraete, Brecht; Gademann, Karl; Eberl, Leo; Carlier, Aurelien

    2016-09-01

    Bacteria of the genus Burkholderia establish an obligate symbiosis with plant species of the Rubiaceae and Primulaceae families. The bacteria, housed within the leaves, are transmitted hereditarily and have not yet been cultured. We have sequenced and compared the genomes of eight bacterial leaf nodule symbionts of the Rubiaceae plant family. All of the genomes exhibit features consistent with genome erosion. Genes potentially involved in the biosynthesis of kirkamide, an insecticidal C7N aminocyclitol, are conserved in most Rubiaceae symbionts. However, some have partially lost the kirkamide pathway due to genome erosion and are unable to synthesize the compound. Kirkamide synthesis is therefore not responsible for the obligate nature of the symbiosis. More importantly, we find evidence of intra-clade horizontal gene transfer (HGT) events affecting genes of the secondary metabolism. This indicates that substantial gene flow can occur at the early stages following host restriction in leaf nodule symbioses. We propose that host-switching events and plasmid conjugative transfers could have promoted these HGTs. This genomic analysis of leaf nodule symbionts gives, for the first time, new insights in the genome evolution of obligate symbionts in their early stages of the association with plants. PMID:26978165

  14. Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut.

    Science.gov (United States)

    Audisio, M C; Sabaté, D C; Benítez-Ahrendts, M R

    2015-01-01

    Lactobacillus johnsonii CRL1647, isolated from the intestinal tract of a worker-bee in Salta, Argentina, was delivered to Apis mellifera L. honey bee colonies according to two different administration schedules: 1×10(5) cfu/ml every 15 days (2011) or monthly (2012). The effect of each treatment on the bee-colony performance was monitored by measuring honey production, and the prevalence of varroasis and nosemosis. Worker bees from each assay were randomly captured 3 days after administration and assayed for the following intestinal culturable and defined bacterial populations: total aerobic microorganisms, Bacillus spp. spores, Lactobacillus spp., Enterococcus spp. and enterobacteria. Interestingly, both treatments generated a similar increase in honey production in treated colonies compared to controls: 36.8% (every 15 days) and 36.3% (monthly). Nosema index always exhibited a reduction when lactobacilli were administered; in turn, Varroa incidence was lower when the lactobacilli were administered once a month. Moreover, the administration of L. johnsonii CRL1647 every 15 days produced an increase in the total number of aerobic microorganisms and in bacteria belonging to the genera Lactobacillus and Enterococcus; at the same time, a decrease was observed in the number of total spores at the end of the treatment. The number of enterobacteria was constant and remained below that of control hives at the end of the assay. On the other hand, the delivery of lactobacilli once a month only showed an increase in the number of bacteria belonging to the genus Lactobacillus; meanwhile, viable counts of the remaining microorganisms assayed were reduced. Even though it seems that both treatments were similar, those bee colonies that received L. johnsonii CRL1647 every 15 days became so strong that they swarmed. PMID:25809216

  15. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers.

    Science.gov (United States)

    Schwarz, Ryan S; Moran, Nancy A; Evans, Jay D

    2016-08-16

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mellifera) include core residents such as the betaproteobacterium Snodgrassella alvi, alongside transient parasites such as the protozoan Lotmaria passim To test how these species affect microbiome composition and host physiology, we administered S alvi and/or L passim inocula to newly emerged worker bees from four genetic backgrounds (GH) and reared them in normal (within hives) or stressed (protein-deficient, asocial) conditions. Microbiota acquired by normal bees were abundant but quantitatively differed across treatments, indicating treatment-associated dysbiosis. Pretreatment with S. alvi made normal bees more susceptible to L. passim and altered developmental and detoxification gene expression. Stressed bees were more susceptible to L. passim and were depauperate in core microbiota, yet supplementation with S. alvi did not alter this susceptibility. Microbiomes were generally more variable by GH in stressed bees, which also showed opposing and comparatively reduced modulation of gene expression responses to treatments compared with normal bees. These data provide experimental support for a link between altered gut microbiota and increased parasite and pathogen prevalence, as observed from honey bee colony collapse disorder. PMID:27482088

  16. Fickle or Faithful: The Roles of Host and Environmental Context in Determining Symbiont Composition in Two Bathymodioline Mussels.

    Directory of Open Access Journals (Sweden)

    Sven R Laming

    Full Text Available The Mediterranean Sea and adjoining East Atlantic Ocean host a diverse array of small-sized mussels that predominantly live on sunken, decomposing organic remains. At least two of these, Idas modiolaeformis and Idas simpsoni, are known to engage in gill-associated symbioses; however, the composition, diversity and variability of these symbioses with changing habitat and location is poorly defined. The current study presents bacterial symbiont assemblage data, derived from 454 pyrosequencing carried out on replicate specimens of these two host species, collected across seven sample sites found in three oceanographic regions in the Mediterranean and East Atlantic. The presence of several bacterial OTUs in both the Mediterranean Sea and eastern Atlantic suggests that similar symbiont candidates occur on both sides of the Strait of Gibraltar. The results reveal markedly different symbiotic modes in the two species. Idas modiolaeformis displays high symbiont diversity and flexibility, with strong variation in symbiont composition from the East Mediterranean to the East Atlantic. Idas simpsoni displays low symbiont diversity but high symbiont fidelity, with a single dominant OTU occurring in all specimens analysed. These differences are argued to be a function of the host species, where subtle differences in host evolution, life-history and behaviour could partially explain the observed patterns. The variability in symbiont compositions, particularly in Idas modiolaeformis, is thought to be a function of the nature, context and location of the habitat from which symbiont candidates are sourced.

  17. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    Science.gov (United States)

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  18. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    Science.gov (United States)

    Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  19. Symbiont-derived beta-1,3-glucanases in a social insect: mutualism beyond nutrition

    OpenAIRE

    Rosengaus, Rebeca B.; Schultheis, Kelley F.; Alla eYalonetskaya; Bulmer, Mark S.; William S DuComb; Benson, Ryan W.; John Paul eThottam; Veronica eGodoy-Carter

    2014-01-01

    Termites have had a long co-evolutionary history with prokaryotic and eukaryotic gut microbes. Historically, the role of these anaerobic obligate symbionts has been attributed to the nutritional welfare of the host. We provide evidence that protozoa (and/or their associated bacteria) colonizing the hindgut of the dampwood termite Zootermopsis angusticollis, synthesize multiple functional beta-1,3-glucanases, enzymes known for breaking down beta-1,3-glucans, the main component of fungal cell w...

  20. 'Candidatus Adiutrix intracellularis', an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen.

    Science.gov (United States)

    Ikeda-Ohtsubo, Wakako; Strassert, Jürgen F H; Köhler, Tim; Mikaelyan, Aram; Gregor, Ivan; McHardy, Alice C; Tringe, Susannah Green; Hugenholtz, Phil; Radek, Renate; Brune, Andreas

    2016-09-01

    Termite gut flagellates are typically colonized by specific bacterial symbionts. Here we describe the phylogeny, ultrastructure and subcellular location of 'Candidatus Adiutrix intracellularis', an intracellular symbiont of Trichonympha collaris in the termite Zootermopsis nevadensis. It represents a novel, deep-branching clade of uncultured Deltaproteobacteria widely distributed in intestinal tracts of termites and cockroaches. Fluorescence in situ hybridization and transmission electron microscopy localized the endosymbiont near hydrogenosomes in the posterior part and near the ectosymbiont 'Candidatus Desulfovibrio trichonymphae' in the anterior part of the host cell. The draft genome of 'Ca. Adiutrix intracellularis' obtained from a metagenomic library revealed the presence of a complete gene set encoding the Wood-Ljungdahl pathway, including two homologs of fdhF encoding hydrogenase-linked formate dehydrogenases (FDHH ) and all other components of the recently described hydrogen-dependent carbon dioxide reductase (HDCR) complex, which substantiates previous claims that the symbiont is capable of reductive acetogenesis from CO2 and H2 . The close phylogenetic relationship between the HDCR components and their homologs in homoacetogenic Firmicutes and Spirochaetes suggests that the deltaproteobacterium acquired the capacity for homoacetogenesis via lateral gene transfer. The presence of genes for nitrogen fixation and the biosynthesis of amino acids and cofactors indicate the nutritional nature of the symbiosis. PMID:26914459

  1. Exploring symbiont management in lichens.

    Science.gov (United States)

    Grube, Martin; Spribille, Toby

    2012-07-01

    Lichens are unique among fungal symbioses in that their mycelial structures are compact and exposed to the light as thallus structures. The myriad intersections of unique fungal species with photosynthetic partner organisms (green algae in 90% of lichens) produce a wide variety of diverse shapes and colours of the fully synthesized lichen thallus when growing in nature. This characteristic complex morphology is, however, not achieved in the fungal axenic state. Even under ideal environmental conditions, the lichen life cycle faces considerable odds: first, meiotic spores are only produced on well-established thalli and often only after achieving considerable age in a stable environment, and second, even then in vivo resynthesis requires the presence of compatible algal strains where fungal spores germinate. Many lichen species have evolved a way around the resynthesis bottleneck by producing asexual propagules for joint propagation of symbionts. These different dispersal strategies ostensibly shape the population genetic structure of lichen symbioses, but the relative contributions of vertical (joint) and horizontal (independent) symbiont transmission have long eluded lichen evolutionary biologists. In this issue of Molecular Ecology, Dal Grande et al. (2012) close in on this question with the lung lichen, Lobaria pulmonaria, a flagship species in the conservation of old growth forests. By capitalizing on available microsatellite markers for both fungal and algal symbionts, they show that while vertical transmission is the predominant mode of reproduction, horizontal transmission is demonstrable and actively shapes population genetic structure. The resulting mixed propagation system is a highly successful balance of safe recruitment of symbiotic clones and endless possibilities for fungal recombination and symbiont shuffling. PMID:22916345

  2. Negative fitness consequences and transmission dynamics of a heritable fungal symbiont of a parasitic wasp.

    Science.gov (United States)

    Gibson, Cara M; Hunter, Martha S

    2009-05-01

    Heritable bacterial symbionts are widespread in insects and can have many important effects on host ecology and fitness. Fungal symbionts are also important in shaping their hosts' behavior, interactions, and evolution, but they have been largely overlooked. Experimental tests to determine the relevance of fungal symbionts to their insect hosts are currently extremely rare, and to our knowledge, there have been no such tests for strictly predacious insects. We investigated the fitness consequences for a parasitic wasp (Comperia merceti) of an inherited fungal symbiont in the Saccharomycotina (Ascomycota) that was long presumed to be a mutualist. In comparisons of wasp lines with and without this symbiont, we found no evidence of mutualism. Instead, there were significant fitness costs to the wasps in the presence of the yeast; infected wasps attacked fewer hosts and had longer development times. We also examined the relative competitive abilities of the larval progeny of infected and uninfected mothers, as well as horizontal transmission of the fungal symbiont among larval wasps that shared a single host cockroach egg case. We found no difference in larval competitive ability when larvae whose infection status differed shared a single host. We did find high rates of horizontal transmission of the fungus, and we suggest that this transmission is likely responsible for the maintenance of this infection in wasp populations.

  3. Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species

    NARCIS (Netherlands)

    T.V.M. Groot; J.A.J. Breeuwer

    2006-01-01

    Bacterial symbionts that manipulate the reproduction of their host to increase their own transmission are widespread. Most of these bacteria are Wolbachia, but recently a new bacterium, named Cardinium, was discovered that is capable of the same manipulations. In the host species Brevipalpus phoenic

  4. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles.

    Science.gov (United States)

    Berasategui, Aileen; Axelsson, Karolin; Nordlander, Göran; Schmidt, Axel; Borg-Karlson, Anna-Karin; Gershenzon, Jonathan; Terenius, Olle; Kaltenpoth, Martin

    2016-08-01

    The pine weevil (Hylobius abietis, Coleoptera: Curculionidae) is an important pest of conifer seedlings in Europe. Despite its economic importance, little is known about the composition of its gut microbial community and the role it plays in mediating the weevil's ability to utilize conifers as a food source. Here, we characterized the gut bacterial communities of different populations of H. abietis across Europe and compared them to those of other beetles that occupy similar ecological niches. We demonstrate that the microbial community of H. abietis is similar at higher taxonomic levels (family and genus) across locations in Europe, with Wolbachia as the dominant microbe, followed by Enterobacteria and Firmicutes. Despite this similarity, we observed consistent differences between countries and locations, but not sexes. Our meta-analysis demonstrates that the gut bacterial community of the pine weevil is very similar to that of bark beetles that also exploit conifers as a food source. The Enterobacteriaceae symbionts of both host taxa are especially closely related phylogenetically. Conversely, the microbiota of H. abietis is distinct from that of closely related weevils feeding on nonconifer food sources, suggesting that the microbial community of the pine weevil is determined by the environment and may be relevant to host ecology. Furthermore, several H. abietis-associated members of the Enterobacteriaceae family are known to contain genes involved in terpenoid degradation. As such, we hypothesize that the gut microbial community is important for the utilization of conifer seedlings as a food source, either through the detoxification of plant secondary metabolites or through the supplementation of essential nutrients. PMID:27199034

  5. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae).

    Science.gov (United States)

    Nováková, Eva; Hypša, Václav; Nguyen, Petr; Husník, Filip; Darby, Alistair C

    2016-01-01

    Candidatus Arsenophonus lipopteni (Enterobacteriaceae, Gammaproteobacteria) is an obligate intracellular symbiont of the blood feeding deer ked, Lipoptena cervi (Diptera: Hippoboscidae). The bacteria reside in specialized cells derived from host gut epithelia (bacteriocytes) forming a compact symbiotic organ (bacteriome). Compared to the closely related complex symbiotic system in the sheep ked, involving four bacterial species, Lipoptena cervi appears to maintain its symbiosis exclusively with Ca. Arsenophonus lipopteni. The genome of 836,724 bp and 24.8 % GC content codes for 667 predicted functional genes and bears the common characteristics of sequence economization coupled with obligate host-dependent lifestyle, e.g. reduced number of RNA genes along with the rRNA operon split, and strongly reduced metabolic capacity. Particularly, biosynthetic capacity for B vitamins possibly supplementing the host diet is highly compromised in Ca. Arsenophonus lipopteni. The gene sets are complete only for riboflavin (B2), pyridoxine (B6) and biotin (B7) implying the content of some B vitamins, e.g. thiamin, in the deer blood might be sufficient for the insect metabolic needs. The phylogenetic position within the spectrum of known Arsenophonus genomes and fundamental genomic features of Ca. Arsenophonus lipopteni indicate the obligate character of this symbiosis and its independent origin within Hippoboscidae. PMID:27660670

  6. Gut-Liver Axis and Sensing Microbes

    OpenAIRE

    Szabo, Gyongyi; Bala, Shashi; Petrasek, Jan; Gattu, Arijeet

    2011-01-01

    ‘Detoxification’ of gut-derived toxins and microbial products from gut-derived microbes is a major role of the liver. While the full repertoire of gut-derived microbial products that reach the liver in health and disease is yet to be explored, the levels of bacterial lipopolysaccharide (LPS), a component of Gram-negative bacteria, is increased in the portal and/or systemic circulation in several types of chronic liver diseases. Increased gut permeability and LPS play a role in alcoholic liver...

  7. The smaller vesicomyid bivalves in the genus Isorropodon (Bivalvia, Vesicomyidae, Pliocardiinae) also harbour chemoautotrophic symbionts

    OpenAIRE

    Rodrigues, Clara F.; Cunha, Marina R.; Olu, Karine; Duperron, Sébastien

    2012-01-01

    Species of Isorropodon are vesicomyid bivalves for which little information is available regarding host phylogeny and bacterial symbioses. In this study we investigated the symbioses in three Isorropodon species from three cold seep areas: Isorropodon bigoti (Gulf of Guinea), Isorropodon megadesmus (Gulf of Cadiz) and Isorropodon perplexum (Eastern Mediterranean). Analysis of bacterial 16S ribosomal RNA gene sequences demonstrated that each vesicomyid species harbours a single symbiont phylot...

  8. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota.

    Science.gov (United States)

    Alam, Ashfaqul; Leoni, Giovanna; Quiros, Miguel; Wu, Huixia; Desai, Chirayu; Nishio, Hikaru; Jones, Rheinallt M; Nusrat, Asma; Neish, Andrew S

    2016-01-01

    The mammalian intestine houses a complex microbial community, which influences normal epithelial growth and development, and is integral to the repair of damaged intestinal mucosa(1-3). Restitution of injured mucosa involves the recruitment of immune cells, epithelial migration and proliferation(4,5). Although microenvironmental alterations have been described in wound healing(6), a role for extrinsic influences, such as members of the microbiota, has not been reported. Here, we show that a distinct subpopulation of the normal mucosal-associated gut microbiota expands and preferentially colonizes sites of damaged murine mucosa in response to local environmental cues. Our results demonstrate that formyl peptide receptor 1 (FPR1) and neutrophilic NADPH oxidase (NOX2) are required for the rapid depletion of microenvironmental oxygen and compensatory responses, resulting in a dramatic enrichment of an anaerobic bacterial consortium. Furthermore, the dominant member of this wound-mucosa-associated microbiota, Akkermansia muciniphila (an anaerobic, mucinophilic gut symbiont(7,8)), stimulated proliferation and migration of enterocytes adjacent to the colonic wounds in a process involving FPR1 and intestinal epithelial-cell-specific NOX1-dependent redox signalling. These findings thus demonstrate how wound microenvironments induce the rapid emergence of 'probiont' species that contribute to enhanced repair of mucosal wounds. Such microorganisms could be exploited as potential therapeutics. PMID:27571978

  9. The Gut Microbiome and the Brain

    OpenAIRE

    Galland, Leo

    2014-01-01

    The human gut microbiome impacts human brain health in numerous ways: (1) Structural bacterial components such as lipopolysaccharides provide low-grade tonic stimulation of the innate immune system. Excessive stimulation due to bacterial dysbiosis, small intestinal bacterial overgrowth, or increased intestinal permeability may produce systemic and/or central nervous system inflammation. (2) Bacterial proteins may cross-react with human antigens to stimulate dysfunctional responses of the adap...

  10. Expression of genes derived from the genomic DNA fragments of the brown-winged green bug (Plautia stali) symbiont in Escherichia coli.

    Science.gov (United States)

    Fujii-Muramatsu, Rika; Kobayashi, Hideaki; Noda, Hiroaki; Takeishi, Keiichi

    2013-08-01

    Many insect species harbour symbiotic microorganisms (symbionts) that are generally unculturable in media. To utilize symbionts as genome resources, we examined whether insect symbiont genes can be expressed in Escherichia coli. 144 plasmid clones were isolated from gene libraries, which were constructed from the genomic DNA of the intestinal bacterial symbiont in the brown-winged green bug, Plautia stali, using an E. coli system. Proteins prepared from a culture of each clone were analysed using SDS-PAGE. A discrete symbiont-specific band was detected in six clones. From the structural analyses of the insert in each clone, the candidate gene encoding the symbiont-specific protein was predicted and the amino acid sequence of the protein was deduced. The amino acid sequence in the N-terminal region of each protein was identical to that deduced from the genomic DNA sequence of the symbiont, but not of the host. The promoter sequences of the symbiont genes, very similar to those of the corresponding E. coli genes, were found in the insert DNA. These findings clearly indicate that genes derived from genomic DNA fragments of the P. stali symbiont can be expressed in E. coli. PMID:23613025

  11. Characterization of the Bacterial Community Associated with Larvae and Adults of Anoplophora chinensis Collected in Italy by Culture and Culture-Independent Methods

    Directory of Open Access Journals (Sweden)

    Aurora Rizzi

    2013-01-01

    Full Text Available The wood-boring beetle Anoplophora chinensis Forster, native to China, has recently spread to North America and Europe causing serious damage to ornamental and forest trees. The gut microbial community associated with these xylophagous beetles is of interest for potential biotechnological applications in lignocellulose degradation and development of pest-control measures. In this study the gut bacterial community of larvae and adults of A. chinensis, collected from different host trees in North Italy, was investigated by both culture and culture-independent methods. Larvae and adults harboured a moderately diverse bacterial community, dominated by Proteobacteria, Actinobacteria, and Firmicutes. The gammaproteobacterial family Enterobacteriaceae (genera Gibbsiella, Enterobacter, Raoultella, and Klebsiella was the best represented. The abundance of such bacteria in the insect gut is likely due to the various metabolic abilities of Enterobacteriaceae, including fermentation of carbohydrates derived from lignocellulose degradation and contribution to nitrogen intake by nitrogen-fixing activity. In addition, bacteria previously shown to have some lignocellulose-degrading activity were detected at a relatively low level in the gut. These bacteria possibly act synergistically with endogenous and fungal enzymes in lignocellulose breakdown. The detection of actinobacterial symbionts could be explained by a possible role in the detoxification of secondary plant metabolites and/or protection against pathogens.

  12. Bacterial community survey of Solenopsis invicta Buren (red imported fire ant) colonies in the presence and absence of Solenopsis invicta virus (SINV).

    Science.gov (United States)

    Powell, Christopher M; Hanson, John D; Bextine, Blake R

    2014-10-01

    Insect bacterial symbionts contribute to many essential biological functions of their hosts and can also influence host fecundity and fitness. The physiological contribution symbionts provide can aid in immune response and xenobiotic detoxification. Both of these immune factors can directly impact strategies aimed at managing insect populations. One biological control strategy that shows promise in insects is the use of single-stranded RNA viruses within the group Dicistroviridae. The Solenopsis invicta Virus (SINV; Dicistroviridae), a ssRNA virus, has been proposed as a potential biological control agent for the urban pest S. invicta Buren or red imported fire ant (RIFA). SINV has been shown to be prevalent in RIFA populations of Texas and Florida; however, mortality is associated with high viral load. In other insect microbe systems, presence of particular bacteria induced resistance against Dicistrovirus. If this type of relationship is present in the RIFA-SINV system, their bacterial community could reduce the effectiveness of SINV as a biological control system. The advantage of 454 pyro-sequencing is that it enables classification of unculturable bacteria. This study examines the bacterial community in brood, workers, and reproductive cast members from colonies with and without SINV infection. Manipulation of the bacterial community may alter virus infection and replication within the mid-gut. Understanding the differences in the microbial community of ant colonies may provide insights that will refine current efforts designing control strategies for this important urban pest. PMID:24934994

  13. Diversifying selection by Desmodiinae legume species on Bradyrhizobium symbionts.

    Science.gov (United States)

    Parker, Matthew A; Jankowiak, Jennifer G; Landrigan, Grace K

    2015-07-01

    Desmodium and Hylodesmum (Papilionoideae Subtribe Desmodiinae) are among the most common herbaceous perennial legumes native to eastern North America. To analyze the population structure of their Bradyrhizobium sp. root-nodule bacteria, 159 isolates were sampled from ten host species across a 1000 km region. Phylogenetic analysis of four housekeeping loci (2164 bp) and two loci in the symbiosis island (SI) chromosomal region (1374 bp) indicated extensive overlap in symbiont utilization, with each common bacterial clade found on 2-7 species of these legume genera. However, host species differed considerably in the relative proportion of symbionts belonging to different Bradyrhizobium clades. High phylogenetic incongruence between trees for housekeeping loci and SI loci suggested that diversification of these Bradyrhizobium lineages involved substantial horizontal gene transfer. Plant inoculation with strains from six Bradyrhizobium clades revealed marked disparity in relative bacterial reproductive success across four Desmodium species. Estimated yield of Bradyrhizobium progeny cells per plant ranged from zero to >10(9), and strains with high fitness on one host sometimes reproduced poorly on other host species. Diversifying selection on bacteria, arising from differential success in habitats with different Desmodium and Hylodesmum taxa, is therefore likely to affect Bradyrhizobium diversity patterns at the landscape level. PMID:26130822

  14. Xenobiotic Metabolism and Gut Microbiomes

    Science.gov (United States)

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  15. A quantitative study of the morphological development and bacterial colonisation of the gut of the tammar wallaby Macropus eugenii eugenii and brushtail possum Trichosurus vulpecula during in-pouch development.

    Science.gov (United States)

    Lentle, R G; Dey, D; Hulls, C; Mellor, D J; Moughan, P J; Stafford, K J; Nicholas, K

    2006-11-01

    We compared the rates of change of various morphological parameters of the stomach, small intestine, caecum and colon of tammar wallabies and brushtail possums with body mass during in-pouch development. These were correlated with changes in the numbers of bacterial species in the various gut segments. In the pouch-young of both species, the wet tissue masses of all gut segments increased with body mass in a positively allometric manner (i.e. with a body mass exponent > 1), suggesting that the mass of each component was disproportionately low at birth, but increased disproportionately rapidly postnatally. However, the lengths of the wallaby stomach and small intestine scaled isometrically with respect to body mass (i.e. with a body mass exponent around 0.33), which may indicate that the shape of these components changes to the adult form during early neonatal development. Conversely, the length of the caecum and colon of both wallabies and possums scaled in a positively allometric manner with respect to body mass, showing area to volume compensation. This may indicate a more general pattern of disproportionately rapid postnatal enlargement in areas that are distal to the principal sites of neonatal digestion (i.e. the stomach). The numbers of bacterial species present in the various gastrointestinal segments of both species were low in animals aged 100 days or less but there was a significant increase in microbial diversity in the caecum of brushtail possums aged over 100 days. The possum caecum also showed the greatest rate of increase in wet tissue mass relative to body mass. It is postulated that caecal development may act as a nidus for establishment of communities of commensal microflora in the developing marsupial. PMID:16819652

  16. Lineage-Specific Patterns of Genome Deterioration in Obligate Symbionts of Sharpshooter Leafhoppers.

    Science.gov (United States)

    Bennett, Gordon M; McCutcheon, John P; McDonald, Bradon R; Moran, Nancy A

    2016-01-01

    Plant sap-feeding insects (Hemiptera) rely on obligate bacterial symbionts that provision nutrients. Some of these symbionts are ancient and have evolved tiny genomes, whereas others are younger and retain larger, dynamic genomes. Baumannia cicadellinicola, an obligate symbiont of sharpshooter leafhoppers, is derived from a relatively recent symbiont replacement. To better understand evolutionary decay of genomes, we compared Baumannia from three host species. A newly sequenced genome for Baumannia from the green sharpshooter (B-GSS) was compared with genomes of Baumannia from the blue-green sharpshooter (B-BGSS, 759 kilobases [kb]) and from the glassy-winged sharpshooter (B-GWSS, 680 kb). B-GSS has the smallest Baumannia genome sequenced to date (633 kb), with only three unique genes, all involved in membrane function. It has lost nearly all pathways involved in vitamin and cofactor synthesis, as well as amino acid biosynthetic pathways that are redundant with pathways of the host or the symbiotic partner, Sulcia muelleri. The entire biosynthetic pathway for methionine is eliminated, suggesting that methionine has become a dietary requirement for hosts. B-GSS and B-BGSS share 33 genes involved in bacterial functions (e.g., cell division, membrane synthesis, metabolite transport, etc.) that are lost from the more distantly related B-GWSS and most other tiny genome symbionts. Finally, pairwise divergence estimates indicate that B-GSS has experienced a lineage-specific increase in substitution rates. This increase correlates with accelerated protein-level changes and widespread gene loss. Thus, the mode and tempo of genome reduction vary widely among symbiont lineages and result in wide variation in metabolic capabilities across hosts. PMID:26260652

  17. Changes in termites feeding diets for gut micro-organisms selection and further cultivation

    OpenAIRE

    Bauwens, Julien; Brasseur, Catherine; Matteotti, Christel; Tarayre, Cédric; Destain, Jacqueline; Vandenbol, Micheline; Portetelle, Daniel; Thonart, Philippe; De Pauw, Edwin; Haubruge, Eric; Francis, Frédéric

    2011-01-01

    Termites gut may overcome important dietary perturbations, initial diversity acting as key point buffering effects on host, although termites possess their own enzymatic system. Some artificial diets permitted a simplification of the lower termites gut symbiotic system, which could be used as first step in symbionts isolation and cultivation. Preliminary assay of cultivation actually gave encouraging results. Proteomic proved to be suitable tool to investigate such a complex system. Neverthel...

  18. Role of Gut Microbiota in Liver Disease.

    Science.gov (United States)

    Brenner, David A; Paik, Yong-Han; Schnabl, Bernd

    2015-01-01

    Many lines of research have established a relationship between the gut microbiome and patients with liver disease. For example, patients with cirrhosis have increased bacteremia, increased blood levels of lipopolysaccharide, and increased intestinal permeability. Patients with cirrhosis have bacterial overgrowth in the small intestine. Selective intestinal decontamination with antibiotics is beneficial for patients with decompensated cirrhosis. In experimental models of chronic liver injury with fibrosis, several toll-like receptors (TLR) are required to make mice sensitive to liver fibrosis. The presumed ligand for the TLRs are bacterial products derived from the gut microbiome, and TLR knockout mice are resistant to liver inflammation and fibrosis. We and others have characterized the association between preclinical models of liver disease in mice with the microbial diversity in their gut microbiome. In each model, including intragastric alcohol, bile duct ligation, chronic carbon tetrachloride (CCl4), administration, and genetic obesity, there is a significant change in the gut microbiome from normal control mice. However, there is not a single clear bacterial strain or pattern that distinguish mice with liver injury from controlled mice. So how can the gut microbiota affect liver disease? We can identify at least 6 changes that would result in liver injury, inflammation, and/or fibrosis. These include: (1) changes in caloric yield of diet; (2) regulation of gut permeability to release bacterial products; (3) modulation of choline metabolism; (4) production of endogenous ethanol; (5) regulation of bile acid metabolism; and (6) regulation in lipid metabolism.

  19. Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy.

    Science.gov (United States)

    Rosenthal, Adam Z; Zhang, Xinning; Lucey, Kaitlyn S; Ottesen, Elizabeth A; Trivedi, Vikas; Choi, Harry M T; Pierce, Niles A; Leadbetter, Jared R

    2013-10-01

    Identifying microbes responsible for particular environmental functions is challenging, given that most environments contain an uncultivated microbial diversity. Here we combined approaches to identify bacteria expressing genes relevant to catabolite flow and to locate these genes within their environment, in this case the gut of a "lower," wood-feeding termite. First, environmental transcriptomics revealed that 2 of the 23 formate dehydrogenase (FDH) genes known in the system accounted for slightly more than one-half of environmental transcripts. FDH is an essential enzyme of H2 metabolism that is ultimately important for the assimilation of lignocellulose-derived energy by the insect. Second, single-cell PCR analysis revealed that two different bacterial types expressed these two transcripts. The most commonly transcribed FDH in situ is encoded by a previously unappreciated deltaproteobacterium, whereas the other FDH is spirochetal. Third, PCR analysis of fractionated gut contents demonstrated that these bacteria reside in different spatial niches; the spirochete is free-swimming, whereas the deltaproteobacterium associates with particulates. Fourth, the deltaproteobacteria expressing FDH were localized to protozoa via hybridization chain reaction-FISH, an approach for multiplexed, spatial mapping of mRNA and rRNA targets. These results underscore the importance of making direct vs. inference-based gene-species associations, and have implications in higher termites, the most successful termite lineage, in which protozoa have been lost from the gut community. Contrary to expectations, in higher termites, FDH genes related to those from the protozoan symbiont dominate, whereas most others were absent, suggesting that a successful gene variant can persist and flourish after a gut perturbation alters a major environmental niche.

  20. Ecological succession in the honey bee gut: Shift in Lactobacillus strain dominance during early adult development

    Science.gov (United States)

    In many vertebrates, social interactions and nutrition can affect the colonization of gut symbionts across generations. We used next generation sequencing to investigate the effect of nest materials and social environment on the colonization and succession of core hindgut microbiota in workers of t...

  1. Exploitation of the Medfly Gut Microbiota for the Enhancement of Sterile Insect Technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications

    Science.gov (United States)

    Papadopoulos, Nikos T.; Abd-Alla, Adly M. M.; Cáceres, Carlos; Bourtzis, Kostas

    2015-01-01

    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a pest of worldwide substantial economic importance, as well as a Tephritidae model for sterile insect technique (SIT) applications. The latter is partially due to the development and utilization of genetic sexing strains (GSS) for this species, such as the Vienna 8 strain, which is currently used in mass rearing facilities worldwide. Improving the performance of such a strain both in mass rearing facilities and in the field could significantly enhance the efficacy of SIT and reduce operational costs. Recent studies have suggested that the manipulation of gut symbionts can have a significant positive effect on the overall fitness of insect strains. We used culture-based approaches to isolate and characterize gut-associated bacterial species of the Vienna 8 strain under mass rearing conditions. We also exploited one of the isolated bacterial species, Enterobacter sp., as dietary supplement (probiotic) to the larval diet, and we assessed its effects on fitness parameters under the standard operating procedures used in SIT operational programs. Probiotic application of Enterobacter sp. resulted in improvement of both pupal and adult productivity, as well as reduced rearing duration, particularly for males, without affecting pupal weight, sex ratio, male mating competitiveness, flight ability and longevity under starvation. PMID:26325068

  2. Exploitation of the Medfly Gut Microbiota for the Enhancement of Sterile Insect Technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications.

    Directory of Open Access Journals (Sweden)

    Antonios A Augustinos

    Full Text Available The Mediterranean fruit fly (medfly, Ceratitis capitata, is a pest of worldwide substantial economic importance, as well as a Tephritidae model for sterile insect technique (SIT applications. The latter is partially due to the development and utilization of genetic sexing strains (GSS for this species, such as the Vienna 8 strain, which is currently used in mass rearing facilities worldwide. Improving the performance of such a strain both in mass rearing facilities and in the field could significantly enhance the efficacy of SIT and reduce operational costs. Recent studies have suggested that the manipulation of gut symbionts can have a significant positive effect on the overall fitness of insect strains. We used culture-based approaches to isolate and characterize gut-associated bacterial species of the Vienna 8 strain under mass rearing conditions. We also exploited one of the isolated bacterial species, Enterobacter sp., as dietary supplement (probiotic to the larval diet, and we assessed its effects on fitness parameters under the standard operating procedures used in SIT operational programs. Probiotic application of Enterobacter sp. resulted in improvement of both pupal and adult productivity, as well as reduced rearing duration, particularly for males, without affecting pupal weight, sex ratio, male mating competitiveness, flight ability and longevity under starvation.

  3. Exploitation of the Medfly Gut Microbiota for the Enhancement of Sterile Insect Technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications.

    Science.gov (United States)

    Augustinos, Antonios A; Kyritsis, Georgios A; Papadopoulos, Nikos T; Abd-Alla, Adly M M; Cáceres, Carlos; Bourtzis, Kostas

    2015-01-01

    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a pest of worldwide substantial economic importance, as well as a Tephritidae model for sterile insect technique (SIT) applications. The latter is partially due to the development and utilization of genetic sexing strains (GSS) for this species, such as the Vienna 8 strain, which is currently used in mass rearing facilities worldwide. Improving the performance of such a strain both in mass rearing facilities and in the field could significantly enhance the efficacy of SIT and reduce operational costs. Recent studies have suggested that the manipulation of gut symbionts can have a significant positive effect on the overall fitness of insect strains. We used culture-based approaches to isolate and characterize gut-associated bacterial species of the Vienna 8 strain under mass rearing conditions. We also exploited one of the isolated bacterial species, Enterobacter sp., as dietary supplement (probiotic) to the larval diet, and we assessed its effects on fitness parameters under the standard operating procedures used in SIT operational programs. Probiotic application of Enterobacter sp. resulted in improvement of both pupal and adult productivity, as well as reduced rearing duration, particularly for males, without affecting pupal weight, sex ratio, male mating competitiveness, flight ability and longevity under starvation. PMID:26325068

  4. Phylogeny of 16S rRNA, ribulose 1,5-bisphosphate carboxylase/oxygenase, and adenosine 5'-phosphosulfate reductase genes from gamma- and alphaproteobacterial symbionts in gutless marine worms (oligochaeta) from Bermuda and the Bahamas.

    Science.gov (United States)

    Blazejak, Anna; Kuever, Jan; Erséus, Christer; Amann, Rudolf; Dubilier, Nicole

    2006-08-01

    Gutless oligochaetes are small marine worms that live in obligate associations with bacterial endosymbionts. While symbionts from several host species belonging to the genus Olavius have been described, little is known of the symbionts from the host genus Inanidrilus. In this study, the diversity of bacterial endosymbionts in Inanidrilus leukodermatus from Bermuda and Inanidrilus makropetalos from the Bahamas was investigated using comparative sequence analysis of the 16S rRNA gene and fluorescence in situ hybridization. As in all other gutless oligochaetes examined to date, I. leukodermatus and I. makropetalos harbor large, oval bacteria identified as Gamma 1 symbionts. The presence of genes coding for ribulose-1,5-bisphosphate carboxylase/oxygenase form I (cbbL) and adenosine 5'-phosphosulfate reductase (aprA) supports earlier studies indicating that these symbionts are chemoautotrophic sulfur oxidizers. Alphaproteobacteria, previously identified only in the gutless oligochaete Olavius loisae from the southwest Pacific Ocean, coexist with the Gamma 1 symbionts in both I. leukodermatus and I. makropetalos, with the former harboring four and the latter two alphaproteobacterial phylotypes. The presence of these symbionts in hosts from such geographically distant oceans as the Atlantic and Pacific suggests that symbioses with alphaproteobacterial symbionts may be widespread in gutless oligochaetes. The high phylogenetic diversity of bacterial endosymbionts in two species of the genus Inanidrilus, previously known only from members of the genus Olavius, shows that the stable coexistence of multiple symbionts is a common feature in gutless oligochaetes.

  5. Phylogeny of 16S rRNA, Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase, and Adenosine 5′-Phosphosulfate Reductase Genes from Gamma- and Alphaproteobacterial Symbionts in Gutless Marine Worms (Oligochaeta) from Bermuda and the Bahamas

    Science.gov (United States)

    Blazejak, Anna; Kuever, Jan; Erséus, Christer; Amann, Rudolf; Dubilier, Nicole

    2006-01-01

    Gutless oligochaetes are small marine worms that live in obligate associations with bacterial endosymbionts. While symbionts from several host species belonging to the genus Olavius have been described, little is known of the symbionts from the host genus Inanidrilus. In this study, the diversity of bacterial endosymbionts in Inanidrilus leukodermatus from Bermuda and Inanidrilus makropetalos from the Bahamas was investigated using comparative sequence analysis of the 16S rRNA gene and fluorescence in situ hybridization. As in all other gutless oligochaetes examined to date, I. leukodermatus and I. makropetalos harbor large, oval bacteria identified as Gamma 1 symbionts. The presence of genes coding for ribulose-1,5-bisphosphate carboxylase/oxygenase form I (cbbL) and adenosine 5′-phosphosulfate reductase (aprA) supports earlier studies indicating that these symbionts are chemoautotrophic sulfur oxidizers. Alphaproteobacteria, previously identified only in the gutless oligochaete Olavius loisae from the southwest Pacific Ocean, coexist with the Gamma 1 symbionts in both I. leukodermatus and I. makropetalos, with the former harboring four and the latter two alphaproteobacterial phylotypes. The presence of these symbionts in hosts from such geographically distant oceans as the Atlantic and Pacific suggests that symbioses with alphaproteobacterial symbionts may be widespread in gutless oligochaetes. The high phylogenetic diversity of bacterial endosymbionts in two species of the genus Inanidrilus, previously known only from members of the genus Olavius, shows that the stable coexistence of multiple symbionts is a common feature in gutless oligochaetes. PMID:16885306

  6. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae Using 16S rRNA Gene Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Michel Diouf

    Full Text Available Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers.

  7. 中华蜜蜂肠道细菌群落的PCR-DGGE分析%Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA in Apis cerana cerana Gut Bacterial Communities

    Institute of Scientific and Technical Information of China (English)

    丁进; 张国只; 苏丽娟

    2015-01-01

    肠道微生物与中华蜜蜂的生长发育密切相关,在为宿主提供营养、抵抗病原菌侵袭等方面起重要作用。为了探究中华蜜蜂在封盖一日龄蛹、破巢幼蜂和采集蜂三个重要发育阶段肠道细菌群落的结构组成及差异变化,我们对细菌16S rDNA的V6-V8可变区进行PCR-DGGE和克隆测序,并计算封盖一日龄蛹、破巣蜂和采集蜂阶段中华蜜蜂肠道菌群的多样性指数和相似性系数,结果表明:采集蜂肠道内细菌多样性指数最大,而封盖一日龄蛹和破巣幼蜂之间的肠道菌群相似性较高;测序结果初步得到了Gilliamella、Snodgrassella、Carnobacterium、Neisseriaceae、Frischella、Janthinobacterium、Pseudomonas、Lactobacillus、Lactococcus和Leuconostoc十种菌属,其中封盖一日龄蛹和破巢幼蜂的优势菌属为Snodgrassella和Pseudomonas;采集蜂的优势菌属为Gilliamella和Snodgrassella 。本研究旨在为提高中华蜜蜂的环境适应性和病虫害的防治提供依据。%Gut bacterial communities are closely related to the growth and development of Apis cerana cerana,and such communities play important roles both in the insect nutrition and colonization resistance against invasion of exotic microbes. The purpose of this study is to investigate the diversities of gut bacterial communities in different developmental stages(first instar pupa,pharate adult bee and forager bee)of A. cerana cerana and the structural differences among them. We amplified the V6-V8 region of the 16S rDNA gene of samples using universal primers and separated by DGGE. Then the separated DGGE bands were extracted,cloned and sequenced. The diversity index and similarity coefficient were calculated to reveal the constituents and dynamic changes of gut bacter ial communities in the three developmental stages of A. cerana cerana. The results showed that the microbial diversity of forager bee was significantly higher than that of first instar

  8. Complete Genome Sequences of the Obligate Symbionts "Candidatus Sulcia muelleri" and "Ca. Nasuia deltocephalinicola" from the Pestiferous Leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae).

    Science.gov (United States)

    Bennett, Gordon M; Abbà, Simona; Kube, Michael; Marzachì, Cristina

    2016-01-01

    Two bacterial symbionts of the European pest leafhopper, Macrosteles quadripunctulatus (Hemiptera: Cicadellidae), were fully sequenced. "Candidatus Sulcia muelleri" and "Ca. Nasuia deltocephalinicola" represent two of the smallest known bacterial genomes at 190 kb and 112 kb, respectively. Genome sequences are nearly identical to strains reported from the closely related host species, M. quadrilineatus.

  9. Richness of human gut microbiome correlates with metabolic markers

    DEFF Research Database (Denmark)

    Le Chatelier, Emmanuelle; Nielsen, Trine; Qin, Junjie;

    2013-01-01

    We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus...... gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory...... phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean...

  10. Phylogeny of 16S rRNA, Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase, and Adenosine 5′-Phosphosulfate Reductase Genes from Gamma- and Alphaproteobacterial Symbionts in Gutless Marine Worms (Oligochaeta) from Bermuda and the Bahamas

    OpenAIRE

    Blazejak, Anna; Kuever, Jan; Erséus, Christer; Amann, Rudolf; Dubilier, Nicole

    2006-01-01

    Gutless oligochaetes are small marine worms that live in obligate associations with bacterial endosymbionts. While symbionts from several host species belonging to the genus Olavius have been described, little is known of the symbionts from the host genus Inanidrilus. In this study, the diversity of bacterial endosymbionts in Inanidrilus leukodermatus from Bermuda and Inanidrilus makropetalos from the Bahamas was investigated using comparative sequence analysis of the 16S rRNA gene and fluore...

  11. Symbiont-Mediated Modification of Mosquitocide Toxicity in the Dengue Vector, Aedes aegypti

    OpenAIRE

    Scates, Sara Stuart

    2015-01-01

    The incidence of mosquito-borne human diseases is increasing worldwide, with effective chemical control limited due to widespread insecticide resistance in the insect. Recent evidence also suggests that bacterial symbionts of mosquitoes, known to be essential in nutritional homeostasis and pathogen defense, may play a significant role in facilitating mosquitocide resistance. Here, I examined the metabolic detoxification and toxicity of two mosquitocides, propoxur and naled, and the capacity o...

  12. The presence of a mycangium in European Sinodendron cylindricum (Coleoptera: Lucanidae) and the associated yeast symbionts.

    Science.gov (United States)

    Tanahashi, Masahiko; Hawes, Colin J

    2016-01-01

    Part of the exoskeleton of some wood-inhabiting insects is modified to form a mycangium, which is a specialized organ used to convey fungal spores or yeasts to their offspring. Although most stag beetles (Coleoptera: Lucanidae) are known to have female-specific mycangia and associated yeast symbionts, the evolutionary origin of the mycangium in this group remains unresolved. Here, we report the presence of a mycangium and associated yeast symbionts in the European horned stag beetle Sinodendron cylindricum (L.), which belongs to an ancestral clade of the Lucanidae. The mycangium of S. cylindricum is shown to be female-specific and have the same developmental origin as that of other stag beetles. A total of five yeast strains were isolated from adult mycangia and larval gut of S. cylindricum Of these, we suggest that SICYAM1 is an undescribed yeast with taxonomic novelty, and have identified SICYLG3 as the xylose-fermenting yeast Scheffersomyces insectosa using nuclear ribosomal RNA and ITS sequences. The remaining three yeast strains, SICYAM2, SICYLG1, and SICYLG2, were assigned to the genus Sugiyamaella Yeast density in the adult mycangium was lower than that of the more evolutionarily advanced stag beetles, the European Lucanus cervus (L.) and Dorcus parallelipipedus (L.), which were also examined in this study. No living yeasts were isolated from the adult guts. However, a third instar larva of S. cylindricum harbored 10(4)-10(6) living yeasts in each gut region, which suggests that gut yeasts play an important role in these wood-feeding larvae. PMID:27432353

  13. The presence of a mycangium in European Sinodendron cylindricum (Coleoptera: Lucanidae) and the associated yeast symbionts

    Science.gov (United States)

    Tanahashi, Masahiko; Hawes, Colin J.

    2016-01-01

    Part of the exoskeleton of some wood-inhabiting insects is modified to form a mycangium, which is a specialized organ used to convey fungal spores or yeasts to their offspring. Although most stag beetles (Coleoptera: Lucanidae) are known to have female-specific mycangia and associated yeast symbionts, the evolutionary origin of the mycangium in this group remains unresolved. Here, we report the presence of a mycangium and associated yeast symbionts in the European horned stag beetle Sinodendron cylindricum (L.), which belongs to an ancestral clade of the Lucanidae. The mycangium of S. cylindricum is shown to be female-specific and have the same developmental origin as that of other stag beetles. A total of five yeast strains were isolated from adult mycangia and larval gut of S. cylindricum. Of these, we suggest that SICYAM1 is an undescribed yeast with taxonomic novelty, and have identified SICYLG3 as the xylose-fermenting yeast Scheffersomyces insectosa using nuclear ribosomal RNA and ITS sequences. The remaining three yeast strains, SICYAM2, SICYLG1, and SICYLG2, were assigned to the genus Sugiyamaella. Yeast density in the adult mycangium was lower than that of the more evolutionarily advanced stag beetles, the European Lucanus cervus (L.) and Dorcus parallelipipedus (L.), which were also examined in this study. No living yeasts were isolated from the adult guts. However, a third instar larva of S. cylindricum harbored 104–106 living yeasts in each gut region, which suggests that gut yeasts play an important role in these wood-feeding larvae. PMID:27432353

  14. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn;

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...... minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively....

  15. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies

    OpenAIRE

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-01-01

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacteri...

  16. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn;

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...... gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively....

  17. Gut Microbiome-Brain Communications Regulate Host Physiology and Behavior

    Directory of Open Access Journals (Sweden)

    Claire B. de La Serre

    2015-04-01

    Full Text Available The human gut microbiota contains more than 100 trillion bacteria that, under normal physiological conditions, have beneficial symbiotic interactions with the host. However, a growing body of evidence has shown that alternations in the composition and diversity of the gut microbiota, or dysbiosis, can influence the development and progress of metabolic and neurological disorders. Communication between the microbiota and the brain is a bidirectional system involving endocrine, metabolic (bacterial components and metabolites, immune, and neural pathways. Gut microbiota composition influences the signals transmitted from the gut to the brain. Alternatively, the brain utilizes similar mechanisms, in particular endocrine and neural signaling, to modulate the composition of the gut bacteria. In this review, we describe the recent evidence of gut microbiota interaction with the central nervous system to influence physiological and cognitive functions and the therapeutic potential of modulation of the gut microbiota composition.

  18. Adherence of Escherichia coli O157:H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions

    OpenAIRE

    Yin, Xianhua; Feng, Yanni; Wheatcroft, Roger; Chambers, James; Gong, Joshua; Gyles, Carlton L.

    2011-01-01

    The objectives of this study were to determine the effect of bacterial culture conditions on adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 in vivo to pig enterocytes and to compare the results with adherence in vitro to cultured HEp-2 and IPEC-J2 cells. Growth of O157:H7 in MacConkey broth (MB) resulted in almost no adherence to both HEp-2 and IPEC-J2 cells; prior exposure of the bacteria to pH 2.5 reduced adherence. There was greater adherence by bacteria from s...

  19. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies.

    Science.gov (United States)

    Sickel, Wiebke; Grafe, T Ulmar; Meuche, Ivonne; Steffan-Dewenter, Ingolf; Keller, Alexander

    2016-05-01

    Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats. PMID:26790863

  20. Social insect symbionts: evolution in homeostatic fortresses

    DEFF Research Database (Denmark)

    Hughes, David P; Pierce, Naomi E; Boomsma, Jacobus J

    2008-01-01

    The massive environmentally buffered nests of some social insects can contain millions of individuals and a wide variety of parasites, commensals and mutualists. We suggest that the ways in which these homeostatic fortress environments affect the evolution of social insect symbionts are relevant...

  1. Comparative (Meta)genomic Analysis and Ecological Profiling of Human Gut-Specific Bacteriophage φB124-14

    OpenAIRE

    Ogilvie, Lesley A.; Caplin, Jonathan; Dedi, Cinzia; Diston, David; Cheek, Elizabeth; Bowler, Lucas; Taylor, Huw; Ebdon, James; Jones, Brian V.

    2012-01-01

    Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-s...

  2. Gut ecosystem: how microbes help us.

    Science.gov (United States)

    Martín, R; Miquel, S; Ulmer, J; Langella, P; Bermúdez-Humarán, L G

    2014-09-01

    The human gut houses one of the most complex and abundant ecosystems composed of up to 1013-1014 microorganisms. Although the anthropocentric concept of life has concealed the function of microorganisms inside us, the important role of gut bacterial community in human health is well recognised today. Moreover, different microorganims, which are commonly present in a large diversity of food products, transit through our gut every day adding in some cases a beneficial effect to our health (probiotics). This crosstalk is concentrated mainly in the intestinal epithelium, where microbes provide the host with essential nutrients and modulation of the immune system. Furthermore, microorganisms also display antimicrobial activities maintaining a gut ecosystem stable. This review summarises some of the recent findings on the interaction of both commensal and probiotic bacteria with each other and with the host. The aim is to highlight the cooperative status found in healthy individuals as well as the importance of this crosstalk in the maintenance of human homeostasis.

  3. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha;

    2015-01-01

    We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laborato......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human...

  4. [Depressive Disorder and Gut-brain Interaction].

    Science.gov (United States)

    Kunugi, Hiroshi

    2016-06-01

    Depressive disorder is a stress-induced condition, which has been suggested to have bidirectional interactions with the gut microbiota. Probiotics such as Bifidobacterium and Lactobacillus have been suggested to mitigate stress response. Irritable bowel syndrome (IBS) is a typical phenotype of psychological distress manifested in the gastrointestinal system, and often develops in patients with depressive disorder. The altered gut microbiota and resultant inflammation in the gut play an important role in at least a portion of IBS. Animal models of depression have shown abnormalities in the gut such as increased gut permeability, and the probiotics ameliorate their chronic depression-like behaviors and altered stress responses. There have been only a few studies that have directly investigated the gut microbiota in patients with depression. We reported results suggesting that individuals with lower bacterial counts for Bifidobacterium and/or Lactobacillus are more common in patients with major depressive disorder than in healthy controls. the collectively use of gut microbiota in the diagnosis and treatment of depressive disorder seems to be a promising approach.

  5. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia.

    Science.gov (United States)

    Fukui, Hiroshi

    2015-03-27

    A "leaky gut" may be the cutting edge for the passage of toxins, antigens or bacteria into the body, and may play a pathogenic role in advanced liver cirrhosis and its complications. Plasma endotoxin levels have been admitted as a surrogate marker of bacterial translocation and close relations of endotoxemia to hyperdynamic circulation, portal hypertension, renal, cardiac, pulmonary and coagulation disturbances have been reported. Bacterial overgrowth, increased intestinal permeability, failure to inactivate endotoxin, activated innate immunity are all likely to play a role in the pathological states of bacterial translocation. Therapeutic approach by management of the gut-liver axis by antibiotics, probiotics, synbiotics, prebiotics and their combinations may improve the clinical course of cirrhotic patients. Special concern should be paid on anti-endotoxin treatment. Adequate management of the gut-liver axis may be effective for prevention of liver cirrhosis itself by inhibiting the progression of fibrosis. PMID:25848468

  6. Comparison of the Distal Gut Microbiota from People and Animals in Africa

    OpenAIRE

    Ellis, Richard J; Bruce, Kenneth D.; Claire Jenkins; J. Russell Stothard; Lilly Ajarova; Lawrence Mugisha; Viney, Mark E

    2013-01-01

    The gut microbiota plays a key role in the maintenance of healthy gut function as well as many other aspects of health. High-throughput sequence analyses have revealed the composition of the gut microbiota, showing that there is a core signature to the human gut microbiota, as well as variation in its composition between people. The gut microbiota of animals is also being investigated. We are interested in the relationship between bacterial taxa of the human gut microbiota and those in the gu...

  7. An Investigation of Cellulose Digesting Bacteria in the Panda Gut Microbiome

    Science.gov (United States)

    Lu, M.; Leung, F. C.

    2014-12-01

    The Giant Panda (Ailuropoda melanoleuca) diet consists primarily of bamboo leaves, stems and shoots. However, the Giant Panda lacks genes for the enzymes needed to digest cellulose, the core component of bamboo. Thus, it is hypothesized that the cellulolytic digestion necessary for maintaining the Giant Panda diet is carried out by microbial symbionts in the panda gut microbiota. Fecal microbiota is used as surrogate index for gut microbiota since the Giant Panda is listed by the World Conservation Union as a Threatened Species. Two bacterial isolates with potential cellulolytic activity were isolated from Giant Panda fecal samples and cultured on selective media CMC (carboxymethyl cellulose) agar and CMC-Congo Red agar using various methods of inoculation. After incubation, clearance zones around colonies were observed and used as qualitative assays for cellulose digestion. Polymerase chain reaction amplification of the 16S rRNA gene was completed and species identification was done based on the BLAST result of 16S rRNA sequence obtained using Sanger sequencing. Once the cellulase activity is confirmed, genomic DNA of the bacteria will be extracted and used for whole genome shotgun sequencing. Illumina next generation sequencing platform will be adopted as it yields high-throughput information, providing a better understanding of cellulose digestion and the molecular genetic pathways to renewable sources of biofuels. Researchers have identified multiple cellulose-digesting microbes in the Giant Panda gut, but few have applied such bacteria in converting cellulose into glucose to create biofuel. Cellulosic ethanol, a biofuel, is produced through the fermentation of lignocellulosic biomasses. This anaerobic process is aided by cellulose-digesting enzymes. Certain microbes, such as those present in the Giant Panda gut, can produce enzymes that cleave the glycosidic bonds of cellulose (C6H10O5) into glucose molecules (C6H12O6), which can then be fermented into ethanol

  8. Arabinoxylans, gut microbiota and immunity.

    Science.gov (United States)

    Mendis, Mihiri; Leclerc, Estelle; Simsek, Senay

    2016-03-30

    Arabinoxylan (AX) is a non-starch polysaccharide found in many cereal grains and is considered as a dietary fiber. Despite their general structure, there is structural heterogeneity among AX originating from different botanical sources. Furthermore, the extraction procedure and hydrolysis by xylolytic enzymes can further render differences to theses AX. The aim of this review was to address the effects of AX on the gut bacteria and their immunomodulatory properties. Given the complex structure of AX, we also aimed to discuss how the structural heterogeneity of AX affects its role in bacterial growth and immunomodulation. The existing literature indicates the role of fine structural details of AX on its potential as polysaccharides that can impact the gut associated microbial growth and immune system. PMID:26794959

  9. Composition and diversity analysis of the gut bacterial community of the Oriental armyworm, Mythimna separata, determined by culture-independent and culture-dependent techniques.

    Science.gov (United States)

    He, Cai; Nan, Xiaoning; Zhang, Zhengqing; Li, Menglou

    2013-01-01

    The intestinal bacteria community structure and diversity of the Oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae), was studied by analysis of a 16S rDNA clone library, denaturing gradient gel electrophoresis,and culture-dependent techniques. The 16S rDNA clone library revealed a bacterial community diversity comprising Cyanobacteria, Firmicutes, Actinobacteria, Gracilicutes and Proteobacteria, among which Escherichia coli (Migula) (Enterobacteriales: Enterobacteriaceae) was the dominant bacteria. The intestinal bacteria isolated by PCR-denaturing gradient gel electrophoresis were classified to Firmicutes, Proteobacteria, and Gracilicutes, and E. coli was again the dominant bacteria. The culture-dependent technique showed that the intestinal bacteria belonged to Firmicutes and Actinobacteria, and Staphylococcus was the dominant bacteria. The intestinal bacteria of M. separata were widely distributed among the groups Cyanobacteria, Firmicutes, Actinobacteria, Gracilicutes, Proteobacteria, and Gracilicutes. 16S rDNA clone library, denaturing gradient gel electrophoresis, and culture-dependent techniques should be integrated to obtain precise results in terms of the microbial community and its diversity. PMID:24773514

  10. Process optimization of experimental variables using plackett-burman design for decolourisation of reactive blue 222 by a novel bacterial consortium isolated from the gut of termites

    International Nuclear Information System (INIS)

    Bacterial consortium derived from termite was tested for its efficiency to decolourise Reactive Blue 222 aerobically. The central composite design matrix and response surface methodology (RSM) were applied to design experiments for the assessment of interactive effects of four most important operating variables viz., pH (3.0-11.0), agitation (300 rpm), temperature (20-60 degree C) and glucose (0.1-0.5 g/litre) on the biodegradation of Reactive Blue 222 out of eleven different variables. Optimisation was achieved using the Plackett-Burman statistical design. A regression coefficient between variables and the response indicated excellent evaluation of experimental data by the Stat-Ease package. The experimental values were in good agreement with the predicted ones and the model was highly significant, correlation coefficient being 0.89. RSM indicated that pH 7.0 at static condition; temperature at 20 degree C and a glucose concentration of 0.50 g/litre resulted in 99.21% decolourisation. (author)

  11. The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds

    OpenAIRE

    Nidhi M. Sagar; Cree, Ian A; James A. Covington; Ramesh P Arasaradnam

    2015-01-01

    Background. There has been an increasing interest in the use of volatile organic compounds (VOCs) as potential surrogate markers of gut dysbiosis in gastrointestinal disease. Gut dysbiosis occurs when pathological imbalances in gut bacterial colonies precipitate disease and has been linked to the dysmetabolism of bile acids (BA) in the gut. BA metabolites as a result of microbial transformations act as signaling molecules and have demonstrated regulation of intestinal homeostasis through the ...

  12. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina; Krych, Lukasz; Roytio, Henna;

    2014-01-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n=18) were enrolled...

  13. Genetic connectivity between north and south Mid-Atlantic Ridge chemosynthetic bivalves and their symbionts.

    Directory of Open Access Journals (Sweden)

    Karina van der Heijden

    Full Text Available Transform faults are geological structures that interrupt the continuity of mid-ocean ridges and can act as dispersal barriers for hydrothermal vent organisms. In the equatorial Atlantic Ocean, it has been hypothesized that long transform faults impede gene flow between the northern and the southern Mid-Atlantic Ridge (MAR and disconnect a northern from a southern biogeographic province. To test if there is a barrier effect in the equatorial Atlantic, we examined phylogenetic relationships of chemosynthetic bivalves and their bacterial symbionts from the recently discovered southern MAR hydrothermal vents at 5°S and 9°S. We examined Bathymodiolus spp. mussels and Abyssogena southwardae clams using the mitochondrial cytochrome c oxidase subunit I (COI gene as a phylogenetic marker for the hosts and the bacterial 16S rRNA gene as a marker for the symbionts. Bathymodiolus spp. from the two southern sites were genetically divergent from the northern MAR species B. azoricus and B. puteoserpentis but all four host lineages form a monophyletic group indicating that they radiated after divergence from their northern Atlantic sister group, the B. boomerang species complex. This suggests dispersal of Bathymodiolus species from north to south across the equatorial belt. 16S rRNA genealogies of chemoautotrophic and methanotrophic symbionts of Bathymodiolus spp. were inconsistent and did not match the host COI genealogy indicating disconnected biogeography patterns. The vesicomyid clam Abyssogena southwardae from 5°S shared an identical COI haplotype with A. southwardae from the Logatchev vent field on the northern MAR and their symbionts shared identical 16S phylotypes, suggesting gene flow across the Equator. Our results indicate genetic connectivity between the northern and southern MAR and suggest that a strict dispersal barrier does not exist.

  14. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production.

    Directory of Open Access Journals (Sweden)

    Mitsuharu Matsumoto

    Full Text Available BACKGROUND: Chronic low-grade inflammation is recognized as an important factor contributing to senescence and age-related diseases. In mammals, levels of polyamines (PAs decrease during the ageing process; PAs are known to decrease systemic inflammation by inhibiting inflammatory cytokine synthesis in macrophages. Reductions in intestinal luminal PAs levels have been associated with intestinal barrier dysfunction. The probiotic strain Bifidobacterium animalis subsp. lactis LKM512 is known to increase intestinal luminal PA concentrations. METHODOLOGY/PRINCIPAL FINDINGS: We supplemented the diet of 10-month-old Crj:CD-1 female mice with LKM512 for 11 months, while the controls received no supplementation. Survival rates were compared using Kaplan-Meier survival curves. LKM512-treated mice survived significantly longer than controls (P<0.001; moreover, skin ulcers and tumors were more common in the control mice. We then analyzed inflammatory and intestinal conditions by measuring several markers using HPLC, ELISA, reverse transcription-quantitative PCR, and histological slices. LKM512 mice showed altered 16S rRNA gene expression of several predominant intestinal bacterial groups. The fecal concentrations of PAs, but not of short-chain fatty acids, were significantly higher in LKM512-treated mice (P<0.05. Colonic mucosal function was also better in LKM512 mice, with increased mucus secretion and better maintenance of tight junctions. Changes in gene expression levels were evaluated using the NimbleGen mouse DNA microarray. LKM512 administration also downregulated the expression of ageing-associated and inflammation-associated genes and gene expression levels in 21-month-old LKM512-treated mice resembled those in 10-month-old untreated (younger mice. CONCLUSION/SIGNIFICANCE: Our study demonstrated increased longevity in mice following probiotic treatment with LKM512, possibly due to the suppression of chronic low-grade inflammation in the colon

  15. Tail gut cyst.

    Science.gov (United States)

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  16. The Calyptogena magnifica chemoautotrophic symbiont genome

    Energy Technology Data Exchange (ETDEWEB)

    Newton, I.L.; Woyke, T.; Auchtung, T.A.; Dilly, G.F.; Dutton,R.J.; Fisher, M.C.; Fontanez, K.M.; Lau, E.; Stewart, F.J.; Richardson,P.M.; Barry, K.W.; Saunders, E.; Detter, J.C.; Wu, D.; Eisen, J.A.; Cavanaugh, C.M.

    2007-03-01

    Chemoautotrophic endosymbionts are the metabolic cornerstone of hydrothermal vent communities, providing invertebrate hosts with nearly all of their nutrition. The Calyptogena magnifica (Bivalvia: Vesicomyidae) symbiont, Candidatus Ruthia magnifica, is the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced, revealing a suite of metabolic capabilities. The genome encodes major chemoautotrophic pathways as well as pathways for biosynthesis of vitamins, cofactors, and all 20 amino acids required by the clam.

  17. Potential applications of insect symbionts in biotechnology

    OpenAIRE

    Berasategui, A.; Shukla, S; Salem, H; Kaltenpoth, M.

    2015-01-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biote...

  18. The microbiome of Folsomia candida: an assessment of bacterial diversity in a Wolbachia-containing animal.

    Science.gov (United States)

    Agamennone, Valeria; Jakupović, Dennis; Weedon, James T; Suring, Wouter J; van Straalen, Nico M; Roelofs, Dick; Röling, Wilfred F M

    2015-11-01

    The springtail Folsomia candida is an important model organism for soil ecology, ecotoxicology and ecogenomics. The decomposer activities of soil invertebrates like Folsomia depend on their relationship with microbial communities including gut symbionts. In this paper, we apply high-throughput sequencing to provide a detailed characterization of the bacterial community associated with parthenogenetic F. candida. First, we evaluated a method to suppress the amplification of DNA from the endosymbiont Wolbachia, to prevent it from interfering with the identification of less abundant operational taxonomic units (OTUs). The suppression treatment applied was effective against Wolbachia and did not interfere with the detection of the most abundant OTUs (59 OTUs, contributing over 87% of the reads). However, this method did affect the inferred community composition. Significant differences were subsequently observed in the composition of bacterial communities associated with two different strains of F. candida. A total of 832 OTUs were found, of which 45% were only present in one strain and 17% only in the other. Among the 20 most abundant OTUs, 16 were shared between strains. Denaturing gradient gel electrophoresis and clone libraries, although unable to capture the full diversity of the bacterial community, provided results that supported the NGS data. PMID:26499484

  19. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata.

    Science.gov (United States)

    Byler, Kristen A; Carmi-Veal, Maya; Fine, Maoz; Goulet, Tamar L

    2013-01-01

    In obligate symbioses, the host's survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission) or acquired anew each generation from the environment (horizontal transmission). With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium) hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.

  20. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata.

    Directory of Open Access Journals (Sweden)

    Kristen A Byler

    Full Text Available In obligate symbioses, the host's survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission or acquired anew each generation from the environment (horizontal transmission. With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.

  1. Characterisation of the gut microflora in rainbow trout fry (Oncorhynchus mykiss) using deep-sequencing

    OpenAIRE

    Ingerslev, Hans-Christian; Dalsgaard, Inger; Boye, Mette; Madsen, Lone

    2012-01-01

    Abstract from a DAFINET workshop: For many years it has been known that the bacterial microflora in the gut of warm-blooded animals live in harmony with the host and exert various beneficial effects on the health by their metabolic activities. Hence, the gut microbiota has a high importance for the animal. In many studies from e.g. humans and the pig mapping of the bacterial flora from the gut have shown dominance by some specific bacterial groups, and this bacterial profile is termed as ...

  2. Earthworm ecology affects the population structure of their Verminephrobacter symbionts.

    Science.gov (United States)

    Viana, Flávia; Jensen, Christopher Erik; Macey, Michael; Schramm, Andreas; Lund, Marie Braad

    2016-05-01

    Earthworms carry species-specific Verminephrobacter symbionts in their nephridia (excretory organs). The symbionts are vertically transmitted via the cocoon, can only colonize the host during early embryonic development, and have co-speciated with their host for about 100 million years. Although several studies have addressed Verminephrobacter diversity between worm species, the intra-species diversity of the symbiont population has never been investigated. In this study, symbiont population structure was examined by using a multi-locus sequence typing (MLST) approach on Verminephrobacter isolated from two contrasting ecological types of earthworm hosts: the high population density, fast reproducing compost worms, Eisenia andrei and Eisenia fetida, and the low-density, slow reproducing Aporrectodea tuberculata, commonly found in garden soils. Three distinct populations were investigated for both types and, according to MLST analysis of 193 Verminephrobacter isolates, the symbiont community in each worm individual was very homogeneous. The more solitary A. tuberculata carried unique symbiont populations in 9 out of 10 host individuals, whereas the symbiont populations in the social compost worms were homogeneous across host individuals from the same population. These data suggested that host ecology shaped the population structure of Verminephrobacter symbionts. The homogeneous symbiont populations in the compost worms led to the hypothesis that Verminephrobacter could be transferred bi-parentally or via leaky horizontal transmission in high-density, frequently mating worm populations. PMID:27040820

  3. Translocation of gut flora and its role in sepsis

    Directory of Open Access Journals (Sweden)

    C Vaishnavi

    2013-01-01

    Full Text Available Bacterial translocation is the invasion of indigenous intestinal bacteria through the gut mucosa to normally sterile tissues and the internal organs. Sometimes instead of bacteria, inflammatory compounds are responsible for clinical symptoms as in systemic inflammatory response syndrome (SIRS. The difference between sepsis and SIRS is that pathogenic bacteria are isolated from patients with sepsis but not with those of SIRS. Bacterial translocation occurs more frequently in patients with intestinal obstruction and in immunocompromised patients and is the cause of subsequent sepsis. Factors that can trigger bacterial translocation from the gut are host immune deficiencies and immunosuppression, disturbances in normal ecological balance of gut, mucosal barrier permeability, obstructive jaundice, stress, etc. Bacterial translocation occurs through the transcellular and the paracellular pathways and can be measured both directly by culture of mesenteric lymph nodes and indirectly by using labeled bacteria, peripheral blood culture, detection of microbial DNA or endotoxin and urinary excretion of non-metabolisable sugars. Bacterial translocation may be a normal phenomenon occurring on frequent basis in healthy individuals without any deleterious consequences. But when the immune system is challenged extensively, it breaks down and results in septic complications at different sites away from the main focus. The factors released from the gut and carried in the mesenteric lymphatics but not in the portal blood are enough to cause multi-organ failure. Thus, bacterial translocation may be a promoter of sepsis but not the initiator. This paper reviews literature on the translocation of gut flora and its role in causing sepsis.

  4. Gut-liver axis and sensing microbes.

    Science.gov (United States)

    Szabo, Gyongyi; Bala, Shashi; Petrasek, Jan; Gattu, Arijeet

    2010-01-01

    'Detoxification' of gut-derived toxins and microbial products from gut-derived microbes is a major role of the liver. While the full repertoire of gut-derived microbial products that reach the liver in health and disease is yet to be explored, the levels of bacterial lipopolysaccharide (LPS), a component of Gram-negative bacteria, is increased in the portal and/or systemic circulation in several types of chronic liver diseases. Increased gut permeability and LPS play a role in alcoholic liver disease where alcohol impairs the gut epithelial integrity through alterations in tight junction proteins. In addition, non-alcoholic fatty liver disease is also associated with increased serum LPS levels and activation of the pro-inflammatory cascade plays a central role in disease progression. Microbial danger signals are recognized by pattern recognition receptors such as the Toll-like receptor 4 (TLR4). Increasing evidence suggests that TLR4-mediated signaling via the MyD88-dependent or MyD88-independent pathways may play different roles in liver diseases associated with increased LPS exposure of the liver as a result of gut permeability. For example, we showed that in alcoholic liver disease, the MyD88-independent, IRF3-dependent TLR4 cascade plays a role in steatosis and inflammation. Our recent data demonstrate that chronic alcohol exposure in the liver leads to sensitization of Kupffer cells to LPS via a mechanism involving upregulation of microRNA-155 in Kupffer cells. Thus, understanding the cell-specific recognition and intracellular signaling events in sensing gut-derived microbes will help to achieve an optimal balance in the gut-liver axis and ameliorate liver diseases. PMID:21525758

  5. Earthworm symbiont Verminephrobacter eiseniae mediates natural transformation within the host egg capsules using type IV pili

    Directory of Open Access Journals (Sweden)

    SEANA Kelyn DAVIDSON

    2014-10-01

    Full Text Available The dense microbial communities commonly associated with plants and animals should offer many opportunities for horizontal gene transfer (HGT through described mechanisms of DNA exchange including natural transformation. However, studies of the significance of natural transformation have focused primarily on pathogens. The study presented here demonstrates highly efficient DNA exchange by natural transformation in a common symbiont of earthworms. The obligate bacterial symbiont Verminephrobacter eiseniae is a member of a microbial consortium of the earthworm Eisenia fetida that is transmitted into the egg capsules to colonize the embryonic worms. In the study presented here, by testing for transformants under different conditions in culture, we demonstrate that V. eiseniae can incorporate free DNA from the environment, that competency is regulated by environmental factors, and that it is sequence specific. Mutations in the type IV pili of V. eiseniae resulted in loss of DNA uptake, implicating the type IV pilus (TFP apparatus in DNA uptake. Furthermore, injection of DNA carrying antibiotic-resistance genes into egg capsules resulted in transformants within the capsule, demonstrating the relevance of DNA uptake within the earthworm system. The ability to take up species-specific DNA from the environment may explain the maintenance of the relatively large, intact genome of this long-associated obligate symbiont, and provides a mechanism for acquisition of foreign genes within the earthworm system.

  6. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order 'Enterobacteriales' of the Gammaproteobacteria.

    Science.gov (United States)

    Kwong, Waldan K; Moran, Nancy A

    2013-06-01

    Gut-associated bacteria were isolated in axenic culture from the honey bee Apis mellifera and the bumble bees Bombus bimaculatus and B. vagans and are here placed in the novel genera and species Snodgrassella alvi gen. nov., sp. nov. and Gilliamella apicola gen. nov., sp. nov. Two strains from A. mellifera were characterized and are proposed as the type strains of Snodgrassella alvi (type strain wkB2(T) =NCIMB 14803(T) =ATCC BAA-2449(T) =NRRL B-59751(T)) and Gilliamella apicola (type strain wkB1(T) =NCIMB 14804(T) =ATCC BAA-2448(T)), representing, respectively, phylotypes referred to as 'Betaproteobacteria' and 'Gammaproteobacteria-1'/'Gamma-1' in earlier publications. These strains grew optimally under microaerophilic conditions, and did not grow readily under a normal atmosphere. The predominant fatty acids in both strains were palmitic acid (C16:0) and cis-vaccenic acid (C18:1ω7c and/or C18:1ω6c), and both strains had ubiquinone-8 as their major respiratory quinone. The DNA G+C contents were 41.3 and 33.6 mol% for wkB2(T) and wkB1(T), respectively. The Snodgrassella alvi strains from honey bees and bumble bees formed a novel clade within the family Neisseriaceae of the Betaproteobacteria, showing about 94% 16S rRNA gene sequence identity to their closest relatives, species of Stenoxybacter, Alysiella and Kingella. The Gilliamella apicola strains showed the highest 16S rRNA gene sequence identity to Orbus hercynius CN3(T) (93.9%) and several sequences from uncultured insect-associated bacteria. Phylogenetic reconstruction using conserved, single-copy amino acid sequences showed Gilliamella apicola as sister to the order 'Enterobacteriales' of the Gammaproteobacteria. Given its large sequence divergence from and basal position to the well-established order 'Enterobacteriales', we propose to place the clade encompassing Gilliamella apicola and O. hercynius in a new family and order, Orbaceae fam. nov. and Orbales ord. nov. PMID:23041637

  7. Magnetosome-containing bacteria living as symbionts of bivalves.

    Science.gov (United States)

    Dufour, Suzanne C; Laurich, Jason R; Batstone, Rebecca T; McCuaig, Bonita; Elliott, Alexander; Poduska, Kristin M

    2014-12-01

    Bacteria containing magnetosomes (protein-bound nanoparticles of magnetite or greigite) are common to many sedimentary habitats, but have never been found before to live within another organism. Here, we show that octahedral inclusions in the extracellular symbionts of the marine bivalve Thyasira cf. gouldi contain iron, can exhibit magnetic contrast and are most likely magnetosomes. Based on 16S rRNA sequence analysis, T. cf. gouldi symbionts group with symbiotic and free-living sulfur-oxidizing, chemolithoautotrophic gammaproteobacteria, including the symbionts of other thyasirids. T. cf. gouldi symbionts occur both among the microvilli of gill epithelial cells and in sediments surrounding the bivalves, and are therefore facultative. We propose that free-living T. cf. gouldi symbionts use magnetotaxis as a means of locating the oxic-anoxic interface, an optimal microhabitat for chemolithoautotrophy. T. cf. gouldi could acquire their symbionts from near-burrow sediments (where oxic-anoxic interfaces likely develop due to the host's bioirrigating behavior) using their superextensile feet, which could transfer symbionts to gill surfaces upon retraction into the mantle cavity. Once associated with their host, however, symbionts need not maintain structures for magnetotaxis as the host makes oxygen and reduced sulfur available via bioirrigation and sulfur-mining behaviors. Indeed, we show that within the host, symbionts lose the integrity of their magnetosome chain (and possibly their flagellum). Symbionts are eventually endocytosed and digested in host epithelial cells, and magnetosomes accumulate in host cytoplasm. Both host and symbiont behaviors appear important to symbiosis establishment in thyasirids. PMID:24914799

  8. Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Zhang, Mingzi; Poulsen, Michael; Currie, Cameron R

    2007-01-01

    by an actinomycete bacterial mutualist (genus Pseudonocardia). Despite the potential of being infected by phylogenetically diverse strains of parasites, each ant colony maintains only a single Pseudonocardia symbiont strain, which is primarily vertically transmitted between colonies by the founding queens....... In this study, we show that Acromyrmex leaf-cutter ants are able to differentiate between their native actinomycete strain and a variety of foreign strains isolated from sympatric and allopatric Acromyrmex species, in addition to strains originating from other fungus-growing ant genera. The recognition...

  9. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina;

    2013-01-01

    of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus...... cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated...... on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds...

  10. Symbiont-derived beta-1,3-glucanases in a social insect: mutualism beyond nutrition

    Directory of Open Access Journals (Sweden)

    Rebeca B Rosengaus

    2014-11-01

    Full Text Available Termites have had a long co-evolutionary history with prokaryotic and eukaryotic gut microbes. Historically, the role of these anaerobic obligate symbionts has been attributed to the nutritional welfare of the host. We provide evidence that protozoa (and/or their associated bacteria colonizing the hindgut of the dampwood termite Zootermopsis angusticollis, synthesize multiple functional beta-1,3-glucanases, enzymes known for breaking down beta-1,3-glucans, the main component of fungal cell walls. These enzymes, we propose, may help in both digestion of ingested fungal hyphae and protection against invasion by fungal pathogens. This research points to an additional novel role for the mutualistic hindgut microbial consortia of termites, an association that may extend beyond ligno-cellulolytic activity and nitrogen fixation to include a reduction in the risks of mycosis at both the individual- and colony-levels while nesting in and feeding on microbial-rich decayed wood.

  11. Comparative Profiling of coral symbiont communities from the Caribbean, Indo-Pacific, and Arabian Seas

    KAUST Repository

    Arif, Chatchanit

    2014-12-01

    Coral reef ecosystems are in rapid decline due to global and local anthropogenic factors. Being among the most diverse ecosystems on Earth, a loss will decrease species diversity, and remove food source for people along the coast. The coral together with its symbionts (i.e. Symbiodinium, bacteria, and other microorganisms) is called the ‘coral holobiont’. The coral host offers its associated symbionts suitable habitats and nutrients, while Symbiodinium and coral-associated bacteria provide the host with photosynthates and vital nutrients. Association of corals with certain types of Symbiodinium and bacteria confer coral stress tolerance, and lack or loss of these symbionts coincides with diseased or bleached corals. However, a detailed understanding of the coral holobiont diversity and structure in regard to diseases and health states or across global scales is missing. This dissertation addressed coral-associated symbiont diversity, specifically of Symbiodinium and bacteria, in various coral species from different geographic locations and different health states. The main aims were (1) to expand the scope of existing technologies, (2) to establish a standardized framework to facilitate comparison of symbiont assemblages over coral species and sites, (3) to assess Symbiodinium diversity in the Arabian Seas, and (4) to elucidate whether coral health states have conserved bacterial footprints. In summary, a next generation sequencing pipeline for Symbiodinium diversity typing of the ITS2 marker is developed and applied to describe Symbiodinium diversity in corals around the Arabian Peninsula. The data show that corals in the Arabian Seas are dominated by a single Symbiodinium type, but harbor a rich variety of types in low abundant. Further, association with different Symbiodinium types is structured according to geographic locations. In addition, the application of 16S rRNA gene microarrays to investigate how differences in microbiome structure relate to

  12. Bacterial cell biology outside the streetlight.

    Science.gov (United States)

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes.

  13. Bacterial cell biology outside the streetlight.

    Science.gov (United States)

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes. PMID:27306428

  14. Complete Genome Sequences of the Obligate Symbionts “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” from the Pestiferous Leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae)

    Science.gov (United States)

    Abbà, Simona; Kube, Michael; Marzachì, Cristina

    2016-01-01

    Two bacterial symbionts of the European pest leafhopper, Macrosteles quadripunctulatus (Hemiptera: Cicadellidae), were fully sequenced. “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” represent two of the smallest known bacterial genomes at 190 kb and 112 kb, respectively. Genome sequences are nearly identical to strains reported from the closely related host species, M. quadrilineatus. PMID:26798106

  15. Adaptation by Deletogenic Replication Slippage in a Nascent Symbiont.

    Science.gov (United States)

    Clayton, Adam L; Jackson, D Grant; Weiss, Robert B; Dale, Colin

    2016-08-01

    As a consequence of population level constraints in the obligate, host-associated lifestyle, intracellular symbiotic bacteria typically exhibit high rates of molecular sequence evolution and extensive genome degeneration over the course of their host association. While the rationale for genome degeneration is well understood, little is known about the molecular mechanisms driving this change. To understand these mechanisms we compared the genome of Sodalis praecaptivus, a nonhost associated bacterium that is closely related to members of the Sodalis-allied clade of insect endosymbionts, with the very recently derived insect symbiont Candidatus Sodalis pierantonius. The characterization of indel mutations in the genome of Ca Sodalis pierantonius shows that the replication system in this organism is highly prone to deletions resulting from polymerase slippage events in regions encoding G+C-rich repetitive sequences. This slippage-prone phenotype is mechanistically associated with the loss of certain components of the bacterial DNA recombination machinery at an early stage in symbiotic life and is expected to facilitate rapid adaptation to the novel host environment. This is analogous to the emergence of mutator strains in both natural and laboratory populations of bacteria, which tend to reach high frequencies in clonal populations due to linkage between the mutator allele and the resulting adaptive mutations. PMID:27189544

  16. Influence of chemosynthetic substrates availability on symbiont densities, carbon assimilation and transfer in the dual symbiotic vent mussel Bathymodiolus azoricus

    Directory of Open Access Journals (Sweden)

    R. S. Santos

    2008-05-01

    Full Text Available High densities of mussels of the genus Bathymodiolus are present at hydrothermal vents of the Mid-Atlantic Ridge. It was already proposed that the chemistry at vent sites would affect their sulphide- and methane-oxidizing endosymbionts' abundance. In this study, we confirmed the latter assumption using fluorescence in situ hybridization on Bathymodiolus azoricus specimens maintained in a controlled laboratory environment at atmospheric pressure with one, both or none of the chemical substrates. A high level of symbiosis plasticity was observed, methane-oxidizers occupying between 4 and 39% of total bacterial area and both symbionts developing accordingly to the presence or absence of their substrates. Using H13CO3− in the presence of sulphide, 13CH4 or 13CH3OH, we monitored carbon assimilation by the endosymbionts and its translocation to symbiont-free mussel tissues. Although no significant carbon assimilation could be evidenced with methanol, carbon was incorporated from methane and sulphide-oxidized inorganic carbon at rates 3 to 10 times slower in the host muscle tissue than in the symbiont-containing gill tissue. Both symbionts thus contribute actively to B. azoricus nutrition and adapt to the availability of their substrates. Further experiments with varying substrate concentrations using the same set-up should provide useful tools to study and even model the effects of changes in hydrothermal fluids on B. azoricus' chemosynthetic nutrition.

  17. The human gut virome: a multifaceted majority

    Directory of Open Access Journals (Sweden)

    Lesley Ann Ogilvie

    2015-09-01

    Full Text Available Here we outline our current understanding of the human gut virome, in particular the phage component of this ecosystem, highlighting progress and challenges in viral discovery in this arena. We reveal how developments in high-throughput sequencing technologies and associated data analysis methodologies are helping to illuminate this abundant ‘biological dark matter’. Current evidence suggests that the human gut virome is a highly individual but temporally stable collective, dominated by phage exhibiting a temperate lifestyle. This viral community also appears to encode a surprisingly rich functional repertoire that confers a range of attributes to their bacterial hosts, ranging from bacterial virulence and pathogenesis to maintaining host-microbiome stability and community resilience. Despite the significant advances in our understanding of the gut virome in recent years, it is clear that we remain in a period of discovery and revelation, as new methods and technologies begin to provide deeper understanding of the inherent ecological characteristics of this viral ecosystem. As our understanding increases, the nature of the multi-partite interactions occurring between host and microbiome will become clearer, helping us to more rationally define the concepts and principles that will underpin approaches to using human gut virome components for medical or biotechnological applications.

  18. Experimental replacement of an obligate insect symbiont.

    Science.gov (United States)

    Moran, Nancy A; Yun, Yueli

    2015-02-17

    Symbiosis, the close association of unrelated organisms, has been pivotal in biological diversification. In the obligate symbioses found in many insect hosts, organisms that were once independent are permanently and intimately associated, resulting in expanded ecological capabilities. The primary model for this kind of symbiosis is the association between the bacterium Buchnera and the pea aphid (Acyrthosiphon pisum). A longstanding obstacle to efforts to illuminate genetic changes underlying obligate symbioses has been the inability to experimentally disrupt and reconstitute symbiont-host partnerships. Our experiments show that Buchnera can be experimentally transferred between aphid matrilines and, furthermore, that Buchnera replacement has a massive effect on host fitness. Using a recipient pea aphid matriline containing Buchnera that are heat sensitive because of an allele eliminating the heat shock response of a small chaperone, we reduced native Buchnera through heat exposure and introduced a genetically distinct Buchnera from another matriline, achieving complete replacement and stable inheritance. This transfer disrupted 100 million years (∼ 1 billion generations) of continuous maternal transmission of Buchnera in its host aphids. Furthermore, aphids with the Buchnera replacement enjoyed a dramatic increase in heat tolerance, directly demonstrating a strong effect of symbiont genotype on host ecology.

  19. Experimental replacement of an obligate insect symbiont.

    Science.gov (United States)

    Moran, Nancy A; Yun, Yueli

    2015-02-17

    Symbiosis, the close association of unrelated organisms, has been pivotal in biological diversification. In the obligate symbioses found in many insect hosts, organisms that were once independent are permanently and intimately associated, resulting in expanded ecological capabilities. The primary model for this kind of symbiosis is the association between the bacterium Buchnera and the pea aphid (Acyrthosiphon pisum). A longstanding obstacle to efforts to illuminate genetic changes underlying obligate symbioses has been the inability to experimentally disrupt and reconstitute symbiont-host partnerships. Our experiments show that Buchnera can be experimentally transferred between aphid matrilines and, furthermore, that Buchnera replacement has a massive effect on host fitness. Using a recipient pea aphid matriline containing Buchnera that are heat sensitive because of an allele eliminating the heat shock response of a small chaperone, we reduced native Buchnera through heat exposure and introduced a genetically distinct Buchnera from another matriline, achieving complete replacement and stable inheritance. This transfer disrupted 100 million years (∼ 1 billion generations) of continuous maternal transmission of Buchnera in its host aphids. Furthermore, aphids with the Buchnera replacement enjoyed a dramatic increase in heat tolerance, directly demonstrating a strong effect of symbiont genotype on host ecology. PMID:25561531

  20. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  1. Metagenomic analysis of genetic variation in human gut microbial species

    OpenAIRE

    Zhu, Ana Cheng

    2015-01-01

    Microbial species (bacteria and archaea) in the gut are important for human health in various ways. Not only does the species composition vary considerably within the human population, but each individual also appears to have its own strains of a given species. While it is known from studies of bacterial pan-genomes, that genetic variation between strains can differ considerably, such as in Escherichia coli, the extent of genetic variation of strains for abundant gut species has not been surv...

  2. Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota

    OpenAIRE

    Gosalbes, María José; Durbán, Ana; Pignatelli, Miguel; Abellan, Juan José; Jiménez-Hernández, Nuria; Pérez-Cobas, Ana Elena; Latorre, Amparo; Moya, Andrés

    2011-01-01

    The human gut is the natural habitat for a large and dynamic bacterial community that has a great relevance for health. Metagenomics is increasing our knowledge of gene content as well as of functional and genetic variability in this microbiome. However, little is known about the active bacteria and their function(s) in the gastrointestinal tract. We performed a metatranscriptomic study on ten healthy volunteers to elucidate the active members of the gut microbiome and their functionality und...

  3. Childhood obesity: a role for gut microbiota?

    Science.gov (United States)

    Sanchez, Marina; Panahi, Shirin; Tremblay, Angelo

    2014-12-23

    Obesity is a serious public health issue affecting both children and adults. Prevention and management of obesity is proposed to begin in childhood when environmental factors exert a long-term effect on the risk for obesity in adulthood. Thus, identifying modifiable factors may help to reduce this risk. Recent evidence suggests that gut microbiota is involved in the control of body weight, energy homeostasis and inflammation and thus, plays a role in the pathophysiology of obesity. Prebiotics and probiotics are of interest because they have been shown to alter the composition of gut microbiota and to affect food intake and appetite, body weight and composition and metabolic functions through gastrointestinal pathways and modulation of the gut bacterial community. As shown in this review, prebiotics and probiotics have physiologic functions that contribute to changes in the composition of gut microbiota, maintenance of a healthy body weight and control of factors associated with childhood obesity through their effects on mechanisms controlling food intake, fat storage and alterations in gut microbiota.

  4. Childhood Obesity: A Role for Gut Microbiota?

    Directory of Open Access Journals (Sweden)

    Marina Sanchez

    2014-12-01

    Full Text Available Obesity is a serious public health issue affecting both children and adults. Prevention and management of obesity is proposed to begin in childhood when environmental factors exert a long-term effect on the risk for obesity in adulthood. Thus, identifying modifiable factors may help to reduce this risk. Recent evidence suggests that gut microbiota is involved in the control of body weight, energy homeostasis and inflammation and thus, plays a role in the pathophysiology of obesity. Prebiotics and probiotics are of interest because they have been shown to alter the composition of gut microbiota and to affect food intake and appetite, body weight and composition and metabolic functions through gastrointestinal pathways and modulation of the gut bacterial community. As shown in this review, prebiotics and probiotics have physiologic functions that contribute to changes in the composition of gut microbiota, maintenance of a healthy body weight and control of factors associated with childhood obesity through their effects on mechanisms controlling food intake, fat storage and alterations in gut microbiota.

  5. Gut in diseases: Physiological elements and their clinical significance

    Institute of Scientific and Technical Information of China (English)

    Lian-An Ding; Jie-Shou Li

    2003-01-01

    The intestinal barrier function of GI tract is very important in the body except for the function of digestion and absorption. The functional status of gut barrier basically reflects the stress severity when body suffers from trauma and various stimulations. Many harmful factors such as drugs,illnesses, trauma and burns can damage the gut barrier,which can lead to the barrier dysfunction and bacterial/endotoxin translocation. The paper discusses and reviews the concepts, anatomy, pathophysiology of gut barrier and its clinical relations.

  6. The gut microbiome, kidney disease, and targeted interventions.

    Science.gov (United States)

    Ramezani, Ali; Raj, Dominic S

    2014-04-01

    The human gut harbors >100 trillion microbial cells, which influence the nutrition, metabolism, physiology, and immune function of the host. Here, we review the quantitative and qualitative changes in gut microbiota of patients with CKD that lead to disturbance of this symbiotic relationship, how this may contribute to the progression of CKD, and targeted interventions to re-establish symbiosis. Endotoxin derived from gut bacteria incites a powerful inflammatory response in the host organism. Furthermore, protein fermentation by gut microbiota generates myriad toxic metabolites, including p-cresol and indoxyl sulfate. Disruption of gut barrier function in CKD allows translocation of endotoxin and bacterial metabolites to the systemic circulation, which contributes to uremic toxicity, inflammation, progression of CKD, and associated cardiovascular disease. Several targeted interventions that aim to re-establish intestinal symbiosis, neutralize bacterial endotoxins, or adsorb gut-derived uremic toxins have been developed. Indeed, animal and human studies suggest that prebiotics and probiotics may have therapeutic roles in maintaining a metabolically-balanced gut microbiota and reducing progression of CKD and uremia-associated complications. We propose that further research should focus on using this highly efficient metabolic machinery to alleviate uremic symptoms. PMID:24231662

  7. The gut microbiota and its role in the development of allergic disease: a wider perspective.

    Science.gov (United States)

    West, C E; Jenmalm, M C; Prescott, S L

    2015-01-01

    The gut microbiota are critical in the homoeostasis of multiple interconnected host metabolic and immune networks. If early microbial colonization is delayed, the gut-associated lymphoid tissues (GALT) fail to develop, leading to persistent immune dysregulation in mice. Microbial colonization has also been proposed as a major driver for the normal age-related maturation of both Th1 and T regulatory (Treg) pathways that appear important in suppressing early propensity for Th2 allergic responses. There is emerging evidence that resident symbionts induce tolerogenic gut-associated Treg cells and dendritic cells that ensure the preferential growth of symbionts; keeping pathogenic strains in check and constraining proinflammatory Th1, Th2, and Th17 clones. Some effects of symbionts are mediated by short-chain fatty acids, which play a critical role in mucosal integrity and local and systemic metabolic function and stimulate the regulatory immune responses. The homoeostatic IL-10/TGF-β dominated tolerogenic response within the GALT also signals the production of secretory IgA, which have a regulating role in mucosal integrity. Contrary to the 'sterile womb' paradigm, recent studies suggest that maternal microbial transfer to the offspring begins during pregnancy, providing a pioneer microbiome. It is likely that appropriate microbial stimulation both pre- and postnatally is required for optimal Th1 and Treg development to avoid the pathophysiological processes leading to allergy. Disturbed gut colonization patterns have been associated with allergic disease, but whether microbial variation is the cause or effect of these diseases is still under investigation. We are far from understanding what constitutes a 'healthy gut microbiome' that promotes tolerance. This remains a major limitation and might explain some of the inconsistency in human intervention studies with prebiotics and probiotics. Multidisciplinary integrative approaches with researchers working in networks

  8. Gut microbiota and probiotics in chronic liver diseases.

    Science.gov (United States)

    Cesaro, Claudia; Tiso, Angelo; Del Prete, Anna; Cariello, Rita; Tuccillo, Concetta; Cotticelli, Gaetano; Del Vecchio Blanco, Camillo; Loguercio, Carmelina

    2011-06-01

    There is a strong relationship between liver and gut: the portal system receives blood from the gut, and intestinal blood content activates liver functions. The liver, in turn, affects intestinal functions through bile secretion into the intestinal lumen. Alterations of intestinal microbiota seem to play an important role in induction and promotion of liver damage progression, in addition to direct injury resulting from different causal agents. Bacterial overgrowth, immune dysfunction, alteration of the luminal factors, and altered intestinal permeability are all involved in the pathogenesis of complications of liver cirrhosis, such as infections, hepatic encephalopathy, spontaneous bacterial peritonitis, and renal failure. Probiotics have been suggested as a useful integrative treatment of different types of chronic liver damage, for their ability to augment intestinal barrier function and prevent bacterial translocation. This review summarizes the main literature findings about the relationships between gut microbiota and chronic liver disease, both in the pathogenesis and in the treatment by probiotics of the liver damage. PMID:21163715

  9. Addicted? Reduced host resistance in populations with defensive symbionts.

    Science.gov (United States)

    Martinez, Julien; Cogni, Rodrigo; Cao, Chuan; Smith, Sophie; Illingworth, Christopher J R; Jiggins, Francis M

    2016-06-29

    Heritable symbionts that protect their hosts from pathogens have been described in a wide range of insect species. By reducing the incidence or severity of infection, these symbionts have the potential to reduce the strength of selection on genes in the insect genome that increase resistance. Therefore, the presence of such symbionts may slow down the evolution of resistance. Here we investigated this idea by exposing Drosophila melanogaster populations to infection with the pathogenic Drosophila C virus (DCV) in the presence or absence of Wolbachia, a heritable symbiont of arthropods that confers protection against viruses. After nine generations of selection, we found that resistance to DCV had increased in all populations. However, in the presence of Wolbachia the resistant allele of pastrel-a gene that has a major effect on resistance to DCV-was at a lower frequency than in the symbiont-free populations. This finding suggests that defensive symbionts have the potential to hamper the evolution of insect resistance genes, potentially leading to a state of evolutionary addiction where the genetically susceptible insect host mostly relies on its symbiont to fight pathogens. PMID:27335421

  10. The symbiont side of symbiosis: do microbes really benefit?

    Directory of Open Access Journals (Sweden)

    Justine Rebecca Garcia

    2014-09-01

    Full Text Available Microbial associations are integral to all eukaryotes. Mutualism, the interaction of two species for the benefit of both, is an important aspect of microbial associations, with evidence that multicellular organisms in particular benefit from microbes. However, the microbe’s perspective has largely been ignored, and it is unknown whether most microbial symbionts benefit from their associations with hosts. It has been presumed that microbial symbionts receive host-derived nutrients or a competition-free environment with reduced predation, but there have been few empirical tests, or even critical assessments, of these assumptions. We evaluate these hypotheses based on available evidence, which indicate reduced competition and predation are not universal benefits for symbionts. Some symbionts do receive nutrients from their host, but this has not always been linked to a corresponding increase in symbiont fitness. We recommend experiments to test symbiont fitness using current experimental systems of symbiosis and detail considerations for other systems. Incorporating symbiont fitness into symbiosis research will provide insight into the evolution of mutualistic interactions and cooperation in general.

  11. Addicted? Reduced host resistance in populations with defensive symbionts

    Science.gov (United States)

    Cogni, Rodrigo; Cao, Chuan; Smith, Sophie; Illingworth, Christopher J. R.; Jiggins, Francis M.

    2016-01-01

    Heritable symbionts that protect their hosts from pathogens have been described in a wide range of insect species. By reducing the incidence or severity of infection, these symbionts have the potential to reduce the strength of selection on genes in the insect genome that increase resistance. Therefore, the presence of such symbionts may slow down the evolution of resistance. Here we investigated this idea by exposing Drosophila melanogaster populations to infection with the pathogenic Drosophila C virus (DCV) in the presence or absence of Wolbachia, a heritable symbiont of arthropods that confers protection against viruses. After nine generations of selection, we found that resistance to DCV had increased in all populations. However, in the presence of Wolbachia the resistant allele of pastrel—a gene that has a major effect on resistance to DCV—was at a lower frequency than in the symbiont-free populations. This finding suggests that defensive symbionts have the potential to hamper the evolution of insect resistance genes, potentially leading to a state of evolutionary addiction where the genetically susceptible insect host mostly relies on its symbiont to fight pathogens. PMID:27335421

  12. Phylogenetic Diversity, Localization, and Cell Morphologies of Members of the Candidate Phylum TG3 and a Subphylum in the Phylum Fibrobacteres, Recently Discovered Bacterial Groups Dominant in Termite Guts▿ †

    Science.gov (United States)

    Hongoh, Yuichi; Deevong, Pinsurang; Hattori, Satoshi; Inoue, Tetsushi; Noda, Satoko; Noparatnaraporn, Napavarn; Kudo, Toshiaki; Ohkuma, Moriya

    2006-01-01

    Recently we discovered two novel, deeply branching lineages in the domain Bacteria from termite guts by PCR-based analyses of 16S rRNA (Y. Hongoh, P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn, and T. Kudo, Appl. Environ. Microbiol. 71:6590-6599, 2005). Here, we report on the specific detection of these bacteria, the candidate phylum TG3 (Termite Group 3) and a subphylum in the phylum Fibrobacteres, by fluorescence in situ hybridization in the guts of the wood-feeding termites Microcerotermes sp. and Nasutitermes takasagoensis. Both bacterial groups were detected almost exclusively from the luminal fluid of the dilated portion in the hindgut. Each accounted for approximately 10% of the total prokaryotic cells, constituting the second-most dominant groups in the whole-gut microbiota. The detected cells of both groups were in undulate or vibroid forms and apparently resembled small spirochetes. The cell sizes were 0.2 to 0.4 by 1.3 to 6.0 μm and 0.2 to 0.3 by 1.3 to 4.9 μm in the TG3 and Fibrobacteres, respectively. Using PCR screenings with specific primers, we found that both groups are distributed among various termites. The obtained clones formed monophyletic clusters that were delineated by the host genus rather than by the geographic distance, implying a robust association between these bacteria and host termites. TG3 clones were also obtained from a cockroach gut, lake sediment, rice paddy soil, and deep-sea sediments. Our results suggest that the TG3 and Fibrobacteres bacteria are autochthonous gut symbionts of various termites and that the TG3 members are also widely distributed among various other environments. PMID:17021231

  13. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae).

    Science.gov (United States)

    Kounatidis, Ilias; Crotti, Elena; Sapountzis, Panagiotis; Sacchi, Luciano; Rizzi, Aurora; Chouaia, Bessem; Bandi, Claudio; Alma, Alberto; Daffonchio, Daniele; Mavragani-Tsipidou, Penelope; Bourtzis, Kostas

    2009-05-01

    Following cultivation-dependent and -independent techniques, we investigated the microbiota associated with Bactrocera oleae, one of the major agricultural pests in olive-producing countries. Bacterial 16S rRNA gene libraries and ultrastructural analyses revealed the presence of several bacterial taxa associated with this insect, among which Acetobacter tropicalis was predominant. The recent increased detection of acetic acid bacteria as symbionts of other insect model organisms, such as Anopheles stephensi (G. Favia et al., Proc. Natl. Acad. Sci. USA 104:9047-9051, 2007) or Drosophila melanogaster (C. R. Cox and M. S. Gilmore, Infect. Immun. 75:1565-1576, 2007), prompted us to investigate the association established between A. tropicalis and B. oleae. Using an A. tropicalis-specific PCR assay, the symbiont was detected in all insects tested originating from laboratory stocks or field-collected from different locations in Greece. This acetic acid bacterium was successfully established in cell-free medium, and typing analyses, carried out on a collection of isolates, revealed that different A. tropicalis strains are present in fly populations. The capability to colonize and lodge in the digestive system of both larvae and adults and in Malpighian tubules of adults was demonstrated by using a strain labeled with a green fluorescent protein.

  14. Isolation and Identification of Cellulolytic Bacteria from the Gut of Three Phytophagus Insect Species

    Directory of Open Access Journals (Sweden)

    Rajib Kumar Shil

    2014-12-01

    Full Text Available The cellulolytic bacteria from the gut of three different phytophagous insects were studied to isolate novel cellulolytic organism for biofuel industry. Among the threse, gut of P. quatuordecimpunctata larvae contained both highest no of total bacterial count (6.8x107CFU/gut and cellulolytic bacteria (5.42x103CFU/gut. Fifteen different isolates were obtained from the gut of O. velox, A. miliarisand P. quatuordecimpunctata. All the isolates produced clear zone in CMC medium staining with Congo red. The isolates included Gram positive Enterococcus, Microbacterium and Gram negative Aeromonas, Erwinia, Serretia, Flavobacterium, Acenitobacter, Klebsiella, Yersinia, Xenorhabdus, Psedomonas and Photorhabdus. Out of the fifteen isolated and identified bacterial species, twelve bacterial species were novel being reported for first time as having cellulase activity.

  15. Systemic effects of gut microbiota and its relationship with disease and modulation

    OpenAIRE

    Ho, Jolie TK; Chan, Godfrey CF; Li, James CB

    2015-01-01

    The gut microbiota makes up the majority of the human bacterial population, and although the gut microbiota resides in the intestines, it is able to exert systemic effects. Therefore, many diseases and conditions could be impacted by the gut microbiota when its composition is imbalanced, otherwise known as dysbiosis. However, apart from understanding the illnesses, we must also try to understand the intestinal flora itself to move forward and develop potential treatments.

  16. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia

    OpenAIRE

    Schuijt, T. J.; Lankelma, J.M.; Scicluna, B.P.; Melo, E; Roelofs, J.J.; Boer, de, J.W.; Hoogendijk, A.J.; Beer, de, VHJ Vincent; De Vos; Belzer, C.; Poll, van der, T.; Wiersinga, W.J.

    2015-01-01

    OBJECTIVE: Pneumonia accounts for more deaths than any other infectious disease worldwide. The intestinal microbiota supports local mucosal immunity and is increasingly recognised as an important modulator of the systemic immune system. The precise role of the gut microbiota in bacterial pneumonia, however, is unknown. Here, we investigate the function of the gut microbiota in the host defence against Streptococcus pneumoniae infections. DESIGN: We depleted the gut microbiota in C57BL/6 mice ...

  17. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition

    Science.gov (United States)

    The bacterial component of the human gut microbiota undergoes a definable program of postnatal development. Evidence is accumulating that this program is disrupted in children with severe acute malnutrition (SAM) and that their persistent gut microbiota immaturity, which is not durably repaired with...

  18. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota

    NARCIS (Netherlands)

    Scanlan, P.D.; Stensvold, C.R.; Rajilic-Stojanovic, M.; Heilig, H.G.; Vos, de W.M.; O'Toole, P.W.; Cotter, P.D.

    2014-01-01

    To date, the majority of research into the human gut microbiota has focused on the bacterial fraction of the community. Inevitably, this has resulted in a poor understanding of the diversity and functionality of other intestinal microorganisms in the human gut. One such nonbacterial member is the mi

  19. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    Full Text Available BACKGROUND: Wolbachia infections confer protection for their insect hosts against a range of pathogens including bacteria, viruses, nematodes and the malaria parasite. A single mechanism that might explain this broad-based pathogen protection is immune priming, in which the presence of the symbiont upregulates the basal immune response, preparing the insect to defend against subsequent pathogen infection. A study that compared natural Wolbachia infections in Drosophila melanogaster with the mosquito vector Aedes aegypti artificially transinfected with the same strains has suggested that innate immune priming may only occur in recent host-Wolbachia associations. This same study also revealed that while immune priming may play a role in viral protection it cannot explain the entirety of the effect. METHODOLOGY/FINDINGS: Here we assess whether the level of innate immune priming induced by different Wolbachia strains in A. aegypti is correlated with the degree of protection conferred against bacterial pathogens. We show that Wolbachia strains wMel and wMelPop, currently being tested for field release for dengue biocontrol, differ in their protective abilities. The wMelPop strain provides stronger, more broad-based protection than wMel, and this is likely explained by both the higher induction of immune gene expression and the strain-specific activation of particular genes. We also show that Wolbachia densities themselves decline during pathogen infection, likely as a result of the immune induction. CONCLUSIONS/SIGNIFICANCE: This work shows a correlation between innate immune priming and bacterial protection phenotypes. The ability of the Toll pathway, melanisation and antimicrobial peptides to enhance viral protection or to provide the basis of malaria protection should be further explored in the context of this two-strain comparison. This work raises the questions of whether Wolbachia may improve the ability of wild mosquitoes to survive pathogen

  20. Pika Gut May Select for Rare but Diverse Environmental Bacteria

    Science.gov (United States)

    Li, Huan; Li, Tongtong; Yao, Minjie; Li, Jiabao; Zhang, Shiheng; Wirth, Stephan; Cao, Weidong; Lin, Qiang; Li, Xiangzhen

    2016-01-01

    The composition of the mammalian gut bacterial communities can be influenced by the introduction of environmental bacteria in their respective habitats. However, there are no extensive studies examining the interactions between environmental bacteriome and gut bacteriome in wild mammals. Here, we explored the relationship between the gut bacterial communities of pika (Ochotona spp.) and the related environmental bacteria across host species and altitudinal sites using 16S rRNA gene sequencing. Plateau pikas (O. curzoniae) and Daurian pikas (O. daurica) were sampled at five different sites, and plant and soil samples were collected at each site as well. Our data indicated that Plateau pikas and Daurian pikas had distinct bacterial communities. The pika, plant and soil bacterial communities were also distinct. Very little overlap occurred in the pika core bacteria and the most abundant environmental bacteria. The shared OTUs between pikas and environments were present in the environment at relatively low abundance, whereas they were affiliated with diverse bacterial taxa. These results suggested that the pika gut may mainly select for low-abundance but diverse environmental bacteria in a host species-specific manner. PMID:27582734

  1. Symbiont diversity may help coral reefs survive moderate climate change

    OpenAIRE

    Baskett, ML; Gaines, SD; Nisbet, RM

    2009-01-01

    Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without var...

  2. Magnetosome-containing bacteria living as symbionts of bivalves

    OpenAIRE

    Dufour, Suzanne C.; Laurich, Jason R; Batstone, Rebecca T; McCuaig, Bonita; Elliott, Alexander, 1983-; Poduska, Kristin M

    2014-01-01

    Bacteria containing magnetosomes (protein-bound nanoparticles of magnetite or greigite) are common to many sedimentary habitats, but have never been found before to live within another organism. Here, we show that octahedral inclusions in the extracellular symbionts of the marine bivalve Thyasira cf. gouldi contain iron, can exhibit magnetic contrast and are most likely magnetosomes. Based on 16S rRNA sequence analysis, T. cf. gouldi symbionts group with symbiotic and free-living sulfur-oxidi...

  3. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment

    Science.gov (United States)

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being. PMID:27416027

  4. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Directory of Open Access Journals (Sweden)

    Dragana Dobrijevic

    Full Text Available The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  5. Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Snyman, Maxi; Gupta, Arvind Kumar; Bezuidenhout, Cornelius Carlos; Claassens, Sarina; van den Berg, Johnnie

    2016-07-01

    Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a stemborer pest that attacks maize (Zea mays) throughout sub-Saharan Africa. Genetically modified maize has been shown to be effective against B. fusca. However, resistance of B. fusca against Bt-maize has developed and spread throughout South Africa. Previous studies suggested that gut microbiota contribute to mortality across a range of Lepidoptera. To fully assess the role of microbiota within the gut, it is essential to understand the microbiota harboured by natural B. fusca populations. This study aimed to identify the gut-associated bacteria by 16S rRNA gene sequencing. A total of 78 bacterial strains were characterised from the midgut of B. fusca larvae that were collected from 30 sites across the maize producing region of South Africa. Molecular phylogenetic analyses revealed bacteria affiliated to Proteobacteria, Actinobacteria, and Firmicutes. Taxonomic distribution placed these isolates into 15 different genera representing 20 species. The majority of bacteria identified belong to the genera Bacillus, Enterococcus, and Klebsiella. The B. fusca gut represents an intriguing and unexplored niche for analysing microbial ecology. The study could provide opportunities for developing new targets for pest management and contribute to understanding the phenomenon of resistance evolution of this species. PMID:27263010

  6. Gut ecosystem: how microbes help us.

    Science.gov (United States)

    Martín, R; Miquel, S; Ulmer, J; Langella, P; Bermúdez-Humarán, L G

    2014-09-01

    The human gut houses one of the most complex and abundant ecosystems composed of up to 1013-1014 microorganisms. Although the anthropocentric concept of life has concealed the function of microorganisms inside us, the important role of gut bacterial community in human health is well recognised today. Moreover, different microorganims, which are commonly present in a large diversity of food products, transit through our gut every day adding in some cases a beneficial effect to our health (probiotics). This crosstalk is concentrated mainly in the intestinal epithelium, where microbes provide the host with essential nutrients and modulation of the immune system. Furthermore, microorganisms also display antimicrobial activities maintaining a gut ecosystem stable. This review summarises some of the recent findings on the interaction of both commensal and probiotic bacteria with each other and with the host. The aim is to highlight the cooperative status found in healthy individuals as well as the importance of this crosstalk in the maintenance of human homeostasis. PMID:24583612

  7. Differential metabolism of Exopolysaccharides from probiotic Lactobacilli by the human gut symbiont Bacteroides thetaiotaomicron

    NARCIS (Netherlands)

    Lammerts van Bueren, Alica; Saraf, Aakanksha; Martens, Eric C; Dijkhuizen, Lubbert

    2015-01-01

    Probiotic microorganisms are ingested as food or supplements and impart positive health benefits to consumers. Previous studies have indicated that probiotics transiently reside in the gastrointestinal tract and in addition to modulating commensal species diversity, also increase the expression of g

  8. Draft Genome Sequence of Capniomyces stellatus, the Obligate Gut Fungal Symbiont of Stonefly.

    Science.gov (United States)

    Wang, Yan; White, Merlin M; Moncalvo, Jean-Marc

    2016-01-01

    Capniomyces stellatus is a host-specific endosymbiotic fungus, living in the hindgut of stoneflies (especially in Allocapnia). Here, we present the first draft genome sequence of the fungus, as well as the ab initio gene prediction and function analyses, which will facilitate the study and comparative analyses of insect-associated fungi. PMID:27491991

  9. Gut-Associated Bacteria of Dendroctonus valens and their Involvement in Verbenone Production.

    Science.gov (United States)

    Xu, Letian; Lou, Qiaozhe; Cheng, Chihang; Lu, Min; Sun, Jianghua

    2015-11-01

    Bark beetles are the most important mortality agent in coniferous forests, and pheromones play important roles in their management. Dendroctonus valens LeConte was introduced from North America to China and has killed millions of healthy pines there. Trapping with semiochemicals and pheromones was deployed in D. valens management in the last decade, but little is known about the ability of gut bacteria to produce the pheromone. In this study, we analyzed the volatiles in D. valens guts and frass after antibiotic treatment versus control. Then, we isolated and identified the bacteria in D. valens guts and frass, examined verbenone (a multifunctional pheromone of D. valens) production by 16 gut bacterial isolates from the precursor cis-verbenol at three concentrations, and further compared the cytotoxicities between the cis-verbenol and verbenone to the bacterial isolates. cis-Verbenol was not detected in the frass in the control group, but it was in the antibiotic treatment. The amount of verbenone was significantly suppressed in D. valens guts after antibiotic treatment versus control. Thirteen out of 16 gut bacterial isolates were capable of cis-verbenol to verbenone conversion, and cis-verbenol had stronger cytotoxicities than verbenone to all tested gut bacterial isolates. The bacterial species capable of verbenone production largely exists in D. valens guts and frass, suggesting that gut-associated bacteria may help the bark beetle produce the pheromone verbenone in guts and frass. The bacteria may benefit from the conversion due to the reduced cytotoxicity from the precursor to the beetle pheromone.

  10. The Kidney-Gut Axis: Implications for Nutrition Care.

    Science.gov (United States)

    Rossi, Megan; Johnson, David W; Campbell, Katrina L

    2015-09-01

    There is increasing clinical evidence that patients with chronic kidney disease (CKD) have a distinctly dysbiotic intestinal bacterial community, termed the gut microbiota, which in turn drives a cascade of metabolic abnormalities, including uremic toxin production, inflammation, and immunosuppression, that ultimately promotes progressive kidney failure and cardiovascular disease. As the gut microbiota is intimately influenced by diet, the discovery of the kidney-gut axis has created new therapeutic opportunities for nutritional intervention. This review discusses the metabolic pathways linking dysbiotic gut microbiota with adverse health outcomes in patients with CKD, as well as novel therapeutic strategies for targeting these pathways involving dietary protein, fiber, prebiotics, probiotics, and synbiotics. These emerging nutritional interventions may ultimately lead to a paradigm shift in the conventional focus of dietary management in CKD. PMID:25812908

  11. Disruption of gut homeostasis by opioids accelerates HIV disease progression

    Directory of Open Access Journals (Sweden)

    Jingjing eMeng

    2015-06-01

    Full Text Available Cumulative studies during the past 30 years have established the correlation between opioid abuse and human immunodeficiency virus (HIV infection. Further studies also demonstrate that opioid addiction is associated with faster progression to AIDS in patients. Recently, it was revealed that disruption of gut homeostasis and subsequent microbial translocation play important roles in pathological activation of the immune system during HIV infection and contributes to accelerated disease progression. Similarly, opioids have been shown to modulate gut immunity and induce gut bacterial translocation. This review will explore the mechanisms by which opioids accelerate HIV disease progression by disrupting gut homeostasis. Better understanding of these mechanisms will facilitate the search for new therapeutic interventions to treat HIV infection especially in opioid abusing population.

  12. Maternal group B Streptococcus and the infant gut microbiota.

    Science.gov (United States)

    Cassidy-Bushrow, A E; Sitarik, A; Levin, A M; Lynch, S V; Havstad, S; Ownby, D R; Johnson, C C; Wegienka, G

    2016-02-01

    Early patterns of gut colonization may predispose children to adult disease. Exposures in utero and during delivery are associated with the infant gut microbiome. Although ~35% of women carry group B strep (GBS; Streptococcus agalactiae) during pregnancy, it is unknown if GBS presence influences the infant gut microbiome. As part of a population-based, general risk birth cohort, stool specimens were collected from infant's diapers at research visits conducted at ~1 and 6 months of age. Using the Illumina MiSeq (San Diego, CA) platform, the V4 region of the bacterial 16S rRNA gene was sequenced. Infant gut bacterial community compositional differences by maternal GBS status were evaluated using permutational multivariate analysis of variance. Individual operational taxonomic units (OTUs) were tested using a zero-inflated negative binomial model. Data on maternal GBS and infant gut microbiota from either 1 (n=112) or 6-month-old stool (n=150) specimens was available on 262 maternal-child pairs. Eighty women (30.5%) were GBS+, of who 58 (72.5%) were given intrapartum antibiotics. After adjusting for maternal race, prenatal antifungal use and intrapartum antibiotics, maternal GBS status was statistically significantly associated with gut bacterial composition in the 6 month visit specimen (Canberra R 2=0.008, P=0.008; Unweighted UniFrac R 2=0.010, P=0.011). Individual OTU tests revealed that infants of GBS+ mothers were significantly enriched for specific members of the Clostridiaceae, Ruminococcoceae, and Enterococcaceae in the 6 month specimens compared with infants of GBS- mothers. Whether these taxonomic differences in infant gut microbiota at 6 months lead to differential predisposition for adult disease requires additional study. PMID:26264560

  13. Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions

    CERN Document Server

    Bertacchi, Daniela; Zucca, Fabio

    2009-01-01

    We introduce spatially explicit stochastic processes to model multispecies hostsymbiont interactions. The host environment is static, modeled by the infinite percolation cluster of site percolation. Symbionts evolve on the infinite cluster through contact or voter type interactions, where each host may be infected by a colony of symbionts. In the presence of a single symbiont species, the condition for invasion as a function of the density of the habitat of hosts and the maximal size of the colonies is investigated in details. In the presence of multiple symbiont species, it is proved that the community of symbionts clusters in two dimensions whereas symbiont species may coexist in higher dimensions.

  14. The Role of the Gut Microbiota in Childhood Obesity

    DEFF Research Database (Denmark)

    Pihl, Andreas Friis; Fonvig, Cilius Esmann; Stjernholm, Theresa;

    2016-01-01

    associated with obesity. METHODS: We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. RESULTS: The review discusses the potential role of the bacterial...

  15. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  16. Gut Microbiota-brain Axis

    Science.gov (United States)

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  17. Low levels of mitochondrial DNA and symbiont diversity in the worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Kapantaidaki, Despoina E; Ovčarenko, Irina; Fytrou, Natasa; Knott, K Emily; Bourtzis, Kostas; Tsagkarakou, Anastasia

    2015-01-01

    Trialeurodes vaporariorum, the greenhouse whitefly, is a cosmopolitan agricultural pest. Little is known about the genetic diversity of T. vaporariorum and the bacterial symbionts associated with this species. Here, we undertook a large phylogeographic study by investigating both the mitochondrial (mt) diversity and the infection status of 38 T. vaporariorum collections from 18 countries around the world. Genetic diversity of T. vaporariorum was studied by analyzing sequence data from the mt cytochrome oxidase I, cytochrome b, and NADH dehydrogenase subunit 5 genes. Maximum-likelihood (ML) phylogeny reconstruction delineated 2 clades characterized by limited sequence divergence: one clade comprised samples only from the Northern hemisphere whereas the other comprised samples from a broader geographical range. The presence of secondary symbionts was determined by PCR using primers specific for Hamiltonella, Rickettsia, Arsenophonus, Cardinium, Wolbachia, and Fritschea. Most individuals examined harbored at least one secondary endosymbiont, and Arsenophonus was detected in almost all male and female individuals. Wolbachia was present at a much lower frequency, and Cardinium was detected in only a few individuals from Greece. Rickettsia, Hamiltonella, and Fritschea were not found. Additionally, we set out to further analyze Arsenophonus diversity by multilocus sequence typing analysis; however, the Arsenophonus sequences did not exhibit any polymorphism. Our results revealed remarkably low diversity in both mtDNA and symbionts in this worldwide agricultural pest, contrasting sharply with that of the ecologically similar Bemisia tabaci.

  18. Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution

    Science.gov (United States)

    Faria, Vitor G.; Magalhães, Sara; Paulo, Tânia F.; Nolte, Viola; Schlötterer, Christian

    2016-01-01

    Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit. PMID:27684942

  19. Gut feeling is electric

    Science.gov (United States)

    Familoni, Jide

    2011-06-01

    Although "gut feeling" is a cliché in English parlance, there are neuro-physiological basis for registration of emotions in the gut. Control of the gastro-intestinal (GI) tract is by an integration of neuro-hormonal factors from the local myogenic to the central nervous system. Gastric contractile activity, which is responsible for the motor properties of the stomach, is regulated by this integrated complex. Signatures of the activity include gastric electrical activity (GEA) and bowel sounds. GEA has two distinct components: a high-frequency spike activity or post depolarization potential termed the electrical response activity superimposed on a lower frequency, rhythmic depolarization termed the control activity. These signatures are measured in the clinic with contact sensors and well understood for diagnosis of gut dysmotility. Can these signatures be measured at standoff and employed for purposes of biometrics, malintent and wellness assessment?

  20. Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome.

    Science.gov (United States)

    Chi, Liang; Bian, Xiaoming; Gao, Bei; Ru, Hongyu; Tu, Pengcheng; Lu, Kun

    2016-06-20

    The gut microbiome is deeply involved in numerous aspects of human health; however, it can be readily perturbed by environmental toxicants, such as arsenic. Meanwhile, the interaction among host, gut microbiome, and xenobiotics is a very complex dynamic process. Previously, we have demonstrated that gut microbiome phenotypes driven by host genetics and bacterial infection affect the responses to arsenic exposure. The role of host sex in shaping the gut microbiome raises the question whether sex plays a role in exposure-induced microbiome responses. To examine this, we used 16S rRNA sequencing and metagenomics sequencing to analyze the changes of the gut microbiome and its associated functional metagenome in both female and male C57/BL6 mice. Our results clearly demonstrated that arsenic exposure perturbed the trajectory and function of the gut microbiome in a sex-specific manner. PMID:27268458

  1. Bacteria from diverse habitats colonize and compete in the mouse gut.

    Science.gov (United States)

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-01

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics.

  2. Gut Microbiota and Extreme Longevity.

    Science.gov (United States)

    Biagi, Elena; Franceschi, Claudio; Rampelli, Simone; Severgnini, Marco; Ostan, Rita; Turroni, Silvia; Consolandi, Clarissa; Quercia, Sara; Scurti, Maria; Monti, Daniela; Capri, Miriam; Brigidi, Patrizia; Candela, Marco

    2016-06-01

    The study of the extreme limits of human lifespan may allow a better understanding of how human beings can escape, delay, or survive the most frequent age-related causes of morbidity, a peculiarity shown by long-living individuals. Longevity is a complex trait in which genetics, environment, and stochasticity concur to determine the chance to reach 100 or more years of age [1]. Because of its impact on human metabolism and immunology, the gut microbiome has been proposed as a possible determinant of healthy aging [2, 3]. Indeed, the preservation of host-microbes homeostasis can counteract inflammaging [4], intestinal permeability [5], and decline in bone and cognitive health [6, 7]. Aiming at deepening our knowledge on the relationship between the gut microbiota and a long-living host, we provide for the first time the phylogenetic microbiota analysis of semi-supercentenarians, i.e., 105-109 years old, in comparison to adults, elderly, and centenarians, thus reconstructing the longest available human microbiota trajectory along aging. We highlighted the presence of a core microbiota of highly occurring, symbiotic bacterial taxa (mostly belonging to the dominant Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae families), with a cumulative abundance decreasing along with age. Aging is characterized by an increasing abundance of subdominant species, as well as a rearrangement in their co-occurrence network. These features are maintained in longevity and extreme longevity, but peculiarities emerged, especially in semi-supercentenarians, describing changes that, even accommodating opportunistic and allochthonous bacteria, might possibly support health maintenance during aging, such as an enrichment and/or higher prevalence of health-associated groups (e.g., Akkermansia, Bifidobacterium, and Christensenellaceae). PMID:27185560

  3. Hot topics in gut microbiota

    OpenAIRE

    Doré, Joël; Simrén, Magnus; Buttle, Lisa; Guarner, Francisco

    2013-01-01

    The study of gut microbiota is a rapidly moving field of research, and the impact of gut microbial communities on human health is widely perceived as one of the most exciting advancements in biomedicine in recent years. The gut microbiota plays a key role in digestion, metabolism and immune function, and has widespread impact beyond the gastrointestinal tract. Changes in the biodiversity of the gut microbiota are associated with far reaching consequences on host health and development. Furthe...

  4. Microbial communities associated with the larval gut and eggs of the Western corn rootworm.

    Directory of Open Access Journals (Sweden)

    Flavia Dematheis

    Full Text Available BACKGROUND: The western corn rootworm (WCR is one of the economically most important pests of maize. A better understanding of microbial communities associated with guts and eggs of the WCR is required in order to develop new pest control strategies, and to assess the potential role of the WCR in the dissemination of microorganisms, e.g., mycotoxin-producing fungi. METHODOLOGY/PRINCIPAL FINDINGS: Total community (TC DNA was extracted from maize rhizosphere, WCR eggs, and guts of larvae feeding on maize roots grown in three different soil types. Denaturing gradient gel electrophoresis (DGGE and sequencing of 16S rRNA gene and ITS fragments, PCR-amplified from TC DNA, were used to investigate the fungal and bacterial communities, respectively. Microorganisms in the WCR gut were not influenced by the soil type. Dominant fungal populations in the gut were affiliated to Fusarium spp., while Wolbachia was the most abundant bacterial genus. Identical ribosomal sequences from gut and egg samples confirmed a transovarial transmission of Wolbachia sp. Betaproteobacterial DGGE indicated a stable association of Herbaspirillum sp. with the WCR gut. Dominant egg-associated microorganisms were the bacterium Wolbachia sp. and the fungus Mortierella gamsii. CONCLUSION/SIGNIFICANCE: The soil type-independent composition of the microbial communities in the WCR gut and the dominance of only a few microbial populations suggested either a highly selective environment in the gut lumen or a high abundance of intracellular microorganisms in the gut epithelium. The dominance of Fusarium species in the guts indicated WCR larvae as vectors of mycotoxin-producing fungi. The stable association of Herbaspirillum sp. with WCR gut systems and the absence of corresponding sequences in WCR eggs suggested that this bacterium was postnatally acquired from the environment. The present study provided new insights into the microbial communities associated with larval guts and eggs of

  5. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes.

    Science.gov (United States)

    Zhang, Chenhong; Derrien, Muriel; Levenez, Florence; Brazeilles, Rémi; Ballal, Sonia A; Kim, Jason; Degivry, Marie-Christine; Quéré, Gaëlle; Garault, Peggy; van Hylckama Vlieg, Johan E T; Garrett, Wendy S; Doré, Joël; Veiga, Patrick

    2016-09-01

    Resident gut microbes co-exist with transient bacteria to form the gut microbiota. Despite increasing evidence suggesting a role for transient microbes on gut microbiota function, the interplay between resident and transient members of this microbial community is poorly defined. We aimed to determine the extent to which a host's autochthonous gut microbiota influences niche permissivity to transient bacteria using a fermented milk product (FMP) as a vehicle for five food-borne bacterial strains. Using conventional and gnotobiotic rats and gut microbiome analyses (16S rRNA genes pyrosequencing and reverse transcription qPCR), we demonstrated that the clearance kinetics of one FMP bacterium, Lactococcus lactis CNCM I-1631, were dependent on the structure of the resident gut microbiota. Susceptibility of the resident gut microbiota to modulation by FMP intervention correlated with increased persistence of L. lactis. We also observed gut microbiome configurations that were associated with altered stability upon exposure to transient bacteria. Our study supports the concept that allochthonous bacteria have transient and subject-specific effects on the gut microbiome that can be leveraged to re-engineer the gut microbiome and improve dysbiosis-related diseases. PMID:26953599

  6. Mosquito C-type lectins maintain gut microbiome homeostasis.

    Science.gov (United States)

    Pang, Xiaojing; Xiao, Xiaoping; Liu, Yang; Zhang, Rudian; Liu, Jianying; Liu, Qiyong; Wang, Penghua; Cheng, Gong

    2016-01-01

    The long-term evolutionary interaction between the host immune system and symbiotic bacteria determines their cooperative rather than antagonistic relationship. It is known that commensal bacteria have evolved a number of mechanisms to manipulate the mammalian host immune system and maintain homeostasis. However, the strategies employed by the microbiome to overcome host immune responses in invertebrates still remain to be understood. Here, we report that the gut microbiome in mosquitoes utilizes C-type lectins (mosGCTLs) to evade the bactericidal capacity of antimicrobial peptides (AMPs). Aedes aegypti mosGCTLs facilitate colonization by multiple bacterial strains. Furthermore, maintenance of the gut microbial flora relies on the expression of mosGCTLs in A. aegypti. Silencing the orthologues of mosGCTL in another major mosquito vector (Culex pipiens pallens) also impairs the survival of gut commensal bacteria. The gut microbiome stimulates the expression of mosGCTLs, which coat the bacterial surface and counteract AMP activity. Our study describes a mechanism by which the insect symbiotic microbiome offsets gut immunity to achieve homeostasis. PMID:27572642

  7. Different Flavonoids Can Shape Unique Gut Microbiota Profile In Vitro.

    Science.gov (United States)

    Huang, Jiacheng; Chen, Long; Xue, Bin; Liu, Qianyue; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2016-09-01

    The impact of flavonoids has been discussed on the relative viability of bacterial groups in human microbiota. This study was aimed to compare the modulation of various flavonoids, including quercetin, catechin and puerarin, on gut microbiota culture in vitro, and analyze the interactions between bacterial species using fructo-oligosaccharide (FOS) as carbon source under the stress of flavonoids. Three plant flavonoids, quercetin, catechin, and puerarin, were added into multispecies culture to ferment for 24 h, respectively. The bacterial 16S rDNA amplicons were sequenced, and the composition of microbiota community was analyzed. The results revealed that the tested flavonoids, quercetin, catechin, and puerarin, presented different activities of regulating gut microbiota; flavonoid aglycones, but not glycosides, may inhibit growth of certain species. Quercetin and catechin shaped unique biological webs. Bifidobacterium spp. was the center of the biological web constructed in this study.

  8. Metagenomic Analysis of the Medicinal Leech Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Michele A Maltz

    2014-04-01

    Full Text Available There are trillions of microbes found throughout the human body and they exceed the number of eukaryotic cells by ten-fold. Metagenomic studies have revealed that the majority of these microbes are found within the gut, playing an important role in the host’s digestion and nutrition. The complexity of the animal digestive tract, unculturable microbes and the lack of genetic tools for most culturable microbes make it challenging to explore the nature of theses microbial interactions within this niche. The medicinal leech, Hirudo verbana, has been shown to be a useful tool in overcoming these challenges, due to the simplicity of the microbiome and the availability of genetic tools for one of the two dominant gut symbionts, Aeromonas veronii. In this study, we utilize 16S rRNA gene pyrosequencing to further explore the microbial composition of the leech digestive tract, confirming the dominance of two taxa, the Rikenella-like bacterium and A. veronii. The deep sequencing approach revealed the presence of additional members of the microbial community that suggests the presence of a moderately complex microbial community with a richness of 36 taxa. The presence of a Proteus strain as a newly identified resident in the leech crop was confirmed using fluorescence in situ hybridization (FISH. The metagenome of this community was also pyrosequenced and the contigs were binned into the following taxonomic groups: Rikenella-like (3.1 MB, Aeromonas (4.5 MB, Proteus (2.9 MB, Clostridium (1.8 MB, Eryspelothrix (0.96 MB, Desulfovibrio (0.14 MB and Fusobacterium (0.27 MB. Functional analyses on the leech gut symbionts were explored using the metagenomic data and MG-RAST. A comparison of the COG and KEGG categories of the leech gut metagenome to that of other animal digestive-tract microbiomes revealed that the leech digestive-tract had a similar metabolic potential to the human digestive-tract, supporting the usefulness of this system as a model for studying

  9. Investigations on abundance and activity of microbial sponge symbionts using quantitative real - time PCR

    DEFF Research Database (Denmark)

    Kumala, Lars; Hentschel, Ute; Bayer, Kristina

    the host. Of particular interest is determining the community structure and function of microbial symbionts in order to gain deeper insight into host-symbiont interactions. We investigated the abundance and activity of microbial symbionts in two Mediterranean sponge species using quantitative real-time PCR...

  10. Influence of CH4 and H2S availability on symbiont distribution, carbon assimilation and transfer in the dual symbiotic vent mussel Bathymodiolus azoricus

    Directory of Open Access Journals (Sweden)

    R. S. Santos

    2008-12-01

    Full Text Available High densities of mussels of the genus Bathymodiolus are present at hydrothermal vents of the Mid-Atlantic Ridge. It was previously proposed that the chemistry at vent sites would affect their sulphide- and methane-oxidizing endosymbionts' abundance. In this study, we confirmed the latter assumption using fluorescence in situ hybridization on Bathymodiolus azoricus specimens maintained in a controlled laboratory environment at atmospheric pressure with one, both or none of the chemical substrates. A high level of symbiosis plasticity was observed, methane-oxidizers occupying between 4 and 39% of total bacterial area and both symbionts developing according to the presence or absence of their substrates. Using H13CO3− in the presence of sulphide, or 13CH4, we monitored carbon assimilation by the endosymbionts and its translocation to symbiont-free mussel tissues. Carbon was incorporated from methane and sulphide-oxidized inorganic carbon at rates 3 to 10 times slower in the host muscle tissue than in the symbiont-containing gill tissue. Both symbionts thus contribute actively to B. azoricus nutrition and adapt to the availability of their substrates. Further experiments with varying substrate concentrations using the same set-up should provide useful tools to study and even model the effects of changes in hydrothermal fluids on B. azoricus' chemosynthetic nutrition.

  11. Philosophy with Guts

    Science.gov (United States)

    Sherman, Robert R.

    2014-01-01

    Western philosophy, from Plato on, has had the tendency to separate feeling and thought, affect and cognition. This article argues that a strong philosophy (metaphorically, with "guts") utilizes both in its work. In fact, a "complete act of thought" also will include action. Feeling motivates thought, which formulates ideas,…

  12. Healthy human gut phageome

    NARCIS (Netherlands)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; Oost, van der John; Vos, de Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of hu

  13. The Gut Microbiota and Irritable Bowel Syndrome: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Uday C. Ghoshal

    2012-01-01

    Full Text Available Progress in the understanding of the pathophysiology of irritable bowel syndrome (IBS, once thought to be a purely psychosomatic disease, has advanced considerably and low-grade inflammation and changes in the gut microbiota now feature as potentially important. The human gut harbours a huge microbial ecosystem, which is equipped to perform a variety of functions such as digestion of food, metabolism of drugs, detoxification of toxic compounds, production of essential vitamins, prevention of attachment of pathogenic bacteria to the gut wall, and maintenance of homeostasis in the gastrointestinal tract. A subset of patients with IBS may have a quantitative increase in bacteria in the small bowel (small intestinal bacterial overgrowth. Qualitative changes in gut microbiota have also been associated with IBS. Targeting the gut microbiota using probiotics and antibiotics has emerged as a potentially effective approach to the treatment of this, hitherto enigmatic, functional bowel disorder. The gut microbiota in health, quantitative and qualitative microbiota changes, and therapeutic manipulations targeting the microbiota in patients with IBS are reviewed in this paper.

  14. [Irritable Bowel Syndrome, Emotion Regulation, and Gut Microbiota].

    Science.gov (United States)

    Fukudo, Shin

    2016-06-01

    Irritable bowel syndrome (IBS) is defined as a representative functional gastrointestinal disorder which is characterized by chronic or recurrent abdominal pain and/or abdominal discomfort associated with abnormal bowel movement. Gut microbiota are related to the pathophysiology of IBS. In the field of IBS, post-infectious etiology, stress-induced alteration of microbiota, increased mucosal permeability, bacterial overgrowth, disease-specific microbiota, microbial products, and brain-gut interactions are being investigated. In some individuals, IBS develops after recovery from acute gastroenteritis known as post-infectious IBS. Gut microbiota in IBS patients differ from those in healthy individuals, and the profiles of gut microbiota in IBS patients also vary among IBS patients with constipation, diarrhea, and mixed subtypes. In Japan, gut microbiota in IBS patients also differ from those observed in healthy individuals, and organic acid by-products observed in the patients correlated with symptoms, quality of life, and alexithymia. Further research on gut microbiota in IBS patients is warranted. PMID:27279158

  15. Microbial symbionts in insects influence down-regulation of defense genes in maize.

    Directory of Open Access Journals (Sweden)

    Kelli L Barr

    Full Text Available Diabrotica virgifera virgifera larvae are root-feeding insects and significant pests to maize in North America and Europe. Little is known regarding how plants respond to insect attack of roots, thus complicating the selection for plant defense targets. Diabrotica virgifera virgifera is the most successful species in its genus and is the only Diabrotica beetle harboring an almost species-wide Wolbachia infection. Diabrotica virgifera virgifera are infected with Wolbachia and the typical gut flora found in soil-living, phytophagous insects. Diabrotica virgifera virgifera larvae cannot be reared aseptically and thus, it is not possible to observe the response of maize to effects of insect gut flora or other transient microbes. Because Wolbachia are heritable, it is possible to investigate whether Wolbachia infection affects the regulation of maize defenses. To answer if the success of Diabrotica virgifera virgifera is the result of microbial infection, Diabrotica virgifera virgifera were treated with antibiotics to eliminate Wolbachia and a microarray experiment was performed. Direct comparisons made between the response of maize root tissue to the feeding of antibiotic treated and untreated Diabrotica virgifera virgifera show down-regulation of plant defenses in the untreated insects compared to the antibiotic treated and control treatments. Results were confirmed via QRT-PCR. Biological and behavioral assays indicate that microbes have integrated into Diabrotica virgifera virgifera physiology without inducing negative effects and that antibiotic treatment did not affect the behavior or biology of the insect. The expression data and suggest that the pressure of microbes, which are most likely Wolbachia, mediate the down-regulation of many maize defenses via their insect hosts. This is the first report of a potential link between a microbial symbiont of an insect and a silencing effect in the insect host plant. This is also the first expression

  16. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases.

    Science.gov (United States)

    Ghaisas, Shivani; Maher, Joshua; Kanthasamy, Anumantha

    2016-02-01

    The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer's and Parkinson's diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies.

  17. Metabolomic applications to decipher gut microbial metabolic influence in health and disease

    Directory of Open Access Journals (Sweden)

    Francois-Pierre eMartin

    2012-04-01

    Full Text Available Dietary preferences and nutrients composition have been shown to influence human and gut microbial metabolism, which ultimately has specific effects on health and diseases’ risk. Increasingly, results from molecular biology and microbiology demonstrate the key role of the gut microbiota metabolic interface to the overall mammalian host’s health status. There is therefore raising interest in nutrition research to characterize the molecular foundations of the gut microbial mammalian cross-talk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology approaches, such as metabolomics, to underpin the highly complex metabolic exchanges between diverse biological compartments, including organs, systemic biofluids and microbial symbionts. By the development of specific biomarkers for prediction of health and disease, metabolomics is increasingly used in clinical applications as regard to disease aetiology, diagnostic stratification and potentially mechanism of action of therapeutical and nutraceutical solutions. Surprisingly, an increasing number of metabolomics investigations in pre-clinical and clinical studies based on proton nuclear magnetic resonance (1H NMR spectroscopy and mass spectrometry (MS provided compelling evidence that system wide and organ-specific biochemical processes are under the influence of gut microbial metabolism. This review aims at describing recent applications of metabolomics in clinical fields where main objective is to discern the biochemical mechanisms under the influence of the gut microbiota, with insight into gastrointestinal health and diseases diagnostics and improvement of homeostasis metabolic regulation.

  18. Part 1: The Human Gut Microbiome in Health and Disease

    OpenAIRE

    Bull, Matthew J.; Plummer, Nigel T.

    2014-01-01

    The bacterial cells harbored within the human gastrointestinal tract (GIT) outnumber the host’s cells by a factor of 10 and the genes encoded by the bacteria resident within the GIT outnumber their host’s genes by more than 100 times. These human digestive-tract associated microbes are referred to as the gut microbiome. The human gut microbiome and its role in both health and disease has been the subject of extensive research, establishing its involvement in human metabolism, nutrition, physi...

  19. MICROBIOTA AND GUT-LIVER AXIS: A MINI-REVIEW ON THEIR INFLUENCES ON OBESITY AND OBESITY RELATED LIVER DISEASE

    OpenAIRE

    Vajro, Pietro; Paolella, Giulia; Fasano, Alessio

    2013-01-01

    A specific bacterial gut microbiota profile with increased extraction of calories has recently been associated with obesity, which has been shown to be a transmissible phenotype by microbiota transplantation. At the same time, there is now increasing evidence that gut microbiota plays a role in the development of hepatic steatosis and its progression to non-alcoholic steatohepatitis, as well.

  20. Gut Low Density Array (GULDA), a novel qPCR approach to the study of the intestinal microbial ecosystem

    DEFF Research Database (Denmark)

    Bergström, Anders; Andersen, Jens Bo; Licht, Tine Rask

    Causal relationships between the vast numbers of bacterial species present in the human intestines contain a lot of potential information on the regulation of the gut in the healthy as well as in diseased states. Based on the hypothesis that the human gut microbiota constitutes a dynamic ecosystem...

  1. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae.

    Directory of Open Access Journals (Sweden)

    Xiaoshu Tang

    Full Text Available BACKGROUND: The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood. METHODS/PRINCIPAL FINDINGS: To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes. CONCLUSIONS: Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.

  2. Chemotypic diversity of epichloae, fungal symbionts of grasses

    Science.gov (United States)

    The epichloid fungi - comprising sexual Epichlo€e species and asexual Neotyphodium species - are symbionts of cool-season grasses (subfamily Po€oideae), mostly vertically transmissible (seedborne), and well known for production of anti-herbivore alkaloids. Four classes of alkaloids are known to be p...

  3. Defensive insect symbiont leads to cascading extinctions and community collapse

    NARCIS (Netherlands)

    Sanders, Dirk; Kehoe, Rachel; Veen, van F.J.F.; McLean, Ailsa; Godfray, H.C.J.; Dicke, Marcel; Gols, Rieta; Frago, Enric

    2016-01-01

    Animals often engage in mutualistic associations with microorganisms that protect them from predation, parasitism or pathogen infection. Studies of these interactions in insects have mostly focussed on the direct effects of symbiont infection on natural enemies without studying community-wide eff

  4. Highly infectious symbiont dominates initial uptake in coral juveniles.

    Science.gov (United States)

    Abrego, David; VAN Oppen, Madeleine J H; Willis, Bette L

    2009-08-01

    The majority of reef-building corals acquire their obligate algal symbionts (Symbiodinium) from the environment. However, factors shaping the initial establishment of coral-algal symbioses, including parental effects, local environmental conditions and local availability of symbionts, are not well understood. This study monitored the uptake and maintenance of Symbiodinium in juveniles of two common corals, Acropora tenuis and Acropora millepora, that were reciprocally explanted between sites where adult colonies host different types of Symbiodinium. We found that coral juveniles were rapidly dominated by type D Symbiodinium, even though this type is not found in adult colonies (including the parental colonies) in four out of the five study populations. Furthermore, type D Symbiodinium was found in less than one-third of a wide range of coral species (n > 50) sampled at the two main study sites, suggesting that its dominance in the acroporid juveniles is not because it is the most abundant local endosymbiotic type. Moreover, dominance by type D was observed irrespective of the light intensity to which juveniles were exposed in a field study. In summary, despite its relatively low abundance in coral assemblages at the study sites and irrespective of the surrounding light environment, type D Symbiodinium is the main symbiont type initially acquired by juveniles of A. millepora and A. tenuis. We conclude that during early ontogeny in these corals, there are few barriers to the uptake of Symbiodinium types which differ from those found in parental colonies, resulting in dominance by a highly infectious and potentially opportunistic symbiont.

  5. Strain-level dissection of the contribution of the gut microbiome to human metabolic disease.

    Science.gov (United States)

    Zhang, Chenhong; Zhao, Liping

    2016-04-20

    The gut microbiota has been linked with metabolic diseases in humans, but demonstration of causality remains a challenge. The gut microbiota, as a complex microbial ecosystem, consists of hundreds of individual bacterial species, each of which contains many strains with high genetic diversity. Recent advances in genomic and metabolomic technologies are facilitating strain-level dissection of the contribution of the gut microbiome to metabolic diseases. Interventional studies and correlation analysis between variations in the microbiome and metabolome, captured by longitudinal sampling, can lead to the identification of specific bacterial strains that may contribute to human metabolic diseases via the production of bioactive metabolites. For example, high-quality draft genomes of prevalent gut bacterial strains can be assembled directly from metagenomic datasets using a canopy-based algorithm. Specific metabolites associated with a disease phenotype can be identified by nuclear magnetic resonance-based metabolomics of urine and other samples. Such multi-omics approaches can be employed to identify specific gut bacterial genomes that are not only correlated with detected metabolites but also encode the genes required for producing the precursors of those metabolites in the gut. Here, we argue that if a causative role can be demonstrated in follow-up mechanistic studies--for example, using gnotobiotic models--such functional strains have the potential to become biomarkers for diagnostics and targets for therapeutics.

  6. Cryptic diversity and symbiont interactions in rock-posy lichens.

    Science.gov (United States)

    Leavitt, Steven D; Kraichak, Ekaphan; Vondrak, Jan; Nelsen, Matthew P; Sohrabi, Mohammad; Perez-Ortega, Sergio; St Clair, Larry L; Lumbsch, H Thorsten

    2016-06-01

    Identifying factors that influence species interactions is central to research in symbiotic systems. While lichens represent iconic models of symbiosis and play important roles in understanding the biology of symbiotic interactions, patterns of interactions in lichen symbionts and mechanisms governing these relationships are not well characterized. This is due, in part to the fact that current taxonomic approaches for recognizing diversity in lichen symbionts commonly fail to accurately reflect actual species diversity. In this study, we employed DNA-based approaches to circumscribed candidate species-level lineages in rock-posy lichen symbionts (mycobiont=Rhizoplaca s. lat. species; photobiont=Trebouxia species). Our results revealed a high degree of cryptic diversity in both the myco- and photobionts in these lichens. Using the candidate species circumscribed here, we investigated the specificity of the symbionts toward their partners and inferred the relative importance of various factors influencing symbiont interactions. Distinct mycobiont species complexes, ecozones, and biomes are significantly correlated with the occurrence of photobiont OTUs, indicating that complex interactions among mycobiont lineages, ecogeography, and microhabitat determine interactions between photobionts and their mycobionts in lichen symbiosis. One-to-one specificity between mycobiont and photobiont species was not found, with the exception of R. maheui that associated with a single Trebouxia OTU that was not found with other Rhizoplaca s. lat. species. We estimated the most recent common ancestor of the core Rhizoplaca group at c. 62.5Ma, similar in age to the diverse parmelioid core group in the well-studied family Parmeliaceae. However, in contrast to Parmeliaceae, species in Rhizoplaca were found to associate with a narrow range of photobionts. Our study provides important perspectives into species diversity and interactions in iconic lichen symbiotic systems and establishes a

  7. Cryptic diversity and symbiont interactions in rock-posy lichens.

    Science.gov (United States)

    Leavitt, Steven D; Kraichak, Ekaphan; Vondrak, Jan; Nelsen, Matthew P; Sohrabi, Mohammad; Perez-Ortega, Sergio; St Clair, Larry L; Lumbsch, H Thorsten

    2016-06-01

    Identifying factors that influence species interactions is central to research in symbiotic systems. While lichens represent iconic models of symbiosis and play important roles in understanding the biology of symbiotic interactions, patterns of interactions in lichen symbionts and mechanisms governing these relationships are not well characterized. This is due, in part to the fact that current taxonomic approaches for recognizing diversity in lichen symbionts commonly fail to accurately reflect actual species diversity. In this study, we employed DNA-based approaches to circumscribed candidate species-level lineages in rock-posy lichen symbionts (mycobiont=Rhizoplaca s. lat. species; photobiont=Trebouxia species). Our results revealed a high degree of cryptic diversity in both the myco- and photobionts in these lichens. Using the candidate species circumscribed here, we investigated the specificity of the symbionts toward their partners and inferred the relative importance of various factors influencing symbiont interactions. Distinct mycobiont species complexes, ecozones, and biomes are significantly correlated with the occurrence of photobiont OTUs, indicating that complex interactions among mycobiont lineages, ecogeography, and microhabitat determine interactions between photobionts and their mycobionts in lichen symbiosis. One-to-one specificity between mycobiont and photobiont species was not found, with the exception of R. maheui that associated with a single Trebouxia OTU that was not found with other Rhizoplaca s. lat. species. We estimated the most recent common ancestor of the core Rhizoplaca group at c. 62.5Ma, similar in age to the diverse parmelioid core group in the well-studied family Parmeliaceae. However, in contrast to Parmeliaceae, species in Rhizoplaca were found to associate with a narrow range of photobionts. Our study provides important perspectives into species diversity and interactions in iconic lichen symbiotic systems and establishes a

  8. Human gut microbiota: does diet matter?

    Science.gov (United States)

    Maukonen, Johanna; Saarela, Maria

    2015-02-01

    The human oro-gastrointestinal (GI) tract is a complex system, consisting of oral cavity, pharynx, oesophagus, stomach, small intestine, large intestine, rectum and anus, which all together with the accessory digestive organs constitute the digestive system. The function of the digestive system is to break down dietary constituents into small molecules and then absorb these for subsequent distribution throughout the body. Besides digestion and carbohydrate metabolism, the indigenous microbiota has an important influence on host physiological, nutritional and immunological processes, and commensal bacteria are able to modulate the expression of host genes that regulate diverse and fundamental physiological functions. The main external factors that can affect the composition of the microbial community in generally healthy adults include major dietary changes and antibiotic therapy. Changes in some selected bacterial groups have been observed due to controlled changes to the normal diet e.g. high-protein diet, high-fat diet, prebiotics, probiotics and polyphenols. More specifically, changes in the type and quantity of non-digestible carbohydrates in the human diet influence both the metabolic products formed in the lower regions of the GI tract and the bacterial populations detected in faeces. The interactions between dietary factors, gut microbiota and host metabolism are increasingly demonstrated to be important for maintaining homeostasis and health. Therefore the aim of this review is to summarise the effect of diet, and especially dietary interventions, on the human gut microbiota. Furthermore, the most important confounding factors (methodologies used and intrinsic human factors) in relation to gut microbiota analyses are elucidated. PMID:25156389

  9. Endocannabinoids in the Gut

    Science.gov (United States)

    DiPatrizio, Nicholas V.

    2016-01-01

    Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract. The discovery of our bodies’ own “cannabis-like molecules” and associated receptors and metabolic machinery – collectively called the endocannabinoid system – enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease. Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system. This review highlights research that reveals an important – and at times surprising – role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota.

  10. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands.

    Science.gov (United States)

    Jones, Ryan T; Bressan, Alberto; Greenwell, April M; Fierer, Noah

    2011-12-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants. PMID:21965398

  11. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals.

    Directory of Open Access Journals (Sweden)

    Mary Alice Coffroth

    Full Text Available BACKGROUND: Coral reefs worldwide are in decline. Much of the mortality can be attributed to coral bleaching (loss of the coral's intracellular photosynthetic algal symbiont associated with global warming. How corals will respond to increasing oceanic temperatures has been an area of extensive study and debate. Recovery after a bleaching event is dependent on regaining symbionts, but the source of repopulating symbionts is poorly understood. Possibilities include recovery from the proliferation of endogenous symbionts or recovery by uptake of exogenous stress-tolerant symbionts. METHODOLOGY/PRINCIPAL FINDINGS: To test one of these possibilities, the ability of corals to acquire exogenous symbionts, bleached colonies of Porites divaricata were exposed to symbiont types not normally found within this coral and symbiont acquisition was monitored. After three weeks exposure to exogenous symbionts, these novel symbionts were detected in some of the recovering corals, providing the first experimental evidence that scleractinian corals are capable of temporarily acquiring symbionts from the water column after bleaching. However, the acquisition was transient, indicating that the new symbioses were unstable. Only those symbiont types present before bleaching were stable upon recovery, demonstrating that recovery was from the resident in situ symbiont populations. CONCLUSIONS/SIGNIFICANCE: These findings suggest that some corals do not have the ability to adjust to climate warming by acquiring and maintaining exogenous, more stress-tolerant symbionts. This has serious ramifications for the success of coral reefs and surrounding ecosystems and suggests that unless actions are taken to reverse it, climate change will lead to decreases in biodiversity and a loss of coral reefs.

  12. Human gut microbes impact host serum metabolome and insulin sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn;

    2016-01-01

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individ......Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin......-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus...

  13. Diet, Gut Microbiota and Obesity

    Directory of Open Access Journals (Sweden)

    Hongjie Li and Chuanxian Wei

    2015-09-01

    Full Text Available Increasing evidence suggests that alteration of gut microbiota ('dysbiosis' can lead to a number of diseases, including obesity, which affects a large population in the world and is now a global health issue. The mechanisms of gut microbiota-mediated obesity are just being explored and characterized in recent years. It has been suggested that dysbiosis of gut microbiota contributes to obesity development mainly in three ways: affecting energy harvest, altering host gene expression, and triggering chronic inflammation. Among the factors that determine and influence gut microbiota composition, diet is one of the best characterized in human and animal studies, and has been long linked with weight gain or loss. In this review, we will discuss recent advances of mechanisms through which gut microbiota dysbiosis leads to obesity. We will further discuss the underlying causes of obesity-related gut microbiota, highlighting dietary effects.

  14. Effect of Epidermal Growth Factor and Glutamine-Supplemented Toal Parenteral Nutrition on Gut Barrier and Bacterial Translocation%表皮生长因子、谷氨酰胺强化的全胃肠外营养 对肠屏障功能和肠细菌移位的影响

    Institute of Scientific and Technical Information of China (English)

    夏国伟; 史海安; 周亚魁

    2000-01-01

    Purpose To detect the prevention of EGF and GLN on the side effect of TPN. Methods We randomized SD rats into four groups:group A (control),B(STPN),C(TPN+GLN),D(TPN+GLN+EGF).All rats were maintained on their respective diets for 8 days,at which time they were killed and the proximal jejunum was incised for biopsy,the MLN and celiac vein blood were collected for bacterial culture(aerobic culture). Results Group B rat mucosal cell atrophied,DNA and RNA content and plasma cell decreased,the positive rat of MLN bacterial culture was 62.5%.Atrophy in group C alleviated and bacterial translocation rate declined(37.5%).Group D was similar with group A. Conclusions GLN combined with EGF is more effective in protecting gut barrier function and preventing bacterial translocation than GLN alone.%目的探讨表皮生长因子(epidermal growth factor,EGF)、谷氨酰胺(glutamine,GLN)对全胃肠外营养(total parenteral nutrition,TPN)并发症的防治作用及机制。方法将大白鼠分为4组:A(正常喂养组)、B(标准胃肠外营养STPN)、C(TPN+GLN)、D(TPN+EGF+GLN),采用大白鼠TPN模型,一周后取大鼠近端空肠组织切片行光镜和电镜观察,结合图像分析;无菌采取肠系膜淋巴结(mesenter lymphonodus,MLN)并称重和抽取腹腔静脉血作细菌培养(需氧培养)。结果 B组肠黏膜萎缩,MLN细菌培养阳性率62.5%。C组较B组肠黏膜萎缩减轻,黏膜DNA、RNA含量和浆细胞数目增加,MLN细菌培养阳性率37.5%,肠细菌移位率下降。而D组上述各指数与正常鼠A组无显著差异。4组动物血培养均为阴性。结论 EGF和GLN联合应用能有效地保护肠屏障功能和防止肠细菌移位

  15. Gut Microbiota and Metabolic Disorders

    OpenAIRE

    Kyu Yeon Hur; Myung-Shik Lee

    2015-01-01

    Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or...

  16. The evolution of cooperation within the gut microbiota.

    Science.gov (United States)

    Rakoff-Nahoum, Seth; Foster, Kevin R; Comstock, Laurie E

    2016-04-25

    Cooperative phenotypes are considered central to the functioning of microbial communities in many contexts, including communication via quorum sensing, biofilm formation, antibiotic resistance, and pathogenesis. The human intestine houses a dense and diverse microbial community critical to health, yet we know little about cooperation within this important ecosystem. Here we test experimentally for evolved cooperation within the Bacteroidales, the dominant Gram-negative bacteria of the human intestine. We show that during growth on certain dietary polysaccharides, the model member Bacteroides thetaiotaomicron exhibits only limited cooperation. Although this organism digests these polysaccharides extracellularly, mutants lacking this ability are outcompeted. In contrast, we discovered a dedicated cross-feeding enzyme system in the prominent gut symbiont Bacteroides ovatus, which digests polysaccharide at a cost to itself but at a benefit to another species. Using in vitro systems and gnotobiotic mouse colonization models, we find that extracellular digestion of inulin increases the fitness of B. ovatus owing to reciprocal benefits when it feeds other gut species such as Bacteroides vulgatus. This is a rare example of naturally-evolved cooperation between microbial species. Our study reveals both the complexity and importance of cooperative phenotypes within the mammalian intestinal microbiota.

  17. Hydrophobicity of mucosal surface and its relationship to gut barrier function.

    Science.gov (United States)

    Qin, Xiaofa; Caputo, Francis J; Xu, Da-Zhong; Deitch, Edwin A

    2008-03-01

    Loss of the gut barrier has been implicated in the pathogenesis of the multiple organ dysfunction syndrome, and, thus, understanding the intestinal barrier is of potential clinical importance. An important, but relatively neglected, component of the gut barrier is the unstirred mucus layer, which through its hydrophobic and other properties serves as an important barrier to bacterial and other factors within the gut lumen. Thus, the goal of this study was to establish a reproducible method of measuring mucosal hydrophobicity and test the hypothesis that conditions that decrease mucosal hydrophobicity are associated with increased gut permeability. Hydrophobicity was measured in various segments of normal gut by measuring the contact angle of an aqueous droplet placed on the mucosal surface using a commercial goniometer. Second, the effect of the mucolytic agent N-acetyl cysteine on mucosal hydrophobicity and gut permeability was measured, as was the effects of increasing periods of in vivo gut ischemia on these parameters. Gut ischemia was induced by superior mesenteric artery occlusion, and gut permeability was measured by the mucosal-to-serosal passage of fluoresceine isothiocyanate-dextran (4.3 kDa) (FD4) across the everted sacs of ileum. Intestinal mucosal hydrophobicity showed a gradual increase from the duodenum to the end of the ileum and remained at high level in the cecum, colon, and rectum. Both N-acetyl cysteine treatment and ischemia caused a dose-dependent decrease in mucosal hydrophobicity, which significantly correlated increased gut permeability. Mucosal hydrophobicity of the intestine can be reproducibly measured, and decreases in mucosal hydrophobicity closely correlate with increased gut permeability. These results suggest that mucosal hydrophobicity can be a reliable method of measuring the barrier function of the unstirred mucus layer and a useful parameter in evaluating the pathogenesis of gut barrier dysfunction.

  18. Hydrophobicity of mucosal surface and its relationship to gut barrier function.

    Science.gov (United States)

    Qin, Xiaofa; Caputo, Francis J; Xu, Da-Zhong; Deitch, Edwin A

    2008-03-01

    Loss of the gut barrier has been implicated in the pathogenesis of the multiple organ dysfunction syndrome, and, thus, understanding the intestinal barrier is of potential clinical importance. An important, but relatively neglected, component of the gut barrier is the unstirred mucus layer, which through its hydrophobic and other properties serves as an important barrier to bacterial and other factors within the gut lumen. Thus, the goal of this study was to establish a reproducible method of measuring mucosal hydrophobicity and test the hypothesis that conditions that decrease mucosal hydrophobicity are associated with increased gut permeability. Hydrophobicity was measured in various segments of normal gut by measuring the contact angle of an aqueous droplet placed on the mucosal surface using a commercial goniometer. Second, the effect of the mucolytic agent N-acetyl cysteine on mucosal hydrophobicity and gut permeability was measured, as was the effects of increasing periods of in vivo gut ischemia on these parameters. Gut ischemia was induced by superior mesenteric artery occlusion, and gut permeability was measured by the mucosal-to-serosal passage of fluoresceine isothiocyanate-dextran (4.3 kDa) (FD4) across the everted sacs of ileum. Intestinal mucosal hydrophobicity showed a gradual increase from the duodenum to the end of the ileum and remained at high level in the cecum, colon, and rectum. Both N-acetyl cysteine treatment and ischemia caused a dose-dependent decrease in mucosal hydrophobicity, which significantly correlated increased gut permeability. Mucosal hydrophobicity of the intestine can be reproducibly measured, and decreases in mucosal hydrophobicity closely correlate with increased gut permeability. These results suggest that mucosal hydrophobicity can be a reliable method of measuring the barrier function of the unstirred mucus layer and a useful parameter in evaluating the pathogenesis of gut barrier dysfunction. PMID:17693944

  19. Dysbiosis of the gut microbiota in disease

    Directory of Open Access Journals (Sweden)

    Simon Carding

    2015-02-01

    Full Text Available There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS, and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity.In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a ‘healthy’ relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a ‘healthy’ colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium.Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in

  20. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity

    DEFF Research Database (Denmark)

    Brahe, Lena Kirchner; Le Chatelier, E; Prifti, E;

    2015-01-01

    BACKGROUND: Gut microbial gene richness and specific bacterial species are associated with metabolic risk markers in humans, but the impact of host physiology and dietary habits on the link between the gut microbiota and metabolic markers remain unclear. The objective of this study was to identify...... gut metagenomic markers associated with estimates of insulin resistance, lipid metabolism and inflammation in obesity, and to explore whether the associations between metagenomic and metabolic markers persisted after adjustment for body fat, age and habitual dietary intake. METHODS: Faecal DNA from 53......; however, the negative correlation with insulin resistance observed for B. longum and F. prausnitzii appeared to be modified by the intake of dietary fibre and fat, respectively. CONCLUSIONS: This study shows that several gut bacterial species are linked to metabolic risk markers in obesity, also after...

  1. The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease

    OpenAIRE

    Hartmann, Phillipp; Chen, Wei-Chung; Schnabl, Bernd

    2012-01-01

    Alcoholic liver disease (ALD) encompasses hepatic steatosis, which may progress to alcoholic hepatitis, fibrosis, and cirrhosis. It remains a leading cause of morbidity and mortality in the US and worldwide. The severity of liver disease correlates with plasma levels of bacterial products in patients, and experimental ALD depends on the level of gut derived bacterial products in rodents. Since intestinal decontamination and deficiency of bacterial product receptors or their downstream signali...

  2. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  3. Having older siblings is associated with gut microbiota development during early childhood

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Zachariassen, Gitte; Bahl, Martin Iain;

    2015-01-01

    older siblings was associated with increased relative abundance of several bacterial taxa at both 9 and 18 months of age. Compared to the effect of having siblings, presence of household furred pets and early life infections had less pronounced effects on the gut microbiota. Gut microbiota...... hygiene hypothesis. However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling-associated gut microbial changes influence development of allergies later in......Evidence suggests that early life infections, presence of older siblings and furred pets in the household affect the risk of developing allergic diseases through altered microbial exposure. Recently, low gut microbial diversity during infancy has also been linked with later development of allergies...

  4. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies.

    Science.gov (United States)

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-02-21

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required. PMID:26900286

  5. Saccharide breakdown and fermentation by the honey bee gut microbiome.

    Science.gov (United States)

    Lee, Fredrick J; Rusch, Douglas B; Stewart, Frank J; Mattila, Heather R; Newton, Irene L G

    2015-03-01

    The honey bee, the world's most important agricultural pollinator, relies exclusively on plant-derived foods for nutrition. Nectar and pollen collected by honey bees are processed and matured within the nest through the activities of honey bee-derived microbes and enzymes. In order to better understand the contribution of the microbial community to food processing in the honey bee, we generated a metatranscriptome of the honey bee gut microbiome. The function of the microbial community in the honey bee, as revealed by metatranscriptome sequencing, resembles that of other animal guts and food-processing environments. We identified three major bacterial classes that are active in the gut (γ-Proteobacteria, Bacilli and Actinobacteria), all of which are predicted to participate in the breakdown of complex macromolecules (e.g. polysaccharides and polypeptides), the fermentation of component parts of these macromolecules, and the generation of various fermentation products, such as short-chain fatty acids and alcohol. The ability of the microbial community to metabolize these carbon-rich food sources was confirmed through the use of community-level physiological profiling. Collectively, these findings suggest that the gut microflora of the honey bee harbours bacterial members with unique roles, which ultimately can contribute to the processing of plant-derived food for colonies. PMID:24905222

  6. Saccharide breakdown and fermentation by the honey bee gut microbiome.

    Science.gov (United States)

    Lee, Fredrick J; Rusch, Douglas B; Stewart, Frank J; Mattila, Heather R; Newton, Irene L G

    2015-03-01

    The honey bee, the world's most important agricultural pollinator, relies exclusively on plant-derived foods for nutrition. Nectar and pollen collected by honey bees are processed and matured within the nest through the activities of honey bee-derived microbes and enzymes. In order to better understand the contribution of the microbial community to food processing in the honey bee, we generated a metatranscriptome of the honey bee gut microbiome. The function of the microbial community in the honey bee, as revealed by metatranscriptome sequencing, resembles that of other animal guts and food-processing environments. We identified three major bacterial classes that are active in the gut (γ-Proteobacteria, Bacilli and Actinobacteria), all of which are predicted to participate in the breakdown of complex macromolecules (e.g. polysaccharides and polypeptides), the fermentation of component parts of these macromolecules, and the generation of various fermentation products, such as short-chain fatty acids and alcohol. The ability of the microbial community to metabolize these carbon-rich food sources was confirmed through the use of community-level physiological profiling. Collectively, these findings suggest that the gut microflora of the honey bee harbours bacterial members with unique roles, which ultimately can contribute to the processing of plant-derived food for colonies.

  7. Changes in the Swine Gut Microbiota in Response to Porcine Epidemic Diarrhea Infection

    OpenAIRE

    Koh, Hyeon-Woo; Kim, Myun Soo; Lee, Jong-Soo; Kim, Hongik; Park, Soo-Je

    2015-01-01

    The gastrointestinal tract of mammals is a complex ecosystem with distinct environments and comprises hundreds of different types of bacterial cells. The gut microbiota may play a critical role in the gut health of the host. We herein attempted to identify a microbiota shift that may be affected by porcine epidemic diarrhea (PED). We observed significant differences in microbiota between the control and PED virus (PEDV)-infected groups at both the phylum and genus level. Most commensal bacter...

  8. Probiotics and gut health:A special focus on liver diseases

    Institute of Scientific and Technical Information of China (English)

    Silvia; Wilson; Gratz; Hannu; Mykkanen; Hani; S; El-Nezami

    2010-01-01

    Probiotic bacteria have well-established beneficial ef-fects in the management of diarrhoeal diseases.Newer evidence suggests that probiotics have the potential to reduce the risk of developing inflammatory bowel diseases and intestinal bacterial overgrowth after gut surgery.In liver health,the main benefits of probiotics might occur through preventing the production and/or uptake of lipopolysaccharides in the gut,and therefore reducing levels of low-grade inflammation.Specific immune stimulation by probiot...

  9. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota

    Science.gov (United States)

    Ellegaard, Kirsten M.; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities. PMID:27708630

  10. Overweight and the feline gut microbiome - a pilot study.

    Science.gov (United States)

    Kieler, I N; Mølbak, L; Hansen, L L; Hermann-Bank, M L; Bjornvad, C R

    2016-06-01

    Compared with lean humans, the gut microbiota is altered in the obese. Whether these changes are due to an obesogenic diet, and whether the microbiota contributes to adiposity is currently discussed. In the cat population, where obesity is also prevalent, gut microbiome changes associated with obesity have not been studied. Consequently, the aim of this study was to compare the gut microbiota of lean cats, with that of overweight and obese cats. Seventy-seven rescue-shelter cats housed for ≥3 consecutive days were included in the study. Faecal samples were obtained by rectal swab and, when available, by a paired litter box sample. Body condition was assessed using a 9-point scoring system. DNA was extracted, and the 16S rRNA gene was amplified with a high-throughput quantitative real-time PCR chip. Overweight and obese cats had a significantly different gut microbiota compared to lean cats (p < 0.05), but this finding could not be linked to differences in specific bacterial groups. The rectal samples obtained higher DNA concentration than litter box samples (p < 0.0001). In conclusion, overweight and obese cats seem to have an altered gut microbiome as compared to lean cats. PMID:26452635

  11. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Philippe Gérard

    2013-12-01

    Full Text Available The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host’s enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  12. Correlations between Lumbricus terrestris survival and gut microbiota

    Directory of Open Access Journals (Sweden)

    Knut Rudi

    2012-04-01

    Full Text Available Background: The interplay between diet, gut bacteria and health still remain enigmatic. Here, we addressed this issue through the investigation of the effect of crystalline cellulose on the earthworm Lumbricus terrestris gut microbiota composition and survival. Methods : Earthworm gut contents were analyzed after 14 days of feeding using a mixed 16S rRNA gene sequencing approach, in addition to direct measurements of cellulase activity. The survival of earthworms was followed each week for 17 weeks. Results : We found a tendency that the crystalline cellulose fed earthworms survived better than the high energy fed earthworms (p=0.08. Independent of feeding we found that the bacterial group related to Ferrimonadaceae was correlated to an increased lifespan (p=0.01. We also found a positive correlation between Ruminococcaceae related bacteria and cellulase activity in the earthworm gut (p=0.05. Surprisingly, however, the cellulase activity was not correlated to the feeding regime. Conclusion : Taken together, the interactions between diet, gut microbiota and lifespan seem complex.

  13. Estimating Time Since Death from Postmortem Human Gut Microbial Communities.

    Science.gov (United States)

    Hauther, Kathleen A; Cobaugh, Kelly L; Jantz, Lee Meadows; Sparer, Tim E; DeBruyn, Jennifer M

    2015-09-01

    Postmortem succession of human-associated microbial communities ("human microbiome") has been suggested as a possible method for estimating postmortem interval (PMI) for forensic analyses. Here we evaluate human gut bacterial populations to determine quantifiable, time-dependent changes postmortem. Gut microflora were repeatedly sampled from the proximal large intestine of 12 deceased human individuals as they decayed under environmental conditions. Three intestinal bacterial genera were quantified by quantitative PCR (qPCR) using group-specific primers targeting 16S rRNA genes. Bacteroides and Lactobacillus relative abundances declined exponentially with increasing PMI at rates of Nt=0.977e(-0.0144t) (r2=0.537, pPMI. PMID:26096156

  14. A Comparative Study on Rat Intestinal Epithelial Cells and Resident Gut Bacteria (ii) Effect of Arsenite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to use facultative gut bacteria as an alternate to animals for the initial gastrointestinal toxicity screening of heavy metals, a comparative study on rat intestinal epithelial cells and resident gut bacteria was undertaken.Methods in vitro growth rate of four gut bacteria, dehydrogenase (DHA) and esterase (EA) activity test, intestinal epithelial and bacterial cell membrane enzymes and in situ effect of arsenite were analysed. Results Growth profile of mixed resident population of gut bacteria and pure isolates of Escherichia coli, Pseudomonas sp., Lactobacillus sp., and Staphylococcus sp.revealed an arsenite (2-20 ppm) concentration-dependent inhibition. The viability pattern of epithelial cells also showed similar changes. DHA and EA tests revealed significant inhibition (40%-72%) with arsenite exposure of 5 and 10 ppm in isolated gut bacteria and epithelial cells. Decrease in membrane alkaline phosphatase and Ca2+-Mg2+-ATPase activities was in the range of 33%-55% in four bacteria at the arsenite exposure of 10 ppm, whereas it was 60%-65% in intestinal epithelial villus cells. in situ incubation of arsenite using intestinal loops also showed more or less similar changes in membrane enzymes of resident gut bacterial population and epithelial cells. Conclusion The results indicate that facultative gut bacteria can be used as suitable in vitro model for the preliminary screening of arsenical gastrointestinal cytotoxic effects.

  15. The gut microbiome, diet, and links to cardiometabolic and chronic disorders.

    Science.gov (United States)

    Aron-Wisnewsky, Judith; Clément, Karine

    2016-03-01

    Cardiometabolic diseases (CMDs) have been associated with changes in the composition of the gut microbiota, with links between the host environment and microbiota identified in preclinical models. High-throughput sequencing technology has facilitated in-depth studies of the gut microbiota, bacterial-derived metabolites, and their association with CMDs. Such strategies have shown that patients with CMDs frequently exhibit enrichment or depletion of certain bacterial groups in their resident microbiota compared to healthy individuals. Furthermore, the ability to transfer resident gut microbiota from mice or humans into germ-free mouse models, or between human patients, has enabled researchers to characterize the causative role of the gut microbiota in CMDs. These approaches have helped identify that dietary intake of choline, which is metabolized by the gut microbiota, is associated with cardiovascular outcomes in mice and humans. Trimethylamine N-oxide (TMAO) - a metabolite derived from the gut microbiota - is also associated with poor cardiovascular outcomes in patients with cardiovascular disease and is elevated in patients with chronic kidney disease (CKD). TMAO might represent a biomarker that links the environment and microbiota with CKD. This Review summarizes data suggesting a link between the gut microbiota and derived metabolites with food intake patterns, metabolic alterations, and chronic CMDs.

  16. Gut microorganisms as promising targets for the management of type 2 diabetes.

    Science.gov (United States)

    Delzenne, Nathalie M; Cani, Patrice D; Everard, Amandine; Neyrinck, Audrey M; Bindels, Laure B

    2015-10-01

    Each human intestine harbours not only hundreds of trillions of bacteria but also bacteriophage particles, viruses, fungi and archaea, which constitute a complex and dynamic ecosystem referred to as the gut microbiota. An increasing number of data obtained during the last 10 years have indicated changes in gut bacterial composition or function in type 2 diabetic patients. Analysis of this 'dysbiosis' enables the detection of alterations in specific bacteria, clusters of bacteria or bacterial functions associated with the occurrence or evolution of type 2 diabetes; these bacteria are predominantly involved in the control of inflammation and energy homeostasis. Our review focuses on two key questions: does gut dysbiosis truly play a role in the occurrence of type 2 diabetes, and will recent discoveries linking the gut microbiota to host health be helpful for the development of novel therapeutic approaches for type 2 diabetes? Here we review how pharmacological, surgical and nutritional interventions for type 2 diabetic patients may impact the gut microbiota. Experimental studies in animals are identifying which bacterial metabolites and components act on host immune homeostasis and glucose metabolism, primarily by targeting intestinal cells involved in endocrine and gut barrier functions. We discuss novel approaches (e.g. probiotics, prebiotics and faecal transfer) and the need for research and adequate intervention studies to evaluate the feasibility and relevance of these new therapies for the management of type 2 diabetes. PMID:26224102

  17. Brain-Gut-Microbe Communication in Health and Disease

    OpenAIRE

    Sue eGrenham; Gerard eClarke; Cryan, John F.; Dinan, Timothy G.

    2011-01-01

    Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal and immunological levels. This construct is known as the brain-gut axis and is vital for maintaining homeostasis. Bacterial colonisation of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Recent research advances have seen a tremendous i...

  18. Gut Microbiota: Modulate its Complexity to Restore the Balance

    OpenAIRE

    Fermín Mearin; Speakers Fermín Mearin; Antonio Gasbarrini; Peter Malfertheiner; Mark Pimentel

    2015-01-01

    The importance of the gut microbiota to health is becoming more widely appreciated. The range of commensal microorganisms in healthy individuals and in patients with a variety of digestive diseases is under active investigation, and evidence is accumulating to suggest that both the diversity and balance of bacterial species are important for health. Disturbance of the balance of microorganisms – dysbiosis – is associated with obesity and a variety of diseases. Restoring the balance by modulat...

  19. Obligate symbiont involved in pest status of host insect

    OpenAIRE

    Hosokawa, Takahiro; Kikuchi, Yoshitomo; Shimada, Masakazu; Fukatsu, Takema

    2007-01-01

    The origin of specific insect genotypes that enable efficient use of agricultural plants is an important subject not only in applied fields like pest control and management but also in basic disciplines like evolutionary biology. Conventionally, it has been presupposed that such pest-related ecological traits are attributed to genes encoded in the insect genomes. Here, however, we report that pest status of an insect is principally determined by symbiont genotype rather than by insect genotyp...

  20. Genomics of "Candidatus Synechococcus spongiarium", a Cyanobacterial Sponge Symbiont

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Beate M. [Univ. of Wuerzburg (Germany); Copeland, Alex [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Woyke, Tanja [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hentschel, Ute [Univ. of Wuerzburg (Germany)

    2014-03-21

    Marine sponges (Porifera): ancient metazoans of ecological importance, that produce bioactive secondary metabolites and interact with various microorganisms including cyanobacteria1: Marine Synechococcus spp.: cyanobacteria, important contributors to the global carbon cycle and major primary producers in the oceans2 Ca. S. spongiarum: an ecotype of this genus, widespread and abundant symbiont of various marine sponges around the world3, e.g. Aplysina aerophoba

  1. Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts

    OpenAIRE

    Bontemps, C.; Rogel, M. A.; Wiechmann, A.; Mussabekova, A.; Moody, S.; Simon, M F; Moulin, Lionel; Elliott, G. N.; Lacercat-Didier, L.; Dasilva, C.; Grether, R; Camargo-Ricalde, S. L.; Chen, W.M.; SPRENT, J. I.; Martinez-Romero, E.

    2016-01-01

    The legume genus Mimosa has > 500 species, with two major centres of diversity, Brazil (c. 350 spp.) and Mexico (c. 100 spp.). In Brazil most species are nodulated by Burkholderia. Here we asked whether this is also true of native and endemic Mexican species. We have tested this apparent affinity for betaproteobacteria by examining the symbionts of native and endemic species of Mimosa in Mexico, especially from the central highlands where Mimosa spp. have diversified. Nodules were tested for ...

  2. Harold Kirby's symbionts of termites: karyomastigont reproduction and calonymphid taxonomy

    Science.gov (United States)

    Kirby, H.; Margulis, L.

    1994-01-01

    Harold Kirby's brilliant principle of mastigont multiplicity is published here posthumously more than 40 years after it was written. He applies this principle to large multinucleate protist symbionts of termites in establishing the taxonomy of Calonymphids (Family Calonymphidae in Phylum Zoomastigina, Kingdom Protoctista). The nuclei and kinetosomes in these heterotrophic cells are organized into trichomonad-style mastigont units which reproduce independently of cytokinesis to generate nine new Calonympha and nineteen new Stephanonympha species. The total of six genera (Calonympha, Coronympha, Diplonympha, Metacoronympha, Snyderella and Stephanonympha, all symbionts of dry-wood-eating termites, Kalotermitidae) are recognized. With the aid of Michael Yamin, the distribution of all twenty-eight of Kirby's Calonympha and Stephanonympha species are tabulated. In italic type I have annotated this paper to be comprehensible to a wide readership of cell biologists, protistologists and those interested in insect symbionts. Although this extremely original and careful work was not finished when Kirby died suddenly in 1952, I deemed it important and complete enough to finally publish it so that it would not be lost to scientific posterity.

  3. Bacterial successions in the Broiler Gastrointestinal tract

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Lawley, Blair; Tannock, Gerald;

    2016-01-01

    of crop, gizzard, ileum and ceca in relation to the feeding strategy and age (8, 15, 22, 25, 29 and 36 days). Of the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454-pyrosequencing of 16S rRNA gene. Since there was no significant influence of diets on bacterial...... diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and an increased bacterial diversity was observed. Lactobacillaceae (mainly Lactobacillus) represented most of the Firmicutes at all ages and in all segments of the gut except the ceca...

  4. Gut Microbiota Linked to Sexual Preference and HIV Infection

    Science.gov (United States)

    Noguera-Julian, Marc; Rocafort, Muntsa; Guillén, Yolanda; Rivera, Javier; Casadellà, Maria; Nowak, Piotr; Hildebrand, Falk; Zeller, Georg; Parera, Mariona; Bellido, Rocío; Rodríguez, Cristina; Carrillo, Jorge; Mothe, Beatriz; Coll, Josep; Bravo, Isabel; Estany, Carla; Herrero, Cristina; Saz, Jorge; Sirera, Guillem; Torrela, Ariadna; Navarro, Jordi; Crespo, Manel; Brander, Christian; Negredo, Eugènia; Blanco, Julià; Guarner, Francisco; Calle, Maria Luz; Bork, Peer; Sönnerborg, Anders; Clotet, Bonaventura; Paredes, Roger

    2016-01-01

    The precise effects of HIV-1 on the gut microbiome are unclear. Initial cross-sectional studies provided contradictory associations between microbial richness and HIV serostatus and suggested shifts from Bacteroides to Prevotella predominance following HIV-1 infection, which have not been found in animal models or in studies matched for HIV-1 transmission groups. In two independent cohorts of HIV-1-infected subjects and HIV-1-negative controls in Barcelona (n = 156) and Stockholm (n = 84), men who have sex with men (MSM) predominantly belonged to the Prevotella-rich enterotype whereas most non-MSM subjects were enriched in Bacteroides, independently of HIV-1 status, and with only a limited contribution of diet effects. Moreover, MSM had a significantly richer and more diverse fecal microbiota than non-MSM individuals. After stratifying for sexual orientation, there was no solid evidence of an HIV-specific dysbiosis. However, HIV-1 infection remained consistently associated with reduced bacterial richness, the lowest bacterial richness being observed in subjects with a virological-immune discordant response to antiretroviral therapy. Our findings indicate that HIV gut microbiome studies must control for HIV risk factors and suggest interventions on gut bacterial richness as possible novel avenues to improve HIV-1-associated immune dysfunction. PMID:27077120

  5. Gut Microbiota Linked to Sexual Preference and HIV Infection

    Directory of Open Access Journals (Sweden)

    Marc Noguera-Julian

    2016-03-01

    Full Text Available The precise effects of HIV-1 on the gut microbiome are unclear. Initial cross-sectional studies provided contradictory associations between microbial richness and HIV serostatus and suggested shifts from Bacteroides to Prevotella predominance following HIV-1 infection, which have not been found in animal models or in studies matched for HIV-1 transmission groups. In two independent cohorts of HIV-1-infected subjects and HIV-1-negative controls in Barcelona (n = 156 and Stockholm (n = 84, men who have sex with men (MSM predominantly belonged to the Prevotella-rich enterotype whereas most non-MSM subjects were enriched in Bacteroides, independently of HIV-1 status, and with only a limited contribution of diet effects. Moreover, MSM had a significantly richer and more diverse fecal microbiota than non-MSM individuals. After stratifying for sexual orientation, there was no solid evidence of an HIV-specific dysbiosis. However, HIV-1 infection remained consistently associated with reduced bacterial richness, the lowest bacterial richness being observed in subjects with a virological-immune discordant response to antiretroviral therapy. Our findings indicate that HIV gut microbiome studies must control for HIV risk factors and suggest interventions on gut bacterial richness as possible novel avenues to improve HIV-1-associated immune dysfunction.

  6. Beneficial effect of Verminephrobacter nephridial symbionts on the fitness of the earthworm Aporrectodea tuberculata

    DEFF Research Database (Denmark)

    Lund, Marie Braad; Holmstrup, Martin; Lomstein, Bente Aagaard;

    2010-01-01

    Almost all lumbricid earthworms (Oligochaeta: Lumbricidae) harbor species-specific Verminephrobacter (Betaproteobacteria) symbionts in their nephridia (excretory organs). The function of the symbiosis, and whether the symbionts have a beneficial effect on their earthworm host, is unknown; however......, the symbionts have been hypothesized to enhance nitrogen retention in the earthworms. The effect of Verminephrobacter on the life-history traits of the earthworm Aporrectodea tuberculata (Eisen) was investigated by comparing growth, development, and fecundity of worms with and without symbionts, given high...... grown on the low nutrient diet. Thus, the Verminephrobacter nephridial symbionts do have a beneficial effect on their earthworm host. Cocoons with and without symbionts did not significantly differ in total organic carbon (TOC), total nitrogen (TN), or total hydrolysable amino acid (THAA) content, which...

  7. Life at the Limits: Capacities of Isolated and Cultured Lichen Symbionts to Resist Extreme Environmental Stresses

    Science.gov (United States)

    de Vera, J.-P.; Rettberg, P.; Ott, S.

    2008-10-01

    Lichens are described as a symbiosis formed by a myco- and photobiont, capable of colonizing habitats where their separate symbionts would not be able to survive. Space simulation studies on the separated symbionts of the lichen Xanthoria elegans have been performed to test their capacity to resist the most extreme conditions. The isolated cultured symbiont cells were exposed to different doses of the UV spectrum, and to vacuum. Cultures of both symbionts were analysed by specific vitality tests (LIVE/DEAD-staining detected by Confocal Laser Scanning Microscopy). Growth capacity of symbiont cultures on different media was analysed after exposure to extreme environmental stresses. The data obtained support the hypothesis that the symbiotic state considerably enhances the ability of the respective symbionts to survive exposure to extreme conditions, including the conditions of space simulation. Species such as X. elegans may, therefore, be suitable for use as model organisms in exobiological studies.

  8. Manipulation of the Gut Microbiota Reveals Role in Colon Tumorigenesis

    Science.gov (United States)

    Zackular, Joseph P.; Baxter, Nielson T.

    2015-01-01

    ABSTRACT There is growing evidence that individuals with colonic adenomas and carcinomas harbor a distinct microbiota. Alterations to the gut microbiota may allow the outgrowth of bacterial populations that induce genomic mutations or exacerbate tumor-promoting inflammation. In addition, it is likely that the loss of key bacterial populations may result in the loss of protective functions that are normally provided by the microbiota. We explored the role of the gut microbiota in colon tumorigenesis by using an inflammation-based murine model. We observed that perturbing the microbiota with different combinations of antibiotics reduced the number of tumors at the end of the model. Using the random forest machine learning algorithm, we successfully modeled the number of tumors that developed over the course of the model on the basis of the initial composition of the microbiota. The timing of antibiotic treatment was an important determinant of tumor outcome, as colon tumorigenesis was arrested by the use of antibiotics during the early inflammation period of the murine model. Together, these results indicate that it is possible to predict colon tumorigenesis on the basis of the composition of the microbiota and that altering the gut microbiota can alter the course of tumorigenesis. IMPORTANCE Mounting evidence indicates that alterations to the gut microbiota, the complex community of bacteria that inhabits the gastrointestinal tract, are strongly associated with the development of colorectal cancer. We used antibiotic perturbations to a murine model of inflammation-driven colon cancer to generate eight starting communities that resulted in various severities of tumorigenesis. Furthermore, we were able to quantitatively predict the final number of tumors on the basis of the initial composition of the gut microbiota. These results further bolster the evidence that the gut microbiota is involved in mediating the development of colorectal cancer. As a final proof of

  9. Effect of lactobacillus on the gut microfiora and barrier function of the rats with abdominal infection

    Institute of Scientific and Technical Information of China (English)

    Huan-Long Qin; Tong-Yi Shen; Zhi-Guang Gao; Xiao-Bing Fan; Xiao-Min Hang; Yan-Qun Jiang; Hui-Zhen Zhang

    2005-01-01

    AIM: To investigate the effect of probiotics supplemented by gut on the tight junctions of epithelial cells, barrier function and the microflora of rats with abdominal infection. METHODS: After the model of cecal ligation and perforation established, SD rats were divided into two groups: parenteral nutrition (PN) group and PN+probiotics (probiotics) group, PN solution was supplemented by neck vein and probiotics was delivered via the jejunostomy tube for five days. Vena cava blood and the homogenated tissue of liver, lung and mesenteric lymph nodes were cultured to determine the bacterial translocation rate (BTR). The ultrastructure of epithelial tight junctions and microvilli of the gut were observed by electron microscopy; occluding expression was measured by indirect-immune fluorescence method; anaerobic bacterial growth by anaerobic culture and DNA fingerprint of bacterial colonies of the feces by PCR. RESULTS: The quantity of lactobacteria and bifydobacteria in probiotics group was higher than that of PN group. The profiles of DNA fingerprint expression in probiotics group were similar to that in the normal group, a new 16S rDNA sequence appeared in the profile in PN group. The occludin expression, the integrality of the gut epithelial tight junctionand microvilli in probiotics group were improved as compared with PN group. The BTR and endotoxin in blood were reduced more significantly in probiotics group as compared with PN group.CONCLUSION: The probiotics could improve the gut microflora disturbance, increase occludin expression, maintain the gut epithelial tight junction and decrease the bacterial translocations rate.

  10. Gut Dysbiosis in Patients with Anorexia Nervosa.

    Science.gov (United States)

    Morita, Chihiro; Tsuji, Hirokazu; Hata, Tomokazu; Gondo, Motoharu; Takakura, Shu; Kawai, Keisuke; Yoshihara, Kazufumi; Ogata, Kiyohito; Nomoto, Koji; Miyazaki, Kouji; Sudo, Nobuyuki

    2015-01-01

    Anorexia nervosa (AN) is a psychological illness with devastating physical consequences; however, its pathophysiological mechanism remains unclear. Because numerous reports have indicated the importance of gut microbiota in the regulation of weight gain, it is reasonable to speculate that AN patients might have a microbial imbalance, i.e. dysbiosis, in their gut. In this study, we compared the fecal microbiota of female patients with AN (n = 25), including restrictive (ANR, n = 14) and binge-eating (ANBP, n = 11) subtypes, with those of age-matched healthy female controls (n = 21) using the Yakult Intestinal Flora-SCAN based on 16S or 23S rRNA-targeted RT-quantitative PCR technology. AN patients had significantly lower amounts of total bacteria and obligate anaerobes including those from the Clostridium coccoides group, Clostridium leptum subgroup, and Bacteroides fragilis group than the age-matched healthy women. Lower numbers of Streptococcus were also found in the AN group than in the control group. In the analysis based on AN subtypes, the counts of the Bacteroides fragilis group in the ANR and ANBP groups and the counts of the Clostridium coccoides group in the ANR group were significantly lower than those in the control group. The detection rate of the Lactobacillus plantarum subgroup was significantly lower in the AN group than in the control group. The AN group had significantly lower acetic and propionic acid concentrations in the feces than the control group. Moreover, the subtype analysis showed that the fecal concentrations of acetic acid were lower in the ANR group than in the control group. Principal component analysis confirmed a clear difference in the bacterial components between the AN patients and healthy women. Collectively, these results clearly indicate the existence of dysbiosis in the gut of AN patients. PMID:26682545

  11. Gut Dysbiosis in Patients with Anorexia Nervosa.

    Science.gov (United States)

    Morita, Chihiro; Tsuji, Hirokazu; Hata, Tomokazu; Gondo, Motoharu; Takakura, Shu; Kawai, Keisuke; Yoshihara, Kazufumi; Ogata, Kiyohito; Nomoto, Koji; Miyazaki, Kouji; Sudo, Nobuyuki

    2015-01-01

    Anorexia nervosa (AN) is a psychological illness with devastating physical consequences; however, its pathophysiological mechanism remains unclear. Because numerous reports have indicated the importance of gut microbiota in the regulation of weight gain, it is reasonable to speculate that AN patients might have a microbial imbalance, i.e. dysbiosis, in their gut. In this study, we compared the fecal microbiota of female patients with AN (n = 25), including restrictive (ANR, n = 14) and binge-eating (ANBP, n = 11) subtypes, with those of age-matched healthy female controls (n = 21) using the Yakult Intestinal Flora-SCAN based on 16S or 23S rRNA-targeted RT-quantitative PCR technology. AN patients had significantly lower amounts of total bacteria and obligate anaerobes including those from the Clostridium coccoides group, Clostridium leptum subgroup, and Bacteroides fragilis group than the age-matched healthy women. Lower numbers of Streptococcus were also found in the AN group than in the control group. In the analysis based on AN subtypes, the counts of the Bacteroides fragilis group in the ANR and ANBP groups and the counts of the Clostridium coccoides group in the ANR group were significantly lower than those in the control group. The detection rate of the Lactobacillus plantarum subgroup was significantly lower in the AN group than in the control group. The AN group had significantly lower acetic and propionic acid concentrations in the feces than the control group. Moreover, the subtype analysis showed that the fecal concentrations of acetic acid were lower in the ANR group than in the control group. Principal component analysis confirmed a clear difference in the bacterial components between the AN patients and healthy women. Collectively, these results clearly indicate the existence of dysbiosis in the gut of AN patients.

  12. Gut Dysbiosis in Patients with Anorexia Nervosa.

    Directory of Open Access Journals (Sweden)

    Chihiro Morita

    Full Text Available Anorexia nervosa (AN is a psychological illness with devastating physical consequences; however, its pathophysiological mechanism remains unclear. Because numerous reports have indicated the importance of gut microbiota in the regulation of weight gain, it is reasonable to speculate that AN patients might have a microbial imbalance, i.e. dysbiosis, in their gut. In this study, we compared the fecal microbiota of female patients with AN (n = 25, including restrictive (ANR, n = 14 and binge-eating (ANBP, n = 11 subtypes, with those of age-matched healthy female controls (n = 21 using the Yakult Intestinal Flora-SCAN based on 16S or 23S rRNA-targeted RT-quantitative PCR technology. AN patients had significantly lower amounts of total bacteria and obligate anaerobes including those from the Clostridium coccoides group, Clostridium leptum subgroup, and Bacteroides fragilis group than the age-matched healthy women. Lower numbers of Streptococcus were also found in the AN group than in the control group. In the analysis based on AN subtypes, the counts of the Bacteroides fragilis group in the ANR and ANBP groups and the counts of the Clostridium coccoides group in the ANR group were significantly lower than those in the control group. The detection rate of the Lactobacillus plantarum subgroup was significantly lower in the AN group than in the control group. The AN group had significantly lower acetic and propionic acid concentrations in the feces than the control group. Moreover, the subtype analysis showed that the fecal concentrations of acetic acid were lower in the ANR group than in the control group. Principal component analysis confirmed a clear difference in the bacterial components between the AN patients and healthy women. Collectively, these results clearly indicate the existence of dysbiosis in the gut of AN patients.

  13. Bacterial Probiotic Modulation of Dendritic Cells

    OpenAIRE

    Drakes, Maureen; Blanchard, Thomas; Czinn, Steven

    2004-01-01

    Intestinal dendritic cells are continually exposed to ingested microorganisms and high concentrations of endogenous bacterial flora. These cells can be activated by infectious agents and other stimuli to induce T-cell responses and to produce chemokines which recruit other cells to the local environment. Bacterial probiotics are of increasing use against intestinal disorders such as inflammatory bowel disease. They act as nonpathogenic stimuli within the gut to regain immunologic quiescence. ...

  14. Human gut microbiota: repertoire and variations.

    Science.gov (United States)

    Lagier, Jean-Christophe; Million, Matthieu; Hugon, Perrine; Armougom, Fabrice; Raoult, Didier

    2012-01-01

    The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species, the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea, and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics, or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism.

  15. Human gut microbiota: repertoire and variations

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eLagier

    2012-11-01

    Full Text Available The composition of human gut microbiota and their relationship with the host and, consequently, with human health and disease, presents several challenges to microbiologists. Originally dominated by culture-dependent methods for exploring this ecosystem, the advent of molecular tools has revolutionized our ability to investigate these relationships. However, many biases that have led to contradictory results have been identified. Microbial culturomics, a recent concept based on a use of several culture conditions with identification by MALDI-TOF followed by the genome sequencing of the new species cultured had allowed a complementarity with metagenomics. Culturomics allowed to isolate 31 new bacterial species the largest human virus, the largest bacteria, and the largest Archaea from human. Moreover, some members of this ecosystem, such as Eukaryotes, giant viruses, Archaea and Planctomycetes, have been neglected by the majority of studies. In addition, numerous factors, such as age, geographic provenance, dietary habits, antibiotics or probiotics, can influence the composition of the microbiota. Finally, in addition to the countless biases associated with the study techniques, a considerable limitation to the interpretation of studies of human gut microbiota is associated with funding sources and transparency disclosures. In the future, studies independent of food industry funding and using complementary methods from a broad range of both culture-based and molecular tools will increase our knowledge of the repertoire of this complex ecosystem and host-microbiota mutualism.

  16. Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota.

    Science.gov (United States)

    Wiles, Travis J; Jemielita, Matthew; Baker, Ryan P; Schlomann, Brandon H; Logan, Savannah L; Ganz, Julia; Melancon, Ellie; Eisen, Judith S; Guillemin, Karen; Parthasarathy, Raghuveer

    2016-07-01

    The gut microbiota is a complex consortium of microorganisms with the ability to influence important aspects of host health and development. Harnessing this "microbial organ" for biomedical applications requires clarifying the degree to which host and bacterial factors act alone or in combination to govern the stability of specific lineages. To address this issue, we combined bacteriological manipulation and light sheet fluorescence microscopy to monitor the dynamics of a defined two-species microbiota within a vertebrate gut. We observed that the interplay between each population and the gut environment produces distinct spatiotemporal patterns. As a consequence, one species dominates while the other experiences sudden drops in abundance that are well fit by a stochastic mathematical model. Modeling revealed that direct bacterial competition could only partially explain the observed phenomena, suggesting that a host factor is also important in shaping the community. We hypothesized the host determinant to be gut motility, and tested this mechanism by measuring colonization in hosts with enteric nervous system dysfunction due to a mutation in the ret locus, which in humans is associated with the intestinal motility disorder known as Hirschsprung disease. In mutant hosts we found reduced gut motility and, confirming our hypothesis, robust coexistence of both bacterial species. This study provides evidence that host-mediated spatial structuring and stochastic perturbation of communities can drive bacterial population dynamics within the gut, and it reveals a new facet of the intestinal host-microbe interface by demonstrating the capacity of the enteric nervous system to influence the microbiota. Ultimately, these findings suggest that therapeutic strategies targeting the intestinal ecosystem should consider the dynamic physical nature of the gut environment. PMID:27458727

  17. Metatranscriptomics of the human gut microbiome

    DEFF Research Database (Denmark)

    Sicheritz-Pontén, Thomas

    2011-01-01

    Our ‘other’ genome is the collective genetic information in all of the microorganisms that are living on and within us. Collectively known as the microbiome, these microbial cells outnumber human cells in the body by more than 10 to 1, and the genes carried by these organisms outnumber the genes in...... the human genome by more than 100 to 1. How these organisms contribute to and affect human health is poorly understood, but the emerging field of metagenomics promises a more comprehensive and complete understanding of the human microbiome. In the European-funded Metagenomics of the Human Intestinal...... that there is a division of labor between the bacterial species in the human gut microbiome....

  18. Gut triglyceride production.

    Science.gov (United States)

    Pan, Xiaoyue; Hussain, M Mahmood

    2012-05-01

    Our knowledge of how the body absorbs triacylglycerols (TAG) from the diet and how this process is regulated has increased at a rapid rate in recent years. Dietary TAG are hydrolyzed in the intestinal lumen to free fatty acids (FFA) and monoacylglycerols (MAG), which are taken up by enterocytes from their apical side, transported to the endoplasmic reticulum (ER) and resynthesized into TAG. TAG are assembled into chylomicrons (CM) in the ER, transported to the Golgi via pre-chylomicron transport vesicles and secreted towards the basolateral side. In this review, we mainly focus on the roles of key proteins involved in uptake and intracellular transport of fatty acids, their conversion to TAG and packaging into CM. We will also discuss intracellular transport and secretion of CM. Moreover, we will bring to light few factors that regulate gut triglyceride production. Furthermore, we briefly summarize pathways involved in cholesterol absorption. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.

  19. Flipped GUT inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Theory Division, CERN, Route de Meyrin 385, 1217 Meyrin (Switzerland); Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-03-23

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  20. THE TELEOST GUT PERSORBS MICROPARTICULATES

    Directory of Open Access Journals (Sweden)

    Ewen McLean

    2001-06-01

    Full Text Available The ability of the teleost gut to absorb microparticulate material was examined following rectal intubation (3.5 g kg -1 of commercial grade cornstarch (≈21 mm diameter, or potato starch (≈43 mm diameter. Tissue samples were taken from the mid - and hind-gut of control and treated fish 18 h postintubation. Collected samples were processed using standard plastic and staining protocols and resultant photomicrographs examined by computer-assisted image analysis. Cornstarch particles (8-14 mm, were observed to pass from gut lumen to the lamina propria via a paracellular or persorptive route only. No evidence for the like passage of potato starch was found.

  1. Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Margaret L Zupancic

    Full Text Available Obesity has been linked to the human gut microbiota; however, the contribution of gut bacterial species to the obese phenotype remains controversial because of conflicting results from studies in different populations. To explore the possible dysbiosis of gut microbiota in obesity and its metabolic complications, we studied men and women over a range of body mass indices from the Old Order Amish sect, a culturally homogeneous Caucasian population of Central European ancestry. We characterized the gut microbiota in 310 subjects by deep pyrosequencing of bar-coded PCR amplicons from the V1-V3 region of the 16S rRNA gene. Three communities of interacting bacteria were identified in the gut microbiota, analogous to previously identified gut enterotypes. Neither BMI nor any metabolic syndrome trait was associated with a particular gut community. Network analysis identified twenty-two bacterial species and four OTUs that were either positively or inversely correlated with metabolic syndrome traits, suggesting that certain members of the gut microbiota may play a role in these metabolic derangements.

  2. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms.

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Wu, Wei-Min; Zhao, Jiao; Song, Yiling; Gao, Longcheng; Yang, Ruifu; Jiang, Lei

    2015-10-20

    The role of gut bacteria of mealworms (the larvae of Tenebrio molitor Linnaeus) in polystyrene (PS) degradation was investigated. Gentamicin was the most effective inhibitor of gut bacteria among six antibiotics tested. Gut bacterial activities were essentially suppressed by feeding gentamicin food (30 mg/g) for 10 days. Gentamicin-feeding mealworms lost the ability to depolymerize PS and mineralize PS into CO2, as determined by characterizing worm fecula and feeding with (13)C-labeled PS. A PS-degrading bacterial strain was isolated from the guts of the mealworms, Exiguobacterium sp. strain YT2, which could form biofilm on PS film over a 28 day incubation period and made obvious pits and cavities (0.2-0.3 mm in width) on PS film surfaces associated with decreases in hydrophobicity and the formation of C-O polar groups. A suspension culture of strain YT2 (10(8) cells/mL) was able to degrade 7.4 ± 0.4% of the PS pieces (2500 mg/L) over a 60 day incubation period. The molecular weight of the residual PS pieces was lower, and the release of water-soluble daughter products was detected. The results indicated the essential role of gut bacteria in PS biodegradation and mineralization, confirmed the presence of PS-degrading gut bacteria, and demonstrated the biodegradation of PS by mealworms. PMID:26390390

  3. Microbial gut diversity of Africanized and European honey bee larval instars.

    Science.gov (United States)

    Vojvodic, Svjetlana; Rehan, Sandra M; Anderson, Kirk E

    2013-01-01

    The first step in understanding gut microbial ecology is determining the presence and potential niche breadth of associated microbes. While the core gut bacteria of adult honey bees is becoming increasingly apparent, there is very little and inconsistent information concerning symbiotic bacterial communities in honey bee larvae. The larval gut is the target of highly pathogenic bacteria and fungi, highlighting the need to understand interactions between typical larval gut flora, nutrition and disease progression. Here we show that the larval gut is colonized by a handful of bacterial groups previously described from guts of adult honey bees or other pollinators. First and second larval instars contained almost exclusively Alpha 2.2, a core Acetobacteraceae, while later instars were dominated by one of two very different Lactobacillus spp., depending on the sampled site. Royal jelly inhibition assays revealed that of seven bacteria occurring in larvae, only one Neisseriaceae and one Lactobacillus sp. were inhibited. We found both core and environmentally vectored bacteria with putatively beneficial functions. Our results suggest that early inoculation by Acetobacteraceae may be important for microbial succession in larvae. This assay is a starting point for more sophisticated in vitro models of nutrition and disease resistance in honey bee larvae. PMID:23991051

  4. Microbial gut diversity of Africanized and European honey bee larval instars.

    Science.gov (United States)

    Vojvodic, Svjetlana; Rehan, Sandra M; Anderson, Kirk E

    2013-01-01

    The first step in understanding gut microbial ecology is determining the presence and potential niche breadth of associated microbes. While the core gut bacteria of adult honey bees is becoming increasingly apparent, there is very little and inconsistent information concerning symbiotic bacterial communities in honey bee larvae. The larval gut is the target of highly pathogenic bacteria and fungi, highlighting the need to understand interactions between typical larval gut flora, nutrition and disease progression. Here we show that the larval gut is colonized by a handful of bacterial groups previously described from guts of adult honey bees or other pollinators. First and second larval instars contained almost exclusively Alpha 2.2, a core Acetobacteraceae, while later instars were dominated by one of two very different Lactobacillus spp., depending on the sampled site. Royal jelly inhibition assays revealed that of seven bacteria occurring in larvae, only one Neisseriaceae and one Lactobacillus sp. were inhibited. We found both core and environmentally vectored bacteria with putatively beneficial functions. Our results suggest that early inoculation by Acetobacteraceae may be important for microbial succession in larvae. This assay is a starting point for more sophisticated in vitro models of nutrition and disease resistance in honey bee larvae.

  5. Microbial gut diversity of Africanized and European honey bee larval instars.

    Directory of Open Access Journals (Sweden)

    Svjetlana Vojvodic

    Full Text Available The first step in understanding gut microbial ecology is determining the presence and potential niche breadth of associated microbes. While the core gut bacteria of adult honey bees is becoming increasingly apparent, there is very little and inconsistent information concerning symbiotic bacterial communities in honey bee larvae. The larval gut is the target of highly pathogenic bacteria and fungi, highlighting the need to understand interactions between typical larval gut flora, nutrition and disease progression. Here we show that the larval gut is colonized by a handful of bacterial groups previously described from guts of adult honey bees or other pollinators. First and second larval instars contained almost exclusively Alpha 2.2, a core Acetobacteraceae, while later instars were dominated by one of two very different Lactobacillus spp., depending on the sampled site. Royal jelly inhibition assays revealed that of seven bacteria occurring in larvae, only one Neisseriaceae and one Lactobacillus sp. were inhibited. We found both core and environmentally vectored bacteria with putatively beneficial functions. Our results suggest that early inoculation by Acetobacteraceae may be important for microbial succession in larvae. This assay is a starting point for more sophisticated in vitro models of nutrition and disease resistance in honey bee larvae.

  6. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms.

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Wu, Wei-Min; Zhao, Jiao; Song, Yiling; Gao, Longcheng; Yang, Ruifu; Jiang, Lei

    2015-10-20

    The role of gut bacteria of mealworms (the larvae of Tenebrio molitor Linnaeus) in polystyrene (PS) degradation was investigated. Gentamicin was the most effective inhibitor of gut bacteria among six antibiotics tested. Gut bacterial activities were essentially suppressed by feeding gentamicin food (30 mg/g) for 10 days. Gentamicin-feeding mealworms lost the ability to depolymerize PS and mineralize PS into CO2, as determined by characterizing worm fecula and feeding with (13)C-labeled PS. A PS-degrading bacterial strain was isolated from the guts of the mealworms, Exiguobacterium sp. strain YT2, which could form biofilm on PS film over a 28 day incubation period and made obvious pits and cavities (0.2-0.3 mm in width) on PS film surfaces associated with decreases in hydrophobicity and the formation of C-O polar groups. A suspension culture of strain YT2 (10(8) cells/mL) was able to degrade 7.4 ± 0.4% of the PS pieces (2500 mg/L) over a 60 day incubation period. The molecular weight of the residual PS pieces was lower, and the release of water-soluble daughter products was detected. The results indicated the essential role of gut bacteria in PS biodegradation and mineralization, confirmed the presence of PS-degrading gut bacteria, and demonstrated the biodegradation of PS by mealworms.

  7. Survival to parasitoids in an insect hosting defensive symbionts: a multivariate approach to polymorphic traits affecting host use by its natural enemy.

    Directory of Open Access Journals (Sweden)

    Emilie Bilodeau

    Full Text Available Insect parasitoids and their insect hosts represent a wide range of parasitic trophic relations that can be used to understand the evolution of biotic diversity on earth. Testing theories of coevolution between hosts and parasites is based on factors directly involved in host susceptibility and parasitoid virulence. We used controlled encounters with potential hosts of the Aphidius ervi wasp to elucidate behavioral and other phenotypic traits of host Acyrthosiphon pisum that most contribute to success or failure of parasitism. The host aphid is at an advanced stage of specialization on different crop plants, and exhibits intra-population polymorphism for traits of parasitoid avoidance and resistance based on clonal variation of color morph and anti-parasitoid bacterial symbionts. Randomly selected aphid clones from alfalfa and clover were matched in 5 minute encounters with wasps of two parasitoid lineages deriving from hosts of each plant biotype in a replicated transplant experimental design. In addition to crop plant affiliation (alfalfa, clover, aphid clones were characterized for color morph (green, pink, Hamiltonella defensa and Regiella insecticola symbionts, and frequently used behaviors in encounters with A. ervi wasps. A total of 12 explanatory variables were examined using redundancy analysis (RDA to predict host survival or failure to A. ervi parasitism. Aphid color was the best univariate predictor, but was poorly predictive in the RDA model. In contrast, aphid host plant and symbionts were not significant univariate predictors, but significant predictors in the multivariate model. Aphid susceptibility to wasp acceptance as reflected in host attacks and oviposition clearly differed from its suitability to parasitism and progeny development. Parasitoid progeny were three times more likely to survive on clover than alfalfa host aphids, which was compensated by behaviorally adjusting eggs invested per host. Strong variation of the

  8. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels.

    Science.gov (United States)

    Sayavedra, Lizbeth; Kleiner, Manuel; Ponnudurai, Ruby; Wetzel, Silke; Pelletier, Eric; Barbe, Valerie; Satoh, Nori; Shoguchi, Eiichi; Fink, Dennis; Breusing, Corinna; Reusch, Thorsten Bh; Rosenstiel, Philip; Schilhabel, Markus B; Becher, Dörte; Schweder, Thomas; Markert, Stephanie; Dubilier, Nicole; Petersen, Jillian M

    2015-01-01

    Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.

  9. Gut Microbiota: The Brain Peacekeeper

    OpenAIRE

    Mu, Chunlong; Yang, Yuxiang; Zhu, Weiyun

    2016-01-01

    Gut microbiota regulates intestinal and extraintestinal homeostasis. Accumulating evidence suggests that the gut microbiota may also regulate brain function and behavior. Results from animal models indicate that disturbances in the composition and functionality of some microbiota members are associated with neurophysiological disorders, strengthening the idea of a microbiota–gut–brain axis and the role of microbiota as a “peacekeeper” in the brain health. Here, we review recent discoveries on...

  10. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  11. Genome-Wide Association Studies of the Human Gut Microbiota.

    Science.gov (United States)

    Davenport, Emily R; Cusanovich, Darren A; Michelini, Katelyn; Barreiro, Luis B; Ober, Carole; Gilad, Yoav

    2015-01-01

    The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut. PMID:26528553

  12. Identification of Paenibacillus as a Symbiont in Acanthamoeba.

    Science.gov (United States)

    Maschio, Vinicius José; Corção, Gertrudes; Bücker, Francielle; Caumo, Karin; Rott, Marilise Brittes

    2015-09-01

    Amoebae of the genus Acanthamoeba occur worldwide and in addition to being pathogens, are important vehicles for microorganisms with clinical and environmental importance. This study aimed to evaluate the profiling of endosymbionts in 12 isolates of Acanthamoeba using V3 region of 16S rDNA denaturing gradient gel electrophoresis (DGGE) and sequencing. The DGGE enabled us to characterize the endosymbionts diversity in isolates of Acanthamoeba, and to identify Paenibacillus sp., an emerging pathogen, as an amoebic endosymbiont. The results of this study demonstrated that Acanthamoeba is capable of transporting a large number of endosymbionts. This is the first study that reports, the presence of Paenibacillus sp. as amebic symbiont.

  13. Metatranscriptomic approach to analyze the functional human gut microbiota.

    Directory of Open Access Journals (Sweden)

    María José Gosalbes

    Full Text Available The human gut is the natural habitat for a large and dynamic bacterial community that has a great relevance for health. Metagenomics is increasing our knowledge of gene content as well as of functional and genetic variability in this microbiome. However, little is known about the active bacteria and their function(s in the gastrointestinal tract. We performed a metatranscriptomic study on ten healthy volunteers to elucidate the active members of the gut microbiome and their functionality under conditions of health. First, the microbial cDNAs obtained from each sample were sequenced using 454 technology. The analysis of 16S transcripts showed the phylogenetic structure of the active microbial community. Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, Prevotellaceae, and Rickenellaceae were the predominant families detected in the active microbiota. The characterization of mRNAs revealed a uniform functional pattern in healthy individuals. The main functional roles of the gut microbiota were carbohydrate metabolism, energy production and synthesis of cellular components. In contrast, housekeeping activities such as amino acid and lipid metabolism were underrepresented in the metatranscriptome. Our results provide new insights into the functionality of the complex gut microbiota in healthy individuals. In this RNA-based survey, we also detected small RNAs, which are important regulatory elements in prokaryotic physiology and pathogenicity.

  14. On Growth and Form of the Zebrafish Gut Microbiome

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-03-01

    The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.

  15. Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Bruno Melo Carvalho

    2013-01-01

    Full Text Available Obesity is the main condition that is correlated with the appearance of insulin resistance, which is the major link among its comorbidities, such as type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. Obesity affects a large number of individuals worldwide; it degrades human health and quality of life. Here, we review the role of the gut microbiota in the pathophysiology of obesity and type 2 diabetes, which is promoted by a bacterial diversity shift mediated by overnutrition. Whole bacteria, their products, and metabolites undergo increased translocation through the gut epithelium to the circulation due to degraded tight junctions and the consequent increase in intestinal permeability that culminates in inflammation and insulin resistance. Several strategies focusing on modulation of the gut microbiota (antibiotics, probiotics, and prebiotics are being experimentally employed in metabolic derangement in order to reduce intestinal permeability, increase the production of short chain fatty acids and anorectic gut hormones, and promote insulin sensitivity to counteract the inflammatory status and insulin resistance found in obese individuals.

  16. Gut microbiome and metabolic syndrome.

    Science.gov (United States)

    Mazidi, Mohsen; Rezaie, Peyman; Kengne, Andre Pascal; Mobarhan, Majid Ghayour; Ferns, Gordon A

    2016-01-01

    The gut microbiome contributes approximately 2kg of the whole body weight, and recent studies suggest that gut microbiota has a profound effect on human metabolism, potentially contributing to several features of the metabolic syndrome. Metabolic syndrome is defined by a clustering of metabolic disorders that include central adiposity with visceral fat accumulation, dyslipidemia, insulin resistance, dysglycemia and non-optimal blood pressure levels. Metabolic syndrome is associated with an increased risk of cardiovascular diseases and type 2 diabetes. It is estimated that around 20-25 percent of the world's adult population has metabolic syndrome. In this manuscript, we have reviewed the existing data linking gut microbiome with metabolic syndrome. Existing evidence from studies both in animals and humans support a link between gut microbiome and various components of metabolic syndrome. Possible pathways include involvement with energy homeostasis and metabolic processes, modulation of inflammatory signaling pathways, interferences with the immune system, and interference with the renin-angiotensin system. Modification of gut microbiota via prebiotics, probiotics or other dietary interventions has provided evidence to support a possible beneficial effect of interventions targeting gut microbiota modulation to treat components or complications of metabolic syndrome.

  17. Gut dysfunction in Parkinson's disease.

    Science.gov (United States)

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-07-01

    Early involvement of gut is observed in Parkinson's disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  18. The brain of the gut

    Directory of Open Access Journals (Sweden)

    El Munshid Hassan

    2000-01-01

    Full Text Available One year before the close of the 19th century it was recognized that intestinal peristalsis was controlled by nerve plexuses in the wall of the gut independent of the central nervous system (CNS. This concept was developed further during the first quarter of the 20th century but was almost forgotten during the next 50 years until it was revived by the early 1970s. It is now recognized that the myenteric and submucous plexuses, referrred to as the enteric nervous system (ENS, contain as many neurons as in the spinal cord. In addition to autonomy from the CNS, the ENS employs not only noradrenaline and acetylcholine but also serotonin (5-HT, ATP, peptides and nitric oxide as neurotransmitters, and controls gut movements, exocrine and endocrine secretions and the microcirculation, thus qualifying for being considered the brain of the gut. Reflexes involving the ENS may be entirely intrinsic such as that controlling peristalsis, between parts of the gut through prevertebral ganglia e.g. the enterogastric reflex, or between the gut and the CNS as examplified by the vago-vagal reflexes. Absent, defective or dysfunctional enteric neurons may result in achalasia, infantile hypertrophic pyloric stenosis, paralytic ileus, intestinal pseudo-obstruction, Hirschsprung′s disease or idiopathic chronic constipation. Further, the ENS may be involved in the pathogenesis of secretory diarrhoea and inflammatory bowel disease. More research on the gut brain will deepen our understanding of the physiology and pathophysiology of the gastrointestinal tract.

  19. Excess algal symbionts increase the susceptibility of reef corals to bleaching

    Science.gov (United States)

    Cunning, Ross; Baker, Andrew C.

    2013-03-01

    Rising ocean temperatures associated with global climate change are causing mass coral bleaching and mortality worldwide. Understanding the genetic and environmental factors that mitigate coral bleaching susceptibility may aid local management efforts to help coral reefs survive climate change. Although bleaching susceptibility depends partly on the genetic identity of a coral's algal symbionts, the effect of symbiont density, and the factors controlling it, remain poorly understood. By applying a new metric of symbiont density to study the coral Pocillopora damicornis during seasonal warming and acute bleaching, we show that symbiont cell ratio density is a function of both symbiont type and environmental conditions, and that corals with high densities are more susceptible to bleaching. Higher vulnerability of corals with more symbionts establishes a quantitative mechanistic link between symbiont density and the molecular basis for coral bleaching, and indicates that high densities do not buffer corals from thermal stress, as has been previously suggested. These results indicate that environmental conditions that increase symbiont densities, such as nutrient pollution, will exacerbate climate-change-induced coral bleaching, providing a mechanistic explanation for why local management to reduce these stressors will help coral reefs survive future warming.

  20. Symbiont Succession during Embryonic Development of the European Medicinal Leech, Hirudo verbana▿

    OpenAIRE

    Rita V M Rio; Maltz, Michele; McCormick, Benjamin; Reiss, Alexander; Graf, Joerg

    2009-01-01

    The European medicinal leech, Hirudo verbana, harbors simple microbial communities in the digestive tract and bladder. The colonization history, infection frequency, and growth dynamics of symbionts through host embryogenesis are described using diagnostic PCR and quantitative PCR. Symbiont species displayed diversity in temporal establishment and proliferation through leech development.

  1. The Role of Host Demographic Storage in the Ecological Dynamics of Heritable Symbionts.

    Science.gov (United States)

    Bibian, Andrew J; Rudgers, Jennifer A; Miller, Tom E X

    2016-10-01

    Heritable symbioses are widespread and ecologically important. Many host organisms have complex life cycles that include diverse opportunities for symbionts to affect their host and be lost during development. Yet, existing theory takes a simplified view of host demography. Here, we generalize symbiosis theory to understand how demographic "storage" in the form of dormant or prereproductive life stages can modify symbiosis dynamics. Using grass-endophyte symbioses as context, we developed models to contrast the role of the seed bank (a storage stage) against the reproductive stage in symbiont persistence and prevalence. We find that the seed bank is as important as or more important than the reproductive stage in driving symbiont dynamics, as long as passage through the seed bank is obligate. Flexible entry to the seed bank substantially weakens its influence on symbiont persistence but can modify prevalence in counterintuitive ways. Our models identify a role for legacy effects, where hosts that lose symbionts retain their demographic influence. The retention of benefits via legacy effects can reduce symbiont prevalence and even cause prevalence to decline with increasing benefits to hosts because symbiont-free hosts carry those benefits. Our results resolve connections between individual-level host-symbiont interactions and population-level patterns, providing guidance for empirical studies. PMID:27622878

  2. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut.

    Science.gov (United States)

    McFrederick, Quinn S; Mueller, Ulrich G; James, Rosalind R

    2014-03-22

    Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is an important field crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphaera aggregata. To test the hypothesis that some gut microbes directly or indirectly affect the growth of others, we applied four treatments to the pollen provisions of M. rotundata eggs and young larvae: antibacterials, antifungals, A. aggregata spores and a no-treatment control. We allowed the larvae to develop, and then used 454 pyrosequencing and quantitative PCR (for A. aggregata) to investigate fungal and bacterial communities in the larval gut. Antifungals lowered A. aggregata abundance but increased the diversity of surviving fungi. This suggests that A. aggregata inhibits the growth of other fungi in the gut through chemical or competitive interaction. Bacterial richness decreased under the antifungal treatment, suggesting that changes in the fungal community caused changes in the bacterial community. We found no evidence that bacteria affect fungal communities. Lactobacillus kunkeei clade bacteria were common members of the larval gut microbiota and exhibited antibiotic resistance. Further research is needed to determine the effect of gut microbes on M. rotundata health. PMID:24478297

  3. Selective enrichment of commensal gut bacteria protects against Citrobacter rodentium-induced colitis.

    Science.gov (United States)

    Vong, Linda; Pinnell, Lee J; Määttänen, Pekka; Yeung, C William; Lurz, Eberhard; Sherman, Philip M

    2015-08-01

    The intestinal microbiota plays a key role in shaping the host immune system. Perturbation of gut microbial composition, termed dysbiosis, is associated with an increased susceptibility to intestinal pathogens and is a hallmark of a number of inflammatory, metabolic, and infectious diseases. The prospect of mining the commensal gut microbiota for bacterial strains that can impact immune function represents an attractive strategy to counteract dysbiosis and resulting disease. In this study, we show that selective enrichment of commensal gut lactobacilli protects against the murine pathogen Citrobacter rodentium, a well-characterized model of enteropathogenic and enterohemorrhagic Escherichia coli infection. The lactobacilli-enriched bacterial culture prevented the expansion of Gammaproteobacteria and Actinobacteria and was associated with improved indexes of epithelial barrier function (dextran flux), transmissible crypt hyperplasia, and tissue inflammatory cytokine levels. Moreover, cultivation of gut bacteria from Citrobacter rodentium-infected mice reveals the differential capacity of bacterial subsets to mobilize neutrophil oxidative burst and initiate the formation of weblike neutrophil extracellular traps. Our findings highlight the beneficial effects of a lactobacilli-enriched commensal gut microenvironment and, in the context of an intestinal barrier breach, the ability of neutrophils to immobilize both commensal and pathogenic bacteria.

  4. Nonalcoholic fatty liver disease: for better or worse, blame the gut microbiota?

    Science.gov (United States)

    Li, Ding-You; Yang, Min; Edwards, Sarah; Ye, Shui-Qing

    2013-11-01

    Nonalcoholic fatty liver disease (NAFLD) is a major clinical consequence for people with obesity and metabolic syndrome and is also associated with enteral and parenteral nutrition. Early studies suggested that altered gut microbiota might contribute to obesity by affecting energy harvest from the diet and energy storage in the host. Recent evidence in humans as well as in animal models has linked gut microbiota to the development of NAFLD through the gut-liver axis. With bacterial overgrowth and increased intestinal permeability observed in patients with NAFLD and in animal models, gut-derived bacterial products such as endotoxin (lipopolysaccharide) and bacterial DNA are being delivered to the liver through the portal vein and then activate Toll-like receptors (TLRs), mainly TLR4 and TLR9, and their downstream cytokines and chemokines, leading to the development and progression of NAFLD. Given the limited data in humans, the role of gut microbiota in the pathogenesis of NAFLD is still open to discussion. Prebiotics and probiotics have been attempted to modify the microbiota as preventive or therapeutic strategies on this pathological condition. Their beneficial effects on NALFD have been demonstrated in animal models and limited human studies. However, prospective, appropriately powered, randomized, controlled clinical trials are needed to determine whether prebiotics and probiotics and other integrated strategies to modify intestinal microbiota are efficacious therapeutic modalities to treat NALFD.

  5. Molecular analysis of gut microbiota in obesity among Indian individuals

    Indian Academy of Sciences (India)

    Deepak P Patil; Dhiraj P Dhotre; Sachin G Chavan; Armiya Sultan; Dhawal S Jain; Vikram B Lanjekar; Jayshree Gangawani; Poonam S Shah; Jayshree S Todkar; Shashank Shah; Dilip R Ranade; Milind S Patole; Yogesh S Shouche

    2012-09-01

    Obesity is a consequence of a complex interplay between the host genome and the prevalent obesogenic factors among the modern communities. The role of gut microbiota in the pathogenesis of the disorder was recently discovered; however, 16S-rRNA-based surveys revealed compelling but community-specific data. Considering this, despite unique diets, dietary habits and an uprising trend in obesity, the Indian counterparts are poorly studied. Here, we report a comparative analysis and quantification of dominant gut microbiota of lean, normal, obese and surgically treated obese individuals of Indian origin. Representative gut microbial diversity was assessed by sequencing fecal 16S rRNA libraries for each group (n=5) with a total of over 3000 sequences. We detected no evident trend in the distribution of the predominant bacterial phyla, Bacteroidetes and Firmicutes. At the genus level, the bacteria of genus Bacteroides were prominent among the obese individuals, which was further confirmed by qPCR ( > 0.05). In addition, a remarkably high archaeal density with elevated fecal SCFA levels was also noted in the obese group. On the contrary, the treated-obese individuals exhibited comparatively reduced Bacteroides and archaeal counts along with reduced fecal SCFAs. In conclusion, the study successfully identified a representative microbial diversity in the Indian subjects and demonstrated the prominence of certain bacterial groups in obese individuals; nevertheless, further studies are essential to understand their role in obesity.

  6. The role of symbiont genetic distance and potential adaptability in host preference towards Pseudonocardia symbionts in Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael; Maynard, Janielle; Roland, Damien L.;

    2011-01-01

    ), help defend the ants’ fungal mutualist from specialized parasites. In Acromyrmex Mayr (Hymenoptera: Formicidae) leaf-cutting ants, individual colonies maintain either a single or a few strains of Pseudonocardia, and the symbiont is primarily vertically transmitted between generations by colony...... to the role of adaptive recognition, potential ecological flexibility in symbiont preference, and more broadly, in relation to self versus non-self recognition....

  7. Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns

    Directory of Open Access Journals (Sweden)

    Andres Gomez

    2016-03-01

    Full Text Available To understand how the gut microbiome is impacted by human adaptation to varying environments, we explored gut bacterial communities in the BaAka rainforest hunter-gatherers and their agriculturalist Bantu neighbors in the Central African Republic. Although the microbiome of both groups is compositionally similar, hunter-gatherers harbor increased abundance of Prevotellaceae, Treponema, and Clostridiaceae, while the Bantu gut microbiome is dominated by Firmicutes. Comparisons with US Americans reveal microbiome differences between Africans and westerners but show western-like features in the Bantu, including an increased abundance of predictive carbohydrate and xenobiotic metabolic pathways. In contrast, the hunter-gatherer gut shows increased abundance of predicted virulence, amino acid, and vitamin metabolism functions, as well as dominance of lipid and amino-acid-derived metabolites, as determined through metabolomics. Our results demonstrate gradients of traditional subsistence patterns in two neighboring African groups and highlight the adaptability of the microbiome in response to host ecology.

  8. Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns.

    Science.gov (United States)

    Gomez, Andres; Petrzelkova, Klara J; Burns, Michael B; Yeoman, Carl J; Amato, Katherine R; Vlckova, Klara; Modry, David; Todd, Angelique; Jost Robinson, Carolyn A; Remis, Melissa J; Torralba, Manolito G; Morton, Elise; Umaña, Juan D; Carbonero, Franck; Gaskins, H Rex; Nelson, Karen E; Wilson, Brenda A; Stumpf, Rebecca M; White, Bryan A; Leigh, Steven R; Blekhman, Ran

    2016-03-01

    To understand how the gut microbiome is impacted by human adaptation to varying environments, we explored gut bacterial communities in the BaAka rainforest hunter-gatherers and their agriculturalist Bantu neighbors in the Central African Republic. Although the microbiome of both groups is compositionally similar, hunter-gatherers harbor increased abundance of Prevotellaceae, Treponema, and Clostridiaceae, while the Bantu gut microbiome is dominated by Firmicutes. Comparisons with US Americans reveal microbiome differences between Africans and westerners but show western-like features in the Bantu, including an increased abundance of predictive carbohydrate and xenobiotic metabolic pathways. In contrast, the hunter-gatherer gut shows increased abundance of predicted virulence, amino acid, and vitamin metabolism functions, as well as dominance of lipid and amino-acid-derived metabolites, as determined through metabolomics. Our results demonstrate gradients of traditional subsistence patterns in two neighboring African groups and highlight the adaptability of the microbiome in response to host ecology.

  9. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels

    Science.gov (United States)

    Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin

    2016-01-01

    Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196

  10. Targeting gut-liver axis for the treatment of nonalcoholic steatohepatitis: translational and clinical evidence.

    Science.gov (United States)

    Federico, Alessandro; Dallio, Marcello; Godos, Justyna; Loguercio, Carmela; Salomone, Federico

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is widely emerging as the most prevalent liver disorder and is associated with increased risk of liver-related and cardiovascular mortality. Recent experimental and clinical studies have revealed the pivotal role played by the alteration of gut-liver axis in the onset of fatty liver and related metabolic disturbances. Gut-liver cross talk is implicated not only in the impairment of lipid and glucose homeostasis leading to steatogenesis, but also in the initiation of inflammation and fibrogenesis, which characterize nonalcoholic steatohepatitis (NASH), the evolving form of NAFLD. The gut microbiota has been recognized as the key player in the gut-liver liaison and because of its complexity can act as a villain or a victim. Gut microbiota not only influences absorption and disposal of nutrients to the liver, but also conditions hepatic inflammation by supplying toll-like receptor ligands, which can stimulate liver cells to produce proinflammatory cytokines. Thus, the modification of intestinal bacterial flora by specific probiotics has been proposed as a therapeutic approach for the treatment of NASH. In this review, we summarized the evidence regarding the role of gut-liver axis in the pathogenesis of NASH and discussed the potential therapeutic role of gut microbiota modulation in the clinical setting. PMID:26318867

  11. Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L..

    Directory of Open Access Journals (Sweden)

    Xuemei Li

    Full Text Available Gut microbiota has shown tight and coordinated connection with various functions of its host such as metabolism, immunity, energy utilization, and health maintenance. To gain insight into whether gut microbes affect the metabolism of fish, we employed fast-growing transgenic common carp (Cyprinus carpio L. to study the connections between its large body feature and gut microbes. Metagenome-based fingerprinting and high-throughput sequencing on bacterial 16S rRNA genes indicated that fish gut was dominated by Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes, which displayed significant differences between transgenic fish and wild-type controls. Analyses to study the association of gut microbes with the fish metabolism discovered three major phyla having significant relationships with the host metabolic factors. Biochemical and histological analyses indicated transgenic fish had increased carbohydrate but decreased lipid metabolisms. Additionally, transgenic fish has a significantly lower Bacteroidetes:Firmicutes ratio than that of wild-type controls, which is similar to mammals between obese and lean individuals. These findings suggest that gut microbiotas are associated with the growth of fast growing transgenic fish, and the relative abundance of Firmicutes over Bacteroidetes could be one of the factors contributing to its fast growth. Since the large body size of transgenic fish displays a proportional body growth, which is unlike obesity in human, the results together with the findings from others also suggest that the link between obesity and gut microbiota is likely more complex than a simple Bacteroidetes:Firmicutes ratio change.

  12. Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence.

    Science.gov (United States)

    Morton, Elise R; Lynch, Joshua; Froment, Alain; Lafosse, Sophie; Heyer, Evelyne; Przeworski, Molly; Blekhman, Ran; Ségurel, Laure

    2015-11-01

    The human gut microbiota is impacted by host nutrition and health status and therefore represents a potentially adaptive phenotype influenced by metabolic and immune constraints. Previous studies contrasting rural populations in developing countries to urban industrialized ones have shown that industrialization is strongly correlated with patterns in human gut microbiota; however, we know little about the relative contribution of factors such as climate, diet, medicine, hygiene practices, host genetics, and parasitism. Here, we focus on fine-scale comparisons of African rural populations in order to (i) contrast the gut microbiota of populations inhabiting similar environments but having different traditional subsistence modes and either shared or distinct genetic ancestry, and (ii) examine the relationship between gut parasites and bacterial communities. Characterizing the fecal microbiota of Pygmy hunter-gatherers as well as Bantu individuals from both farming and fishing populations in Southwest Cameroon, we found that the gut parasite Entamoeba is significantly correlated with microbiome composition and diversity. We show that across populations, colonization by this protozoa can be predicted with 79% accuracy based on the composition of an individual's gut microbiota, and that several of the taxa most important for distinguishing Entamoeba absence or presence are signature taxa for autoimmune disorders. We also found gut communities to vary significantly with subsistence mode, notably with some taxa previously shown to be enriched in other hunter-gatherers groups (in Tanzania and Peru) also discriminating hunter-gatherers from neighboring farming or fishing populations in Cameroon. PMID:26619199

  13. Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence.

    Directory of Open Access Journals (Sweden)

    Elise R Morton

    2015-11-01

    Full Text Available The human gut microbiota is impacted by host nutrition and health status and therefore represents a potentially adaptive phenotype influenced by metabolic and immune constraints. Previous studies contrasting rural populations in developing countries to urban industrialized ones have shown that industrialization is strongly correlated with patterns in human gut microbiota; however, we know little about the relative contribution of factors such as climate, diet, medicine, hygiene practices, host genetics, and parasitism. Here, we focus on fine-scale comparisons of African rural populations in order to (i contrast the gut microbiota of populations inhabiting similar environments but having different traditional subsistence modes and either shared or distinct genetic ancestry, and (ii examine the relationship between gut parasites and bacterial communities. Characterizing the fecal microbiota of Pygmy hunter-gatherers as well as Bantu individuals from both farming and fishing populations in Southwest Cameroon, we found that the gut parasite Entamoeba is significantly correlated with microbiome composition and diversity. We show that across populations, colonization by this protozoa can be predicted with 79% accuracy based on the composition of an individual's gut microbiota, and that several of the taxa most important for distinguishing Entamoeba absence or presence are signature taxa for autoimmune disorders. We also found gut communities to vary significantly with subsistence mode, notably with some taxa previously shown to be enriched in other hunter-gatherers groups (in Tanzania and Peru also discriminating hunter-gatherers from neighboring farming or fishing populations in Cameroon.

  14. Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence.

    Science.gov (United States)

    Morton, Elise R; Lynch, Joshua; Froment, Alain; Lafosse, Sophie; Heyer, Evelyne; Przeworski, Molly; Blekhman, Ran; Ségurel, Laure

    2015-11-01

    The human gut microbiota is impacted by host nutrition and health status and therefore represents a potentially adaptive phenotype influenced by metabolic and immune constraints. Previous studies contrasting rural populations in developing countries to urban industrialized ones have shown that industrialization is strongly correlated with patterns in human gut microbiota; however, we know little about the relative contribution of factors such as climate, diet, medicine, hygiene practices, host genetics, and parasitism. Here, we focus on fine-scale comparisons of African rural populations in order to (i) contrast the gut microbiota of populations inhabiting similar environments but having different traditional subsistence modes and either shared or distinct genetic ancestry, and (ii) examine the relationship between gut parasites and bacterial communities. Characterizing the fecal microbiota of Pygmy hunter-gatherers as well as Bantu individuals from both farming and fishing populations in Southwest Cameroon, we found that the gut parasite Entamoeba is significantly correlated with microbiome composition and diversity. We show that across populations, colonization by this protozoa can be predicted with 79% accuracy based on the composition of an individual's gut microbiota, and that several of the taxa most important for distinguishing Entamoeba absence or presence are signature taxa for autoimmune disorders. We also found gut communities to vary significantly with subsistence mode, notably with some taxa previously shown to be enriched in other hunter-gatherers groups (in Tanzania and Peru) also discriminating hunter-gatherers from neighboring farming or fishing populations in Cameroon.

  15. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels.

    Science.gov (United States)

    Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin

    2016-01-01

    Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196

  16. Defensive bacteriome symbiont with a drastically reduced genome.

    Science.gov (United States)

    Nakabachi, Atsushi; Ueoka, Reiko; Oshima, Kenshiro; Teta, Roberta; Mangoni, Alfonso; Gurgui, Mihaela; Oldham, Neil J; van Echten-Deckert, Gerhild; Okamura, Keiko; Yamamoto, Kohei; Inoue, Hiromitsu; Ohkuma, Moriya; Hongoh, Yuichi; Miyagishima, Shin-ya; Hattori, Masahira; Piel, Jörn; Fukatsu, Takema

    2013-08-01

    Diverse insect species harbor symbiotic bacteria, which play important roles such as provisioning nutrients and providing defense against natural enemies [1-6]. Whereas nutritional symbioses are often indispensable for both partners, defensive symbioses tend to be of a facultative nature [1-12]. The Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits Liberibacter spp. (Alphaproteobacteria), causing the devastating citrus greening disease or Huanglongbing [13, 14]. In a symbiotic organ called the bacteriome, D. citri harbors two distinct intracellular symbionts: a putative nutrition provider, Carsonella_DC (Gammaproteobacteria), and an unnamed betaproteobacterium with unknown function [15], for which we propose the name "Candidatus Profftella armatura." Here we report that Profftella is a defensive symbiont presumably of an obligate nature with an extremely streamlined genome. The genomes of Profftella and Carsonella_DC were drastically reduced to 464,857 bp and 174,014 bp, respectively, suggesting their ancient and mutually indispensible association with the host. Strikingly, 15% of the small Profftella genome encoded horizontally acquired genes for synthesizing a novel polyketide toxin. The toxin was extracted, pharmacologically and structurally characterized, and designated diaphorin. The presence of Profftella and its diaphorin-biosynthetic genes was perfectly conserved in the world's D. citri populations. PMID:23850282

  17. Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts.

    Science.gov (United States)

    Bontemps, Cyril; Rogel, Marco Antonio; Wiechmann, Anja; Mussabekova, Assel; Moody, Sarah; Simon, Marcelo F; Moulin, Lionel; Elliott, Geoffrey N; Lacercat-Didier, Laurence; Dasilva, Cindy; Grether, Rosaura; Camargo-Ricalde, Sara L; Chen, Weimin; Sprent, Janet I; Martínez-Romero, Esperanza; Young, J Peter W; James, Euan K

    2016-01-01

    The legume genus Mimosa has > 500 species, with two major centres of diversity, Brazil (c. 350 spp.) and Mexico (c. 100 spp.). In Brazil most species are nodulated by Burkholderia. Here we asked whether this is also true of native and endemic Mexican species. We have tested this apparent affinity for betaproteobacteria by examining the symbionts of native and endemic species of Mimosa in Mexico, especially from the central highlands where Mimosa spp. have diversified. Nodules were tested for betaproteobacteria using in situ immunolocalization. Rhizobia isolated from the nodules were genetically characterized and tested for their ability to nodulate Mimosa spp. Immunological analysis of 25 host taxa suggested that most (including all the highland endemics) were not nodulated by betaproteobacteria. Phylogenetic analyses of 16S rRNA, recA, nodA, nodC and nifH genes from 87 strains isolated from 20 taxa confirmed that the endemic Mexican Mimosa species favoured alphaproteobacteria in the genera Rhizobium and Ensifer: this was confirmed by nodulation tests. Host phylogeny, geographic isolation and coevolution with symbionts derived from very different soils have potentially contributed to the striking difference in the choice of symbiotic partners by Mexican and Brazilian Mimosa species. PMID:26214613

  18. Epigenetic regulation of enteric neurotransmission by gut bacteria.

    Directory of Open Access Journals (Sweden)

    Tor eSavidge

    2016-01-01

    Full Text Available The Human Microbiome Project defined microbial community interactions with the human host, and provided important molecular insight into how epigenetic factors can influence intestinal ecosystems. Given physiological context, changes in gut microbial community structure are increasingly found to associate with alterations in enteric neurotransmission and disease. At present, it is not known whether shifts in microbial community dynamics represent cause or consequence of disease pathogenesis. The discovery of bacterial-derived neurotransmitters suggests further studies are needed to establish their role in enteric neuropathy. This mini-review highlights recent advances in bacterial communications to the autonomic nervous system and discusses emerging epigenetic data showing that diet, probiotic and antibiotic use may regulate enteric neurotransmission through modulation of microbial communities. Because of its limited scope, a particular emphasis is placed on bacterial regulation of enteric nervous system function in the intestine.

  19. About the gut microbiome as a pharmacological target in atherosclerosis.

    Science.gov (United States)

    Witjes, Julia J; van Raalte, Daniel H; Nieuwdorp, Max

    2015-09-15

    The contribution of intestinal bacterial strains (gut microbiota) in the development of cardiometabolic disease is increasingly recognized as potential diagnostic and pharmacological target. Changes in the intestinal bacterial composition and subsequent altered diversity has been associated with presence of chronic low-grade inflammation of mesenteric visceral adipose tissue, a known feature of malign obesity which can eventually lead to insulin resistance and type 2 diabetes mellitus. However, causality still needs to be proven. In this regard, both fecal transplantation studies as well as multiethnic prospective cohorts can help to identify the causally involved driving intestinal bacterial strains in human cardiometabolism. Ultimately, it is expected that novel diagnostic markers as well as therapeutics (pharmabiotics and vaccine strategies) can be developed. PMID:26096558

  20. The role of the gut microbiota in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Abu-Shanab, Ahmed; Quigley, Eamonn M M

    2010-12-01

    Important metabolic functions have been identified for the gut microbiota in health and disease. Several lines of evidence suggest a role for the gut microbiota in both the etiology of nonalcoholic fatty liver disease (NAFLD) and progression to its more advanced state, nonalcoholic steatohepatitis (NASH). Both NAFLD and NASH are strongly linked to obesity, type 2 diabetes mellitus and the metabolic syndrome and, accordingly, have become common worldwide problems. Small intestinal bacterial overgrowth of Gram-negative organisms could promote insulin resistance, increase endogenous ethanol production and induce choline deficiency, all factors implicated in NAFLD. Among the potential mediators of this association, lipopolysaccharide (a component of Gram-negative bacterial cell walls) exerts relevant metabolic and proinflammatory effects. Although the best evidence to support a role for the gut microbiota in NAFLD and NASH comes largely from animal models, data from studies in humans (albeit at times contradictory) is accumulating and could lead to new therapeutic avenues for these highly prevalent conditions.

  1. Gut as source of sepsis after hemorrhagic shock

    International Nuclear Information System (INIS)

    In a model of severe hemorrhagic shock in rats, blood culture findings became positive within 2 to 4 hours of shock. The organisms cultured were primarily gram-negative. To test the hypothesis that the gut was the source of the bacteria, E. coli labeled with carbon-14 oleic acid were fed to rats undergoing hemorrhagic shock. Their plasma was then assayed for carbon-14 activity. Seven of the 14 shocked animals demonstrated increased plasma carbon-14 activity during or after shock. The mortality rate was 100 percent 80 hours postshock, and all animals had E. coli on subsequent blood culture. The seven rats without increased plasma carbon-14 activity had a survival rate of 83 percent postshock. Sham-shocked animals did not exhibit plasma carbon-14 levels greater than the background levels. These data suggest that bacterial translocation occurs during hemorrhagic shock and that the gut is the source of the bacteremia seen during hemorrhagic shock

  2. Dysbiotic gut microbiome: A key element of Crohn's disease.

    Science.gov (United States)

    Øyri, Styrk Furnes; Műzes, Györgyi; Sipos, Ferenc

    2015-12-01

    Since the first publication on "regional ileitis", the relevance of this chronic inflammatory disease condition termed finally as Crohn's disease is continuously increasing. Although we are beginning to comprehend certain aspects of its pathogenesis, many facets remain unexplored. Host's gut microbiota is involved in a wide range of physiological and pathological processes including immune system development, and pathogen regulation. Further, the microbiome is thought to play a key role in Crohn's disease. The presence of Crohn's-associated variants of NOD2 and ATG16L genes appears to be associated not only with alterations of mucosal barrier functions, and bacterial killing, but the gut microbiota, as well, reflecting a potential relationship between the host's genotype and intestinal dysbiosis, involved in disease etiology. This review aims to characterize some exciting new aspect of Crohn's disease pathology, focusing mainly on the role of intestinal microbes, and their interplay with the immune system of the host.

  3. Application of Prodrugs to Inflammatory Diseases of the Gut

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Ebersole

    2008-02-01

    Full Text Available Oral delivery is the most common and preferred route of drug administrationalthough the digestive tract exhibits several obstacles to drug delivery including motilityand intraluminal pH profiles. The gut milieu represents the largest mucosal surfaceexposed to microorganisms with 1010-12 colony forming bacteria/g of colonic content.Approximately, one third of fecal dry matter is made of bacteria/ bacterial components.Indeed, the normal gut microbiota is responsible for healthy digestion of dietary fibers(polysaccharides and fermentation of short chain fatty acids such as acetate and butyratethat provide carbon sources (fuel for these bacteria. Inflammatory bowel disease (IBDresults in breakage of the mucosal barrier, an altered microbiota and dysregulated gutimmunity. Prodrugs that are chemically constructed to target colonic release or aredegraded specifically by colonic bacteria, can be useful in the treatment of IBD. Thisreview describes the progress in digestive tract prodrug design and delivery in light of gutmetabolic activities.

  4. Gut as source of sepsis after hemorrhagic shock

    Energy Technology Data Exchange (ETDEWEB)

    Sori, A.J.; Rush, B.F. Jr.; Lysz, T.W.; Smith, S.; Machiedo, G.W.

    1988-02-01

    In a model of severe hemorrhagic shock in rats, blood culture findings became positive within 2 to 4 hours of shock. The organisms cultured were primarily gram-negative. To test the hypothesis that the gut was the source of the bacteria, E. coli labeled with carbon-14 oleic acid were fed to rats undergoing hemorrhagic shock. Their plasma was then assayed for carbon-14 activity. Seven of the 14 shocked animals demonstrated increased plasma carbon-14 activity during or after shock. The mortality rate was 100 percent 80 hours postshock, and all animals had E. coli on subsequent blood culture. The seven rats without increased plasma carbon-14 activity had a survival rate of 83 percent postshock. Sham-shocked animals did not exhibit plasma carbon-14 levels greater than the background levels. These data suggest that bacterial translocation occurs during hemorrhagic shock and that the gut is the source of the bacteremia seen during hemorrhagic shock.

  5. GUT GENES ASSOCIATED WITH THE PERITROPHIC MATRIX IN Reticulitermes flavipes (Blattodea: Rhinotermitidae): IDENTIFICATION AND CHARACTERIZATION.

    Science.gov (United States)

    Sandoval-Mojica, Andres F; Scharf, Michael E

    2016-06-01

    The peritrophic matrix (PM) is an acellular structure that lines the gut of most insects. It is an attractive target for pest management strategies because of its close involvement in digestive processes and role as a barrier against pathogens and toxins. The purpose of this study was to identify and characterize the genes that translate for principal components of the Reticulitermes flavipes PM. Genes encoding a gut chitin synthase (CHS), two proteins with peritrophin-A domains, and a chitin deacetylase were identified from an R. flavipes symbiont-free gut cDNA library, a pyrosequencing study of termite lignocellulose digestion, and a metatranscriptomic analysis of R. flavipes fed on agricultural biomass. Quantitative expression analysis of the identified genes, in the termite digestive tract, revealed that the transcripts coding for a CHS (RfCHSB) and the proteins with peritrophin-A domains (RfPPAD1 and RfPPAD2) were predominantly expressed in the midgut, suggesting an association with the PM. The peritrophin identity of the RfPPAD2 gene was confirmed by immunodetection of its translated peptide in the midgut and PM. The discovery and characterization of PM components of R. flavipes provides a basis for further investigation of the viability of this structure as a target for candidate termiticides. PMID:27087028

  6. Spray Dried, Pasteurised Bovine Colostrum Protects Against Gut Dysfunction and Inflammation in Preterm Pigs

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Sangild, Per T.; Skovgaard, Kerstin;

    2015-01-01

    OBJECTIVE: Feeding bovine colostrum (BC) improves gut maturation and function, and protects against necrotizing enterocolitis (NEC), relative to formula in newborn preterm pigs. Before BC can be used for preterm infants, it is important to test if the milk processing, required to reduce bacterial...

  7. The Gut Microbiota and their Metabolites : Potential Implications for the Host Epigenome

    NARCIS (Netherlands)

    Mischke, Mona; Plösch, Torsten

    2016-01-01

    The gut microbiota represents a metabolically active biomass of up to 2 kg in adult humans. Microbiota-derived molecules significantly contribute to the host metabolism. Large amounts of bacterial metabolites are taken up by the host and are subsequently utilized by the human body. For instance, sho

  8. The gut microbiotassay – a high-throughput real-time PCR chip combined with next generation sequencing.

    OpenAIRE

    Hermann-Bank, Marie Louise; Skovgaard, Kerstin; Mølbak, Lars

    2012-01-01

    During the last decade it has become evident that there is a relation between certain medical conditions and the composition of the gut microbiota. To get a better understanding of this complex interaction it is important with high-throughput methods which are sensitive and specific but also informative. Many methods can be used to try to define and characterize the gut microbiota. Here we designed an assay consisting of twenty-four different primer systems targeting the most common bacterial...

  9. Gut microbiota and hepatic encephalopathy.

    Science.gov (United States)

    Dhiman, Radha K

    2013-06-01

    There is a strong relationship between liver and gut; while the portal venous system receives blood from the gut, and its contents may affect liver functions, liver in turn, affects intestinal functions through bile secretion. There is robust evidence that the pathogenesis of hepatic encephalopathy (HE) is linked to alterations in gut microbiota and their by-products such as ammonia, indoles, oxindoles, endotoxins, etc. In the setting of intestinal barrier and immune dysfunction, these by-products are involved in the pathogenesis of complications of liver cirrhosis including HE and systemic inflammation plays an important role. Prebiotics, probiotics and synbiotics may exhibit efficacy in the treatment of HE by modulating the gut flora. They improve derangement in flora by decreasing the counts of pathogenic bacteria and thus improving the endotoxemia, HE and the liver disease. Current evidence suggest that the trials evaluating the role of probiotics in the treatment of HE are of not high quality and all trials had high risk of bias and high risk of random errors. Therefore, the use of probiotics for patients with HE cannot be currently recommended. Further RCTs are required. This review summarizes the main literature findings about the relationships between gut flora and HE, both in terms of the pathogenesis and the treatment of HE.

  10. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. PMID:26872544

  11. Gut perforation after orthotopic liver transplantation in adults

    Institute of Scientific and Technical Information of China (English)

    Jun Xiong; Shen You; Xiao-Shun He

    2007-01-01

    AIM: To describe cases of gut perforation after orthotopic liver transplantation.METHODS: Data were colleted from our center database and medical records. Six of 187 patients (3.2%)who underwent orthotopic liver transplantation from January to December 2005 developed gut perforation.All patients were male with an average age of 46 years.Modified piggyback liver transplantation was performed at the Organ Transplantation Center, First Affiliated Hospital, Sun Yat-Sen University.RESULTS: Previous operation, steroid therapy, and prolonged portal venous cross clamp time, poor nutritional status and iatrogenic injury were found to be its ecological factors. The patients with gut perforation were found to have fever, increased leukocytes, mild abdominal pain and tenderness. The median portal venous clamp time was 63 min (range 45-72 min),median cold ischaemia time was 11.3 h (range 7-15 h).Median intraoperative blood loss was 500 mL (range 100-1200 mL) and median operation time was 8.8 h (range 6-12 h). None of the six patients developed acute cellular rejection. White cell count was above 18 × 109/L in five patients (neutrophilic leukocytes were above 90%) and 1.5 × 109/L in one patient. Bacterial culture in drainage liquid revealed enterococci in five patients. Of the 6 patients undergoing orthotopic liver transplantation, 3 survived and 3 died after modified piggyback liver transplantation.CONCLUSION: Gut perforation occurs after orthotopic liver transplantation in adults. A careful and minimal dissection during OLT, longer retention of the stomach tube, and reducing the portal clamp time and steroid dose should be taken into consideration. If gut perforation is not prevented, then early diagnosis,preferably through detection of enterococci may ensure better survival.

  12. A possible link of gut microbiota alteration in type 2 diabetes and Alzheimer's disease pathogenicity: an update.

    Science.gov (United States)

    Alam, Mohammad Z; Alam, Qamre; Kamal, Mohammad A; Abuzenadah, Adel M; Haque, Absarul

    2014-04-01

    Imbalances in gut microbiota are associated with metabolic disorder, which are a group of obesity-related metabolic abnormalities that increase an individual's risk of developing type 2 diabetes (T2D) and Alzheimer's disease (AD). Although a number of risk factors have been postulated that may trigger the development of AD, the root cause of this disease is still a matter of debate. This review further investigates the etiology of AD by accumulating the current role played by gut microbiota in human, and trying to establish an inter-link between T2D and AD pathogenesis. There is a growing body of evidence which suggests that obesity is associated with alteration in the normal gut flora, reduced bacterial diversity, metabolic pathways and altered representation of bacterial genes. Obesity and T2D are considered to be induced as a result of changes within the composition of gut microbiota. The evidence gathered so far clearly advocates the involvement of gut microbes in causing obesity, a state of chronic and low-grade inflammation. Hence, understanding the microbiota of the gut is significant in relation to inflammation, as it is a key contributor for diabetes which has a direct relation to the AD pathogenesis. Comparative analysis of gut microbiota may enable further novel insight into the complex biology of AD, which is very important in order to take preventive measure such as early diagnosis, identification of new therapeutic targets and development of novel drugs.

  13. Differential plant invasiveness is not always driven by host promiscuity with bacterial symbionts.

    Science.gov (United States)

    Klock, Metha M; Barrett, Luke G; Thrall, Peter H; Harms, Kyle E

    2016-01-01

    Identification of mechanisms that allow some species to outcompete others is a fundamental goal in ecology and invasive species management. One useful approach is to examine congeners varying in invasiveness in a comparative framework across native and invaded ranges. Acacia species have been widely introduced outside their native range of Australia, and a subset of these species have become invasive in multiple parts of the world. Within specific regions, the invasive status of these species varies. Our study examined whether a key mechanism in the life history of Acacia species, the legume-rhizobia symbiosis, influences acacia invasiveness on a regional scale. To assess the extent to which species varying in invasiveness correspondingly differ with regard to the diversity of rhizobia they associate with, we grew seven Acacia species ranging in invasiveness in California in multiple soils from both their native (Australia) and introduced (California) ranges. In particular, the aim was to determine whether more invasive species formed symbioses with a wider diversity of rhizobial strains (i.e. are more promiscuous hosts). We measured and compared plant performance, including aboveground biomass, survival, and nodulation response, as well as rhizobial community composition and richness. Host promiscuity did not differ among invasiveness categories. Acacia species that varied in invasiveness differed in aboveground biomass for only one soil and did not differ in survival or nodulation within individual soils. In addition, acacias did not differ in rhizobial richness among invasiveness categories. However, nodulation differed between regions and was generally higher in the native than introduced range. Our results suggest that all Acacia species introduced to California are promiscuous hosts and that host promiscuity per se does not explain the observed differences in invasiveness within this region. Our study also highlights the utility of assessing potential mechanisms of invasion in species' native and introduced ranges. PMID:27535176

  14. Cellular and molecular remodelling of a host cell for vertical transmission of bacterial symbionts

    Science.gov (United States)

    Luan, Jun-Bo; Shan, Hong-Wei; Isermann, Philipp; Huang, Jia-Hsin; Lammerding, Jan; Liu, Shu-Sheng; Douglas, Angela E.

    2016-01-01

    Various insects require intracellular bacteria that are restricted to specialized cells (bacteriocytes) and are transmitted vertically via the female ovary, but the transmission mechanisms are obscure. We hypothesized that, in the whitefly Bemisia tabaci, where intact bacteriocytes (and not isolated bacteria) are transferred to oocytes, the transmission mechanism would be evident as cellular and molecular differences between the nymph (pre-adult) and adult bacteriocytes. We demonstrate dramatic remodelling of bacteriocytes at the developmental transition from nymph to adulthood. This transition involves the loss of cell–cell adhesion, high division rates to constant cell size and onset of cell mobility, enabling the bacteriocytes to crawl to the ovaries. These changes are accompanied by cytoskeleton reorganization and changes in gene expression: genes functioning in cell–cell adhesion display reduced expression and genes involved in cell division, cell motility and endocytosis/exocytosis have elevated expression in adult bacteriocytes, relative to nymph bacteriocytes. This study demonstrates, for the first time, how developmentally orchestrated remodelling of gene expression and correlated changes in cell behaviour underpin the capacity of bacteriocytes to mediate the vertical transmission and persistence of the symbiotic bacteria on which the insect host depends. PMID:27358364

  15. Natural GUT and the cosmology

    Science.gov (United States)

    Maekawa, Nobuhiro

    2012-07-01

    In the natural GUT, not only realistic quark and lepton mass matrices can be obtained but also the most serious problem in the SUSY GUT, which is called the doublet-triplet splitting problem, can be solved under the natural assumption that all the interactions which are allowed by the symmetry are introduced with O(1) coefficients (including the higher dimensional operators). In this manuscript, we examine several cosmological aspects which are related with the natural GUT, B - L-genesis, non-thermal production of dark matter (DM), vacuum selection by particle production, and the inflation after the trapping. These works are based on several papers[1, 2, 3] collaborated with S. Enomoto, S. Iida, Y. Kurata, and T. Matsuda.

  16. Global F-theory GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.; /Bonn U.; Jurke, Benjamin; /Munich, Max Planck Inst.; Weigand, Timo; /SLAC

    2010-08-26

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.

  17. The Gut Microbiome and Obesity.

    Science.gov (United States)

    John, George Kunnackal; Mullin, Gerard E

    2016-07-01

    The gut microbiome consists of trillions of bacteria which play an important role in human metabolism. Animal and human studies have implicated distortion of the normal microbial balance in obesity and metabolic syndrome. Bacteria causing weight gain are thought to induce the expression of genes related to lipid and carbohydrate metabolism thereby leading to greater energy harvest from the diet. There is a large body of evidence demonstrating that alteration in the proportion of Bacteroidetes and Firmicutes leads to the development of obesity, but this has been recently challenged. It is likely that the influence of gut microbiome on obesity is much more complex than simply an imbalance in the proportion of these phyla of bacteria. Modulation of the gut microbiome through diet, pre- and probiotics, antibiotics, surgery, and fecal transplantation has the potential to majorly impact the obesity epidemic. PMID:27255389

  18. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa

    Directory of Open Access Journals (Sweden)

    de Beer Z Wilhelm

    2007-07-01

    Full Text Available Abstract Background Termites of the subfamily Macrotermitinae live in a mutualistic symbiosis with basidiomycete fungi of the genus Termitomyces. Here, we explored interaction specificity in fungus-growing termites using samples from 101 colonies in South-Africa and Senegal, belonging to eight species divided over three genera. Knowledge of interaction specificity is important to test the hypothesis that inhabitants (symbionts are taxonomically less diverse than 'exhabitants' (hosts and to test the hypothesis that transmission mode is an important determinant for interaction specificity. Results Analysis of Molecular Variance among symbiont ITS sequences across termite hosts at three hierarchical levels showed that 47 % of the variation occurred between genera, 18 % between species, and the remaining 35 % between colonies within species. Different patterns of specificity were evident. High mutual specificity was found for the single Macrotermes species studied, as M. natalensis was associated with a single unique fungal haplotype. The three species of the genus Odontotermes showed low symbiont specificity: they were all associated with a genetically diverse set of fungal symbionts, but their fungal symbionts showed some host specificity, as none of the fungal haplotypes were shared between the studied Odontotermes species. Finally, bilaterally low specificity was found for the four tentatively recognized species of the genus Microtermes, which shared and apparently freely exchanged a common pool of divergent fungal symbionts. Conclusion Interaction specificity was high at the genus level and generally much lower at the species level. A comparison of the observed diversity among fungal symbionts with the diversity among termite hosts, indicated that the fungal symbiont does not follow the general pattern of an endosymbiont, as we found either similar diversity at both sides or higher diversity in the symbiont. Our results further challenge the

  19. Superparasitism Drives Heritable Symbiont Epidemiology and Host Sex Ratio in a Wasp.

    Directory of Open Access Journals (Sweden)

    Steven R Parratt

    2016-06-01

    Full Text Available Heritable microbial symbionts have profound impacts upon the biology of their arthropod hosts. Whilst our current understanding of the dynamics of these symbionts is typically cast within a framework of vertical transmission only, horizontal transmission has been observed in a number of cases. For instance, several symbionts can transmit horizontally when their parasitoid hosts share oviposition patches with uninfected conspecifics, a phenomenon called superparasitism. Despite this, horizontal transmission, and the host contact structures that facilitates it, have not been considered in heritable symbiont epidemiology. Here, we tested for the importance of host contact, and resulting horizontal transmission, for the epidemiology of a male-killing heritable symbiont (Arsenophonus nasoniae in parasitoid wasp hosts. We observed that host contact through superparasitism is necessary for this symbiont's spread in populations of its primary host Nasonia vitripennis, such that when superparasitism rates are high, A. nasoniae almost reaches fixation, causes highly female biased population sex ratios and consequently causes local host extinction. We further tested if natural interspecific variation in superparasitism behaviours predicted symbiont dynamics among parasitoid species. We found that A. nasoniae was maintained in laboratory populations of a closely related set of Nasonia species, but declined in other, more distantly related pteromalid hosts. The natural proclivity of a species to superparasitise was the primary factor determining symbiont persistence. Our results thus indicate that host contact behaviour is a key factor for heritable microbe dynamics when horizontal transmission is possible, and that 'reproductive parasite' phenotypes, such as male-killing, may be of secondary importance in the dynamics of such symbiont infections.

  20. Superparasitism Drives Heritable Symbiont Epidemiology and Host Sex Ratio in a Wasp.

    Science.gov (United States)

    Parratt, Steven R; Frost, Crystal L; Schenkel, Martijn A; Rice, Annabel; Hurst, Gregory D D; King, Kayla C

    2016-06-01

    Heritable microbial symbionts have profound impacts upon the biology of their arthropod hosts. Whilst our current understanding of the dynamics of these symbionts is typically cast within a framework of vertical transmission only, horizontal transmission has been observed in a number of cases. For instance, several symbionts can transmit horizontally when their parasitoid hosts share oviposition patches with uninfected conspecifics, a phenomenon called superparasitism. Despite this, horizontal transmission, and the host contact structures that facilitates it, have not been considered in heritable symbiont epidemiology. Here, we tested for the importance of host contact, and resulting horizontal transmission, for the epidemiology of a male-killing heritable symbiont (Arsenophonus nasoniae) in parasitoid wasp hosts. We observed that host contact through superparasitism is necessary for this symbiont's spread in populations of its primary host Nasonia vitripennis, such that when superparasitism rates are high, A. nasoniae almost reaches fixation, causes highly female biased population sex ratios and consequently causes local host extinction. We further tested if natural interspecific variation in superparasitism behaviours predicted symbiont dynamics among parasitoid species. We found that A. nasoniae was maintained in laboratory populations of a closely related set of Nasonia species, but declined in other, more distantly related pteromalid hosts. The natural proclivity of a species to superparasitise was the primary factor determining symbiont persistence. Our results thus indicate that host contact behaviour is a key factor for heritable microbe dynamics when horizontal transmission is possible, and that 'reproductive parasite' phenotypes, such as male-killing, may be of secondary importance in the dynamics of such symbiont infections. PMID:27322651

  1. Gut Microbiota: From Fundamental Research to Translational Medicine

    Directory of Open Access Journals (Sweden)

    Yujing Bi

    2015-12-01

    aroused strong interest in recent years, is reported to be a highly successful therapy for recurrent Clostridium difficile infection. These studies support novel research ideas that are no longer focused solely on the host, but rather on the intimacy of the host-microbiota relationship. Considering the relative ease of regulating the gut microbiota[1], targeting these organisms through diet, prebiotics, probiotics, or other methods may become a useful strategy for curing diseases. To date, a large number of studies have been devoted to uncovering the relationship between microbial metabolites and human diseases, and it is highly likely that more bacterial or related pathways involved in human disease will be identified. In the future, targeting the microbiome may represent an effective and complementary strategy to current approaches for preventing and treating diseases.

  2. Mechanistic insights into a Ca2+-dependent family of α-mannosidases in a human gut symbiont

    Science.gov (United States)

    Zhu, Yanping; Suits, Michael D. L.; Thompson, Andrew J.; Chavan, Sambhaji; Dinev, Zoran; Dumon, Claire; Smith, Nicola; Moremen, Kelley W.; Xiang, Yong; Siriwardena, Aloysius; Williams, Spencer J.; Gilbert, Harry J.; Davies, Gideon J.

    2014-01-01

    Colonic bacteria, exemplified by Bacteroides thetaiotaomicron, play a key role in maintaining human health by harnessing large families of glycoside hydrolases (GHs) to exploit dietary polysaccharides and host glycans as nutrients. Such GH family expansion is exemplified by the 23 family GH92 glycosidases encoded by the B. thetaiotaomicron genome. Here we show that these are α-mannosidases that act via a single displacement mechanism to utilize host N-glycans. The three-dimensional structure of two GH92 mannosidases defines a family of two-domain proteins in which the catalytic center is located at the domain interface, providing acid (glutamate) and base (aspartate) assistance to hydrolysis in a Ca2+-dependent manner. The three-dimensional structures of the GH92s in complex with inhibitors provide insight into the specificity, mechanism and conformational itinerary of catalysis. Ca2+ plays a key catalytic role in helping distort the mannoside away from its ground-state 4C1 chair conformation toward the transition state. PMID:20081828

  3. Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Boomsma, Jacobus Jan; Aanen, Duur Kornelis

    2006-01-01

    All colonies of the fungus-growing termite Macrotermes natalensis studied so far are associated with a single genetically variable lineage of Termitomyces symbionts. Such limited genetic variation of symbionts and the absence of sexual fruiting bodies (mushrooms) on M. natalensis mounds would...... transmission mode among Macrotermes species implies that vertical symbiont transmission can evolve rapidly. The unexpected finding of horizontal transmission makes the apparent absence of Termitomyces mushrooms on M. natalensis mounds puzzling. To our knowledge, this is the first detailed study of the genetic...

  4. Farming termites determine the genetic population structure of Termitomyces fungal symbionts

    DEFF Research Database (Denmark)

    Nobre, Tânia; Fernandes, Cecília; Boomsma, Jacobus J;

    2011-01-01

    Symbiotic interactions between macrotermitine termites and their fungal symbionts have a moderate degree of specificity. Consistent with horizontal symbiont transmission, host switching has been frequent over evolutionary time so that single termite species can often be associated with several...... associated with the alternative termite hosts Macrotermes subhyalinus and Macrotermes natalensis. While Termitomyces associated with these alternative hosts are horizontally transmitted and recombine freely, the genetic population structure of the same Termitomyces associated with M. bellicosus is consistent...... with predominantly clonal reproduction and only occasional recombination. This implies that the genetic population structure of Termitomyces is controlled by the termite host and not by the Termitomyces symbiont....

  5. Construction of a Metagenomic DNA Library of Sponge Symbionts and Screening of Antibacterial Metabolites

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; ZHU Tianjiao; LI Dehai; CUI Chengbin; FANG Yuchun; LIU Hongbing; LIU Peipei; GU Qianqun; ZHU Weiming

    2006-01-01

    To study the bioactive metabolites produced by sponge-derived uncultured symbionts, a metagenomic DNA library of the symbionts of sponge Gelliodes gracilis was constructed. The average size of DNA inserts in the library was 20 kb. This library was screened for antibiotic activity using paper disc assaying. Two clones displayed the antibacterial activity against Micrococcus tetragenus. The metabolites of these two clones were analyzed through HPLC. The result showed that their metabolites were quite different from those of the host E. coli DH5α and the host containing vector pHZ132. This study may present a new approach to exploring bioactive metabolites of sponge symbionts.

  6. High Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites

    DEFF Research Database (Denmark)

    Aanen, Duur K; de Fine Licht, Henrik H; Debets, Alfons J M;

    2009-01-01

    It is unclear how mutualistic relationships can be stable when partners disperse freely and have the possibility of forming associations with many alternative genotypes. Theory predicts that high symbiont relatedness should resolve this problem, but the mechanisms to enforce this have rarely been...... of spore production in proportion to strain frequency. This positive reinforcement results in an exclusive lifetime association of each host colony with a single fungal symbiont and hinders the evolution of cheating. Our findings explain why vertical symbiont transmission in fungus-growing termites is rare...

  7. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  8. Gut Microorganisms Found Necessary for Successful Cancer Therapy | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer Humans play host to trillions of microorganisms that help our bodies perform basic functions, like digestion, growth, and fighting disease. In fact, bacterial cells outnumber the human cells in our bodies by 10 to 1.1 The tens of trillions of microorganisms thriving in our intestines are known as gut microbiota, and those that are not harmful to us are referred to as commensal microbiota. In a recent paper in Science, NCI scientists described their discovery that, in mice, the presence of commensal microbiota is needed for successful response to cancer therapy.

  9. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline

    OpenAIRE

    Barrios, Clara; Beaumont, Michelle; Pallister, Tess; Villar, Judith; Goodrich, Julia K.; Clark, Andrew; Pascual, Julio; Ley, Ruth E.; Spector, Tim D; Bell, Jordana T.; Menni, Cristina

    2015-01-01

    Introduction Several circulating metabolites derived from bacterial protein fermentation have been found to be inversely associated with renal function but the timing and disease severity is unclear. The aim of this study is to explore the relationship between indoxyl-sulfate, p-cresyl-sulfate, phenylacetylglutamine and gut-microbial profiles in early renal function decline. Results Indoxyl-sulfate (Beta(SE) = -2.74(0.24); P = 8.8x10-29), p-cresyl-sulfate (-1.99(0.24), P = 4.6x10-16), and phe...

  10. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline.

    OpenAIRE

    Barrios Barrera, Clara; Beaumont, Michelle; Pallister, Tess; Villar Garc??a, Judit; Goodrich, Julia K.; Clark, Andrew; Pascual Santos, Julio; Ley, Ruth E.; Spector, Tim D; Bell, Jordana T.; Menni, Cristina

    2015-01-01

    INTRODUCTION: Several circulating metabolites derived from bacterial protein fermentation have been found to be inversely associated with renal function but the timing and disease severity is unclear. The aim of this study is to explore the relationship between indoxyl-sulfate, p-cresyl-sulfate, henylacetylglutamine and gut-microbial profiles in early renal function decline. RESULTS: Indoxyl-sulfate (Beta(SE) = -2.74(0.24); P = 8.8x10-29), p-cresyl-sulfate (-1.99(0.24), P = 4.6x10-16), and p...

  11. Microbial Symbionts Accelerate Wound Healing via the Neuropeptide Hormone Oxytocin

    OpenAIRE

    Theofilos Poutahidis; Kearney, Sean M.; Tatiana Levkovich; Peimin Qi; Varian, Bernard J.; Lakritz, Jessica R; Ibrahim, Yassin M.; Antonis Chatzigiagkos; Eric J Alm; Erdman, Susan E.

    2013-01-01

    Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobaci...

  12. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?

    Directory of Open Access Journals (Sweden)

    Alexis eMosca

    2016-03-01

    Full Text Available Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.

  13. Searching for the GUT monopole

    International Nuclear Information System (INIS)

    The GUT prediction of super-heavy magnetic monopoles has stimulated an intense activity to search for them. The recent observation of a candidate event by Cabrera suggests a very large flux. Energy loss processes are discussed, including several which are unique to monopoles. A large scintillation-counter telescope is being constructed to search for slow monopoles

  14. Phenomenology of neutrinophilic Higgs GUT

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki; Kaneta, Kunio; Shimizu, Yasuhiro [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan) and Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2012-07-27

    Among three typical energy scales, a neutrino mass scale (m{sub {nu}}{approx}0.1eV), a GUT scale (M{sub GUT}{approx}10{sup 16}GeV), and a TeV-scale (M{sub NP}{approx}1TeV), there is a fascinating relation of M{sub NP} Asymptotically-Equal-To {radical}(m{sub {nu}} Dot-Operator M{sub GUT}) The TeV-scale, M{sub NP}, is a new physics scale beyond the standard model which is regarded as 'supersymmetry' (SUSY) in this letter. We investigate phenomenology of SUSY SU(5) GUT with neutrinophilic Higgs, which realizes the above relation dynamically as well as the suitable magnitude of Dirac mass, m{sub {nu}}, through a tiny vacuum expectation value of neutrinophilic Higgs. As a remarkable feature of this model, accurate gauge coupling unification can be achieved as keeping with a proton stability. We also evaluate flavor changing processes in quark/lepton sectors.

  15. Gut indigenous microbiota and epigenetics

    Directory of Open Access Journals (Sweden)

    Boris Arkadievich Shenderov

    2012-03-01

    Full Text Available This review introduces and discusses data regarding fundamental and applied investigations in mammalian epigenomics and gut microbiota received over the last 10 years. Analysis of these data enabled the author first to come to the conclusion that the multiple low molecular weight substances of indigenous gut microbiota origin should be considered one of the main endogenous factors actively participating in epigenomic mechanisms that responsible for the mammalian genome reprogramming and post-translated modifications. Gut microecological imbalance coursed by various biogenic and abiogenic agents and factors can produce the different epigenetic abnormalities and the onset and progression of metabolic diseases associated. The author substantiates the necessity to create an international project ‘Human Gut Microbiota and Epigenomics’ that facilitates interdisciplinary collaborations among scientists and clinicians engaged in host microbial ecology, nutrition, metagenomics, epigenomics and metabolomics investigations as well as in diseases prevention and treatment. Some priority scientific and applied directions in the current omic technologies coupled with gnotobiological approaches are suggested that can open a new era in characterizing the role of the symbiotic microbiota small metabolic and signal molecules in the host epigenomics. Although discussed subject is only at an early stage its validation can open novel approaches in drug discovery studies.

  16. Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-11-01

    Characterization of naturally mummified human gut remains could potentially provide insights into the preservation and evolution of commensal and pathogenic microorganisms, and metabolic profiles. We characterized the gut microbiome of two pre-Columbian Andean mummies dating to the 10-15th centuries using 16S rRNA gene high-throughput sequencing and metagenomics, and compared them to a previously characterized gut microbiome of an 11th century AD pre-Columbian Andean mummy. Our previous study showed that the Clostridiales represented the majority of the bacterial communities in the mummified gut remains, but that other microbial communities were also preserved during the process of natural mummification, as shown with the metagenomics analyses. The gut microbiome of the other two mummies were mainly comprised by Clostridiales or Bacillales, as demonstrated with 16S rRNA gene amplicon sequencing, many of which are facultative anaerobes, possibly consistent with the process of natural mummification requiring low oxygen levels. Metagenome analyses showed the presence of other microbial groups that were positively or negatively correlated with specific metabolic profiles. The presence of sequences similar to both Trypanosoma cruzi and Leishmania donovani could suggest that these pathogens were prevalent in pre-Columbian individuals. Taxonomic and functional profiling of mummified human gut remains will aid in the understanding of the microbial ecology of the process of natural mummification. PMID:27559027

  17. [Metabolic therapy at the edge between human hosts and gut microbes].

    Science.gov (United States)

    Blasco-Baque, V; Serino, M; Burcelin, R

    2013-01-01

    Personalized medicine is becoming day-after-day more urgent taking into account the great diversity characterizing patients a