WorldWideScience

Sample records for bacterial growth rates

  1. Can we estimate bacterial growth rates from ribosomal RNA content?

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, P.F.

    1995-12-31

    Several studies have demonstrated a strong relationship between the quantity of RNA in bacterial cells and their growth rate under laboratory conditions. It may be possible to use this relationship to provide information on the activity of natural bacterial communities, and in particular on growth rate. However, if this approach is to provide reliably interpretable information, the relationship between RNA content and growth rate must be well-understood. In particular, a requisite of such applications is that the relationship must be universal among bacteria, or alternately that the relationship can be determined and measured for specific bacterial taxa. The RNA-growth rate relationship has not been used to evaluate bacterial growth in field studies, although RNA content has been measured in single cells and in bulk extracts of field samples taken from coastal environments. These measurements have been treated as probable indicators of bacterial activity, but have not yet been interpreted as estimators of growth rate. The primary obstacle to such interpretations is a lack of information on biological and environmental factors that affect the RNA-growth rate relationship. In this paper, the available data on the RNA-growth rate relationship in bacteria will be reviewed, including hypotheses regarding the regulation of RNA synthesis and degradation as a function of growth rate and environmental factors; i.e. the basic mechanisms for maintaining RNA content in proportion to growth rate. An assessment of the published laboratory and field data, the current status of this research area, and some of the remaining questions will be presented.

  2. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    Science.gov (United States)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  3. Bistable Bacterial Growth Rate in Response to Antibiotics with Low Membrane Permeability

    Science.gov (United States)

    Elf, Johan; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2006-12-01

    We demonstrate that growth rate bistability for bacterial cells growing exponentially at a fixed external antibiotic concentration can emerge when the cell wall permeability for the drug is low and the growth rate sensitivity to the intracellular drug concentration is high. Under such conditions, an initially high growth rate can remain high, due to dilution of the intracellular drug concentration by rapid cell volume increase, while an initially low growth rate can remain low, due to slow cell volume increase and insignificant drug dilution. Our findings have implications for the testing of novel antibiotics on growing bacterial strains.

  4. Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters

    DEFF Research Database (Denmark)

    Møller, S.; Sternberg, Claus; Poulsen, L. K.

    1995-01-01

    species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume......, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surfacegrowing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found...

  5. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    Science.gov (United States)

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  6. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  7. [3H] Thymidine incorporation to estimate growth rates of anaerobic bacterial strains

    International Nuclear Information System (INIS)

    Winding, A.

    1992-01-01

    The incorporation of [ 3 H] thymidine by axenic cultures of anaerobic bacteria was investigated as a means to measure growth. The three fermentative strains and one of the methanogenic strains tested incorporated [ 3 H] thymidine during growth. It is concluded that the [ 3 H] thymidine incorporation method underestimates bacterial growth in anaerobic environments

  8. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis

    International Nuclear Information System (INIS)

    Pollard, P.C.; Moriarty, D.J.W.

    1984-01-01

    The rate of tritiated thymidine incorporation into DNA was used to estimate bacterial growth rates in aquatic environments. To be accurate, the calculation of growth rates has to include a factor for the dilution of isotope before incorporation. The validity of an isotope dilution analysis to determine this factor was verified in experiments reported here with cultures of a marine bacterium growing in a chemostat. Growth rates calculated from data on chemostat dilution rates and cell density agreed well with rates calculated by tritiated thymidine incorporation into DNA and isotope dilution analysis. With sufficiently high concentrations of exogenous thymidine, de novo synthesis of deoxythymidine monophosphate was inhibited, thereby preventing the endogenous dilution of isoope. The thymidine technique was also shown to be useful for measuring growth rates of mixed suspensions of bacteria growing anaerobically. Thymidine was incorporated into the DNA of a range of marine pseudomonads that were investigated. Three species did not take up thymidine. The common marine cyanobacterium Synechococcus species did not incorporate thymidine into DNA

  9. Influence of filtration and glucose amendment on bacterial growth rate at different tidal conditions in the Minho Estuary River (NW Portugal)

    DEFF Research Database (Denmark)

    Anne, I.; Fidalgo, M. L.; Thosthrup, L.

    2006-01-01

    Bacterioplankton abundance, biomass and growth rates were studied in the Minho Estuary River (NW Portugal). The influence of tidal conditions, glucose amendment, and the filtration process on total bacterial abundance, total and faecal coliforms, as well as faecal streptococci, were evaluated...

  10. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  11. Using random walk in models specified by stochastic differential equations to determine the best expression for the bacterial growth rate

    DEFF Research Database (Denmark)

    method allows us to develop a new expression for the growth rate. The method is based on the stochastic continuous-discrete time state-space model, with a continuous-time state equation (a stochastic differential equation, SDE) combined with a discrete-time measurement equation. In our study the SDE...... described by Kristensen et. al [2]. The resulting time series allows us graphically to inspect the functional dependence of the growth rate on the substrate content. From the method described above we find three new plausible expressions for μ(S). Therefore we apply the likelihood-ratio test to compare...... for the Monod expression. Thus, the method was applied to successfully determine a significant better expression for the substrate dependent growth expression, and we find the method generally applicable for model development. References [1] Kristensen NR, Madsen H, Jørgensen, SB (2004) A method for systematic...

  12. Partial drying accelerates bacterial growth recovery to rewetting

    DEFF Research Database (Denmark)

    Meisner, Annelein; Leizeaga, Ainara; Rousk, Johannes

    2017-01-01

    , bacterial growth rates increase immediately in a linear fashion. In the Type 2 pattern, bacterial growth rates increase exponentially after a lag period. However, soils are often only partially dried. Partial drying (higher remaining moisture content before rewetting) may be considered a less harsh...

  13. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    Science.gov (United States)

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  14. Bacterial production and growth rate estimation from [3H]thymidine incorporation for attached and free-living bacteria in aquatic systems

    International Nuclear Information System (INIS)

    Iriberri, J.; Unanue, M.; Ayo, B.; Barcina, I.; Egea, L.

    1990-01-01

    Production and specific growth rates of attached and free-living bacteria were estimated in an oligotrophic marine system, La Salvaje Beach, Vizcaya, Spain, and in a freshwater system having a higher nutrient concentration, Butron River, Vizcaya, Spain. Production was calculated from [methyl- 3 H]thymidine incorporation by estimating specific conversion factors (cells or micrograms of C produced per mole of thymidine incorporated) for attached and free-living bacteria, respectively, in each system. Conversion factors were not statistically different between attached and free-living bacteria: 6.812 x 10 11 and 8.678 x 10 11 μg of C mol -1 for free-living and attached bacteria in the freshwater system, and 1.276 x 10 11 and 1.354 x 10 11 μg of C mol -1 for free-living and attached bacteria in the marine system. Therefore, use of a unique conversion factor for the mixed bacterial population is well founded. However, conversion factors were higher in the freshwater system than in the marine system. This could be due to the different tropic conditions of the two systems. Free-living bacteria contributed the most to production in the two systems (85% in the marine system and 67% in the freshwater system) because of their greater contribution to total biomass. Specific growth rates calculated from production data and biomass data were similar for attached and free-living bacteria

  15. Bacterial growth and DOC consumption in a tropical coastal lagoon

    Directory of Open Access Journals (Sweden)

    V. F. Farjalla

    Full Text Available The aims of this research were to determine the main limiting nutrient to bacterial growth in Imboassica lagoon, southeastern Brazil, to estimate the percentage of dissolved organic carbon (DOC available for bacterial growth, and to determine the bacterial growth efficiency (BGE of natural assemblages. Bacterial growth and DOC consumption were determined in batch culture experiments, in which water samples were supplemented with nitrogen and phosphorus together or separately, or incubated without nutrient additions. When added together, N and P stimulated higher bacterial growth rates and production, as well as higher DOC consumption. The BGEs and DOC consumption rates were strongly dependent on the method used to determine bacterial production. The BGE ranged from 11 to 72%. However, only a minor fraction of bulk DOC was consumed by the planktonic bacteria (from 0.7 to 3.4%. The results suggest that low availability of phosphorus and nitrogen coupled with excess organic carbon was the main factor responsible for the relatively low bacterial utilization of DOC in Imboassica lagoon.

  16. A size-structured model of bacterial growth and reproduction.

    Science.gov (United States)

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  17. Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Bolch, Christopher J S; Bejoy, Thaila A; Green, David H

    2017-01-01

    Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum , we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20-115 moles photons PAR m -2 s -1 ). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that

  18. Determination of Bacterial Growth in Culture Media

    International Nuclear Information System (INIS)

    Elly Ellyna Rashid; Shariza Hanim Zainal Abidin; Mok, P.S.

    2015-01-01

    Bacteria is one of the important microorganism in our daily life. Bacteria provides human beings with products in the field of medical, industry, food, agriculture and others. Determination of bacteria growth is important so that we can enjoy the most benefit from it. Spread-plate method is one of the methods to obtain the bacterial counts. Agar plates, such as Nutrient Agar or Plate Count Agar are usually used for this purpose. Bacterial culture will be diluted first before being spread on the agar plate and incubated at specific temperature. The number of bacteria in colony-forming unit (CFU) will be counted the next day. The count will be used to determine the bacterial growth. (author)

  19. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  20. Effect of Weak Magnetic Field on Bacterial Growth

    Science.gov (United States)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  1. A precise, efficient radiometric assay for bacterial growth

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, C.; Kirchner, P.T.

    1984-01-01

    The two-compartment radiometric assay for bacterial growth promised major advantages over systems in clinical use, but poor reproducibility and counting efficiency limited its application. In this method, 14-CO/sub 2/ produced by bacterial metabolism of C-14-glucose is trapped and counted on filter paper impregnated with NaOH and fluors. The authors sought to improve assay efficiency and precision through a systematic study of relevant physical and chemical factors. Improvements in efficiency (88% vs. 10%) and in precision (relative S.D. 5% vs. 40%) were produced by a) reversing growth medium and scintillator chambers to permit vigorous agitation, b) increasing NaOH quantity and using a supersaturated PPO solution and c) adding detergent to improve uniformity of NaOH-PPO mixture. Inoculum size, substrate concentration and O/sub 2/ transfer rate affected assay sensitivity but not bacterial growth rate. The authors' assay reliably detects bacterial growth for inocula of 10,000 organisms in 1 hour and for 25 organisms within 4 1/2 hours, thus surpassing other existing clinical and research methods

  2. A dynamic regression analysis tool for quantitative assessment of bacterial growth written in Python.

    Science.gov (United States)

    Hoeflinger, Jennifer L; Hoeflinger, Daniel E; Miller, Michael J

    2017-01-01

    Herein, an open-source method to generate quantitative bacterial growth data from high-throughput microplate assays is described. The bacterial lag time, maximum specific growth rate, doubling time and delta OD are reported. Our method was validated by carbohydrate utilization of lactobacilli, and visual inspection revealed 94% of regressions were deemed excellent. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  4. A Brief History of Bacterial Growth Physiology

    Directory of Open Access Journals (Sweden)

    Moselio eSchaechter

    2015-04-01

    Full Text Available Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid 19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism.Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the Copenhagen School. During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell.Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  5. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Science.gov (United States)

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  6. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Directory of Open Access Journals (Sweden)

    Dalia Molina-Romero

    Full Text Available Plant growth-promoting rhizobacteria (PGPR increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440 and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02 strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  7. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    Science.gov (United States)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  8. Online Monitoring of Bacterial Growth with an Electrical Sensor.

    Science.gov (United States)

    Zhang, Xuzhi; Jiang, Xiaoyu; Yang, Qianqian; Wang, Xiaochun; Zhang, Yan; Zhao, Jun; Qu, Keming; Zhao, Chuan

    2018-05-01

    Herein, we developed an automatic electrical bacterial growth sensor (EBGS) based on a multichannel capacitively coupled contactless conductivity detector (C 4 D). With the use of the EBGS, up to eight culture samples of E. coli in disposable tubes were online monitored simultaneously in a noninvasive manner. Growth curves with high resolution (on the order of a time scale of seconds) were generated by plotting normalized apparent conductivity value against incubation time. The characteristic data of E. coli growth (e.g., growth rate) obtained here were more accurate than those obtained with optical density and contact conductivity methods. And the correlation coefficient of the regression line ( r) for quantitative determination of viable bacteria was 0.9977. Moreover, it also could be used for other tasks, such as the investigation of toxic/stress effects from chemicals and antimicrobial susceptibility testing. All of these performances required neither auxiliary devices nor additional chemicals and biomaterials. Taken together, this strategy has the advantages of simplicity, accuracy, reproducibility, affordability, versatility, and miniaturization, liberating the users greatly from financial and labor costs.

  9. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Vipulanandan, Cumaraswamy, E-mail: cvipulanandan@uh.edu [University of Houston, Department of Civil and Environmental Engineering (United States); Cooper, Tim F. [University of Houston, Department of Biology and Biochemistry (United States); Vipulanandan, Geethanjali [University of Houston, Department of Biomedical Engineering (United States)

    2013-01-15

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  10. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    Science.gov (United States)

    Liu, Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  11. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    International Nuclear Information System (INIS)

    Liu Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model’s predictions agreed with the experimental results.

  12. Discrepancy between growth of Coccidioides immitis in bacterial blood culture media and a radiometric growth index

    International Nuclear Information System (INIS)

    Ampel, N.M.; Wieden, M.A.

    1988-01-01

    Spherules of Coccidioides immitis grew readily after inoculation in vented trypticase soy broth, biphasic brain heart infusion media, and aerobic tryptic soy broth bottles used in a radiometric system (BACTEC). However, visible growth was not accompanied by a significant radiometric growth index. Growth of C. immitis can be visually detected in routine bacterial blood culture media while the radiometric growth index remains negative

  13. Bacterial growth in solar heating prepared and traditional tanks

    International Nuclear Information System (INIS)

    Bagh, L.K.

    2000-01-01

    In Denmark it has been put forward that the introduction of solar heating prepared tanks into the building regulation can cause increased nuisance with respect to bacterial growth in hot water for domestic use. The reason is that solar heating prepared tanks have a larger volume and another form of operation than traditional tanks. In this investigation the difference between bacterial growth in solar heating prepared and traditional tanks was measured by heterotrophic plate counts as a general parameter for microbiological growth. There was no significant difference between the bacterial number in the solar heating prepared tanks and in the traditional tanks, either for bacteria determined at 37 deg. C, 44 deg. C, 55 deg. C or at 65 deg. C. The hot water for domestic use from the solar heating prepared tanks and the traditional tanks had in most cases a bacterial number below 1.000 CFU/ml, and all tests had a bacterial number below 10.000 CFU/ml. The number of bacteria must be considered low seen in relation to the other measurements of bacteria in hot water for domestic use, particularly in larger block of flats. (au)

  14. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    Science.gov (United States)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  15. Threshold concentration of glucose for bacterial growth in soil

    NARCIS (Netherlands)

    Reischke, Stephanie; Kumar, Manoj G.K.; Baath, Erland

    The activity of heterotrophic soil microorganisms is usually limited by the availability and quality of carbon (C). Adding organic substances will thus trigger a microbial response. We studied the response in bacterial growth and respiration after the addition of low amounts of glucose. First we

  16. Bacterial growth and motility in sub-micron constrictions

    NARCIS (Netherlands)

    Männik, J.; Driessen, R.; Galajda, P.; Keymer, J.E.; Dekker, C.

    2009-01-01

    In many naturally occurring habitats, bacteria live in micrometer-size confined spaces. Although bacterial growth and motility in such constrictions is of great interest to fields as varied as soil microbiology, water purification, and biomedical research, quantitative studies of the effects of

  17. Bacterial growth laws reflect the evolutionary importance of energy efficiency.

    Science.gov (United States)

    Maitra, Arijit; Dill, Ken A

    2015-01-13

    We are interested in the balance of energy and protein synthesis in bacterial growth. How has evolution optimized this balance? We describe an analytical model that leverages extensive literature data on growth laws to infer the underlying fitness landscape and to draw inferences about what evolution has optimized in Escherichia coli. Is E. coli optimized for growth speed, energy efficiency, or some other property? Experimental data show that at its replication speed limit, E. coli produces about four mass equivalents of nonribosomal proteins for every mass equivalent of ribosomes. This ratio can be explained if the cell's fitness function is the the energy efficiency of cells under fast growth conditions, indicating a tradeoff between the high energy costs of ribosomes under fast growth and the high energy costs of turning over nonribosomal proteins under slow growth. This model gives insight into some of the complex nonlinear relationships between energy utilization and ribosomal and nonribosomal production as a function of cell growth conditions.

  18. Growth mechanics of bacterial cell wall and morphology of bacteria

    Science.gov (United States)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  19. PMAnalyzer: a new web interface for bacterial growth curve analysis.

    Science.gov (United States)

    Cuevas, Daniel A; Edwards, Robert A

    2017-06-15

    Bacterial growth curves are essential representations for characterizing bacteria metabolism within a variety of media compositions. Using high-throughput, spectrophotometers capable of processing tens of 96-well plates, quantitative phenotypic information can be easily integrated into the current data structures that describe a bacterial organism. The PMAnalyzer pipeline performs a growth curve analysis to parameterize the unique features occurring within microtiter wells containing specific growth media sources. We have expanded the pipeline capabilities and provide a user-friendly, online implementation of this automated pipeline. PMAnalyzer version 2.0 provides fast automatic growth curve parameter analysis, growth identification and high resolution figures of sample-replicate growth curves and several statistical analyses. PMAnalyzer v2.0 can be found at https://edwards.sdsu.edu/pmanalyzer/ . Source code for the pipeline can be found on GitHub at https://github.com/dacuevas/PMAnalyzer . Source code for the online implementation can be found on GitHub at https://github.com/dacuevas/PMAnalyzerWeb . dcuevas08@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  20. Response of Escherichia coli growth rate to osmotic shock.

    Science.gov (United States)

    Rojas, Enrique; Theriot, Julie A; Huang, Kerwyn Casey

    2014-05-27

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless "stored" growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan.

  1. Thermodynamics of Growth, Non-Equilibrium Thermodynamics of Bacterial Growth : The Phenomenological and the Mosaic Approach

    NARCIS (Netherlands)

    Westerhoff, Hans V.; Lolkema, Juke S.; Otto, Roel; Hellingwerf, K

    1982-01-01

    Microbial growth is analyzed in terms of mosaic and phenomenological non-equilibrium thermodynamics. It turns out that already existing parameters devised to measure bacterial growth, such as YATP, µ, and Qsubstrate, have as thermodynamic equivalents flow ratio, output flow and input flow. With this

  2. Effects of Bacterial Strains to Inhibit Growth of Phytophthora pistaciae under Different Electrical Conductivities

    Directory of Open Access Journals (Sweden)

    Moslem Hajabdolahi

    2018-06-01

    Full Text Available Root and crown rot (gummosis is known as the most destructive disease affecting pistachio in Iran. The efficiency of bacterial strains to reduce the growth rate of Phytophthora pistaciae was studied under different electrical conductivities (EC, 0, 2, 4, 8, 12 ds/m. Soil and rhizosphere samples were collected from pistachio growing regions in Kerman province, Iran, during 2011 - 2012. Overall, the strains of bacteria were presented in all sampling areas in both infected and uninfected orchards. Out of 400 bacterial isolates, 63% and 37% were collected from soil and rhizosphere samples, respectively. Among 400 bacterial isolates, 19 exhibited the highest ability to reduce the growth of P. pistaciae in dual culture, volatile and non-volatile compounds, though by different degrees. The degrees of inhibitory activities against mycelial growth of P. pistaciae by Pseudomonas fluorescens strains ranged from 40 to 97.5%, 8 to 97.5% and 7.5 to 90% in dual culture, non-volatile and volatile assays, respectively. The Bacillus subtilis strains reduced the growth of P. pistaciae by 22-92.5%, 17-85%, 21-92.5% in dual culture, non-volatile and volatile assays, respectively. The negative effects of ECs on the growth of P. pistaciae in modified CMA were observed in 8 and 12 ECs. ECs had no effect until 8 ds/m on the growth of P. pistaciae, while the mycelial growth decreased by ECs higher than 8 ds/m. No mycelial growth was observed at EC 14 ds/m. There were significant differences between different bacterial isolates, ECs and their interactions on the mycelial growth of P. pistaciae. The highest mycelial suppression belonged to isolates Nos. 123 and 112 in dual culture, volatile and non-volatile compounds test. More research is required to understand the native mechanisms involved in biological control under natural conditions in pistachio orchards

  3. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  4. Measurements of Protein Crystal Face Growth Rates

    Science.gov (United States)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  5. Growth Rates of Microbes in the Oceans.

    Science.gov (United States)

    Kirchman, David L

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  6. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  7. Growth rate, population entropy, and perturbation theory.

    OpenAIRE

    Demetrius, L.

    1989-01-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate—the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity—population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce...

  8. BACTERIAL COLONY GROWTH IN THE VENTILATOR CIRCUIT OF THE INTENSIVE OBSERVATION UNIT AT RSUD DR. SOETOMO SURABAYA

    Directory of Open Access Journals (Sweden)

    Fajar Perdhana

    2016-09-01

    Full Text Available Ventilator-associated pneumonia (VAP remains a problem with the highest cos, morbidity and mortalityt in the Intensive Care Unit (ICU. The correlation between mechanical ventilation and pneumonia is considered as common sense, yet scientific evidence to support this statement is still needed. This research aims to analyze the bacterial colony grows in mechanical ventilation circuit and those grew in the patient’s sputum culture. We performed an observational study. Samples for bacterial culture were taken from ventilator circuit and patient sputum on Day-0, Day-3 and Day-7. Sputum samplings are collected using double catheter tracheal aspiration technique; Results are then analyzed with Chi-square test. While the similarity of bacteria species in ventilator circuit to patient’s sputum is analyzed with Binomial test. Two samples are dropped out immediately due to the rate of bacterial growth on Day-0. Bacterial colony growth in ventilator circuit shows a significant difference on Day-3 and Day-7 at 50% and 92% respectively (p = 0.05. A comparison for the bacterial similarity of the ventilator circuit and patient’s sputum shows that the bacterial growth on Day-3 is 7 out of 14 (50% and 3 with more than 105 CFU/ml colony; while on Day-7, there are 13 out of 14 positive bacterial growth, both in the circuit and the patient’s sputum. Among them, 5 out of 14 (35% of the bacterial colony which grow in the circuit have the same species as those grow in patient’s sputum. The recent study shows that there is bacteria colony growth in the ventilator circuit after Day-3 and a significant increase on Day-7. Almost half of the colony illustrates similar species from both ventilator circuit and patient’s sputum. This suggests that the bacterial growth on Day-7 in the ventilator circuit might be related to those growth in patient’s sputum.

  9. Gradient microfluidics enables rapid bacterial growth inhibition testing.

    Science.gov (United States)

    Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing

    2014-03-18

    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).

  10. Effective Exchange Rate Classifications and Growth

    OpenAIRE

    Justin M. Dubas; Byung-Joo Lee; Nelson C. Mark

    2005-01-01

    We propose an econometric procedure for obtaining de facto exchange rate regime classifications which we apply to study the relationship between exchange rate regimes and economic growth. Our classification method models the de jure regimes as outcomes of a multinomial logit choice problem conditional on the volatility of a country's effective exchange rate, a bilateral exchange rate and international reserves. An `effective' de facto exchange rate regime classification is then obtained by as...

  11. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems

    Directory of Open Access Journals (Sweden)

    Kyukwang Kim

    2018-02-01

    Full Text Available Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  12. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.

    Science.gov (United States)

    Kim, Kyukwang; Kim, Seunggyu; Jeon, Jessie S

    2018-02-03

    Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT) to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  13. Osmoregulation – an important parameter of bacterial growth

    Directory of Open Access Journals (Sweden)

    Marta Sochocka

    2011-11-01

    Full Text Available Environmental conditions such as temperature, pH, radiation and osmotic pressure are important factors limiting the growth and multiplication of bacteria. Regular structure and metabolism of bacterial cells are maintained through a stable arrangement of the water-electrolyte system, regulated by osmosis. The rapid changes caused by osmotic shock (dehydration, rehydration might lead to modifications of the phospholipid structure of the cell membrane and even cell death. Advances disturbing the osmosis, which are a natural part of living cells, may appear for example in colloid systems. The biological identification of the osmotic pressure is connected with an increase or decrease in the environmental osmotic strength of microorganisms’ habitat. Cells exposed to osmotic stress, such as an increase in osmotic pressure, initiate mechanisms of active coping with the adverse consequences of its effects. Osmoregulatory processes are designed to maintain cell turgor, hence ensuring proper conditions for bacterial growth. Osmoregulation, which consists of maintaining fluid and electrolyte balance of cells, raising concerns accumulation of specific compatible solutes (osmolytes. Osmolytes are small, soluble organic molecules with a positive influence on membrane stabilization and proteins, without disrupting cellular functions. Storage of compatible solutes takes place by synthesis or by downregulation from the medium by means of special transport systems, activated by mechanical stimuli. Knowledge of the impact of osmotic pressure on microbial cells and the regulation of its activity led to the appropriate use of bacteria in various branches of the biotechnology industry.

  14. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    NARCIS (Netherlands)

    S. Zindel (Stephan); W.E. Kaman (Wendy); S. Fröls (Sabrina); F. Pfeifer (Felicitas); A. Peters (Annette); J.P. Hays (John); H.-L. Fuchsbauer (Hans-Lothar)

    2013-01-01

    textabstractA novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus

  15. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    Science.gov (United States)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  16. Changes in urine composition after trauma facilitate bacterial growth

    Directory of Open Access Journals (Sweden)

    Aubron Cecile

    2012-11-01

    Full Text Available Abstract Background Critically ill patients including trauma patients are at high risk of urinary tract infection (UTI. The composition of urine in trauma patients may be modified due to inflammation, systemic stress, rhabdomyolysis, life support treatment and/or urinary catheter insertion. Methods Prospective, single-centre, observational study conducted in patients with severe trauma and without a history of UTIs or recent antibiotic treatment. The 24-hour urine samples were collected on the first and the fifth days and the growth of Escherichia coli in urine from patients and healthy volunteers was compared. Biochemical and hormonal modifications in urine that could potentially influence bacterial growth were explored. Results Growth of E. coli in urine from trauma patients was significantly higher on days 1 and 5 than in urine of healthy volunteers. Several significant modifications of urine composition could explain these findings. On days 1 and 5, trauma patients had an increase in glycosuria, in urine iron concentration, and in the concentrations of several amino acids compared to healthy volunteers. On day 1, the urinary osmotic pressure was significantly lower than for healthy volunteers. Conclusion We showed that urine of trauma patients facilitated growth of E. coli when compared to urine from healthy volunteers. This effect was present in the first 24 hours and until at least the fifth day after trauma. This phenomenon may be involved in the pathophysiology of UTIs in trauma patients. Further studies are required to define the exact causes of such modifications.

  17. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica.

    Science.gov (United States)

    Grossmann, S; Dieckmann, G S

    1994-08-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick ice, bacterial secondary production exceeded primary production of microalgae.

  18. Effect of massing on larval growth rate.

    Science.gov (United States)

    Johnson, Aidan P; Wallman, James F

    2014-08-01

    Estimation of minimum postmortem interval commonly relies on predicting the age of blowfly larvae based on their size and an estimate of the temperatures to which they have been exposed throughout their development. The majority of larval growth rate data have been developed using small larval masses in order to avoid excess heat generation. The current study collected growth rate data for larvae at different mass volumes, and assessed the temperature production of these masses, for two forensically important blow fly species, Chrysomya rufifacies and Calliphora vicina. The growth rate of larvae in a small mass, exposed to the higher temperatures equivalent to those experienced by large masses, was also assessed to determine if observed differences were due to the known temperature effects of maggot masses. The results showed that temperature production increased with increasing mass volume, with temperature increases of 11 °C observed in the large Ch. rufifacies masses and increases of 5 °C in the large C. vicina masses. Similarly, the growth rate of the larvae was affected by mass size. The larvae from small masses grown at the higher temperatures experienced by large masses displayed an initial delay in growth, but then grew at a similar rate to those larvae at a constant 23 °C. Since these larvae from masses of equivalent sizes displayed similar patterns of growth rate, despite differing temperatures, and these growth rates differed from larger masses exposed to the same temperatures, it can be concluded that larval growth rate within a mass may be affected by additional factors other than temperature. Overall, this study highlights the importance of understanding the role of massing in larval development and provides initial developmental data for mass sizes of two forensically important blowfly species commonly encountered in Australian forensic casework. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. An integral parametrization of the bacterial growth curve experimental demonstration with E. coli C600 bacteria

    International Nuclear Information System (INIS)

    Garces, F.; Vidania, R. de

    1984-01-01

    In this work an integral parametrization of the bacterial growth curve is presented. The values of the parameters are obtained by fitting to the experimental data. Those parameters, with allow to describe the growth in its different phases, are the followings: slopes of the curve in its three parts and the time which divides the last two phases of the bacterial growth. The experimental data are bacterial densities measured by optical methods. The bacteria used was the E. coli C 6 00. (Author)

  20. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality.

    Science.gov (United States)

    Park, Se-keun; Hu, Jiang Yong

    2010-01-01

    This study was carried out to assess reverse osmosis (RO) treatment efficacy of drinking water in terms of biological stability in the distribution system. Two flat-sheet RO membranes were used in this study. Experiments were designed to investigate the growth of biofilm and bulk phase bacteria for the RO-treated water flowing through a model distribution system under controlled conditions without disinfectants. RO membranes improved the water quality of drinking water in terms of inorganic, organic and bacterial contents. Organic matter including the fraction available for microbes was efficiently removed by the RO membranes tested. More than 99% of bacterial cells in the tap water was retained by the RO membranes, leaving water. In spite of the low nutrient contents and few cells in the RO permeates, monitoring of the model distribution systems receiving the RO permeates showed that remarkable biofilm accumulation and bulk cell growth occurred in the RO permeate water. In quasi-steady state, the total cell numbers in the biofilm and bulk water were of order 10(3) cells/cm(2) and 10(3) cells/mL, respectively, which were about 2 orders of magnitude lower than those grown in the tap water produced from conventional water treatment. The culturable heterotrophic bacteria constituted a significant part of the total cells (20.7-32.1% in biofilms and 21.3-46.3% in bulk waters). Biofilm maximum density and production rate were of the order 10(4) cells/cm(2) and 10(2) cells/cm(2)/day, respectively. The specific cell growth rate of bacteria in the biofilms was found to be much lower than those in the bulk waters (0.04-0.05 day(-1) versus 0.28-0.36 day(-1)). The overall specific cell growth rate which indicates the growth potential in the whole system was calculated as 0.07-0.08 day(-1), representing a doubling time of 9.1-10.1 days. These observations can be indicative of possibilities for bacterial growth in the RO permeate water with easily assimilable organic carbon

  1. EVIDENCE ON EMPLOYMENT RATE AND ECONOMIC GROWTH

    Directory of Open Access Journals (Sweden)

    Cornelia VĂCEANU

    2014-11-01

    Full Text Available This paper explores a causal relationship between employment rate and economic growth for European Union countries, in general, and produces a structural assessment of employment on the background of labour market dynamics. Economic growth is the key in economic theory and the main source of well-being and quality of life. Since the 2008 financial crisis, most European countries have experienced job shortage and unemployment problem, but today's European economic outlook is strengthening on the bases of a GDP growing momentum. Empirical data shows, regardless the GDP's moderate positive trend, the employment rate did not increase enough. Given this, the present analysis address the question: to what extent the employment rate is affected by economic growth?

  2. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    International Nuclear Information System (INIS)

    Heinonen, S; Nikkanen, J-P; Laakso, J; Levänen, E; Raulio, M; Priha, O

    2013-01-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating

  3. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    Science.gov (United States)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  4. Bacterial Quorum Sensing Stabilizes Cooperation by Optimizing Growth Strategies.

    Science.gov (United States)

    Bruger, Eric L; Waters, Christopher M

    2016-11-15

    Communication has been suggested as a mechanism to stabilize cooperation. In bacteria, chemical communication, termed quorum sensing (QS), has been hypothesized to fill this role, and extracellular public goods are often induced by QS at high cell densities. Here we show, with the bacterium Vibrio harveyi, that QS provides strong resistance against invasion of a QS defector strain by maximizing the cellular growth rate at low cell densities while achieving maximum productivity through protease upregulation at high cell densities. In contrast, QS mutants that act as defectors or unconditional cooperators maximize either the growth rate or the growth yield, respectively, and thus are less fit than the wild-type QS strain. Our findings provide experimental evidence that regulation mediated by microbial communication can optimize growth strategies and stabilize cooperative phenotypes by preventing defector invasion, even under well-mixed conditions. This effect is due to a combination of responsiveness to environmental conditions provided by QS, lowering of competitive costs when QS is not induced, and pleiotropic constraints imposed on defectors that do not perform QS. Cooperation is a fundamental problem for evolutionary biology to explain. Conditional participation through phenotypic plasticity driven by communication is a potential solution to this dilemma. Thus, among bacteria, QS has been proposed to be a proximate stabilizing mechanism for cooperative behaviors. Here, we empirically demonstrate that QS in V. harveyi prevents cheating and subsequent invasion by nonproducing defectors by maximizing the growth rate at low cell densities and the growth yield at high cell densities, whereas an unconditional cooperator is rapidly driven to extinction by defectors. Our findings provide experimental evidence that QS regulation prevents the invasion of cooperative populations by QS defectors even under unstructured conditions, and they strongly support the role of

  5. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  6. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    OpenAIRE

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophyt...

  7. DKDP crystal growth controlled by cooling rate

    Science.gov (United States)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  8. DETERMINATION OF THE SPECIFIC GROWTH RATE ON ...

    African Journals Online (AJOL)

    Sewage generation is one of the dense problems Nigerians encounter on daily bases, mostly at the urbanized area where factories and industries are located. This paper is aimed at determining the specific growth rate “K” of biological activities on cassava wastewater during degradation using Michaelis-Menten Equation.

  9. Unusual growth rate during cystic echinococcosis.

    Science.gov (United States)

    Valour, Florent; Khenifer, Safia; Della-Schiava, Nellie; Cotte, Eddy; Guibert, Benoit; Wallon, Martine; Durupt, Stéphane; Durieu, Isabelle

    2014-04-01

    Cystic echinococcosis is a world wild zoonosis caused by Echinococcus granulosus, leading to hepatic and lung cysts with a usually slight growth rate. We report the case of an 82year-old Algerian woman with hepatic and lung cystic echinococcosis with a 10-fold size increase in 6months. Copyright © 2013. Published by Elsevier Ireland Ltd.

  10. Growth, Mortality and Exploitation Rates of Sarotherodon ...

    African Journals Online (AJOL)

    Evans

    ABSTRACT. Sarotherodon melanotheron population of Dominli Lagoon in the Western Region of Ghana was studied for its growth and mortality parameters as well as exploitation rate. The study generally aimed at providing basic information necessary for the assessment and management of the fish stock in the lagoon.

  11. Quantification of antibiotic drug potency by a two-compartment radioassay of bacterial growth

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1990-01-01

    The two-compartment radioassay for microbial kinetics based on continuous measurement of the 14 CO 2 released by bacterial metabolism of 14C-labeled substrate offers a valuable approach to testing the potency of antimicrobial drugs. By using a previously validated radioassay with gram-positive and gram-negative bacteria, a group of protein synthesis inhibitors was evaluated for their effect on microbial growth kinetics. All tested drugs induced changes in both the slopes and intercepts of the growth curves. An exponential growth model was applied to quantify the drug effect on the processes of bacterial 14 CO 2 liberation and cell generation. The response was measured in terms of a generation rate constant. A linear dependence of the generation rate constant on the dose of spectinomycin was observed with Escherichia coli. Sigmoidal-shaped curves were found in the assays of chloramphenicol and tetracycline. The implications of dose-response curves are discussed on the basis of the receptor site concept for drug action. The assay sensitivities for chloramphenicol and tetracycline were similar to those obtained by the cell counting method, but the sensitivity of the radioassay was at least 10 times greater for spectinomycin

  12. Money Supply, Interest Rate, and Economic Growth in Cameroon: A ...

    African Journals Online (AJOL)

    Money Supply, Interest Rate, and Economic Growth in Cameroon: A Time Series ... the impacts of money and interest rate on economic growth and development. ... Money Supply, Interest Rates, Economic growth, Co-integration and Inflation.

  13. Emittance growth rates for displaced beams

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1993-05-01

    Emittance growth rates have been previously analyzed for nonuniform beams in linear channels and for initially uniform mismatched beams in nonlinear channels. These studies were for centered beams. Additional emittance growth can arise in cases where the beam is initially displaced. The purpose of this study is to obtain growth rates for displaced beams. This work differs from studies involving random displacement of electrodes. Our analysis assumes instead that the focusing system is perfectly aligned but that the beam is initially displaced with respect to the equilibrium axis. If the focusing force is slightly nonlinear, we find a gradual transfer of the potential energy of beam displacement into kinetic energy associated with emittance growth. We present explicit results for the emittance growth distance as a function of the nonlinearity of the channel. These results will have practical importance for designers of accelerators and transport systems when setting realistic tolerances for initial beam alignment. These tolerances will depend on the nonlinearity and the length of the system

  14. The Variance Composition of Firm Growth Rates

    Directory of Open Access Journals (Sweden)

    Luiz Artur Ledur Brito

    2009-04-01

    Full Text Available Firms exhibit a wide variability in growth rates. This can be seen as another manifestation of the fact that firms are different from one another in several respects. This study investigated this variability using the variance components technique previously used to decompose the variance of financial performance. The main source of variation in growth rates, responsible for more than 40% of total variance, corresponds to individual, idiosyncratic firm aspects and not to industry, country, or macroeconomic conditions prevailing in specific years. Firm growth, similar to financial performance, is mostly unique to specific firms and not an industry or country related phenomenon. This finding also justifies using growth as an alternative outcome of superior firm resources and as a complementary dimension of competitive advantage. This also links this research with the resource-based view of strategy. Country was the second source of variation with around 10% of total variance. The analysis was done using the Compustat Global database with 80,320 observations, comprising 13,221 companies in 47 countries, covering the years of 1994 to 2002. It also compared the variance structure of growth to the variance structure of financial performance in the same sample.

  15. The effect of pH and storage on copper speciation and bacterial growth in complex growth media

    DEFF Research Database (Denmark)

    Hasman, Henrik; Bjerrum, Morten J.; Christiansen, Lasse Engbo

    2009-01-01

    correlation between the free copper concentration and bacterial growth, than for the total copper concentration and growth. Furthermore, it is shown that the initial pH influences the amount of free copper ions in the media and that this has a direct effect on the ability of bacterial cultures to grow......In this paper we examine how the bacterial growth is influenced by the availability of copper ions in complex Mueller Hinton growth media. The data shows that the free copper concentration is seven to eight orders of magnitude lower the total copper concentration and that there seems to be a better....... However, there still remains an effect of pH on bacterial growth which cannot be attributed to the influence of the Cu2+ concentration alone. The study also shows that the sterilization treatment can have some effect on the availability of copper ions in the media over time. Freshly autoclaved and sterile...

  16. Bacterial Growth on Chitosan-Coated Polypropylene Textile

    Science.gov (United States)

    Erben, D.; Hola, V.; Jaros, J.; Rahel, J.

    2012-01-01

    Biofouling is a problem common in all systems where microorganisms and aqueous environment meet. Prevention of biofouling is therefore important in many industrial processes. The aim of this study was to develop a method to evaluate the ability of material coating to inhibit biofilm formation. Chitosan-coated polypropylene nonwoven textile was prepared using dielectric barrier discharge plasma activation. Resistance of the textile to biofouling was then tested. First, the textile was submerged into a growth medium inoculated with green fluorescein protein labelled Pseudomonas aeruginosa. After overnight incubation at 33°C, the textile was observed using confocal laser scanning microscopy for bacterial enumeration and biofilm structure characterisation. In the second stage, the textile was used as a filter medium for prefiltered river water, and the pressure development on the in-flow side was measured to quantify the overall level of biofouling. In both cases, nontreated textile samples were used as a control. The results indicate that the chitosan coating exhibits antibacterial properties. The developed method is applicable for the evaluation of the ability to inhibit biofilm formation. PMID:23724330

  17. Effects of aluminium oxide nanoparticles on bacterial growth

    Directory of Open Access Journals (Sweden)

    Doskocz Nina

    2017-01-01

    Full Text Available Production and wide application of nanomaterials have led to nanotechnology development but their release to environment and the induction of toxic reactions, affects the natural microbial communities. Therefore, studies on the impact of nanoparticles on microorganisms and environment are required and needed. The aim of this study was to assess the impact of aluminium oxide nanoparticles on the growth of Pseudomonas putida. To compare the harmfulness of different forms of aluminium oxide, the ecotoxicity of its macro-forms was also evaluated in the study. Research showed that the exposure to nanoparticles can negatively influence microorganisms. The EC50-16h determined in this study was 0.5 mg/l, and NOEC equaled 0.19 mg/l. Nano-Al2O3 proved to be more toxic to P. putida than aluminium oxide. This indicates that the nano-form of a given substance demonstrates different properties and may constitute a far greater danger for the environment than the same substance in the large form. According to EU and US EPA criteria, nano-Al2O3 proved to be very toxic and highly toxic, respectively. Changes in bacterial communities caused by nanoparticles may affect the normal biological, chemical and nutrient cycle in the ecosystem and the effect triggered by nanomaterials in relation to other organisms is unpredictable.

  18. Modification of cell growth rate by irradiation

    International Nuclear Information System (INIS)

    Itoh, Hisao; Takemasa, Kazuhiko; Nishiguchi, Iku; Ka, Wei-Jei; Kutsuki, Shoji; Hashimoto, Shozo

    1993-01-01

    The effect of irradiation on the proliferation kinetics of the monolayer cells has been studied. Two human cell lines with different doubling times (HeLa-P and RMUG) and two clones that have the same radiosensitivity but different doubling times (HeLa-R and HeLa-S) were irradiated with a daily dose of 2 Gy for 6 days. The number of the clonogenic cells/dish was calculated by multiplying the number of total cell/dish by the survival fraction. In the rapidly growing cells (HeLa-P, HeLa-R), the number of the clonogenic cells was not decreased by the first two fractionated irradiations, but decreased thereafter at a similar rate as by single-dose fractionation, whereas the clonogenic cell number decreased from the first fractionated irradiation in the slowly growing cells (RMUG, HeLa-S). When the proliferation of clonogenic cell number increased along with a similar growth rates that was seen in all other types of cells. Further, no correlation was seen between the growth rates of cells without irradiation and cells that received irradiation. This latter result suggests that the slow growth rate of non-irradiated cells may not be the predictive factor of the tumor cure and the interruption of radiotherapy may reduce the beneficial effect of this treatment even in slow growing tumors. (author)

  19. Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response.

    Science.gov (United States)

    Chukwudi, Chinwe Uzoma; Good, Liam

    2018-01-01

    The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok + cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    Science.gov (United States)

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  1. Modeling of Scale-Dependent Bacterial Growth by Chemical Kinetics Approach

    Directory of Open Access Journals (Sweden)

    Haydee Martínez

    2014-01-01

    Full Text Available We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli  JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  2. Volume growth rate of acoustic neurinomas

    International Nuclear Information System (INIS)

    Laasonen, E.M.; Troupp, H.

    1986-01-01

    Of 79 acoustic neurinomas seen between June 1980 and June 1984, at least two CT scans were available for each of 23 tumours (21 patients); the scans were performed at intervals of at least 6 months. The volume growth rate of the tumours was either moderate, with a volume doubling time ranging from 205 to 545 days, or slow, with a doubling time ranging from 1090 days to no observable growth. No single clinical, radiological or histological feature correlated with any type of growth rate. However, some conclusions were drawn. If a primary CT scan is negative, at least 1 year should elapse before it is worthwhile taking another scan, even though audiological findings suggest growth; after an apparently radical removal, at least 3 years should elapse before a check CT scan is worthwhile; and if a small acoustic neurinoma is diagnosed, but for some reason not operated upon, a second CT scan should be carried out 1 year later in order to reassess the case. (orig.)

  3. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community.

    Directory of Open Access Journals (Sweden)

    Minna Pekkonen

    Full Text Available Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph and Novosphingobium capsulatum (oligotroph were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation.

  4. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  5. Bacterial Community Dynamics and Biodegradation Rates in Untreated and Oily Soils During PAH Exposure

    International Nuclear Information System (INIS)

    Zakaria, A.E.M.

    2008-01-01

    The approach taken in this study represents an attempt to address the possible selective effects of Polycyclic aromatic hydrocarbons (PAH) on the bacterial community structure of an untreated garden soil (S) and a chronically contaminated oily soil (CS). Untreated and chronically hydrocarbon polluted soils, collected from Egypt were enriched in shaking flasks containing 50 mg/l anthracene as a sole source of carbon over a period of 15 days. Bacterial communities in each soil were profiled by denaturing gradient gel electrophoresis (DGGE) analysis of the PCR amplified 16 S r DNA gene fragments after 0, 5, 10, and 15 days. Culture able biodegrading bacterial counts on minerals- Silica gel- Oil (MSD) plates as well as anthracene degradation for both soils were followed up at the same time intervals. Nine bacterial species were found to be dominant in the pristine soil before enrichment with the model polycyclic aromatic hydrocarbon (PAH), eight of them disappeared after live days of enrichment with the domination of one new species. It stayed dominant in soil until 15 days - exposure to anthracene. Therefore it can be used as a bio marker for PAH pollution. The chronically contaminated soil revealed a remarkable increase in the diversity directly after 5 days exposure to PAH HPLC analysis of the extracted anthracene remained in the biodegradation flasks after different degradation periods revealed that a higher biodegradation rates were accomplished by the oily soil consortium rather than by the pristine one. Before exposure to PAH, counts of culture able biodegrading bacteria were found to be higher in the untreated soil rather than in the oily one. After exposure the situation has been a bit altered as the counts in the untreated soil revealed a temporary suppression with a prolongation of the time required for growth as a result of the hydrocarbon stress

  6. [Risk factors associated with bacterial growth in derivative systems from cerebrospinal liquid in pediatric patients].

    Science.gov (United States)

    de Jesús Vargas-Lares, José; Andrade-Aguilera, Angélica Rocío; Díaz-Peña, Rafael; Barrera de León, Juan Carlos

    2015-01-01

    To determine risk factors associated with bacterial growth in systems derived from cerebrospinal fluid in pediatric patients. Case and controls study from January to December 2012, in patients aged <16 years who were carriers of hydrocephalus and who required placement or replacement of derivative system. Cases were considered as children with cultures with bacterial growth and controls with negative bacterial growth. Inferential statistics with Chi-squared and Mann-Whitney U tests. Association of risk with odds ratio. We reviewed 746 registries, cases n=99 (13%) and controls n=647 (87%). Masculine gender 58 (57%) vs. feminine gender 297 (46%) (p=0.530). Age of cases: median, five months and controls, one year (p=0.02). Median weight, 7 vs. 10 kg (p=0.634). Surgical interventions: median n=2 (range, 1-8) vs. n=1 (range, 1-7). Infection rate, 13.2%. Main etiology ductal stenosis, n=29 (29%) vs. n=50 (23%) (p=0.530). Non-communicating, n=50 (51%) vs. 396 (61%) (p=0.456). Predominant microorganisms: enterobacteria, pseudomonas, and enterococcus. Non-use of iodized dressing OR=2.6 (range, 1.8-4.3), use of connector OR=6.8 (range, 1.9-24.0), System replacement OR=2.0 (range, 1.3-3.1), assistant without surgical facemask OR=9.7 (range, 2.3-42.0). Being a breastfeeding infant, of low weight, non-application of iodized dressing, use of connector, previous derivation, and lack of adherence to aseptic technique were all factors associated with ependymitis.

  7. Nd isotopes and crustal growth rate

    International Nuclear Information System (INIS)

    Albarede, F.

    1988-01-01

    Sm/Nd isotopic constraints on crustal growth is discussed. In order to constrain Sm/Nd fractionation between continental crust and depleted mantle, an extensive data base of isotopic measurements (assumed to be adequately representative of continental crust) was compiled. The results imply that the evolution of depleted mantles was roughly linear, with no major discontinuities over the course of geologic time. This is different from other determinations of depleting mantle evolution, which show nonlinear behavior. The Sm/Nd evolution lines for continental crust and depleted mantle intersect between 3.8 to 4.0 Ga, which may indicate that the onset of continental growth was later than 4.5 Ga. A mathematical model is described, the results of which imply that time integrated crustal additions from the mantle are about 1.8 to 2.5 cu km/a, whereas crustal subtractions by sediment recycling are about 0.6 to 1.5 cu km/a. This results in a net time integrated crustal growth rate of about 1 cu km/a, which is similar to present day rates determined, for example, by Reymer and Schubert

  8. Effect of Vibration on Bacterial Growth and Antibiotic Resistance

    Science.gov (United States)

    Juergensmeyer, Elizabeth A.; Juergensmeyer, Margaret A.

    2004-01-01

    The purpose of this research grant was to provide a fundamental, systematic investigation of the effects of oscillatory acceleration on bacterial proliferation and their responses to antibiotics in a liquid medium.

  9. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    Science.gov (United States)

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-01-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study. PMID:6639023

  10. Assessment of bacterial growth and total organic carbon removal on granular activated carbon contactors.

    Science.gov (United States)

    Bancroft, K; Maloney, S W; McElhaney, J; Suffet, I H; Pipes, W O

    1983-09-01

    The overall growth rate of bacteria on granular activated carbon (GAC) contactors at the Philadelphia Torresdale Water Treatment Pilot Plant facility was found to decrease until steady state was reached. The growth rate was found to fluctuate between 6.94 X 10(-3) and 8.68 X 10(-4) doublings per h. The microbiological removal of total organic carbon (TOC) was calculated by considering the GAC contactors as semiclosed continuous culture systems and using growth yield factors determined in laboratory experiments. After ozonation, the average TOC entering the contactors was 1,488 micrograms/liter, and the average effluent TOC was 497 micrograms/liter. Microbiological TOC removal was found to average 240 micrograms/liter on GAC contactors, which was not significantly different from microbiological TOC (220 micrograms/liter) removal across a parallel sand contactor where no adsorption took place. Thus, GAC did not appear to enhance biological TOC removal. Bacterial growth and maintenance was responsible for approximately 24% of the TOC removal on GAC under the conditions of this study.

  11. Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Míriam R. García

    2018-01-01

    Full Text Available A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.

  12. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    Science.gov (United States)

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  13. Species Diversity Enhances Predator Growth Rates

    International Nuclear Information System (INIS)

    Olson, M.H.; Jacobs, R.P.; O'Donnell, E.B.

    2007-01-01

    Predators can be important top-down regulators of community structure and are known to have both positive and negative effects on species diversity. However, little is known about the reciprocal effects of species diversity on predators. Across a set of 80 lakes in Connecticut, USA, we found a strong positive correlation between prey species diversity (using the Shannon-Weiner Diversity Index) and growth rates of largemouth bass (Micropterus salmoides). This correlation was strongest for small predators and decreased with body size. Although the underlying mechanisms are not known, the correlation is not driven by total fish abundance, predator abundance, or productivity.

  14. Effect of crushed mussel shell addition on bacterial growth in acid polluted soils

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Garrido-Rodríguez, B.; Arias-Estévez, M.

    2015-01-01

    We applied three different doses of crushed mussel shell (CMS) on two Cu-polluted acid soils to study the effect of these amendments on the growth of the bacterial community during 730 days. Soil pH increased in the short and medium term due to CMS addition. In a first stage, bacterial growth...... was lower in the CMS-amended than in the un-amended samples. Thereafter, bacterial growth increased slowly. The soil having the highest initial pH value (4.5) showed the first significant increase in bacterial growth 95 days after the CMS amendment. However, in the soil with the lowest initial pH value (3...... as an agronomic sound practice for strongly acid soils (pH

  15. Fructose-enhanced reduction of bacterial growth on nanorough surfaces

    Directory of Open Access Journals (Sweden)

    Durmus NG

    2012-02-01

    Full Text Available Naside Gozde Durmus1, Erik N Taylor1, Fatih Inci3,4, Kim M Kummer1, Keiko M Tarquinio5, Thomas J Webster1,21School of Engineering, Brown University, Providence, RI, USA; 2Department of Orthopedics, Brown University, Providence, RI, USA; 3Bio-Acoustic-MEMS in Medicine (BAMM Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard-MIT Health Sciences and Technology, Harvard Medical School, MA, USA; 4Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, Mobgam, Maslak, Istanbul, Turkey; 5Division of Pediatric Critical Care Medicine, Rhode Island Hospital, Providence, RI, USAAbstract: Patients on mechanical ventilators for extended periods of time often face the risk of developing ventilator-associated pneumonia. During the ventilation process, patients incapable of breathing are intubated with polyvinyl chloride (PVC endotracheal tubes (ETTs. PVC ETTs provide surfaces where bacteria can attach and proliferate from the contaminated oropharyngeal space to the sterile bronchoalveolar area. To overcome this problem, ETTs can be coated with antimicrobial agents. However, such coatings may easily delaminate during use. Recently, it has been shown that changes in material topography at the nanometer level can provide antibacterial properties. In addition, some metabolites, such as fructose, have been found to increase the efficiency of antibiotics used to treat Staphylococcus aureus (S. aureus infections. In this study, we combined the antibacterial effect of nanorough ETT topographies with sugar metabolites to decrease bacterial growth and biofilm formation on ETTs. We present for the first time that the presence of fructose on the nanorough surfaces decreases the number of planktonic S. aureus bacteria in the solution and biofilm formation on the surface after 24 hours. We thus envision that this method has the potential to impact the future of surface engineering of

  16. Growth performance and carcase quality in broiler chickens fed on bacterial protein grown on natural gas.

    Science.gov (United States)

    Øverland, M; Schøyen, H F; Skrede, A

    2010-10-01

    1. The effects of increasing concentrations (0, 40, 80 or 120 g/kg) of bacterial protein meal (BPM) and bacterial protein autolysate (BPA) grown on natural gas on growth performance and carcase quality in broiler chickens were examined. 2. Adding BPM to diets reduced feed intake and improved gain: feed from 0 to 21 d and overall to 35 d, but did not significantly affect weight gain compared to the soybean meal based control diet. 3. Increasing concentrations of BPA significantly reduced growth rate, feed intake, gain: feed, carcase weight and dressing percentage, but significantly increased carcase dry matter, fat and energy content. 4. Adding BPM to diets had no effect on viscosity of diets and jejunal digesta, and minor effects on litter quality, whereas BPA increased the viscosity of diets and jejunal digesta, improved litter quality at 21 d, but decreased litter quality at 32 d. 5. To conclude, broiler chickens performed better on a BPM product with intact proteins than on an autolysate with ruptured cell walls and a high content of free amino acids and low molecular-weight peptides.

  17. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  18. Changes in the bacterial community of soybean rhizospheres during growth in the field.

    Science.gov (United States)

    Sugiyama, Akifumi; Ueda, Yoshikatsu; Zushi, Takahiro; Takase, Hisabumi; Yazaki, Kazufumi

    2014-01-01

    Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during growth in the field. The physiological properties of the bacterial communities were analyzed by a community-level substrate utilization assay with BioLog Eco plates, and the composition of the communities was assessed by gene pyrosequencing. Higher metabolic capabilities were found in rhizosphere soil than in bulk soil during all stages of the BioLog assay. Pyrosequencing analysis revealed that differences between the bacterial communities of rhizosphere and bulk soils at the phylum level; i.e., Proteobacteria were increased, while Acidobacteria and Firmicutes were decreased in rhizosphere soil during growth. Analysis of operational taxonomic units showed that the bacterial communities of the rhizosphere changed significantly during growth, with a higher abundance of potential plant growth promoting rhizobacteria, including Bacillus, Bradyrhizobium, and Rhizobium, in a stage-specific manner. These findings demonstrated that rhizosphere bacterial communities were changed during soybean growth in the field.

  19. Shaping the growth behaviour of biofilms initiated from bacterial aggregates

    DEFF Research Database (Denmark)

    Melaugh, Gavin; Hutchison, Jaime; Kragh, Kasper Nørskov

    2016-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase so that it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell ag...

  20. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant

    International Nuclear Information System (INIS)

    Liu, Jia; Vipulanandan, Cumaraswamy

    2013-01-01

    The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10 mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles. - Highlights: • Modeled the effect of nanoparticles on the bacterial growth and biosurfactant production. • Effects of Au/Fe nonoparticles on Serratia Bacterial Growth and Production of Biosurfactant. • Scanning Electron Micrograph of bacteria-nanoparticles interaction

  1. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Vipulanandan, Cumaraswamy, E-mail: cvipulanandan@uh.edu

    2013-10-15

    The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10 mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles. - Highlights: • Modeled the effect of nanoparticles on the bacterial growth and biosurfactant production. • Effects of Au/Fe nonoparticles on Serratia Bacterial Growth and Production of Biosurfactant. • Scanning Electron Micrograph of bacteria-nanoparticles interaction.

  2. Exchange-rate regimes and economic growth: An empirical evaluation

    OpenAIRE

    Simón Sosvilla-Rivero; María del Carmen Ramos-Herrera

    2014-01-01

    Based on a dataset of 123 economies, this paper empirically investigates the relation between exchange-rate regimes and economic growth. We find that growth performance is best under intermediate exchange rate regimes, while the smallest growth rates are associated with flexible exchange rates. Nevertheless, this conclusion is tempered when we analyze the countries by income level: even though countries that adopt intermediate exchange-rate regimes are characterized by higher economic growth,...

  3. Comparison of Heterotrophic Bacterial Production-Rates in Early Spring in the Turbid Estuaries of the Scheldt and the Elbe

    NARCIS (Netherlands)

    Goosen, N.K.; Van Rijswijk, P.; Brockmann, U.

    1995-01-01

    In spring bacterial production rates were estimated by tritiated thymidine incorporation in the turbid estuaries of the rivers Scheldt and Elbe. Bacterial production rates in the Scheldt were 5 times higher than in the Elbe. In the Scheldt bacterial production rates correlated better with the DOC

  4. Effect of feeding frequency and feeding rate on growth of ...

    African Journals Online (AJOL)

    Effect of feeding frequency and feeding rate on growth of Oreochromis mossambicus (Teleostei: Cichlidae) fry. ... Weight gain, specific growth rate and gross food conversion ratio were significantly affected by ... AJOL African Journals Online.

  5. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor.

    Science.gov (United States)

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-01-01

    Duckweed (family Lemnaceae ) has recently been recognized as an ideal biomass feedstock for biofuel production due to its rapid growth and high starch content, which inspired interest in improving their productivity. Since microbes that co-exist with plants are known to have significant effects on their growth according to the previous studies for terrestrial plants, this study has attempted to understand the plant-microbial interactions of a duckweed, Lemna minor , focusing on the growth promotion/inhibition effects so as to assess the possibility of accelerated duckweed production by modifying co-existing bacterial community. Co-cultivation of aseptic L. minor and bacterial communities collected from various aquatic environments resulted in changes in duckweed growth ranging from -24 to +14% compared to aseptic control. A number of bacterial strains were isolated from both growth-promoting and growth-inhibitory communities, and examined for their co-existing effects on duckweed growth. Irrespective of the source, each strain showed promotive, inhibitory, or neutral effects when individually co-cultured with L. minor . To further analyze the interactions among these bacterial strains in a community, binary combinations of promotive and inhibitory strains were co-cultured with aseptic L. minor , resulting in that combinations of promotive-promotive or inhibitory-inhibitory strains generally showed effects similar to those of individual strains. However, combinations of promotive-inhibitory strains tended to show inhibitory effects while only Aquitalea magnusonii H3 exerted its plant growth-promoting effect in all combinations tested. Significant change in biomass production was observed when duckweed was co-cultivated with environmental bacterial communities. Promotive, neutral, and inhibitory bacteria in the community would synergistically determine the effects. The results indicate the possibility of improving duckweed biomass production via regulation of co

  6. Mechanisms and rates of bacterial colonization of sinking aggregates

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Grossart, H.P.; Ploug, H.

    2002-01-01

    Quantifying the rate at which bacteria colonize aggregates is a key to understanding microbial turnover of aggregates. We used encounter models based on random walk and advection-diffusion considerations to predict colonization rates from the bacteria's motility patterns (swimming speed, tumbling...

  7. Consequences of packaging on bacterial growth. Meat is an ecological niche.

    Science.gov (United States)

    Labadie, J

    1999-07-01

    Meat is a good support for bacterial growth and particularly for bacteria which are specific of meat and meat products. Little is known about the physiological and biochemical factors which could explain why some bacterial species are only isolated from meat. This review tentatively points out, from an ecological point of view, some of these factors in Gram negative and Gram positive micro-organisms influencing storage life.

  8. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    Science.gov (United States)

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.

    Science.gov (United States)

    Min, B R; Pinchak, W E; Anderson, R C; Hume, M E

    2006-10-01

    The role of ruminal bacteria in the frothy bloat complex common to cattle grazing winter wheat has not been previously determined. Two experiments, one in vitro and another in vivo, were designed to elucidate the effects of fresh wheat forage on bacterial growth, biofilm complexes, rumen fermentation end products, rumen bacterial diversity, and bloat potential. In Exp. 1, 6 strains of ruminal bacteria (Streptococcus bovis strain 26, Prevotella ruminicola strain 23, Eubacterium ruminantium B1C23, Ruminococcus albus SY3, Fibrobacter succinogenes ssp. S85, and Ruminococcus flavefaciens C94) were used in vitro to determine the effect of soluble plant protein from winter wheat forage on specific bacterial growth rate, biofilm complexes, VFA, and ruminal H2 and CH4 in mono or coculture with Methanobrevibacter smithii. The specific growth rate in plant protein medium containing soluble plant protein (3.27% nitrogen) was measured during a 24-h incubation at 39 degrees C in Hungate tubes under a CO2 gas phase. A monoculture of M. smithii was grown similarly, except under H2:CO2 (1:1), in a basal methanogen growth medium supplemented likewise with soluble plant protein. In Exp. 2, 6 ruminally cannulated steers grazing wheat forage were used to evaluate the influence of bloat on the production of biofilm complexes, ruminal microbial biodiversity patterns, and ruminal fluid protein fractions. In Exp. 1, cultures of R. albus (P bloated than for nonbloated steers when grazing wheat forage. The molecular analysis of the 16S rDNA showed that 2 different ruminal microbiota populations developed between bloated and nonbloated animals grazing wheat forage. Bloat in cattle grazing wheat pastures may be caused by increased production of biofilm, resulting from a diet-influenced switch in the rumen bacterial population.

  10. The bacterial contamination rate of glucose meter test strips in the hospital setting

    Science.gov (United States)

    Al-Rubeaan, Khalid A.; Saeb, Amr T. M.; AlNaqeb, Dhekra M.; AlQumaidi, Hamed M.; AlMogbel, Turki A.

    2016-01-01

    Objectives: To assess the rate of bacterial contamination of the multi-use vial and single-use packed glucose meter strips, and to identify the type and frequency of various bacterial contamination in different hospital wards. Methods: This prospective observational study was conducted by a team from the Strategic Center for Diabetes Research in 7 general hospitals in the Central region of Saudi Arabia during the period from August to September 2014 to assess the bacterial contamination rate of the unused strips. A total of 10,447 strips were cultured using proper agar media and incubated both aerobically and anaerobically. Results: The total bacterial contamination rate for the multi-use vials glucose strips was 31.7%, while single-use packed strips were not contaminated at all. Ministry of Health hospitals had the highest contamination rates compared with other hospitals. Critical, obstetric, and surgical wards had the highest bacterial isolates number, where most were in the risk group 3 according to the National Institute of Health guidelines. Staphylococcus species were the most common bacteria found. Conclusion: Glucose meter strips should be recognized as a source of bacterial contamination that could be behind serious hospital acquired infections. The hospital infection control team should adopt proper measures to implement protocols for glucose meter cleaning and glucose strips handling. PMID:27570855

  11. GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  12. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community.

    Science.gov (United States)

    Xu, Jiangbing; Luo, Xiaosan; Wang, Yanling; Feng, Youzhi

    2018-02-01

    The wide spread of nanoparticles (NPs) has caused tremendous concerns on agricultural ecosystem. Some metallic NPs, such as zinc oxide (ZnO), can be utilized as a nano-fertilizer when used at optimal doses. However, little is known about the responses of plant development and concomitant soil bacteria community to ZnO NPs. The present pot experiment studied the impacts of different doses of ZnO NPs and bulk ZnO (0, 1, 10, 100 mg ZnO/kg), on the growth of lettuce (Lactuca sativa L.) and the associated rhizospheric soil bacterial community. Results showed that at a dose of 10 mg/kg, ZnO NPs and bulk ZnO, enhanced the lettuce biomass and the net photosynthetic rate; whereas, the Zn content in plant tissue was higher in NPs treatment than in their bulk counterpart at 10 mg/kg dose or higher. For the underground observations, 10 mg/kg treatment doses (NPs or bulk) significantly changed the soil bacterial community structure, despite the non-significant variations in alpha diversity. Taxonomic distribution revealed that some lineages within Cyanobacteria and other phyla individually demonstrated similar or different responses to ZnO NPs and bulk ZnO. Moreover, some lineages associated with plant growth promotion were also influenced to different extents by ZnO NPs and bulk ZnO, suggesting the distinct microbial processes occurring in soil. Collectively, this study expanded our understanding of the influence of ZnO NPs on plant performance and the associated soil microorganisms.

  13. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shan Goh

    Full Text Available BACKGROUND: Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. METHODOLOGY/PRINCIPAL FINDINGS: Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL(50. When applied to four growth essential genes, both RNA silencing methods resulted in MTL(50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. CONCLUSIONS: RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.

  14. Morphology, Growth, and Size Limit of Bacterial Cells

    Science.gov (United States)

    Jiang, Hongyuan; Sun, Sean X.

    2010-07-01

    Bacterial cells utilize a living peptidoglycan network (PG) to separate the cell interior from the surroundings. The shape of the cell is controlled by PG synthesis and cytoskeletal proteins that form bundles and filaments underneath the cell wall. The PG layer also resists turgor pressure and protects the cell from osmotic shock. We argue that mechanical influences alter the chemical equilibrium of the reversible PG assembly and determine the cell shape and cell size. Using a mechanochemical approach, we show that the cell shape can be regarded as a steady state of a growing network under the influence of turgor pressure and mechanical stress. Using simple elastic models, we predict the size of common spherical and rodlike bacteria. The influence of cytoskeletal bundles such as crescentin and MreB are discussed within the context of our model.

  15. Theoretical and Experimental Study of Bacterial Colony Growth in 3D

    Science.gov (United States)

    Shao, Xinxian; Mugler, Andrew; Nemenman, Ilya

    2014-03-01

    Bacterial cells growing in liquid culture have been well studied and modeled. However, in nature, bacteria often grow as biofilms or colonies in physically structured habitats. A comprehensive model for population growth in such conditions has not yet been developed. Based on the well-established theory for bacterial growth in liquid culture, we develop a model for colony growth in 3D in which a homogeneous colony of cells locally consume a diffusing nutrient. We predict that colony growth is initially exponential, as in liquid culture, but quickly slows to sub-exponential after nutrient is locally depleted. This prediction is consistent with our experiments performed with E. coli in soft agar. Our model provides a baseline to which studies of complex growth process, such as such as spatially and phenotypically heterogeneous colonies, must be compared.

  16. Sweat secretion rates in growth hormone disorders

    DEFF Research Database (Denmark)

    Sneppen, S B; Main, K M; Juul, A

    2000-01-01

    While increased sweating is a prominent symptom in patients with active acromegaly, reduced sweating is gaining status as part of the growth hormone deficiency (GHD) syndrome.......While increased sweating is a prominent symptom in patients with active acromegaly, reduced sweating is gaining status as part of the growth hormone deficiency (GHD) syndrome....

  17. Bacterial growth efficiency in the tropical estuarine and coastal waters of Goa, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; Nair, S.; Chandramohan, D.

    overview. Mar Ecol Prog Ser 43:1-10 8. Del Giorgio PA, Cole 11 (1998) Bacterial growth efficiency in natural aquatic ecosystems. Annu Rev Ecol Syst 29:503 541 9. Del Giorgio PA, Cole n (2000) Bacterial energetics and growth efficiency. In: DL Kirchman (ed...) Microbial Ecology of the Oceans. Wiley-Liss, New York pp289~325 10. Del Giorgio PA, Gasol JM, Mura P, Vaque D, Duarte CM (1996) Protozoan control of the proportion of metabolically active bacteria in coastal marine plankton. Limnol Oceanogr 41:1169-1179 11...

  18. High bacterial contamination rate of electrocautery tips during total hip and knee arthroplasty.

    Science.gov (United States)

    Abdelaziz, Hussein; Zahar, Akos; Lausmann, Christian; Gehrke, Thorsten; Fickenscher, Helmut; Suero, Eduardo M; Gebauer, Matthias; Citak, Mustafa

    2018-04-01

    The aim of the study was to quantify the bacterial contamination rate of electrocautery tips during primary total joint replacement (TJR), as well as during aseptic and septic revision TJR. A total of 150 electrocautery tips were collected between April and July 2017. TJR surgeries were divided into three groups: (1) primary, (2) aseptic and (3) septic revisions. In each group, a total of 50 electrocautery tips were collected. A monopolar electrocautery with a reusable stainless-steel blade tip was used in all cases. The rate of bacterial contamination was determined for all groups. Correlation of exposure time and type of surgery was analyzed. The overall bacterial contamination rate was 14.7% (95% CI 9.4 to 21.4%). The highest contamination rate occurred in the septic revision group (30.0%; 95% CI 17.9 to 44.6%), followed by the primary cases group (10.0%; 95% CI 3.3 to 21.8%) and the aseptic revision group (4.0%; 95% CI 0.5 to 13.7%). Exposure time did not affect the bacterial contamination rate. In 12 out of 15 (80%) contaminations identified in the septic group, we found the same causative microorganism of the prosthetic joint infection on the electrocautery tip. The bacterial contamination of the electrocautery tips is relatively high, especially during septic hip revision arthroplasty. Electrocautery tips should be changed after debridement of infected tissue.

  19. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria.

    Science.gov (United States)

    Inhan-Garip, Ayse; Aksu, Burak; Akan, Zafer; Akakin, Dilek; Ozaydin, A Nilufer; San, Tangul

    2011-12-01

    To determine the effect of extremely low frequency (bacteria and to determine any morphological changes that might have been caused by ELF-EMF. Six bacterial strains, three Gram-negative and three Gram-positive were subjected to 50 Hz, 0.5 mT ELF-EMF for 6 h. To determine growth rate after ELF-EMF application, bacteria exposed to ELF-EMF for 3 h were collected, transferred to fresh medium and cultured without field application for another 4 h. Growth-rate was determined by optical density (OD) measurements made every hour. Morphological changes were determined with Transmission electron microscopy (TEM) for two gram-negative and two gram-positive strains collected after 3 h of field application. A decrease in growth rate with respect to control samples was observed for all strains during ELF-EMF application. The decrease in growth-rate continued when exposed bacteria were cultured without field application. Significant ultrastructural changes were observed in all bacterial strains, which were seen to resemble the alterations caused by cationic peptides. This study shows that ELF-EMF induces a decrease in growth rate and morphological changes for both Gram-negative and Gram-positive bacteria.

  20. Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

    Directory of Open Access Journals (Sweden)

    Phillip Trefz

    Full Text Available Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP emits volatile organic compounds (VOCs. Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold's egg yolk medium in dilutions of 10(-0, 10(-2, 10(-4 and 10(-6. Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME, thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to

  1. Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

    Science.gov (United States)

    Trefz, Phillip; Koehler, Heike; Klepik, Klaus; Moebius, Petra; Reinhold, Petra; Schubert, Jochen K; Miekisch, Wolfram

    2013-01-01

    Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP) emits volatile organic compounds (VOCs). Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold's egg yolk medium in dilutions of 10(-0), 10(-2), 10(-4) and 10(-6). Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME), thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to diagnose MAP

  2. Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists

    Directory of Open Access Journals (Sweden)

    Cuijuan Shi

    2014-01-01

    Full Text Available Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies.

  3. In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections

    DEFF Research Database (Denmark)

    Yang, L.; Haagensen, J.A.; Jelsbak, L.

    2008-01-01

    matrix, whereas nonmucoid variants were present mainly as dispersed cells. To obtain estimates of the growth rates of P. aeruginosa in CF lungs, we used quantitative FISH to indirectly measure growth rates of bacteria in sputum samples (reflecting the in vivo lung conditions). The concentration of r......The growth dynamics of bacterial pathogens within infected hosts are a fundamental but poorly understood feature of most infections. We have focused on the in situ distribution and growth characteristics of two prevailing and transmissible Pseudomonas aeruginosa clones that have caused chronic lung......RNA in bacteria isolated from sputa was measured and correlated with the rRNA contents of the same bacteria growing in vitro at defined rates. The results showed that most cells were actively growing with doubling times of between 100 and 200 min, with some growing even faster. Only a small stationary...

  4. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    Science.gov (United States)

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  5. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.

    Science.gov (United States)

    Servais, P

    1995-03-01

    In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.

  6. Endogenous CO2 may inhibit bacterial growth and induce virulence gene expression in enteropathogenic Escherichia coli.

    Science.gov (United States)

    Martínez, Haydee; Buhse, Thomas; Rivera, Marco; Parmananda, P; Ayala, Guadalupe; Sánchez, Joaquín

    2012-07-01

    Analysis of the growth kinetics of enteropathogenic Escherichia coli (EPEC) revealed that growth was directly proportional to the ratio between the exposed surface area and the liquid culture volume (SA/V). It was hypothesized that this bacterial behavior was caused by the accumulation of an endogenous volatile growth inhibitor metabolite whose escape from the medium directly depended on the SA/V. The results of this work support the theory that an inhibitor is produced and indicate that it is CO(2). We also report that concomitant to the accumulation of CO(2), there is secretion of the virulence-related EspB and EspC proteins from EPEC. We therefore postulate that endogenous CO(2) may have an effect on both bacterial growth and virulence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  8. The Effect of Various Oral Hygiene Products on Bacterial Growth

    Science.gov (United States)

    Viswanath, S.; Aggrawal, A.; Vazirani, S.

    2017-12-01

    In this experiment, we tested the antimicrobial effectiveness of six different oral hygiene products. We used three natural cleansing products (coconut oil, sea salt, and baking soda), as well as three synthetic products, which were the Colgate toothpaste varieties of sensitivity, cavity protection, and whitening. We mixed water with each of the products to create a paste that could be uniformly applied to the surface of a disc. We then dipped the discs into the solutions and placed them in petri dishes that were pre-treated with bacterial cells. After 72 hours, we measured the area around the disc that was bacteria-free, which is known as the zone of inhibition. This experiment was repeated twice, with one petri dish per product for each trial, and two different types of agar. We were surprised to discover that almost all the products had no zone of inhibition, with bacteria growing throughout the petri dish, and to the disc. The only cleaning product that showed a significant antibacterial result was the Colgate sensitivity toothpaste. During the two trials, the sensitivity toothpaste had a zone of inhibition of 14.8 cm2 and 8.7 cm2, respectively. Coconut oil was the only other product to have a measurable zone of inhibition with an area of 0.3 cm2. We concluded that only the sensitivity toothpaste was effective in killing bacteria, perhaps due to its different hygienic goal of protecting the tooth's nerves. This toothpaste contains ingredients called potassium nitrate and strontium chloride, which blocks tubules in the dentin, the hard, bony tissue beneath the enamel. Sensitivity toothpaste strengthens the tooth, by blocking decaying substances such as oral bacteria (Knights, 2014).

  9. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Development of a restricted state space stochastic differential equation model for bacterial growth in rich media

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    2012-01-01

    In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state estimates provide a systematic framework for data driven model improvements, using random walk hidden states...

  11. Growth strategy of heterotrophic bacterial population along successional sequence on spoil of brown coal colliery substrate

    Czech Academy of Sciences Publication Activity Database

    Krištůfek, Václav; Elhottová, Dana; Chroňáková, Alica; Dostálková, I.; Picek, T.; Kalčík, Jiří

    2005-01-01

    Roč. 50, č. 5 (2005), s. 427-435 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA526/03/1259 Institutional research plan: CEZ:AV0Z60660521 Keywords : growth strategy * heterotrophic bacterial population * brown coal colliery spoil Subject RIV: EH - Ecology, Behaviour Impact factor: 0.918, year: 2005

  12. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour.

    Science.gov (United States)

    Fetissov, Sergueï O

    2017-01-01

    The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.

  13. A new model for the spectral induced polarization signature of bacterial growth in porous media

    Science.gov (United States)

    Zhang, C.; Revil, A.; Atekwana, E. A.; Jardani, A.; Smith, S.

    2012-12-01

    Recent biogeophysics studies demonstrated the sensitivity of complex conductivity to bacterial growth and microbial mediated mineral transformations in porous media. Frequency-domain induced polarization is a minimally invasive manner to measure the complex conductivity of a material over a broad range of frequencies. The real component of complex conductivity is associated with electromigration of the charge carriers, and the imaginary component represents reversible energy storage of charge carriers at polarization length scales. Quantitative relationship between frequency-domain induced polarization responses and bacterial growth and decay in porous media is analyzed in this study using a new developed model. We focus on the direct contribution of bacteria themselves to the complex conductivity in porous media in the absence of biomineralization. At low frequencies, the induced polarization of bacteria (α-polarization) is related to the properties of the electrical double layer surrounding the membrane surface of bacteria. Surface conductivity and α-polarization are due to the Stern layer of the counterions occurring in a brush of polymers coating the surface of the bacteria, and can be related to the cation exchange capacity of the bacteria. From the modeling results, at low frequencies (model with reactive transport modeling in which the evolution of bacterial populations are usually described by Monod kinetics, we show that the changes in imaginary conductivity with time can be used to determine bacterial growth kinetics parameters such as the growth and endogenous decay coefficient.

  14. Bacterial Growth on Photochemically Transformed Leachates from Aquatic and Terrestrial Primary Producers

    DEFF Research Database (Denmark)

    Anesio, A.M.; Nielsen, Jon Theil; Granéli, W.

    2000-01-01

    We measured bacterial growth on phototransformed dissolved organic matter (DOM) leached from eight different primary producers. Leachates (10 mg C liter-1) were exposed to artificial UVA + UVB radiation, or kept in darkness, for 20 h. DOM solutions were subsequently inoculated with lake water...

  15. Induction of gram-negative bacterial growth by neurochemical containing banana (Musa x paradisiaca) extracts.

    Science.gov (United States)

    Lyte, M

    1997-09-15

    Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.

  16. Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics

    Science.gov (United States)

    Greulich, Philip; Doležal, Jakub; Scott, Matthew; Evans, Martin R.; Allen, Rosalind J.

    2017-12-01

    Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-affinity antibiotics, our model predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times after the antibiotic dose has ended. These predictions are experimentally testable and may be of clinical significance.

  17. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, R. [Fermilab; Adamson, P. [Fermilab; Burov, A. [Fermilab; Kourbanis, I. [Fermilab

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  18. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    Science.gov (United States)

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  19. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    Science.gov (United States)

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  20. Larval developmental rate, metabolic rate and future growth performance in Atlantic salmon

    DEFF Research Database (Denmark)

    Serrano, Jonathan Vaz; Åberg, Madelene; Gjoen, Hans Magnus

    2009-01-01

    , quantified as time to first feeding, and growth in later stages was demonstrated in Atlantic salmon (Salmo salar L.). The observed relationship between future growth and larval developmental rate suggests that sorting larvae by time to first feeding can be a potential tool to optimize feeding strategies...... and growth in commercial rearing of Atlantic salmon. Furthermore, the link between larval standard metabolic rate and developmental rate and future growth is discussed in the present study....

  1. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  2. Atropine and glycopyrrolate do not support bacterial growth-safety and economic considerations.

    Science.gov (United States)

    Ittzes, Balazs; Weiling, Zsolt; Batai, Istvan Zoard; Kerenyi, Monika; Batai, Istvan

    2016-12-01

    Evaluation of bacterial growth in atropine and glycopyrrolate. Laboratory investigation. Standard microbiological methods were used to evaluate the impact of atropine and glycopyrrolate on the growth of Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Bacterial count was checked at 0, 1, 2, 3, 4, 6, and 24 hours. Atropine or glycopyrrolate did not support the growth of the above bacteria at any examined time at room temperature. Glycopyrrolate killed all of the examined strains (P < .05), whereas in atropine, only the clinical isolates of Staphylococcus and Acinetobacter were killed (P < .05). Drawing up atropine or glycopyrrolate at the beginning of the operating list and use within 24 hours if needed are a safe practice and do not pose infection hazard. We can also reduce hospital costs if we do not throw away these unused syringes following each case. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth.

    Science.gov (United States)

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T; Artaev, Viatcheslav B; Jiang, Liying; Ilag, Leopold L; Zubarev, Roman A

    2015-09-28

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms.

  4. Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

    Directory of Open Access Journals (Sweden)

    Yong Seong Lee

    2017-12-01

    Full Text Available This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F, a bacterial grass culture (G, a 1/3 volume of G plus 2/3 F (GF, and F plus a synthetic fungicide (FSf were applied to tomato leaves and roots. The result showed that the severity of Alternariasolani and Botrytiscinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

  5. Do fish growth rates correlate with PCB body burdens?

    Science.gov (United States)

    Andrew L. Rypel; David R.. Bayne

    2010-01-01

    We evaluated whether growth rates of six fish species correlated with PCB concentrations in a moderately-to-heavily polluted freshwater ecosystem. Using a large dataset (n ¼ 984 individuals), and after accounting for growth effects related to fish age, habitat, sex, and lipids, growth correlated significantly, but positively with lipid-corrected PCB concentrations for...

  6. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    Science.gov (United States)

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  7. Re-assessing copepod growth using the Moult Rate method

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Keister, J. E.; Richardson, A. J.

    2014-01-01

    Estimating growth and production rates of mesozooplankton, and copepods in particular, is important in describing flows of material and energy though pelagic systems. Over the past 30 years, the Moult Rate (MR) method has been used to estimate juvenile copepod growth rates in ∼40 papers. Yet the MR......-moulting stage, e.g. copepodite stage 5 to adult. We performed experiments with Calanus pacificus to estimate growth of stage C5 using an alternative method. We found that the error size and sign varied between mass type (i.e. DW, C and N). Recommendations for practical future assessments of growth in copepods...

  8. GROWTH-RATES OF SHRUBS ON DIFFERENT SOILS IN TANZANIA

    NARCIS (Netherlands)

    PRINS, HHT; VANDERJEUGD, HP

    1992-01-01

    Because little is known of growth rates of shrubs in East Africa, the growth rates of Acalypha fructicosa, Gardenia jovis-tonantis, Justicia cordata, Maerua triphylla, and Ocimum suave were measured in Lake Manyara National Park, northern Tanzania. Branch diameter increments and branch length

  9. Growth rates of shrubs on different soils in Tanzania.

    NARCIS (Netherlands)

    Prins, H.H.T.; Jeugd, van der H.P.

    1992-01-01

    Because little is known of growth rates of shrubs in East Africa, the growth rates of Acalypha fructicosa, Gardenia jovis-tonantis, Justicia cordata, Maerua triphylla, and Ocimum suave were measured in Lake Manyara National Park, northern Tanzania. Branch diameter increments and branch length

  10. On the growth rate of the foliicolous lichen Strigula elegans

    NARCIS (Netherlands)

    Wilde-Duyfjes, de B.E.E.

    1967-01-01

    The diametral growth rate of the foliicolous lichen Strigula elegans (Fée) Müll. Arg., measured under natural conditions in the African tropical rainforest, has been established to amount to (0.7-)3-3-6(-8) mm annually. As compared to the diametral growth rate of lichens from temperate regions,

  11. Preliminary observation of genital secretions, growth rate and ...

    African Journals Online (AJOL)

    Cane rats are large terrestial rodents which have the potential to increase animal protein intake. There is paucity of information on the genital secretions and growth rate of caged cane rats. This study observed the genital secretions, growth rate, feeds, feeding and the behaviour of caged cane rats. When animals adjusted to ...

  12. Postnatal Growth Rates of Hummingbirds : Review and New Records

    NARCIS (Netherlands)

    Freymann, Bernd P.; Schuchmann, Karl-Ludwig

    2008-01-01

    We review the published information on postnatal growth rates of hummingbirds (13 species), and report previously unpublished records for nine additional trochilid species. The allometric relationship based on the log(10)-transformed data of K (logistic growth rate constant) and body mass has a

  13. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    OpenAIRE

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth...

  14. Connection between the growth rate distribution and the size dependent crystal growth

    Science.gov (United States)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  15. The effects of a low-intensity red laser on bacterial growth, filamentation and plasmid DNA

    International Nuclear Information System (INIS)

    Roos, C; Santos, J N; Guimarães, O R; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Exposure of nonphotosynthesizing microorganisms to light could increase cell division in cultures, a phenomenon denominated as biostimulation. However, data concerning the importance of the genetic characteristics of cells on this effect are as yet scarce. The aim of this work was to evaluate the effects of a low-intensity red laser on the growth, filamentation and plasmids in Escherichia coli cells proficient and deficient in DNA repair. E. coli cultures were exposed to a laser (658 nm, 10 mW, 1 and 8 J cm −2 ) to study bacterial growth and filamentation. Also, bacterial cultures hosting pBSK plasmids were exposed to the laser to study DNA topological forms from the electrophoretic profile in agarose gels. Data indicate the low-intensity red laser: (i) had no effect on the growth of E. coli wild type and exonuclease III deficient cells; (ii) induced bacterial filamentation, (iii) led to no alteration in the electrophoretic profile of plasmids from exonuclease III deficient cells, but plasmids from wild type cells were altered. A low-intensity red laser at the low fluences used in phototherapy has no effect on growth, but induces filamentation and alters the topological forms of plasmid DNA in E. coli cultures depending on the DNA repair mechanisms. (paper)

  16. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  17. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  18. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule

  19. Coal fly ash impairs airway antimicrobial peptides and increases bacterial growth.

    Science.gov (United States)

    Borcherding, Jennifer A; Chen, Haihan; Caraballo, Juan C; Baltrusaitis, Jonas; Pezzulo, Alejandro A; Zabner, Joseph; Grassian, Vicki H; Comellas, Alejandro P

    2013-01-01

    Air pollution is a risk factor for respiratory infections, and one of its main components is particulate matter (PM), which is comprised of a number of particles that contain iron, such as coal fly ash (CFA). Since free iron concentrations are extremely low in airway surface liquid (ASL), we hypothesize that CFA impairs antimicrobial peptides (AMP) function and can be a source of iron to bacteria. We tested this hypothesis in vivo by instilling mice with Pseudomonas aeruginosa (PA01) and CFA and determine the percentage of bacterial clearance. In addition, we tested bacterial clearance in cell culture by exposing primary human airway epithelial cells to PA01 and CFA and determining the AMP activity and bacterial growth in vitro. We report that CFA is a bioavailable source of iron for bacteria. We show that CFA interferes with bacterial clearance in vivo and in primary human airway epithelial cultures. Also, we demonstrate that CFA inhibits AMP activity in vitro, which we propose as a mechanism of our cell culture and in vivo results. Furthermore, PA01 uses CFA as an iron source with a direct correlation between CFA iron dissolution and bacterial growth. CFA concentrations used are very relevant to human daily exposures, thus posing a potential public health risk for susceptible subjects. Although CFA provides a source of bioavailable iron for bacteria, not all CFA particles have the same biological effects, and their propensity for iron dissolution is an important factor. CFA impairs lung innate immune mechanisms of bacterial clearance, specifically AMP activity. We expect that identifying the PM mechanisms of respiratory infections will translate into public health policies aimed at controlling, not only concentration of PM exposure, but physicochemical characteristics that will potentially cause respiratory infections in susceptible individuals and populations.

  20. Testing linear growth rate formulas of non-scale endogenous growth models

    NARCIS (Netherlands)

    Ziesemer, Thomas

    2017-01-01

    Endogenous growth theory has produced formulas for steady-state growth rates of income per capita which are linear in the growth rate of the population. Depending on the details of the models, slopes and intercepts are positive, zero or negative. Empirical tests have taken over the assumption of

  1. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon under different growth stages.

    Directory of Open Access Journals (Sweden)

    Wanilada Rungrassamee

    Full Text Available Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon, bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15, 1- (J1, 2- (J2, and 3-month-old (J3 juveniles using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases were obtained, which were categorized by barcode for PL15 (7,045 sequences, J1 (3,055 sequences, J2 (13,130 sequences and J3 (1,890 sequences. Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  2. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    Science.gov (United States)

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  3. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny.

    Science.gov (United States)

    Dossi, Fabio Cleisto Alda; da Silva, Edney Pereira; Cônsoli, Fernando Luis

    2014-11-01

    The infection density of symbionts is among the major parameters to understand their biological effects in host-endosymbionts interactions. Diaphorina citri harbors two bacteriome-associated bacterial endosymbionts (Candidatus Carsonella ruddii and Candidatus Profftella armatura), besides the intracellular reproductive parasite Wolbachia. In this study, the density dynamics of the three endosymbionts associated with the psyllid D. citri was investigated by real-time quantitative PCR (qPCR) at different developmental stages. Bacterial density was estimated by assessing the copy number of the 16S rRNA gene for Carsonella and Profftella, and of the ftsZ gene for Wolbachia. Analysis revealed a continuous growth of the symbionts during host development. Symbiont growth and rate curves were estimated by the Gompertz equation, which indicated a negative correlation between the degree of symbiont-host specialization and the time to achieve the maximum growth rate (t*). Carsonella densities were significantly lower than those of Profftella at all host developmental stages analyzed, even though they both displayed a similar trend. The growth rates of Wolbachia were similar to those of Carsonella, but Wolbachia was not as abundant. Adult males displayed higher symbiont densities than females. However, females showed a much more pronounced increase in symbiont density as they aged if compared to males, regardless of the incorporation of symbionts into female oocytes and egg laying. The increased density of endosymbionts in aged adults differs from the usual decrease observed during host aging in other insect-symbiont systems.

  4. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    Science.gov (United States)

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  5. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.; Hammes, F.; Kotzsch, S.; van Loosdrecht, M. C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach

  6. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    Science.gov (United States)

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  7. Crack growth rate of PWR piping

    International Nuclear Information System (INIS)

    Bethmont, M.; Doyen, J.J.; Lebey, J.

    1979-01-01

    The Aquitaine 1 program, carried out jointly by FRAMATOME and the CEA is intended to improve knowledge about cracking mechanisms in AISI 316 L austenitic stainless steel under conditions similar to those of the PWR environment (irradiation excluded). Experiments of fatigue crack growth are performed on piping elements, scale 1/4 of primary pipings, by means of internal hydraulic cyclic pressure. Interpretation of results requires a knowledge of the stress intensity factor Ksub(I) at the front of the crack. Results of a series of calculations of Ksub(I) obtained by different methods for defects of finite and infinite length (three dimensional calculations) are given in the paper. The following have been used: calculations by finite elements, calculations by weight function. Notches are machined on the test pipes, which are subjected to internal hydraulic pressure cycles, under cold conditions, to initiate a crack at the tip of the notch. They are then cycled at a frequency of 4 cycles/hour on on water demineralised loop at a temperature of 280 0 C, the pressure varying at each cycle between approximately 160 bars and 3 bars. After each test, a specimen containing the defect is taken from the pipe for micrographic analysis. For the first test the length of the longitudinal external defect is assumed infinite. The number of cycles carried out is 5880 cycles. Two defects are machined in the tube for the second test. The number of cycles carried out is N = 440. The tests are performed under hot conditions (T = 280 0 C). For the third test two defects are analysed under cold and hot conditions. The number of cycles carried out for the external defect is 7000 when hot and 90000 when cold. The number of cycles for the internal defect is 1650 when hot and 68000 when cold. In order to interpret the results, the data da/dN are plotted on a diagram versus ΔK. Comparisons are made between these results and the curves from laboratory tests

  8. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    2016-11-01

    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  9. Growth and development rates have different thermal responses.

    Science.gov (United States)

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  10. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  11. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages

    OpenAIRE

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another “organ” for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S r...

  12. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    Science.gov (United States)

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  13. [Growth rate and bone maturation in celiac disease (author's transl)].

    Science.gov (United States)

    Martínez Sopena, M J; Calvo Romero, M C; Bedate Calderón, P; Alonso Franch, M; Sánchez Villares, E

    1978-05-01

    The growth and bone maturation of 43 celiac patients were analyzed. A significant correlation between gluten intake and growth rate was found. The authors suggest this is a good parameter to advise the best moment to make the control biopsie and the provocation test.

  14. Growth rates of alien Oreochromis niloticus and indigenous ...

    African Journals Online (AJOL)

    Growth rates of indigenous Oreochromis mortimeri and alien Oreochromis niloticus from Lake Kariba were estimated from samples collected in 1997–2000, 2003–2005 and 2010–2011. Growth zones on scales and otoliths of O. niloticus and on the otoliths and opercula of O. mortimeri were deposited annually.

  15. Growth rates of important East African montane forest trees, with ...

    African Journals Online (AJOL)

    These trees showed growth rates at least twice as high as those of the primary species. Juniperus procera was found to be the fastest growing species in the cedar forest, underlining its success in forming dense stands after a fire. Only young Podocarpus latifolius showed a similar fast growth. Olea europaea ssp. cuspidata, ...

  16. Effects of KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets

    Directory of Open Access Journals (Sweden)

    Yuanliang Hu

    2014-08-01

    Full Text Available This research focused on the effects of different doses of Bacillus subtilis KN-42 on the growth performance, diarrhea incidence, faecal bacterial flora, and the relative number of Lactobacillus and Escherichia coli in faeces of weaned piglets to determine whether the strain can serve as a candidate antimicrobial growth promoter. A total of 360 piglets (initial body weight 7.14±0.63 kg weaned at 26±2 days of age were randomly allotted to 5 treatment groups (4 pens per treatment with 18 pigs per pen for a 28-day trial. Dietary treatments were basal diet without any antimicrobial (negative control; NC, basal diet supplemented with 120 mg/kg feed of neomycin sulfate (positive control; PC and basal diet supplemented with 2×109 (L, 4×109 (M and 20×109 (H CFU/kg feed of B. subtilis KN-42. During the overall period, average daily gain and feed efficiency of piglets were higher in groups PC, M, and H than those in group NC (p<0.05, and all probiotics and antibiotics groups had a lower diarrhea index than group NC (p<0.05. The 16S rDNA gene-based methods were used to analyze faecal bacterial flora on day 28 of experiment. The result of denaturing gradient gel electrophoresis analysis showed that supplementation of B. subtilis KN-42 to the diet changed the bacterial communities, with a higher bacterial diversity and band number in group M than in the other four groups. Real-time polymerase chain reaction analysis showed that the relative number of Lactobacillus were higher in groups PC and H than in group NC (p<0.05, and the supplemented B. subtilis KN-42 to the diet also reduced the relative number of E. coli (p<0.05. These results suggest that dietary addition of B. subtilis KN-42 can improve the growth performance and gastrointestinal health of piglets.

  17. Seasonal variations in ectotherm growth rates: Quantifying growth as an intermittent non steady state compensatory process

    Science.gov (United States)

    Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.

    2011-01-01

    Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.

  18. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    Science.gov (United States)

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    Science.gov (United States)

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  20. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  1. Bacterial growth during the early phase of infection determines the severity of experimental Escherichia coli mastitis in dairy cows

    NARCIS (Netherlands)

    Kornalijnslijper, J.E.; Daemen, A.; Werven, van T.; Niewold, T.A.; Rutten, V.; Noordhuizen-Stassen, E.N.

    2004-01-01

    The aim of this study was to investigate the importance of bacterial growth for the severity of experimental Escherichia coli mastitis, indirectly expressed as the area under the curve of bacterial counts in milk over time. The association of pre-infusion somatic cell count and post-infusion influx

  2. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages.

    Science.gov (United States)

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another "organ" for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria , mainly family Enterobacteriaceae , was the most abundant group (accounting for more than 85%) in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L . vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.

  3. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei Larvae and Rearing Water across Different Growth Stages

    Directory of Open Access Journals (Sweden)

    Yanfen Zheng

    2017-07-01

    Full Text Available Bacterial communities are called another “organ” for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy and growth stages (i.e., zoea, mysis, and early postlarvae periods were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria, mainly family Enterobacteriaceae, was the most abundant group (accounting for more than 85% in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L. vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.

  4. Growth rates of breeder reactor fuel. Final report

    International Nuclear Information System (INIS)

    Ott, K.O.

    1979-01-01

    During the contract period, a consistent formalism for the definition of the growth rates (and thus the doubling time) of breeder reactor fuel has been developed. This formalism was then extended to symbiotic operation of breeder and converter reactors. Further, an estimation prescription for the growth rate has been developed which is based upon the breeding worth factors. The characteristics of this definition have been investigated, which led to an additional integral concept, the breeding bonus

  5. Protein thermodynamics can be predicted directly from biological growth rates.

    Directory of Open Access Journals (Sweden)

    Ross Corkrey

    Full Text Available Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and including the highest temperature so far observed for growth (122 °C. The results provide credible estimates of thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology. We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature dependence model. The model results provide strong support for a single highly-conserved reaction present in the last universal common ancestor (LUCA. This is remarkable in that it means that the growth rate dependence on temperature of unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model.

  6. Growth rate of YBCO-Ag superconducting single grains

    Science.gov (United States)

    Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.

    2017-12-01

    The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.

  7. Characteristics of bacterial and fungal growth in plastic bottled beverages under a consuming condition model.

    Science.gov (United States)

    Watanabe, Maiko; Ohnishi, Takahiro; Araki, Emiko; Kanda, Takashi; Tomita, Atsuko; Ozawa, Kazuhiro; Goto, Keiichi; Sugiyama, Kanji; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2014-01-01

    Microbial contamination in unfinished beverages can occur when drinking directly from the bottle. Various microorganisms, including foodborne pathogens, are able to grow in these beverages at room temperature or in a refrigerator. In this study, we elucidated the characteristics of microorganism growth in bottled beverages under consuming condition models. Furthermore, we provide insight into the safety of partially consumed bottled beverages with respect to food hygiene. We inoculated microorganisms, including foodborne pathogens, into various plastic bottled beverages and analysed the dynamic growth of microorganisms as well as bacterial toxin production in the beverages. Eight bottled beverage types were tested in this study, namely green tea, apple juice drink, tomato juice, carbonated drink, sport drink, coffee with milk, isotonic water and mineral water, and in these beverages several microorganism types were used: nine bacteria including three toxin producers, three yeasts, and five moulds. Following inoculation, the bottles were incubated at 35°C for 48 h for bacteria, 25°C for 48 h for yeasts, and 25°C for 28 days for moulds. During the incubation period, the number of bacteria and yeasts and visible changes in mould-growth were determined over time. Our results indicated that combinations of the beverage types and microorganism species correlated with the degree of growth. Regarding factors that affect the growth and toxin-productivity of microorganisms in beverages, it is speculated that the pH, static/shaking culture, temperature, additives, or ingredients, such as carbon dioxide or organic matter (especially of plant origin), may be important for microorganism growth in beverages. Our results suggest that various types of unfinished beverages have microorganism growth and can include food borne pathogens and bacterial toxins. Therefore, our results indicate that in terms of food hygiene it is necessary to consume beverages immediately after opening

  8. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    International Nuclear Information System (INIS)

    Epstein, A K; Hochbaum, A I; Kim, Philseok; Aizenberg, J

    2011-01-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  9. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    Science.gov (United States)

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  10. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    David A. Coil

    2016-03-01

    Full Text Available Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS. Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation. Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  11. Inhibition of bacterial growth by different mixtures of propofol and thiopentone

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2005-06-01

    Full Text Available Propofol is, as a result of its formulation, an ideal bacterial and yeast culture medium. An outbreak of sepsis in humans and an increase in wound infections in dogs has been ascribed to the use of propofol. It has been previously reported that a 1:1 mixture of propofol and thiopentone has bactericidal properties. This study was undertaken to determine if further serial mixtures of propofol and thiopentone maintained the bactericidal properties. Mixtures of 1:1 (solution A, 5:1 (solution B, 10:1 (solution C, 50:1 (solution D and 100:1 (solution E of 1 % propofol to 2.5 % thiopentone, 2.5 % thiopentone (solution T, 1 % propofol (solution P and saline (solution S were prepared and inoculated with between 105 and 106 colony-forming units of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. A sample was withdrawn from each solution at 0, 1, 6, 12, 48 and 120 hours after inoculation and a bacterial count was performed. This study showed that thiopentone and solution A behaved in similar fashion by inhibiting bacterial growth and was bactericidal after 48 hours. Solution B was not bactericidal against S. aureus and C. albicans. Propofol and solutions D and E all supported growth of all the organisms tested. These data indicate that mixtures of propofol and thiopentone at a ratio less than 1:1 do not maintain the bactericidal properties.

  12. Novel approach for the use of dairy industry wastes for bacterial growth media production.

    Science.gov (United States)

    Kasmi, Mariam; Elleuch, Lobna; Dahmeni, Ameni; Hamdi, Moktar; Trabelsi, Ismail; Snoussi, Mejdi

    2018-04-15

    This work proposes a novel approach for the reuse and the recovery of dairy wastes valuable components. Thermal coagulation was performed for dairy effluents and the main responsible fraction for the organic matter content (protein and fat) was separated. Dairy curds were prepared for the formulation of bacterial growth media. Protein, sugar, fat and fatty acids contents have been assessed. Samples treated at 100 °C exhibited marked improvement in terms of protein (25-50%) recovery compared to those treated at 80 °C. Fatty acid analysis revealed the presence of unsaturated fatty acids (mainly oleic acid) that are essential to promote Lactobacillus growth. Previously isolated and identified bacterial strains from dairy wastes (Lactobacillus paracasei, Lactobacillus plantarum, Lactococcus lactis and Lactobacillus brevis) were investigated for their ability to grow on the formulated media. All the tested lactic acid bacteria exhibited greater bacterial growth on the formulated media supplemented with glucose only or with both glucose and yeast extract compared to the control media. By reference to the commercial growth medium, the productivity ratio of the supplemented bactofugate (B) and decreaming (D) formulated media exceeded 0.6 for L. paracasei culture. Whereas, the productivity ratio of the supplemented B medium was greater than 1 compared to the control medium for all the tested strains. As for the supplemented D medium, its productivity ratio was greater than 1 compared to the control medium for both L. paracasei and L. plantarum strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  14. Effect of selection for relative growth rate and bodyweight of mice on rate, composition and efficiency of growth

    NARCIS (Netherlands)

    Bakker, H.

    1974-01-01

    To evaluate the effect of selection for parameters of a growth curve, four selection lines and a control line were started from one base population. In the selection lines is selected for a large and a small relative growth rate between 21 and 29 days (RGH and RGL) and for a large and

  15. On the growth rate of gallstones in the human gallbladder

    Science.gov (United States)

    Nudelman, I.

    1993-05-01

    The growth rate of a single symmetrically oval shaped gallbladder stone weighing 10.8 g was recorded over a period of six years before surgery and removal. The length of the stone was measured by ultrasonography and the growth rate was found to be linear with time, with a value of 0.4 mm/year. A smaller stone growing in the wall of the gallbladder was detected only three years before removal and grew at a rate of ˜ 1.33 mm/year. The morphology and metallic ion chemical composition of the large stone and of a randomly selected small stone weighing about 1.1 g, extracted from another patient, were analyzed and compared. It was found that the large stone contained besides calcium also lead, whereas the small stone contained mainly calcium. It is possible that the lead causes a difference in mechanism between the growth of a single large and growth of multiple small gallstones.

  16. Division-Based, Growth Rate Diversity in Bacteria

    Directory of Open Access Journals (Sweden)

    Ghislain Y. Gangwe Nana

    2018-05-01

    Full Text Available To investigate the nature and origins of growth rate diversity in bacteria, we grew Escherichia coli and Bacillus subtilis in liquid minimal media and, after different periods of 15N-labeling, analyzed and imaged isotope distributions in individual cells with Secondary Ion Mass Spectrometry. We find a striking inter- and intra-cellular diversity, even in steady state growth. This is consistent with the strand-dependent, hyperstructure-based hypothesis that a major function of the cell cycle is to generate coherent, growth rate diversity via the semi-conservative pattern of inheritance of strands of DNA and associated macromolecular assemblies. We also propose quantitative, general, measures of growth rate diversity for studies of cell physiology that include antibiotic resistance.

  17. Investigation of growth rate dispersion in lactose crystallisation by AFM

    Science.gov (United States)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2014-09-01

    α-Lactose monohydrate crystals have been reported to exhibit growth rate dispersion (GRD). Variation in surface dislocations has been suggested as the cause of GRD, but this has not been further investigated to date. In this study, growth rate dispersion and the change in morphology were investigated in situ and via bottle roller experiments. The surfaces of the (0 1 0) faces of crystals were examined with Atomic Force Microscopy. Smaller, slow growing crystals tend to have smaller (0 1 0) faces with narrow bases and displayed a single double spiral in the centre of the crystal with 2 nm high steps. Additional double spirals in other crystals resulted in faster growth rates. Large, fast growing crystals were observed to have larger (0 1 0) faces with fast growth in both the a and b directions (giving a broader crystal base) with macro steps parallel to the (c direction). The number and location of spirals or existence of macro steps appears to influence the crystal morphology, growth rates and growth rate dispersion in lactose crystals.

  18. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    Directory of Open Access Journals (Sweden)

    Sumera Yasmin

    Full Text Available The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB. A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm. Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1 and produced indole acetic acid (0.48-1.85 mg L-1 in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%, improved shoot length (31%, root length (41% and plant dry weight (60% as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice.

  19. Effect of different saccharides on growth, sporulation rate and d ...

    African Journals Online (AJOL)

    MFCS

    2012-05-17

    May 17, 2012 ... general, high sporulation rate was related with high growth rate and high viable cell count (>1.5 x 1012 cfu/ml). .... The sterile culture medium (180 ml) in a 1000 ml Erlenmeyer flask was ... The column temperature was set at 85°C. A series of ..... inactivation of certain sugar-metabolizing operons, such as lac ...

  20. The effect of size and competition on tree growth rate in old-growth coniferous forests

    Science.gov (United States)

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  1. Divergent biparietal diameter growth rates in twin pregnancies.

    Science.gov (United States)

    Houlton, M C

    1977-05-01

    Twenty-eight twin pregnancies were monitored by serial ultrasonic cephalometry from 30 or 31 weeks' gestation. The rates of growth of the individual twins as determined by biparietal diameters were similar in 11 cases (39%) and divergent in 17 (61%). When the rates of growth were divergent, the lesser rate was always below the mean for singleton pregnancies, and the incidence of small-for-gestational-age babies was 18 of 34 (53%). It was apparent that the greater the difference in biparietal diameters within the 2 weeks preceding delivery, the higher the risk of a small-for-gestation-age baby being delivered. No comment could be made on the growth rate prior to 28 weeks except that at diagnosis there was little or no difference in biparietal diameters.

  2. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yuan, Zhang [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ding, Hongyan [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian, Jiangsu Province 223003 (China); Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2017-06-01

    To improve the biological performance of titanium substrates, a bioactive multilayered structure of chitosan/gelatin pair, containing zinc ions, was constructed via a layer-by-layer self-assembly technique. The successful preparation of zinc ions incorporated multilayer films was demonstrated by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements, respectively. The biological behaviors of osteoblasts adhered to modified Ti substrates were investigated in vitro via cytoskeleton observation, cell viability measurement, and alkaline phosphatase activity assay. The cytocompatibility evaluation verified that the present system was capable of promoting the growth of osteoblasts. In addition, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria were used to evaluate antibacterial property of modified Ti substrates. Bacterial adhesion and viability assay confirmed that Zn-loaded multilayer films were able to inhibit the adhesion and growth of bacteria. The approach presented here affords an alternative to reduce bacterial infection and promote osteoblast growth for titanium-based implants. - Highlights: • Polyelectrolyte multilayer films containing Zn ions were fabricated on Ti substrate. • Modified Ti substrate stimulated the biological responses of osteoblast. • Antibacterial property of Ti substrate was significantly improved. • The resulting material thus has potential application in orthopedic field.

  3. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    Science.gov (United States)

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Growth rate correlates negatively with protein turnover in Arabidopsis accessions.

    Science.gov (United States)

    Ishihara, Hirofumi; Moraes, Thiago Alexandre; Pyl, Eva-Theresa; Schulze, Waltraud X; Obata, Toshihiro; Scheffel, André; Fernie, Alisdair R; Sulpice, Ronan; Stitt, Mark

    2017-08-01

    Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO 2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day -1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Addition of selenium nanoparticles to electrospun silk scaffolds improves mammalian cell activity while reducing bacterial growth

    Directory of Open Access Journals (Sweden)

    Stanley Chung

    2016-07-01

    Full Text Available Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas compared to non-electrospun equivalents. However, purified silk promotes microbial growth. In contrast, selenium nanoparticles have excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics.

  6. Growth rate in the dynamical dark energy models

    International Nuclear Information System (INIS)

    Avsajanishvili, Olga; Arkhipova, Natalia A.; Samushia, Lado; Kahniashvili, Tina

    2014-01-01

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter α that describes the steepness of the scalar field potential. (orig.)

  7. Growth rate in the dynamical dark energy models.

    Science.gov (United States)

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  8. Influence of corruption on economic growth rate and foreign investment

    Science.gov (United States)

    Podobnik, Boris; Shao, Jia; Njavro, Djuro; Ivanov, Plamen Ch.; Stanley, H. E.

    2008-06-01

    We analyze the dependence of the Gross Domestic Product ( GDP) per capita growth rates on changes in the Corruption Perceptions Index ( CPI). For the period 1999 2004 for all countries in the world, we find on average that an increase of CPI by one unit leads to an increase of the annual GDP per capita growth rate by 1.7%. By regressing only the European countries with transition economies, we find that an increase of CPI by one unit generates an increase of the annual GDP per capita growth rate by 2.4%. We also analyze the relation between foreign direct investments received by different countries and CPI, and we find a statistically significant power-law functional dependence between foreign direct investment per capita and the country corruption level measured by the CPI. We introduce a new measure to quantify the relative corruption between countries based on their respective wealth as measured by GDP per capita.

  9. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    Science.gov (United States)

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Zinc-Triggered Hydrogelation of Self-assembled Small Molecules to Inhibit Bacterial Growth

    Science.gov (United States)

    Xu, Chao; Cai, Yanbin; Ren, Chunhua; Gao, Jie; Hao, Jihui

    2015-01-01

    There is a significant need to develop antibacterial materials that could be applied locally and directly to the places surrounded by large amount of bacteria, in order to address the problems of bacterial antibiotic-resistance or irreversible biofilm formation. Hydrogels are thought to be suitable candidates due to their versatile applications in biomedical field. Among them, small molecular hydrogels have been paid lots of attention because they are easy to design and fabricate and often sensitive to external stimuli. Meanwhile, the antibacterial activity of metal ions are attracting more and more attention because resistance to them are not yet found within bacteria. We therefore designed the zinc ion binding peptide of Nap-GFFYGGGHGRGD, who can self-assemble into hydrogels after binds Zn2+ and inhibit the growth of bacteria due to the excellent antibacterial activity of Zn2+. Upon the addition of zinc ions, solutions containing Nap-GFFYGGGHGRGD transformed into supramolecular hydrogels composed of network of long nano-fibers. Bacterial tests revealed an antibacterial effect of the zinc triggered hydrogels on E. coli. The studied small molecular hydrogel shows great potential in locally addressing bacterial infections.

  11. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    Science.gov (United States)

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  12. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  13. Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata?

    NARCIS (Netherlands)

    Bak, R.P.M.; Nieuwland, G.; Meesters, H.W.G.

    2009-01-01

    Linear extension of branches in the same Acropora palmata (Lamarck, 1816) population in Curaçao was measured, employing exactly the same methods, in 1971-1973 and in 2002-2004, and the resulting coral growth rates are compared. Linear growth shows the same pattern over seasons in both periods with

  14. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    Science.gov (United States)

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Orbit width scaling of TAE instability growth rate

    International Nuclear Information System (INIS)

    Wong, H.V.; Berk, H.L.; Breizman, B.N.

    1995-07-01

    The growth rate of Toroidal Alfven Eigenmodes (TAE) driven unstable by resonant coupling of energetic charged particles is evaluated in the ballooning limit over a wide range of parameters. All damping effects are ignored. Variations in orbit width, aspect ratio, and the ratio of alfven velocity to energetic particle birth velocity, are explored. The relative contribution of passing and trapped particles, and finite Larmor radius effects, are also examined. The phase space location of resonant particles with interact strongly with the modes is described. The accuracy of the analytic results with respect to growth rate magnitude and parametric dependence is investigated by comparison with numerical results

  16. Stainless steels: general considerations and rates of crack growth

    International Nuclear Information System (INIS)

    Chator, T.

    1992-05-01

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  17. Orbit width scaling of TAE instability growth rate

    International Nuclear Information System (INIS)

    Wong, H.V.; Berk, H.L.; Breizman, B.N.

    1995-01-01

    The growth rate of toroidal Alfven eigenmodes (TAEs) driven unstable by resonant coupling of energetic charged particles is evaluated in the 'ballooning' limit over a wide range of parameters. All damping effects are ignored. Variations in orbit width, aspect ratio and the ratio of Alfven velocity to energetic particle 'birth' velocity are explored. The relative contribution of passing and trapped particles, and finite Larmor radius effects, are also examined. The phase space location of resonant particles that interact strongly with the modes is described. The accuracy of the analytic results with respect to growth rate magnitude and parametric dependence is investigated by comparison with numerical results. (author). 16 refs, 8 figs

  18. Application of a microcomputer-based system to control and monitor bacterial growth.

    Science.gov (United States)

    Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R

    1984-02-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.

  19. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells

    International Nuclear Information System (INIS)

    Umehara, Senkei; Hattori, Akihiro; Inoue, Ippei; Yasuda, Kenji

    2007-01-01

    Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells

  20. Exchange Rate Fluctuation and the Nigeria Economic Growth

    Directory of Open Access Journals (Sweden)

    Lawal Adedoyin Isola

    2016-11-01

    Full Text Available The aim of this study is to investigate the impact of exchange rate fluctuation on economic growth in Nigeria within the context of four profound theories: purchasing power parity; monetary model of exchange rates; the portfolio balance approach; and the optimal currency area theory. Data was collected from the CBN statistical bulletin in Nigeria from 2003– 2013and the Autoregressive Distributed Lag (ARDL model was employed to estimate the model. In the model, real GDP (RGDP was used as the proxy for economic growth while Inflation rate (IF, Exchange rate (EXC, Interest rate (INT and Money Supply(M2 as proxies for other macroeconomic variables. The empirical results show that exchange rate fluctuation has no effect on economic growth in the long run though a short run relationship exist between the two. Based on these findings, this paper recommends that the Central bank for policy purposes should ensure that stern foreign exchange control policies are put in place in order to help in appropriate determination of the value of the exchange rate. This will in the long run help to strengthen the value of the Naira.

  1. Assessment of Rice Associated Bacterial Ability to Enhance Rice Seed Germination and Rice Growth Promotion

    Directory of Open Access Journals (Sweden)

    R. Gholamalizadeh

    2017-08-01

    Full Text Available ABSTRACT The application of beneficial bacteria has recently been used for sustainable agriculture. In current research, 71 bacterial isolates were obtained from rice plant and the rhizosphere soil of different paddy fields in Guilan province, Iran. After primitive investigation, 40 bacteria with typical predominant characteristics were selected. By PCR-RFLP of their 16S r-DNA gene, 8 Operational Taxonomic Units (OTUs totally consisted of 33 isolates were obtained. From all of them, 8 isolates were selected for rice seed germination experiment, then, effective isolates were used for pot experiment to evaluate their ability for promoting rice growth. All of them were able to increase rice growth and yield, but in different potential. These tested isolates were identified as Alcaligenes faecalis (DEp8, O1R4, Pantoea ananatis (AEn1, Bacillus vietnamensis (MR5, Bacillus idriensis (MR2 and Stenotrophomonas maltophilia by partial sequencing of their 16S r-DNA gene. Among them, AEn1 and MR5 produced indole-3- acetic acid (IAA in larger amounts than the other isolates and the isolates AEn1 and O1R4 were able to solubilize phosphate in higher amounts. According to the results obtained, it can be concluded that AEn1, O1R4 and MR5 can be considered as bacterial inoculants to use as alternatives for chemical fertilizers.

  2. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds.

    Science.gov (United States)

    Cornelison, Christopher T; Gabriel, Kyle T; Barlament, Courtney; Crow, Sidney A

    2014-02-01

    The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease.

  3. Hatching rate and growth rate of Nothobranchius guentheri fertilized eggs after space flight

    International Nuclear Information System (INIS)

    Guo Mingzhong; Zheng Leyun; Lin Guangji; Zhong Jianxing; Yang Huosheng; Zheng Yangfu

    2012-01-01

    Hatching, abnormal, growth and survival rate of the fertilized eggs of Nothobranchius guentheri were carried by Shenzhou 7 spacecraft were studied. The results indicated that the hatching and abnormal rate were no significant difference between the spaceflight group (99.3% and 16.8%) and ground group (97.2% and 10.4%); but the growth rate of male fish from spaceflight group was significant higher (0.094 g/d) than that of ground group (0.059 g/d), leading to the significant bigger of the male fish from spaceflight group. The survival rate of spaceflight group (66.7%) was higher than the ground group (47.9%). It was concluded that there was a higher growth and survival rate of Nothobranchius guentheri fertilized eggs after space flight. (authors)

  4. 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Michael T., E-mail: michael.montgomery@nrl.navy.mil [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Coffin, Richard B., E-mail: richard.coffin@nrl.navy.mil [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Boyd, Thomas J., E-mail: thomas.boyd@nrl.navy.mil [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Smith, Joseph P., E-mail: joseph.smith@nrl.navy.mil [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Walker, Shelby E., E-mail: Shelby.Walker@noaa.gov [Naval Research Laboratory, Marine Biogeochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375 (United States); Osburn, Christopher L., E-mail: chris_osburn@ncsu.edu [Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-12-15

    The nitrogenous energetic constituent, 2,4,6-Trinitrotoluene (TNT), is widely reported to be resistant to bacterial mineralization (conversion to CO{sub 2}); however, these studies primarily involve bacterial isolates from freshwater where bacterial production is typically limited by phosphorus. This study involved six surveys of coastal waters adjacent to three biome types: temperate broadleaf, northern coniferous, and tropical. Capacity to catabolize and mineralize TNT ring carbon to CO{sub 2} was a common feature of natural sediment assemblages from these coastal environments (ranging to 270+/-38 {mu}g C kg{sup -1} d{sup -1}). More importantly, these mineralization rates comprised a significant proportion of total heterotrophic production. The finding that most natural assemblages surveyed from these ecosystems can mineralize TNT ring carbon to CO{sub 2} is consistent with recent reports that assemblage components can incorporate TNT ring carbon into bacterial biomass. These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments. - Highlights: > TNT mineralization is a common feature of natural bacterial assemblages in coastal sediments. > TNT mineralization rates comprised a significant proportion of total heterotrophic production. > These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments. - The capacity to mineralize TNT ring carbon to CO{sub 2} is a common feature of natural bacterial assemblages in coastal sediment.

  5. 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments

    International Nuclear Information System (INIS)

    Montgomery, Michael T.; Coffin, Richard B.; Boyd, Thomas J.; Smith, Joseph P.; Walker, Shelby E.; Osburn, Christopher L.

    2011-01-01

    The nitrogenous energetic constituent, 2,4,6-Trinitrotoluene (TNT), is widely reported to be resistant to bacterial mineralization (conversion to CO 2 ); however, these studies primarily involve bacterial isolates from freshwater where bacterial production is typically limited by phosphorus. This study involved six surveys of coastal waters adjacent to three biome types: temperate broadleaf, northern coniferous, and tropical. Capacity to catabolize and mineralize TNT ring carbon to CO 2 was a common feature of natural sediment assemblages from these coastal environments (ranging to 270+/-38 μg C kg -1 d -1 ). More importantly, these mineralization rates comprised a significant proportion of total heterotrophic production. The finding that most natural assemblages surveyed from these ecosystems can mineralize TNT ring carbon to CO 2 is consistent with recent reports that assemblage components can incorporate TNT ring carbon into bacterial biomass. These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments. - Highlights: → TNT mineralization is a common feature of natural bacterial assemblages in coastal sediments. → TNT mineralization rates comprised a significant proportion of total heterotrophic production. → These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments. - The capacity to mineralize TNT ring carbon to CO 2 is a common feature of natural bacterial assemblages in coastal sediment.

  6. Investigation of the Rate of the Bacterial Contamination of the Ice Factories in Bandar Abbas, Iran

    Directory of Open Access Journals (Sweden)

    Nahid Moradi

    2016-09-01

    Full Text Available Background: Pollution of drinking water and ice is one of the most serious ways of water borne diseases spread. The purpose of this study was to investigate the bacterial contamination of the ice produced by ice factories in Bandar Abbas. Methods: In this descriptive ,cross-sectional study samples were collected from seven ice factories in Bandar Abbas. Sampling was done by standard method. Amount of the Contamination of ice and water to coliforms was investigated by the Multiple Tube method to determine the MPN, isolate bacteria and identify the microorganisms using conventional bacteriological techniques and counting the total count of bacteria by the Plate Count method on a nutrient agar medium. The data was analyzed by the SPSS software. Results: In this study, a total of 84 samples were investigated. Gram-positive bacteria (65.5% and gram-negative bacteria(34.5% were separated from each other. The MPN rate in samples and total count of bacteria were 0->1100 and 2×101×104 CFU/mL, respectively. Conclusion: The results suggest that necessary precautions be taken by environmental health specialists and other public health authorities in production, transportation and distribution of the ice blocks to reduce the rate of bacterial contamination.

  7. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    Science.gov (United States)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  8. Effect of feeding frequency and feeding rate on growth performance ...

    African Journals Online (AJOL)

    Fish fed at higher feeding rates accumulated significantly more lipid within the body and had associated decreases in moisture, protein, and ash content, but carcass composition was unaffected by feeding frequency. Juvenile pompano show better growth performance when fed 10% BW/day 3 and 6 times a day.

  9. Growth Rate and Health Status of Weaned Rabbits Fed Ensiled ...

    African Journals Online (AJOL)

    In a 6 week feeding experiment, twenty five New Zealand white breed of weaned rabbits, with an average age of 8-10 weeks were used to assess the effect of ensiled water hyacinth (WH) with different additives on growth rate and blood parameters of the animals. The animals were randomly allotted to five dietary groups, ...

  10. Does raking basal duff affect tree growth rates or mortality?

    Science.gov (United States)

    Erin Noonan-Wright; Sharon M. Hood; Danny R. Cluck

    2010-01-01

    Mortality and reduced growth rates due to raking accumulated basal duff were evaluated for old, large-diameter ponderosa and Jeffrey pine trees on the Lassen National Forest, California. No fire treatments were included to isolate the effect of raking from fire. Trees were monitored annually for 5 years after the raking treatment for mortality and then cored to measure...

  11. Determining the nucleation rate from the dimer growth probability

    NARCIS (Netherlands)

    Ter Horst, J.H.; Kashchiev, D.

    2005-01-01

    A new method is proposed for the determination of the stationary one-component nucleation rate J with the help of data for the growth probability P2 of a dimer which is the smallest cluster of the nucleating phase. The method is based on an exact formula relating J and P2, and is readily applicable

  12. Sales Growth Rate Forecasting Using Improved PSO and SVM

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2014-01-01

    Full Text Available Accurate forecast of the sales growth rate plays a decisive role in determining the amount of advertising investment. In this study, we present a preclassification and later regression based method optimized by improved particle swarm optimization (IPSO for sales growth rate forecasting. We use support vector machine (SVM as a classification model. The nonlinear relationship in sales growth rate forecasting is efficiently represented by SVM, while IPSO is optimizing the training parameters of SVM. IPSO addresses issues of traditional PSO, such as relapsing into local optimum, slow convergence speed, and low convergence precision in the later evolution. We performed two experiments; firstly, three classic benchmark functions are used to verify the validity of the IPSO algorithm against PSO. Having shown IPSO outperform PSO in convergence speed, precision, and escaping local optima, in our second experiment, we apply IPSO to the proposed model. The sales growth rate forecasting cases are used to testify the forecasting performance of proposed model. According to the requirements and industry knowledge, the sample data was first classified to obtain types of the test samples. Next, the values of the test samples were forecast using the SVM regression algorithm. The experimental results demonstrate that the proposed model has good forecasting performance.

  13. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abir [ORNL; Brooks, Scott C [ORNL; Miller, Carrie L [ORNL; Mosher, Jennifer J [ORNL; Yin, Xiangping Lisa [ORNL; Drake, Meghan M [ORNL

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg:SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24h before sampling (late addition) resulted in {approx}2x greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to {approx}3x more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  14. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abir [ORNL; Brooks, Scott C [ORNL; Miller, Carrie L [ORNL; Mosher, Jennifer J [ORNL; Yin, Xiangping Lisa [ORNL; Drake, Meghan M [ORNL

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate fumarate media. This NOM did not affect MMHg production even under very low Hg: SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg NOM to growing cultures 24 h before sampling (late addition) resulted in ~2 greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid-and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to ~3 more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  15. Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica †

    OpenAIRE

    Grossmann, Sönnke; Dieckmann, Gerhard S.

    1994-01-01

    Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 × 108 to 3 × 108 liter-1, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low conce...

  16. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    Directory of Open Access Journals (Sweden)

    Xiaolu Liu

    Full Text Available Assimilable organic carbon (AOC is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM. The initial AOC concentration was 168 μg.L(-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5 cells.mL(-1 to 2.6 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.6 mg.L(-1 to 4.8 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.3 mg.L(-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  17. Exchange-Driven Growth with Birth Rate Less Than Death

    International Nuclear Information System (INIS)

    Lin Zhenquan; Ye Gaoxiang; Ke Jianhong

    2005-01-01

    We further study the kinetic behavior of the exchange-driven growth with birth and death for the case of birth rate kernel being less than that of death based on the mean-field theory. The symmetric exchange rate kernel is K(k,j) = K'(k,j) = Ikj υ , and the birth and death rates are proportional to the aggregate's size. The long time asymptotic behavior of the aggregate size distribution a k (t) is found to obey a much unusual scaling law with an exponentially growing scaling function Φ(x) = exp (x).

  18. Effect of Organic and Biological Fertilizers on Growth and Yield of Tomatoes (Lycopersicon esculentum Mill. and Bacterial Colonization

    Directory of Open Access Journals (Sweden)

    H. Makarian

    2016-02-01

    Full Text Available Introduction: In recent decades, excessive use of chemical fertilizers causes environmental problems such as water resource pollution and decrease in soil fertility. Organic matters are excellent sources of plant-available nutrients and their addition to soil could maintain high microbial populations and activities. In crop studies, Prabha et al. (2007 reported that there was excellent plant growth as well as yield in garlic plants that received vermicompost as nutrient in the field (28. Recent studies confirmed that, a number of bacterial species mostly associated with the plant rhizosphere, are found to be beneficial for plant growth, yield and crop quality. Therefore, the objective of this study is to investigate the growth promoting effects of organic and bio-fertilizers on tomato growth and yield. Materials and Methods: A factorial experiment in randomized complete block design with three replications was conducted at the College of Agricultural, University of Shahrood in 2011. Geographically, the site is located in Bastam (36° 25’E, 54° 58’N, 1349 m a.s.l..The climate of this region is semi-arid. Treatments included three levels of organic fertilizers: vermicompost (1300 kgha-1, cow manure (3350 kgha-1, and control, biological fertilizer in four levels (Pseudomonas putyda, Pseudomonas fluorescens, Azotobacter chrococcum and control. The bacterial suspension for each species was applied at a rate of 3 liters per hectare. Metribuzin herbicide (wettable 80% powder was used at a rate of 1000 gr. ha-1. Petopride No. 2' variety of tomato (Lycopersicon esculentum Mill. was used in the present experiment. At the time of harvesting, the plant characteristics namely lengths and diameter of stem, number and weight of fruit, weight of stem and leaf were also registered. Statistical analyses of data were performed with statistical software Mstatc. Significant differences between means refer to the probability level of 0.05 by LSD test. Results

  19. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    Science.gov (United States)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  20. Inferring time derivatives including cell growth rates using Gaussian processes

    Science.gov (United States)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  1. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  2. Effect of L-glucose and D-tagatose on bacterial growth in media and a cooked cured ham product.

    Science.gov (United States)

    Bautista, D A; Pegg, R B; Shand, P J

    2000-01-01

    Cured meats such as ham can undergo premature spoilage on account of the proliferation of lactic acid bacteria. This spoilage is generally evident from a milkiness in the purge of vacuum-packaged sliced ham. Although cured, most hams are at more risk of spoilage than other types of processed meat products because they contain considerably higher concentrations of carbohydrates, approximately 2 to 7%, usually in the form of dextrose and corn syrup solids. Unfortunately, the meat industry is restricted with respect to the choice of preservatives and bactericidal agents. An alternative approach from these chemical compounds would be to use novel carbohydrate sources that are unrecognizable to spoilage bacteria. L-Glucose and D-tagatose are two such potential sugars, and in a series of tests in vitro, the ability of bacteria to utilize each as an energy source was compared to that of D-glucose. Results showed that both L-glucose and D-tagatose are not easily catabolized by a variety of lactic bacteria and not at all by pathogenic bacteria such as Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Bacillus cereus, and Yersinia enterocolitica. In a separate study, D-glucose, L-glucose, and D-tagatose were added to a chopped and formed ham formulation and the rate of bacterial growth was monitored. Analysis of data by a general linear model revealed that the growth rates of total aerobic and lactic acid bacteria were significantly (P D-tagatose than those containing L- or D-glucose. Levels of Enterobacteriaceae were initially low and these bacteria did not significantly (P D-tagatose at 10 degrees C was extended by 7 to 10 days. These results indicate that D-tagatose could deter the growth of microorganisms and inhibit the rate of spoilage in a meat product containing carbohydrates.

  3. Effect of neutron irradiation on hatching rate of eggs and growth rate of chicken

    International Nuclear Information System (INIS)

    Liu Yubin; Zhao Jide; Liu Shengdian; Xy Xiuwei

    1995-01-01

    It was proved through 3 years of experiments and productions that after the eggs of AA meat chickens being irradiated by 14 MeV fast neutron, the hatching rate and the survival rate as well the weight of commercial chickens increased greatly. In addition it is found that the optimum neutron fluence for hatching and growth rate is 6.2 x 10 5 n·cm -2

  4. The evaluation system of city's smart growth success rates

    Science.gov (United States)

    Huang, Yifan

    2018-04-01

    "Smart growth" is to pursue the best integrated perform+-ance of the Economically prosperous, socially Equitable, and Environmentally Sustainable(3E). Firstly, we establish the smart growth evaluation system(SGI) and the sustainable development evaluation system(SDI). Based on the ten principles and the definition of three E's of sustainability. B y using the Z-score method and the principal component analysis method, we evaluate and quantify indexes synthetically. Then we define the success of smart growth as the ratio of the SDI to the SGI composite score growth rate (SSG). After that we select two cities — Canberra and Durres as the objects of our model in view of the model. Based on the development plans and key data of these two cities, we can figure out the success of smart growth. And according to our model, we adjust some of the growth indicators for both cities. Then observe the results before and after adjustment, and finally verify the accuracy of the model.

  5. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae

    Directory of Open Access Journals (Sweden)

    Irene de Araújo Barros

    2010-12-01

    Full Text Available Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2% and 346 (64.2% were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. (B. cereus, B. megaterium, B. pumilus and B. subtilis, Paenibacillus sp., Amphibacillus sp., Gracilibacillus sp., Micrococcus sp. and Stenotrophomonas spp. (S. maltophilia and S. nitroreducens. B. pumilus was the most frequently isolated bacterial species. Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana, which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  6. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    Science.gov (United States)

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  7. Growth rate distribution in the forming lateral root of arabidopsis.

    Science.gov (United States)

    Szymanowska-Pułka, Joanna; Lipowczan, Marcin

    2014-10-01

    Microscopic observations of lateral roots (LRs) in Arabidopsis thaliana reveal that the cross-sectional shape of the organ changes from its basal to its apical region. The founder cells for LRs are elongated along the parent root axis, and thus from the site of initiation the base of LRs resemble an ellipse. The circumference of the apical part of LRs is usually a circle. The objective of this study was to analyse the characteristics of changes in the growth field of LRs possessing various shapes in their basal regions. The LRs of the wild type (Col-0) and two transgenic arabidopsis lines were analysed. On the basis of measurements of the long and short diameters (DL and DS, respectively) of the ellipse-like figure representing the bases of particular LRs, their asymmetry ratios (DL/DS) were determined. Possible differences between accessions were analysed by applying statistical methods. No significant differences between accessions were detected. Comparisons were therefore made of the maximal, minimal and mean value of the ratio of all the LRs analysed. Taking into consideration the lack of circular symmetry of the basal part, rates of growth were determined at selected points on the surface of LRs by the application of the growth tensor method, a mathematical tool previously applied only to describe organs with rotational symmetry. Maps showing the distribution of growth rates were developed for surfaces of LRs of various asymmetry ratios. The maps of growth rates on the surfaces of LRs having various shapes of the basal part show differences in both the geometry and the manner of growth, thus indicating that the manner of growth of the LR primordium is correlated to its shape. This is the first report of a description of growth of an asymmetric plant organ using the growth tensor method. The mathematical modelling adopted in the study provides new insights into plant organ formation and shape. © The Author 2014. Published by Oxford University Press on

  8. Last Five Years Pakistan Economic Growth Rate GDP And Its Comparison With China India And Bangladesh

    Directory of Open Access Journals (Sweden)

    Abdul Rehman

    2015-01-01

    Full Text Available Abstract This paper formulates and reviews Pakistans last five years economic growth rate and its comparison with the growth rate of China India and Bangladesh. As growth rate the amount of increment of a specific variable has gained within a specific period of time and context. In fact economic growth rate provides general direction and magnitude of growth for overall economy.

  9. Breast meat quality of chickens with divergent growth rates and its relation to growth curve parameters

    Directory of Open Access Journals (Sweden)

    P. C. Muth

    2017-11-01

    Full Text Available The effects of the increase of body weight of contemporary broilers during growth on functional meat quality and color characteristics of the chicken breast muscle are controversially debated. Therefore, male chickens (n = 264 of a fast-growing commercial broiler (Ross 308 and two slow-growing experimental meat-type chicken lines were compared at equal age and at similar body weight in order to investigate the effect of growth rate on selected functional breast meat traits and meat color. Additionally, the breast meat characteristics of birds with different growth profiles were compared within lines. When the body weight of commercial broilers reached about 40 to 60 % of their growth potential, they exhibited particularly high ultimate pH values compared with slow-growing lines. The ability of the meat of fast-growing broilers to retain water during cooking was impaired (5 to 16 percentage points increased cooking loss compared to slow-growing lines, which, in contrast to pH, was only marginally affected by body weight and/or age at slaughter. No unfavorable correlations of breast meat quality traits with the growth profile, represented by growth curve parameters derived from the Gompertz–Laird equation, were detected within any of the investigated chicken lines. It is noteworthy that the associations of ultimate pH and cooking loss with maximum growth speed indicate a non-linear relationship. Thus, some of the functional characteristics of breast meat of the fast-growing broiler resembled the white-striping defect described for poultry meat, but the hypothesis that selection on increased growth rates is detrimental for meat quality per se could not be confirmed. In fact, an elevated growth potential in particular, i.e., body weight at maturity, could have some beneficial effects for the water-holding capacity of breast meat, regardless of the genotypic growth rate.

  10. Comparing Basal Area Growth Rates in Repeated Inventories: Simpson's Paradox in Forestry

    Science.gov (United States)

    Charles E. Thomas; Bernard R. Parresol

    1989-01-01

    Recent analyses of radial growth rates in southern commercial forests have shown that current rates are lower than past rates when compared diameter class by diameter class. These results have been interpreted as an indication that the growth rate of the forest is declining. In this paper, growth rates of forest populations in Alabama are studied. Basal area growth (a...

  11. Ergodicity, hidden bias and the growth rate gain

    Science.gov (United States)

    Rochman, Nash D.; Popescu, Dan M.; Sun, Sean X.

    2018-05-01

    Many single-cell observables are highly heterogeneous. A part of this heterogeneity stems from age-related phenomena: the fact that there is a nonuniform distribution of cells with different ages. This has led to a renewed interest in analytic methodologies including use of the ‘von Foerster equation’ for predicting population growth and cell age distributions. Here we discuss how some of the most popular implementations of this machinery assume a strong condition on the ergodicity of the cell cycle duration ensemble. We show that one common definition for the term ergodicity, ‘a single individual observed over many generations recapitulates the behavior of the entire ensemble’ is implied by the other, ‘the probability of observing any state is conserved across time and over all individuals’ in an ensemble with a fixed number of individuals but that this is not true when the ensemble is growing. We further explore the impact of generational correlations between cell cycle durations on the population growth rate. Finally, we explore the ‘growth rate gain’—the phenomenon that variations in the cell cycle duration leads to an improved population-level growth rate—in this context. We highlight that, fundamentally, this effect is due to asymmetric division.

  12. Stress corrosion crack growth rate in dissimilar metal welds

    International Nuclear Information System (INIS)

    Fernandez, M. P.; Lapena, J.; Lancha, A. M.; Perosanz, F. J.; Navas, M.

    2000-01-01

    Dissimilar welds, used to join different sections in light water reactors, are potentially susceptible to stress corrosion cracking (SCC) in aqueous mediums characteristic of nuclear plants. However, the study of these The ma has been limited to evaluating the weld material susceptibility in these mediums. Little scarce data are available on crack growth rates due, fundamentally, to inadequate testing techniques. In order to address this lack of information the crack growth rate at the interface of ferritic SA 533 B-1 alloy and alloy I-82, in a dissimilar weld (SA533B-1/I-82/316L), was studied. Experiments were conducted in water at 288 degree centigrade, 8 ppm of O 2 and 1 μS/cm conductivity. (Author) 33 refs

  13. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2015-09-11

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6oC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μat the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.52 to 0.72 eV) but followed a seasonal pattern, only reaching the hypothesized value for aerobic heterotrophs of 0.65 eV during the spring bloom for the most active bacterial groups (live, HNA, CTC+). K (i.e. maximum experimental abundance) peaked at 4 × 106 cells mL-1 and generally covaried with μbut, contrary to MTE predictions, it did not decrease consistently with temperature. In the case of live cells, the responses of μand K to temperature were positively correlated and related to seasonal changes in substrate availability, indicating that the responses of bacteria to warming are far from homogeneous and poorly explained by MTE at our site. © FEMS 2015.

  14. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    Science.gov (United States)

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  15. Methods of forecasting crack growth rate under creep conditions

    International Nuclear Information System (INIS)

    Ol'kin, S.I.

    1979-01-01

    Using construction aluminium alloy application possibility of linear mechanics of the destruction for quantitative description of crack development process under creepage conditions is investigated. It is shown, that the grade dependence between the stress intensity coefficient and the crack growth rate takes place only at certain combination of the sample geometry and creepage parameters, and consequently, its applicability in every given case must necessarily be tested experimentally

  16. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices.

    Directory of Open Access Journals (Sweden)

    Sarah Forbes

    Full Text Available Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD; sodium fluoride (FD; stannous fluoride and zinc lactate (SFD1; or stannous fluoride, zinc lactate and stannous chloride (SFD2. Minimum inhibitory concentrations (MIC were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC, a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices.

  17. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  18. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Science.gov (United States)

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  19. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Directory of Open Access Journals (Sweden)

    Schrey Silvia D

    2012-08-01

    Full Text Available Abstract Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum. The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol and siderophores (e.g. ferulic acid, desferroxiamines. Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

  20. Are leaf glandular trichomes of oregano hospitable habitats for bacterial growth?

    Science.gov (United States)

    Karamanoli, K; Thalassinos, G; Karpouzas, D; Bosabalidis, A M; Vokou, D; Constantinidou, H-I

    2012-05-01

    Phyllospheric bacteria were isolated from microsites around essential-oil-containing glands of two oregano (Origanum vulgare subsp. hirtum) lines. These bacteria, 20 isolates in total, were subjected to bioassays to examine their growth potential in the presence of essential oils at different concentrations. Although there were qualitative and quantitative differences in the essential oil composition between the two oregano lines, no differences were recorded in their antibacterial activity. In disk diffusion bioassays, four of the isolated strains could grow almost unrestrained in the presence of oregano oil, another five proved very sensitive, and the remaining 11 showed intermediate sensitivity. The strain least inhibited by oregano essential oil was further identified by complete16s rRNA gene sequencing as Pseudomonas putida. It was capable of forming biofilms even in the presence of oregano oil at high concentrations. Resistance of P. putida to oregano oil was further elaborated by microwell dilution bioassays, and its topology on oregano leaves was studied by electron microscopy. When inoculated on intact oregano plants, P. putida was able not only to colonize sites adjacent to essential oil-containing glands, but even to grow intracellularly. This is the first time that such prolific bacterial growth inside the glands has been visually observed. Results of this study further revealed that several bacteria can be established on oregano leaves, suggesting that these bacteria have attributes that allow them to tolerate or benefit from oregano secondary metabolites.

  1. Evaluation of bacterial growth inhibition by mercaptopropionic acid in metallo-β-lactamase detection on multidrug-resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Letícia Eichstaedt Mayer

    2012-04-01

    Full Text Available INTRODUCTION: Metallo-β-lactamase (MBL has been reported all over the world. METHODS: The inhibitory effect of mercaptopropionic acid (MPA on bacterial growth was evaluated by comparison between disk diffusion and broth dilution methodology with determination of the minimum inhibitory concentration (MIC for multidrug-resistant Acinetobacter baumanni strains. RESULTS: MPA significantly inhibited growth of the strains. CONCLUSIONS: The use of MPA can affect the results in phenotypic methods of MBL detection.

  2. Evaluation of bacterial growth inhibition by mercaptopropionic acid in metallo-β-lactamase detection on multidrug-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Mayer, Letícia Eichstaedt; Hörner, Rosmari; Tizotti, Maisa Kräulich; Martini, Rosiéli; Roehrs, Magda Cristina Souza Marques; Kempfer, Cláudia Barbisan

    2012-01-01

    Metallo-β-lactamase (MBL) has been reported all over the world. The inhibitory effect of mercaptopropionic acid (MPA) on bacterial growth was evaluated by comparison between disk diffusion and broth dilution methodology with determination of the minimum inhibitory concentration (MIC) for multidrug-resistant Acinetobacter baumanni strains. MPA significantly inhibited growth of the strains. The use of MPA can affect the results in phenotypic methods of MBL detection.

  3. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Overbeek, van L.S.; Elsas, van J.D.

    2008-01-01

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Désirée, Merkur and transgenic Désirée line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons

  4. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    van Overbeek, Leo; van Elsas, Jan Dirk

    The effects of genotype, plant growth and experimental factors (soil and year) on potato-associated bacterial communities were studied. Cultivars Achirana Inta, Desiree, Merkur and transgenic Desiree line DL12 (containing T4 lysozyme gene) were assessed in two field experiments. Cross-comparisons

  5. Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2013-01-01

    Full Text Available The growth rate and uniformity of Carbon Nano Tubes (CNTs based on Chemical Vapor Deposition (CVD technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon atoms are grown as CNTs on the iron catalysts at the reactor hot walls. The effect of inlet gas-mixture flow rate, on CNTs growth rate and its uniformity is discussed. In addition the velocity and temperature profile and also species concentrations throughout the reactor are presented.

  6. Efficacy of silver/hydrophilic poly(p-xylylene) on preventing bacterial growth and biofilm formation in urinary catheters.

    Science.gov (United States)

    Heidari Zare, Hamideh; Juhart, Viktorija; Vass, Attila; Franz, Gerhard; Jocham, Dieter

    2017-01-18

    + and Mg 2+ ions after exposure of the catheters to saturated urine for 24 h. The higher concentrations of Ca 2+ and Mg 2+ in the precipitates on the PPX-N catheters indicates that the hydrophilic PPX-N coating is superior to the simple PPX-N coating, with regard to the formation of a crystalline biofilm. Moreover, hydrophilic PPX-N as a cap layer may promote wettability and increase silver ion release rate and thus reduce the adhesion of suspended crystals to the catheter. Reduced bacterial growth and reduced adhesion may help to prevent CAUTI.

  7. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Glyphosate Shapes a Dinoflagellate-Associated Bacterial Community While Supporting Algal Growth as Sole Phosphorus Source

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2017-12-01

    Full Text Available Glyphosate is a widely used herbicide that can potentially be a phosphorus (P source for phytoplankton and microbes when discharged into the coastal ocean. In contrast to bacteria, few eukaryotic phytoplankton species appear capable of directly utilizing glyphosate. In this study, we observed, after a long delay (>60 days, Prorocentrum donghaiense, a dinoflagellate known to cause major harmful algal blooms in the East China Sea, could grow in a medium with glyphosate as the sole P source; suggesting that P. donghaiense growth was through bacterial mediation. To understand how the bacteria community might respond to glyphosate, we analyzed the 16S rRNA genes of the microbial community present in P. donghaiense cultures when grown under lower (36 μM and higher (360 μM glyphosate concentrations. Based on both Sanger and Illumina high throughput sequencing, we obtained more than 55,323 good-quality sequences, which were classified into six phyla. As the concentration of glyphosate rose, our results showed a significant increase in the phyla Proteobacteria and Firmicutes and a decrease in the phylum Bacteroidetes. Further qPCR (Quantitative PCR analysis showed higher abundances of two specific phylotypes in the higher-glyphosate P. donghaiense cultures when compared to the lower-glyphosate and no-glyphosate cultures. Correspondingly, qPCR displayed the same trend for the abundance of a gammaproteobacterial type of phnJ, a gene encoding Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase, which is responsible for phosphonate degradation. In addition, Tax4Fun analysis based on our 16S rRNA gene sequences results in higher predicted abundances of phosphonate metabolizing genes in glyphosate-treated cultures. This study demonstrates that glyphosate could selectively promote the growth of particular groups of bacteria within an algal culture and in glyphosate enriched coastal waters, this interaction may potentially further facilitate the growth of

  9. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  10. Attached biomass growth and substrate utilization rate in a moving bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    J. J. Marques

    2008-12-01

    Full Text Available A moving bed bioreactor containing cubes of polyether foam immersed in a synthetic wastewater (an aqueous mixture of meat extract, yeast extract, dextrose, meat peptone, ammonium chloride, potassium chloride, sodium chloride, sodium bicarbonate, potassium mono-hydrogen-phosphate and magnesium sulphate was used to evaluate bacterial growth and biomass yield parameters based on Monod's equation. The wastewater was supplied in the bottom of the equipment flowing ascending in parallel with a diffused air current that provided the mixing of the reactor content. Suspended and attached biomass concentration was measured through gravimetric methods. Good agreement was found between experimental kinetic parameters values and those obtained by other researchers. The only significant difference was the high global biomass content about 2 times the values obtained in conventional processes, providing high performance with volumetric loading rates up to 5.5 kg COD/m³/d.

  11. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season.

    Science.gov (United States)

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-10-27

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight ("before") in the indoor water pipes was 15-17 °C, and the water temperature decreased to 4-6 °C after flushing for 10 min ("flushed"). The highest bacterial cell number was observed in water stagnated overnight, and was 5-11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant "flushed" and "taps" values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p heating periods.

  12. Method for Bacterial Growth and Ammonia Production and Effect of Inhibitory Substances in Disposable Absorbent Hygiene Products.

    Science.gov (United States)

    Forsgren-Brusk, Ulla; Yhlen, Birgitta; Blomqvist, Marie; Larsson, Peter

    The purpose of this study was to evaluate a pragmatic laboratory method to provide a technique for developing incontinence products better able to reduce malodor when used in the clinical setting. Bacterial growth and bacterially formed ammonia in disposable absorbent incontinence products was measured by adding synthetic urine inoculated with bacteria to test samples cut from the crotch area of the product. The inhibitory effect's of low pH (4.5 and 4.9) and 3 antimicrobial substances-chlorhexidine, polyhexamethylene biguanide (PHMB), and thymol-at 2 concentrations each, were studied. From the initial inocula of 3.3 log colony-forming units per milliliter (cfu/mL) at baseline, the bacterial growth of the references increased to 5.0 to 6.0 log cfu/mL at 6 hours for Escherichia coli, Proteus mirabilis, and Enterococcus faecalis. At 12 hours there was a further increase to 7.0 to 8.9 log cfu/mL. Adjusting the pH of the superabsorbent in the incontinence product from 6.0 to pH 4.5 and pH 4.9 significantly (P disposable absorbent products to inhibit bacterial growth and ammonia production. This technique, we describe, provides a pragmatic method for assessing the odor-inhibiting capacity of specific incontinence products.

  13. The Influence of Ozonization For DO, BOD and Bacterial Growth in The Liquid Waste From Tanning Leather Industry

    International Nuclear Information System (INIS)

    M-Yazid; Aris-Bastianudin; Widdi-Usada

    2007-01-01

    The research of ozonization influence of dissolved oxygen (DO), biological oxygen demand (BOD) and the bacterial growth in the liquid waste from tanning leather industry has been done. The objectives of this research was to studied the influence of ozonization for decomposition process of the organic compound in these waste by indicator of BOD decreased, increased of DO and decomposer bacterial growth. The ozonization was carried out by time variation 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195 and 210 minutes. Each samples of the waste has been ozonized keep in the sterile reaction tube for isolated of bacterial and the other keep in the bottle for BOD and DO measurement. These research results show that ozonization with 16.243 x 10 -4 mg/second debit for 3 hours can decreased of BOD were 19.61 %, and ozonization for 3.5 hours can increased of DO were 82.5%. The other hand, 3 hours ozonization can decreased of kind of bacterial growth were 80 %. (author)

  14. Gross domestic product growth rates as confined Lévy flights: Towards a unifying theory of economic growth rate fluctuations

    Science.gov (United States)

    Lera, Sandro Claudio; Sornette, Didier

    2018-01-01

    A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.

  15. Physical and bacterial controls on inorganic nutrients and dissolved organic carbon during a sea ice growth and decay experiment

    DEFF Research Database (Denmark)

    Zhou, J.; Delille, B.; Kaartokallio, H.

    2014-01-01

    . The major findings are: (1) the incorporation of dissolved compounds (nitrate, nitrite, ammonium, phosphate, silicate, and DOC) into the sea ice was not conservative (relative to salinity) during ice growth. Brine convection clearly influenced the incorporation of the dissolved compounds, since the non......-conservative behavior of the dissolved compounds was particularly pronounced in the absence of brine convection. (2) Bacterial activity further regulated nutrient availability in the ice: ammonium and nitrite accumulated as a result of remineralization processes, although bacterial production was too low to induce...

  16. Standard test method for measurement of fatigue crack growth rates

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    1.1 This test method covers the determination of fatigue crack growth rates from near-threshold to Kmax controlled instability. Results are expressed in terms of the crack-tip stress-intensity factor range (ΔK), defined by the theory of linear elasticity. 1.2 Several different test procedures are provided, the optimum test procedure being primarily dependent on the magnitude of the fatigue crack growth rate to be measured. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength so long as specimens are of sufficient thickness to preclude buckling and of sufficient planar size to remain predominantly elastic during testing. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size is variable to be adjusted for yield strength and applied force. Specimen thickness may be varied independent of planar size. 1.5 The details of the various specimens and test configurations are shown in Annex A1-Annex A3. Specimen configurations other than t...

  17. On Decidable Growth-Rate Properties of Imperative Programs

    Directory of Open Access Journals (Sweden)

    Amir M. Ben-Amram

    2010-05-01

    Full Text Available In 2008, Ben-Amram, Jones and Kristiansen showed that for a simple "core" programming language - an imperative language with bounded loops, and arithmetics limited to addition and multiplication - it was possible to decide precisely whether a program had certain growth-rate properties, namely polynomial (or linear bounds on computed values, or on the running time. This work emphasized the role of the core language in mitigating the notorious undecidability of program properties, so that one deals with decidable problems. A natural and intriguing problem was whether more elements can be added to the core language, improving its utility, while keeping the growth-rate properties decidable. In particular, the method presented could not handle a command that resets a variable to zero. This paper shows how to handle resets. The analysis is given in a logical style (proof rules, and its complexity is shown to be PSPACE-complete (in contrast, without resets, the problem was PTIME. The analysis algorithm evolved from the previous solution in an interesting way: focus was shifted from proving a bound to disproving it, and the algorithm works top-down rather than bottom-up.

  18. GROWTH RATE DISPERSION (GRD OF THE (010 FACE OF BORAX CRYSTALS IN FLOWING SOLUTION

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax crystals from aqueous solutions in the (010 direction at various flow rates were measured. The observed variations of the growth rate can be represented by a normal distribution.  It was found that there is no correlation between growth rate distribution and solution flow under these experimental conditions.   Keywords: Growth rate dispersion (GRD, borax, flow rate

  19. Plasma treatment of Seeds: effect on growth, spores and bacterial charge

    Science.gov (United States)

    Ambrico, P. F.; Simek, M.; Morano, M.; Ambrico, M.; Minafra, A.; Prukner, V.; de Miccolis Angelini, R. M.; Trotti, P.

    2016-09-01

    We report on the effect of low temperature plasma treatment on tomato, basil and tobacco commercial seeds. Seeds were treated in filtered ambient air volume, surface and plasma jet DBD at atmospheric pressure Sterile agar substrate, supplemented with a nutrient and vitamin mixture, was used to allow seeds germination in sterilized sealed plastic containers. The seeds were stored in controlled environmental condition (T = 26C, cycle of 14hrs light/10hrs dark condition). Since all the procedure was performed under sterile conditions, only bacteria and fungi carried by seeds could grow. Plasma treatment significantly reduced the presence of bacterial contamination, while some fungi could resist at shortest exposures Seeds germination was then followed by time lapse photography in sterile water on 3MM Whatman paper in a closed container. The effect of plasma treatment was a faster germination time of seeds and emergence of cotyledons, able to start photosynthesis in seedlings.The plasma treated seeds were also sow in a soil/peat moss mixture. Plants were cultivated for about 40 days, showing that plasma induced a faster growth in length and weight with respect to untreated seeds.Furthermore the effect of plasma on seeds surface was studied by SEM imaging. We acknowledge `SELGE' (Puglia) and TACR (TA03010098).

  20. Development of luminescent pH sensor films for monitoring bacterial growth through tissue.

    Science.gov (United States)

    Wang, Fenglin; Raval, Yash; Chen, Hongyu; Tzeng, Tzuen-Rong J; DesJardins, John D; Anker, Jeffrey N

    2014-02-01

    Although implanted medical devices (IMDs) offer many benefits, they are susceptible to bacterial colonization and infections. Such infections are difficult to treat because bacteria could form biofilms on the implant surface, which reduce antibiotics penetration and generate local dormant regions with low pH and low oxygen. In addition, these infections are hard to detect early because biofilms are often localized on the surface. Herein, an optical sensor film is developed to detect local acidosis on an implanted surface. The film contains both upconverting particles (UCPs) that serve as a light source and a pH indicator that alters the luminescence spectrum. When irradiated with 980 nm light, the UCPs produce deeply penetrating red light emission, while generating negligible autofluorescence in the tissue. The basic form of the pH indicator absorbs more of upconversion luminescence at 661 nm than at 671 nm and consequently the spectral ratio indicates pH. Implanting this pH sensor film beneath 6-7 mm of porcine tissue does not substantially affect the calibration curve because the peaks are closely spaced. Furthermore, growth of Staphylococcus epidermidis on the sensor surface causes a local pH decrease that can be detected non-invasively through the tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Science.gov (United States)

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  2. Effect of inactive yeast cell wall on growth performance, survival rate and immune parameters in Pacific White Shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Rutchanee Chotikachinda

    2008-10-01

    Full Text Available Effects of dietary inactive yeast cell wall on growth performance, survival rate, and immune parameters in pacific white shrimp (Litopenaeus vannamei was investigated. Three dosages of inactive yeast cell wall (0, 1, and 2 g kg-1 were tested in three replicate groups of juvenile shrimps with an average initial weight of 7.15±0.05 g for four weeks. There was no significant difference in final weight, survival rate, specific growth rate, feed conversion ratio, feed intake, protein efficiency ratio, and apparent net protein utilization of each treatments. However, different levels of inactive yeast cell wall showed an effect on certain immune parameters (p<0.05. Total hemocyte counts, granular hemocyte count, and bacterial clearance were better in shrimp fed diets supplemented with 1 and 2 g kg-1 inactive yeast cell wall as compared with thecontrol group.

  3. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    Science.gov (United States)

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  4. Age, growth rates, and paleoclimate studies of deep sea corals

    Science.gov (United States)

    Prouty, Nancy G; Roark, E. Brendan; Andrews, Allen; Robinson, Laura; Hill, Tessa; Sherwood, Owen; Williams, Branwen; Guilderson, Thomas P.; Fallon, Stewart

    2015-01-01

    Deep-water corals are some of the slowest growing, longest-lived skeletal accreting marine organisms. These habitat-forming species support diverse faunal assemblages that include commercially and ecologically important organisms. Therefore, effective management and conservation strategies for deep-sea corals can be informed by precise and accurate age, growth rate, and lifespan characteristics for proper assessment of vulnerability and recovery from perturbations. This is especially true for the small number of commercially valuable, and potentially endangered, species that are part of the black and precious coral fisheries (Tsounis et al. 2010). In addition to evaluating time scales of recovery from disturbance or exploitation, accurate age and growth estimates are essential for understanding the life history and ecology of these habitat-forming corals. Given that longevity is a key factor for population maintenance and fishery sustainability, partly due to limited and complex genetic flow among coral populations separated by great distances, accurate age structure for these deep-sea coral communities is essential for proper, long-term resource management.

  5. Repeal of the Sustainable Growth Rate: an overview for surgeons.

    Science.gov (United States)

    Sangji, Naveen F

    2014-10-01

    The Medicare sustainable growth rate (SGR) formula is used to control Medicare spending on physician services. Under the current SGR formula, physicians face an almost 24% cut to the Medicare fee schedule on April 1, 2015. The US House Way & Means and Energy & Commerce Committees and the Senate Finance Committee released jointly proposed legislation to permanently repeal the SGR, and transition Medicare physician payment to a value-based payment method. This review summarizes the key components of the proposed legislation, and discusses some of the political challenges ahead. House Committees on Energy & Commerce and Ways & Means, and the Senate Committee on Finance staff write-ups. Physician Medicare reimbursement will move from a volume-based model to a value-based model over the next decade. Surgeons should remain engaged with the political process to ensure repeal of the SGR. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Rate of bacterial eradication by ophthalmic solutions of fourth-generation fluoroquinolones.

    Science.gov (United States)

    Callegan, Michelle C; Novosad, Billy D; Ramadan, Raniyah T; Wiskur, Brandt; Moyer, Andrea L

    2009-04-01

    Antibacterial activity of ophthalmic fourth-generation fluoroquinolones has traditionally been evaluated by comparing only their active ingredients, gatifloxacin and moxifloxacin. However, ophthalmic formulations of fourth-generation fluoroquinolones differ in terms of the inclusion of preservatives. While gatifloxacin ophthalmic solution 0.3% (Zymar; Allergan, Inc., Irvine, CA, USA) contains 0.005% benzalkonium chloride (BAK), moxifloxacin ophthalmic solution 0.5% (Vigamox; Alcon Laboratories, Inc., Fort Worth, TX, USA) is preservative-free. Recent studies have demonstrated that the presence of BAK dramatically affects the antibacterial activity of the ophthalmic formulation of gatifloxacin. This study was designed to compare the kill rates of ophthalmic solutions of fourth-generation fluoroquinolones against isolates of common ocular bacterial pathogens. Approximately 5.6 log(10) colony-forming units (CFU)/mL of Haemophilus influenzae (n=1), Streptococcus pneumoniae (n=1), Staphylococcus aureus (n=2), methicillin-resistant Staphylococcus aureus (MRSA) (n=4), methicillinresistant Staphylococcus epidermidis (MRSE) (n=4), and fluoroquinolone-resistant S. epidermidis (n=1) were incubated with ophthalmic solutions of either gatifloxacin or moxifloxacin. Viable bacteria were quantified at specific time points up to 60 minutes. Gatifloxacin 0.3% completely eradicated H. influenzae and Strep. pneumoniae in 5 minutes, one of two S. aureus isolates in 15 minutes, and the other S. aureus isolate in 60 minutes. Gatifloxacin 0.3% completely killed all MRSA, MRSE, and fluoroquinolone-resistant S. epidermidis isolates in 15 minutes. Moxifloxacin 0.5% completely eradicated Strep. pneumoniae and one of four MRSA isolates in 60 minutes. All other isolates incubated with moxifloxacin 0.5% retained viable bacteria ranging from 1.8 to 4.4 log(10) CFU/mL. The ophthalmic solution of gatifloxacin 0.3% eradicated bacteria that frequently cause postoperative ocular infections

  7. Exchange rate policy, growth, and foreign trade in China

    Directory of Open Access Journals (Sweden)

    Gligorić Mirjana

    2011-01-01

    Full Text Available This paper analyzes a hot topic: the influence of an undervalued currency on macroeconomic variables - primarily on the economic growth and trade balance of a country, but also on employment, foreign exchange reserves, competition, and living standards. It also reviews and explains the consequences of yuan undervaluation, points out the need for its appreciation, and states the negative effects that stem from this measure. Special attention is given to the problematic bilateral relations between China and the USA and the reasons why Americans are worried about the exchange rate policy that China implements. Although yuan appreciation would decrease the American foreign trade deficit, it also raises the question of further financing of the American deficit. There are also other problems that the possible appreciation would cause for the American economy, due to the effect of J-curve, passthrough, larger costs of input imported from China, etc. Therefore, Chinese foreign exchange policy is an important subject, but it is not the solution to the problems of the global economy - which have deeper roots than that. However, there is no excuse for China implementing unfair exchange rate policies, or replacing such policies with controversial protectionist policies (as some authors have suggested.

  8. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  9. Effects of high hydrostatic pressure on bacterial growth on human ossicles explanted from cholesteatoma patients.

    Directory of Open Access Journals (Sweden)

    Steffen Dommerich

    Full Text Available BACKGROUND: High hydrostatic pressure (HHP treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. METHODOLOGY: Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. PRINCIPAL FINDINGS: A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion.

  10. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    Science.gov (United States)

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  11. Metabolic clearance and production rates of human growth hormone

    Science.gov (United States)

    Taylor, Andrew L.; Finster, Joseph L.; Mintz, Daniel H.

    1969-01-01

    The metabolic clearance rate (MCR) of human growth hormone (HGH) was determined by the constant infusion to equilibrium technique utilizing HGH-125I. 22 control subjects had a MCR of 229 ±52 ml/min (mean ±SD). No difference was evident between sexes, or between various age groups. Patients with acromegaly demonstrated normal MCR's. Moreover, acute elevations of plasma growth hormone concentrations in normal subjects did not alter the MCR of HGH. The MCR was relatively constant from day to day and within the day when subjects were evaluated in the supine position. In contrast, the assumption of the upright position was associated with a mean 24% decrease in the MCR. These results were contrasted with the MCR of HGH observed in a small number of patients with altered thyroid function or diabetes mellitus. In six patients with hypothyroidism the MCR (131 ±36 ml/min) was significantly decreased (P < 0.001); whereas the MCR in eight patients with hyperthyroidism (240 ±57 ml/min) did not differ from control subjects. The MCR in eight patients with insulin-independent diabetes mellitus (IID) (185 ±41 ml/min) and in eight patients with insulin-dependent diabetes mellitus (IDD) (136 ±31 ml/min) were significantly different from control subjects (P = < 0.05 and P = < 0.001, respectively). These data were interpreted to indicate that the plasma HGH-removing mechanism(s) is not saturated at physiologic plasma HGH levels, that plasma HGH levels alone may not permit distinction between variations in pituitary release of the hormone and its rate of clearance from the plasma, and that the estimation of the MCR of HGH may help clarify the mechanism of abnormal plasma HGH responses to various stimuli. Production rates of HGH (PR) in control subjects (347 ±173 mμg/min) were contrasted with hyperthyroid patients (529 ±242 mμg/min, P < 0.05), hypothyroid patients (160 ±69 mμg/min, P < 0.02), IID (245 ±100 mμg/min, NS), and IDD (363 ±153 mμg/min, NS). Considerable

  12. Characterization of the rate and temperature sensitivities of bacterial remineralization of dissolved organic phosphorus by natural populations

    Directory of Open Access Journals (Sweden)

    Angelicque E. White

    2012-08-01

    Full Text Available Production, transformation, and degradation are the principal components of the cycling of dissolved organic matter (DOM in marine systems. Heterotrophic Bacteria (and Archaea play a large part in this cycling via enzymatic decomposition and intracellular transformations of organic material to inorganic carbon (C, nitrogen (N , and phosphorus (P. The rate and magnitude of inorganic nutrient regeneration from DOM is related to the elemental composition and lability of DOM substrates as well as the nutritional needs of the mediating organisms. While many previous efforts have focused on C and N cycling of DOM, less is known in regards to the controls of organic P utilization and remineralization by natural populations of bacteria. In order to constrain the relative time scales and degradation of select dissolved organic P (DOP compounds we have conducted a series of experiments focused on (1 assessment of the short-term lability of a range of DOP compounds, (2 characterization of labile DOP remineralization rates and (3 examination of temperature sensitivities of labile DOP remineralization for varying bacterial populations. Results reinforce previous findings of monoester and polyphosphate lability and the relative recalcitrance of a model phosphonate: 2-aminoethylphosphonate. High resolution time-series of P monoester remineralization indicates decay constants on the order of 0.67-7.04 d-1 for bacterial populations isolated from coastal and open ocean surface waters. The variability of these rates is predictably related to incubation temperature and initial concentrations of heterotrophic bacteria. Additional controls on DOP hydrolysis included seasonal shifts in bacterial populations and the physiological state of bacteria at the initiation of DOP addition experiments. Composite results indicate that bacterial hydrolysis of P-monoesters exceeds bacterial P demand and thus DOP remineralization efficiency may control P availability to autotrophs.

  13. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhongmin [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Su, Weiqin [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Chen, Huaihai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Barberan, Albert [Univ. of Arizona, Tucson, AZ (United States). Dept. of Soil, Water and Environmental Science; Zhao, Haochun [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Yu, Mengjie [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Yu, Lu [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Brookes, Philip C. [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment; Schadt, Christopher W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Chang, Scott X. [Univ. of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources; Xu, Jianming [Zhejiang Univ., Hangzhou (China). Inst. of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Lab. of Agricultural Resources and Environment

    2018-04-25

    Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro

  14. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.

    2016-01-06

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach combines (i) quantification of changes in autochthonous bacterial cell concentrations in full-scale distribution systems with (ii) laboratoryscale batch bacterial growth potential tests of drinking water samples under defined conditions. The growth potential tests were done by direct incubation of water samples, without modification of the original bacterial flora, and with flow cytometric quantification of bacterial growth. This method was shown to be reproducible (ca. 4% relative standard deviation) and sensitive (detection of bacterial growth down to 5 μg L-1 of added assimilable organic carbon). The principle of step-wise assessment of bacterial growth-controlling factors was demonstrated on bottled water, shown to be primarily carbon limited at 133 (±18) × 103 cells mL-1 and secondarily limited by inorganic nutrients at 5,500 (±1,700) × 103 cells mL-1. Analysis of the effluent of a Dutch full-scale drinking water treatment plant showed (1) bacterial growth inhibition as a result of end-point chlorination, (2) organic carbon limitation at 192 (±72) × 103 cells mL-1 and (3) inorganic nutrient limitation at 375 (±31) × 103 cells mL-1. Significantly lower net bacterial growth was measured in the corresponding full-scale distribution system (176 (±25) × 103 cells mL-1) than in the laboratory-scale growth potential test of the same water (294 (±35) × 103 cells mL-1), highlighting the influence of distribution on bacterial growth. The systematic approach described herein provides quantitative information on the effect of drinking water properties and distribution system conditions on biological stability, which can assist water utilities in decision-making on treatment or distribution system improvements to

  15. Influence of Crucible Support Rod on the Growth Rate and Temperature Gradient in a Bridgman Growth of Tin Crystal

    OpenAIRE

    IMASHIMIZU, Yuji; MIURA, Koji; KAMATA, Masaki; WATANABE, Jiro

    2003-01-01

    Bridgman growth of tincrystal was carried out in a graphite crucible that was fixed on a quartz support rod or a copper one. The growth rate and axial temperature distribution were examined by recording the temperature variation with time at each of four prescribed positions in the solid-liquidsystem during solidification, l) Actual growth rate of crystal increased with progress of solidification while the furnace elevated at a constant rate, but the tendency was different depending on the ty...

  16. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates.

    Directory of Open Access Journals (Sweden)

    Pedro Beschoren da Costa

    Full Text Available Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling.

  17. Clostridial necrotic enteritis in chicken associated with growth rate depression

    Directory of Open Access Journals (Sweden)

    Adin Priadi

    2008-03-01

    Full Text Available Clostridium perfringens (C. perfringens is a normal inhabitant of the intestinal tract of chickens as well as a potential pathogen causing necrotic enteritis. C. perfringens only causes necrotic enteritis when it transforms from non-toxin producing type to toxin producing type. The alpha toxin, (phospholipase C is believed to be a key to the occurrence of Clostridial necrotic enteritis (CNE. The best known predisposing factor is mucosal damage, caused by coccidiosis that damages the intestinal lining, making the gut susceptible to infections including C. perfringens. The purpose of this study was to observe the chicken performance in experimental CNE and field cases of CNE. Diagnosis of CNE were made by latex agglutination test, isolation and identification of the agent. Pathological and histopathological changes were also observed. Experimentally, NE could be reproduced when Eimeria sp and C. perfringens spores are inoculated in chicken. Signs of an NE are wet litter and diarrhea, and an increase in mortality is not often obvious. The depression of growth rate and feed efficiency of chicken become noticeable by week 5 because of damage to the intestine and the subsequent reduction in digestion and absorption of food. Subclinical form of CNE was also frequently found in the field, leading to significant decreases in performance. Chicken gut samples examinations revealed that subclinical form of CNE causes damage to the intestinal mucosa caused by C. perfringens leads to decreased digestion and absorption, increased feed conversion ratio and reduced weight gain. Dual infection with C. perfringens and Eimeria sp. was frequently found in field. The results of these studies provide evidence for C. perfringens as a causative bacteria for growth depression.

  18. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating

    Directory of Open Access Journals (Sweden)

    G Subbiahdoss

    2010-05-01

    Full Text Available Biomaterials-associated-infections (BAI are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol (PEG brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid (bioactive “PEG-RGD” were compared to mono-functional PEG brush-coatings (biopassive “PEG” and bare titanium oxide (TiO2 surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1. After 2 h, staphylococcal adhesion was reduced to 3.6±1.8 × 103 and 6.0±3.9 × 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3±0.4 × 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1 U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the “race for the surface” between bacteria and mammalian cells.

  19. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Grotkjær, Thomas; Winther, Ole

    2006-01-01

    Growth rate is central to the development of cells in all organisms. However, little is known about the impact of changing growth rates. We used continuous cultures to control growth rate and studied the transcriptional program of the model eukaryote Saccharomyces cerevisiae, with generation time...

  20. Effects of Dietary Nucleotides on Growth Rate and Disease ...

    African Journals Online (AJOL)

    Effects of dietary nucleotides on growth and disease resistance of crustaceans were evaluated using axenic Artemia culture tests. Higher Artemia growth in xenic culture (15.6 ± 2.9 mm) than in axenic culture (9.2 ± 1.9 mm) reaffirmed the need to eliminate microbial populations known to influence growth and disease ...

  1. Determination of Growth Rate and Age Structure of Boswellia ...

    African Journals Online (AJOL)

    Bheema

    Department of Land Resource Management and Environmental Protection, ... seasonality in climate, in many tropical areas there is seasonality in rainfall which ... seasonal growth of trees thereby produce annual growth rings (Fichtler et al., 2003). ... ring boundaries, concentric growth rings around the entire cross-section of ...

  2. Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yonghua; Bruns, Mary Ann [Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Husen; Salerno, Michael; Logan, Bruce E. [Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-11-15

    Bacterial community composition during steady-state, fermentative H{sub 2} production was compared across a range of organic loading rates (OLRs) of 0.5-19 g COD l{sup -1} h{sup -1} in a 2-l continuous flow reactor at 30 C. The varied OLRs were achieved with glucose concentrations of 2.5-10 g l{sup -1} and hydraulic retention times of 1-10 h. The synthetic wastewater feed was amended with L-cysteine and maintained at a pH of 5.5. For each run at a given glucose concentration, the reactor was inoculated with an aliquot of well-mixed agricultural topsoil that had been heat-treated to reduce numbers of vegetative cells. At OLRs less than 2 g COD l{sup -1} h{sup -1}, DNA sequences from ribosomal RNA intergenic spacer analysis profiles revealed more diverse and variable populations (Selenomonas, Enterobacter, and Clostridium spp.) than were observed above 2 g COD l{sup -1} h{sup -1} (Clostridium spp. only). An isolate, LYH1, was cultured from a reactor sample (10 g glucose l{sup -1} at a 10-h HRT) on medium containing L-cysteine. In confirming H{sub 2} production by LYH1 in liquid batch culture, lag periods for H{sub 2} production in the presence and absence of L-cysteine were 5 and 50 h, respectively. The 16S rRNA gene sequence of LYH1 indicated that the isolate was a Clostridium sp. affiliated with RNA subcluster Ic, with >99% similarity to Clostridium sp. FRB1. In fluorescent in situ hybridization tests, an oligonucleotide probe complementary to the 16S rRNA of LYH1 hybridized with 90% of cells observed at an OLR of 2 g COD h{sup -1}, compared to 26% of cells at an OLR of 0.5 g COD l{sup -1} h{sup -1}. An OLR of 2 g COD l{sup -1} h{sup -1} appeared to be a critical threshold above which clostridia were better able to outcompete Enterobacteriaceae and other organisms in the mixed soil inoculum. Our results are discussed in light of other biohydrogen studies employing pure cultures and mixed inocula. (author)

  3. Quantitative estimation of net rates of production of bacterial and protozoal nitrogen and their interconversion in the rumen

    International Nuclear Information System (INIS)

    El-Fouly, H.A.

    1983-01-01

    A technique is described using 35 S-labelled bacteria or protozoa by which the rates of production of microbial and protozoal protein N may be calculated. The results indicate an average microbial protein yield of about 13.7gN.d -1 in sheep maintained on a diet consisting largely of cottonseed cake and wheat and rice bran. Evidence is presented that protozoa made little contribution to the microbial protein-N leaving the rumen. Also, the average rate of N flow from the protozoal to the bacterial pool was about 3.5g.d -1 , whereas about 1.4g.d -1 of bacterial N was consumed by protozoa. (author)

  4. A Numbers Game: Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death

    Directory of Open Access Journals (Sweden)

    Bruce R. Levin

    2017-02-01

    Full Text Available We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective ribosomes. We tested this hypothesis with Escherichia coli K-12 MG1655 and constructs that had been deleted for 1 to 6 of the 7 rRNA (rrn operons. In the absence of antibiotics, constructs with fewer rrn operons have lower maximum growth rates and longer lag phases than those with more ribosomal operons. In the presence of the ribosome-binding “bacteriostatic” antibiotics tetracycline, chloramphenicol, and azithromycin, E. coli strains with 1 and 2 rrn operons are killed at a substantially higher rate than those with more rrn operons. This increase in the susceptibility of E. coli with fewer rrn operons to killing by ribosome-targeting bacteriostatic antibiotics is not reflected in their greater sensitivity to killing by the bactericidal antibiotic ciprofloxacin, which does not target ribosomes, but also to killing by gentamicin, which does. Finally, when such strains are exposed to these ribosome-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE, is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures.

  5. Growth rate of sheep fed high fat ration

    Directory of Open Access Journals (Sweden)

    Darwinsyah Lubis

    1998-10-01

    Full Text Available Incorporating high amount of fats into the ration for ruminants will affect the rumen microbes adversely and will reducefiber digestion potential. To correct such negative effects, the free fatty acids used for feed should be bond with Ca++, so it canpassing through the rumen savely (rumen by-pass fat. To test the Ca-fat utilization biologically, 20 growing male Garut shee pwere used and fed with 4 type of isocaloric-isoprotein concentrate feed which were allotted based on a randomized block desig nwith 5 replications. The concentrate (C-A was a positive control diet, while C-B was substituted with 10% free fatty acids (negative control, C-C was substituted with 10% Ca-fat, and C-D with 15% Ca-fat. The concentrate feed was fed at 500 g/d, while forage (King grass was 4 kg/d. Results of the experiment showed that the negative effect of free fatty acids can be corrected if it was given in the form of Ca-fat. Growth rate curve indicating a good growing pattern, with average daily gain was 100.18, 87.68, 112.86, and 115.00 g/d (P0.05. Carcass production was relatively good, where for C-A, C-B, C-C, and C-D were 14.84, 14.68, 16.34, and 15.72 kg (P<0.05 respectively, with final live weights of 34.00, 31.74, 34.58, and 34.30 kg (P<0.05. It can be concluded that Ca-fat (rumen by-pass fat can be used as an energy source component for growing sheep diet, and give the best result at 10% substitution rate in concentrate feed.

  6. Sustainable growth rate 2013: time for definitive intervention.

    Science.gov (United States)

    Hirsch, Joshua A; Rosman, David A; Liu, Raymond W; Ding, Alexander; Manchikanti, Laxmaiah

    2013-07-01

    Federal healthcare spending has been a subject of intense concern as the US Congress continues to search for ways to reduce the budget deficit. The Congressional Budget Office (CBO) estimated that, even though it is growing more slowly than previously projected, federal spending on Medicare, Medicaid and the State Children's Health Insurance Program (SCHIP) will reach nearly $900 billion in 2013. In 2011 the Medicare program paid $68 billion for physicians and other health professional services, 12% of total Medicare spending. Since 2002 the sustainable growth rate (SGR) correction has called for reductions to physician reimbursements; however, Congress has typically staved off these reductions, although the situation remains precarious for physicians who accept Medicare. The fiscal cliff agreement that came into focus at the end of 2012 averted a 26.5% reduction to physician reimbursements related to the SGR correction. Nonetheless, the threat of these devastating cuts continues to loom. The Administration, Congress and others have devised many options to fix this unsustainable situation. This review explores the historical development of the SGR, touches on elements of the formula itself and outlines current proposals for fixing the SGR problem. A recent CBO estimate reduces the potential cost of a 10-year fix of SGR system to $138 billion. This has provided new hope for resolution of this long-standing issue.

  7. Variation in coral growth rates with depth at Discovery Bay, Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Huston, M

    1985-01-01

    Growth rates, determined by X-radiographic measurement of skeletal extension, decreased with depth for four of six species of coral examined at Discovery Bay, Jamaica. Growth of Porites astreoides, Montastrea annularis, Colpophyllia natans, and Siderastrea siderea decreased significantly with depth over a 1- to 30-m depth range. In Montastrea cavernosa, the highest growth rate occurred in the middle of the sampled depth range. Agaricia agaricites had no measurable change in growth rate with depth. A compilation of available growth data for Atlantic and Pacific corals shows a strong pattern of highest growth rates a short distance below the surface and a decrease with depth.

  8. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi, E-mail: shilpi@dbeb.iitd.ac.in

    2015-06-30

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture.

  9. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    International Nuclear Information System (INIS)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi

    2015-01-01

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture

  10. Lipocalin 2 Imparts Selective Pressure on Bacterial Growth in the Bladder and Is Elevated in Women with Urinary Tract Infection

    Science.gov (United States)

    Steigedal, Magnus; Marstad, Anne; Haug, Markus; Damås, Jan K.; Strong, Roland K.; Roberts, Pacita L.; Himpsl, Stephanie D.; Stapleton, Ann; Hooton, Thomas M.; Mobley, Harry L. T.; Hawn, Thomas R.

    2014-01-01

    Competition for iron is a critical component of successful bacterial infections, but the underlying in vivo mechanisms are poorly understood. We have previously demonstrated that lipocalin 2 (LCN2) is an innate immunity protein that binds to bacterial siderophores and starves them for iron, thus representing a novel host defense mechanism to infection. In the present study we show that LCN2 is secreted by the urinary tract mucosa and protects against urinary tract infection (UTI). We found that LCN2 was expressed in the bladder, ureters, and kidneys of mice subject to UTI. LCN2 was protective with higher bacterial numbers retrieved from bladders of Lcn2-deficient mice than from wild-type mice infected with the LCN2-sensitive Escherichia coli strain H9049. Uropathogenic E. coli mutants in siderophore receptors for salmochelin, aerobactin, or yersiniabactin displayed reduced fitness in wild-type mice, but not in mice deficient of LCN2, demonstrating that LCN2 imparts a selective pressure on bacterial growth in the bladder. In a human cohort of women with recurrent E. coli UTIs, urine LCN2 levels were associated with UTI episodes and with levels of bacteriuria. The number of siderophore systems was associated with increasing bacteriuria during cystitis. Our data demonstrate that LCN2 is secreted by the urinary tract mucosa in response to uropathogenic E. coli challenge and acts in innate immune defenses as a colonization barrier that pathogens must overcome to establish infection. PMID:25398327

  11. Variation in relative growth rate and growth traits in wild and cultivated Capsicum accessions grown under different temperatures

    NARCIS (Netherlands)

    Swart, de E.A.M.; Marcelis, L.F.M.; Voorrips, R.E.

    2006-01-01

    Differences in environmental conditions are known to influence plant growth and growth-related traits. The aim of this study was to identify the variation in relative growth rate (RGR), and its underlying physiological and morphological traits, in a group of ten wild and cultivated Capsicum

  12. High-resolution bacterial growth inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antibacterial constituents in Chinese plants used to treat snakebites

    DEFF Research Database (Denmark)

    Liu, Yueqiu; Nielsen, Mia; Stærk, Dan

    2014-01-01

    Bacillus subtilis, Staphylococcus aureus, Escherichia coli or Pseudomonas aeruginosa. The biochromatograms demonstrated that tannins play a main role for the bacterial growth inhibition observed for all above-mentioned plants except for Polygonum cuspidatum. Furthermore, the high-resolution bacterial...... growth inhibition profiling combined with HPLC–HRMS–SPE–NMR allowed fast identification of three non-tannin active compounds, i.e., piceid, resveratrol and emodin from ethanol extract of Polygonum cuspidatum. Conclusion The high-resolution bacterial growth inhibition profiling allowed fast pinpointing...... of constituents responsible for the bioactivity, e.g., either showing tannins being the main bacterial growth inhibitors as observed for the majority of the active plants, or combined with HPLC–HRMS–SPE–NMR for fast structural identification of non-tannin constituents correlated with antibacterial activity....

  13. Physiological growth hormone replacement and rate of recurrence of craniopharyngioma: the Genentech National Cooperative Growth Study.

    Science.gov (United States)

    Smith, Timothy R; Cote, David J; Jane, John A; Laws, Edward R

    2016-10-01

    OBJECTIVE The object of this study was to establish recurrence rates in patients with craniopharyngioma postoperatively treated with recombinant human growth hormone (rhGH) as a basis for determining the risk of rhGH therapy in the development of recurrent tumor. METHODS The study included 739 pediatric patients with craniopharyngioma who were naïve to GH upon entering the Genentech National Cooperative Growth Study (NCGS) for treatment. Reoperation for tumor recurrence was documented as an adverse event. Cox proportional-hazards regression models were developed for time to recurrence, using age as the outcome and enrollment date as the predictor. Patients without recurrence were treated as censored. Multivariate logistic regression was used to examine the incidence of recurrence with adjustment for the amount of time at risk. RESULTS Fifty recurrences in these 739 surgically treated patients were recorded. The overall craniopharyngioma recurrence rate in the NCGS was 6.8%, with a median follow-up time of 4.3 years (range 0.7-6.4 years.). Age at the time of study enrollment was statistically significant according to both Cox (p = 0.0032) and logistic (p craniopharyngioma after surgery in children, but long-term follow-up of GH-treated patients is required to establish a true natural history in the GH treatment era.

  14. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates

    Directory of Open Access Journals (Sweden)

    Arike Liisa

    2011-02-01

    Full Text Available Abstract Background Lactococcus lactis is recognised as a safe (GRAS microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Results Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10 - 0.60 h-1, indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. Conclusions The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product

  15. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field

    International Nuclear Information System (INIS)

    Kheiri, Golshad; Esmaeilzadeh, Mahdi

    2013-01-01

    A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread

  16. Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.)

    DEFF Research Database (Denmark)

    Christensen, H.; Jakobsen, I.

    1993-01-01

    Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments...... and top of tubes, and of cocci with a diameter of 0.55-0.78 mum in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1-7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil...... biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [H-3]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal...

  17. Short Communication Validation of growth zone deposition rate in ...

    African Journals Online (AJOL)

    Flathead mullet Mugil cephalus and freshwater mullet Myxus capensis are important components in South African estuarine fish communities and fisheries, but there is little information on their age and growth or age validation. This study validated the periodicity of growth zone formation in sectioned sagittal otoliths and ...

  18. Beneficial effect of physical activity on linear growth rate of ...

    African Journals Online (AJOL)

    It is not known if nutritional and/or other interventions could improve linear growth in adolescents. The purpose of this study was to assess the role of physical activity in promoting linear growth velocity of black adolescents in a low-income shanty town in South Africa. Two schools in a disadvantaged shanty town participated ...

  19. Export incentives, exchange rate policy and export growth in Turkey

    NARCIS (Netherlands)

    van Wijnbergen, S.J.G.; Arslan, I.

    1993-01-01

    The driving forces behind the Turkish export miracle, and in fact its very existence, have remained a matter of debate We show there was a boom. As to contributing factors, import growth in the Middle East in excess of import growth elsewhere made a negative contribution. On exports to non-oil

  20. The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens.

    Science.gov (United States)

    Dalia, A M; Loh, T C; Sazili, A Q; Jahromi, M F; Samsudin, A A

    2017-08-18

    Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers. Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite. The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of

  1. Measurement of fatigue crack growth rate of reactor structural material in air based on DCPD method

    International Nuclear Information System (INIS)

    Du Donghai; Chen Kai; Yu Lun; Zhang Lefu; Shi Xiuqiang; Xu Xuelian

    2014-01-01

    The principles and details of direct current potential drop (DCPD) in monitoring the crack growth of reactor structural materials was introduced in this paper. Based on this method, the fatigue crack growth rate (CGR) of typical structural materials in nuclear power systems was measured. The effects of applied load, load ratio and loading frequency on the fatigue crack growth rate of reactor structural materials were discussed. The result shows that the fatigue crack growth rate of reactor structural materials depends on the hardness of materials, and the harder the material is, the higher the rate of crack growth is. (authors)

  2. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    International Nuclear Information System (INIS)

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur Ford

    2016-01-01

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10"6 to 10"1"2 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around the bubble.

  3. Effect of arsenic and cadmium on the growth rate and nutrient utilization rates of Asterionelia formosa

    International Nuclear Information System (INIS)

    Conway, H.L.; Yaguchi, E.M.

    1975-01-01

    Many volatile trace elements are released during combustion of fossil fuels. They may eventually be transported to aquatic ecosystems by wet or dry deposition, and some of them may be toxic to aquatic organisms. We are investigating the effects of arsenic and cadmium on an algal species found in Lake Michigan. Little information is available on chronic effects of these elements. Cadmium is widely used in the plating, pigment, and plastics industries. Arsenic and cadmium also enter the lake as a result of their use in agricultural pesticides and insecticides. Increased fossil fuel utilization in this region may result in increased arsenic and cadmium levels in the lake water if the present levels are not under geochemical control. We are using continuous culture techniques to assess biological effects of arsenic and cadmium concentrations between 2 and 20 times ambient levels. Uptake of arsenic and cadmium and their effects on nutrient utilization and growth rate are being measured for Astrerionella formaso, an important diatom, in spring and fall in Lake Michigan. Continuous culture techniques permit evaluation of subtle pollutant effects, such as physiological impairment and decreased reproductive rates, over many generations

  4. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    Science.gov (United States)

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  5. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Science.gov (United States)

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  6. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses.

    Directory of Open Access Journals (Sweden)

    Hoang Hoa Long

    Full Text Available BACKGROUND: All plants in nature harbor a diverse community of endophytic bacteria which can positively affect host plant growth. Changes in plant growth frequently reflect alterations in phytohormone homoeostasis by plant-growth-promoting (PGP rhizobacteria which can decrease ethylene (ET levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC deaminase or produce indole acetic acid (IAA. Whether these common PGP mechanisms work similarly for different plant species has not been rigorously tested. METHODOLOGY/PRINCIPAL FINDINGS: We isolated bacterial endophytes from field-grown Solanum nigrum; characterized PGP traits (ACC deaminase activity, IAA production, phosphate solubilization and seedling colonization; and determined their effects on their host, S. nigrum, as well as on another Solanaceous native plant, Nicotiana attenuata. In S. nigrum, a majority of isolates that promoted root growth were associated with ACC deaminase activity and IAA production. However, in N. attenuata, IAA but not ACC deaminase activity was associated with root growth. Inoculating N. attenuata and S. nigrum with known PGP bacteria from a culture collection (DSMZ reinforced the conclusion that the PGP effects are not highly conserved. CONCLUSIONS/SIGNIFICANCE: We conclude that natural endophytic bacteria with PGP traits do not have general and predictable effects on the growth and fitness of all host plants, although the underlying mechanisms are conserved.

  7. Validation of growth as measurand for bacterial adhesion to food and feed ingredients

    NARCIS (Netherlands)

    Becker, P.M.; Galletti, S.; Roubos-van den Hil, P.J.; Wikselaar, van P.G.

    2007-01-01

    Aims: A miniaturized adhesion test was designed to study the binding capacity of food and feed ingredients for bacterial cells. Methods and Results: Bacteria were allowed to adhere to different fibrous materials supplied as well coatings in microtitration plates. The amount of bacteria retained on

  8. Properties of bacterial endophytes and their proposed role in plant growth

    NARCIS (Netherlands)

    Hardoim, P.R.; Overbeek, van L.S.; Elsas, van J.D.

    2008-01-01

    Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by

  9. CONSEQUENCES OF PROTIST-STIMULATED BACTERIAL PRODUCTION FOR ESTIMATING PROTIST GROWTH EFFICIENCIES

    Science.gov (United States)

    The trophic link between bacteria and bacterivorous protists is a complex interaction that involves feedback of inorganic nutrients and growth substrates that are immediately available for prey growth. These interactions were examined in the laboratory and in incubations of conce...

  10. Indirect effect of Moringa oleifera supplemented diet on growth rates ...

    African Journals Online (AJOL)

    weaning boer goat kids. ... of pregnant and lactating does could be advantageous for maximum milk production to support their kids' healthy early growth and development especially under unfavorable conditions such as during winter and drought.

  11. The effect of subminimal inhibitory concentrations of penicillin on growth rate and haemolysin activity of group G Streptococcus

    Directory of Open Access Journals (Sweden)

    Verônica V. Vieira

    1993-09-01

    Full Text Available The influence of the subminimal inhibitory concentrations (1/3 and 1/4 of the MIC of penicillin on growth rate and on haemolysin production of a strain of group G Streptococcus was studied. It was shown that 1/3 of the MIC almost completely inhibited the bacterial growth, but it was not able to inhibit haemolysin activity in the culture supernate. The generation time of bacteria grown in 1/4 of the MIC was approximately twice longer than that of the control culture. In all cultures, the haemolysin, after being produced (or liberated, reached a peak and decreased to low levels, which could suggest that group G Streptococcus produces some end products of metabolism that are able to inhibit haemolysin activity.

  12. [Studies on the growth and reproduction of bacterial communities on structural materials of the international space station].

    Science.gov (United States)

    Rakova, N M; Svistunova, Iu V; Novikova, N D

    2005-01-01

    Probability of microbial growth and reproduction on the ISS interior and equipment materials varying in chemical composition was studied with the strains of Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus saprophyticus, Pseudomonas putida etc. sampled from the ISS environment. Controls were ground reference strains of same bacterial species. Based on our results, some of the microorganisms are able to survive and proliferate on structural materials; the ability was greater in space isolates as compared with their ground analogs. The greatest ability to grow and proliferate on materials was demonstrated by Bacillus subtilis.

  13. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Directory of Open Access Journals (Sweden)

    Lia R. Valeeva

    2018-02-01

    Full Text Available Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate, which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases and 168phyA (BPP family under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate

  14. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate.

    Science.gov (United States)

    Valeeva, Lia R; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R; Shakirov, Eugene V

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo -inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2 . The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future

  15. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Science.gov (United States)

    Valeeva, Lia R.; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R.; Shakirov, Eugene V.

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop

  16. Influence of Thawing Methods and Storage Temperatures on Bacterial Diversity, Growth Kinetics, and Biogenic Amine Development in Atlantic Mackerel

    DEFF Research Database (Denmark)

    Onyang, S.; Palmadottir, H.; Tomason, T.

    2016-01-01

    Limited knowledge is currently available on the influence of fish thawing and subsequent storage conditions on bacterial growth kinetics, succession, and diversity alongside the production of biogenic amines. This study aimed to address these factors during the thawing and subsequent storage of m...... amine producing bacteria, with the exception of the genus Proteus, which was 8.6% in fast-thawed mackerel during storage at ambient temperature. This suggests that the decarboxylation potential is dependent on both microbial load and microbial community structure....

  17. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates.

    Science.gov (United States)

    Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin

    2015-03-01

    The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific

  18. Evaluation of free-stall mattress bedding treatments to reduce mastitis bacterial growth

    Energy Technology Data Exchange (ETDEWEB)

    Kristula, M A; Dou, Z; Toth, J D; Smith, B I; Harvey, N; Sabo, M [University of Penn, Kennett Square, PA (United States)

    2008-05-15

    Bacterial counts were compared in free-stall mattresses and teat ends exposed to 5 treatments in a factorial study design on 1 dairy farm. Mattresses in five 30-cow groups were subjected to 1 of 5 bedding treatments every other day: 0.5 kg of hydrated limestone, 120 mL of commercial acidic conditioner, 1 kg of coal fly ash, 1 kg of kiln-dried wood shavings, and control (no bedding). Counts of coliforms, Klebsiella spp., Escherichia coli, and Streptococcus spp. were lowest on mattresses bedded with lime. Mattresses bedded with the commercial acidic conditioner had the next lowest counts for coliforms, Klebsiella spp., and Streptococcus spp. Wood shavings and the no-bedding control had the highest counts for coliform and Klebsiella spp. Compared with wood shavings or control, fly ash reduced the counts of coliforms, whereas for the other 3 bacterial groups, the reduction was not always significant. Streptococcus spp. counts were greatest in the control group and did not differ among the shavings and fly ash groups. Teat swab results indicated that hydrated lime was the only bedding treatment that significantly decreased the counts of both coliforms and Klebsiella spp. There were no differences in Streptococcus spp. numbers on the teats between any of the bedding treatments. Bacterial populations grew steadily on mattresses and were generally higher at 36 to 48 h than at 12 to 24 h, whereas bacterial populations on teats grew rapidly by 12 h and then remained constant. Hydrated lime was the only treatment that significantly reduced bacterial counts on both mattresses and teat ends, but it caused some skin irritation.

  19. Bacillus amyloliquefaciens L-S60 Reforms the Rhizosphere Bacterial Community and Improves Growth Conditions in Cucumber Plug Seedling

    Directory of Open Access Journals (Sweden)

    Yuxuan Qin

    2017-12-01

    Full Text Available Vegetable plug seedling has become the most important way to produce vegetable seedlings in China. This seedling method can significantly improve the quality and yield of vegetables compared to conventional methods. In the process of plug seedling, chemical fertilizers or pesticides are often used to improve the yield of the seedlings albeit with increasing concerns. Meanwhile, little is known about the impact of beneficial bacteria on the rhizosphere microbiota and the growth conditions of vegetables during plug seedling. In this study, we applied a culture-independent next-generation sequencing-based approach and investigated the impact of a plant beneficial bacterium, Bacillus amyloliquefaciens L-S60, on the composition and dynamics of rhizosphere microbiota and the growth conditions of cucumbers during plug seedling. Our results showed that application of L-S60 significantly altered the structure of the bacterial community associated with the cucumber seedling; presence of beneficial rhizosphere species such as Bacillus, Rhodanobacter, Paenibacillus, Pseudomonas, Nonomuraea, and Agrobacterium was higher upon L-S60 treatment than in the control group. We also measured the impact of L-S60 application on the physiological properties of the cucumber seedlings as well as the availability of main mineral elements in the seedling at different time points during the plug seedling. Results from those measurements indicated that L-S60 application promoted growth conditions of cucumber seedlings and that more available mineral elements were detected in the cucumber seedlings from the L-S60 treated group than from the control group. The findings in this study provided evidence for the beneficial effects of plant growth-promoting rhizosphere bacteria on the bacterial community composition and growth conditions of the vegetables during plug seedling.

  20. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis

    NARCIS (Netherlands)

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-01-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such

  1. Modelling of tomato stem diameter growth rate based on physiological responses

    International Nuclear Information System (INIS)

    Li, L.; Tan, J.; Lv, T.

    2017-01-01

    The stem diameter is an important parameter describing the growth of tomato plant during vegetative growth stage. A stem diameter growth model was developed to predict the response of plant growth under different conditions. By analyzing the diurnal variations of stem diameter in tomato (Solanum lycopersicum L.), it was found that the stem diameter measured at 3:00 am was the representative value as the daily basis of tomato stem diameter. Based on the responses of growth rate in stem diameter to light and temperature, a linear regression relationship was applied to establish the stem diameter growth rate prediction model for the vegetative growth stage in tomato and which was further validated by experiment. The root mean square error (RMSE) and relative error (RE) were used to test the correlation between measured and modeled stem diameter variations. Results showed that the model can be used in prediction for stem diameter growth rate at vegetative growth stage in tomato. (author)

  2. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata.

    Science.gov (United States)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi

    2015-06-30

    With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2013-01-01

    Full Text Available Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P=0.03 and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23% presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%, insoluble phosphate solubilisation (61%, and ammonia production (70%. The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root.

  4. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    Science.gov (United States)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  5. Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States.

    Science.gov (United States)

    Johnson, Sarah E; Abrams, Marc D

    2009-11-01

    This study uses data from the International Tree-Ring Data Bank website and tree cores collected in the field to explore growth rate (basal area increment, BAI) relationships across age classes (from young to old) for eight tree species in the eastern US. These species represent a variety of ecological traits and include those in the genera Populus, Quercus, Pinus, Tsuga and Nyssa. We found that most trees in all age classes and species exhibit an increasing BAI throughout their lives. This is particularly unusual for trees in the older age classes that we expected to have declining growth in the later years, as predicted by physiological growth models. There exists an inverse relationship between growth rate and increasing age class. The oldest trees within each species have consistently slow growth throughout their lives, implying an inverse relationship between growth rate and longevity. Younger trees (trees when they are of the same age resulting from a higher proportion of fast-growing trees in these young age classes. Slow, but increasing, BAI in the oldest trees in recent decades is a continuation of their growth pattern established in previous centuries. The fact that they have not shown a decreasing growth rate in their old age contradicts physiological growth models and may be related to the stimulatory effects of global change phenomenon (climate and land-use history).

  6. Facilitating control of fed-batch fermentation processes by monitoring the growth rates of saccharomyces cerevisiae

    NARCIS (Netherlands)

    Keulers, M.L.B.; Ariaans, L.J.J.M.; Soeterboek, R.; Giuseppin, M.

    1994-01-01

    In this paper we present a growth rate controller for a fed-batch bioprocess. An observer estimates the growth rate. The observer is based on knowledge about the stoichiometric relations of the process. Furthermore, the observer needs online measurements of the oxygen uptake rate and the

  7. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W

    2007-01-01

    Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients....... The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant...... T cells enhance proliferation of the malignant cells in an SE- and MHC class II-dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4(+) T-cell lines also enhance proliferation of the malignant cells. The growth...

  8. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Andersen, Mathias Neumann; Naveed, Muhammad

    2015-01-01

    The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse...... under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth...... of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover...

  9. Radiation Sterilization of Two Commonly Culture Media Used for Bacterial Growth

    International Nuclear Information System (INIS)

    El-Hifnawi, H.N.

    2008-01-01

    Radiation sterilization of culture media used for the cultivation of bacteria by Co-60 gamma ray was investigated. Nutrient agar and tryptone glucose yeast extract (TGY) media widely used for the propagation of bacteria were sterilized with 15 kGy dose gamma radiation. Seven different bacterial species were grown as well on the radiation sterilized media as on media sterilized by autoclaving in a conventional way

  10. Climate forcing growth rates: doubling down on our Faustian bargain

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko

    2013-03-01

    Rahmstorf et al 's (2012) conclusion that observed climate change is comparable to projections, and in some cases exceeds projections, allows further inferences if we can quantify changing climate forcings and compare those with projections. The largest climate forcing is caused by well-mixed long-lived greenhouse gases. Here we illustrate trends of these gases and their climate forcings, and we discuss implications. We focus on quantities that are accurately measured, and we include comparison with fixed scenarios, which helps reduce common misimpressions about how climate forcings are changing. Annual fossil fuel CO2 emissions have shot up in the past decade at about 3% yr-1, double the rate of the prior three decades (figure 1). The growth rate falls above the range of the IPCC (2001) 'Marker' scenarios, although emissions are still within the entire range considered by the IPCC SRES (2000). The surge in emissions is due to increased coal use (blue curve in figure 1), which now accounts for more than 40% of fossil fuel CO2 emissions. Figure 1. Figure 1. CO2 annual emissions from fossil fuel use and cement manufacture, an update of figure 16 of Hansen (2003) using data of British Petroleum (BP 2012) concatenated with data of Boden et al (2012). The resulting annual increase of atmospheric CO2 (12-month running mean) has grown from less than 1 ppm yr-1 in the early 1960s to an average ~2 ppm yr-1 in the past decade (figure 2). Although CO2 measurements were not made at sufficient locations prior to the early 1980s to calculate the global mean change, the close match of global and Mauna Loa data for later years suggests that Mauna Loa data provide a good approximation of global change (figure 2), thus allowing a useful estimate of annual global change beginning with the initiation of Mauna Loa measurements in 1958 by Keeling et al (1973). Figure 2. Figure 2. Annual increase of CO2 based on data from the NOAA Earth System Research Laboratory (ESRL 2012). CO2 change

  11. Decreased bacterial growth on titanium nanoscale topographies created by ion beam assisted evaporation

    Directory of Open Access Journals (Sweden)

    Stolzoff M

    2017-02-01

    Full Text Available Michelle Stolzoff,1 Jason E Burns,2 Arash Aslani,2 Eric J Tobin,2 Congtin Nguyen,1 Nicholas De La Torre,3 Negar H Golshan,3 Katherine S Ziemer,3 Thomas J Webster1,3,4 1Department of Bioengineering, Northeastern University, Boston, 2N2 Biomedical, Bedford, MA, 3Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, University of King Abdulaziz, Jeddah, Saudi Arabia Abstract: Titanium is one of the most widely used materials for orthopedic implants, yet it has exhibited significant complications in the short and long term, largely resulting from poor cell–material interactions. Among these many modes of failure, bacterial infection at the site of implantation has become a greater concern with the rise of antibiotic-resistant bacteria. Nanostructured surfaces have been found to prevent bacterial colonization on many surfaces, including nanotextured titanium. In many cases, specific nanoscale roughness values and resulting surface energies have been considered to be “bactericidal”; here, we explore the use of ion beam evaporation as a novel technique to create nanoscale topographical features that can reduce bacterial density. Specifically, we investigated the relationship between the roughness and titanium nanofeature shapes and sizes, in which smaller, more regularly spaced nanofeatures (specifically 40–50 nm tall peaks spaced ~0.25 µm apart were found to have more effect than surfaces with high roughness values alone. Keywords: titanium, nanostructures, bacteria, bone ingrowth, surface roughness, IBAD 

  12. Growth rate change driven by external perturbation in the azuki bean weevil

    CERN Document Server

    Fukano, T

    2003-01-01

    In laboratory experiments we obtain that the apparent growth rate of the population becomes larger than one under the normal condition, triggered by the external perturbation as the removal of individuals. The changed growth rate is stable for a while. We also propose a simple model of population dynamics allowing both matching and mis-matching the trend of the external perturbation, and show that the growth rate of the model population is changeable and stable to some extent.

  13. Growth rate change driven by external perturbation in the azuki bean weevil

    International Nuclear Information System (INIS)

    Fukano, Takao; Gunji, Yukio-Pegio

    2003-01-01

    In laboratory experiments we obtain that the apparent growth rate of the population becomes larger than one under the normal condition, triggered by the external perturbation as the removal of individuals. The changed growth rate is stable for a while. We also propose a simple model of population dynamics allowing both matching and mis-matching the trend of the external perturbation, and show that the growth rate of the model population is changeable and stable to some extent

  14. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  15. Individual Growth Rates of Nikolsky’s Viper, Vipera berus nikolskii (Squamata, Viperidae

    Directory of Open Access Journals (Sweden)

    Bondarenko Z. S.

    2016-02-01

    Full Text Available Capture-mark-recapture data was used to infer growth rates of the Nikolsky’s viper, Vipera berus nikolskii (Vedmederja, Grubant et Rudaeva, 1986, in the Eastern Ukraine. We have found that growth rate is negatively correlated with age. The difference in growth rates before maturation is not significant between different sexes. Growth rates decrease rapidly after maturation in males and females, however adult males retain significantly higher average growth rates. There is large dispersion of growth rates in the group of adult females, which is caused, probably, by alteration of complete arrest of growth in the years with reproduction and more intensive growth in the years without it. Asymptotic snout-ventral length estimated after Von Bertalanffy model was 680 mm in females and 630 mm in males. Females mature after fifth and males mature after fourth hibernation. The larger females in vipers can not be the result of higher growth rates in females, but are the outcome of a combination of other factors including different maturation time and size (older and being larger, and, perhaps, longer life span due to lower mortality. Growth rates of the Nikolsky’s viper in the nature are higher than in other species in the group of small Eurasian vipers.

  16. The influence of dietary supplementation on testicular growth rate in ...

    African Journals Online (AJOL)

    Thirty adult Merino rams were fed a ration with a 16% protein and. 75% TDN content. Live body mass increased by 51,4% and testes volume by 111,7% in 210 days. Testicular growth responded rapidly to supplementation and testes volume increased by86,5% inonly 60days. Inanother experiment diets of four groups of 15 ...

  17. Rate Growth comparison of basidiomycetous fungi isolated in Mexico

    International Nuclear Information System (INIS)

    Rivera-Rios, J. M.; Cruz Ramirez, M. G.; Cruz Madrid, L. C.; Medina Moreno, S. A.; Tellez-Jurado, A.; Mercado-Flores, Y.; Arana-Cuenca, A.

    2009-01-01

    Huejutla de Reyes is a place with a warm-humid climate and counts on an annual average temperature of 30 degree centigrade. We collected fungi that growth in wood or trees with the purpose of isolation this lignionolytic fungi in two seasons (one is spring, before raining station and another one in autumn, during raining station). (Author)

  18. Optimum growth rate of Belgian Blue double-muscled replacement ...

    African Journals Online (AJOL)

    Leo Fiems

    140. Forbes, J.M., 1995. Voluntary food intake and diet selection in farm animals. CAB International, Oxon, UK. Greenwood, P.L. & Café, L.M., 2007. Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef ...

  19. Effects of Dietary Nucleotides on Growth Rate and Disease ...

    African Journals Online (AJOL)

    Nucleotides are low molecular weight biological compounds, which are ... nutrition and disease aspects of crustaceans (Overton and Bland 1981 .... additives on growth and disease resistance. Effects of ... metabolically active cells during stressful conditions ... in humans supplemented with Uracyl, which resulted in optimal ...

  20. FEATURES OF INTESTINAL MICROBIOTA IN CHILDREN WITH A SYNDROME OF EXCESSIVE BACTERIAL GROWTH IN THE SMALL INTESTINE

    Directory of Open Access Journals (Sweden)

    L. A. Lityaeva

    2018-01-01

    Full Text Available The purpose of the study was to determine the features of the parietal microbiota of the intestine in children with a verified syndrome of excessive bacterial growth in the small intestine. Clinical and laboratory examination of 25 children at risk of intrauterine infection at the age of 8 months — 4 years with a verified syndrome of excess bacterial growth in the small intestine was performed based on the results of the hydrogen breath test. Investigation of the species and quantitative composition of the parietal intestinal microbiota was carried out with the help of the gas chromatography-mass spectrometry method with determination of the concentration of microbial markers by drop of blood (laboratory of bifidobacteria of the Federal Budgetary Institute of Science Moscow Research Institute of Epidemiology and Microbiology name after G.N. Gabrichevsky. It was revealed that all of them recorded a high concentration of microbial markers of gram-negative anaerobic bacteria of the colon and viruses of the Herpes family due to a deficit of representatives of priority genera (Propionibacterium Freunderherii 5-fold, Eubacterium spp. 4.8-fold, Bifidobacterium spp. 4-fold, Lactobacillus spp. 1.5-fold with an excess of endotoxin (by 1.5—2-fold and a decrease in plasmalogen (by 2-fold. These data testify to the inflammatory process of the small intestinal mucosa, which aggravates the disturbances in its functioning and confirm the informative nature of the gas chromatography and spectrometry method.

  1. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature

    Directory of Open Access Journals (Sweden)

    Ninoska eCordero

    2016-03-01

    Full Text Available Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8 ºC of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8 °C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature.

  2. The daily weight gain, growth rate and length-weight relationships of ...

    African Journals Online (AJOL)

    The daily weight gain, growth rate and length-weight relationships of Clarias gariepinus, Heterobranchus longifilis and their reciprocal hybrids (Pisces: Clariidae) reared under ambient environmental conditions.

  3. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    Science.gov (United States)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  4. Water reservoir maintained by cell growth fuels the spreading of a bacterial swarm.

    Science.gov (United States)

    Wu, Yilin; Berg, Howard C

    2012-03-13

    Flagellated bacteria can swim across moist surfaces within a thin layer of fluid, a means for surface colonization known as swarming. This fluid spreads with the swarm, but how it does so is unclear. We used micron-sized air bubbles to study the motion of this fluid within swarms of Escherichia coli. The bubbles moved diffusively, with drift. Bubbles starting at the swarm edge drifted inward for the first 5 s and then moved outward. Bubbles starting 30 μm from the swarm edge moved inward for the first 20 s, wandered around in place for the next 40 s, and then moved outward. Bubbles starting at 200 or 300 μm from the edge moved outward or wandered around in place, respectively. So the general trend was inward near the outer edge of the swarm and outward farther inside, with flows converging on a region about 100 μm from the swarm edge. We measured cellular metabolic activities with cells expressing a short-lived GFP and cell densities with cells labeled with a membrane fluorescent dye. The fluorescence plots were similar, with peaks about 80 μm from the swarm edge and slopes that mimicked the particle drift rates. These plots suggest that net fluid flow is driven by cell growth. Fluid depth is largest in the multilayered region between approximately 30 and 200 μm from the swarm edge, where fluid agitation is more vigorous. This water reservoir travels with the swarm, fueling its spreading. Intercellular communication is not required; cells need only grow.

  5. 35-44 Growth, Photosynthetic Efficiency, Rate of Transpiration ...

    African Journals Online (AJOL)

    0.533 mmhoscm-1 electrical conductivity and a pH of 8.6. 2.2. Variety ... After good establishment, the main stem of five randomly ... The interaction effect of stage and rate of PBZ application on plant height and culm length, panicle and flag leaf length ..... where it decreases the rate of cell division and elongation, ultimately ...

  6. Dividend growth, cash flow, and discount rate news

    OpenAIRE

    Garrett, Ian; Priestley, Richard

    2012-01-01

    This is the authors’ accepted and refereed manuscript to the article. Publishers web site http://journals.cambridge.org/ Using a new variable based on a model of dividend smoothing, we find that dividend growth is highly predictable and that cash flow news contributes importantly to return variability. Cash flow betas derived from this predictability are central to explaining the size effect in the cross section of returns. However, they do not explain the value effect; this is explained b...

  7. Low power high growth rate deposition of microcrystalline silicon

    OpenAIRE

    Feltrin, A; Bugnon, G; Meillaud, F; Bailat, J; Ballif, C

    2008-01-01

    Microcrystalline growth regimes and solar cells obtained in different pressure and silane depletion conditions are studied in a large area KAI-S plasma reactor. The microcrystalline material quality is systematically investigated by Fourier Transform Photocurrent Spectroscopy (FTPS) to evaluate the defect density. It is shown that higher pressure and silane depletion positively affect the material quality. A clear correlation between FTPS measurements and cell efficiency is established, showi...

  8. Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Nimrat, Subuntith; Suksawat, Sunisa; Boonthai, Traimat; Vuthiphandchai, Verapong

    2012-10-12

    Epidemics of epizootics and occurrence of multiresistant antibiotics of pathogenic bacteria in aquaculture have put forward a development of effective probiotics for the sustainable culture. This study examined the effectiveness of forms of mixed Bacillus probiotics (probiotic A and probiotic B) and mode of probiotic administration on growth, bacterial numbers and water quality during rearing of white shrimp (Litopenaeus vannamei) in two separated experiments: (1) larval stages and (2) postlarval (PL) stages. Forms of Bacillus probiotics and modes of probiotic administration did not affect growth and survival of larval to PL shrimp. The compositions of Bacillus species in probiotic A and probiotic B did not affect growth and survival of larvae. However, postlarvae treated with probiotic B exhibited higher (Pshrimp. Total heterotrophic bacteria and Bacillus numbers in larval and PL shrimp or culture water of the treated groups were higher (Pshrimp were significantly decreased, compared to the controls. Microencapsulated Bacillus probiotic was effective for rearing of PL L. vannamei. This investigation showed that administration of mixed Bacillus probiotics significantly improved growth and survival of PL shrimp, increased beneficial bacteria in shrimp and culture water and enhanced water quality for the levels of pH, ammonia and nitrite of culture water. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Bacterial growth in humic waters exposed to UV-radiation and simulated sunlight

    DEFF Research Database (Denmark)

    Corin, N.; Backlund, P.; Wiklund, T.

    1998-01-01

    Sterile filtered (0.45 mu m) humic lake water was exposed to simulated sunlight (300-800 nm) or W-radiation (254 run)for various periods of times and the dissolved organic carbon content, absorbance at 254 and 460 nm and PH were recorded. The irradiated water was inoculated with a natural bacterial...... assemblage and the number of viable bacteria war estimated 3 and 5 days after the inoculation using the plate count technique. The number of viable bacteria increased with the irradiation time indicating that the chemical changes of the humus macromolecules observed during irradiation resulted...

  10. Inflation, Growth and Exchange Rate Regimes in Small Open Economies

    OpenAIRE

    Hernandez-Verme, Paula

    2002-01-01

    Summary. This is an extended working paper version of the paper that appeared in Economic Theory. It paper compares the merits of alternative exchange rate regimes in small open economies where financial intermediaries perform a real allocative function, there are multiple reserve requirements, and credit market frictions may or may not cause credit rationing. Under floating exchange rates, raising domestic inflation can increase production if credit is rationed. However, there exist infla...

  11. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  12. Pasteurization Procedures for Donor Human Milk Affect Body Growth, Intestinal Structure, and Resistance against Bacterial Infections in Preterm Pigs.

    Science.gov (United States)

    Li, Yanqi; Nguyen, Duc Ninh; de Waard, Marita; Christensen, Lars; Zhou, Ping; Jiang, Pingping; Sun, Jing; Bojesen, Anders Miki; Lauridsen, Charlotte; Lykkesfeldt, Jens; Dalsgaard, Trine Kastrup; Bering, Stine Brandt; Sangild, Per Torp

    2017-06-01

    Background: Holder pasteurization (HP) destroys multiple bioactive factors in donor human milk (DM), and UV-C irradiation (UVC) is potentially a gentler method for pasteurizing DM for preterm infants. Objective: We investigated whether UVC-treated DM improves gut maturation and resistance toward bacterial infections relative to HP-treated DM. Methods: Bacteria, selected bioactive components, and markers of antioxidant capacity were measured in unpasteurized donor milk (UP), HP-treated milk, and UVC-treated milk (all from the same DM pool). Fifty-seven cesarean-delivered preterm pigs (91% gestation; ratio of males to females, 30:27) received decreasing volumes of parental nutrition (average 69 mL · kg -1 · d -1 ) and increasing volumes of the 3 DM diets ( n = 19 each, average 89 mL · kg -1 · d -1 ) for 8-9 d. Body growth, gut structure and function, and systemic bacterial infection were evaluated. Results: A high bacterial load in the UP (6×10 5 colony forming units/mL) was eliminated similarly by HP and UVC treatments. Relative to HP-treated milk, both UVC-treated milk and UP showed greater activities of lipase and alkaline phosphatase and concentrations of lactoferrin, secretory immunoglobulin A, xanthine dehydrogenase, and some antioxidant markers (all P < 0.05). The pigs fed UVC-treated milk and pigs fed UP showed higher relative weight gain than pigs fed HP-treated milk (5.4% and 3.5%), and fewer pigs fed UVC-treated milk had positive bacterial cultures in the bone marrow (28%) than pigs fed HP-treated milk (68%) ( P < 0.05). Intestinal health was also improved in pigs fed UVC-treated milk compared with those fed HP-treated milk as indicated by a higher plasma citrulline concentration (36%) and villus height (38%) ( P < 0.05) and a tendency for higher aminopeptidase N (48%) and claudin-4 (26%) concentrations in the distal intestine ( P < 0.08). The gut microbiota composition was similar among groups except for greater proportions of Enterococcus in pigs

  13. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.

    Directory of Open Access Journals (Sweden)

    Meike T Wortel

    2018-02-01

    Full Text Available Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.

  14. Effectiveness of Origanum vulgare L. and Origanum majorana L. essential oils in inhibiting the growth of bacterial strains isolated from the patients with conjunctivitis

    OpenAIRE

    Oliveira, Jana Luíza Toscano Mendes de; Diniz, Margareth de Fátima Melo; Lima, Edeltrudes de Oliveira; Souza, Evandro Leite de; Trajano, Vinícius Nogueira; Santos, Bernadete Helena Cavalcante

    2009-01-01

    This study aimed to evaluate the antibacterial activity of Origanum vulgare L. and O. majorana L. essential oils on Staphylococcus aureus, S. coagulase negative, Enterobacter spp., Proteus spp., Acinetobacter spp., Klebsiella spp. isolated from the patients with conjunctivitis. The results showed a prominent inhibitory effect of both the essential oils on all the bacterial strains, noted by the large bacterial growth inhibition zones (15-32mm). The Minimum Inhibitory Concentrations (MIC) valu...

  15. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  16. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    Directory of Open Access Journals (Sweden)

    Uri Barenholz

    Full Text Available Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  17. The impact of risk management on internal and sustainable growth rate: Evidence from Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Hamid Reza Vakili Fard

    2014-09-01

    Full Text Available Measuring the relative risk of firms has been an open discussion among researchers. There are many studies on learning how leverage may influence on growth of the firms. This article reviews the relationship between risk management, internal and sustainable growth of accepted companies in Tehran stock exchange. The survey considers three types of risks including operating, financial and compound and investigates their relationships with internal growth rate as well as sustainable growth rate. Using some regression techniques, the study has determined negative and meaningful relationships between different types of leverage on side and internal as well as sustainable growth on the other side.

  18. Effect of dispersants on the growth of indigenous bacterial population and biodegradation of crude oil

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Row, A.

    Oil dispersants (5 from Castrol Ltd., Bombay and 2 from British Petroleum, London) were studied individually and in combination with Saudi Arabian crude oil for their effect on the growth of indigenous bacteria and on the biodegradation of oil. None...

  19. EXCHANGE RATE AND ECONOMIC GROWTH. THE CASE OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Nicolae Ghiba

    2010-12-01

    Full Text Available Considering the difficulties created by the economic crisis, many exporters have criticized the National Bank of Romania (NBR’s policy regarding the exchange rate evolution. They argue that depreciation is a necessary condition for recovery and not financial stability. On the contrary, Romania cannot afford a shock in the exchange rate level. The risk associated with such a measure is too high for an emerging country and it annihilates any export competitive advantages. Therefore, depreciation may delay the imperative of Romanian economic recovery. A solid economic recovery should have as starting point a financial system sound and stable. Excessive exchange rate depreciation jeopardizes the financial soundness of banks and the borrower’s ability to repay their loans. Therefore, it creates inflationary flare-ups, particularly dangerous for the economy of any state.

  20. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    Science.gov (United States)

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P fetal norepinephrine and reduced IGF-1 and insulin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. Climate is a stronger driver of tree and forest growth rates than soil and disturbance

    NARCIS (Netherlands)

    Toledo, M.; Poorter, L.; Peña-Claros, M.; Alarcón, A.; Balcázar, J.; Leaño, C.; Licona, J.C.; Llanque, O.; Vroomans, V.; Zuidema, P.; Bongers, F.

    2011-01-01

    1. Essential resources such as water, nutrients and light vary over space and time and plant growth rates are expected to vary accordingly. We examined the effects of climate, soil and logging disturbances on diameter growth rates at the tree and stand level, using 165 1-ha permanent sample plots

  2. Heterotrophic bacterial production, respiration, and growth efficiency associated with upwelling intensity in the Ulleung Basin, East Sea

    Science.gov (United States)

    Kim, Bomina; Kim, Sung-Han; Kwak, Jung Hyun; Kang, Chang-Keun; Lee, Sang Heon; Hyun, Jung-Ho

    2017-09-01

    We investigated bacterial production (BP) and respiration (BR), as well as the physico-chemical properties of the water column, to elucidate the effect of upwelling on heterotrophic bacterial metabolic activities and growth efficiency (BGE) in July 2012 and May 2013 in the Ulleung Basin (UB), East/Japan Sea. The upwelled conditions were characterized by higher chlorophyll-a (Chl-a) concentrations resulting from the upward shift of the nitracline compared to that of the non-upwelled condition. Analyses of the size fractions of Chl-a and pigment composition revealed that large size phytoplankton (> 20 μm), mainly consisting of diatoms, appeared to be the major phytoplankton component. BP and BR were significantly correlated with Chl-a (P 0.05). These results suggest that bacterial metabolic activities are stimulated by the availability of organic resources enhanced by upwelling in the UB. Further statistical analysis showed that the difference in BP and BGE with variations in upwelling intensity were significant (P = 0.018 for BP, P = 0.035 for BGE), but the difference in BR was not significant (P = 0.321). These results suggest that metabolic energy is partitioned more for BP under a strong upwelling condition, i.e. high nutrient and Chl-a conditions. In contrast, the energy generated via respiration was partitioned more for maintaining metabolism rather than for biomass production under weakly or non-upwelled conditions, i.e. stratified and low Chl-a conditions. Overall, our results suggest that any changes in upwelling intensity would significantly affect the carbon cycle associated with the fate of primary production, and the role of the microbial loop in the UB where changes in the intensity and frequency of upwelling associated with climatic changes are in progress.

  3. Vertical instability in TCV: comparison of experimental and theoretical growth rates

    International Nuclear Information System (INIS)

    Hofmann, F.; Dutch, M.J.; Ward, D.J.; Anton, M.; Furno, I.; Lister, J.B.; Moret, J.M.

    1996-12-01

    Growth rates of the axisymmetric mode in vertically elongated plasmas in the TCV tokamak are measured and compared with numerically calculated growth rates for the reconstructed equilibria. This comparison is made over a range of discharge parameters including elongation, triangularity, and vertical position within the vacuum vessel. Growth rates increase with respect to increasing elongation, decreasing triangularity and increasing vertical distance from the top of the vacuum vessel, as expected. The agreement between the measured growth rates in the experiment and the numerically determined growth rates is excellent, in particular for the full linear MHD model which accounts for the non-rigid motion of strongly shaped plasma cross-sections. (author) 7 figs., 22 refs

  4. Extremal bounds on drift wave growth rates and transport

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1990-03-01

    A variational technique is used to obtain bounds on the growth constant γ versus wave number κ for plasma drift waves. We find, for T i = T e , γ * (1 + 3/√2 η) in usual notation. This agrees closely with dispersion---relation results that have had good success in explaining global confinement times in tokamaks based on transport coefficients of the form (γ/κ 2 ). The present method is easier to calculate and results are of such general nature as to give greater assurance that nothing has been missed. The method is based on the time behavior of a free energy function that is chosen to be a constant of motion for an idealized Maxwellian plasma without currents, and almost constant for small departures from this ideal state. The underlying premise associating the variational technique with drift waves remains conjectural. 6 refs

  5. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival.

    Science.gov (United States)

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent; Hiron, Aurélia

    2016-12-15

    The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui.

    Science.gov (United States)

    Biscola, Vanessa; Abriouel, Hikmate; Todorov, Svetoslav Dimitrov; Capuano, Verena Sant'Anna Cabral; Gálvez, Antonio; Franco, Bernadette Dora Gombossy de Melo

    2014-12-01

    Charqui is a fermented, salted and sun-dried meat product, widely consumed in Brazil and exported to several countries. Growth of microorganisms in this product is unlikely due to reduced Aw, but halophilic and halotolerant bacteria may grow and cause spoilage. Charqui is a good source of lactic acid bacteria able to produce antimicrobial bacteriocins. In this study, an autochthonous bacteriocinogenic strain (Lactococcus lactis subsp. lactis 69), isolated from charqui, was added to the meat used for charqui manufacture and evaluated for its capability to prevent the growth of spoilage bacteria during storage up to 45 days. The influence of L. lactis 69 on the bacterial diversity during the manufacturing of the product was also studied, using denaturing gradient gel electrophoresis (DGGE). L. lactis 69 did not affect the counts and diversity of lactic acid bacteria during manufacturing and storage, but influenced negatively the populations of halotolerant microorganisms, reducing the spoilage potential. The majority of tested virulence genes was absent, evidencing the safety and potential technological application of this strain as an additional hurdle to inhibit undesirable microbial growth in this and similar fermented meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Crack growth rates in vessel head penetration materials

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Blazquez, F.

    1994-01-01

    The cracks detected in reactor vessel head penetrations in certain European plants have been attributed to Primary Water Stress Corrosion Cracking (PWSCC). The penetrations in question are made from Inconel 600. The susceptibility of this alloy to PWSCC has been widely studied in relation to use of this material for steam generator tubes. When the first reactor vessel head penetration cracks were detected, most of the available data on crack propagation rates were from test specimens made from steam generator tubes and tested under conditions that questioned the validity of these data for assessment of the evolution of cracks in penetrations. For this reason, the scope of the Spanish Research Project on the Inspection and Repair of PWR reactor vessel head penetrations included the acquisition of data on crack propagation rates in Inconel 600, representative of the materials used for vessel head penetrations. (authors). 1 fig., 2 tabs., 6 refs

  8. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Zoltán Németh

    2016-11-01

    Full Text Available Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis.

  9. Evaluation of Mycelium Growth Rate and Yield of White Button Mushroom Isolates (Agaricus bisporus in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Ahmadi Lahijani

    2017-10-01

    Full Text Available Introduction: Among edible mushrooms, white button mushroom is the most cultivated one around the world. Mono-spores diversity in terms of growth rate, colony type, yield and etc. is used for intra strain genetic improvement. High yielding isolates with filamentous mycelium type are screened and used for spawn production (Farsi and Gordan, 2002. Success in mushroom production largely depends on the quality of spawn produced in sterile conditions (Sanchez, 2010. Farsi and Gordan, (2004 reported that colony shape and mycelium growth type are very important factors in screening isolates in terms of mycelium growth rate and yield. To screen isolates based on their mycelium growth, solid media are among the most suitable ones (Griffin, 1994. In a study conducted to evaluate mycelium growth rate of six Morchella species on different media, PDA and MEA were known as the best ones (Kalmis and Kalyoncu, 2008. The present study was conducted in order to evaluate mycelium growth rate and yield of white button mushroom isolates in solid medium, spawn and compost media. Materials and methods: Eighteen isolates of white button mushroom were compared on PDA (Potato Dextrose Agar, CYM (Complete Yeast Medium, spawn and compost media based on mycelium growth rate, type and class growth and yield at the mushroom research center of Faculty of Agriculture, Ferdowsi University of Mashhad, in 2014. A piece of mycelium of each isolate was placed in the center of each petri dish and was kept in 23±1°C, and the radial growth rate of mycelium was measured as two perpendicular diameters in three consecutive weeks. Mycelium growth rate on spawn and compost media was measured based on the percentage of surface coverage during the 15 consecutive days. Yield of each isolate was measured by daily harvesting of mushrooms during 35 days of experiment. Analysis of variance and means comparison of the variables were carried out using SAS software. Means analysis was performed

  10. Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography.

    Science.gov (United States)

    Wicha, Sebastian G; Kloft, Charlotte

    2016-08-15

    For pharmacokinetic/pharmacodynamic (PK/PD) assessment of antibiotics combinations in in vitro infection models, accurate and precise quantification of drug concentrations in bacterial growth medium is crucial for derivation of valid PK/PD relationships. We aimed to (i) develop a high-performance liquid chromatography (HPLC) assay to simultaneously quantify linezolid (LZD), vancomycin (VAN) and meropenem (MER), as typical components of broad-spectrum antibiotic combination therapy, in bacterial growth medium cation-adjusted Mueller-Hinton broth (CaMHB) and (ii) determine the stability profiles of LZD, VAN and MER under conditions in in vitro infection models. To separate sample matrix components, the final method comprised the pretreatment of 100μL sample with 400μL methanol, the evaporation of supernatant and its reconstitution in water. A low sample volume of 2μL processed sample was injected onto an Accucore C-18 column (2.6μm, 100×2.1mm) coupled to a Dionex Ultimate 3000 HPLC+ system. UV detection at 251, 240 and 302nm allowed quantification limits of 0.5, 2 and 0.5μg/mL for LZD, VAN and MER, respectively. The assay was successfully validated according to the relevant EMA guideline. The rapid method (14min) was successfully applied to quantify significant degradation of LZD, VAN and MER in in vitro infection models: LZD was stable, VAN degraded to 90.6% and MER to 62.9% within 24h compared to t=0 in CaMHB at 37°C, which should be considered when deriving PK/PD relationships in in vitro infection models. Inclusion of further antibiotics into the flexible gradient-based HPLC assay seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes.

    Science.gov (United States)

    Serejo, Mayara L; Posadas, Esther; Boncz, Marc A; Blanco, Saúl; García-Encina, Pedro; Muñoz, Raúl

    2015-03-03

    The influence of biogas flow rate (0, 0.3, 0.6, and 1.2 m(3) m(-2) h(-1)) on the elemental and macromolecular composition of the algal-bacterial biomass produced from biogas upgrading in a 180 L photobioreactor interconnected to a 2.5 L external bubbled absorption column was investigated using diluted anaerobically digested vinasse as cultivation medium. The influence of the external liquid recirculation/biogas ratio (0.5 biogas, was also evaluated. A L/G ratio of 10 was considered optimum to support CO2 and H2S removals of 80% and 100%, respectively, at all biogas flow rates tested. Biomass productivity increased at increasing biogas flow rate, with a maximum of 12 ± 1 g m(-2) d(-1) at 1.2 m(3) m(-2) h(-1), while the C, N, and P biomass content remained constant at 49 ± 2%, 9 ± 0%, and 1 ± 0%, respectively, over the 175 days of experimentation. The high carbohydrate contents (60-76%), inversely correlated to biogas flow rates, would allow the production of ≈100 L of ethanol per 1000 m(3) of biogas upgraded under a biorefinery process approach.

  12. Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues

    Czech Academy of Sciences Publication Activity Database

    Blom, J. F.; Horňák, Karel; Šimek, Karel; Pernthaler, J.

    2010-01-01

    Roč. 12, č. 9 (2010), s. 2486-2495 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : aggregate formation * Sphingobium sp. * chemical cues * growth state Subject RIV: EE - Microbiology, Virology Impact factor: 5.537, year: 2010

  13. Experimental Results and Integrated Modeling of Bacterial Growth on an Insoluble Hydrophobic Substrate (Phenanthrene)

    DEFF Research Database (Denmark)

    Adam, Iris K. U.; Rein, Arno; Miltner, Anja

    2014-01-01

    Metabolism of a low-solubility substrate is limited by dissolution and availability and can hardly be determined. We developed a numerical model for simultaneously calculating dissolution kinetics of such substrates and their metabolism and microbial growth (Monod kinetics with decay) and tested ...

  14. Effects of a bacterial inoculant on potato hash silage quality, growth ...

    African Journals Online (AJOL)

    nkosi

    South African Journal of Animal Science 2010, 40 (Issue 5, Supplement 1) ... Growth performance of feedlot weaners cattle fed diet containing different levels of cold press .... iodine 0.025 g, cobalt 0.25 g; magnesium 150 g and selenium 0.3 g.

  15. Growth rates and energy intake of hand-reared cheetah cubs (Acinonyx jubatus) in South Africa.

    Science.gov (United States)

    Bell, K M; Rutherfurd, S M; Morton, R H

    2012-04-01

    Growth rate is an important factor in neonatal survival. The aim of this study was to determine growth rates in hand-reared cheetah cubs in South Africa fed a prescribed energy intake, calculated for growth in the domestic cat. Growth was then compared with previously published data from hand-reared cubs in North America and the relationship between growth and energy intake explored. Daily body weight (BW) gain, feed and energy intake data was collected from 18 hand-reared cheetah cubs up to 120 days of age. The average pre-weaning growth rate was 32 g/day, which is lower than reported in mother-reared cubs and hand-reared cubs in North American facilities. However, post-weaning growth increased to an average of 55 g/day. Growth was approximately linear prior to weaning, but over the entire age range it exhibited a sigmoidal shape with an asymptotic plateau averaging 57 kg. Energy intake associated with pre-weaning growth was 481 kJ ME/kg BW(0.75). Regression analysis described the relationship between metabolic BW, metabolisable energy (ME) intake, and hence daily weight gain. This relationship may be useful in predicting energy intake required to achieve growth rates in hand-reared cheetah cubs similar to those observed for their mother-reared counterparts. © 2011 Blackwell Verlag GmbH.

  16. The effect of temperature and effluent recycle rate on hydrogen production by undefined bacterial granules.

    Science.gov (United States)

    Ngoma, L; Masilela, P; Obazu, F; Gray, V M

    2011-10-01

    Biohydrogen production in an anaerobic fluidized granular bed bioreactor was strongly dependent on temperature and effluent recycle rates. At 45 °C as the effluent recycle rate was increased from 1.3 to 3.5 L/min, the total H₂ output for the bioreactor increased from 10.6 to 43.2 L/h. Volumetric H(2) productivity also increased from 2.1 to 8.7 L H₂/L/h. At 70°C as the effluent recycle was increased from 1.3 to 3.5 L/min, the total H₂ output for the bioreactor increased from 13.8 to 73.8L/h. At 70 °C volumetric H(2) productivities increased from 2.8 to 14.8L H₂/L/h as the effluent recycle rate was increased from 1.3 to 3.5 L/min. At 45 °C % H₂ was 45% and reached 67% at 70 °C. Maximum hydrogen yields at 45 °C were 1.24 and 2.2 mol H₂/mol glucose at 70 °C. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Influence of temperature on growth rate and lag phase of fungi isolated from Argentine corn.

    Science.gov (United States)

    González, H H; Resnik, S L; Vaamonde, G

    1988-03-01

    The influence of temperature on the growth of nine strains of fungi belonging to the genera Eurotium, Aspergillus, Penicillium and Fusarium has been investigated for the temperature range 15-35 degrees C. The lag phase and the growth rate were evaluated by using a laboratory medium. The maximum growth rate for E. repens, A. wentii and P. chrysogenum was observed at about 25 degrees C, for P. citrinum near 30 degrees C and for F. semitectum and F. moniliforme between 20 and 25 degrees C. The growth rate of A. niger, A. flavus and A. parasiticus increased with increasing temperatures in the range studied. For all strains studied it appeared that the higher the growth rate the lower the lag phase was.

  18. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design

    DEFF Research Database (Denmark)

    Fazio, Alessandro; Jewett, Michael Christopher; Daran-Lapujade, Pascale

    2008-01-01

    , such as Ace2 and Swi6, and stress response regulators, such as Yap1, were also shown to have significantly enriched target sets. Conclusion: Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more......Background: Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three...... factors we considered were specific growth rate, nutrient limitation, and oxygen availability. Results: We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which m...

  19. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

    International Nuclear Information System (INIS)

    Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.

    2012-01-01

    The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

  20. Artificial neural network-based predictive model for bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products.

    Science.gov (United States)

    Lou, W; Nakai, S

    2001-04-01

    The data of Devilieghere et al. (Int. J. Food Microbiol. 1999, 46, 57--70) on bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products was processed for estimating maximum specific growth rate mu(max) and lag phase lambda of Lactobacillus sake using artificial neural networks-based model (ANNM) computation. The comparison between ANNM and response surface methodology (RSM) model showed that the accuracy of ANNM prediction was higher than that of RSM. Two-dimensional and three-dimensional plots of the response surfaces revealed that the relationships of water activity a(w), temperature T, and dissolved CO(2) concentration with mu(max) and lambda were complicated, not just linear or second-order relations. Furthermore, it was possible to compute the sensitivity of the model outputs against each input parameter by using ANNM. The results showed that mu(max) was most sensitive to a(w), T, and dissolved CO(2) in this order; whereas lambda was sensitive to T the most, followed by a(w), and dissolved CO(2) concentrations.

  1. Variability in growth rates of larval haddock in the northern North Sea

    DEFF Research Database (Denmark)

    Gallego, A.; Heath, M.R.; Basford, D.J.

    1999-01-01

    of the spring plankton production bloom, and a likely explanation for the absence of environmental effects on larval growth was high food availability and larval feeding rates. Nevertheless, differences in growth were observed between cohorts, with larvae hatched later in the spring displaying higher growth...... at age than those hatched earlier. Particle-tracking modelling suggested that differences in temperature history between cohorts, on their own or compounded by a potential interaction between temperature and the development of plankton production, may explain the higher growth rate of the larvae hatched...

  2. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death.

    Science.gov (United States)

    Fan, Yanhua; Liu, Xi; Keyhani, Nemat O; Tang, Guirong; Pei, Yan; Zhang, Wenwen; Tong, Sheng

    2017-02-28

    The regulatory network and biological functions of the fungal secondary metabolite oosporein have remained obscure. Beauveria bassiana has evolved the ability to parasitize insects and outcompete microbial challengers for assimilation of host nutrients. A novel zinc finger transcription factor, BbSmr1 ( B. bassiana secondary metabolite regulator 1), was identified in a screen for oosporein overproduction. Deletion of Bbsmr1 resulted in up-regulation of the oosporein biosynthetic gene cluster ( OpS genes) and constitutive oosporein production. Oosporein production was abolished in double mutants of Bbsmr1 and a second transcription factor, OpS3 , within the oosporein gene cluster ( ΔBbsmr1ΔOpS3 ), indicating that BbSmr1 acts as a negative regulator of OpS3 expression. Real-time quantitative PCR and a GFP promoter fusion construct of OpS1 , the oosporein polyketide synthase, indicated that OpS1 is expressed mainly in insect cadavers at 24-48 h after death. Bacterial colony analysis in B. bassiana -infected insect hosts revealed increasing counts until host death, with a dramatic decrease (∼90%) after death that correlated with oosporein production. In vitro studies verified the inhibitory activity of oosporein against bacteria derived from insect cadavers. These results suggest that oosporein acts as an antimicrobial compound to limit microbial competition on B. bassiana -killed hosts, allowing the fungus to maximally use host nutrients to grow and sporulate on infected cadavers.

  3. Exposure of P. gingivalis to noradrenaline reduces bacterial growth and elevates ArgX protease activity.

    Science.gov (United States)

    Saito, Takayuki; Inagaki, Satoru; Sakurai, Kaoru; Okuda, Katsuji; Ishihara, Kazuyuki

    2011-03-01

    Periodontitis, an infectious disease caused by periodontopathic bacteria, including Porphyromonas gingivalis, is reported to be accelerated by stress, under which noradrenaline levels are increased in the bloodstream. The purpose of this study was to evaluate the effects of noradrenaline on P. gingivalis. P. gingivalis was incubated in the presence of 25μM, 50μM, or 100μM adrenaline or noradrenaline at 37°C for 12, 24 or 36h and growth was evaluated by OD(660). Auto-inducer-2 (AI-2) was measured by luminescence of Vibrio harveyi BB 170. Expression of P. gingivalis genes was evaluated using a microarray and RT-PCR. Rgp activity of arg-gingipainA and B (Rgp) was measured with a synthetic substrate. Growth of P. gingivalis FDC381 was inhibited by noradrenaline at 24 and 36h. Growth inhibition by noradrenaline increased dose-dependently. Inhibition of growth partially recovered with addition of propranolol. AI-2 production from P. gingivalis showed a marked decrease with addition of noradrenaline compared with peak production levels in the control group. Microarray analysis revealed an increase in expression in 18 genes and a decrease in expression in 2 genes. Amongst these genes, expression of the protease arg-gingipainB (RgpB) gene, a major virulence factor of P. gingivalis, was further analysed. Expression of rgpB showed a significant increase with addition of noradrenaline, which was partially reduced by addition of propranolol. Cell-associated Rgp activity also increased with addition of noradrenaline. These results suggest that stressors influence the expression of the virulence factors of P. gingivalis via noradrenaline. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. The effect of a changed environment on bacterial colonization rates in an established burns centre.

    Science.gov (United States)

    Wormald, P J

    1970-12-01

    In an established burns centre which moved from an old building to new purpose-designed premises, colonization rates of patients' burns with Staphylococcus aureus, Pseudomonas aeruginosa and other Gram-negative bacilli were not reduced. Colonization rates with Streptococcus pyogenes increased but the increase was mainly due to multiple importations in the new premises of a strain of higher communicability than any seen in the old.In the first 32 months in the new environment 10 patients were found colonized with pseudomonas on admission and 20 became colonized in the unit. A much higher proportion of patients with burns of more than 30% body surface became colonized than of patients with less. About one-third of the above 20 patients became colonized with strains already isolated from another patient; all but one of them had small area burns. Cross-infection was not observed from numerous heavily colonized patients with high percentage burns. This paradox is discussed in detail. Basin outflows in the new premises became colonized with P. aeruginosa of two serotypes not found on patients in this unit.

  5. Characterization of the sulfate uptake and assimilation pathway from Xanthomonas citri - targets for bacterial growth inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Tambascia, C.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: Microorganisms require sulfur for growth and obtain it either for inorganic sulfate or organosulfur compounds. ATP-Binding Cassete (SulT family) or major facilitator superfamily-type (SulP) transporters are responsible for the sulfate transport into the cell. In Xanthomonas citri, the phytopathogenic bacterium that causes the canker citrus disease, there are no reports related to the importance of these transporters during in vitro or in vivo infection. We identified in X. citri genome all the genes that belong to the well-characterized cys regulon from Escherichia coli and Salmonella typhimurium, which includes three ABC transporters and all the enzymes necessary for sulfate oxide reduction to sulfide and cysteine. Once these genes have been shown to be extremely important for bacteria growth and development in different environments, we chose the sbpcysWUA and cysDNCHIJG operons, which encodes the ABC inorganic sulfate ABC transporter and all the enzymes necessary for conversion of sulfate in cysteine, respectively. As a step for crystallization trials and resolution of their tridimensional structures, the referred genes were amplified and cloned into the cloning vector pGEM T-easy. In addition, using bioinformatics tools and molecular modeling we characterized all the protein functions as well as built tridimensional models of their structure for determination of the active sites. The importance of each protein is discussed aiming the discovery of a good target for development of inhibitors that could block the bacterium growth. (author)

  6. Characterization of the sulfate uptake and assimilation pathway from Xanthomonas citri - targets for bacterial growth inhibitors

    International Nuclear Information System (INIS)

    Tambascia, C.; Balan, A.

    2012-01-01

    Full text: Microorganisms require sulfur for growth and obtain it either for inorganic sulfate or organosulfur compounds. ATP-Binding Cassete (SulT family) or major facilitator superfamily-type (SulP) transporters are responsible for the sulfate transport into the cell. In Xanthomonas citri, the phytopathogenic bacterium that causes the canker citrus disease, there are no reports related to the importance of these transporters during in vitro or in vivo infection. We identified in X. citri genome all the genes that belong to the well-characterized cys regulon from Escherichia coli and Salmonella typhimurium, which includes three ABC transporters and all the enzymes necessary for sulfate oxide reduction to sulfide and cysteine. Once these genes have been shown to be extremely important for bacteria growth and development in different environments, we chose the sbpcysWUA and cysDNCHIJG operons, which encodes the ABC inorganic sulfate ABC transporter and all the enzymes necessary for conversion of sulfate in cysteine, respectively. As a step for crystallization trials and resolution of their tridimensional structures, the referred genes were amplified and cloned into the cloning vector pGEM T-easy. In addition, using bioinformatics tools and molecular modeling we characterized all the protein functions as well as built tridimensional models of their structure for determination of the active sites. The importance of each protein is discussed aiming the discovery of a good target for development of inhibitors that could block the bacterium growth. (author)

  7. Growth Rates of Bacillus Species Probiotics using Various Enrichment Media

    Directory of Open Access Journals (Sweden)

    Maryam Poormontaseri

    2017-03-01

    Full Text Available Background: Probiotics are well-known as valuable functional foods to promote specific health benefits to consumers. Some Bacillus bacteria have been recently considered as probiotic and food additives. We aimed to investigate the growing rate of probiotic B. subtilis and B. coagulans using several enrichment media incubated at 37 °C for 24 hours. Methods: Various enrichment media including nutrient broth (NB, tryptic soy broth (TSB, double strength TSB, Mueller Hinton broth (MH, brain-heart infusion broth (BHIB, de Man, Rogosa and Sharpe (MRS, and nutrient yeast extract salt medium (NYSM were used to enrich the probiotics and they were subsequently incubated for 18 h at 37 °C. The bacteria were then enumerated on TSA medium. Results: The results showed that B. subtilis ATCC 6633, B. subtilis PY79, and B. coagulans developed in TSB, double strength TBS, TSB yeast extract, BHIB and NYSM, respectively. Moreover, the formulas were achieved based on the optical density curve and the number of bacteria. Conclusion: Considering that the probiotics are significantly employed as food supplements, it is essential to identify appropriate enrichment media to proliferate these beneficial bacteria.

  8. Evidence of A Bimodal US GDP Growth Rate Distribution: A Wavelet Approach

    Directory of Open Access Journals (Sweden)

    Sandro Claudio Lera

    2017-04-01

    Full Text Available We present a quantitative characterisation of the fluctuations of the annualized growth rate of the real US GDP per capita at many scales, using a wavelet transform analysis of two data sets, quarterly data from 1947 to 2015 and annual data from 1800 to 2010. The chosen mother wavelet (first derivative of the Gaussian function applied to the logarithm of the real US GDP per capita provides a robust estimation of the instantaneous growth rate at different scales. Our main finding is that business cycles appear at all scales and the distribution of GDP growth rates can be well approximated by a bimodal function associated to a series of switches between regimes of strong growth rate $\\rho_\\text{high}$ and regimes of low growth rate $\\rho_\\text{low}$. The succession of such two regimes compounds to produce a remarkably stable long term average real annualized growth rate of 1.6% from 1800 to 2010 and $\\approx 2.0\\%$ since 1950, which is the result of a subtle compensation between the high and low growth regimes that alternate continuously. Thus, the overall growth dynamics of the US economy is punctuated, with phases of strong growth that are intrinsically unsustainable, followed by corrections or consolidation until the next boom starts. We interpret these findings within the theory of "social bubbles" and argue as a consequence that estimations of the cost of the 2008 crisis may be misleading. We also interpret the absence of strong recovery since 2008 as a protracted low growth regime $\\rho_\\text{low}$ associated with the exceptional nature of the preceding large growth regime.

  9. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic

    Science.gov (United States)

    Bjorndal, Karen A.; Bolten, Alan B.; Chaloupka, Milani; Saba, Vincent S.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Santos, Armando J.B.; Bortolon, Luis Felipe Wurdig; Meylan, Anne B.; Meylan, Peter A.; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C.; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E.; van Dam, Robert P.; Willis, Sue; Nava, Mabel; Hart, Kristen M.; Cherkiss, Michael S.; Crowder, Andrew; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A.; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M.; Foley, Allen M.; Bailey, Rhonda; Carthy, Raymond R.; Scarpino, Russell; McMichael, Erin; Provancha, Jane A.; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M.; Boulon, Ralf H.; Collazo, Jaime; Wershoven, Robert; Hernández, Vicente Guzmán; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Metz, Tasha L.; Gordon, Amanda L.; Landry, Andre M.; Shaver, Donna J.; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J.; McGowan, Andrew; Witt, Matthew J.; Campbell, Cathi L.; Lagueux, Cynthia J.; Bethel, Thomas L.; Kenyon, Lory

    2017-01-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles – hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta – exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) – the strongest on record – combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study

  10. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic.

    Science.gov (United States)

    Bjorndal, Karen A; Bolten, Alan B; Chaloupka, Milani; Saba, Vincent S; Bellini, Cláudio; Marcovaldi, Maria A G; Santos, Armando J B; Bortolon, Luis Felipe Wurdig; Meylan, Anne B; Meylan, Peter A; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E; van Dam, Robert P; Willis, Sue; Nava, Mabel; Hart, Kristen M; Cherkiss, Michael S; Crowder, Andrew G; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M; Foley, Allen M; Bailey, Rhonda; Carthy, Raymond R; Scarpino, Russell; McMichael, Erin; Provancha, Jane A; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M; Boulon, Ralf H; Collazo, Jaime A; Wershoven, Robert; Guzmán Hernández, Vicente; Stringell, Thomas B; Sanghera, Amdeep; Richardson, Peter B; Broderick, Annette C; Phillips, Quinton; Calosso, Marta; Claydon, John A B; Metz, Tasha L; Gordon, Amanda L; Landry, Andre M; Shaver, Donna J; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J; McGowan, Andrew; Witt, Matthew J; Campbell, Cathi L; Lagueux, Cynthia J; Bethel, Thomas L; Kenyon, Lory

    2017-11-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the

  11. Population Growth Rate, Life Expectancy and Pension Program Improvement in China

    OpenAIRE

    Yang, Zaigui

    2008-01-01

    Applying an overlapping-generations model with lifetime uncertainty, we examine in this paper China’s partially funded public pension system. The findings show that the individual contribution rate does not affect the capital-labor ratio but the firm contribution rate does. The optimal firm contribution rate depends on the capital share of income, social discount factor, survival probability, and population growth rate. The simulation results indicate that the optimal firm contribution rate r...

  12. Impact of Macroeconomic Policies on Poverty and Unemployment Rates in Nigeria, Implications for Attaining Inclusive Growth

    Directory of Open Access Journals (Sweden)

    Philip Nwosa

    2016-04-01

    Full Text Available This paper examined the effect of macroeconomic policies on unemployment and poverty rates in Nigeria from 1980 to 2013 with implication to achieving inclusive growth. The inability of macroeconomic policies in addressing the rising issues unemployment and poverty rates in Nigeria despite the impressive economic growth experience over the last decades has increasingly called for the need for the pursuance of inclusive growth to address the social issues of unemployment and poverty rate. Previous studies have not considered the extent to which macroeconomic policies affects unemployment and poverty rate in Nigeria, and the implication of this relationship to the attainment of inclusive growth in Nigeria. The study adopts the Ordinary Least Square (OLS technique. The study observed that among macroeconomic policy variables only exchange rate significantly influenced unemployment rate while only fiscal policy significantly influenced and poverty rate. This implies that present macroeconomic policies in Nigeria do not guarantee the attainment of inclusive growth in Nigeria. The contribution of the paper is that to achieve inclusive growth that guarantees high employment and reduced poverty rate, there is the need for a re-examination of macroeconomic policy management in Nigeria.

  13. Effect of milk sample delivery methods and arrival conditions on bacterial contamination rates.

    Science.gov (United States)

    Dinsmore, R P; English, P B; Matthews, J C; Sears, P M

    1990-07-01

    A cross sectional study was performed of factors believed to contribute to the contamination of bovine milk sample cultures submitted to the Ithaca Regional Laboratory of the Quality Milk Promotion Services/New York State Mastitis Control. Of 871 samples entered in the study, 137 (15.7%) were contaminated. There were interactions between the sample source (veterinarian vs dairyman), delivery method, and time between sample collection and arrival at the laboratory. If only those samples collected and hand delivered by the dairyman within 1 day of collection were compared to a like subset of samples collected and hand delivered by veterinarians, no statistically significant differences in milk sample contamination rate (MSCR) were found. Samples were delivered to the laboratory by hand, US Postal Service, United Parcel Service, via the New York State College of Veterinary Medicine Diagnostic Laboratory, or Northeast Dairy Herd Improvement Association Courier. The MSCR was only 7.6% for hand delivered samples, while 26% of Postal Service samples were contaminated. These rates differed significantly from other delivery methods (P less than 0.0001). The USPS samples arrived a longer time after sampling than did samples sent by other routes, and time had a significant effect on MSCR (0 to 1 day, 8.9%; greater than 1 day, 25.9%; P less than 0.01). Samples packaged with ice packs sent by routes other than the Postal Service had a lower MSCR than those not packaged with ice packs, but ice packs did not reduce the MSCR for samples sent by the Postal Service.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.

    Science.gov (United States)

    Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P

    2009-07-31

    In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be

  15. The effect of rumen content transfer on rate of bacteria and protozoa growth

    International Nuclear Information System (INIS)

    Suharyono; M Winugroho; Y Widiati; S Marijati

    1998-01-01

    The aims the experiment wants to know the benefit of rate of microbial protein in rumen content and to complete the information that isolates is useful for ruminant animals feed. The result indicated that buffaloes from East Nusa Tenggara is the best when they are used as donor rumen transfer making isolate. When rumen of ongole cattle generation was mixed in rumen content of buffaloes from East Nusa Tenggara and incubated 48 h, the rate of bacteria cell growth is better than rate of protozoa cell growth comparing to the other animals. The values are 30.99 mg/h/100 ml and 24.92 mg.h/100 ml respectively. The results of isolate selection in 48 h incubation indicated that treatment F is the best. The results rates of bacteria cell growth and rate of protozoa's cell growth are 26.96 mg/h/100 ml and 2.53 mg/h/100 respectively. The result of in vitro study indicated that pH and ammonia concentration support the rate of bacteria cell growth and do not cause the toxicity of microbes and animal . The rate of bacteria cell growth on D treatment is significant to A,B, and C treatments. The values are 21.44 mg/h/100 ml. 7.99; 13.13; and 13.38 mg/h/100 ml respectively. The result rates of protozoa's cell growth tends lower than rates of bacteria cell. The overall conclusion is a lower or a higher rate of microorganism cell growth depends on the environment condition. (author)

  16. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  17. Data compilation of respiration, feeding, and growth rates of marine pelagic organisms

    DEFF Research Database (Denmark)

    2013-01-01

    's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from...

  18. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2016-04-01

    Full Text Available This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2′-deoxyuridine was injected to label proliferating chondrocytes on days 8–10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3 or bone morphogenetic protein-2 (BMP-2 in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  19. Age, growth rate, and otolith growth of polar cod (Boreogadus saida in two fjords of Svalbard, Kongsfjorden and Rijpfjorden

    Directory of Open Access Journals (Sweden)

    Dariusz P. Fey

    2017-10-01

    Full Text Available This work presents biological information for polar cod (Boreogadus saida collected with a Campelen 1800 shrimp bottom trawl in Kongsfjorden (two stations located in the inner part of the fjord adjacent to the glacier and Rijpfjorden (one station at the entrance to the fjord in September and October 2013. The otolith-based ages of polar cod collected in Kongsfjorden (6.1–24 cm total length TL; n = 813 ranged from 0 to 4 years. The growth rate was relatively constant at approximately 4.7 cm year−1 between years 1 and 4, which indicates that growth was fast in the glacier area. The ages of polar cod collected in Rijpfjorden (8.6–15.9 cm TL; n = 64 ranged from 2 to 3 years. The fish from Rijpfjorden were smaller at age than those from Kongsfjorden, and their growth rate between years 2 and 3 (no other age classes were available was approximately 3.3 cm year−1. In both fjords, males and females were of the same size-at-age and the same weight-at-TL. The small sampling area means that the results on growth rate are not representative of the entire fjords. Instead, the results can be discussed as presenting the possible growth rates of some populations. A strong relationship was identified between otolith size (length and weight and fish size (TL and TW, with no differences between males and females or the fjords. A significant, strong relationship was also noted between fish and otolith growth rates.

  20. The effect of compensatory growth on feed intake, growth rate and ...

    African Journals Online (AJOL)

    in feed utilization from the 0,65 and to the ad libitum group. More severe restrictions ... to manage his animals at the lowest possible cost. Normally after a time of feed ... tory growth can be explained in terms of a reduction of maintenance ...

  1. Combination of therapeutic ultrasound with antibiotics interfere with the growth of bacterial culture that colonizes skin ulcers: An in-vitro study.

    Science.gov (United States)

    Guirro, Elaine Caldeira de Oliveira; Angelis, Dejanira de Franceschi de; Sousa, Natanael Teixeira Alves de; Guirro, Rinaldo Roberto de Jesus

    2016-09-01

    Staphylococcus aureus and Escherichia coli are among the major bacterial species that colonize skin ulcers. Therapeutic ultrasound (TUS) produces biophysical effects that are relevant to wound healing; however, its application over a contaminated injury is not evidence-based. The objective of this research was to analyze the effect of TUS on in vitro-isolated S. aureus and E. coli, including the combination of ultrasound and antibiotics, in order to assess their antibiotic action on bacterial susceptibility. For the experiments, the bacterial strains were suspended in saline, then diluted (10(4)CFU/mL) for irradiation (at 1 and 3MHz, 0.5 and 0.8W/cm(2) for 0 and 15min) and the combination treatment of ultrasonication and antibiotics was administered by adding nalidixic acid (S. aureus) and tetracycline (E. coli) at concentrations equivalent to 50% of the minimum inhibitory concentration (MIC). The experiments were carried out in duplicate with six repetitions. The suspensions were inoculated on to Petri plates and incubated at 37°C and the colony forming units (CFUs) were counted after 24h. The results were subjected to the Shapiro-Wilk normality test, followed by parametric ANOVA and Tukey's post hoc test at a significance level of 1%. The results demonstrated that the action of TUS at 1MHz inhibited bacterial growth while at 3MHz, bacterial growth was observed in both species. However, the synergistic combination of ultrasound and antibiotics was able to inhibit the growth of both bacteria completely after 15min of ultrasonication. The results suggest that the action of ultrasound on S. aureus and E. coli are dependent on the oscillation frequency as well as the intensity and time of application. The combination of ultrasound with antibiotics was able to inhibit bacterial growth fully at all frequencies and doses in both species. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Longitudinal Study and Color Rating System of Acquisition Cost Growth

    Science.gov (United States)

    2017-03-23

    cost growth analysis. Ways in which this research can be carried forward include: • Collect more SAR data to further populate our research database... Growth Cory N. D’Amico Follow this and additional works at: https://scholar.afit.edu/etd Part of the Finance and Financial Management Commons This...and Color Rating System of Acquisition Cost Growth " (2017). Theses and Dissertations. 781. https://scholar.afit.edu/etd/781 A Longitudinal

  3. The dependence of the growth rate and meat content of young boars on semen parameters and conception rate.

    Science.gov (United States)

    Knecht, D; Jankowska-Mąkosa, A; Duziński, K

    2017-05-01

    Boars have a decisive impact on the progress in pig production, however, there is no recent information about the optimal growth parameters during the rearing period for modern breed later used in artificial insemination (AI) stations. Therefore, the objective of the research was to conduct semen parameter and conception rate analyses on the basis of growth rate and meat content assessments made during the rearing of AI boars of different genotypes. The study was carried out between 2010 and 2014 and included 184 boars in five breed combinations: 46 Polish Large White, 50 Polish Landrace, 27 Pietrain, 36 Duroc×Pietrain and 25 Hampshire×Pietrain. Boars were qualified by daily gains and meat content assessment (between 170 and 210 days of life). A total number of 38 272 ejaculates were examined (semen volume (ml), spermatozoa concentration (×106 ml-1), total number of spermatozoa (×109) and number of insemination doses from one ejaculate (n)). The fertility was determined by the conception rate (%). Semen volume, spermatozoa concentration and conception rate (PMeat content affected semen volume, number of insemination doses and conception rate (Pmeat content helps AI stations to increase the efficiency and economic profitability, and the number of insemination doses to increase by up to 300 doses/boar within a year. The analyses of growth parameters may help increase the efficiency and economic viability of AI stations.

  4. A panel data investigation of real exchange rate misalignment and growth

    Directory of Open Access Journals (Sweden)

    Flávio Vilela Vieira

    2012-09-01

    Full Text Available The paper investigates the role of real exchange rate misalignment on long-run growth for a set of ninety countries using time series data from 1980 to 2004. We first estimate a panel data model (fixed and random effects for the real exchange rate in order to produce estimates of the equilibrium real exchange rate and this is then used to construct measures of real exchange rate misalignment. We provide an alternative set of estimates of RER misalignment using panel cointegration methods. The results for the two-step System GMM panel growth models indicate that the coefficients for real exchange rate misalignment are positive for different model specification and samples, which means that a more depreciated (appreciated real exchange rate helps (harms long-run growth. The estimated coefficients are higher for developing and emerging countries.

  5. Growth rate and chemical composition of a manganese nodule from the EEZ of Seychelles

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Borole, D.V.

    mhe ferro-manganese nodule collected in EEZ of Seychelles yields a growth rate of 1.5 mm/10 6Y 230Th (ex)/ and 230Th (ex)/ 232Th activity ratio methods indicating very slow growth of ferro-manganese nodules. The Mn/Fe and U/Th ratios suggest...

  6. Population Growth Rate: Teaching Guide. Measures of Progress Poster Kit Number 2.

    Science.gov (United States)

    World Bank, Washington, DC.

    This teaching guide accompanies the Population Growth Rate poster kit which is designed to teach students about population growth differences between rich and poor nations and about what people in developing countries are doing to help improve their quality of life. The guide is designed for use with: (1) a poster map of the world providing social…

  7. Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints

    NARCIS (Netherlands)

    Asheim, G.B.; Buchholz, W.; Hartwick, J.M.; Mitra, T.; Withagen, C.A.A.M.

    2007-01-01

    In the Dasgupta–Heal–Solow–Stiglitz (DHSS) model of capital accumulation and resource depletion we show the following equivalence: if an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a

  8. Regeneration and growth rates of allofragments in four common stream plants

    DEFF Research Database (Denmark)

    Riis, Tenna; Madsen, Tom Vindbæk; Sennels, R. S. H.

    2009-01-01

    perfoliatus L. and Ranunculus baudotii x pseudofluitans. The objectives of this study were to determine (1) if shoots with an apical tip have higher regeneration (growth of new shoots and rhizomes from allofragments) and colonisation (root attachment in sediment) abilities and higher relative growth rates...

  9. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  10. The effect of salinity on growth rate and osmolyte concentration of ...

    African Journals Online (AJOL)

    Although at a slower rate, growth is maintained in seawater cultures supplemented with nutrients. Differences were found in carbohydrate content between cultures in different growth media. The highest carbohydrate content was observed in cultures growing in Zarrouk medium supplemented with 4 NaCl and in seawater ...

  11. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds

    NARCIS (Netherlands)

    Schekkerman, H.; Tulp, I.Y.M.; Piersma, T.; Visser, G.H.

    2003-01-01

    We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold

  12. Comparison of cyanobacterial and green algal growth rates at different temperatures

    NARCIS (Netherlands)

    Lurling, M.; Faassen, E.J.; Kosten, S.; Eshetu, Z.; Huszar, V.M.

    2013-01-01

    1.The hypothesis that cyanobacteria have higher optimum growth temperatures and higher growth rates at the optimum as compared to chlorophytes was tested by running a controlled experiment with eight cyanobacteria species and eight chlorophyte species at six different temperatures (20-35°C) and by

  13. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds

    NARCIS (Netherlands)

    Schekkerman, H; Tulp, Ingrid; Piersma, T.; Visser, G.H.

    We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold

  14. Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients

    International Nuclear Information System (INIS)

    Munro, D.H.

    1988-01-01

    The growth rate of perturbations on the shell of a laser fusion target can be estimated as √gk , where g is the shell acceleration and k is the transverse wave number of the perturbation. This formula overestimates the growth rate, and should be modified for the effects of density gradients and/or ablation of the unstable interface. The density-gradient effect is explored here analytically. With the use of variational calculus to explore all possible density profiles, the growth rate is shown to exceed √gk/(1+kL) , where L is a typical density-gradient scale length. Density profiles actually exhibiting this minimum growth rate are found

  15. Impact of delays in plutonium use on the stationary growth rate of fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Borg, R.C.; Ott, K.O.

    1977-07-01

    The hierarchy of the four growth rate expressions originally derived from an instantaneous reuse scheme is expanded to account for finite burnup in the core and blanket, β-decay of 241 Pu, core and blanket loading schemes, reuse delays due to reprocessing and fabricating fuel and external fuel cycle losses. The most general growth rate expression, obtained from the asymptotic slope of the accumulating fuel material in an expanding park of breeder reactors, is formally the same in both cases. Formulation of the growth rate based on the condensation of the detailed information of the equilibrium fuel cycle for a single reactor, is more complicated than without delays due to the composition difference between the average residing and excess discharge material. The third growth rate expression results from a slightly more complicated fuel-cycle eigenvalue problem than without delays. The last definition employs isotopic breeding worth factors obtained from the adjoint fuel cycle eigenvalue problem

  16. Study on the PWSCC Crack Growth Rate for Steam Generator Tubing

    International Nuclear Information System (INIS)

    Kang, Shin Hoo; Hwang, Il Soon; Lim, Jun; Lee, Seung Gi; Ryu, Kyung Ha

    2008-03-01

    Using in-situ Raman spectroscopy and crack growth rate lest system in simulated PWR primary water environment, the relationship between the oxide film chemistry and the PWSCC growth rate has been studied. We used I/2T compact tension specimen and disk specimen made of Alloy 182 and Alloy 600 for crack growth rate test and in-situ Raman spectroscopy measurement. Test was made in a refreshed autoclave with 30 cc STP / kg of dissolved hydrogen concentration. Conductivity, pH, dissolved hydrogen and oxygen concentration were continuously monitored at the outlet. The crack growth rate was measured by using switching DCPD technique under cyclinc triangular loading and at the same time oxide phase was determined by using in-situ Raman spectra at the elevation of the temperature. Additionally Raman spectroscopy was achieved for oxide phase transition of Alloy 600 according to the temperature and dissolved hydrogen concentration, 2 and 30cc STP / kg

  17. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan; Arandia-Gorostidi, Nestor; Dí az-Pé rez, Laura; Moran, Xose Anxelu G.

    2015-01-01

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We

  18. Modelling the effect of ethanol on growth rate of food spoilage moulds

    NARCIS (Netherlands)

    Dantigny, P.; Guilmart, A.; Radoi, F.; Bensoussan, M.; Zwietering, M.H.

    2005-01-01

    The effect of ethanol (E) on the radial growth rate (¿) of food spoilage moulds (Aspergillus candidus, Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Eurotium herbariorum, Mucor circinelloides, Mucor racemosus, Paecilomyces variotii, Penicillium chrysogenum, Penicillium

  19. Circadian cycles in growth and feeding rates of heterotrophic protist plankton

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Strom, S.L.

    2004-01-01

    Growth and feeding rates of four species of planktonic marine heterotrophic protists showed pronounced diel cycles. In most cases, rates were higher during the day and lower at night. However, for the ciliate Strobilidium sp., growth was highest at night. In another ciliate species, Balanion...... comatum, no day-night difference in growth and feeding rates was found. Maintenance of day-night rate differences during 24-h exposures to continuous darkness demonstrated that most of these protists had circadian cycles. The heterotrophic dinoflagellate Oxyrrhis marina exhibited a clear irradiance...... to culturing in a day: night light cycle in O. marina and found that resetting the circadian cycle in this dinoflagellate temporarily arrested growth and feeding. We suggest that protists use a time-integrated light threshold rather than an instantaneous irradiance to maintain the circadian cell cycle...

  20. Growth performance and carcass traits in pigs selected for indirect genetic effects on growth rate in two environments

    NARCIS (Netherlands)

    Camerlink, I.; Bolhuis, J.E.; Duijvesteijn, N.; Arendonk, van J.A.M.; Bijma, P.

    2014-01-01

    Production traits such as growth rate may depend on the social interactions between group members. These social interactions might be partly heritable and are referred to as indirect genetic effects (IGE), social-, associative-, or competitive genetic effects. IGE may contribute to heritable

  1. Evaluation of hyperimmune colostrum production in bovine against cariogenic streptococci and its impact on growth and bacterial biofilm formation

    Directory of Open Access Journals (Sweden)

    Fateme Ramezanalizadeh

    2017-03-01

    Full Text Available Background and Aims: Dental caries is the most common infectious diseases. Among the oral bacteria, Streptococcus mutans and Streptococcus sobrinus are considered as the main causes of tooth decay. The aim of this study was to evaluate the production of hyperimmune bovine colostrum containing specific antibodies against cariogenic bacteria and its antimicrobial effects on the growth and adhesion of Streptococcus mutans and Streptococcus sobrinus in the laboratory. Materials and Methods: In this experimental study, three pregnant bovine immunized with killed antigens of strains of Streptococcus mutans, Streptococcus mutans with Streptococcus Sobrinus and Streptococcus sobrinus through intramuscular injections. After delivery, The colostrum samples were collected, and the changes of anti-streptococci antibodies titers in colostrum and serum were determined by agglutination. Also,their antimicrobial effects against the growth and adhesion of oral streptococci were surveyed by the microtiter plate method. Data were analysed by One-Wey ANOVA in SPSS software. Results: The results showed that in hyperimmunized bovine , the antibodies titers against injected bacteria were from 1.1000 to 1.3000 in sera samples and from 1.320 to 1.1280 in whey of colostrum samples. Colostrum of hyperimmune cows reduced the attachment of Streptococcus mutans and Streptococcus Sobrinus about 69 and 43 percents, respectively and also, the low dilutions of it reduced bacterial growth. Conclusion:  According to the antibacterial effect immune colostrum on two strains of cariogenic bacteria in vitro, It appears that this material could be useful in the prevention and control of dental caries.

  2. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  3. Inhibitory effects of medical plants on the Candida albicans and bacterial growth in the oral cavity

    Directory of Open Access Journals (Sweden)

    Tambur Zoran Z.

    2017-01-01

    Full Text Available In this mini-review, the authors discuss the effects of ethanol extracts, essential oils and cytotoxicity of some medicinal plants and their compounds used in ethno-medicine in different geographic regions worldwide, including Serbia, on the growth, mul­tiplication and pathogenicity of Candida albicans and bacteria that play the main role in the balance of the oral ecosystem. Various medicinal plants, such as Rosmarinus officinalis (Fam. Lamiaceae, Artemisia dracunculus, Artemisia absinthium (Fam. Asteraceae, exist in different geographic regions and continents, as well as in the Balkan region, and among them there are some indigenous species like Hypericum perforatum L. (Fam. Hypericaceae, Urtica dioica L. (U. dioica (Fam. Urticaceae, Achillea millefolium L. (Fam. Asteraceae, Matricaria chamomilla L. (Fam. Asteraceae, Sambucus nigra L. (Fam. Caprifoliaceae, and Thymus serpyllum L. (Fam. Lamiaceae with impressive antimicrobial activity against microorganisms originating from the oral cavity. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 34021

  4. Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth

    Science.gov (United States)

    Jarisz, Tasha A.; Lane, Sarah; Gozdzialski, Lea; Hore, Dennis K.

    2018-06-01

    Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.

  5. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria.

    Science.gov (United States)

    Zhao, Dan; Lim, Choon-Ping; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-03-01

    Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml(-1) iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml(-1) iodide (I(-)). When 10(6) CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I(2)), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml(-1), respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I(-)), the molecular iodine concentration was estimated to be 0.76 μg ml(-1) after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml(-1).

  6. Radiosensitivity of the swiss-rap mouse as a function of its growth rate

    International Nuclear Information System (INIS)

    Legeay, G.; Glas, J.F.

    1969-01-01

    The results of an exhaustive study of the age dependence of the radiosensitivity of female Swiss-Rap mice are given. A close relationship of radiosensitivity versus age could not be brought out, whereas the weekly growth rate could be accurately related to radiosensitivity. Thus, the latter should be studied when a strain is to be used for biological experiments, as the rates of growth are different with the strains. (author) [fr

  7. Exchange Rate Volatility and Employment Growth in Developing Countries: Evidence from Turkey

    OpenAIRE

    Demir, Firat

    2010-01-01

    Employing a unique panel of 691 private firms that accounted for 26% of total value-added in manufacturing in Turkey, the paper explores the impacts of exchange rate volatility on employment growth during the period of 1983 - 2005. The empirical analysis using a variety of specifications, estimation techniques, and robustness tests suggests that exchange rate volatility has a statistically and economically significant employment growth reducing effect on manufacturing firms. Using point estim...

  8. Generation and growth rates of nonlinear distortions in a traveling wave tube

    International Nuclear Information System (INIS)

    Woehlbier, John G.; Dobson, Ian; Booske, John H.

    2002-01-01

    The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results

  9. Interest Rate Deregulation, Bank Development And Economic Growth In South Africa: An Empirical Investigation

    OpenAIRE

    Nicholas M Odhiambo

    2010-01-01

    In this paper the dynamic relationship between interest rate reforms, bank-based financial development and economic growth is examined – using two models in a stepwise fashion. In the first model, the impact of interest rate reforms on financial development is examined using a financial deepening model. In the second model, the dynamic causal relationship between financial development and economic growth is examined, by including investment as an intermittent variable in the bi-variate settin...

  10. Nationwide Macroeconomic Variables and the Growth Rate of Bariatric Surgeries in Brazil.

    Science.gov (United States)

    Cazzo, Everton; Ramos, Almino Cardoso; Pareja, José Carlos; Chaim, Elinton Adami

    2018-06-06

    The effect of nationwide economic issues on the necessary expansion in the number of bariatric procedures remains unclear. This study aims to determine whether there are correlations between the growth rate in the number of bariatric surgeries and the major macroeconomic variables over time in Brazil. It is a nationwide analysis regarding the number of bariatric surgeries in Brazil and the main national macroeconomic variables from 2003 through 2016: gross domestic product (GDP), inflation rate, and the unemployment rate, as well as the evolution in the number of registered bariatric surgeons. There were significant positive correlations of the growth rate of surgeries with the early variations of the GDP (R = 0.5558; p = 0.04863) and of the overall health expenditure per capita (R = 0.78322; p = 0.00259). The growth rate of the number of bariatric surgeries was not correlated with the unemployment and inflation rates, as well as with the growth rate of available bariatric surgeons. There were direct relationships between the growth rate of bariatric surgeries and the evolutions of the GDP and health care expenditure per capita. These variables appear to influence the nationwide offer of bariatric surgery.

  11. Thermal effects on growth and respiration rates of the mayfly, Dolania americana (ephemeroptera)

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1975-01-01

    The mayfly Dolania Americana, common in the sand of Upper Three Runs Creek, Savannah River Plant, was studied to determine the effects of seasonal changes in temperature on population growth rates and to determine the effects of slight elevations in water temperature on respiration rates of this benthic species. Growth of the population increased with stream temperature until peak emergence of adults in June and July. There was a strong inverse correlation between body weight and respiration rates of immature nymphs. Respiration rates at 2.5, 5, and 10 0 C above ambient creekwater temperatures were not significantly higher than those measured at ambient creekwater temperatures. (auth)

  12. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Science.gov (United States)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  13. The Effect of CO2 Injection on Macroalgae Gelidium latifolium Biomass Growth Rate and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Mujizat Kawaroe

    2016-06-01

    Full Text Available There are many species of macroalga grow in marine ecosystem and potentially as raw material for bioethanol resource. Bioethanol is a conversion result of carbohydrate, one of macroalgae biomass content. The exploration of macroalgae require information about  growth rate ability to determine availability in the nature. This research analyze growth rate and carbohydrate content of marine macroalga Gelidium latifolium on cultivation using varied injection of carbon dioxide and aeration. The treatments were control (K, 2000 cc CO2 injection and aeration (P1, 3000 cc CO2 injection and aeration (P2, 2000 cc CO2 injection without aeration (P3, and 3000 cc CO2 injection without aeration (P4. Samples weight were 3 gram in early cultivation on laboratorium scale for 42 days observation. The results showed that the daily growth rate Gelidium latifolium during the study ranged from 0.02-1.06%. The highest daily growth rate was 1.06±0.14% (P2. Carbohydrate yield was 18.23% in early cultivation then 19.40% (K and P2, 20.40% (P1, 16.87% (K3, and 16.40% (P4 after cultivation. The high of carbohydrates value may not guarantee the sustainable Gelidium latifolium biomass utilization as raw material for bioethanol production because of the low growth rate, thus it is necessary to modified and encourage cultivation method effectively. Keywords: CO2 injection, growth rate, carbohydrate, macroalgae, Gelidium latifolium

  14. The frequency effect on the fatigue crack growth rate of 304 stainless steel

    International Nuclear Information System (INIS)

    Shih, Y.-S.; Chen, J.-J.

    1999-01-01

    Under cyclic loading condition, the fatigue crack growth (FCG) rate governed by stress intensity factor and stress ratio is well known; Walker's equation, Forman's equation and Elber's equation are typical formulae to describe the fatigue crack growth rate. However, the loading frequency effect on the fatigue crack growth rate has yet to be explored. Recently, studies have focused on the loading frequency effect on some visco-elastic materials, and have provided a clearer understanding of the frequency effect on the fatigue crack growth rate. In a physical sense, knowledge about the loading frequency effect on the fatigue crack growth rate for 304 stainless steel is still lacking. James conducted a lot of experiments, and through data analysis, he concluded an evaluation equation which is based upon the experimental illustration. In this study, the physical properties of the material are used to illustrate the modification of fatigue crack growth rate, and a new formula which is based upon the modified Forman's equation, is provided. (orig.)

  15. Diagnostic Accuracy of Growth Rate in Differentiating Etiologies of Short Stature in Children

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Alaei

    2016-08-01

    Full Text Available Background  Short stature is a manifestation of a wide variety of conditions that some of which may be amenable to timely treatment and a suboptimal growth rate may be an early marker pointing to the cause of growth retardation. This study was conducted to evaluate the diagnostic utility of growth rate in differential diagnosis of children with short stature. Materials and Methods All children between the ages of 2 and 18 years who visited in pediatric endocrinology clinic in a five years period were recruited in a prospective cohort study. Children with standing height Results One hundred forty three patients fulfilled the inclusion criteria. Mean follow up period was 14.4±10.9 months. Etiologies of short stature were: constitutional growth delay (CGD 46.9%, familial short stature (FSS 28.7%, hypothyroidism 4.2%, growth hormone deficiency (GHD 4.2% and miscellaneous causes in 16% of patients.  Mean Z- score for children with constitutional growth delay was -2.3±0.69, in familial short stature was -2.3±0.65 and for other condition was -2.7±1.49. There was a meaningful statistical correlation between growth rate and etiology of short stature (P0.05. Conclusion There was significant difference in growth rate between children with constitutional growth delay and familial short stature in comparing to short stature due to endocrine problem and other etiologies. Assessment of growth rate has some utility in diagnosing the etiology of short stature.

  16. Does growth rate determine the rate of metabolism in shorebird chicks living in the arctic?

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. Irene; Visser, G. Henk; Ricklefs, Robert E.

    2007-01-01

    We measured resting and peak metabolic rates (RMR and PMR, respectively) during development of chicks of seven species of shorebirds: least sandpiper (Calidris minutilla; adult mass 20 22 g), dunlin (Calidris alpina; 56-62 g), lesser yellowlegs (Tringa flavipes; 88-92 g), short-billed dowitcher

  17. Survey: Did the TFP Growth Rate in Japan Decline in the 1990s?(in Japanese)

    OpenAIRE

    INUI Tomohiko; KWON Hyeog Ug

    2004-01-01

    This paper surveys the body of research grounded on a basic question "Did the total factor productivity (TFP) growth rate in Japan decline in the 1990s?" In addition, using industry-level data of the Japan Industrial Productivity Database (JIP database) we estimate the mark-ups and the degree of returns to scale and then re-estimate TFP growth rates. Most of studies reviewed in this paper show a decline in TFP growth in the 1990s at the macro-level and the industry-level. There are some studi...

  18. Experimental design and estimation of growth rate distributions in size-structured shrimp populations

    International Nuclear Information System (INIS)

    Banks, H T; Davis, Jimena L; Ernstberger, Stacey L; Hu, Shuhua; Artimovich, Elena; Dhar, Arun K

    2009-01-01

    We discuss inverse problem results for problems involving the estimation of probability distributions using aggregate data for growth in populations. We begin with a mathematical model describing variability in the early growth process of size-structured shrimp populations and discuss a computational methodology for the design of experiments to validate the model and estimate the growth-rate distributions in shrimp populations. Parameter-estimation findings using experimental data from experiments so designed for shrimp populations cultivated at Advanced BioNutrition Corporation are presented, illustrating the usefulness of mathematical and statistical modeling in understanding the uncertainty in the growth dynamics of such populations

  19. Predicting bacterial growth in raw, salted, and cooked chicken breast fillets during storage.

    Science.gov (United States)

    Galarz, Liane Aldrighi; Fonseca, Gustavo Graciano; Prentice, Carlos

    2016-09-01

    Growth curves were evaluated for aerobic mesophilic and psychrotrophic bacteria, Pseudomonas spp. and Staphylococcus spp., grown in raw, salted, and cooked chicken breast at 2, 4, 7, 10, 15, and 20 ℃, respectively, using the modified Gompertz and modified logistic models. Shelf life was determined based on microbiological counts and sensory analysis. Temperature increase reduced the shelf life, which varied from 10 to 26 days at 2 ℃, from nine to 21 days at 4 ℃, from six to 12 days at 7 ℃, from four to eight days at 10 ℃, from two to four days at 15 ℃, and from one to two days at 20 ℃. In most cases, cooked chicken breast showed the highest microbial count, followed by raw breast and lastly salted breast. The data obtained here were useful for the generation of mathematical models and parameters. The models presented high correlation and can be used for predictive purposes in the poultry meat supply chain. © The Author(s) 2015.

  20. CdTe–TiO2 nanocomposite: an impeder of bacterial growth and biofilm

    International Nuclear Information System (INIS)

    Gholap, Haribhau; Yadav, Prasad; Ogale, Satishchandra; Patil, Rajendra; Gade, Wasudeo; Banpurkar, Arun

    2013-01-01

    The resurgence of infectious diseases and associated issues related to antibiotic resistance has raised enormous challenges which may possibly be confronted primarily by nanotechnology routes. One key need of critical significance in this context is the development of an agent capable of inhibiting quorum sensing mediated biofilm formation in pathogenic organisms. In this work we examine the possible use of a nanocomposite, CdTe–TiO 2 , as an impeder of growth and biofilm. In the presence of CdTe–TiO 2 , scanning electron microscopy (SEM) analysis shows exposed cells without the surrounding matrix. Confocal laser scanning microscopy shows spatially distributed fluorescence, a typical indication of an impeded biofilm, as opposed to the control which shows matrix-covered cells and continuous fluorescence, typical of biofilm formation. Quantitatively, the inhibition of biofilm was ∼57%. CdTe–TiO 2 also exhibits good antibacterial properties against Gram positive and Gram negative organisms by virtue of the generation of reactive oxygen species inside the cells, reflected by a ruptured appearance in the SEM analysis. (paper)

  1. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  2. Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton

    International Nuclear Information System (INIS)

    Chavez, F.P.; Buck, K.R.; Coale, K.H.; Martin, J.H.; DiTullio, G.R.; Welschmeyer, N.A.; Barber, R.T.; Jacobson, A.C.

    1991-01-01

    Concentrations of phytoplankton and NO 3 are consistently low and high in surface waters of the oceanic eastern and central equatorial Pacific, and phytoplankton populations are dominated by small solitary phytoplankton. Growth rates of natural phytoplankton populations, needed to assess the relative importance of many of the processes considered in the equatorial Pacific, were estimated by several methods. The growth rates of natural phytoplankton populations were found to be ∼0.7 d -1 or 1 biomass doubling d -1 and were similar for all methods. To keep this system in its observed balance requires that loss rates approximate observed growth rates. Grazing rates, measured with a dilution grazing experiment, were high, accounting for a large fraction of the daily production. Additions of various forms of Fe to 5-7-d incubations utilizing ultraclean techniques resulted in significant shifts in autotrophic and heterotrophic assemblages between initial samples, controls, and Fe enrichments, which were presumably due to Fe, grazing by both protistan and metazoan components, and incubation artifacts. Estimated growth rates of small pennate diatoms showed increases in Fe enrichments with respect to controls. The growth rates of the pennate diatoms were similar to those estimated for the larger size fraction of the natural populations

  3. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  4. Colorimetry provides a rapid objective measurement of de novo hair growth rate in mice.

    Science.gov (United States)

    Tzung, Tien-Yi; Yang, Chia-Yi; Huang, Yung-Chang; Kao, Fu-Jen

    2009-11-01

    Depilated mice have been used as a test platform for hair growth-regulating agents. However, currently available assessment tools for hair growth in mice are less than ideal. Tristimulus colorimetry of the fur color of depilated agouti, albino, and black mice with L*, a*, and b* values were performed daily until the full growth of pelage. Using light-emitting diode (LED) irradiation (650 and 890 nm) with a daily dose of 3.5 J/cm(2) as hair growth regulators, the hair growth rates observed by the global assessment were compared with those derived from colorimetry. In contrast to a* and b* values, L* values changed more drastically over time in the anagen phase regardless of fur color. Unlike the inhibitory effect of 650 nm irradiation, LED of 890 nm promoted de novo hair regrowth in mice. The difference in hair growth rates detected by colorimetry paralleled the observation made by the global assessment. The L* value of fur color obtained by tristimulus colorimetry was a sensitive yet quantitative indicator of de novo hair growth, and could be used to project the hair growth rate in mice.

  5. Product formation from thiophene by a mixed bacterial culture. Influence of benzene as growth substrate

    DEFF Research Database (Denmark)

    Rivas, Isabelle Marie; Mosbæk, Hans; Arvin, Erik

    2003-01-01

    phase of transformation. The microorganisms were able to transform thiophene in the absence of benzene at a zero-order rate. Thiophene was converted to five oxidation products, regardless of the presence of benzene. Benzene had no influence on the distribution of these oxidation products. The main...... oxidation product, a thiophene sulphoxide dimer, represented 78+/-12% of the transformed thiophene, while the second most important product, also a thiophene sulphoxide dimer, represented 20+/-2% of the converted thiophene. (C) 2003 Elsevier Science Ltd. All rights reserved....

  6. Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3D printed culture tube holder and a miniaturized spectrophotometer: application to facultative and strictly anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Margarida R. G. Maia

    2016-08-01

    Full Text Available Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213 and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897 anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256. For the strictly anaerobic species, a high precision (RSD < 3.5% was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  7. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria.

    Science.gov (United States)

    Maia, Margarida R G; Marques, Sara; Cabrita, Ana R J; Wallace, R John; Thompson, Gertrude; Fonseca, António J M; Oliveira, Hugo M

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  8. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    Science.gov (United States)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  9. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles.

    Directory of Open Access Journals (Sweden)

    Elise S Pelzer

    Full Text Available Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%. We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

  10. Diazotroph-Bacterial Community Structure of Root Nodules Account for Two-Fold Differences in Plant Growth: Consequences for Global Biogeochemical Cycles

    Science.gov (United States)

    Williams, M. A.

    2016-12-01

    The bacterial communities that inhabit and function as mutualists in the nodules of soybean, a major worldwide crop, are a fundamental determinant of plant growth and global nitrogen and carbon cycles. Unfertilized soybean can derive up to 90% of its nitrogen through bacterial-driven diazotrophy. It was the goal of the research in this study to assess whether different bacterial taxa (e.g. Bradyrhizobia spp.) differ in their soybean growth supportive role, which could then feedback to alter global biogeochemical cycling. Using 16S rRNA and NifH genes, nodule bacterial communities were shown to vary across 9 different cultivars of soybean, and that the variation between cultivars were highly correlated to plant yield (97 to 188 bu/Ha) and nitrogen. The relative abundances of gene sequences associated with the closest taxonomic match (NCBI), indicated that several taxa were (r= 0.76) negatively (e.g. Bradyrhizobium sp Ec3.3) or (r= 0.84) positively (e.g. Bradyrhizobium elkanii WSM 2783) correlated with plant yield. Other non-Rhizobiaceae taxa, such as Rhodopseudomonas spp. were also prevalent and correlated with plant yield. Soybeans and other leguminous crops will become increasingly important part of world food production, soil fertility and global biogeochemical cycles with rising population and food demand. The study demonstrates the importance of plant-microbial feedbacks driving plant growth but also ramifications for global cycling of nitrogen and carbon.

  11. Mathematical model for predicting molecular-beam epitaxy growth rates for wafer production

    International Nuclear Information System (INIS)

    Shi, B.Q.

    2003-01-01

    An analytical mathematical model for predicting molecular-beam epitaxy (MBE) growth rates is reported. The mathematical model solves the mass-conservation equation for liquid sources in conical crucibles and predicts the growth rate by taking into account the effect of growth source depletion on the growth rate. Assumptions made for deducing the analytical model are discussed. The model derived contains only one unknown parameter, the value of which can be determined by using data readily available to MBE growers. Procedures are outlined for implementing the model in MBE production of III-V compound semiconductor device wafers. Results from use of the model to obtain targeted layer compositions and thickness of InP-based heterojunction bipolar transistor wafers are presented

  12. Long-term growth rates and effects of bleaching in Acropora hyacinthus

    Science.gov (United States)

    Gold, Zachary; Palumbi, Stephen R.

    2018-03-01

    Understanding the response of coral growth to natural variation in the environment, as well as to acute temperature stress under current and future climate change conditions, is critical to predicting the future health of coral reef ecosystems. As such, ecological surveys are beginning to focus on corals that live in high thermal stress environments to understand how future coral populations may adapt to climate change. We investigated the relationship between coral growth, thermal microhabitat, symbionts type, and thermal acclimatization of four species of the Acropora hyacinthus complex in back-reef lagoons in American Samoa. Coral growth was measured from August 2010 to April 2016 using horizontal planar area of coral colonies derived from photographs and in situ maximum width measurements. Despite marked intraspecific variation, we found that planar colony growth rates were significantly different among cryptic species. The highly heat tolerant A. hyacinthus variant "HE" increased in area an average of 2.9% month-1 (0.03 cm average mean radial extension month-1). By contrast, the three less tolerant species averaged 6.1% (0.07 cm average mean radial extension month-1). Planar growth rates were 40% higher on average in corals harboring Clade C versus Clade D symbiont types, although marked inter-colony variation in growth rendered this difference nonsignificant. Planar growth rates for all four species dropped to near zero following a 2015 bleaching event, independent of the visually estimated percent area of bleaching. Within 1 yr, growth rates recovered to previous levels, confirming previous studies that found sublethal effects of thermal stress on coral growth. Long-term studies of individual coral colonies provide an important tool to measure impacts of environmental change and allow integration of coral physiology, genetics, symbionts, and microclimate on reef growth patterns.

  13. Size-dependent standard deviation for growth rates: empirical results and theoretical modeling.

    Science.gov (United States)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H Eugene; Grosse, I

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma(R) on the average value of the wages with a scaling exponent beta approximately 0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma(R) on the average payroll with a scaling exponent beta approximately -0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  14. Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling

    Science.gov (United States)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H. Eugene; Grosse, I.

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈-0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  15. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  16. Plant Growth Promoting Bacteria Associated with Langsdorffia hypogaea-Rhizosphere-Host Biological Interface: A Neglected Model of Bacterial Prospection

    Science.gov (United States)

    Felestrino, Érica B.; Santiago, Iara F.; Freitas, Luana da Silva; Rosa, Luiz H.; Ribeiro, Sérvio P.; Moreira, Leandro M.

    2017-01-01

    Soil is a habitat where plant roots and microorganisms interact. In the region of the Brazilian Iron Quadrangle (IQ), studies involving the interaction between microbiota and plants have been neglected. Even more neglected are the studies involving the holoparasite plant Langsdorffia hypogaea Mart. (Balanophoraceae). The geomorphological peculiarities of IQ soil, rich in iron ore, as well as the model of interaction between L. hypogaea, its hosts and the soil provide a unique niche that acts as selective pressure to the evolution of plant growth-promoting bacteria (PGPB). The aim of this study was to prospect the bacterial microbiota of holoparasitic plant L. hypogaea, its plant host and corresponding rhizosphere of IQ soil, and to analyze the potential of these isolates as PGPB. We obtained samples of 11 individuals of L. hypogaea containing fragments of host and rhizosphere remnants, resulting in 81 isolates associated with Firmicutes and Proteobacteria phyla. The ability to produce siderophores, hydrocyanic acid (HCN), indole-3-acetic acid (IAA), nitrogen (N2) fixation, hydrolytic enzymes secretion and inhibition of enteropathogens, and phytopathogens were evaluated. Of the total isolates, 62, 86, and 93% produced, respectively, siderophores, IAA, and were able to fix N2. In addition, 27 and 20% of isolates inhibited the growth of enteropathogens and phytopathogens, respectively, and 58% were able to produce at least one hydrolytic activity investigated. The high number of isolates that produce siderophores and indole-3-acetic acid suggests that this microbiota may be important for adaptation of plants to IQ. The results demonstrate for the first time the biological importance of Brazilian IQ species as reservoirs of specific microbiotas that might be used as PGPB on agricultural land or antropized soils that needs to be reforested. PMID:28239369

  17. Capital accumulation, structural change and real exchange rate in a Keynesian-Structuralist growth model

    Directory of Open Access Journals (Sweden)

    Oreiro José Luis

    2015-01-01

    Full Text Available The aim of this paper is to show at theoretical level that maintaining a competitive real exchange rate positively affects the economic growth of developing countries by means of a Keynesian-Structuralist model that combines elements of Kaleckian growth models with the balance of payments constrained growth models pioneered developed by Thirlwall. In this setting, the level of real exchange rate is capable, due to its effect over capital accumulation, to induce a structural change in the economy, making endogenous income elasticities of exports and imports. For reasonable parameter values it is shown that in steady-state growth there is two long-run equilibrium values for real exchange rate, one that corresponds to an under-valued currency and another that corresponds to an over-valued currency. If monetary authorities run exchange rate policy in order to target a competitive level for real exchange rate, than under-valued equilibrium is stable and the economy will show a high growth rate in the long-run.

  18. Value of volume measurements in evaluating abdominal aortic aneurysms growth rate and need for surgical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kontopodis, Nikolaos, E-mail: kontopodisn@yahoo.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece); Metaxa, Eleni, E-mail: emmetaxa@gmail.com [Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete (Greece); Papaharilaou, Yannis, E-mail: yannisp@iacm.forth.gr [Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete (Greece); Georgakarakos, Efstratios, E-mail: efstratiosgeorg@gmail.com [Vascular Surgery Department, “Demokritus” University of Thrace Medical School, Alexandroupolis (Greece); Tsetis, Dimitris, E-mail: tsetis@med.uoc.gr [Interventional Radiology Unit, Department of Radiology, University of Crete Medical School, Heraklion, Crete (Greece); Ioannou, Christos V., E-mail: ioannou@med.uoc.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece)

    2014-07-15

    Purpose: To examine whether indices other than the traditionally used abdominal aortic aneurysm (AAA) maximum diameter, such as AAA volume, intraluminal thrombus (ILT) thickness and ILT volume, may be superior to evaluate aneurismal enlargement. Materials and methods: Thirty-four small AAAs (initially presenting a maximum diameter <5.5 cm which is the threshold for surgical repair) with an initial and a follow-up CT were examined. Median increase and percentile annual change of these variables was calculated. Correlation between growth rates as determined by the new indices under evaluation and those of maximum diameter were assessed. AAAs were divided according to outcome (surveillance vs. elective repair after follow-up which is based on the maximum diameter criterion) and according to growth rate (high vs. low) based on four indices. Contingency between groups of high/low growth rate regarding each of the four indices on one hand and those regarding need for surgical repair on the other was assessed. Results: A strong correlation between growth rates of maximum diameter and those of AAA and ILT volumes could be established. Evaluation of contingency between groups of outcome and those of growth rate revealed significant associations only for AAA and ILT volumes. Subsequently AAAs with a rapid volumetric increase over time had a likelihood ratio of 10 to be operated compared to those with a slower enlargement. Regarding increase of maximum diameter, likelihood ratio between AAAs with rapid and those with slow expansion was only 3. Conclusion: Growth rate of aneurysms regarding 3Dimensional indices of AAA and ILT volumes is significantly associated with the need for surgical intervention while the same does not hold for growth rates determined by 2Dimensional indices of maximum diameter and ILT thickness.

  19. Value of volume measurements in evaluating abdominal aortic aneurysms growth rate and need for surgical treatment

    International Nuclear Information System (INIS)

    Kontopodis, Nikolaos; Metaxa, Eleni; Papaharilaou, Yannis; Georgakarakos, Efstratios; Tsetis, Dimitris; Ioannou, Christos V.

    2014-01-01

    Purpose: To examine whether indices other than the traditionally used abdominal aortic aneurysm (AAA) maximum diameter, such as AAA volume, intraluminal thrombus (ILT) thickness and ILT volume, may be superior to evaluate aneurismal enlargement. Materials and methods: Thirty-four small AAAs (initially presenting a maximum diameter <5.5 cm which is the threshold for surgical repair) with an initial and a follow-up CT were examined. Median increase and percentile annual change of these variables was calculated. Correlation between growth rates as determined by the new indices under evaluation and those of maximum diameter were assessed. AAAs were divided according to outcome (surveillance vs. elective repair after follow-up which is based on the maximum diameter criterion) and according to growth rate (high vs. low) based on four indices. Contingency between groups of high/low growth rate regarding each of the four indices on one hand and those regarding need for surgical repair on the other was assessed. Results: A strong correlation between growth rates of maximum diameter and those of AAA and ILT volumes could be established. Evaluation of contingency between groups of outcome and those of growth rate revealed significant associations only for AAA and ILT volumes. Subsequently AAAs with a rapid volumetric increase over time had a likelihood ratio of 10 to be operated compared to those with a slower enlargement. Regarding increase of maximum diameter, likelihood ratio between AAAs with rapid and those with slow expansion was only 3. Conclusion: Growth rate of aneurysms regarding 3Dimensional indices of AAA and ILT volumes is significantly associated with the need for surgical intervention while the same does not hold for growth rates determined by 2Dimensional indices of maximum diameter and ILT thickness

  20. Maternal body size and condition determine calf growth rates in southern right whales

    DEFF Research Database (Denmark)

    Christiansen, Fredrik; Vivier, Fabien; Charlton, Claire

    2018-01-01

    The cost of reproduction is a key parameter determining a species' life history strategy. Despite exhibiting some of the fastest offspring growth rates among mammals, the cost of reproduction in baleen whales is largely unknown since standard field metabolic techniques cannot be applied. We...... quantified the cost of reproduction for southern right whales Eubalaena australis over a 3 mo breeding season. We did this by determining the relationship between calf growth rate and maternal rate of loss in energy reserves, using repeated measurements of body volume obtained from unmanned aerial vehicle...... period, and highlights the importance of sufficient maternal energy reserves for reproduction in this capital breeding species....

  1. Tax Rates, Tax Evasion, and Growth in a Multi-period Economy

    OpenAIRE

    Jordi Caballé; Judith Panadés

    2007-01-01

    We extend the basic tax evasion model to a multi-period economy exhibiting sustained growth. When individuals conceal part of their true income from the tax authority, they face the risk of being audited and hence of paying the corresponding fine. Both taxes and fines determine individual saving and the rate of capital accumulation. We show that, if the penalty imposed on tax evaders is proportional to the amount of evaded taxes, then the growth rate is decreasing in the tax rate. However, th...

  2. Cholesterol supplementation improves growth rates of Histomonas meleagridis in vitro.

    Science.gov (United States)

    Gruber, Janine; Pletzer, Alena; Hess, Michael

    2018-02-01

    Research on the energy metabolism of various protozoan parasites showed the essentiality and benefits of cholesterol in the cultivation of these organisms. However, not much is known about the energy metabolism of Histomonas meleagridis, although such information is of high importance to improve cultivation of the parasite for advancements in diagnostics, research and vaccine development. By supplementing a serum enriched cultivation medium with cholesterol, numbers of parasites could be doubled in comparison to unsupplemented negative controls. This effect was demonstrated for two different strains of the parasite, at different levels of in vitro-passages and for histomonads under xenic or monoxenic settings. Supplementing medium free of serum with cholesterol, resulted in significant growth of the parasite over 72 h. However, there were differences in growth behaviour in serum free medium between the different histomonad cultures and continuous passaging of the cultures without serum was not possible. Monitoring the bacterial growth of two different co-cultivated E. coli strains in monoxenic histomonad cultures during these experiments showed that there was no significant impact of cholesterol on the bacteria. Therefore, a direct effect of cholesterol on the parasite itself could be demonstrated. The results of these experiments supply new insights into the metabolism of H. meleagridis and it can be concluded that cholesterol is an important component to enhance parasite growth in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes

    Science.gov (United States)

    Busquets-Vass, Geraldine; Newsome, Seth D.; Calambokidis, John; Serra-Valente, Gabriela; Jacobsen, Jeff K.; Aguíñiga-García, Sergio; Gendron, Diane

    2017-01-01

    Stable isotope analysis in mysticete skin and baleen plates has been repeatedly used to assess diet and movement patterns. Accurate interpretation of isotope data depends on understanding isotopic incorporation rates for metabolically active tissues and growth rates for metabolically inert tissues. The aim of this research was to estimate isotopic incorporation rates in blue whale skin and baleen growth rates by using natural gradients in baseline isotope values between oceanic regions. Nitrogen (δ15N) and carbon (δ13C) isotope values of blue whale skin and potential prey were analyzed from three foraging zones (Gulf of California, California Current System, and Costa Rica Dome) in the northeast Pacific from 1996–2015. We also measured δ15N and δ13C values along the lengths of baleen plates collected from six blue whales stranded in the 1980s and 2000s. Skin was separated into three strata: basale, externum, and sloughed skin. A mean (±SD) skin isotopic incorporation rate of 163±91 days was estimated by fitting a generalized additive model of the seasonal trend in δ15N values of skin strata collected in the Gulf of California and the California Current System. A mean (±SD) baleen growth rate of 15.5±2.2 cm y-1 was estimated by using seasonal oscillations in δ15N values from three whales. These oscillations also showed that individual whales have a high fidelity to distinct foraging zones in the northeast Pacific across years. The absence of oscillations in δ15N values of baleen sub-samples from three male whales suggests these individuals remained within a specific zone for several years prior to death. δ13C values of both whale tissues (skin and baleen) and potential prey were not distinct among foraging zones. Our results highlight the importance of considering tissue isotopic incorporation and growth rates when studying migratory mysticetes and provide new insights into the individual movement strategies of blue whales. PMID:28562625

  4. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Nina N. [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Department of Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Niemierko, Andrzej [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); Larvie, Mykol [Harvard Medical School, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Curtin, Hugh [Harvard Medical School, Department of Radiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Loeffler, Jay S. [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); McKenna, Michael J. [Harvard Medical School, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-05-01

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change was classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be

  5. Influence of water relations and growth rate on plant element uptake and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2006-02-15

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution.

  6. Influence of water relations and growth rate on plant element uptake and distribution

    International Nuclear Information System (INIS)

    Greger, Maria

    2006-02-01

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution

  7. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    International Nuclear Information System (INIS)

    Niu, Nina N.; Niemierko, Andrzej; Larvie, Mykol; Curtin, Hugh; Loeffler, Jay S.; McKenna, Michael J.; Shih, Helen A.

    2014-01-01

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change was classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be

  8. The use of Ampelisca abdita growth rate as an indicator of sediment quality

    International Nuclear Information System (INIS)

    Weston, D.P.; Thompson, B.

    1995-01-01

    Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs. the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well

  9. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem

    Science.gov (United States)

    Valdivia-Anistro, Jorge A.; Eguiarte-Fruns, Luis E.; Delgado-Sapién, Gabriela; Márquez-Zacarías, Pedro; Gasca-Pineda, Jaime; Learned, Jennifer; Elser, James J.; Olmedo-Alvarez, Gabriela; Souza, Valeria

    2016-01-01

    The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the

  10. Human disturbance influences reproductive success and growth rate in California sea lions (Zalophus californianus.

    Directory of Open Access Journals (Sweden)

    Susannah S French

    Full Text Available The environment is currently undergoing changes at both global (e.g., climate change and local (e.g., tourism, pollution, habitat modification scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups for California sea lions (Zalophus californianus in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources. Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations.

  11. Evaluation of porcine beta defensins-1 and -2 as antimicrobial peptides for liquid-stored boar semen: Effects on bacterial growth and sperm quality.

    Science.gov (United States)

    Puig-Timonet, Adrià; Castillo-Martín, Miriam; Pereira, Barbara A; Pinart, Elisabeth; Bonet, Sergi; Yeste, Marc

    2018-04-15

    The present study evaluated whether two different antimicrobial peptides (AMP): porcine beta defensins-1 (PBD1) and -2 (PBD2) at three concentrations (1.5 μM, 3 μM and 5 μM) could be a suitable alternative to antibiotics in liquid-stored boar semen. Two separate experiments were conducted with liquid-stored boar semen preserved at 17 °C for 9-10 days. In the first one, we evaluated the impact of adding three concentrations of each AMP on the bacterial growth and sperm quality of boar semen stored for 10 days. In the second experiment, the ability of these AMPs to control bacterial growth was determined over a 9-day period, following artificial inoculation with Escherichia coli at 10 7 and 10 8  CFU mL -1 . In both experiments, sperm viability was assessed through flow cytometry, sperm motility was determined with Computer Assisted Sperm Analysis (CASA) and the inhibitory effect on microbial growth was evaluated by bacteria culture on Luria Bertani agar. PBD1 and PBD2 were found to significantly (P extenders for boar semen at a concentration of 3 μM, but do not completely control all bacterial growth. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Optimal tax rate and economic growth. Evidence from Nigeria and South Africa

    Directory of Open Access Journals (Sweden)

    Olufemi Muibi SAIBU

    2015-05-01

    Full Text Available The recent economic crisis had made developing countries to look inward for financial resources to finance development. The readily alternative is the tax revenues however, the possible adverse direct and indirect effects of tax on productivity and work efforts as well as on aggregate consumption had make some African countries (especially Nigeria and South Africa reluctant in implementing far reaching tax policy reform. This paper examines optimal tax burden and real output growth Nigeria and South Africa, two of the top four economies in Africa. The paper empirically determined what should be the optimal tax rate for Nigeria and South Africa-the two leading economies in Africa. The paper found that nonlinearity hypothesis in the effects of tax in the case of South Africa is rejected while a significant nonlinear relationship is found in the case of Nigeria. The results suggest that the growth-maximizing tax rate is about 15% of per capita GDP for South Africa and 30% for Nigeria. At that tax rate, the economic growth rate would be around 6% and 8% instead of the actual mean growth rate of 2.84% and 4.51% for South Africa and Nigeria respectively. The paper concluded the current tax burden in the two countries may be sub-optimal and may hurt long term sustainable growth process in the two countries

  13. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum

    Science.gov (United States)

    Kopf, Sebastian H.; Sessions, Alex L.; Cowley, Elise S.; Reyes, Carmen; Van Sambeek, Lindsey; Hu, Yang; Orphan, Victoria J.; Kato, Roberta; Newman, Dianne K.

    2016-01-01

    Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.

  14. Effect of repeated oral therapeutic doses of methylphenidate on food intake and growth rate in rats.

    Science.gov (United States)

    Alam, Nausheen; Najam, Rahila

    2015-01-01

    Central nervous system stimulants are known to produce anorexia. Previous data suggest that methylphenidate can have variable effects on caloric intake and growth rate. A dose-response study was performed to monitor caloric intake, liquid intake and growth rate in rats following repeated administration of human oral therapeutic doses 2 mg/kg/day, 5mg/kg/day and 8mg/kg/day of methylphenidate. We found that food intake and water intake, increased in all weeks and at all doses used in the study. Growth rate increased more at higher dose (8mg/kg/day) and at low dose (2mg/kg/day) of methylphenidate in 1(st) and 2(nd) week whereas more decreased by the above doses in 3(rd) week, suggesting that food stimulation leads to initial increase in growth rate but long term administration of methylphenidate attenuate growth rate that is not due to modulation of appetite but may be due to anxiety and increased activity produce by stimulants. A possible role of DA, 5HT receptors in modulation of appetite and anxiety is discussed.

  15. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length.

    Science.gov (United States)

    Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Morin, Hubert; Saracino, Antonio; Motta, Renzo; Borghetti, Marco

    2006-01-01

    Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.

  16. Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.

    Science.gov (United States)

    Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R

    2018-01-22

    The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Implications Of Foreign Direct Investment, Financial Development And Real Exchange Rate For Economic Growth In Cameroon

    Directory of Open Access Journals (Sweden)

    Victalice Ngimanang Achamoh

    2016-05-01

    Full Text Available This paper assesses the effects of foreign direct investment (FDI, financial development and real exchange rate (RER on economic growth in Cameroon using Cameroon’s annual time series data spanning the period 1977 - 2010. To address these objectives, residual based Engle-Granger test, the OLS based Autoregressive Distributive Lag (ARDL bound testing and maximum likelihood based Johansen cointegration techniques are employed. Results of Unit roots tests show that all the series possessed unit roots at level or first difference form. The ARDL model and VECM results reveal that the RER has a significant negative effect on economic growth, while FDI and Financial Development relate positively to economic growth. These findings have implications for stimulating economic growth by increasing efficiency of the financial sector in allocating credit to the private sector and preventing real exchange rate appreciation in the shortrun.

  18. CHRONIC UNSTABILITY AND