WorldWideScience

Sample records for bacterial fungal parasitic

  1. Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles.

    Science.gov (United States)

    Dohet, Loïc; Grégoire, Jean-Claude; Berasategui, Aileen; Kaltenpoth, Martin; Biedermann, Peter H W

    2016-09-01

    Bark beetles (Curculionidae: Scolytinae) are one of the most species-rich herbivorous insect groups with many shifts in ecology and host-plant use, which may be mediated by their bacterial and fungal symbionts. While symbionts are well studied in economically important, tree-killing species, little is known about parasitic species whose broods develop in living trees. Here, using culture-dependent and independent methods, we provide a comprehensive overview of the associated bacteria, yeasts and filamentous fungi of the parasitic Dendroctonus micans, D. punctatus and D. valens, and compare them to those of other tree-inhabiting insects. Despite inhabiting different geographical regions and/or host trees, the three species showed similar microbial communities. Enterobacteria were the most prevalent bacteria, in particular Rahnella, Pantoea and Ewingella, in addition to Streptomyces Likewise, the yeasts Candida/Cyberlindnera were the most prominent fungi. All these microorganisms are widespread among tree-inhabiting insects with various ecologies, but their high prevalence overall might indicate a beneficial role such as detoxification of tree defenses, diet supplementation or protection against pathogens. As such, our results enable comparisons of symbiont communities of parasitic bark beetles with those of other beetles, and will contribute to our understanding of how microbial symbioses facilitate dietary shifts in insects. PMID:27387908

  2. The inflammasomes: Molecular effectors of host resistance against bacterial, viral, parasitic and fungal infections

    Directory of Open Access Journals (Sweden)

    Alexander eSkeldon

    2011-02-01

    Full Text Available The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns (MAMPs or host-derived danger signals (danger-associated molecular patterns or DAMPs by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1β (IL-1β and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of alarmins and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defence against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic and fungal infections and the beneficial or detrimental effects of inflammasome signalling in host resistance.

  3. Bacterial, Fungal, and Parasitic Infections of the Central Nervous System: Radiologic-Pathologic Correlation and Historical Perspectives.

    Science.gov (United States)

    Shih, Robert Y; Koeller, Kelly K

    2015-01-01

    Despite remarkable progress in prevention and treatment, infectious diseases affecting the central nervous system remain an important source of morbidity and mortality, particularly in less-developed countries and in immunocompromised persons. Bacterial, fungal, and parasitic pathogens are derived from living organisms and affect the brain, spinal cord, or meninges. Infections due to these pathogens are associated with a variety of neuroimaging patterns that can be appreciated at magnetic resonance imaging in most cases. Bacterial infections, most often due to Streptococcus, Haemophilus, and Neisseria species, cause significant meningitis, whereas the less common cerebritis and subsequent abscess formation have well-documented progression, with increasingly prominent altered signal intensity and corresponding contrast enhancement. Atypical bacterial infections are characterized by the development of a granulomatous response, classically seen in tuberculosis, in which the tuberculoma is the most common parenchymal form of the disease; spirochetal and rickettsial diseases are less common. Fungal infections predominate in immunocompromised hosts and are caused by yeasts, molds, and dimorphic fungi. Cryptococcal meningitis is the most common fungal infection, whereas candidiasis is the most common nosocomial infection. Mucormycosis and aspergillosis are characterized by angioinvasiveness and are associated with high morbidity and mortality among immunocompromised patients. In terms of potential exposure in the worldwide population, parasitic infections, including neurocysticercosis, toxoplasmosis, echinococcosis, malaria, and schistosomiasis, are the greatest threat. Rare amebic infections are noteworthy for their extreme virulence and high mortality. The objective of this article is to highlight the characteristic neuroimaging manifestations of bacterial, fungal, and parasitic diseases, with emphasis on radiologic-pathologic correlation and historical perspectives

  4. Zoosporic fungal parasites of marine biota

    Digital Repository Service at National Institute of Oceanography (India)

    RaghuKumar, C.

    laboratory media. In such instances, a detailed and careful examination of the disease symptoms and the endobiotic fungal parasites is to be recorded. Maintaining dual culture of the healthy and infected host also helps to fulfill these postulates partially....

  5. Bacterial and fungal markers in tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    Szponar, B., E-mail: szponar@iitd.pan.wroc.pl [Lund University, Dept. of Laboratory Medicine, Soelvegatan 23, 223 62 Lund (Sweden); Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw (Poland); Pehrson, C.; Larsson, L. [Lund University, Dept. of Laboratory Medicine, Soelvegatan 23, 223 62 Lund (Sweden)

    2012-11-01

    Previous research has demonstrated that cigarette smoke contains bacterial and fungal components including lipopolysaccharide (LPS) and ergosterol. In the present study we used gas chromatography-mass spectrometry to analyze tobacco as well as mainstream and second hand smoke for 3-hydroxy fatty acids (3-OH FAs) of 10 to 18 carbon chain lengths, used as LPS markers, and ergosterol, used as a marker of fungal biomass. The air concentrations of LPS were 0.0017 nmol/m{sup 3} (N = 5) and 0.0007/m{sup 3} (N = 6) in the smoking vs. non-smoking rooms (p = 0.0559) of the studied private houses, and 0.0231 nmol/m{sup 3} (N = 5) vs. 0.0006 nmol/m{sup 3} (N = 5) (p = 0.0173), respectively, at the worksite. The air concentrations of ergosterol were also significantly higher in rooms with ongoing smoking than in rooms without smoking. A positive correlation was found between LPS and ergosterol in rooms with smoking but not in rooms without smoking. 3-OH C14:0 was the main 3-OH FA, followed by 3-OH C12:0, both in mainstream and second hand smoke and in phenol:water smoke extracts prepared in order to purify the LPS. The Limulus activity of the phenolic phase of tobacco was 3900 endotoxin units (EU)/cigarette; the corresponding amount of the smoke, collected on filters from 8 puffs, was 4 EU/cigarette. Tobacco smoking has been associated with a range of inflammatory airway conditions including COPD, asthma, bronchitis, alveolar hypersensitivity etc. Significant levels of LPS and ergosterol were identified in tobacco smoke and these observations support the hypothesis that microbial components of tobacco smoke contribute to inflammation and airway disease. -- Highlights: Black-Right-Pointing-Pointer Air concentration of bacterial and fungal markers is significantly higher in rooms with ongoing smoking than without smoking. Black-Right-Pointing-Pointer Bacterial LPS correlates with fungal marker in rooms with ongoing smoking but not without smoking. Black-Right-Pointing-Pointer LPS

  6. Resource competition between two fungal parasites in subterranean termites

    Science.gov (United States)

    Chouvenc, Thomas; Efstathion, Caroline A.; Elliott, Monica L.; Su, Nan-Yao

    2012-11-01

    Subterranean termites live in large groups in underground nests where the pathogenic pressure of the soil environment has led to the evolution of a complex interaction among individual and social immune mechanisms in the colonies. However, groups of termites under stress can show increased susceptibility to opportunistic parasites. In this study, an isolate of Aspergillus nomius Kurtzman, Horn & Hessltine was obtained from a collapsed termite laboratory colony. We determined that it was primarily a saprophyte and, secondarily, a facultative parasite if the termite immunity is undergoing a form of stress. This was determined by stressing individuals of the Formosan subterranean termite Coptotermes formosanus Shiraki via a co-exposure to the virulent fungal parasite Metarhizium anisopliae (Metch.) Sorokin. We also examined the dynamics of a mixed infection of A. nomius and M. anisopliae in a single termite host. The virulent parasite M. anisopliae debilitated the termite immune system, but the facultative, fast growing parasite A. nomius dominated the mixed infection process. The resource utilization strategy of A. nomius during the infection resulted in successful conidia production, while the chance for M. anisopliae to complete its life cycle was reduced. Our results also suggest that the occurrence of opportunistic parasites such as A. nomius in collapsing termite laboratory colonies is the consequence of a previous stress, not the cause of the stress.

  7. Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms.

    Directory of Open Access Journals (Sweden)

    Mélanie Gerphagnon

    Full Text Available Many species of phytoplankton are susceptible to parasitism by fungi from the phylum Chytridiomycota (i.e. chytrids. However, few studies have reported the effects of fungal parasites on filamentous cyanobacterial blooms. To investigate the missing components of bloom ecosystems, we examined an entire field bloom of the cyanobacterium Anabaena macrospora for evidence of chytrid infection in a productive freshwater lake, using a high resolution sampling strategy. A. macrospora was infected by two species of the genus Rhizosiphon which have similar life cycles but differed in their infective regimes depending on the cellular niches offered by their host. R. crassum infected both vegetative cells and akinetes while R. akinetum infected only akinetes. A tentative reconstruction of the developmental stages suggested that the life cycle of R. crassum was completed in about 3 days. The infection affected 6% of total cells (and 4% of akinètes, spread over a maximum of 17% of the filaments of cyanobacteria, in which 60% of the cells could be parasitized. Furthermore, chytrids may reduce the length of filaments of Anabaena macrospora significantly by "mechanistic fragmentation" following infection. All these results suggest that chytrid parasitism is one of the driving factors involved in the decline of a cyanobacteria blooms, by direct mortality of parasitized cells and indirectly by the mechanistic fragmentation, which could weaken the resistance of A. macrospora to grazing.

  8. Negative fitness consequences and transmission dynamics of a heritable fungal symbiont of a parasitic wasp.

    Science.gov (United States)

    Gibson, Cara M; Hunter, Martha S

    2009-05-01

    Heritable bacterial symbionts are widespread in insects and can have many important effects on host ecology and fitness. Fungal symbionts are also important in shaping their hosts' behavior, interactions, and evolution, but they have been largely overlooked. Experimental tests to determine the relevance of fungal symbionts to their insect hosts are currently extremely rare, and to our knowledge, there have been no such tests for strictly predacious insects. We investigated the fitness consequences for a parasitic wasp (Comperia merceti) of an inherited fungal symbiont in the Saccharomycotina (Ascomycota) that was long presumed to be a mutualist. In comparisons of wasp lines with and without this symbiont, we found no evidence of mutualism. Instead, there were significant fitness costs to the wasps in the presence of the yeast; infected wasps attacked fewer hosts and had longer development times. We also examined the relative competitive abilities of the larval progeny of infected and uninfected mothers, as well as horizontal transmission of the fungal symbiont among larval wasps that shared a single host cockroach egg case. We found no difference in larval competitive ability when larvae whose infection status differed shared a single host. We did find high rates of horizontal transmission of the fungus, and we suggest that this transmission is likely responsible for the maintenance of this infection in wasp populations.

  9. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome.

    Science.gov (United States)

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  10. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome

    Science.gov (United States)

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  11. Biomineralization and formulation of endosulfan degrading bacterial and fungal consortiums.

    Science.gov (United States)

    Abraham, Jayanthi; Silambarasan, Sivagnanam

    2014-11-01

    Microbial degradation offers an effective approach to remove toxicants and in this study, a microbial consortium consisting of bacterial strains and fungal strains were originally obtained from endosulfan contaminated agricultural soils. Identification of the bacterial isolates by 16S rRNA sequences revealed the isolates to be Halophilic bacterium JAS4, Klebsiella pneumoniae JAS8, Enterobacter asburiae JAS5, and Enterobacter cloacae JAS7, whereas the fungal isolates were identified by 18S rRNA sequences and the isolates were Botryosphaeria laricina JAS6, Aspergillus tamarii JAS9 and Lasiodiplodia sp. JAS12. The biodegradation of endosulfan was monitored by using HPLC and FTIR analysis. The bacterial and fungal consortium could degrade 1000 mg l(-1) of endosulfan efficiently in aqueous medium and in soil. The infrared spectrum of endosulfan degraded samples in the aqueous medium by bacterial and fungal consortium showed bands at 1400 and 950 cm(-1) which are the characteristics of COOH group and acid dimer band respectively. In the present investigation, low cost solid materials such as sawdust, soil, fly ash, molasses and nutrients were used for the formulation of microbial consortium and to achieve greater multiplication and survival of the microbial strains. PMID:25454517

  12. Sputum Bacterial and Fungal Dynamics during Exacerbations of Severe COPD.

    Directory of Open Access Journals (Sweden)

    Jin Su

    Full Text Available The changes in the microbial community structure during acute exacerbations of severe chronic obstructive pulmonary disease (COPD in hospitalized patients remain largely uncharacterized. Therefore, further studies focused on the temporal dynamics and structure of sputum microbial communities during acute exacerbation of COPD (AECOPD would still be necessary. In our study, the use of molecular microbiological techniques provided insight into both fungal and bacterial diversities in AECOPD patients during hospitalization. In particular, we examined the structure and varieties of lung microbial community in 6 patients with severe AECOPD by amplifying 16S rRNA V4 hyper-variable and internal transcribed spacer (ITS DNA regions using barcoded primers and the Illumina sequencing platform. Sequence analysis showed 261 bacterial genera representing 20 distinct phyla, with an average number of genera per patient of >157, indicating high diversity. Acinetobacter, Prevotella, Neisseria, Rothia, Lactobacillus, Leptotrichia, Streptococcus, Veillonella, and Actinomyces were the most commonly identified genera, and the average total sequencing number per sputum sample was >10000 18S ITS sequences. The fungal population was typically dominated by Candia, Phialosimplex, Aspergillus, Penicillium, Cladosporium and Eutypella. Our findings highlight that COPD patients have personalized structures and varieties in sputum microbial community during hospitalization periods.

  13. Research Progress Concerning Fungal and Bacterial β-Xylosidases.

    Science.gov (United States)

    Bosetto, Adilson; Justo, Priscila Innocenti; Zanardi, Bruna; Venzon, Simoni Spohr; Graciano, Luciana; dos Santos, Elaine Luzia; Simão, Rita de Cássia Garcia

    2016-02-01

    In the present review, we briefly summarize the biotechnological applications of microbial β-xylosidases in the processing of agro-industrial residues into fuels and chemicals and report the importance of using immobilization techniques to study the enzyme. The advantages of utilizing genes that encode β-xylosidases are readily apparent in the bioconversion of abundant, inexpensive, and renewable resources into economically important products, such as xylitol and bioethanol. We highlight recent research characterizing fungal and bacterial β-xylosidases, including the use of classical biochemical methods such as purification, heterologous recombinant protein expression, and metagenomic approaches to discovery β-xylosidases, with focus on enzyme molecular and kinetic properties. In addition, we discuss the relevance of using experimental design optimization methodologies to increase the efficacy of these enzymes for use with residual biomass. Finally, we emphasize more extensively the advances in the regulatory mechanisms governing β-xylosidase gene expression and xylose metabolism in gram-negative and gram-positive bacteria and fungi. Unlike previous reviews, this revision covers recent research concerning the various features of bacterial and fungal β-xylosidases with a greater emphasis on their biochemical characteristics and how the genes that encode these enzymes can be better exploited to obtain products of biotechnological interest via the application of different technical approaches. PMID:26536888

  14. Parasitic infection protects wasp larvae against a bacterial challenge.

    Science.gov (United States)

    Manfredini, Fabio; Beani, Laura; Taormina, Mauro; Vannini, Laura

    2010-09-01

    Host antibacterial defense after Strepsiptera parasitization is a complex and rather unexplored topic. The way how these parasites interact with bacteria invading into the host insect during an infection is completely unknown. In the present study we demonstrate that larvae of the paper wasp Polistes dominulus are more efficient at eliminating bacteria when they are parasitized by the strepsipteran insect Xenos vesparum. We looked at the expression levels of the antimicrobial peptide defensin and we screened for the activity of other hemolymph components by using a zone of inhibition assay. Transcription of defensin is triggered by parasitization, but also by mechanical injury (aseptic injection). Inhibitory activity in vitro against the Gram positive bacterium Staphylococcus aureus is not influenced by the presence of the parasite in the wasp or by a previous immune challenge, suggesting a constitutive power of killing this bacterium by wasp hemolymph. Our results suggest either direct involvement of the parasite or that defensin and further immune components not investigated in this paper, for example other antimicrobial peptides, could play a role in fighting off bacterial infections in Polistes. PMID:20546915

  15. Bioprospecting bacterial and fungal volatiles for sustainable agriculture.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Maffei, Massimo E

    2015-04-01

    Current agricultural practice depends on a wide use of pesticides, bactericides, and fungicides. Increased demand for organic products indicates consumer preference for reduced chemical use. Therefore, there is a need to develop novel sustainable strategies for crop protection and enhancement that do not rely on genetic modification and/or harmful chemicals. An increasing body of evidence indicates that bacterial and fungal microbial volatile organic compounds (MVOCs) might provide an alternative to the use of chemicals to protect plants from pathogens and provide a setting for better crop welfare. It is well known that MVOCs can modulate the physiology of plants and microorganisms and in this Opinion we propose that MVOCs can be exploited as an ecofriendly, cost-effective, and sustainable strategy for agricultural practices.

  16. Bacterial and fungal aerosols in the work environment of cleaners

    Directory of Open Access Journals (Sweden)

    Małgorzata Gołofit-Szymczak

    2015-12-01

    Full Text Available Background: Cleaning services are carried out in almost all sectors and branches of industry. Due to the above, cleaners are exposed to various harmful biological agents, depending on the tasks performed and the commercial sector involved. The aim of this study was to assess the exposure of cleaning workers to biological agents based on quantitative and qualitative characteristics of airborne microflora. Material and methods: A six-stage Andersen sampler was used to collect bioaerosols during the cleaning activities in different workplaces, including schools, offices, car services, healthy services and shops. Standard Petri dishes filled with blood trypticase soy agar and malt extract agar were used for bacterial and fungal sampling, respectively. Results: The bioaerosol concentration values obtained during testing of selected workposts of cleaners were lower than the Polish recommended threshold limit values for microorganisms concentrations in public service. The most prevalent bacterial species in studied places were Gram-positive cocci (mainly of genera Micrococcus, Staphylococcus and endospore-forming Gram-positive rods (mainly of genera Bacillus. Among the most common fungal species were those from genera Penicillium and Aspergillus. The size distribution analysis revealed that bioaerosols present in the air of workposts at shops, schools and car services may be responsible for nose and eye mucosa irritation and allergic reactions in the form of asthma or allergic inflammation in the cleaning workers. Conclusions: The study shows that occupational activities of cleaning workers are associated with exposure to airborne biological agents classified into risk groups, 1. and 2., according to their level of infection risk, posing respiratory hazard. Med Pr 2015;66(6:779–791

  17. Developed Fungal-Bacterial Biofilms as A Novel Tool for Bioremoval of Hexavelant Chromium from Wastewater

    DEFF Research Database (Denmark)

    Herath, Lasantha; Rajapaksha, R. M. A. U.; Vithanage, M.;

    2014-01-01

    Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal-bacterial ......Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal......-bacterial biofilms (FBBs). They have not been tested for bioremediation so far. Hence, this study was conducted to develop FBBs and glass wool attached bacterial biofilms (BBs), and to evaluate Cr(VI) tolerability and removal of bacterial mono cultures, BBs and FBBs. FBBs showed a significantly high level of Cr...

  18. Spatial and temporal escape from fungal parasitism in natural communities of anciently asexual bdelloid rotifers.

    Science.gov (United States)

    Wilson, Christopher G; Sherman, Paul W

    2013-08-22

    Sexual reproduction is costly, but it is nearly ubiquitous among plants and animals, whereas obligately asexual taxa are rare and almost always short-lived. The Red Queen hypothesis proposes that sex overcomes its costs by enabling organisms to keep pace with coevolving parasites and pathogens. If so, the few cases of stable long-term asexuality ought to be found in groups whose coevolutionary interactions with parasites are unusually weak. In theory, antagonistic coevolution will be attenuated if hosts disperse among patches within a metapopulation separately from parasites and more rapidly. We examined whether these conditions are met in natural communities of bdelloid rotifers, one of the longest-lived asexual lineages. At any life stage, these microscopic invertebrates can tolerate the complete desiccation of their ephemeral freshwater habitats, surviving as dormant propagules that are readily carried by the wind. In our field experiments, desiccation and wind transport enabled bdelloids to disperse independently of multiple fungal parasites, in both time and space. Surveys of bdelloid communities in unmanipulated moss patches confirmed that fungal parasitism was negatively correlated with extended drought and increasing height (exposure to wind). Bdelloid ecology therefore matches a key condition of models in which asexuals persist through spatio-temporal decoupling from coevolving enemies.

  19. Control of Plant Parasitic Nematodes and Soil Borne Fungal Pathogens by Soil Solarization in Northern Region of Libya

    OpenAIRE

    Ali Mahmoud Zaid; Waseim Esmael; Fawazi Bashie; Masaud Gajeam

    2014-01-01

    Soil Solarization is a new sustainable method that has been shown to be effective in the control of plant parasitic nematodes, soil borne fungal pathogens, and weeds. Organic agriculture could benefit most using such technique to reduce crop losses. The effect of soil solarization in The control of plant parasitic nematodes and soil borne fungal pathogens was studied in two uncovered plastic houses in two private farms by covering the soil with polyethlyne tarps 40um.thick for 30 and 45 days ...

  20. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Wenfeng; Zhai, Yanyan; Cao, Lixiang; Tan, Hongming; Zhang, Renduo

    2016-01-01

    The objective of this study was to elucidate the endophytic microbiota in rice sprouts, roots, and stems, and their transmission in the plant development. Prior to DNA extraction, roots and stems were treated with 36% formaldehyde and 0.1M NaOH solutions to remove epiphytic bacterial whole 16S rRNA genes. Bacterial and fungal taxa in the sprout, root, and stem samples were analyzed using Illumina-based sequencing of the V3-V4 hyper variable regions of bacterial 16S rRNA genes and the ITS2 regions of fungal rRNA genes, respectively. Results showed that more diverse bacterial OTUs were detected in roots than in stems, while more diverse fungal OTUs were detected in stems than in roots. Compared with the endophytic microbiota in sprouts, the bacterial OTUs increased in roots but decreased in stems, whereas the fungal OTUs in both stems and roots decreased. Sprout-borne bacterial genera Sphingomonas and Pseudomonus, and fungal genera Fusarium, Pestalotiopsis, and Penicillium were detected in stems and roots. The coexistence of these indigenous bacterial and fungal taxa in sprouts, roots, and stems indicated their transmission during the development from sprouts to mature plants. The results from this study should be useful to better understand the plant-microbe interactions and to select suitable microbial taxa for rice production. PMID:27296957

  1. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose.

    Science.gov (United States)

    Chen, Lin; Zou, Min; Hong, Feng F

    2015-01-01

    The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.

  2. Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Lin eChen

    2015-11-01

    Full Text Available The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled 7 times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.

  3. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose.

    Science.gov (United States)

    Chen, Lin; Zou, Min; Hong, Feng F

    2015-01-01

    The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors. PMID:26617585

  4. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose

    Science.gov (United States)

    Chen, Lin; Zou, Min; Hong, Feng F.

    2015-01-01

    The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors. PMID:26617585

  5. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench

    Directory of Open Access Journals (Sweden)

    Patricia I Diaz

    2014-07-01

    Full Text Available High throughput sequencing has accelerated knowledge on the oral microbiome. While the bacterial component of oral communities has been extensively characterized, the role of the fungal microbiota in the oral cavity is largely unknown. Interactions among fungi and bacteria are likely to influence oral health as exemplified by the synergistic relationship between Candida albicans and oral streptococci. In this perspective, we discuss the current state of the field of fungal-bacterial interactions in the context of the oral cavity. We highlight the need to conduct longitudinal clinical studies to simultaneously characterize the bacterial and fungal components of the human oral microbiome in health and during disease progression. Such studies need to be coupled with investigations using disease-relevant models to mechanistically test the associations observed in humans and eventually identify fungal-bacterial interactions that could serve as preventive or therapeutic targets for oral diseases.

  6. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea

    Directory of Open Access Journals (Sweden)

    Amir eSapir

    2014-02-01

    Full Text Available The deep sea is Earth’s largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at Pacific Ocean methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over two years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes’ intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host’s body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep sea biosphere.

  7. Dandruff Is Associated with Disequilibrium in the Proportion of the Major Bacterial and Fungal Populations Colonizing the Scalp

    OpenAIRE

    Cécile Clavaud; Roland Jourdain; Avner Bar-Hen; Magali Tichit; Christiane Bouchier; Florence Pouradier; Charles El Rawadi; Jacques Guillot; Florence Ménard-Szczebara; Lionel Breton; Jean-Paul Latgé; Isabelle Mouyna

    2013-01-01

    The bacterial and fungal communities associated with dandruff were investigated using culture-independent methodologies in the French subjects. The major bacterial and fungal species inhabiting the scalp subject's were identified by cloning and sequencing of the conserved ribosomal unit regions (16S for bacterial and 28S-ITS for fungal) and were further quantified by quantitative PCR. The two main bacterial species found on the scalp surface were Propionibacterium acnes and Staphylococcus epi...

  8. Development of a chemically defined medium for studying foodborne bacterial-fungal interactions

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing; Honoré, Anders Hans; Vogensen, Finn Kvist;

    2015-01-01

    There is a growing interest for using natural preservatives in the food and dairy industries including the application of bacterial cultures to inhibit fungal spoilage. Several antifungal metabolites from bacteria have been identified, but their relative importance has been difficult to establish...... fermented milk products. Both strong and weak antifungal interactions observed in milk could be reproduced in CDIM. The medium seems suitable for studying antifungal activity of bacterial cultures.......There is a growing interest for using natural preservatives in the food and dairy industries including the application of bacterial cultures to inhibit fungal spoilage. Several antifungal metabolites from bacteria have been identified, but their relative importance has been difficult to establish....... In dynamic systems such as fermented milk products, the complexity of the food matrix affects detection, identification and quantification of antifungal metabolites, and thereby the understanding of the bacterial-fungal interactions. To ease the identification and quantification of bacterial metabolites (as...

  9. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  10. Preclinical testing of radiopharmaceuticals for novel applications in HIV, bacterial and fungal infectious diseases

    International Nuclear Information System (INIS)

    Antibiotics, antifungal and antiviral medications have traditionally been used in the management of infections. Due to widespread emergence of resistance to antimicrobial medications, and their side effects, there is a growing need for alternative approaches for management of such conditions. Antibiotic resistant bacterial pathogens are on the rise. A cure has not been achieved for viral infections like AIDS, while fungal and parasitic infections are constant threats to the health of general public. The incidence of opportunistic infections in immunocompromised individuals like HIV patients, patients receiving high dose steroids, chemotherapy patients, and organ transplant recipients is on the rise. Radioimmunotherapy (RIT) has the potential to be a suitable and viable therapeutic modality in the arena of infection management. Provided the target-associated antigen is expressed by the target cells and minimally or not expressed by other tissues, selective targeting of radiation to target sites can be theoretically accomplished with relative sparing normal tissues from radiation exposure. In our laboratory we successfully demonstrated the effectiveness of RIT for treating infectious diseases. We targeted murine cryptococcosis with a mAb to the Cryptococcus neoformans capsular glucuronoxylomannan labeled with Bismuth-213 (213Bi) or Rhenium-188 (188Re). We subsequently extended the applicability of RIT for treating bacterial and viral infections. One of the advantages of using RIT to treat infections as opposed to cancer is that, in contrast to tumor cells, cells expressing microbial antigens are antigenically very different from host tissues and thus provide the potential for exquisite specificity and low cross-reactivity. Ever increasing incidence of infectious pathologies, exhaustion of antimicrobial possibilities and rising drug resistance calls for use of alternative and novel therapeutic options and we believe RIT is the need of the hour to combat these

  11. Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2012-10-01

    Full Text Available Parasitism is one of the earlier and common ecological interactions in the nature, occurring in almost all environments. Microbial parasites typically are characterized by their small size, short generation time, and high rates of reproduction, with simple life cycle occurring generally within a single host. They are diverse and ubiquitous in aquatic ecosystems, comprising viruses, prokaryotes and eukaryotes. Recently, environmental 18S-rDNA surveys of microbial eukaryotes have unveiled major infecting agents in pelagic systems, consisting primarily of the fungal order of Chytridiales (chytrids. Chytrids are considered the earlier branch of the Eumycetes and produce motile, flagellated zoospores, characterized by a small size (2-6 µm and a single, posterior flagellum. The existence of these dispersal propagules includes chytrids within the so-called group of zoosporic fungi, which are particularly adapted to the plankton lifestyle where they infect a wide variety of hosts, including fishes, eggs, zooplankton, algae, and other aquatic fungi but primarily freshwater phytoplankton. Related ecological implications are huge because chytrids can killed their hosts, release substrates for microbial processes, and provide nutrient-rich particles as zoospores and short fragments of filamentous inedible hosts for the grazer food chain. Furthermore, based on the observation that phytoplankton chytridiomycosis preferentially impacts the larger size species, blooms of such species (e.g. filamentous cyanobacteria may not totally represent trophic bottlenecks. Besides, chytrid epidemics represent an important driving factor in phytoplankton seasonal successions. In this review, I summarize the knowledge on the diversity, community structure, quantitative importance, and functional roles of fungal chytrids, primarily those who are parasites of phytoplankton, and infer the ecological implications and potentials for the food web dynamics and properties.

  12. A comparative study of fungal and bacterial biofiltration treating a VOC mixture

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, José M. [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Miguel Hidalgo, Delegación Álvaro Obregón (Mexico); Departamento de Ingeniería Química y Tecnología del Medio Ambiente – Universidad de Valladolid, Valladolid (Spain); Hernández, Sergio [Departmento de Procesos e Hidráulica – Universidad Autónoma Metropolitana – Iztapalapa Mexico D.F. Mexico (Mexico); Muñoz, Raúl [Departamento de Ingeniería Química y Tecnología del Medio Ambiente – Universidad de Valladolid, Valladolid (Spain); Revah, Sergio, E-mail: srevah@xanum.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Miguel Hidalgo, Delegación Álvaro Obregón (Mexico)

    2013-04-15

    Highlights: ► Bacterial biofilter showed better EC and ΔP than fungal biofilter. ► The preferential biodegradation order was: propanal > hexanol > MIBK > toluene. ► Propanal partially inhibited the biodegradation of the rest of VOCs. ► The two-stage biofilter showed a higher stability than the individual units. -- Abstract: Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 g C m{sup −3} reactor h{sup −1}), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈63% vs ≈43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal > hexanol > MIBK > toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24 h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances.

  13. Isotopomers as a method for differentiating between bacterial and fungal production of nitrous oxide

    Science.gov (United States)

    Sutka, R. L.; Adams, G.; Ostrom, N.; Ostrom, P.

    2007-12-01

    In order to study the importance of fungi to nitrous oxide (N2O) production in the environment it is critical to have a non-intrusive method for differentiating between fungal and bacterial N2O production. Site preference (SP), the difference in d15N between the central and outer N atoms in N2O, has been used to differentiate between bacterial nitrification and denitrification. In this study we compare the SP, d15N and d18O of N2O produced by the two best-studied fungal denitrifiers, Fusarium oxysporum and Cylindrocarpon tonkinense, to data from our previous bacterial studies. Both d18O and SP values remained fairly constant during the course of nitrite reduction which likely reflects isotopic exchange with water in the case of d18O and conservative behavior in SP that has been observed previously (Sutka et al., 2006). We observed a wide range of fractionation factors for fungal denitrification, -74.7 to -6.6 ‰, and non-linear behavior indicating that fractionation was controlled by more than one step. We interpret the small degree of fractionation as reflecting fractionation during diffusion and the more negative values as being controlled by enzymatic fractionation. Data from this and our previous study of bacterial production (Sutka et al., 2006) reveals that N2O produced via nitrification by fungi can be differentiated from N2O produced by bacterial denitrification primarily on the basis of d18O. The site preference of N2O produced by F. oxysporum and C. tonkinense was 37.1 ± 2.5 ‰ and 36.9 ± 2.8 ‰, respectively. These results indicate that isotopomers can be used as a basis for differentiating bacterial and fungal denitrification. Our work further reveals the role that fungal and bacterial nitric oxide reductases have in determining site preference during N2O production.

  14. Soil fungal:bacterial ratios are linked to altered carbon cycling

    Directory of Open Access Journals (Sweden)

    Ashish A. Malik

    2016-08-01

    Full Text Available Despite several lines of observational evidence, there is a lack of consensus on whether higher fungal:bacterial (F:B ratios directly cause higher soil carbon (C storage. We employed RNA sequencing, protein profiling and isotope tracer techniques to evaluate whether differing F:B ratios are associated with differences in C storage. A mesocosm 13C labeled foliar litter decomposition experiment was performed in two soils that were similar in their physico-chemical properties but differed in microbial community structure, specifically their F:B ratio (determined by PLFA analyses, RNA sequencing and protein profiling; all three corroborating each other. Following litter addition, we observed a consistent increase in abundance of fungal phyla; and greater increases in the fungal dominated soil; implicating the role of fungi in litter decomposition. Litter derived 13C in respired CO2 was consistently lower, and residual 13C in bulk SOM was higher in high F:B soil demonstrating greater C storage potential in the fungal:bacterial dominated soil. We conclude that in this soil system, the increased abundance of fungi in both soils and the altered C cycling patterns in the fungal:bacterial dominated soils highlight the significant role of fungi in litter decomposition and indicate that F:B ratios are linked to higher C storage potential.

  15. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard;

    2010-01-01

    that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  16. Impact of Bacterial-Fungal Interactions on the Colonization of the Endosphere

    NARCIS (Netherlands)

    Overbeek, van L.S.; Saikkonen, Kari

    2016-01-01

    Research on different endophyte taxa and the related scientific disciplines have largely developed separately, and comprehensive community-level studies on bacterial and fungal interactions and their importance are lacking. Here, we discuss the transmission modes of bacteria and fungi and the nat

  17. Bacterial and fungal endophthalmitis in Upper Egypt: related species and risk factors

    Directory of Open Access Journals (Sweden)

    AA Gharamah

    2012-08-01

    Conclusions: The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  18. Bacterial and fungal endophthalmitis in Upper Egypt:related species and risk factors

    Institute of Scientific and Technical Information of China (English)

    AA Gharamah; AM Moharram; MA Ismail; AK AL-Hussaini

    2012-01-01

    Objective: To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Methods: Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results: Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. Conclusions: The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis.

  19. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases.

    Science.gov (United States)

    Ulčnik, A; Kralj Cigić, I; Pohleven, F

    2013-12-01

    The ability of two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and one brown-rot fungus (Gloeophyllum trabeum) to degrade two organochlorine insecticides, lindane and endosulfan, in liquid cultures was studied and dead fungal biomass was examined for adsorption of both insecticides from liquid medium. Lindane and endosulfan were also treated with fungal laccase and bacterial protein CotA, which has laccase activities. The amount of degraded lindane and endosulfan increased with their exposure period in the liquid cultures of both examined white-rot fungi. Endosulfan was transformed to endosulfan sulphate by T. versicolor and P. ostreatus. A small amount of endosulfan ether was also detected and its origin was examined. Degradation of lindane and endosulfan by a brown rot G. trabeum did not occur. Mycelial biomasses of all examined fungi have been found to adsorb lindane and endosulfan and adsorption onto fungal biomass should therefore be considered as a possible mechanism of pollutant removal when fungal degradation potentials are studied. Bacterial protein CotA performed more efficient degradation of lindane and endosulfan than fungal laccase and has shown potential for bioremediation of organic pollutants. PMID:23736895

  20. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    Directory of Open Access Journals (Sweden)

    Niraj Kumar

    Full Text Available The impact of silver nanoparticles (NPs and microparticles (MPs on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6% of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.

  1. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    Science.gov (United States)

    Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages. PMID:24926877

  2. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia.

    Science.gov (United States)

    Li, Miao; Zhu, Lifei; Liu, Boming; Du, Lina; Jia, Xiaodong; Han, Li; Jin, Yiguang

    2016-05-01

    Tea tree oil (TTO) is a natural essential oil with strong antimicrobial efficacy and little drug resistance. However, the biomedical applications of TTO are limited due to its hydrophobicity and formulation problems. Here, we prepared an inhalable TTO nanoemulsion (nanoTTO) for local therapies of bacterial and fungal pneumonia. The optimal formulation of nanoTTOs consisted of TTO/Cremophor EL/water with a mean size of 12.5nm. The nanoTTOs showed strong in vitro antimicrobial activities on Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus and Candida albicans. After inhalation to the lung, the nanoTTOs had higher anti-fungal effect than fluconazole on the fungal pneumonia rat models with reduced lung injury, highly microbial clearance, blocking of leukocyte recruitment, and decrease of pro-inflammatory mediators. In the case of rat bacterial pneumonia, the nanoTTOs showed slightly lower therapeutic efficacy than penicillin though at a much lower dose. Taken together, our results show that the inhalable nanoTTOs are promising nanomedicines for local therapies of fungal and bacterial pneumonia with no obvious adverse events. PMID:26895502

  3. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants.

    Science.gov (United States)

    Bonito, Gregory; Reynolds, Hannah; Robeson, Michael S; Nelson, Jessica; Hodkinson, Brendan P; Tuskan, Gerald; Schadt, Christopher W; Vilgalys, Rytas

    2014-07-01

    Microbial communities in plant roots provide critical links between above- and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap-plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.

  4. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    Science.gov (United States)

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-03-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects–direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions.

  5. Bacterial versus fungal laccase: potential for micropollutant degradation

    OpenAIRE

    Margot, Jonas; Bennati-Granier, Chloé; Maillard, Julien; Blánquez, Paqui; Barry, David Andrew; Holliger, Christof

    2013-01-01

    Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes vers...

  6. Hitchhikers on the fungal highway : The helper effect for bacterial migration via fungal hyphae

    NARCIS (Netherlands)

    Warmink, J. A.; Nazir, R.; Corten, B.; van Elsas, J. D.

    2011-01-01

    Previous work in our laboratory showed that several bacterial strains, either singly or in association with other bacteria (community migration), were capable of migrating together with the saprotrophic fungus Lyophyllum sp. strain Karsten through soil microcosms. A possible involvement of the type

  7. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM)

    International Nuclear Information System (INIS)

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal–bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal–bacterial consortia are promising for successful bioremediation of pesticide contamination. -- Highlights: •Presence of fungi increased the rate of BAM mineralization by Aminobacter sp. MSH1. •Fungal–bacterial consortium enhanced BAM degradation at low moisture contents. •Mortierella hyphae facilitated transport of the BAM degrader Aminobacter sp. MSH1. -- This study brings new knowledge to the benefits of applying bacterial–fungal consortia for bioremediation

  8. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children.

    Science.gov (United States)

    Dannemiller, K C; Gent, J F; Leaderer, B P; Peccia, J

    2016-04-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non-random and demonstrated species segregation (C-score, P children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics. PMID:25833176

  9. Early diagnosis of bacterial and fungal infection in chronic cholestatic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Xiong-Zhi Wu; Dan Chen; Lian-San Zhao; Xiao-Hui Yu; Mei Wei; Yan Zhao; Qing Fang; Qian Xu

    2004-01-01

    AIM: To investigate the early diagnostic methods of bacterial and fungal infection in patients with chronic cholestatic hepatitis B.METHODS: One hundred and one adult in-patients with chronic hepatitis B were studied and divided into 3 groups:direct bilirubin (DBil)/total bilirubin (TBil)≥0.5, without bacterial and fungal infection (group A, n=38); DBil/TBil <0.5, without bacterial and fungal infection (group B, n=23);DBil/TBil≥0.5, with bacterial or fungal infection (group C,n=40). The serum biochemical index and pulse rate were analyzed.RESULTS: Level of TBil, DBil, alkaline phosphatase (ALP)and DBil/ALP in group A increased compared with that in group B. The level of ALP in group C decreased compared with that in group A, whereas the level of TBil, DBil and DBil/ALP increased (ALP: 156±43, 199±68, respectively,P<0.05; TBil: 370±227, 220±206, respectively, P<0.01;DBil: 214±143, 146±136, respectively, P<0.01; DBil/ALP:1.65±1.05, 0.78±0.70, respectively, P<0.001). The level of DBil and infection affected DBil/ALP. Independent of the effect of DBil, infection caused DBil/ALP to rise (P<0.05).The pulse rate in group A decreased compared with that in group B (63.7±6.4, 77.7±11.4, respectively, P<0.001),and the pulse rate in group C increased compared with that in group A (81.2±12.2, 63.7±6.4, respectively, P<0.001).The equation (infection=0.218 pusle rate +1.064 DBil/ALP -16.361), with total accuracy of 85.5%, was obtained from stepwise logistic regression. Pulse rate (≥80/min) and DBil/ALP (≥1.0) were used to screen infection. The sensitivity was 62.5% and 64.7% respectively, and the specificity was 100% and 82.8% respectively.CONCLUSION: Bacterial and fungal infection deteriorate jaundice and increase pulse rate, decrease serum ALP and increase DBil/ALP. Pulse rate, DBil/ALP and the equation (infection=0.218 pusle rate+1.064 DBil/ALP-16.361) are helpful to early diagnosis of bacterial and fungal infection in patients with chronic

  10. Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism.

    Science.gov (United States)

    Roux, Olivier; Céréghino, Régis; Solano, Pascal J; Dejean, Alain

    2011-01-01

    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth. PMID:21655182

  11. Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism.

    Directory of Open Access Journals (Sweden)

    Olivier Roux

    Full Text Available In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes, that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth.

  12. Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter.

    Science.gov (United States)

    Lebrero, Raquel; López, Juan Carlos; Lehtinen, Iiro; Pérez, Rebeca; Quijano, Guillermo; Muñoz, Raúl

    2016-02-01

    Despite several fungal strains have been retrieved from methane-containing environments, the actual capacity and role of fungi on methane abatement is still unclear. The batch biodegradation tests here performed demonstrated the capacity of Graphium sp. to co-metabolically biodegrade methane and methanol. Moreover, the performance and microbiology of a fungal-bacterial compost biofilter treating methane at concentrations of ∼2% was evaluated at empty bed residence times of 40 and 20 min under different irrigation rates. The daily addition of 200 mL of mineral medium resulted in elimination capacities of 36.6 ± 0.7 g m(-3) h(-1) and removal efficiencies of ≈90% at the lowest residence time. The indigenous fungal community of the compost was predominant in the final microbial population and outcompeted the inoculated Graphium sp. during biofilter operation. PMID:26347931

  13. Cohabitation in the intestine: interactions between helminth parasites, bacterial microbiota and host immunity

    OpenAIRE

    Reynolds, Lisa A.; Finlay, B. Brett; Rick M Maizels

    2015-01-01

    Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies have reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota, and conversely that the presence and composition of the bacterial microbiota affects helminth colonisation and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human...

  14. Bacterial and Fungal Pattern Recognition Receptors in Homologous Innate Signaling Pathways of Insects and Mammals

    Directory of Open Access Journals (Sweden)

    Bethany A Stokes

    2015-01-01

    Full Text Available In response to bacterial and fungal infections in insects and mammals, distinct families of innate immune pattern recognition receptors initiate highly complex intracellular signaling cascades. Those cascades induce a variety of immune functions that restrain the spread of microbes in the host. Insect and mammalian innate immune receptors include molecules that recognize conserved microbial molecular patterns. Innate immune recognition leads to the recruitment of adaptor molecules forming multi-protein complexes that include kinases, transcription factors and other regulatory molecules. Innate immune signaling cascades induce the expression of genes encoding antimicrobial peptides and other key factors that mount and regulate the immune response against microbial challenge. In this review, we summarize our current understanding of the bacterial and fungal pattern recognition receptors for homologous innate signaling pathways of insects and mammals in an effort to provide a framework for future studies.

  15. Fungal versus bacterial brain abscesses: is diffusion-weighted MR imaging a useful tool in the differential diagnosis?

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the appearance of fungal brain abscesses on diffusion-weighted (DW) images, and to evaluate whether the imaging characteristics and apparent diffusion coefficient (ADC) values associated with fungal abscesses were distinct from those of bacterial abscesses. We retrospectively reviewed the MR images from nine patients with fungal brain infections, and 17 patients with pyogenic brain abscesses. All patients underwent conventional MR sequences and DW imaging on 1.5-T clinical MR scanners. ADC values of 20 fungal and 20 bacterial brain abscesses were calculated and compared using a random factor analysis of variance. Multiple lesions were present in 6 of 9 patients (67%) with fungal abscesses and in 5 of 17 patients (29%) with bacterial abscesses. On DW images, all but one bacterial brain abscess showed a homogeneous high signal, whereas the appearance of fungal abscesses on DW images was more variable: in five of nine patients with fungal abscesses, the lesions were homogeneously hyperintense, while in the remaining four patients, the lesions were of mixed signal intensity. Mean ADC values were 0.74 x 10-3 mm2/s in the fungal group and 0.486 x 10-3 mm2/s in the bacterial group (P≤0.05). Our results indicate that there is a trend towards higher ADC values in fungal lesions. Additional findings that support fungal rather than bacterial cerebral infection are multiplicity, signal heterogeneity on T2-weighted and DW imaging, and involvement of deep grey-matter nuclei. (orig.)

  16. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    Science.gov (United States)

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  17. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM)

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop;

    2013-01-01

    Abstract Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challeng...... affected by the fungal hyphae in the sand. This suggests that fungal–bacterial consortia are promising for successful bioremediation of pesticide contamination....

  18. Epidemiological Aspect and common Bacterial and Fungal isolates from Suppurative Corneal Ulcer in Mymensingh Region.

    Science.gov (United States)

    Moid, M A; Akhanda, A H; Islam, S; Halder, S K; Islam, R

    2015-04-01

    This prospective study was done to find out the epidemiological factors of suppurative corneal ulcer and the common causative bacterial and fungal isolates from the, patients with suppurative corneal ulcer in secondary and tertiary level hospital at Mymensingh region. A total 100 samples of corneal scrapings were collected purposively from clinically diagnosed suppurative corneal ulcer patients from March 18, 2012 to March 17, 2013. Out of the total 100 samples, bacterial species were 29(29%) cases and the fungal spacies were 71(71%) identified by the culture in blood agar, chocolate agar and sabouraud's agar media and also by microscopic examination. The bacterial species were streptococcus pneumonae 12 cases (12%), Staphylococcus aureus 9 cases (9%), pseudomonas in 6 cases (6%), and Streptococcus pyoganes 2 cases (2%). Fungal species were aspergillus fumigatus 61 cases (61%), aspergillus niger 10 cases (10%). Out of the study populations, most of the populations were from the age group of 41 to 60 years (39 %), followed 21 to 40 years (34%) age group. Considering the sex, male were 67%, female were 33%. The majority of patients came from the rural area of Mymensingh region; occupationally they were farmers (44%). Ocular trauma due to agricultural materials was the most common associated factor (71%). The etiological and epidemiological pattern of suppurative corneal ulcer varies significantly with geographical region, patient population and health of the cornea. The present study was carried out to explore the epidemiological pattern, causative bacterial and fungal specie by laboratory procedure from corneal scraping and to invent a prospective guide line for the management of corneal ulcer in the community.

  19. Pulmonary bacterial and fungal infections in human immunodeficiency virus patients: A study from India

    Directory of Open Access Journals (Sweden)

    K Shreevidya

    2012-01-01

    Full Text Available Background: Human Immunodeficiency Virus (HIV-reactive patients are more prone to infections. The morbidity and mortality in HIV-reactive patients is due to opportunistic infections. Most of the infections seen in Acquired Immunodeficiency Syndrome are endemic to that geographical region. Hence, this study was undertaken to document the occurrence of pulmonary bacterial and fungal infections in HIV patients. Materials and Methods: Expectorated and induced sputum samples were collected from 100 HIV-reactive patients and processed for bacterial and fungal pathogens including Pneumocystis carinii. Results: Of 100 samples, 66 were culture positive. Among the isolates, Mycobacterium tuberculosis constituted the highest number, 55 (83.3%, followed by other bacterial infections, 11 (16.6%, and fungi, 2 (3.03%. Tuberculosis patients had a CD4 count of less than 250 cells/μl with a mean count of 186 cells/μl and those with bacterial infections had a CD4 count of more than 300 cells/μl. The study showed that males were infected with HIV more than females and most of them belonged to the adult age group in the prime of their working life. Weight loss followed by fever and cough were the most common symptoms. Conclusion: M. tuberculosis is the most common opportunistic pathogen followed by bacterial pathogens infecting the lung in HIV. Low CD4 count is a dangerous signal of decreased immune status and higher chances of opportunistic infections and high mortality.

  20. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp.

    Directory of Open Access Journals (Sweden)

    Cécile Clavaud

    Full Text Available The bacterial and fungal communities associated with dandruff were investigated using culture-independent methodologies in the French subjects. The major bacterial and fungal species inhabiting the scalp subject's were identified by cloning and sequencing of the conserved ribosomal unit regions (16S for bacterial and 28S-ITS for fungal and were further quantified by quantitative PCR. The two main bacterial species found on the scalp surface were Propionibacterium acnes and Staphylococcus epidermidis, while Malassezia restricta was the main fungal inhabitant. Dandruff was correlated with a higher incidence of M. restricta and S. epidermidis and a lower incidence of P. acnes compared to the control population (p<0.05. These results suggested for the first time using molecular methods, that dandruff is linked to the balance between bacteria and fungi of the host scalp surface.

  1. Bacterial versus fungal laccase: potential for micropollutant degradation.

    Science.gov (United States)

    Margot, Jonas; Bennati-Granier, Chloé; Maillard, Julien; Blánquez, Paqui; Barry, David A; Holliger, Christof

    2013-01-01

    Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes versicolor were studied for their ability to produce active extracellular laccase in biologically treated wastewater with different carbon sources. Among the Streptomyces strains evaluated, only S. cyaneus produced extracellular laccase with sufficient activity to envisage its potential use in WWTPs. Laccase activity produced by T. versicolor was more than 20 times greater, the highest activity being observed with ash branches as the sole carbon source. The laccase preparation of S. cyaneus (abbreviated LSc) and commercial laccase from T. versicolor (LTv) were further compared in terms of their activity at different pH and temperatures, their stability, their substrate range, and their micropollutant oxidation efficiency. LSc and LTv showed highest activities under acidic conditions (around pH 3 to 5), but LTv was active over wider pH and temperature ranges than LSc, especially at near-neutral pH and between 10 and 25°C (typical conditions found in WWTPs). LTv was also less affected by pH inactivation. Both laccase preparations oxidized the three micropollutants tested, bisphenol A, diclofenac and mefenamic acid, with faster degradation kinetics observed for LTv. Overall, T. versicolor appeared to be the better candidate to remove micropollutants from wastewater in a dedicated post-treatment step. PMID:24152339

  2. Bacterial versus fungal laccase: potential for micropollutant degradation

    Science.gov (United States)

    2013-01-01

    Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes versicolor were studied for their ability to produce active extracellular laccase in biologically treated wastewater with different carbon sources. Among the Streptomyces strains evaluated, only S. cyaneus produced extracellular laccase with sufficient activity to envisage its potential use in WWTPs. Laccase activity produced by T. versicolor was more than 20 times greater, the highest activity being observed with ash branches as the sole carbon source. The laccase preparation of S. cyaneus (abbreviated LSc) and commercial laccase from T. versicolor (LTv) were further compared in terms of their activity at different pH and temperatures, their stability, their substrate range, and their micropollutant oxidation efficiency. LSc and LTv showed highest activities under acidic conditions (around pH 3 to 5), but LTv was active over wider pH and temperature ranges than LSc, especially at near-neutral pH and between 10 and 25°C (typical conditions found in WWTPs). LTv was also less affected by pH inactivation. Both laccase preparations oxidized the three micropollutants tested, bisphenol A, diclofenac and mefenamic acid, with faster degradation kinetics observed for LTv. Overall, T. versicolor appeared to be the better candidate to remove micropollutants from wastewater in a dedicated post-treatment step. PMID:24152339

  3. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    Science.gov (United States)

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production. PMID:26925623

  4. Clinical Evaluation of ERCP and Naobiliary Drainage for Biliary Fungal Infection--A Report of Five Cases of Severe Combined Bacterial and Fungal Infection of Biliary Tract

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiu; LIAO Jiazhi; QIN Hua; WANG Jialong

    2005-01-01

    This study studied the use of ERCP and nasobiliary tube in the diagnosis of fungal infection of biliary tract and the efficacy of combined use of local administration via nasobiliary tube and intravenous antifungal treatment for severe biliary tract fungal infection. 5 patients in our series,with age ranging from 47 to 68 y (mean 55.8), were diagnosed as having mixed bacterial and fungal infection of biliary tract as confirmed by smear or/and culture of bile obtained by ERCP and nasobiliary drainage. Besides routine anti-bacteria therapy, all patients received local application of fluconazole through nasobiliary tube and intravenous administration of fluconazole or itraconazole in terms of the results of in vitro sensitivity test. The mean duration of intravenous fluconazole or itraconazole was 30 days (24-40 days), and that of local application of fluconazole through nasobiliary drainage tube was 19 days (8-24 days). During a follow-up period of 3-42 months, all patient's fungal infection of biliary tract was cured. It is concluded that on the basis of typical clinical features of biliary tract infection, fungal detection of smear/culture of bile obtained by ERCP was the key for the diagnosis of fungal infection of biliary tract. Local application antifungal drug combined with intravenous anti-fungal drugs might be an effective and safe treatment for fungal infection of biliary tract.

  5. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation.

    Science.gov (United States)

    Hu, Ping; Hollister, Emily B; Somenahally, Anilkumar C; Hons, Frank M; Gentry, Terry J

    2014-01-01

    The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms. PMID:25709600

  6. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation

    Directory of Open Access Journals (Sweden)

    Ping eHu

    2015-01-01

    Full Text Available The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs. Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs. To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments. Bacterial populations were less impacted by ITCs, although there was atransient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms.

  7. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  8. Potential of Some Fungal and Bacterial Species in Bioremediation of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Raman Kumar

    2014-02-01

    Full Text Available Microorganisms including fungi and bacteria have been reported to extract heavy metals from wastewater through bioaccumulation and biosorption. An attempt was, therefore, made to isolate bacteria and fungi from sites contaminated with heavy metals for higher tolerance and removal from wastewater. Bacterial and fungal isolates were obtained from the samples collected from Karnal, Ambala and Yamunanagar districts of Haryana using enrichment culture technique. Bacterial and fungal isolates with tolerant up to 100 ppm concentration of heavy metals (Pb, Cd, Cr were tested for their removal from liquid media containing 50 ppm concentration of Pb, Cd and Cr each. Five fungi (Penicillium chrysogenum, Aspegillus nidulans, Aspergillus flavus, Rhizopus arrhizus, Trichoderma viride were also included in this study. Fungi Aspergillus nidulans, Rhizopus arrhizus and Trichoderma viride showed maximum uptake capacity of 25.67 mg/g for Pb, 13.15 mg/g for Cd and 2.55 mg/g of Cr, respectively. The maximum uptake capacity of tolerant bacterial isolates - BPb12 and BPb16, BCd5 and BCr14 were observed to be ~ 45 mg/g for Pb, 2.12 mg/g for Cd and 3.29 mg/g for Cr, respectively. This indicated the potential of these identified fungi and bacteria as biosorbent for removal of high concentration metals from wastewater and industrial effluents.

  9. Bacterial and Fungal Assessment of Top Soil Cultivated with Oil Palm Seedlings.

    Directory of Open Access Journals (Sweden)

    UDOH ME

    2013-12-01

    Full Text Available The fungal and bacterial populations in soil waste dumping site (WDS and oil palm ecosystem (OPE cultivated with oil palm seedlings have been studied. The month of April had the highest occurrence with 20.1 x 105 cfu/g from WDS. This was followed by May with 12.8 x 105 cfu/g (WDS, July 10.1 x 105 cfu/g (OPE and August showed the lowest occurrence with 7.1 x105 cfu/g (OPE. The mean bacterial counts for the month of July recorded the highest occurrence with 8.42 x 103 from OPE. This was followed by May with 5.98 x 103 cfu/g (WDS, April 4.45 x 103 cfu/g (WDS and August showed the lowest with 1.60 x 103 (OPE. The biochemical tests revealed the occurrence of eleven isolates. The Bacillus subtilis was the most occurred while Flavobacteria devorans was the least occurred. The frequency of occurrence of fungi isolated revealed that Penicillium expansium had the highest occurrence with 11.7%. The least occurrence was Trichoderma polysporum with 1.1%. The high counts of fungi and bacteria obtained in soil from WDS were an indication that the soil was influenced by the degrading matters at the sites. The soil from waste dumping sites best supported high fungal and bacterial populations while soil from oil palm ecosystem less supported the populations.

  10. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile.

    Science.gov (United States)

    Gutiérrez, Marcelo H; Jara, Ana M; Pantoja, Silvio

    2016-05-01

    This is the first report of fungal parasitism of diatoms in a highly productive coastal upwelling ecosystem, based on a year-round time series of diatom and parasitic Chytridiomycota abundance in the Humboldt Current System off Chile (36°30.80'S-73°07.70'W). Our results show co-variation in the presence of Skeletonema, Thalassiosira and Chaetoceros diatoms with attached and detached chytrid sporangia. High abundance of attached sporangia was observed during the austral spring, coinciding with a predominance of Thalassiosira and Skeletonema under active upwelling conditions. Towards the end of austral spring, a decreasing proportion of attached sporangia was accompanied by a decline in abundance of Skeletonema and Thalassiosira and the predominance of Chaetoceros, suggesting specificity and host density dependence of chytrid infection. The new findings on fungal parasitism of diatoms provide further support for the inclusion of Fungi in the current model of the role played by the marine microbial community in the coastal ocean. We propose a conceptual model where Fungi contribute to controlling the dynamics of phytoplankton populations, as well as the release of organic matter and the transfer of organic carbon through the pelagic trophic web in coastal upwelling ecosystems. PMID:26914416

  11. Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Folwell, Benjamin D; McGenity, Terry J; Whitby, Corinne

    2016-04-15

    High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs werePseudomonas,Bacillus, andMicrobacteriumspecies. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation. PMID:26850299

  12. Metabolites from the Fungal Endophyte Aspergillus austroafricanus in Axenic Culture and in Fungal-Bacterial Mixed Cultures.

    Science.gov (United States)

    Ebrahim, Weaam; El-Neketi, Mona; Lewald, Laura-Isabell; Orfali, Raha S; Lin, Wenhan; Rehberg, Nidja; Kalscheuer, Rainer; Daletos, Georgios; Proksch, Peter

    2016-04-22

    The endophytic fungus Aspergillus austroafricanus isolated from leaves of the aquatic plant Eichhornia crassipes was fermented axenically on solid rice medium as well as in mixed cultures with Bacillus subtilis or with Streptomyces lividans. Chromatographic analysis of EtOAc extract of axenic cultures afforded two new metabolites, namely, the xanthone dimer austradixanthone (1) and the sesquiterpene (+)-austrosene (2), along with five known compounds (3-7). Austradixanthone (1) represents the first highly oxygenated heterodimeric xanthone derivative. When A. austroafricanus was grown in mixed cultures with B. subtilis or with S. lividans, several diphenyl ethers (8-11) including the new austramide (8) were induced up to 29-fold. The structures of new compounds were unambiguously elucidated using 1D- and 2D-NMR spectroscopy, HRESIMS, and chemical derivatization. Compound 7 exhibited weak cytotoxicity against the murine lymphoma L5178Y cell line (EC50 is 12.6 μM). In addition, compounds 9 and 10, which were enhanced in mixed fungal/bacterial cultures, proved to be active against Staphylococcus aureus (ATCC 700699) with minimal inhibitory concentrations (MICs) of 25 μM each (6.6 μg/mL), whereas compound 11 revealed moderate antibacterial activity against B. subtilis 168 trpC2 with an MIC value of 34.8 μM (8 μg/mL).

  13. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity.

    Science.gov (United States)

    Reynolds, Lisa A; Finlay, B Brett; Maizels, Rick M

    2015-11-01

    Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota and, conversely, that the presence and composition of the bacterial microbiota affect helminth colonization and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models, at the level of potential mechanistic pathways and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions among intestinal microbes, helminth parasites, and the host immune system allows for a more holistic approach when using probiotics, prebiotics, synbiotics, antibiotics, and anthelmintics, as well as when designing treatments for autoimmune and allergic conditions.

  14. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity.

    Science.gov (United States)

    Reynolds, Lisa A; Finlay, B Brett; Maizels, Rick M

    2015-11-01

    Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota and, conversely, that the presence and composition of the bacterial microbiota affect helminth colonization and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models, at the level of potential mechanistic pathways and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions among intestinal microbes, helminth parasites, and the host immune system allows for a more holistic approach when using probiotics, prebiotics, synbiotics, antibiotics, and anthelmintics, as well as when designing treatments for autoimmune and allergic conditions. PMID:26477048

  15. Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains

    Institute of Scientific and Technical Information of China (English)

    Rabia Naz; Asghari Bano

    2012-01-01

    Objective: To investigate the in vitro antimicrobial activities of the leaf extract in different solvents viz., methanol, ethanol and water extracts of the selected plant Ricinus communis. Methods:Agar well diffusion method and agar tube dilution method were carried out to perform the antibacterial and antifungal activity of methanol, ethanol and aqueous extracts. Results:Methanol leaf extracts were found to be more active against Gram positive bacteria (Bacillus subtilis: ATCC 6059 and Staphylococcus aureus: ATCC 6538) as well as Gram negative bacteria (Pseudomonas aeruginosa: ATCC 7221 and Klebsiella pneumoniae) than ethanol and aqueous leaf extracts. Antifungal activity of methanol and aqueous leaf extracts were also carried out against selected fungal strains as Aspergillus fumigatus and Aspergillus flavus. Methanolic as well as aqueous leaf extracts of Ricinus communis were effective in inhibiting the fungal growth. Conclusions: The efficient antibacterial and antifungal activity of Ricinus communis from the present investigation revealed that the methanol leaf extracts of the selected plant have significant potential to inhibit the growth of pathogenic bacterial and fungal strains than ethanol and aqueous leaf extracts.

  16. Soil Fungal:Bacterial Ratios Are Linked to Altered Carbon Cycling

    Science.gov (United States)

    Malik, Ashish A.; Chowdhury, Somak; Schlager, Veronika; Oliver, Anna; Puissant, Jeremy; Vazquez, Perla G. M.; Jehmlich, Nico; von Bergen, Martin; Griffiths, Robert I.; Gleixner, Gerd

    2016-01-01

    Despite several lines of observational evidence, there is a lack of consensus on whether higher fungal:bacterial (F:B) ratios directly cause higher soil carbon (C) storage. We employed RNA sequencing, protein profiling and isotope tracer techniques to evaluate whether differing F:B ratios are associated with differences in C storage. A mesocosm 13C labeled foliar litter decomposition experiment was performed in two soils that were similar in their physico-chemical properties but differed in microbial community structure, specifically their F:B ratio (determined by PLFA analyses, RNA sequencing and protein profiling; all three corroborating each other). Following litter addition, we observed a consistent increase in abundance of fungal phyla; and greater increases in the fungal dominated soil; implicating the role of fungi in litter decomposition. Litter derived 13C in respired CO2 was consistently lower, and residual 13C in bulk SOM was higher in high F:B soil demonstrating greater C storage potential in the F:B dominated soil. We conclude that in this soil system, the increased abundance of fungi in both soils and the altered C cycling patterns in the F:B dominated soils highlight the significant role of fungi in litter decomposition and indicate that F:B ratios are linked to higher C storage potential. PMID:27555839

  17. Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars.

    Science.gov (United States)

    La Duc, Myron T; Vaishampayan, Parag; Nilsson, Henrik R; Torok, Tamas; Venkateswaran, Kasthuri

    2012-08-01

    Spacecraft hardware and assembly cleanroom surfaces (233 m(2) in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m(2)) than colocated spacecraft hardware (187 OTU; 162 m(2)). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space.

  18. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants.

    Science.gov (United States)

    Gehring, Catherine A; Mueller, Rebecca C; Haskins, Kristin E; Rubow, Tine K; Whitham, Thomas G

    2014-01-01

    Plants and mycorrhizal fungi influence each other's abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future. PMID:25009537

  19. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism and susceptibility to herbivory: Consequences for fungi and host plants

    Directory of Open Access Journals (Sweden)

    Catherine A. Gehring

    2014-06-01

    Full Text Available Plants and mycorrhizal fungi influence each other’s abundance, diversity and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of mistletoe parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis, and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  20. Cryopreservation of protozoan parasites.

    Science.gov (United States)

    Miyake, Yuko; Karanis, Panagiotis; Uga, Shoji

    2004-02-01

    Conventional methods for the propagation and preservation of parasites in vivo or in vitro have some limitations, including the need for labor, initial isolation and loss of strains, bacterial, and fungal contamination, and changes in the original biological and metabolic characteristics. All these disadvantages are considerably reduced by cryopreservation. In this study, we examined the effects of various freezing conditions on the survival of several protozoan parasites after cryopreservation. The viability of Entamoeba histolytica was improved by seeding (p Blastocystis hominis were remarkably decreased when frozen at improper rates. Unlike the cooling rate, exposure of the protozoans to a rapid thawing method produced better motility for all parasites. PMID:14969677

  1. Algal-fungal interactions in the marine ecosystem: Symbiosis to parasitism

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    with field-oriented work and labor intensive search for fungal pathogens of algae deter many researchers from this field. Studies on fungal pathogens of higher plants and especially crop plants in the terrestrial ecosystem have advanced tremendously... AND ETIOLOGY OF DISEASES Detection of disease in algae is not a very easy task as is possible with land plants. A basic understanding in morphology of algae is a must for this purpose. Micro and macroalgae need to be collected separately for further...

  2. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites

    NARCIS (Netherlands)

    Frenken, Thijs; Velthuis, Mandy; Senerpont Domis, de L.N.; Stephan, Susanne; Aben, Ralf; Kosten, Sarian; Donk, van Ellen; Waal, Van de D.B.

    2016-01-01

    Climate change is expected to favour infectious diseases across ecosystems worldwide. In freshwater and marine environments, parasites play a crucial role in controlling plankton population dynamics. Infection of phytoplankton populations will cause a transfer of carbon and nutrients into parasit

  3. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation

    NARCIS (Netherlands)

    de Bekker, Charissa; Ohm, Robin A; Loreto, Raquel G; Sebastian, Aswathy; Albert, Istvan; Merrow, Martha; Brachmann, Andreas; Hughes, David P

    2015-01-01

    BACKGROUND: Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observ

  4. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    Science.gov (United States)

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  5. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants

    OpenAIRE

    CatherineA.Gehring; RebeccaC.Mueller; KristinE.Haskins

    2014-01-01

    Plants and mycorrhizal fungi influence each other’s abundance, diversity and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of mistletoe parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation ...

  6. Bacterial and fungal growth for monitoring the impact of wildfire combined or not with different soil stabilization treatments

    Science.gov (United States)

    Barreiro, Ana; Baath, Erland; Díaz-Raviña, Montserrat

    2015-04-01

    Soil stabilization techniques are rapidly gaining acceptance as efficient tool for reducing post-fire erosion. However, despite its interest, information concerning their impact on soil biota is scarce. We examined, under field conditions, the bacterial and fungal medium-term responses in a hillslope area located in Laza (NW Spain) affected by a high severity wildfire with the following treatments established by triplicate (4 x 20 m plots): unburnt control soil, burnt control soil, burnt soil with rye seeding and burnt soil with straw mulch. The bacterial and fungal growth, as well as respiration, were measured 4 years after fire and application of treatments using leucine incorporation for bacterial growth and acetate-in-ergosterol incorporation for fungal growth. The results showed that soil respiration and fungal biomass were negatively affected by fire, in the top layer (0-5 cm), while bacterial and fungal growth was stimulated. These microbial changes induced by fire were associated with modifications in organic matter (50% reduction in C content) and soil pH (increase of 0.5-0.9 units). Thus, the results suggested that under acid environment (pH in water 3.5) post-fire conditions might have favoured both microbial groups, which is supported by the fact that estimated bacterial and fungal growth were positive and significant correlated with soil pH (range of 3.5-4.5). This contrast with the well-known reported investigations showing that bacteria rather than fungi proliferation occurred after prescribed fire or wildfire; it should be noticed, however, that soils with a higher pH than that in the present study were used. Our data also indicated that bacterial and fungal communities were not significantly affected by seeding and mulching treatments. The results highlighted the importance of pre-fire soil pH as key factor in determining the microbial response after fire. Acknowledgements. A. Barreiro is recipient of FPU grant from Spanish Ministry of Education

  7. Fungal and Bacterial Infection Mitigation with Antibiotic and Antifungal Loaded Biopolymer Sponges

    Science.gov (United States)

    Parker, Ashley Cox

    Musculoskeletal injuries are some of the most prevalent injuries in both civilian and military populations and their infections can be difficult to treat, often resulting in multiple surgeries and increased costs. In both previous and recent military operations, extremity injuries have been the most common battlefield injuries and many involve complex, open fractures. These extremity injuries are especially susceptible to multiple pathogenic, and sometimes drug resistant, bacteria and fungi. Fungal infections have recently become increasingly problematic in both military and civilian populations and have significantly higher amputation rates than those from bacterial infections. Many of these bacterial and fungal strains adhere to tissue and implanted orthopaedic hardware within wounds, forming biofilms. These problematic, often polymicrobial, infections threaten the health of the patient, but the risk also exists of spreading within hospitals to become prominent resistant infections. Local antimicrobial delivery releases high levels of antimicrobials directly to injured wound tissue, overcoming sub-bactericidal or subfungicidal antimicrobial levels present in the avascular wound zones. This research will determine the ability of modified chitosan sponges, buffered with sodium acetate or blended with polyethylene glycol (PEG), to act as short term adjunctive therapies to initial surgical treatment for delivering both antibiotics and/or antifungals for early abatement of infection. The objective of this work was to evaluate both types of modified sponges for in vitro and in vivo material characteristics and device functionality. In vitro analysis demonstrated both the buffered and PEG modified chitosan sponges exhibited increased degradation and functional cytocompatibility. The chitosan/PEG sponges were able to be loaded with hydrophobic antifungals and the sponges released in vitro biologically active concentrations, alone or in combination with the antibiotic

  8. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    Science.gov (United States)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of

  9. Potential of combined fungal and bacterial treatment for color removal in textile wastewater.

    Science.gov (United States)

    Novotný, Ceněk; Svobodová, Kateřina; Benada, Oldřich; Kofroňová, Olga; Heissenberger, Andreas; Fuchs, Werner

    2011-01-01

    Low efficiency of dye removal by mixed bacterial communities and high rates of dye decolorization by white-rot fungi suggest a combination of both processes to be an option of treatment of textile wastewaters containing dyes and high concentrations of organics. Bacteria were able to remove mono-azo dye but not other chemically different dyes whereas decolorization rates using Irpex lacteus mostly exceeded 90% within less than one week irrespective of dye structure. Decolorization rates for industrial textile wastewaters containing 2-3 different dyes by fungal trickling filters (FTF) attained 91%, 86%, 35% within 5-12 d. Sequential two-step application of FTF and bacterial reactors resulted in efficient decolorization in 1st step (various single dyes, 94-99% within 5 d; wastewater I, 90% within 7 d) and TOC reduction of 95-97% in the two steps. Large potential of combined use of white-rot fungi and traditional bacterial treatment systems for bioremediation of textile wastewaters was demonstrated.

  10. Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens.

    Science.gov (United States)

    Girvan, Martina S; Bullimore, Juliet; Ball, Andrew S; Pretty, Jules N; Osborn, A Mark

    2004-05-01

    The composition of the active microbial (bacterial and fungal) soil community in an arable wheat field subjected to different management practices was examined at five times during a 1-year period. Field sections were fertilized either at good agricultural practice (GAP) levels or at reduced levels (0.5x GAP) and were inoculated with vesicular arbuscular mycorrhizae (VAM) at the same time. Field subsections were treated either with or without pesticides. Changes in the active microbial communities were investigated by denaturing gradient gel electrophoresis analysis of reverse transcription-PCR-amplified 16S and 18S rRNA. Microbial community structure was primarily determined by season, and the seasonal trends were similar for the fungal and bacterial components. Between-sample microbial heterogeneity decreased under a mature crop in the summer but increased following harvesting and plowing. Although similar overall trends were seen for the two microbial components, sample variability was greater for the fungal community than for the bacterial community. The greatest management effects were due to GAP fertilization, which caused increases in the bacterial numbers in the total and culturable communities. Microbial biomass similarly increased. GAP fertilization also caused large shifts in both the active bacterial community structure and the active fungal community structure and additionally resulted in a decrease in the heterogeneity of the active bacterial community. Pesticide addition did not significantly affect bacterial numbers or heterogeneity, but it led to major shifts in the active soil bacterial community structure. PCR primers specific for Glomales 25S rRNA genes were used to monitor the VAM population following inoculation. Glomales were detected initially only in VAM-inoculated field sections but were subsequently detected in noninoculated field sections as the season progressed. After plowing, the level of Glomales was reduced in noninoculated field

  11. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    Science.gov (United States)

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality.

  12. Effects of antibiotic resistance alleles on bacterial evolutionary responses to viral parasites.

    Science.gov (United States)

    Arias-Sánchez, Flor I; Hall, Alex R

    2016-05-01

    Antibiotic resistance has wide-ranging effects on bacterial phenotypes and evolution. However, the influence of antibiotic resistance on bacterial responses to parasitic viruses remains unclear, despite the ubiquity of such viruses in nature and current interest in therapeutic applications. We experimentally investigated this by exposing various Escherichia coli genotypes, including eight antibiotic-resistant genotypes and a mutator, to different viruses (lytic bacteriophages). Across 960 populations, we measured changes in population density and sensitivity to viruses, and tested whether variation among bacterial genotypes was explained by their relative growth in the absence of parasites, or mutation rate towards phage resistance measured by fluctuation tests for each phage. We found that antibiotic resistance had relatively weak effects on adaptation to phages, although some antibiotic-resistance alleles impeded the evolution of resistance to phages via growth costs. By contrast, a mutator allele, often found in antibiotic-resistant lineages in pathogenic populations, had a relatively large positive effect on phage-resistance evolution and population density under parasitism. This suggests costs of antibiotic resistance may modify the outcome of phage therapy against pathogenic populations previously exposed to antibiotics, but the effects of any co-occurring mutator alleles are likely to be stronger. PMID:27194288

  13. Effects of antibiotic resistance alleles on bacterial evolutionary responses to viral parasites.

    Science.gov (United States)

    Arias-Sánchez, Flor I; Hall, Alex R

    2016-05-01

    Antibiotic resistance has wide-ranging effects on bacterial phenotypes and evolution. However, the influence of antibiotic resistance on bacterial responses to parasitic viruses remains unclear, despite the ubiquity of such viruses in nature and current interest in therapeutic applications. We experimentally investigated this by exposing various Escherichia coli genotypes, including eight antibiotic-resistant genotypes and a mutator, to different viruses (lytic bacteriophages). Across 960 populations, we measured changes in population density and sensitivity to viruses, and tested whether variation among bacterial genotypes was explained by their relative growth in the absence of parasites, or mutation rate towards phage resistance measured by fluctuation tests for each phage. We found that antibiotic resistance had relatively weak effects on adaptation to phages, although some antibiotic-resistance alleles impeded the evolution of resistance to phages via growth costs. By contrast, a mutator allele, often found in antibiotic-resistant lineages in pathogenic populations, had a relatively large positive effect on phage-resistance evolution and population density under parasitism. This suggests costs of antibiotic resistance may modify the outcome of phage therapy against pathogenic populations previously exposed to antibiotics, but the effects of any co-occurring mutator alleles are likely to be stronger.

  14. Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water.

    Science.gov (United States)

    Lonnen, J; Kilvington, S; Kehoe, S C; Al-Touati, F; McGuigan, K G

    2005-03-01

    The ability of solar disinfection (SODIS) and solar photocatalytic (TiO(2)) disinfection (SPC-DIS) batch-process reactors to inactivate waterborne protozoan, fungal and bacterial microbes was evaluated. After 8 h simulated solar exposure (870 W/m(2) in the 300 nm-10 microm range, 200 W/m(2) in the 300-400 nm UV range), both SPC-DIS and SODIS achieved at least a 4 log unit reduction in viability against protozoa (the trophozoite stage of Acanthamoeba polyphaga), fungi (Candida albicans, Fusarium solani) and bacteria (Pseudomonas aeruginosa, Escherichia coli). A reduction of only 1.7 log units was recorded for spores of Bacillus subtilis. Both SODIS and SPC-DIS were ineffective against the cyst stage of A. polyphaga.

  15. A case of asymptomatic fungal and bacterial colonization of an intragastric balloon

    Institute of Scientific and Technical Information of China (English)

    Halil Coskun; Suleyman Bozkurt

    2009-01-01

    Intragastric balloon therapy, as a part of a multidisciplinary weight management program, is an effective short-term intervention for weight loss. Although the insertion procedure is easy and generally well tolerated by patients, a few complications can occur. We report here a heavy smoker with intragastric balloon insertion complicated by colonization with opportunistic organisms. The 27-year-old female, body mass index 35.5 kg/m2, had a BioEnterics. Intragastric Balloon inserted under conscious sedation without any perioperative complications. Six months later, when the standard removal time arrived, the balloon was seen to be covered with a necrotic white-gray material. Microbiological examination revealed Enterobacter cloacae and Candida species yeast colonies. We recommend that asymptomatic fungal and/or bacterial colonization should be considered among the complications of the intragastric balloon procedure, despite its rarity.

  16. Impact of Bacterial-Fungal Interactions on the Colonization of the Endosphere.

    Science.gov (United States)

    van Overbeek, Leonard S; Saikkonen, Kari

    2016-03-01

    Research on different endophyte taxa and the related scientific disciplines have largely developed separately, and comprehensive community-level studies on bacterial and fungal interactions and their importance are lacking. Here, we discuss the transmission modes of bacteria and fungi and the nature of their interactions in the endosphere at both the molecular and physiological level. Mixed-community biofilms in the endosphere may have a role in protecting endophytes against encountered stresses, such as from plant defense systems. However, transmission from static (in biofilms) to free-living (planktonic) forms may be crucial for the exploration of new habitable spaces in plants. Important features previously recognized as plant-microbe interactions or antagonism in endophyte genomes and metagenomes are proposed to have essential roles in the modulation of endophyte communities. PMID:26821607

  17. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Directory of Open Access Journals (Sweden)

    Schrey Silvia D

    2012-08-01

    Full Text Available Abstract Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum. The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol and siderophores (e.g. ferulic acid, desferroxiamines. Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

  18. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Science.gov (United States)

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  19. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation

    Science.gov (United States)

    Chen, Juanni; Peng, Hui; Wang, Xiuping; Shao, Feng; Yuan, Zhaodong; Han, Heyou

    2014-01-01

    To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range of aggregated graphene oxide sheets, resulting in the local perturbation of their cell membrane and inducing the decrease of the bacterial membrane potential and the leakage of electrolytes of fungal spores. It is likely that GO interacts with the pathogens by mechanically wrapping and locally damaging the cell membrane and finally causing cell lysis, which may be one of the major toxicity actions of GO against phytopathogens. The antibacterial mode proposed in this study suggests that the GO may possess antibacterial activity against more multi-resistant bacterial and fungal phytopathogens, and provides useful information about the application of GO in resisting crop diseases.To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL-1). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range

  20. Studies on fungal and bacterial population of air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Claudia Ross

    2004-09-01

    Full Text Available In tropical countries such as Brazil, there is not enough information about microbial contaminants in indoor environments with air conditioning systems. Microbial monitoring of such environments is important for the quality of human life. The aim of this work was to assess the fungal genera and bacterial morphotypes occurring in such environments. Air samples were taken indoors and outdoors from a public auditorium, a hospital, a company and a shopping center during the 2001 winter by using a six-stage impactor Millipore M air T® . Twenty-one fungal genera were identified. Bacterial morphological groups found were Gram positive and negative rods and Gram positive coccus.Em países tropicais como o Brasil, não há informação suficiente sobre contaminantes microbianos em ambientes internos com sistemas de ar condicionado. Monitoramento microbiano em tais ambientes é importante para a qualidade de vida humana. O objetivo deste trabalho foi identificar os gêneros de fungos e morfotipos de bactérias que ocorrem em tais ambientes. Amostras de ar foram coletadas dentro e fora de um auditório público, um hospital, uma empresa e um shopping center durante o inverno de 2001 utilizando um impactador de ar de seis estágios Millipore M air T® . Vinte e um gêneros de fungos foram identificados. Foram encontrados grupos morfológicos de bactérias bastonetes Gram positivos e negativos e cocos Gram positivos.

  1. antiSMASH : rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

    NARCIS (Netherlands)

    Medema, Marnix H.; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A.; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide var

  2. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

    NARCIS (Netherlands)

    Medema, M.H.; Blin, K.; Cimermancic, P.; Jager, de V.C.L.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R.

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide var

  3. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences.

    NARCIS (Netherlands)

    Medema, M.H.; Blin, K.; Cimermancic, P.; Jager, V.C.L. de; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R.

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide var

  4. Identification of microRNA-like small RNAs from fungal parasite Nosema ceranae.

    Science.gov (United States)

    Huang, Qiang; Evans, Jay D

    2016-01-01

    We previously found transcripts encoding Dicer and Argonaute which are involved in the production of microRNAs, in the honey bee parasite Nosema ceranae. In order to identify microRNAs in N. ceranae, we sequenced small RNAs from midgut tissues of infected honey bees at 24 h intervals for 6 days post infection, covering the complete reproduction cycle for this intracellular parasite. We predicted six microRNA-like small RNAs, all of which were confirmed via RT-qPCR assays. This is the first evidence for microRNA-like small RNAs generated by a microsporidian species, providing new insights into host-parasite interactions involving this widespread taxonomic group. PMID:26678507

  5. Studies on antimicrobial and antifungal activities of ziziphus mauritiana human clinical bacterial and fungal pathogens

    International Nuclear Information System (INIS)

    The antimicrobial and antifungal activities of crude extracts of Ziziphus mauritiana leaves were investigated against six selected bacterial (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa, Enterobacter, Klebsiella pneumoniae) and one fungal pathogen (Aspel-gillus niger). The crude extract was further fractionated in butanol, choloroform, n-hexane and methanol. Agar well diffusion and agar dilution assay were employed for determination of zones of inhibition and MICs, respectively, whereas MBC was determined using broth dilution test. The butanol fraction presented encouraging antimicrobial activity (15.0%0.02), while methanol (7.03:1:0.05) and chloroform (7.0%0,05) fractions emerged with significantly low susceptibility. The n-hexane fraction was recorded as almost inactive (0%0) against all bacterial pathogens. Unlike the antibacterial activities, all fractions possessed momentous antifungal activities except the methanol fraction (0%0). The n-hexane fraction showed widest zone of inhibition (11:1:0.05) followed by butanol (8.0%0.02) and chloroform (7.0%0.02). (author)

  6. In Silico Phylogenetic Analysis and Molecular Modelling Study of 2-Haloalkanoic Acid Dehalogenase Enzymes from Bacterial and Fungal Origin

    Directory of Open Access Journals (Sweden)

    Raghunath Satpathy

    2016-01-01

    Full Text Available 2-Haloalkanoic acid dehalogenase enzymes have broad range of applications, starting from bioremediation to chemical synthesis of useful compounds that are widely distributed in fungi and bacteria. In the present study, a total of 81 full-length protein sequences of 2-haloalkanoic acid dehalogenase from bacteria and fungi were retrieved from NCBI database. Sequence analysis such as multiple sequence alignment (MSA, conserved motif identification, computation of amino acid composition, and phylogenetic tree construction were performed on these primary sequences. From MSA analysis, it was observed that the sequences share conserved lysine (K and aspartate (D residues in them. Also, phylogenetic tree indicated a subcluster comprised of both fungal and bacterial species. Due to nonavailability of experimental 3D structure for fungal 2-haloalkanoic acid dehalogenase in the PDB, molecular modelling study was performed for both fungal and bacterial sources of enzymes present in the subcluster. Further structural analysis revealed a common evolutionary topology shared between both fungal and bacterial enzymes. Studies on the buried amino acids showed highly conserved Leu and Ser in the core, despite variation in their amino acid percentage. Additionally, a surface exposed tryptophan was conserved in all of these selected models.

  7. Caterpillars and Fungal Pathogens: Two Co-Occurring Parasites of an Ant-Plant Mutualism

    OpenAIRE

    Olivier Roux; Régis Céréghino; Solano, Pascal J.; Alain Dejean

    2011-01-01

    International audience In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploi...

  8. Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection.

    Science.gov (United States)

    Muturi, Ephantus J; Bara, Jeffrey J; Rooney, Alejandro P; Hansen, Allison K

    2016-08-01

    Understanding how midgut microbial communities of field-collected mosquitoes interact with pathogens is critical for controlling vector infection and disease. We used 16S rRNA and internal transcribed spacer sequencing to characterize the midgut bacterial and fungal communities of adult females of Aedes triseriatus and Aedes japonicus collected as pupae in tree holes, plastic bins and waste tires and their response to La Crosse virus (LACV) infection. For both mosquito species and across all habitat and virus treatments, a total of 62 bacterial operational taxonomic units (OTUs) from six phyla and 21 fungal OTUs from two phyla were identified. The majority of bacterial (92%) and fungal (71%) OTUs were shared between the mosquito species; however, several OTUs were unique to each species. Bacterial and fungal communities of individuals that took either infectious or noninfectious bloodmeals were less diverse and more homogeneous compared to those of newly emerged adults. Interestingly, LACV-infected A. triseriatus and A. japonicus had higher bacterial richness and lower fungal richness compared to individuals that took a noninfectious bloodmeal, suggesting that viral infection was associated with an increase in bacterial OTUs and a decrease in fungal OTUs. For both mosquito species, several OTUs were identified that had both high fidelity and specificity to mosquito midguts that were infected with LACV. Overall, these findings demonstrate that bacterial and fungal communities that reside in mosquito midguts respond to host diet and viral infection and could play a role in modulating vector susceptibility to LACV. PMID:27357374

  9. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Ake; Aerts, Andrea; Asiegbu, Fred; Belbahri, Lassaad; Bouzid, Ourdia; Broberg, Anders; Canback, Bjorn; Coutinho, Pedro M.; Cullen, Dan; Dalman, Kerstin; Deflorio, Giuliana; van Diepen, Linda T. A.; Dunand, Christophe; Duplessis, Sebastien; Durling, Mikael; Gonthier, Paolo; Grimwood, Jane; Fossdal, Carl Gunnar; Hansson, David; Henrissat, Bernard; Hietala, Ari; Himmelstrand, Kajsa; Hoffmeister, Dirk; Hogberg, Nils; James, Timothy Y.; Karlsson, Magnus; Kohler, Annegret; Lucas, Susan; Lunden, Karl; Morin, Emmanuelle; Murat, Claude; Park, Jongsun; Raffaello, Tommaso; Rouze, Pierre; Salamov, Asaf; Schmutz, Jeremy; Solheim, Halvor; Stahlberg, Jerry; Velez, Heriberto; de Vries, Ronald P.; Wiebenga, Ad; Woodward, Steve; Yakovlev, Igor; Garbelotto, Matteo; Martin, Francis; Grigoriev, Igor V.; Stenlid, Jan

    2012-01-01

    Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.

  10. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  11. Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Akhoundi

    Full Text Available BACKGROUND: Phlebotomine sand flies are the vectors of the leishmaniases, parasitic diseases caused by Leishmania spp. Little is known about the prevalence and diversity of sand fly microflora colonizing the midgut or the cuticle. Particularly, there is little information on the fungal diversity. This information is important for development of vector control strategies. METHODOLOGY/PRINCIPAL FINDINGS: FIVE SAND FLY SPECIES: Phlebotomus papatasi, P. sergenti, P. kandelakii, P. perfiliewi and P. halepensis were caught in Bileh Savar and Kaleybar in North-Western Iran that are located in endemic foci of visceral leishmaniasis. A total of 35 specimens were processed. Bacterial and fungal strains were identified by routine microbiological methods. We characterized 39 fungal isolates from the cuticle and/or the midgut. They belong to six different genera including Penicillium (17 isolates, Aspergillus (14, Acremonium (5, Fusarium (1, Geotrichum (1 and Candida (1. We identified 33 Gram-negative bacteria: Serratia marcescens (9 isolates, Enterobacter cloacae (6, Pseudomonas fluorescens (6, Klebsiella ozaenae (4, Acinetobacter sp. (3, Escherichia coli (3, Asaia sp. (1 and Pantoea sp. (1 as well as Gram-positive bacteria Bacillus subtilis (5 and Micrococcus luteus (5 in 10 isolates. CONCLUSION/SIGNIFICANCE: Our study provides new data on the microbiotic diversity of field-collected sand flies and for the first time, evidence of the presence of Asaia sp. in sand flies. We have also found a link between physiological stages (unfed, fresh fed, semi gravid and gravid of sand flies and number of bacteria that they carry. Interestingly Pantoea sp. and Klebsiella ozaenae have been isolated in Old World sand fly species. The presence of latter species on sand fly cuticle and in the female midgut suggests a role for this arthropod in dissemination of these pathogenic bacteria in endemic areas. Further experiments are required to clearly delineate the vectorial

  12. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-12-01

    Full Text Available The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  13. Parasites

    Centers for Disease Control (CDC) Podcasts

    2010-05-06

    In this podcast, a listener wants to know what to do if he thinks he has a parasite or parasitic disease.  Created: 5/6/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/6/2010.

  14. Fungal parasitism of the cysts and eggs of the Globodera rostochiensis

    Directory of Open Access Journals (Sweden)

    Trifonova Zlatka

    2003-01-01

    Full Text Available A survey of Globodera rostochiensis infested field in Velingrad region (South-West Bulgaria revealed the spread of a black egg disease in the old cysts. The fungus mycelium infected the embryos within the egg shell. The highest egg parasitization by fungi was observed during June (22.2%. The fungus destroyed the new progeny in September. Four species of nematophagous fungi were isolated from cysts and eggs: Botryotrichum piluliferum Sacc. And March, Scolecobasidium constrictum Abbott, Gliocladium roseum and Phoma fineti Brun.

  15. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees.

    Directory of Open Access Journals (Sweden)

    Migun Shakya

    Full Text Available Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings, host plant genotype (Simple Sequence Repeat (SSR markers, season (Spring vs. Fall and geographic setting (at scales from regional watersheds to local riparian zones on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs specific to an individual trees (bacteria >90%, fungi >60%. Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal and endosphere (1 bacterial and 1 fungal microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50% while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%. While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina and seasons (Spring vs. Fall. SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities

  16. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists

    OpenAIRE

    Georgakopoulos, D. G.; Fiddaman, P.; Leifert, C.; Malathrakis, N.E.

    2002-01-01

    Aims: Five bacterial strains belonging to Bacillus subtilis , Pseudomonas fluorescens and Ps . corrugata and two fungal strains belonging to Trichoderma viride and Gliocladium virens were evaluated for their efficacy in controlling sugar beet and cucumber damping-off caused by Pythium ultimum . Methods and Results: The in vitro antagonistic activity of bacteria against various Pythium spp. was evaluated with dual cultures in various media. Pseudomonas strains inhibited the pathogen better tha...

  17. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil

    OpenAIRE

    Tardy, Vincent; Chabbi, Abad; Charrier, Xavier; De Berranger, Christophe; Reignier, Tiffanie; Dequiedt, Samuel; Faivre-Primot, Céline; Terrat, Sébastien; Ranjard, Lionel; Maron, Pierre-Alain

    2015-01-01

    Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland). Seasonal climatic fluctuations ha...

  18. A multifactor analysis of fungal and bacterial community structure of the root microbiome of mature Populus deltoides trees

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, Migun [ORNL; Gottel, Neil R [ORNL; Castro Gonzalez, Hector F [ORNL; Yang, Zamin [ORNL; Gunter, Lee E [ORNL; Labbe, Jessy L [ORNL; Muchero, Wellington [ORNL; Bonito, Gregory [Duke University; Vilgalys, Rytas [Duke University; Tuskan, Gerald A [ORNL; Podar, Mircea [ORNL; Schadt, Christopher Warren [ORNL

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host- health, survival and growth. However, a robust understanding of root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to it s associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall genotypic distances did not have a significant effect on corresponding communities that could be

  19. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny

    OpenAIRE

    Bell, Terrence H.; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2013-01-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rh...

  20. Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing

    OpenAIRE

    Eichorst, Stephanie A.; Kuske, Cheryl R.

    2012-01-01

    Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [13C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and la...

  1. Parasites

    OpenAIRE

    Mehlum, Halvor; Moene, Karl Ove; Torvik, Ragnat

    2003-01-01

    Unproductive enterprises that feed on productive businesses, are rampant in developing countries. These parasitic enterprises take divergent forms, some headed by violent bandits and brutal mafia bosses, others by organized middlemen or smart political insiders. All of them seem to have the profit motive in common. A consequence of parasitic enterprises is that societies may be locked into a self enforcing configuration of beliefs and practices that result in persistent poverty. In some insta...

  2. Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System

    OpenAIRE

    Schubert, Mario; Bleuler-Martinez, Silvia; Butschi, Alex; Wälti, Martin A.; Egloff, Pascal; Stutz, Katrin; Yan, Shi; Wilson, Iain B. H.; Hengartner, Michael O.; Aebi, Markus; Allain, Frédéric H-T; Künzler, Markus

    2012-01-01

    Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, w...

  3. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia.

    Science.gov (United States)

    Tláskal, Vojtěch; Voříšková, Jana; Baldrian, Petr

    2016-11-01

    The decomposition of dead plant biomass contributes to the carbon cycle and is one of the key processes in temperate forests. While fungi in litter decomposition drive the chemical changes occurring in litter, the bacterial community appears to be important as well, especially later in the decomposition process when its abundance increases. In this paper, we describe the bacterial community composition in live Quercus petraea leaves and during the subsequent two years of litter decomposition. Members of the classes Alpha-, Beta- and Gammaproteobacteria and the phyla Actinobacteria, Bacteroidetes and Acidobacteria were dominant throughout the experiment. Bacteria present in the oak phyllosphere were rapidly replaced by other taxa after leaf senescence. There were dynamic successive changes in community composition, in which the early-stage (months 2-4), mid-stage (months 6-8) and late-stage (months 10-24) decomposer communities could be distinguished, and the diversity increased with time. Bacteria associated with dead fungal mycelium were important during initial decomposition, with sequence relative abundances of up to 40% of the total bacterial community in months 2 and 4 when the highest fungal biomass was observed. Cellulose-decomposing bacteria were less frequent, with abundance ranging from 4% to 15%. The bacterial community dynamics reflects changes in the availability of possible resources either of the plant or microbial origin. PMID:27543318

  4. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  5. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China

    Science.gov (United States)

    Li, Yanpeng; Fu, Honglei; Wang, Wei; Liu, Jun; Meng, Qinglong; Wang, Wenke

    2015-12-01

    In recent years, haze pollution has become one of the most critical environmental issues in Xi'an, China, with particular matter (PM) being one of the top pollutants. As an important fraction of PM, bioaerosols may have adverse effects on air quality and human health. In this study, to better understand the characteristics of such biological aerosols, airborne microbial samples were collected by using an Andersen six-stage sampler in Xi'an from October 8th to 22nd, 2014. The concentration, size distribution and genera of airborne viable bacteria and fungi were comparably investigated during the haze days and non-haze days. Correlations of bioaerosol levels with meteorological parameters and PM concentrations were also examined. The results showed that the daily average concentrations of airborne viable bacteria and fungi during the haze days, 1102.4-1736.5 and 1466.2-1703.9 CFU/m3, respectively, were not only much higher than those during the non-haze days, but also exceeded the recommended permissible limit values. Comparing to size distributions during the non-haze days, slightly different patterns for bacterial aerosols and similar single-peak distribution pattern for fungal aerosols were observed during the haze days. Moreover, more allergic and infectious genera (e.g. Neisseria, Aspergillus, and Paecilomyces) in bioaerosols were identified during the haze days than during non-haze days. The present results reveal that bioaerosols may have more significant effects on public health and urban air quality during the haze days than during non-haze days.

  6. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  7. Effects of Ichthyophthirius multifiliis parasitism on the survival, hematology and bacterial load in channel catfish previously exposed to Edwardsiella ictaluri

    Science.gov (United States)

    The effect of Ichthyophthirius multifiliis (Ich) parasitism on survival, hematology and bacterial load in channel catfish, Ictalurus punctatus, previously exposed to Edwardsiella ictaluri was studied. Fish were exposed to E. ictaluri one day prior to Ich in the following treatments: 1)- infected by...

  8. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    Directory of Open Access Journals (Sweden)

    Nicolas Chemidlin Prévost-Bouré

    Full Text Available Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2: i to examine their spatial structuring; ii to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (LandesBacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at

  9. Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs

    Institute of Scientific and Technical Information of China (English)

    Lin; Zhang; Anjaneya; S.Ravipati; Sundar; R; Koyyalamudi; Sang; Chul; Jeong; Narsimha; Reddy; John; Bartlett; Paul; T.Smith; Mercedes; de; la; Cruz; Maria; Cndida; Monteiro; ngeles; Melguizo; Ester; Jimnez; Francisca; Vicente

    2013-01-01

    Objective:To evaluate in ritro antimicrobial activities of selected 58 ethno-medicinal plant extracts with a view to assess their therapeutic potential.Methods:A total of 58 traditional Chinese medicinal plants were carefully selected based on the literature review and their traditional use.The antimicrobial activities of ethanol extracts of these medicinal plants were tested against fungi(Aspergillus funigaius),yeast(Candida albicans),gram-negative(Acirelobacter haumannii and Pseudornnruis aeruginosa)and gram-positive bacteria(Staphglococcus aureus).The activities were tested at three different concentrations of 1.00,0.10 and 0.01 mg/mL.The data was analysed using Gene data Screener program.Results:The measured antimicrobial activities indicated that out of the 58 plant extracts,15 extracts showed anti-fungal activity and 23 extracts exhibited anti-bacterial activity.Eight plant extracts have exhibited both anti-bacterial and anti-fungal activities.For instance,Eucommia ulmoides,Pohgonum cuspidcrtum,Poria cocas and Uncaria rhineophylla showed activity against both bacterial and fungal strains,indicating their broad spectrum of activity.Conclusions:The results revealed that the ethanol extracts of 30 plants out of the selected 58 possess significant antimicrobial activities.It is interesting to note that the findings from the current study are consistent with the traditional use.A clear correlation has also been found between the antimicrobial activity and the flavonoid content of the plant extracts which is in agreement with the literature.Hence.the results presented here can be used to guide the selection of potential plant species for the isolation and structure elucidation of novel antimicrobial compounds in order to establish the structure-activity relationship.This in turn is expected to lead the way to the discovery of novel antimicrobial agents for therapeutic use.

  10. Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs

    Institute of Scientific and Technical Information of China (English)

    Lin Zhang; ngeles Melguizo; Ester Jimnez; Francisca Vicente; Anjaneya S Ravipati; Sundar R Koyyalamudi; Sang Chul Jeong; Narsimha Reddy; John Bartlett; Paul T Smith; Mercedes de la Cruz; Maria Cndida Monteiro

    2013-01-01

    Objective:To evaluate in vitro antimicrobial activities of selected 58 ethno-medicinal plant extracts with a view to assess their therapeutic potential. Methods:A total of 58 traditional Chinese medicinal plants were carefully selected based on the literature review and their traditional use. The antimicrobial activities of ethanol extracts of these medicinal plants were tested against fungi (Aspergillus fumigatus), yeast (Candida albicans), gram-negative (Acinetobacter baumannii and Pseudomonas aeruginosa) and gram-positive bacteria (Staphylococcus aureus). The activities were tested at three different concentrations of 1.00, 0.10 and 0.01 mg/mL. The data was analysed using Gene data Screener program. Results: The measured antimicrobial activities indicated that out of the 58 plant extracts, 15 extracts showed anti-fungal activity and 23 extracts exhibited anti-bacterial activity. Eight plant extracts have exhibited both anti-bacterial and anti-fungal activities. For instance, Eucommia ulmoides, Polygonum cuspidatum, Poria cocos and Uncaria rhyncophylla showed activity against both bacterial and fungal strains, indicating their broad spectrum of activity. Conclusions: The results revealed that the ethanol extracts of 30 plants out of the selected 58 possess significant antimicrobial activities. It is interesting to note that the findings from the current study are consistent with the traditional use. A clear correlation has also been found between the antimicrobial activity and the flavonoid content of the plant extracts which is in agreement with the literature. Hence, the results presented here can be used to guide the selection of potential plant species for the isolation and structure elucidation of novel antimicrobial compounds in order to establish the structure-activity relationship. This in turn is expected to lead the way to the discovery of novel antimicrobial agents for therapeutic use.

  11. Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study

    Directory of Open Access Journals (Sweden)

    Andreas eDix

    2015-03-01

    Full Text Available Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97% for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83% for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.

  12. Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil.

    Science.gov (United States)

    Hu, Liao; Cao, Lixiang; Zhang, Renduo

    2014-03-01

    To take full advantage of biochar as a soil amendment, the objective of this study was to investigate the effects of biochar addition on soil bacterial and fungal diversity and community composition. Incubation experiments with a forest soil (a red oxidized loam soil) with and without biochar amendment were conducted for 96 days. The culture-independent molecular method was utilized to analyze soil bacterial and fungal species after the incubation experiments. Results showed that bacteria and fungi responded differently to the biochar addition during the short-term soil incubation. Twenty four and 18 bacterial genara were observed in the biochar amended and unamended soils, respectively, whereas 11 and 8 fungal genera were observed in the biochar amended and unamended soils, respectively. Microbial taxa analysis indicated that the biochar amendment resulted in significant shifts in both bacterial and fungal taxa during the incubation period. The shift for bacteria occurred at the genus and phylum levels, while for fungi only at the genus level. Specific taxa, such as Actinobacteria of bacteria and Trichoderma and Paecilomyces of fungi, were enriched in the biochar amended soil. The results reveal a pronounced impact of biochar on soil microbial community composition and an enrichment of key bacterial and fungal taxa in the soil during the short time period. PMID:24136343

  13. Application of the NucliSENS easyMAG system for nucleic acid extraction: optimization of DNA extraction for molecular diagnosis of parasitic and fungal diseases.

    Science.gov (United States)

    Jeddi, Fakhri; Piarroux, Renaud; Mary, Charles

    2013-01-01

    During the last 20 years, molecular biology techniques have propelled the diagnosis of parasitic diseases into a new era, as regards assay speed, sensitivity, and parasite characterization. However, DNA extraction remains a critical step and should be adapted for diagnostic and epidemiological studies. The aim of this report was to document the constraints associated with DNA extraction for the diagnosis of parasitic diseases and illustrate the adaptation of an automated extraction system, NucliSENS easyMAG, to these constraints, with a critical analysis of system performance. Proteinase K digestion of samples is unnecessary with the exception of solid tissue preparation. Mechanically grinding samples prior to cell lysis enhances the DNA extraction rate of fungal cells. The effect of host-derived nucleic acids on the extraction efficiency of parasite DNA varies with sample host cell density. The optimal cell number for precise parasite quantification ranges from 10 to 100,000 cells. Using the NucliSENS easyMAG technique, the co-extraction of inhibitors is reduced, with an exception for whole blood, which requires supplementary extraction steps to eliminate inhibitors.

  14. Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres

    Science.gov (United States)

    Madureira, Joana; Paciência, Inês; Rufo, João Cavaleiro; Pereira, Cristiana; Teixeira, João Paulo; de Oliveira Fernandes, Eduardo

    2015-05-01

    Until now the influence of risk factors resulting from exposure to biological agents in indoor air has been far less studied than outdoor pollution; therefore the uncertainty of health risks, and how to effectively prevent these, remains. This study aimed (i) to quantify airborne cultivable bacterial and fungal concentrations in four different types of indoor environment as well as to identify the recovered fungi; (ii) to assess the impact of outdoor bacterial and fungal concentrations on indoor air; (iii) to investigate the influence of carbon dioxide (CO2), temperature and relative humidity on bacterial and fungal concentrations; and (iv) to estimate bacterial and fungal dose rate for children (3-5 years old and 8-10 years old) in comparison with the elderly. Air samples were collected in 68 homes, 9 child day-care centres, 20 primary schools and 22 elderly care centres, in a total of 264 rooms with a microbiological air sampler and using tryptic soy agar and malt extract agar culture media for bacteria and fungi growth, respectively. For each building, one outdoor representative location were identified and simultaneously studied. The results showed that child day-care centres were the indoor microenvironment with the highest median bacterial and fungal concentrations (3870 CFU/m3 and 415 CFU/m3, respectively), whereas the lowest median concentrations were observed in elderly care centres (222 CFU/m3 and 180 CFU/m3, respectively). Indoor bacterial concentrations were significantly higher than outdoor concentrations (p < 0.05); whereas the indoor/outdoor ratios for the obtained fungal concentrations were approximately around the unit. Indoor CO2 levels were associated with the bacterial concentration, probably due to occupancy and insufficient ventilation. Penicillium and Cladosporium were the most frequently occurring fungi. Children's had two times higher dose rate to biological pollutants when compared to adult individuals. Thus, due to children

  15. Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts

    DEFF Research Database (Denmark)

    Liberti, Joanito; Sapountzis, Panagiotis; Hansen, Lars H.;

    2015-01-01

    Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated...... nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional...

  16. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  17. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources.

    Directory of Open Access Journals (Sweden)

    Alan J Marsh

    Full Text Available Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.

  18. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats.

    Science.gov (United States)

    Handl, Stefanie; Dowd, Scot E; Garcia-Mazcorro, Jose F; Steiner, Jörg M; Suchodolski, Jan S

    2011-05-01

    This study evaluated the fecal microbiota of 12 healthy pet dogs and 12 pet cats using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing. A total of 120,406 pyrosequencing reads for bacteria (mean 5017) and 5359 sequences (one pool each for dogs and cats) for fungi were analyzed. Additionally, group-specific 16S rRNA gene clone libraries for Bifidobacterium spp. and lactic acid-producing bacteria (LAB) were constructed. The most abundant bacterial phylum was Firmicutes, followed by Bacteroidetes in dogs and Actinobacteria in cats. The most prevalent bacterial class in dogs and cats was Clostridia, dominated by the genera Clostridium (clusters XIVa and XI) and Ruminococcus. At the genus level, 85 operational taxonomic units (OTUs) were identified in dogs and 113 OTUs in cats. Seventeen LAB and eight Bifidobacterium spp. were detected in canine feces. Ascomycota was the only fungal phylum detected in cats, while Ascomycota, Basidiomycota, Glomeromycota, and Zygomycota were identified in dogs. Nacaseomyces was the most abundant fungal genus in dogs; Saccharomyces and Aspergillus were predominant in cats. At the genus level, 33 different fungal OTUs were observed in dogs and 17 OTUs in cats. In conclusion, this study revealed a highly diverse bacterial and fungal microbiota in canine and feline feces.

  19. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Science.gov (United States)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  20. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B [ORNL; Schadt, Christopher Warren [ORNL; Palumbo, Anthony Vito [ORNL; Ansley, R J [Texas A& M University; Boutton, Thomas W [Texas A& M University

    2010-01-01

    In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt to characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.

  1. Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors?

    Science.gov (United States)

    Siles, José A; Margesin, Rosa

    2016-07-01

    Shifts in soil microbial communities over altitudinal gradients and the driving factors are poorly studied. Their elucidation is indispensable to gain a comprehensive understanding of the response of ecosystems to global climate change. Here, we investigated soil archaeal, bacterial, and fungal communities at four Alpine forest sites representing a climosequence, over an altitudinal gradient from 545 to 2000 m above sea level (asl), regarding abundance and diversity by using qPCR and Illumina sequencing, respectively. Archaeal community was dominated by Thaumarchaeota, and no significant shifts were detected in abundance or community composition with altitude. The relative bacterial abundance increased at higher altitudes, which was related to increasing levels of soil organic matter and nutrients with altitude. Shifts in bacterial richness and diversity as well as community structure (comprised basically of Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes) significantly correlated with several environmental and soil chemical factors, especially soil pH. The site at the lowest altitude harbored the highest bacterial richness and diversity, although richness/diversity community properties did not show a monotonic decrease along the gradient. The relative size of fungal community also increased with altitude and its composition comprised Ascomycota, Basidiomycota, and Zygomycota. Changes in fungal richness/diversity and community structure were mainly governed by pH and C/N, respectively. The variation of the predominant bacterial and fungal classes over the altitudinal gradient was the result of the environmental and soil chemical factors prevailing at each site. PMID:26961712

  2. [Using Galleria mellonella as an in vivo model to study the virulence of some bacterial and fungal agents].

    Science.gov (United States)

    Kalkancı, Ayşe; Fouad, Ali Adil; Erdoğan, Merve; Altay, Aylin; Aliyeva, Zemfira; Bozdayı, Gülendam; Çağlar, Kayhan

    2015-07-01

    Non-vertebrate hosts, such as Galleria mellonella, namely wax moth, have been used to study microbial virulence and host defense. This organism has advantages as it is economical, ethically expedient and easy to handle. Here we describe an experimental in vivo study using the larvae of Galleria mellonella infected with some bacterial and fungal pathogens. In this study, extended-spectrum beta-lactamase (ESBL) producing and non-producing Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, colistin resistant and susceptible Acinetobacter baumanii clinical strains; Candida albicans (ATCC 10231), Scedosporium aurantiacum (CBS 136047) and Pseudallescheria boydii (CBS 117410) reference strains, and Aspergillus terreus and Fusarium oxysporum clinical strains were used as pathogens. The larvae of G.mellonella were challenged with these bacterial and fungal strains, and the mortality rates were calculated using Kaplan-Meier plots. Mortality rates at 16th hour were found as 83% for the larvae infected with both ESBL positive and negative E.coli, ESBL negative K.pneumoniae and ESBL positive P.aeruginosa; 91% for ESBL positive K.pneumoniae; 75% for ESBL negative P.aeruginosa; 66% for both colistin resistant and susceptible A.baumanii strains. All larvae infected with bacteria died within the first 24 hour. Larvae infected with bacteria showed significantly higher mortality rates than those infected with fungi. Mortality rates at 16th hour were found as 0% for C.albicans and F.oxysporum, 16% for S.aurantiacum, 8% for P.boydii and A.terreus; at 24th hour that was 25% for C.albicans and P.boydii, 33% for S.aurantiacum, A.terreus and F.oxysporum; at 48th hour that was 33% for C.albicans, 50% for P.boydii and F.oxysporum, 58% for A.terreus, and 66% for S.aurantiacum; in 72 hours that was 58% for C.albicans and F.oxysporum, 66% for P.boydii, 75% for A.terreus and S.aurantiacum, in 96 hours that was 83% for C.albicans, P.boydii and F.oxysporum, 91% for A.terreus and S

  3. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources.

    Science.gov (United States)

    Donzelli, Bruno G G; Ostroff, Gary; Harman, Gary E

    2003-09-01

    A combination of enzyme preparations from Trichoderma atroviride and Serratia marcescens was able to completely degrade high concentrations (100 g/L) of chitin from langostino crab shells to N-acetylglucosamine (78%), glucosamine (2%), and chitobiose (10%). The result was achieved at 32 degrees C in 12 days with no pre-treatment (size reduction or swelling) of the substrate and without removal of the inhibitory end-products from the mixture. Enzymatic degradation of three forms of chitin by Serratia/Trichoderma and Streptomyces/Trichoderma blends was carried out according to a simplex-lattice mixture design. Fitted polynomial models indicated that there was synergy between prokaryotic and fungal enzymes for both hydrolysis of crab chitin and reduction of turbidity of colloidal chitin (primarily endo-type activity). Prokaryotic/fungal enzymes were not synergistic in degrading chitosan. Enzymes from prokaryotic sources had much lower activity against chitosan than enzymes from T. atroviride.

  4. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?

    Directory of Open Access Journals (Sweden)

    Choong-Min eRyu

    2016-02-01

    Full Text Available Biological control (biocontrol agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR. Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 hours post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen

  5. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    Science.gov (United States)

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study

  6. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting celluloytic complexes

    NARCIS (Netherlands)

    Mingardon, F.; Chanal, A.; Lopez Contreras, A.M.; Dray, C.; Bayer, E.A.; Fierobe, H.P.

    2007-01-01

    Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostrid

  7. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil.

    Directory of Open Access Journals (Sweden)

    Vincent Tardy

    Full Text Available Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland. Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.

  8. Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    J.D Bresolin

    2010-06-01

    Full Text Available Soybean is the most important oilseed cultivated in the world and Brazil is the second major producer. Expansion of soybean cultivation has direct and indirect impacts on natural habitats of high conservation value, such as the Brazilian savannas (Cerrado. In addition to deforestation, land conversion includes the use of fertilizers and pesticides and can lead to changes in the soil microbial communities. This study evaluated the soil bacterial and fungal communities and the microbial biomass C in a native Cerrado and in a similar no-tillage soybean monoculture area using PCR-DGGE and sequencing of bands. Compared to the native area, microbial biomass C was lower in the soybean area and cluster analysis indicated that the structure of soil microbial communities differed. 16S and 18S rDNA dendrograms analysis did not show differences between row and inter-row samples, but microbial biomass C values were higher in inter-rows during soybean fructification and harvest. The study pointed to different responses and alterations in bacterial and fungal communities due to soil cover changes (fallow x growth period and crop development. These changes might be related to differences in the pattern of root exudates affecting the soil microbial community. Among the bands chosen for sequencing there was a predominance of actinobacteria, y-proteobacteria and ascomycetous divisions. Even under no-tillage management methods, the soil microbial community was affected due to changes in the soil cover and crop development, hence warning of the impacts caused by changes in land use.

  9. Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria.

    Science.gov (United States)

    Adetunji, Modupeade; Atanda, Olusegun; Ezekiel, Chibundu N; Sulyok, Michael; Warth, Benedikt; Beltrán, Eduardo; Krska, Rudolf; Obadina, Olusegun; Bakare, Adegoke; Chilaka, Cynthia A

    2014-05-01

    Seventy composite samples of maize grains stored in five agro-ecological zones (AEZs) of Nigeria where maize is predominantly produced were evaluated for the presence of microbial metabolites with the LC-MS/MS technique. The possible relationships between the storage structures and levels of mycotoxin contamination were also evaluated. Sixty-two fungal and four bacterial metabolites were extracted from the grains, 54 of which have not been documented for maize in Nigeria. Aflatoxin B1 and fumonisin B1 were quantified in 67.1 and 92.9% of the grains, while 64.1 and 57.1% exceeded the European Union Commission maximum acceptable limit (MAL) for aflatoxin B1 and fumonisins, respectively. The concentration of deoxynivalenol was, however, below the MAL with occurrence levels of 100 and 10% for its masked metabolite, deoxynivalenol glucoside. The bacterial metabolites had low concentrations and were not a source of concern. The storage structures significantly correlated positively or negatively (p diet, may therefore expose the population to mycotoxin contamination. There is need for an immediate action plan for mycotoxin mitigation in Nigeria, especially in the Derived Savannah zone, in view of the economic and public health importance of the toxins.

  10. FUNGAL GENERATED TITANIUM DIOXIDE NANOPARTILCES FOR UV PROTECTIVE AND BACTERIAL RESISTANT FABRICATION

    Directory of Open Access Journals (Sweden)

    Brindha Durairaj

    2014-09-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs were biologically synthesized by using a fungal species Aspergillus niger and further characterized by UV visible spectrophotometer, Scanning electron microscope (SEM, X-Ray diffraction (XRD studies. Dip dry method was used to impregnate TiO2 nanoparticles in cotton fabric. The fabric finishes were tested for their ultraviolet protection factor with UV/V Spectrophotometer technique and antibacterial properties. UV Protection factor value was found to be 30. The antimicrobial activity of the cloth against Staphylococcus aureus and Escherichia coli was positive. Clear zones of inhibition prove that TiO2 NPs possess bactericidal property. The above properties show that fabric coated with TiO2 NPs can provide protective effect against UV radiation and pathogenic bacteria species.

  11. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes.

    Science.gov (United States)

    Orlovskis, Zigmunds; Hogenhout, Saskia A

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  12. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.

    Science.gov (United States)

    Lixandru, Brînduşa-Elena; Drăcea, Nicoleta Olguţa; Dragomirescu, Cristiana Cerasella; Drăgulescu, Elena Carmina; Coldea, Ileana Luminiţa; Anton, Liliana; Dobre, Elena; Rovinaru, Camelia; Codiţă, Irina

    2010-01-01

    The currative properties of aromatic and medicinal plants have been recognized since ancient times and, more recently, the antimicrobial activity of plant essential oils has been used in several applications, including food preservation. The purpose of this study was to create directly comparable, quantitative data on the antimicrobial activity of some plant essential oils prepared in the National Institute of Research-Development for Chemistry and Petrochemistry, Bucharest to be used for the further development of food packaging technology, based on their antibacterial and antifungal activity. The essential oils extracted from thyme (Thymus vulgaris L.), basil (Ocimum basilicum L.), coriander (Coriandrum sativum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), fennel (Foeniculum vulgare L.), spearmint (Mentha spicata L.) and carraway (Carum carvi L.) were investigated for their antimicrobial activity against eleven different bacterial and three fungal strains belonging to species reported to be involved in food poisoning and/or food decay: S. aureus ATCC 25923, S. aureus ATCC 6538, S. aureus ATCC 25913, E. coli ATCC 25922, E. coli ATCC 35218, Salmonella enterica serovar Enteritidis Cantacuzino Institute Culture Collection (CICC) 10878, Listeria monocytogenes ATCC 19112, Bacillus cereus CIP 5127, Bacillus cereus ATCC 11778, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, Penicillium spp. CICC 251 and two E. coli and Salmonella enterica serovar Enteritidis clinical isolates. The majority of the tested essential oils exibited considerable inhibitory capacity against all the organisms tested, as supported by growth inhibition zone diameters, MICs and MBC's. Thyme, coriander and basil oils proved the best antibacterial activity, while thyme and spearmint oils better inhibited the fungal species. PMID:21462837

  13. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem.

    Science.gov (United States)

    Veach, Allison M; Dodds, Walter K; Jumpponen, Ari

    2015-10-01

    Woody plant encroachment has become a global threat to grasslands and has caused declines in aboveground richness and changes in ecosystem function; yet we have a limited understanding on the effects of these phenomena on belowground microbial communities. We completed riparian woody plant removals at Konza Prairie Biological Station, Kansas and collected soils spanning land-water interfaces in removal and woody vegetation impacted areas. We measured stream sediments and soils for edaphic variables (C and N pools, soil water content, pH) and bacterial (16S rRNA genes) and fungal (ITS2 rRNA gene repeat) communities using Illumina MiSeq metabarcoding. Bacterial richness and diversity decreased with distance from streams. Fungal richness decreased with distance from the stream in wooded areas, but was similar across landscape position while Planctomycetes and Basidiomycota relative abundance was lower in removal areas. Cyanobacteria, Ascomycota, Chytridiomycota and Glomeromycota relative abundance was greater in removal areas. Ordination analyses indicated that bacterial community composition shifted more across land-water interfaces than fungi yet both were marginally influenced by treatment. This study highlights the impacts of woody encroachment restoration on grassland bacterial and fungal communities which likely subsequently affects belowground processes and plant health in this ecosystem. PMID:26347079

  14. Arbuscular Mycorrhizal Fungal Hyphae Alter Soil Bacterial Community and Enhance Polychlorinated Biphenyls Dissipation

    Science.gov (United States)

    Qin, Hua; Brookes, Philip C.; Xu, Jianming

    2016-01-01

    We investigated the role of arbuscular mycorrhizal fungal (AMF) hyphae in alternation of soil microbial community and Aroclor 1242 dissipation. A two-compartment rhizobox system with double nylon meshes in the central was employed to exclude the influence of Cucurbita pepo L. root exudates on hyphal compartment soil. To assess the quantitative effect of AMF hyphae on soil microbial community, we separated the hyphal compartment soil into four horizontal layers from the central mesh to outer wall (e.g., L1–L4). Soil total PCBs dissipation rates ranged from 35.67% of L4 layer to 57.39% of L1 layer in AMF inoculated treatment, which were significant higher than the 17.31% of the control (P biphenyls as well as the total PCBs were significantly correlated with soil hyphal length (P biphenyl dissipation, while taxa from the Oxalobacteraceae and Streptomycetaceae responded negatively to AMF and PCB congener dissipation. Our results suggested that the AMF hyphal exudates as well as the hyphae per se did have quantitative effects on shaping soil microbial community, and could modify the PCBs dissipation processes consequently. PMID:27379068

  15. Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability.

    Science.gov (United States)

    Koranda, Marianne; Kaiser, Christina; Fuchslueger, Lucia; Kitzler, Barbara; Sessitsch, Angela; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2014-01-01

    There is growing evidence of a direct relationship between microbial community composition and function, which implies that distinct microbial communities vary in their functional properties. The aim of this study was to determine whether differences in initial substrate utilization between distinct microbial communities are due to the activities of certain microbial groups. We performed a short-term experiment with beech forest soils characterized by three different microbial communities (winter and summer community, and a community from a tree-girdling plot). We incubated these soils with different (13) C-labelled substrates with or without inorganic N addition and analyzed microbial substrate utilization by (13) C-phospholipid fatty acid (PLFA) analysis. Our results revealed that the fate of labile C (glucose) was similar in the three microbial communities, despite differences in absolute substrate incorporation between the summer and winter community. The active microbial community involved in degradation of complex C substrates (cellulose, plant cell walls), however, differed between girdling and control plots and was strongly affected by inorganic N addition. Enhanced N availability strongly increased fungal degradation of cellulose and plant cell walls. Our results indicate that fungi, at least in the presence of a high N supply, are the main decomposers of polymeric C substrates.

  16. Nanolitre real-time PCR detection of bacterial, parasitic, and viral agents from patients with diarrhoea in Nunavut, Canada

    Directory of Open Access Journals (Sweden)

    David M. Goldfarb

    2013-04-01

    Full Text Available Background. Little is known about the microbiology of diarrhoeal disease in Canada's Arctic regions. There are a number of limitations of conventional microbiology testing techniques for diarrhoeal pathogens, and these may be further compromised in the Arctic, given the often long distances for specimen transport. Objective. To develop a novel multiple-target nanolitre real-time reverse transcriptase (RT-PCR platform to simultaneously test diarrhoeal specimens collected from residents of the Qikiqtani (Baffin Island Region of Nunavut, Canada, for a wide range of bacterial, parasitic and viral agents. Study design/methods. Diarrhoeal stool samples submitted for bacterial culture to Qikiqtani General Hospital in Nunavut over an 18-month period were tested with a multiple-target nanolitre real-time PCR panel for major diarrhoeal pathogens including 8 bacterial, 6 viral and 2 parasitic targets. Results. Among 86 stool specimens tested by PCR, a total of 50 pathogens were detected with 1 or more pathogens found in 40 (46.5% stool specimens. The organisms detected comprised 17 Cryptosporidium spp., 5 Clostridium difficile with toxin B, 6 Campylobacter spp., 6 Salmonella spp., 4 astroviruses, 3 noroviruses, 1 rotavirus, 1 Shigella spp. and 1 Giardia spp. The frequency of detection by PCR and bacterial culture was similar for Salmonella spp., but discrepant for Campylobacter spp., as Campylobacter was detected by culture from only 1/86 specimens. Similarly, Cryptosporidium spp. was detected in multiple samples by PCR but was not detected by microscopy or enzyme immunoassay. Conclusions. Cryptosporidium spp., Campylobacter spp. and Clostridium difficile may be relatively common but possibly under-recognised pathogens in this region. Further study is needed to determine the regional epidemiology and clinical significance of these organisms. This method appears to be a useful tool for gastrointestinal pathogen research and may also be helpful for clinical

  17. Who's on First? Part II: Bacterial and fungal colonization of fresh soil minerals

    Science.gov (United States)

    Whitman, T.; Neurath, R.; Zhang, P.; Yuan, T.; Weber, P. K.; Zhou, J.; Pett-Ridge, J.; Firestone, M. K.

    2015-12-01

    Soil organic matter (SOM) stabilization by soil minerals is an important mechanism influencing soil C cycling. Microbes make up only a few percent of total SOM, but have a disproportionate impact on SOM cycling. Their direct interactions with soil minerals, however, are not well characterized. We studied colonization of fresh minerals by soil microbes in an Avena barbata (wild oat) California grassland soil microcosm. Examining quartz, ferrihydrite, kaolinite, and the heavy fraction of the native soil, we asked: (1) Do different minerals select for different communities, or do random processes drive the colonization of fresh minerals? (2) What factors influence which taxa colonize fresh minerals? After incubating mesh bags (<18 μm) of minerals buried next to actively growing plant roots for 2 months, we used high-throughput sequencing of 16S and ITS2 genes to characterize the microbial communities colonizing the minerals. We found significant differences between the microbial community composition of different minerals and soil for both bacteria and fungi. We found a higher relative abundance of arbuscular mycorrhial fungi with ferrihydrite and quartz, and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging of these minerals suggests that some fungal hyphae are moving C directly from roots to mineral surfaces. The enriched presence of both nematode-associated fungi (Pochonia sp.) and bacteria (Candidatus Xiphinematobacter) in the minerals suggests that these minerals may be a habitat for nematodes. Bacteria of the family Chitinophagaceae and genus Janthinobacterium were significantly enriched on both ferrihydrite and quartz minerals, both of which may interact with colonizing fungi. These findings suggest that: (1) Microbial colonization of fresh minerals is not a fully passive or neutral process. (2) Mineral exploration by plant-associated fungi and soil fauna transport may be factors in determining the initial colonization of minerals and subsequent C

  18. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes.

    Directory of Open Access Journals (Sweden)

    Sandra M Mathioni

    Full Text Available Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.

  19. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    Directory of Open Access Journals (Sweden)

    Koen Illeghems

    Full Text Available This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni. Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  20. Characteristics of bacterial and fungal growth in plastic bottled beverages under a consuming condition model.

    Science.gov (United States)

    Watanabe, Maiko; Ohnishi, Takahiro; Araki, Emiko; Kanda, Takashi; Tomita, Atsuko; Ozawa, Kazuhiro; Goto, Keiichi; Sugiyama, Kanji; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2014-01-01

    Microbial contamination in unfinished beverages can occur when drinking directly from the bottle. Various microorganisms, including foodborne pathogens, are able to grow in these beverages at room temperature or in a refrigerator. In this study, we elucidated the characteristics of microorganism growth in bottled beverages under consuming condition models. Furthermore, we provide insight into the safety of partially consumed bottled beverages with respect to food hygiene. We inoculated microorganisms, including foodborne pathogens, into various plastic bottled beverages and analysed the dynamic growth of microorganisms as well as bacterial toxin production in the beverages. Eight bottled beverage types were tested in this study, namely green tea, apple juice drink, tomato juice, carbonated drink, sport drink, coffee with milk, isotonic water and mineral water, and in these beverages several microorganism types were used: nine bacteria including three toxin producers, three yeasts, and five moulds. Following inoculation, the bottles were incubated at 35°C for 48 h for bacteria, 25°C for 48 h for yeasts, and 25°C for 28 days for moulds. During the incubation period, the number of bacteria and yeasts and visible changes in mould-growth were determined over time. Our results indicated that combinations of the beverage types and microorganism species correlated with the degree of growth. Regarding factors that affect the growth and toxin-productivity of microorganisms in beverages, it is speculated that the pH, static/shaking culture, temperature, additives, or ingredients, such as carbon dioxide or organic matter (especially of plant origin), may be important for microorganism growth in beverages. Our results suggest that various types of unfinished beverages have microorganism growth and can include food borne pathogens and bacterial toxins. Therefore, our results indicate that in terms of food hygiene it is necessary to consume beverages immediately after opening

  1. Nitrogen deposition effects on carbon storage and fungal:bacterial ratios in coastal sage scrub soils of southern California.

    Science.gov (United States)

    Liu, Kun; Crowley, David

    2009-01-01

    The effects of nitrogen (N) across a deposition gradient on bacterial and fungal degradation pathways were studied in southern California coastal sage scrub soils to determine whether elevated N levels alter microbial community structure and organic matter accumulation. Three sites across an N deposition gradient having low, intermediate, and high levels of atmospheric N deposition were studied for 20 mo. Fungi:bacteria (F:B) biomass ratios were determined by phospholipid fatty acid analysis. Plots at each location included control plots receiving ambient N deposition and treatment plots that were fertilized with an additional 50 kg N ha(-1) yr(-1) of slow-release urea. Results showed that organic carbon (C) levels varied seasonally but that F:B ratios were relatively stable and similar across the three locations and over time. Total organic C decreased in response to N additions only at the low N deposition site. The results suggest that organic matter degradation pathways leading to C storage in soils that have been exposed to high levels of atmospheric N deposition are not responsive to additional increases in N and that N effects on organic C in semiarid soils may be significant only in areas with prior low exposure to N pollution.

  2. Sloth hair as a novel source of fungi with potent anti-parasitic, anti-cancer and anti-bacterial bioactivity.

    Directory of Open Access Journals (Sweden)

    Sarah Higginbotham

    Full Text Available The extraordinary biological diversity of tropical forests harbors a rich chemical diversity with enormous potential as a source of novel bioactive compounds. Of particular interest are new environments for microbial discovery. Sloths--arboreal mammals commonly found in the lowland forests of Panama--carry a wide variety of micro- and macro-organisms on their coarse outer hair. Here we report for the first time the isolation of diverse and bioactive strains of fungi from sloth hair, and their taxonomic placement. Eighty-four isolates of fungi were obtained in culture from the surface of hair that was collected from living three-toed sloths (Bradypus variegatus, Bradypodidae in Soberanía National Park, Republic of Panama. Phylogenetic analyses revealed a diverse group of Ascomycota belonging to 28 distinct operational taxonomic units (OTUs, several of which are divergent from previously known taxa. Seventy-four isolates were cultivated in liquid broth and crude extracts were tested for bioactivity in vitro. We found a broad range of activities against strains of the parasites that cause malaria (Plasmodium falciparum and Chagas disease (Trypanosoma cruzi, and against the human breast cancer cell line MCF-7. Fifty fungal extracts were tested for antibacterial activity in a new antibiotic profile screen called BioMAP; of these, 20 were active against at least one bacterial strain, and one had an unusual pattern of bioactivity against Gram-negative bacteria that suggests a potentially new mode of action. Together our results reveal the importance of exploring novel environments for bioactive fungi, and demonstrate for the first time the taxonomic composition and bioactivity of fungi from sloth hair.

  3. Fungal and bacterial growth responses to N fertilization and pH in the 150-year 'Park Grass' UK grassland experiment.

    Science.gov (United States)

    Rousk, Johannes; Brookes, Philip C; Bååth, Erland

    2011-04-01

    The effects of nitrogen (N) fertilization (0-150 kg N ha⁻¹ year⁻¹ since 1865) and pH (3.3-7.4) on fungal and bacterial growth, biomass and phospholipid fatty acid (PLFA) composition were investigated in grassland soils from the 'Park Grass Experiment', Rothamsted Research, UK. Bacterial growth decreased and fungal growth increased with lower pH, resulting in a 50-fold increase in the relative importance of fungi between pH 7.4 and 3.3. The PLFA-based fungal:bacterial biomass ratio was unchanged between pH 4.5 and 7.4, and decreased only below pH 4.5. Respiration and substrate-induced respiration biomass both decreased three- to fourfold with lower pH, but biomass concentrations estimated using PLFAs were unaffected by pH. N fertilization did not affect bacterial growth and marginally affected fungal growth while PLFA biomass marker concentrations were all reduced by higher N additions. Respiration decreased with higher N application, suggesting a reduced quality of the soil organic carbon. The PLFA composition was strongly affected by both pH and N. A comparison with a pH gradient in arable soil allowed us to generalize the pH effect between systems. There are 30-50-fold increases in the relative importance of fungi between high (7.4-8.3) and low (3.3-4.5) pH with concomitant reductions of respiration by 30-70%.

  4. Assessing the effect of litter species on the dynamic of bacterial and fungal communities during leaf decomposition in microcosm by molecular techniques.

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    Full Text Available Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well.

  5. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins

    Energy Technology Data Exchange (ETDEWEB)

    Cappitelli, Francesca [Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, University of Milan, Via Celoria 2, 20133 Milan (Italy)], E-mail: francesca.cappitelli@unimi.it; Principi, Pamela [Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, University of Milan, Via Celoria 2, 20133 Milan (Italy); Pedrazzani, Roberta [Dipartimento di Ingegneria Meccanica, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Toniolo, Lucia [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' Giulio Natta' , Politecnico di Milano, Via Mancinelli 7, 20133 Milan (Italy); Sorlini, Claudia [Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, University of Milan, Via Celoria 2, 20133 Milan (Italy)

    2007-10-15

    Surfaces are continuously exposed to physical, chemical and biological degradation. Among the biological agents that cause deterioration, microorganisms are of critical importance. This work is part of a research programme for the characterisation of the alterations of the Milan Cathedral (Italy). Four stone samples of the Milan Cathedral were chemically analysed and the microbiological growth assessed. X-ray diffraction (XRD) showed that calcite was always present in each sample and one sample was also characterised by the chemical form of alteration gypsum. Using Fourier Transform Infrared Spectroscopy (FTIR) together with Scanning Electron Microscopy (SEM), it was possible to prove that the samples were consolidated with the synthetic acrylics and epoxy resins. The green-black biological patinas of the specimens were studied using cultivation, microscope observations and a method for single-cell detection. Sampling for fluorescent in-situ hybridisation (FISH), with ribosomal RNA targeted oligonucleotide probes, was also performed using adhesive tapes. The bulk of the prokaryotes were Bacteria but some Archaea were also found. The bacterial cells were further characterised using specific probes for Cyanobacteria, and {alpha}-, {beta}-and {gamma}-Proteobacteria. In addition, black fungi isolated from the stone and the fungi of the standard ASTM G21-96(2002) method were employed to test if the detected synthetic resins could be used as the sole source of carbon and energy. One isolated Cladosporium sp. attacked the freshly dried acrylic resin. Results show that the detected bacteria and fungi can cause severe damage both to the stone monument and its synthetic consolidants.

  6. Investigation of parasitic and bacterial diseases in pigs with analysis of hematological and serum biochemical profile.

    Science.gov (United States)

    Kalai, K; Nehete, R S; Ganguly, S; Ganguli, M; Dhanalakshmi, S; Mukhopadhayay, S K

    2012-04-01

    The present study was undertaken to evaluate various disease conditions prevalent in slaughtered pigs and zoonotic importance. The study was conducted on two hundred non-descript pigs slaughtered at an organized slaughter house, Mumbai. The animals included in the study were randomly selected. Post mortem examination of the animals was performed to note various disease conditions and tissues were collected for histopathology. Direct examination of stool was found negative for parasites. Gross and microscopical examination revealed presence of Ascarops strongylina, Sarcocyst, Hydatid cyst, Cysticercus cellulosae, Ascaris suum and Cysticercus tenuicollis, along with bacteria like Salmonella, Pseudomonas, Shigella, Streptococci, Proteus and Pasteurella spp. were isolated. Indirect ELISA was performed for detection of antibody titer in the pig serum against classical swine fever. Studies on hematological and serum biochemical profile revealed decreased total protein concentration and globulin level with leukocytosis and neutrophilia and in parasitic infections eosinophilia was evident. PMID:23542948

  7. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    Energy Technology Data Exchange (ETDEWEB)

    Mahadtanapuk, S. [Faculty of Agriculture and Natural Resources, University of Phayao, Maeka, Muang, Phayao 56000 (Thailand); Teraarusiri, W. [Central Laboratory, University of Phayao, Maeka, Muang, Phayao 56000 (Thailand); Nanakorn, W. [The Crown Property Bureau, 173 Nakhonratchasrima Road, Dusit, Bangkok 10300 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S., E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion beam bombardment induced mutation in bacterial B. licheniformis. • A mutant lost antifungal activity. • DNA fingerprint of the mutant was analyzed. • The lost gene was indentified to code for TrxR gene. • TrxR gene from B. licheniformis expressed the flower antagonism to fungi. - Abstract: This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  8. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    International Nuclear Information System (INIS)

    Highlights: • Ion beam bombardment induced mutation in bacterial B. licheniformis. • A mutant lost antifungal activity. • DNA fingerprint of the mutant was analyzed. • The lost gene was indentified to code for TrxR gene. • TrxR gene from B. licheniformis expressed the flower antagonism to fungi. - Abstract: This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection

  9. Demodectic Mange, Dermatophilosis, and other parasitic and bacterial dermatologic diseases in free-ranging white-tailed deer (Odocoileus virginianus) in the United States from 1975-2012

    Science.gov (United States)

    The white-tailed deer (Odocoileus virginianus) is a common and widespread North American game species. To evaluate the incidence, clinical manifestations, demography, and pathology of bacterial and parasitic dermatologic diseases in white-tailed deer in the southeastern United States, we retrospecti...

  10. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    Science.gov (United States)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  11. Fungal arthritis

    Science.gov (United States)

    ... and irritation (inflammation) of a joint by a fungal infection. It is also called mycotic arthritis. Causes Fungal ... symptoms of fungal arthritis. Prevention Thorough treatment of fungal infections elsewhere in the body may help prevent fungal ...

  12. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    OpenAIRE

    Bengtson, Per; Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abund...

  13. Plasticity of the β-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system.

    Directory of Open Access Journals (Sweden)

    Mario Schubert

    Full Text Available Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcβ1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a β-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate

  14. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.

    Science.gov (United States)

    Denman, Stuart E; McSweeney, Christopher S

    2006-12-01

    Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population. PMID:17117998

  15. Molecular detection of bacterial and parasitic pathogens in hard ticks from Portugal.

    Science.gov (United States)

    Maia, Carla; Ferreira, Andreia; Nunes, Mónica; Vieira, Maria Luísa; Campino, Lenea; Cardoso, Luís

    2014-06-01

    Ticks are important vector arthropods of human and animal pathogens. As information about agents of disease circulating in vectors in Portugal is limited, the aim of the present study was to detect bacteria and parasites with veterinary and zoonotic importance in ticks collected from dogs, cats, and field vegetation. A total of 925 ticks, comprising 888 (96.0%) adults, 8 (0.9%) nymphs, and 29 (3.1%) larvae, were collected in 4 geographic areas (districts) of Portugal. Among those, 620 (67.0%) were removed from naturally infested dogs, 42 (4.5%) from cats, and 263 (28.4%) were questing ticks obtained from field vegetation. Rhipicephalus sanguineus was the predominant tick species, and the only one collected from dogs and vegetation, while all Ixodes ricinus specimens (n=6) were recovered from cats. Rickettsia massiliae and Rickettsia conorii were identified in 35 ticks collected from cats and dogs and in 3 ticks collected from dogs. Among ticks collected from cats or dogs, 4 Rh. sanguineus specimens were detected with Hepatozoon felis, 3 with Anaplasma platys, 2 with Hepatozoon canis, one with Anaplasma phagocytophilum, one with Babesia vogeli, one with Borrelia burgdorferi sensu lato and one with Cercopithifilaria spp. Rickettsia helvetica was detected in one I. ricinus tick collected from a cat. To the best of our knowledge, this was the first time that Cercopithifilaria spp., Ba. vogeli, H. canis, and H. felis have been detected in ticks from Portugal. The wide range of tick-borne pathogens identified, some of zoonotic concern, suggests a risk for the emergence of tick-borne diseases in domestic animals and humans in Portugal. Further studies on these and other tick-borne agents should be performed to better understand their epidemiological and clinical importance, and to support the implementation of effective control measures.

  16. Antimicrobial mechanism of copper (II 1,10-phenanthroline and 2,2′-bipyridyl complex on bacterial and fungal pathogens

    Directory of Open Access Journals (Sweden)

    S. Chandraleka

    2014-12-01

    Full Text Available Copper based metallo drugs were prepared and their antibacterial, antifungal, molecular mechanism of [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O complexes were investigated. The [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O were derived from the Schiff base alanine salicylaldehyde. [Cu(SAlaPhen]·H2O showed noteworthy antibacterial and antifungal activity than the [Cu(SAlabpy]·H2O and ligand alanine, salicylaldehyde. The [Cu(SAlaPhen]·H2O complex showed significant antibacterial activity against Salmonella typhi, Staphylococcus aureus, Salmonella paratyphi and the antifungal activity against Candida albicans and Cryptococcus neoformans in well diffusion assay. The mode of action of copper (II complex was analyzed by DNA cleavage activity and in silico molecular docking. The present findings provide important insight into the molecular mechanism of copper (II complexes in susceptible bacterial and fungal pathogens. These results collectively support the use of [Cu(SAlaPhen]·H2O complex as a suitable drug to treat bacterial and fungal infections.

  17. Fungal invasion of the rhizosphere microbiome.

    Science.gov (United States)

    Chapelle, Emilie; Mendes, Rodrigo; Bakker, Peter A H M; Raaijmakers, Jos M

    2016-01-01

    The rhizosphere is the infection court where soil-borne pathogens establish a parasitic relationship with the plant. To infect root tissue, pathogens have to compete with members of the rhizosphere microbiome for available nutrients and microsites. In disease-suppressive soils, pathogens are strongly restricted in growth by the activities of specific rhizosphere microorganisms. Here, we sequenced metagenomic DNA and RNA of the rhizosphere microbiome of sugar beet seedlings grown in a soil suppressive to the fungal pathogen Rhizoctonia solani. rRNA-based analyses showed that Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae and Sphingomonadaceae were significantly more abundant in the rhizosphere upon fungal invasion. Metatranscriptomics revealed that stress-related genes (ppGpp metabolism and oxidative stress) were upregulated in these bacterial families. We postulate that the invading pathogenic fungus induces, directly or via the plant, stress responses in the rhizobacterial community that lead to shifts in microbiome composition and to activation of antagonistic traits that restrict pathogen infection. PMID:26023875

  18. Parasitic and fungal infections in synanthropic rodents in an area of urban expansion, Aracaju, Sergipe State, Brazil - doi: 10.4025/actascibiolsci.v36i1.19760

    Directory of Open Access Journals (Sweden)

    Adriana Oliveira Guimarães

    2013-09-01

    Full Text Available This study analysed the prevalence of parasitic and fungal infections in rodents in an area of urban expansion, Aracaju, Brazil. Traps were placed in the area from December 2011 to January 2013. Blood samples, faeces and hair were collected from the animals. We collected a total of 47 rodents; 44 were Rattus rattus, and 3 were Mus musculus. Parasitological evaluation revealed the cestode Hymenolepis diminuta infection in both rodent species. The nematodes Aspiculuris tetraptera and Syphacia obvelata were found in M. musculus, and the commensal Entamoeba coli was found in R. rattus. We observed that 69.2% of the R. rattus and 33.3% of the M. musculus were infected with the haemoparasite Babesia sp. The differential leukocyte count revealed normal (72.3%, neutrophilic (15.9% and lymphocytic (11.4% profiles. The evaluation showed the following species of fungi in the rodents: Aspergillus sp. (77.1%, Penicillium sp. (28.6%, Cladosporium sp. (14.3%, Mucor sp. (14.3%, Curvularia sp. (8.6%, Acremonium sp. (8.6%, Chrysosporium sp. (2.9%, Syncephalostrum sp. (2.9%, Alternaria sp. (2.9%, Trichophyton sp. (2.9% and Scopulariopsis sp. (2.9%. The parasites and fungi found in rodents are potentially zoonotic, and the presence of these household animals demonstrates their potential role as reservoirs and disseminators of fungal and parasitic infections.

  19. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system.

    Science.gov (United States)

    Dong, Linlin; Xu, Jiang; Feng, Guangquan; Li, Xiwen; Chen, Shilin

    2016-01-01

    Notoginseng (Panax notoginseng), a valuable herbal medicine, has high death rates in continuous cropping systems. Variation in the soil microbial community is considered the primary cause of notoginseng mortality, although the taxa responsible for crop failure remains unidentified. This study used high-throughput sequencing methods to characterize changes in the microbial community and screen microbial taxa related to the death rate. Fungal diversity significantly decreased in soils cropped with notoginseng for three years. The death rate and the fungal diversity were significantly negatively correlated, suggesting that fungal diversity might be a potential bioindicator of soil health. Positive correlation coefficients revealed that Burkholderiales, Syntrophobacteraceae, Myrmecridium, Phaeosphaeria, Fusarium, and Phoma were better adapted to colonization of diseased plants. The relative abundance of Fusarium oxysporum (R = 0.841, P < 0.05) and Phaeosphaeria rousseliana (R = 0.830, P < 0.05) were positively associated with the death rate. F. oxysporum was a pathogen of notoginseng root-rot that caused seedling death. Negative correlation coefficients indicated that Thermogemmatisporaceae, Actinosynnemataceae, Hydnodontaceae, Herpotrichiellaceae, and Coniosporium might be antagonists of pathogens, and the relative abundance of Coniosporium perforans was negatively correlated with the death rate. Our findings provide a dynamic overview of the microbial community and present a clear scope for screening beneficial microbes and pathogens of notoginseng. PMID:27549984

  20. A composite microbial agent containing bacterial and fungal species: Optimization of the preparation process, analysis of characteristics, and use in the purification for volatile organic compounds.

    Science.gov (United States)

    Cheng, Zhuowei; Lu, Lichao; Kennes, Christian; Ye, Jiexu; Yu, Jianming; Chen, Dongzhi; Chen, Jianmeng

    2016-10-01

    Proper preservation of microbial activity over long periods poses a considerable challenge for pollutant biopurification. A composite microbial agent, mainly composed of bacteria and fungi isolated by the current research team, was constructed in this study and its performance in the removal of mixed waste gases (containing α-pinene, n-butyl acetate and o-xylene) was investigated. According to the removal efficiency in the first 24h and the response to starvation, the optimal ratio of selected carriers (activated carbon, wheat bran and sawdust) was found to be 1:2:1. In some cases of storages, the removal capability of the microbial agent was more than twice that of the suspension. Microbial analysis showed that the inoculated bacterial and fungal strains dominated the agent preparation and utilization. These results indicated that the agent has potential for use in biopurification of mixed waste gas, favoring the reduction of environmental passives and longer retention of microbial activity. PMID:27423036

  1. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants

    Science.gov (United States)

    Holman, Devin B.; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W.

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers’ grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  2. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Science.gov (United States)

    Holman, Devin B; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills. PMID:27300323

  3. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Science.gov (United States)

    Holman, Devin B; Hao, Xiying; Topp, Edward; Yang, Hee Eun; Alexander, Trevor W

    2016-01-01

    Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  4. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants.

    Directory of Open Access Journals (Sweden)

    Devin B Holman

    Full Text Available Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers' grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.

  5. Application of the NucliSENS easyMAG system for nucleic acid extraction: optimization of DNA extraction for molecular diagnosis of parasitic and fungal diseases

    OpenAIRE

    Jeddi, Fakhri; Piarroux, Renaud; Mary, Charles

    2013-01-01

    During the last 20 years, molecular biology techniques have propelled the diagnosis of parasitic diseases into a new era, as regards assay speed, sensitivity, and parasite characterization. However, DNA extraction remains a critical step and should be adapted for diagnostic and epidemiological studies. The aim of this report was to document the constraints associated with DNA extraction for the diagnosis of parasitic diseases and illustrate the adaptation of an automated extraction system, Nu...

  6. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection.

    Science.gov (United States)

    de la Vega, Enrique; O'Leary, Nuala A; Shockey, Jessica E; Robalino, Javier; Payne, Caroline; Browdy, Craig L; Warr, Gregory W; Gross, Paul S

    2008-04-01

    Antimicrobial peptides are an essential component of the innate immune system of most organisms. Expressed sequence tag analysis from various shrimp (Litopenaeus vannamei) tissues revealed transcripts corresponding to two distinct sequences (LvALF1 and LvALF2) with strong sequence similarity to anti-lipopolysaccharide factor (ALF), an antimicrobial peptide originally isolated from the horseshoe crab Limulus polyphemus. Full-length clones contained a 528bp transcript with a predicted open reading frame coding for 120 amino acids in LvALF1, and a 623bp transcript with a predicted open reading frame coding for 93 amino acids in LvALF2. A reverse genetic approach was implemented to study the in vivo role of LvALF1 in protecting shrimp from bacterial, fungal and viral infections. Injection of double-stranded RNA (dsRNA) corresponding to the LvALF1 message resulted in a significant reduction of LvALF1 mRNA transcript abundance as determined by qPCR. Following knockdown, shrimp were challenged with low pathogenic doses of Vibrio penaeicida, Fusarium oxysporum or white spot syndrome virus (WSSV) and the resulting mortality curves were compared with controls. A significant increase of mortality in the LvALF1 knockdown shrimp was observed in the V. penaeicida and F. oxysporum infections when compared to controls, showing that this gene has a role in protecting shrimp from both bacterial and fungal infections. In contrast, LvALF1 dsRNA activated the sequence-independent innate anti-viral immune response giving increased protection from WSSV infection.

  7. Performance of arugula (Eruca sativa) as a green manure and trap crop for fungal pathogens and parasitic nematode suppression in potato

    Science.gov (United States)

    Green manures in combination with synthetic nematicides are used to manage plant parasitic nematodes in a potato cropping system. Arugula, Eruca sativa, a Brassica plant, has shown great potential for controlling plant parasitic nematodes as, it has a dual role. Arugula is both a green manure (it co...

  8. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus.

    Science.gov (United States)

    Saito, Katsuharu; Yoshikawa, Makoto; Yano, Koji; Miwa, Hiroki; Uchida, Hisaki; Asamizu, Erika; Sato, Shusei; Tabata, Satoshi; Imaizumi-Anraku, Haruko; Umehara, Yosuke; Kouchi, Hiroshi; Murooka, Yoshikatsu; Szczyglowski, Krzysztof; Downie, J Allan; Parniske, Martin; Hayashi, Makoto; Kawaguchi, Masayoshi

    2007-02-01

    In Lotus japonicus, seven genetic loci have been identified thus far as components of a common symbiosis (Sym) pathway shared by rhizobia and arbuscular mycorrhizal fungi. We characterized the nup85 mutants (nup85-1, -2, and -3) required for both symbioses and cloned the corresponding gene. When inoculated with Glomus intraradices, the hyphae managed to enter between epidermal cells, but they were unable to penetrate the cortical cell layer. The nup85-2 mutation conferred a weak and temperature-sensitive symbiotic phenotype, which resulted in low arbuscule formation at 22 degrees C but allowed significantly higher arbuscule formation in plant cortical cells at 18 degrees C. On the other hand, the nup85 mutants either did not form nodules or formed few nodules. When treated with Nod factor of Mesorhizobium loti, nup85 roots showed a high degree of root hair branching but failed to induce calcium spiking. In seedlings grown under uninoculated conditions supplied with nitrate, nup85 did not arrest plant growth but significantly reduced seed production. NUP85 encodes a putative nucleoporin with extensive similarity to vertebrate NUP85. Together with symbiotic nucleoporin NUP133, L. japonicus NUP85 might be part of a specific nuclear pore subcomplex that is crucial for fungal and rhizobial colonization and seed production.

  9. Analysis of bacterial and fungal communities in Japanese- and Chinese-fermented soybean pastes using nested PCR-DGGE.

    Science.gov (United States)

    Kim, Tae Woon; Lee, Jun-Hwa; Park, Min-Hee; Kim, Hae-Yeong

    2010-05-01

    The microbial diversity of Japanese- and Chinese-fermented soybean pastes was investigated using nested PCR-denaturing gradient gel electrophoresis (DGGE). Five Japanese-fermented soybean paste samples and three Chinese-fermented soybean paste samples were analyzed for bacteria and fungi. Extracted DNA was used as a template for PCR to amplify 16S rRNA and 18S rRNA genes. The nearly complete 16S rRNA and 18S rRNA genes were amplified using universal primers, and the resulting products were subsequently used as a template in a nested PCR to obtain suitable fragments for DGGE. Tetragenococcus halophilus and Staphylococcus gallinarum were found to dominate the bacterial microbiota in Japanese samples, whereas Bacillus sp. was detected as the predominant species in Chinese samples. DGGE analysis of fungi in soybean pastes determined the presence of Aspergillus oryzae and Zygosaccharomyces rouxii in most of the Chinese and Japanese samples. Some differences were observed in the bacterial diversity of Japanese- and Chinese-fermented soybean pastes. PMID:19924476

  10. Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two Daphnia magna clones differing in carbaryl sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    De Coninck, Dieter I.M., E-mail: Dieter.DeConinck@UGent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Jansen, Mieke; De Meester, Luc [Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven (Belgium); Janssen, Colin R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

    2013-04-15

    Highlights: ► Interactive effects between a bacterial parasite and an insecticide in Daphnia magna. ► Two D. magna clones differing strongly in their sensitivity to the insecticide. ► Effects studied on various life-history and physiological endpoints. ► Genetic differences in strength and direction of interaction effects. -- Abstract: Natural and chemical stressors occur simultaneously in the aquatic environment. Their combined effects on biota are usually difficult to predict from their individual effects due to interactions between the different stressors. Several recent studies have suggested that synergistic effects of multiple stressors on organisms may be more common at high compared to low overall levels of stress. In this study, we used a three-way full factorial design to investigate whether interactive effects between a natural stressor, the bacterial parasite Pasteuria ramosa, and a chemical stressor, the insecticide carbaryl, were different between two genetically distinct clones of Daphnia magna that strongly differ in their sensitivity to carbaryl. Interactive effects on various life-history and physiological endpoints were assessed as significant deviations from the reference Independent Action (IA) model, which was implemented by testing the significance of the two-way carbaryl × parasite interaction term in two-way ANOVA's on log-transformed observational data for each clone separately. Interactive effects (and thus significant deviations from IA) were detected in both the carbaryl-sensitive clone (on survival, early reproduction and growth) and in the non-sensitive clone (on growth, electron transport activity and prophenoloxidase activity). No interactions were found for maturation rate, filtration rate, and energy reserve fractions (carbohydrate, protein, lipid). Furthermore, only antagonistic interactions were detected in the non-sensitive clone, while only synergistic interactions were observed in the carbaryl sensitive clone

  11. Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung Disease with and without a History of Enterocolitis: A Multicenter Study.

    Directory of Open Access Journals (Sweden)

    Philip K Frykman

    Full Text Available Development of potentially life-threatening enterocolitis is the most frequent complication in children with Hirschsprung disease (HSCR, even after definitive corrective surgery. Intestinal microbiota likely contribute to the etiology of enterocolitis, so the aim of this study was to compare the fecal bacterial and fungal communities of children who developed Hirschsprung-associated enterocolitis (HAEC with HSCR patients who had never had enterocolitis. Eighteen Hirschsprung patients who had completed definitive surgery were enrolled: 9 had a history of HAEC and 9 did not. Fecal DNA was isolated and 16S and ITS-1 regions sequenced using Next Generation Sequencing and data analysis for species identification. The HAEC group bacterial composition showed a modest reduction in Firmicutes and Verrucomicrobia with increased Bacteroidetes and Proteobacteria compared with the HSCR group. In contrast, the fecal fungi composition of the HAEC group showed marked reduction in diversity with increased Candida sp., and reduced Malassezia and Saccharomyces sp. compared with the HSCR group. The most striking finding within the HAEC group is that the Candida genus segregated into "high burden" patients with 97.8% C. albicans and 2.2% C. tropicalis compared with "low burden" patients 26.8% C. albicans and 73% C. tropicalis. Interestingly even the low burden HAEC group had altered Candida community structure with just two species compared to more diverse Candida populations in the HSCR patients. This is the first study to identify Candida sp. as potentially playing a role in HAEC either as expanded commensal species as a consequence of enterocolitis (or treatment, or possibly as pathobioants contributing to the pathogenesis of HAEC. These findings suggest a dysbiosis in the gut microbial ecosystem of HAEC patients, such that there may be dominance of fungi and bacteria predisposing patients to development of HAEC.

  12. Bacterial and fungal genome detection PCR/NAT: discussion of the Mai 2015 distribution for external quality assessment of nucleic acid-based protocols in diagnostic medical microbiology by INSTAND e.V.

    OpenAIRE

    Reischl, U.; W. Schneider; Ehrenschwender, M; Hiergeist, A; Maaß, M.; Baier, M; Straube, E; Frangoulidis, D.; Grass, G.; von Buttlar, H; Fingerle, V.; A Sing; Jacobs, E; Reiter-Owona, I; Anders, A.

    2015-01-01

    This contribution provides an analysis report of the recent proficiency testing scheme "Bacterial and Fungal Genome Detection (PCR/NAT)". It summarizes some benchmarks and the overall assessment of results reported by all of the participating laboratories. A highly desired scheme for external quality assessment (EQAS) of molecular diagnostic methods in the field of medical microbiology was activated in 2002 by the German Society of Hygiene and Microbiology (DGHM) and is now organized by INST...

  13. BACTERIAL AND FUNGAL PATHOGENS IN THE TRANSPLANTATION AND DIALYSIS CENTER. ANALYSIS FOR EIGHTEEN YEARS (1998–2015

    Directory of Open Access Journals (Sweden)

    A. V. Vatazin

    2016-01-01

    Full Text Available Aim: to analyze the dynamics of the microflora and its sensitivity to antibiotics in patients of dialysis and transplantation center.Materials and methods. We have examined the bacteriological test results of 1282 patients with chronic kidney disease, stage 5 (renal transplant recipients and dialysis patients in 1998–2015: 1998–2003 («2003» period, 2008–2011 («2011» period and 2012–2015 («2015» period. Biomaterial: urine, blood, wound effluent, sputum.Results. The incidence (share of all samples of gram «–», gram «+» and fungi was 38, 56, 7% for «2003» period; 48, 69, 13% for «2011» period; 61, 54, 18% for «2015» period. The incidence of gram «–» in blood has significantly increased: 22% in «2003», 13% in «2011», and 45% in «2015», respectively. The incidence of Candida fungi is growing in sputum and urine: 15, 33, 41% and 8, 14, 18% (in 2003, 2011, 2015 respectively. The species composition of the fl ora has also significantly changed. In «2003» the shares of Staphylococcus spp. and Enterococcus spp. were 50 and 33%, in «2015» – 34 and 53% respectively. The shares of E. coli, Klebsiella spp., P. aeruginosa and Acinetobacter spp. were in «2003» 32, 21, 15, 11% respectively, and in «2015» – 17, 32, 9, 22%, respectively. The share of a «problem» genus of Candida: C. glabrata and C. krusei has significantly increased. Their combined share increased from 26 to 38% (2003–2015. There was a significant increase in antibiotic resistance, which is mostly pronounced in Enterococcus spp., Klebsiella spp. and Acinetobacter spp. All gram «+» bacteria in «2003» were susceptible to vancomycin and linezolid, but in «2015» 6% of Enterococcus were resistant to vancomycin. Conclusion. Bacterial profile has significantly changed. Regular analysis of the bacterial fl ora is necessary due to the growing antibiotic resistance. 

  14. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    Science.gov (United States)

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  15. Fungal Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Fungal Meningitis Language: English Español (Spanish) Recommend on Facebook Tweet ... the brain or spinal cord. Investigation of Fungal Meningitis, 2012 In September 2012, the Centers for Disease ...

  16. Characterisation of the bacterial and fungal communities associated with different lesion sizes of dark spot syndrome occurring in the coral Stephanocoenia intersepta.

    Directory of Open Access Journals (Sweden)

    Michael Sweet

    Full Text Available The number and prevalence of coral diseases/syndromes are increasing worldwide. Dark Spot Syndrome (DSS afflicts numerous coral species and is widespread throughout the Caribbean, yet there are no known causal agents. In this study we aimed to characterise the microbial communities (bacteria and fungi associated with DSS lesions affecting the coral Stephanocoenia intersepta using nonculture molecular techniques. Bacterial diversity of healthy tissues (H, those in advance of the lesion interface (apparently healthy AH, and three sizes of disease lesions (small, medium, and large varied significantly (ANOSIM R  = 0.052 p<0.001, apart from the medium and large lesions, which were similar in their community profile. Four bacteria fitted into the pattern expected from potential pathogens; namely absent from H, increasing in abundance within AH, and dominant in the lesions themselves. These included ribotypes related to Corynebacterium (KC190237, Acinetobacter (KC190251, Parvularculaceae (KC19027, and Oscillatoria (KC190271. Furthermore, two Vibrio species, a genus including many proposed coral pathogens, dominated the disease lesion and were absent from H and AH tissues, making them candidates as potential pathogens for DSS. In contrast, other members of bacteria from the same genus, such as V. harveyii were present throughout all sample types, supporting previous studies where potential coral pathogens exist in healthy tissues. Fungal diversity varied significantly as well, however the main difference between diseased and healthy tissues was the dominance of one ribotype, closely related to the plant pathogen, Rhytisma acerinum, a known causal agent of tar spot on tree leaves. As the corals' symbiotic algae have been shown to turn to a darker pigmented state in DSS (giving rise to the syndromes name, the two most likely pathogens are R. acerinum and the bacterium Oscillatoria, which has been identified as the causal agent of the colouration in

  17. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: synthesizing effects of microbial community structure using the Fungi and Bacteria (FAB) model. (Invited)

    Science.gov (United States)

    Averill, C.; Hawkes, C. V.; Waring, B. G.

    2013-12-01

    Most biogeochemical models of soil carbon and nitrogen cycling include a simplified representation of the soil microbial community as a single pool, despite good evidence that shifts in the composition or relative abundance of microbial taxa can affect process rates. Incorporating a more realistic depiction of the microbial community in these models may increase their predictive accuracy, but this must be balanced against the feasibility of modeling the enormous diversity present in soil. We propose that explicitly including two major microbial functional groups with distinct physiologies, fungi and bacteria, will improve model predictions. To this end, we created the fungi and bacteria (FAB) model, building off previous enzyme-driven biogeochemical models that explicitly represent microbial physiology. We compared this model to a complementary biogeochemical model that does not include microbial community structure (';single-pool'). We also performed a cross-ecosystem meta-analysis of fungi-to-bacteria ratios to determine if model predictions of community structure matched empirical data. There were large differences in process rates and pool sizes between the single-pool and FAB models. In the FAB model, inorganic N pools were reduced by 5-95% depending on the soil C:N ratio due to bacterial immobilization of fungal mineralization products. This nitrogen subsidy also increased microbial biomass at some C:N ratios. Although there were changes in some components of respiration, particularly overflow respiration, there was no net effect of community structure on total respiration fluxes. The FAB model predicted a breakpoint in the relationship between the ratio of fungi to bacteria and soil C:N, after which the fungi-to-bacteria ratio should begin to increase. Break-point analysis of the meta-analysis data set revealed a consistent pattern and matched the slope of the change in F:B with soil C:N, but not the precise breakpoint. We argue that including microbial

  18. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices.

    Science.gov (United States)

    Malachová, Alexandra; Sulyok, Michael; Beltrán, Eduardo; Berthiller, Franz; Krska, Rudolf

    2014-10-01

    An LC-MS/MS "dilute and shoot" method for the determination of 295 fungal and bacterial metabolites was optimized and validated according to the guidelines established in the Directorate General for Health and Consumer Affairs of the European Commission (SANCO) document No. 12495/2011. Four different types of food matrices were chosen for validation: apple puree for infants (high water content), hazelnuts (high fat content), maize (high starch and low fat content) and green pepper (difficult or unique matrix). Method accuracy and precision was evaluated using spiked samples in five replicates at two concentration levels. Method trueness was demonstrated through participation in various proficiency tests. Although the method covers a total number of 331 analytes, validation data were acquired only for 295 analytes, either due to the non-availability of analytical standards or due other reasons described in this paper. Concerning the apparent recovery, the percentage of 295 analytes matching the acceptable recovery range of 70-120% lied down by SANCO varied from 21% in green pepper to 74% in apple puree at the highest spiking level. At the levels close to limit of quantification only 20-58% of the analytes fulfilled this criterion. The extent of matrix effects was strongly dependent on the analyte/matrix combination. In general, the lowest matrix effects were observed in apple puree (59% of analytes were not influenced by enhancement/suppression at all at the highest validation level). The highest matrix effects were observed in green pepper, where only 10% of analytes did not suffer from signal suppression/enhancement. The repeatability of the method was acceptable (RSD≤20) for 97% of all analytes in apple puree and hazelnuts, for 95% in maize and for 89% in green pepper. Concerning the trueness of the method, Z-scores were generally between -2 and 2, despite a broad variety of different matrices. Based on these results it can be concluded that quantitative

  19. Human Skin Fungal Diversity

    OpenAIRE

    Findley, Keisha; OH, JULIA; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A.; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; ,; Kong, Heidi H.; Segre, Julia A

    2013-01-01

    Traditional culture-based methods have incompletely defined the etiology of common recalcitrant human fungal skin diseases including athlete’s foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms, while providing a home for diverse commensal microbiota 1 . Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders 2,3,4 . However, microbial diversity is not limited to bacteria; micro...

  20. A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii.

    Science.gov (United States)

    Braun, Laurence; Cannella, Dominique; Ortet, Philippe; Barakat, Mohamed; Sautel, Céline F; Kieffer, Sylvie; Garin, Jérôme; Bastien, Olivier; Voinnet, Olivier; Hakimi, Mohamed-Ali

    2010-05-27

    In RNA silencing, small RNAs produced by the RNase-III Dicer guide Argonaute-like proteins as part of RNA-induced silencing complexes (RISC) to regulate gene expression transcriptionally or post-transcriptionally. Here, we have characterized the RNA silencing machinery and exhaustive small RNAome of Toxoplasma gondii, member of the Apicomplexa, a phylum of animal- and human-infecting parasites that cause extensive health and economic damages to human populations worldwide. Remarkably, the small RNA-generating machinery of Toxoplasma is phylogenetically and functionally related to that of plants and fungi, and accounts for an exceptionally diverse array of small RNAs. This array includes conspicuous populations of repeat-associated small interfering RNA (siRNA), which, as in plants, likely generate and maintain heterochromatin at DNA repeats and satellites. Toxoplasma small RNAs also include many microRNAs with clear metazoan-like features whose accumulation is sometimes extremely high and dynamic, an unexpected finding given that Toxoplasma is a unicellular protist. Both plant-like heterochromatic small RNAs and metazoan-like microRNAs bind to a single Argonaute protein, Tg-AGO. Toxoplasma miRNAs co-sediment with polyribosomes, and thus, are likely to act as translational regulators, consistent with the lack of catalytic residues in Tg-AGO. Mass spectrometric analyses of the Tg-AGO protein complex revealed a common set of virtually all known RISC components so far characterized in human and Drosophila, as well as novel proteins involved in RNA metabolism. In agreement with its loading with heterochromatic small RNAs, Tg-AGO also associates substoichiometrically with components of known chromatin-repressing complexes. Thus, a puzzling patchwork of silencing processor and effector proteins from plant, fungal and metazoan origin accounts for the production and action of an unsuspected variety of small RNAs in the single-cell parasite Toxoplasma and possibly in other

  1. Fungal Tests

    Science.gov (United States)

    ... or Calcofluor white stain): in general, if fungal elements are seen, then a fungus is the likely the cause of symptoms. These tests, however, do not identify the fungus. Culture: care must be taken when interpreting culture results. ...

  2. The Population Structure of Antibiotic-Producing Bacterial Symbionts of Apterostigma dentigerum Ants: Impacts of Coevolution and Multipartite Symbiosis

    OpenAIRE

    Caldera, Eric J.; Currie, Cameron R

    2012-01-01

    Fungus-growing ants (Attini) are part of a complex symbiosis with Basidiomycetous fungi, which the ants cultivate for food, Ascomycetous fungal pathogens (Escovopsis), which parasitize cultivars, and Actinobacteria, which produce antibiotic compounds that suppress pathogen growth. Earlier studies that have characterized the association between attine ants and their bacterial symbionts have employed broad phylogenetic approaches, with conclusions ranging from a diffuse coevolved mutualism to n...

  3. Parasites - Lice

    Science.gov (United States)

    ... Search The CDC Cancel Submit Search The CDC Parasites - Lice Note: Javascript is disabled or is not ... Parents Schools Listen to audio/Podcast Related Links Parasites A-Z Index Parasites Glossary Neglected Tropical Diseases ...

  4. Parasitic Diseases

    Science.gov (United States)

    ... a bug bite, or sexual contact. Some parasitic diseases are easily treated and some are not. Parasites ... be seen with the naked eye. Some parasitic diseases occur in the United States. Contaminated water supplies ...

  5. Fungal nail infection

    Science.gov (United States)

    Nails - fungal infection; Onychomycosis; Infection - fungal - nails; Tinea unguium ... the hair, nails, and outer skin layers. Common fungal infections include: Athlete's foot Jock itch Ringworm on the ...

  6. Bacterial and fungal organisms in otitis externa patients without fungal infection risk factors in Erzurum, Turkey Organismos bacterianos e fúngicos em pacientes com otite externa sem fatores de risco para infecção fúngica em Erzurum, Turquia

    Directory of Open Access Journals (Sweden)

    Murat Enoz

    2009-10-01

    Full Text Available AIM: To describe the bacterial and fungal organisms in otitis externa patients without other risk factors for fungal infections. STUDY DESIGN: Cross sectional cohort descriptive study. MATERIALS AND METHODS: Ear swabs were obtained from 362 patients aged 1 to 55 years old with clinically diagnosed otitis externa in Erzurum, Turkey, between January 2006 and April 2007, and cultured for aerobic and anaerobic bacteria and fungi, using EMB, 5% sheep's blood, chocolate agar, anaerobic blood agar plate, thioglycollate broth and sabaroud agar using standard microbiological technique to diagnose isolates. RESULTS: 219 cultures were positive and a total of 267 isolates were obtained. Of the isolates, 68.16% (n: 182 were aerobic or facultative bacteria, 1.12 % (3 were anaerobic bacteria, 30.71 % (82 were fungi and 17.5 % (38 were polymicrobial infections. CONCLUSION: Fungal organisms especially Candida species may be isolated from ears of otitis externa patients without fungal infection risk factors such as ear self-cleaning, local antimicrobial, antifungal or corticosteroid drops or systemic antimicrobial or antifungal agents within the preceding week. Bacterial and fungal cultures may be recommended, and anti-fungal agents may be added, to treatment regimens in patients with otitis externa.OBJETIVO: Descrever fungos e bactérias presentes em pacientes com otite externa sem fator de risco para infecções fúngicas. FORMA DE ESTUDO: Estudo descritivo de coorte transversal. MATERIAIS E MÉTODOS: Amostras por raspagem de cotonetes (swabs no ouvido foram obtidas de 362 pacientes com idades entre 1 e 55 anos, com diagnóstico clínico de otite externa em Erzurum, Turquia, entre janeiro de 2006 e abril de 2007. Essas amostras foram cultivadas em meio de cultura, 5% de sangue de ovelha, ágar chocolate, ágar sangue anaeróbio, banho em tioglicolato e ágar Saboroud, usando técnicas padrão de microbiologia para identificar os isolados. RESULTADOS: Obtivemos

  7. Fungal keratitis

    Directory of Open Access Journals (Sweden)

    Sonal S Tuli

    2011-02-01

    Full Text Available Sonal S TuliUniversity of Florida, Gainesville, FL, USA  Clinical question: What is the most appropriate management of fungal keratitis?Results: Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast. Voriconazole is rapidly becoming the drug of choice for all fungal keratitis because of its wide spectrum of coverage and increased penetration into the cornea.Implementation: Repeated debridement of the ulcer is recommended for the penetration of topical medications. While small, peripheral ulcers may be treated in the community, larger or central ulcers, especially if associated with signs suggestive of anterior chamber penetration should be referred to a tertiary center. Prolonged therapy for approximately four weeks is usually necessary.Keywords: fungal keratitis, keratomycosis, antifungal medications, debridement

  8. Bacterial classification and susceptible factors of lung fungal infection%肺部真菌感染的菌种分类及易患因素

    Institute of Scientific and Technical Information of China (English)

    党殿杰; 路振宇; 刁淑梅

    2014-01-01

    Objective To explore the common strains, susceptible factors and clinical characteristics of pulmonary fun-gal infection, and strengthen clinical cognition. Methods Clinical data of 77 patients with pulmonary fungal infection from November 2012 to November 2013 in the Infectious Diseases Hospital of Handan City were retrospectively ana-lyzed, and the condition of medical history, Strains classification of fungi, risk factors, diagnosis and treatment, progno-sis were summarized and analyzed. Results The susceptible factors of lung fungal infection included chronic lung dis-eases and drug abuse and so on, including 32 cases of chronic obstructive pulmonary diseases (41.56%), 17 cases of tu-berculosis (22.08%), 11 cases of type 2 diabetes (14.29%), 7 cases of hypoalbuminemia (9.09%), 2 cases of thoracoto-my (2.60%), 3 cases of lung cancer and pulmonary fungi posthepatitic cirrhosis complicated with pulmonary fungal in-fection (3.90%), 3 cases of pulmonary fungi posthepatitic cirrhosis complicated with pulmonary fungal infection (3.90%), 2 cases of blood disease complicated with pulmonary fungal infection (2.60%), 49 cases of long time using of broad-spec-trum antibiotics (63.64%), 15 cases use the glucocorticoid (19.48%). The main fungal species was blastocystis, 47 cases of candida albicans (61.04%), 23 cases of candida glabrata (29.87%), 3 cases of tropical candida (3.90%), 4 cases of aspergillus (5.19%). They were mainly given the antifungal therapy after diagnosis, such as Fluconazole, Voriconazole, 5-Fluorine Cytosine, Amphotericin B, 55 cases (71.43%) were cured, 20 cases (25.97%) were improved, had a good over-all treatment effect. Conclusion Early and correctly diagnosis and treatment according to the strains of pulmonary fun-gal infection is the key to healing, so comprehensive treatment actively, improve the patients' immunity, eliminate risk factors associated with pulmonary fungal infection disease, timely application of antifungal drugs to intervene, can

  9. Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, ethylbenzene and p-xylene) in gas biofilters operated under xerophilic conditions.

    Science.gov (United States)

    Prenafeta-Boldú, Francesc X; Guivernau, Miriam; Gallastegui, Gorka; Viñas, Marc; de Hoog, G Sybren; Elías, Ana

    2012-06-01

    The treatment of air contaminated with toluene, ethylbenzene, and p-xylene was assayed in three laboratory-scale biofilters, each consisting of two modules connected in series, packed with a pelletized organic fertilizer and inoculated with a toluene-degrading liquid enrichment culture. Biofilters were operated in parallel for 185 days in which the volumetric organic loading rate was progressively increased. The operation regime was subjected to drying out, so that packing humidity generally remained below 40%. Significant process failure occurred with ethylbenzene and p-xylene, but the toluene biofilter comparatively sustained a significant elimination capacity. Microbial community characterization by quantitative PCR and denaturing gradient gel electrophoresis showed substantial fungal enrichment in the toluene biofilter. Ribotypes identical to the well-known toluene-degrading black yeast Exophiala oligosperma (Chaetotyriales) were found among the dominant species. The microbial community structure was similar in the biofilters loaded with toluene and ethylbenzene but with p-xylene was quite specific and encompassed other chaetothyrialean fungi. Several species of Actinomycetales were found in the packing while the inoculum was dominated by representatives of the Burkholderiales and Xanthomonadales. One single fungal ribotype homologous to Acremonium kiliense was detected in the inoculum. The implications of xerophilic biofilter operation on process biosafety and efficiency are discussed.

  10. Interacting parasites

    Science.gov (United States)

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  11. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    OpenAIRE

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Eme...

  12. Parasites: Water

    Science.gov (United States)

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Water Recommend on Facebook Tweet Share Compartir Parasites can live in natural water sources. When outdoors, treat your water before drinking ...

  13. 细菌和真菌感染患者骨髓巨核细胞形态观察%Morphological observation on bone marrow megakaryocytes in patients with bacterial and fungal infection

    Institute of Scientific and Technical Information of China (English)

    胡型忠; 龚旭波; 卢兴国

    2011-01-01

    Objective To investigate the morphological changes of bone marrow megakaryocytes in patients with bacterial and fungal infection.Methods Totally 76 patients with microorganism infection from the Second Affiliated Hospital,Zhejiang University School of Medicine from January 2008 to August 2009 were enrolled,including 56 bacteria infected patients and 20 fungal infected patients.All patients received bone marrow examinations,and were positive in microorganism culture.Thirty subjects without infection,hematological disease and other severe diseases were randomly selected as controls.The number and function of megakaryocytes were examined retrospectively, and the size, nuclear lobulation, and vacuolar degeneration of megakaryocytes were quantitative analyzed and compared among the groups.Results The size,nuclear lobulation,vacuolar degeneration,and Yat nuclear of megakaryocytes in bacterial infected group were 2.20 ±0.21,2.11 ±0.23,0.51 ±0.11 and 0.74 ±0.11 respectively,those in fungal infected group were 2.21 ±0.16,2.10 ±0.19,0.52 ±0.10 and 0.79 ±0.10 respectively;while those in control group were 1.40 ±0.10,1.36 ±0.12,0.28 ±0.06 and 0.54 ±0.09 respectively.The differences between bacterial infected group and control were of statistical significance(t values were 14.52,12.19,9.33 and 6.61 respectively,P < 0.05),and the differences between fungal infected group and control were of statistical significance(t values were 16.27,12.34,7.85 and 6.49 respectively,P < 0.05).The size,nuclear lobulation,and vacuoles of megakaryocytes in gram-negative(G-)bacteria group were 2.29 ±0.20,2.22 ±0.26 and 0.57 ±0.10,while those in the gram-positive(G+)bacteria group were 2.13 ±0.20,2.04 ±0.18 and 0.46 ±0.09,and the differences were also significant(t values were 2.07,3.03and 3.56 respectively,P < 0.05).The production of platelet by megakaryocytes in bacterial infected group,in fungal infected and the control were 31.4 ±7.6,32.4 ±6.4 and 41.3 ±5.5,and the

  14. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Walters , William; Hyde, Embriette R.; Berg-Lyons, Donna; Ackermann, Gail; Humphrey, Greg; Parada , Alma; Gilbert, Jack A.; Jansson, Janet K.; Caporaso, Greg; Fuhrman, Jed A.; Apprill, Amy; Knight, Rob

    2015-12-22

    Designing primers for PCR-based taxonomic surveys that amplify a broad range of phylotypes in varied community samples is a difficult challenge, and the comparability of datasets amplified with varied primers requires attention. Here we examine the performance of modified 16S rRNA gene and ITS primers for archaea/bacteria and fungi, respectively, with non-aquatic samples. We moved primer barcodes to the 5’-end, allowing for a range of different 3’ primer pairings, such as the 515f/926r primer pair, which amplifies variable regions 4-5 of the 16S rRNA gene. We additionally demonstrate that modifications to the 515f/806r (variable region 4) 16S primer pair, which improves detection of Thaumarchaeota and SAR11 in marine samples, do not degrade performance on taxa already amplified effectively by the original primer set. Alterations to the fungal ITS primers did result in differential but overall improved performance compared to the original primers. In both cases, the improved primers should be widely adopted for amplicon studies.

  15. Sexually Transmitted Parasitic Diseases

    OpenAIRE

    Shelton, Andrew A.

    2004-01-01

    An increasing number of diseases are recognized as being sexually transmitted. The majority of these are bacterial or viral in nature; however, several protozoan and nematode infections can also be transmitted by sexual activity. For most of these diseases, the primary mode of transmission is nonsexual in nature, but sexual activity that results in fecal-oral contact can lead to transmission of these agents. Two parasitic diseases commonly transmitted by sexual contact are amebiasis and giard...

  16. Horse parasites

    OpenAIRE

    Kunová, Michaela

    2012-01-01

    Among the horse breeders, it has always been known that the most common cause of malnutrition of horses is an incidence of parasites. Problems with parasites are ever discussed topic of many scientists and veterinarians. The reason is not just poor nutritional status of horses, but parasites can also cause severe colic, diarrhea and damage the intestinal mucosa. Young infestated horses grow poorly and are unable to absorb all the nutrients from their feed. Ectoparasites can cause very miserab...

  17. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates.

    Science.gov (United States)

    Friman, V-P; Soanes-Brown, D; Sierocinski, P; Molin, S; Johansen, H K; Merabishvili, M; Pirnay, J-P; De Vos, D; Buckling, A

    2016-01-01

    Recent years have seen renewed interest in phage therapy--the use of viruses to specifically kill disease-causing bacteria--because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here, we determined whether in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre-adapted all phage strains against all bacterial strains and then compared the efficacy of pre-adapted and nonadapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages, whereas all bacteria were able to evolve some level of resistance to ancestral phages. Although the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely to explain why evolved phages were more effective in reducing the densities of chronic isolates. Our data show that pathogen genotypes respond differently to phage pre-adaptation, and as a result, phage therapies might need to be individually adjusted for different patients. PMID:26476097

  18. Fish parasites

    DEFF Research Database (Denmark)

    This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems......This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems...

  19. Study of antibody-coated fungi in patients with funguria and suspected disseminated fungal infections or primary fungal pyelonephritis1

    OpenAIRE

    Hall, William J.

    1980-01-01

    The direct immunofluorescence method for the detection of antibody-coated bacteria in urine sediments has been used by investigators to distinguish invasive bacterial disease of the renal parenchyma from noninvasive bladder bacteriuria. The purpose of the present investigation was to test the usefulness of the demonstration of urinary fungal immunoglobulins and complement in distinguishing patients with fungal cystitis from those with suspected disseminated fungal disease. Twenty-one patients...

  20. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP) Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens.

    Science.gov (United States)

    Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira

    2016-01-01

    Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173

  1. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens.

    Directory of Open Access Journals (Sweden)

    Shifra Ken Dror

    Full Text Available Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP (Savyon Diagnostics, Ashdod, IL, a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland. This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory.

  2. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP) Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens

    Science.gov (United States)

    Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira

    2016-01-01

    Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173

  3. Evaluation of Intestinal Parasites in Diarrheic Patients Refer to the Emergency Medicine Department of the Inonu University School of Medicine

    Directory of Open Access Journals (Sweden)

    Oğuztürk H et al.

    2010-03-01

    Full Text Available Purpose: The infections caused by intestinal parasites are one of the leading health issues both by means of individuals and society, especially in developing countries. We analyzed stool samples of 54 patients aged 18 to 67, who presented at our emergency department during June 2009 – October 2009 period, for parasitological agents. Methods: Stool samples were examined using native-lugol, trichrome staining and Kinyoun acide fast methods. Entamoeba species (Entamoeba histolytica and/or dispar were found to be the most common parasites.Results: Of 54 patients’ samples 12 (22,2% were found to be positive for parasites by microscopy, six (11,1% by Thrichrome painted samples and one by Kinyoun acid fast painted samples. Most common detected parasites were Entemoeba species (Entamoeba histolytica and/or dispar found in seven samples (12,9%. Seven of the patients found positive by microscopy were female (12,9%, male five (41,7%. The complaints and of all 54 patients were recorded. Malaise and nausea were found to be the most common symptoms in groups both with and without parasites.Conclusion: Parasitological agents have to be recalled in patients presenting to emergency departments with diarrhea as well as bacterial, viral and fungal pathogens.

  4. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  5. Evolution of bacterial and fungal growth media

    OpenAIRE

    Basu, Srijoni; Bose, Chandra; Ojha, Nupur; Das, Nabajit; Das, Jagaree; Pal, Mrinmoy; Khurana, Sukant

    2015-01-01

    Microbial media has undergone several changes since its inception but some key challenges remain. In recent years, there has been exploration of several alternative nutrient sources, both to cater to the specificity in requirement of growth of “fussy microorganisms” and also to reduce costs for large-scale fermentation that is required for biotechnology. Our mini-review explores these developments and also points at lacunas in the present areas of exploration, such as a lack of concerted effo...

  6. Parasitic colitides.

    Science.gov (United States)

    Goldberg, Joel E

    2007-02-01

    Parasitic infections are a major worldwide health problem, and they account for millions of infections and deaths each year. Most of the infections as well as the morbidity and mortality from these diseases occur in the developing world in rural regions. However, these diseases have become more common in Western countries and in big cities over the past 25 years. These changing disease patterns can be attributed to emigration from the third world to developed countries and migration of rural populations to the big cities in developing nations. These parasitic infections have protean manifestations and consequences. The medical problems range from chronic asymptomatic carrier to fulminant infections and even death. Several factors such as the host immune status, the infecting organism, and the availability of treatment all play key roles in the outcomes of parasitic colitides. The two major classes of parasites causing these infections are the helminthes (ascariasis, strongyloidiasis, enterobiasis, trichuriasis, and schistosomiasis) and the protozoa (Isospora, Cryptosporidium, Cyclospora, Trypanosoma cruzi, Giardia lamblia, and Balantidium coli). This article summarizes the salient features of each parasite with respect to epidemiology, transmission, pathogenesis, clinical features, diagnosis, and treatment. The vast majority of these infections have a self-limited clinical course or are easily treated with medical management, and surgery is rarely needed. PMID:20011360

  7. Does genetic diversity hinder parasite evolution in social insect colonies?

    DEFF Research Database (Denmark)

    Hughes, William Owen Hamar; Boomsma, Jacobus Jan

    2006-01-01

    of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness...... upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed...

  8. Entomopathogenic fungal parasites of scale insects and their potential in biological control%蚧虫的病原真菌及其在生物防治中的潜力

    Institute of Scientific and Technical Information of China (English)

    谢映平; 薛皎亮; 张志娟; 刘卫敏; 杨钤; 樊金华

    2012-01-01

    Scale insects (Hemiptera:Coccoidea) compose a group of important plant pests of agricultural crops,forest plants,ornamental plants and fruit trees.The history of the study of entomopathogenic fungi as a biological insecticide is reviewed according to the three developmental stages:the pioneering stage,the slow development stage,and the prosperity stage.Additionally,the status of this field in China was discussed.A list including approximately 140 species within 55 genera of the recorded fungal pathogens of scale insects in the world was provided.Finally,we provide four suggestions for the development of entomopathogenic fungi in the future.%蚧虫(半翅目:蚧总科)是农林果树和花卉的一类重要害虫.作者综述了寄生蚧虫的虫生真菌及其在生物防治中的潜力.总结了昆虫病原真菌作为生物杀虫剂的研究历史,并将其划分为3个发展阶段,即开创阶段、缓慢发展阶段和快速发展阶段.讨论了该领域在中国的研究现状.列出了世界上目前已记录的蚧虫病原真菌,包括55属140种,及其寄主蚧虫的名录.对虫生真菌未来的研究和开发提出了4点建议.

  9. Drug resistance mechanisms of fungal biofilms

    OpenAIRE

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  10. Novel fungal disease in complex leaf-cutting ant societies

    DEFF Research Database (Denmark)

    Hughes, David Peter; Evans, Harry C.; Hywel-Jones, Nigel;

    2009-01-01

    . Specific fungal diseases of the leaf-cutting ants themselves have not been described, possibly because broad spectrum anti-fungal defences against mycopathogens have reduced their susceptibility to entomopathogens. 3. Using morphological and molecular tools, the present study documents three rare infection......1. The leaf-cutting ants practise an advanced system of mycophagy where they grow a fungus as a food source. As a consequence of parasite threats to their crops, they have evolved a system of morphological, behavioural, and chemical defences, particularly against fungal pathogens (mycopathogens). 2...... among the five host ants, the ability of Ophiocordyceps to shift between such distant hosts is remarkable; the results are discussed in the context of ant ecological immunology and fungal invasion strategies....

  11. Role And Relevance Of Mast Cells In Fungal Infections

    Directory of Open Access Journals (Sweden)

    Rohit eSaluja

    2012-06-01

    Full Text Available In addition to their detrimental role in allergic diseases, mast cells (MCs are well known to be important cells of the innate immune system. In the last decade, they have been shown to contribute significantly to optimal host defense against numerous pathogens including parasites, bacteria, and viruses. The contribution of MCs to the immune responses in fungal infections, however, is largely unknown. In this review, we first discuss key features of mast cell responses to pathogens in general and then summarize the current knowledge on the function of MCs in the defense against fungal pathogens. We especially focus on the potential and proven mechanisms by which MC can detect fungal infections and on possible MC effector mechanisms in protecting from fungal infections.

  12. Isolation and identification of fungal parasites of cyst nematodes in Heterodera avenae group%小麦禾谷孢囊线虫生防真菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    袁虹霞; 陈莉; 张飞跃; 李洪连

    2011-01-01

    Cereal cyst nematodes (CCN) in the Heterodera avenae group are recognised as the important pest of wheat in Huanghuai area. So far, there is no effective control method for CCN in this area. In order to seek for the biocontrol agents for CCN, 42 parasitic fungi were isolated from CCN cysts from different locations in Henan. The biocontrol potential of these isolates was evaluated in pots and in the field (Xuchang, 2008-2009). Eleven isolates (F03, F04, F08, F11, F13, F15, F20, F25, F26, F33, and F37 ) provided good control of CCN in pots, with average control efficacy more than 50% ( based on disease index value). Five isolates provided good control in the field with control efficacy of over 35%. Based on morphology and rDNA-ITS PCR sequence analyses, five isolates (F04, F08, F20, F26, and F37 ) can be identified as Chaetomium sp. , Fusarium solani, Penicillium oxalicum, Stemphylium solani, and F. proliferatum , respectively.%禾谷孢囊线虫病是我国黄淮流域小麦主产区的重要病害,为寻找小麦禾谷孢囊线虫病的生防菌株,采用组织分离法对河南各地小麦孢囊线虫孢囊上的寄生真菌进行分离,共获得42株分离物,并进行盆栽防治效果测定.结果显示,F03,F04,F08,F1I,F13,F15,F20,F25,F26,F33和F37等11个菌株对小麦禾谷孢囊线虫具有较好的防治效果,平均防治效果均在50%以上.2008-2009年在河南许昌县的大田防治试验结果表明,F04,F08,F20,F26和F37等5个菌株表现出较好的防病作用,灌浆期平均防治效果均达到35%以上.通过形态学和rDNA-ITS PCR分子鉴定,这些菌株分别属于毛壳菌Chaetomium sp.、茄病镰刀菌Fusarium solani、草酸青霉Penicillium oxalicum,茄匍栖霉属stemphylium sonali和层出镰刀菌Fusarium proliferatum.

  13. Chytrids dominate arctic marine fungal communities.

    Science.gov (United States)

    Hassett, B T; Gradinger, R

    2016-06-01

    Climate change is altering Arctic ecosystem structure by changing weather patterns and reducing sea ice coverage. These changes are increasing light penetration into the Arctic Ocean that are forecasted to increase primary production; however, increased light can also induce photoinhibition and cause physiological stress in algae and phytoplankton that can favour disease development. Fungi are voracious parasites in many ecosystems that can modulate the flow of carbon through food webs, yet are poorly characterized in the marine environment. We provide the first data from any marine ecosystem in which fungi in the Chytridiomycota dominate fungal communities and are linked in their occurrence to light intensities and algal stress. Increased light penetration stresses ice algae and elevates disease incidence under reduced snow cover. Our results show that chytrids dominate Arctic marine fungal communities and have the potential to rapidly change primary production patterns with increased light penetration. PMID:26754171

  14. Bacterial endosymbionts of plant-parasitic nematodes

    Science.gov (United States)

    Several groups of bacteria have been reported as endosymbionts of various orders of nematodes including the filarial nematodes (Brugia malayi, Wucheria bancrofti and Onchocerca volvulus (Spiruida)), the entomopathogenic nematodes (Steinernema spp., and Heterorhabditis spp. (Rhabditida)), and plant-p...

  15. Parasitism and calfhood diseases.

    Science.gov (United States)

    Herlich, H; Douvres, F W

    1977-02-01

    That animals can and do acquire an effective immunity against helminth parasites has been demonstrated extensively experimentally, and the fact that domestic animals such as cattle, sheep, and horses become adults while maintaining good health in spite of constant exposure to reinfection long has suggested that immunity must be important to such survival. Although our attempts to date to vaccinate calves against helminth parasites have either failed or been unsatisfactory because of the pathosis induced by the experimental vaccines, the results are not surprising or discouraging. In contrast to the long history of immunization research on bacterial and viral diseases, only within a relatively short time have serious efforts been directed at exploiting hostal immunity for prevention and control of helminthic diseases. Unlike the comparatively simple structures of viruses and bacteria, helminths are complex multicellular animals with vast arrays of antigens and complicated physiological and immunological interactions with their hosts. Much more fundamental information on helminth-bovine interactions, on helminth antigens, and on cattle antibody systems must be developed before progress on control of cattle helminths by vaccination can be meaningful.

  16. Women and Parasitic Diseases

    Science.gov (United States)

    ... Search The CDC Cancel Submit Search The CDC Parasites Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Parasites About Parasites Animals Blood Food Insects Water Education ...

  17. Children and Parasitic Diseases

    Science.gov (United States)

    ... Search The CDC Cancel Submit Search The CDC Parasites Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Parasites About Parasites Animals Blood Food Insects Water Education ...

  18. Parasitic Diseases: Glossary

    Science.gov (United States)

    ... Search The CDC Cancel Submit Search The CDC Parasites Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Parasites About Parasites Animals Blood Food Insects Water Education ...

  19. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  20. Parasitic crustaceans as vectors of viruses, with an emphasis on three penaeid viruses.

    Science.gov (United States)

    Overstreet, Robin M; Jovonovich, Jean; Ma, Hongwei

    2009-08-01

    Parasitic crustaceans serve as both hosts and vectors of viruses as well as of parasites and other microbial pathogenic agents. Few of the presumably numerous associations are known, but many can be anticipated. Recently, branchiurans and gnathiid isopods have been documented to host helminths and blood parasites. Because the agents can be observed readily with a microscope, these are better recognized than are the smaller viral, bacterial, and fungal agents. Some agents are harmful to the host of the crustacean parasite and others are not. Viruses probably fit both these categories, since viruses that do not appear pathogenic are often seen in ultrastructural images from a range of invertebrate hosts, including crustaceans. Some viruses have been implicated in causing disease in the host, at least under appropriate conditions. For example, lymphocystis virus may possibly be transmitted to the dermis of its fish hosts by copepods and to the visceral organs by a cymothoid isopod. Similarly, argulid branchiurans seem to transmit the viral agent of spring viremia of carp as well as carp pox, and copepods have been implicated in transmitting infectious hematopoietic necrosis, infectious salmon anemia, and infectious pancreatic necrosis to salmon. Other viruses can be vectored to their hosts through an additional animal. We exposed three viruses, Taura syndrome virus (TSV), white spot syndrome virus (WSSV), and yellowhead virus (YHV), all of which cause mortalities in wild and cultured penaeid shrimps, to crustacean parasites on fish and crabs. Using real-time polymerase chain reaction analysis, we show that TSV in the cyclopoid copepod Ergasilus manicatus on the gill filaments of the Gulf killifish, Fundulus grandis, the acorn barnacle Chelonibia patula on the carapace of the blue crab, Callinectes sapidus, and gooseneck barnacle Octolasmis muelleri on the gills of C. sapidus, can replicate for at least 2 weeks and establish what should be an infective dose. This

  1. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  2. Fungal Eye Infections

    Science.gov (United States)

    ... Zoonotic Infectious Disease Division of Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Fungal Eye Infections Recommend on ... Zoonotic Infectious Disease Division of Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch File Formats Help: How do ...

  3. Protozoan Parasites.

    Science.gov (United States)

    Custodio, Haidee

    2016-02-01

    • Stool antigen detection for Cryptosporidium sp, Giardia lamblia and Entamoeba histolytica are now commercially available, have better sensitivity and specificity than the traditional stool microscopy, and are less dependent on personnel skill. Tests employing newer techniques with faster turnaround time are also available for diagnosing trichomoniasis.• Nitazoxanide, the only U.S. Food and Drug Administration-approved medication for therapy of cryptosporidiosis, is effective among immunocompetent patients. However, on the basis of strong evidence from multiple clinical trials, nitazoxanide is considered ineffective among immunocompromised patients. (14) • Giardiasis can be asymptomatic or have a chronic course leading to malabsorption and failure to thrive. It can be treated with metronidazole, tinidazole, or nitazoxanide. On the basis of growing observational studies, postinfectious and extraintestinal manifestations of giardiasis occur, but the mechanisms are unclear. Given the high prevalence of giardiasis, public health implications need to be defined. (16) • Eradicating E histolytica from the gastrointestinal tract requires only intraluminal agent therapy. Therapy for invasive illnesses requires use of imidazole followed by intraluminal agents to eliminate persistent intraluminal parasites. • Malaria is considered the most lethal parasitic infection, with Plasmodium falciparum as the predominant cause of mortality. P vivax and P ovale can be dormant in the liver, and primaquine is necessary to resolve infection by P vivax and P ovale. • Among immunocompetent patients, infection with Toxoplasma gondii may be asymptomatic, involve localized lymphadenopathy, or cause ocular infection. In immunocompromised patients, reactivation or severe infection is not uncommon. On the basis of limited observational studies (there are no well-controlled randomized trials), therapy is recommended for acute infection during pregnancy to prevent transmission to the

  4. Fungal toenail infections

    OpenAIRE

    Ferrari, Jill

    2008-01-01

    Fungal toenail infection (onychomycosis) is characterised as infection of part or all of the toenail unit, which includes the nail plate, the nail bed, and the nail matrix. Over time, the infection causes discoloration and distortion of part or all of the nail unit. Fungal infections are reported to cause 23% of foot diseases and 50% of nail conditions in people seen by dermatologists, but are less common in the general population, affecting 3% to 12% of people.Infection can cause discomfo...

  5. [Pathogenesis of invasive fungal infections].

    Science.gov (United States)

    Garcia-Vidal, Carolina; Carratalà, Jordi

    2012-03-01

    Invasive fungal infections remain a life-threatening disease. The development of invasive fungal disease is dependent on multiple factors, such us colonization and efficient host immune response. We aimed to review the pathogenesis of invasive fungal infections, in particular, those caused by Candida and Aspergillus. For this we propose, to describe the fungal characteristics, to detail the host defence mechanisms against fungus and to analyse the host risk factors for invasive fungal infection.

  6. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.

    Science.gov (United States)

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and beta-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

  7. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

    Directory of Open Access Journals (Sweden)

    Mehdi Dashtban, Heidi Schraft, Wensheng Qin

    2009-01-01

    Full Text Available The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.

  8. Fungal infections of the folds (intertriginous areas).

    Science.gov (United States)

    Metin, Ahmet; Dilek, Nursel; Demirseven, Duriye Deniz

    2015-01-01

    Superficial fungal infections are widespread, regardless of age and gender, in populations all around the world and may affect the skin and skin appendages. Although there are thousands of fungal infections from various genera and families in nature, those that are pathogenic for humans and nesting in skin folds are limited in number. The prevalence and distribution of these fungi vary according to the patients and certain environmental factors. Because the areas including the lids, external auditory canal, behind the ears, navel, inguinal region, and axillae, also called flexures, are underventilated and moist areas exposed to friction, they are especially sensitive to fungal infections. Fungi can both directly invade the skin, leading to infections, and indirectly stimulate immune mechanisms due to tissue interaction and their antigenic character and contribute to the development or exacerbation of secondary bacterial infections, seborrheic dermatitis, atopic dermatitis, and psoriasis. Superficial fungal infections can be classified and studied as dermatophyte infections, candidal infections, Malassezia infections, and other superficial infections independently from the involved skin fold areas. PMID:26051058

  9. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  10. Fungal endocarditis: current challenges.

    Science.gov (United States)

    Tattevin, Pierre; Revest, Matthieu; Lefort, Agnès; Michelet, Christian; Lortholary, Olivier

    2014-10-01

    Whilst it used to affect mostly intravenous drug users and patients who underwent valvular surgery with suboptimal infection control procedures, fungal endocarditis is now mostly observed in patients with severe immunodeficiency (onco-haematology), in association with chronic central venous access and broad-spectrum antibiotic use. The incidence of fungal endocarditis has probably decreased in most developed countries with access to harm-reduction policies (i.e. needle exchange programmes) and with improved infection control procedures during cardiac surgery. Use of specific blood culture bottles for diagnosis of fungal endocarditis has decreased due to optimisation of media and automated culture systems. Meanwhile, the advent of rapid techniques, including fungal antigen detection (galactomannan, mannan/anti-mannan antibodies and β-1,3-d-glucans) and PCR (e.g. universal fungal PCR targeting 18S rRNA genes), shall improve sensitivity and reduce diagnostics delays, although limited data are available on their use for the diagnosis of fungal endocarditis. New antifungal agents available since the early 2000s may represent dramatic improvement for fungal endocarditis: (i) a new class, the echinocandins, has the potential to improve the management of Candida endocarditis owing to its fungicidal effect on yeasts as well as tolerability of increased dosages; and (ii) improved survival in patients with invasive aspergillosis with voriconazole compared with amphotericin B, and this may apply to Aspergillus sp. endocarditis as well, although its prognosis remains dismal. These achievements may allow selected patients to be cured with prolonged medical treatment alone when surgery is considered too risky.

  11. Elevated CO2 does not favor a fungal decomposition pathway

    NARCIS (Netherlands)

    Groenigen, van K.J.; Six, J.; Harris, D.; Kessel, van C.

    2007-01-01

    We examined the effect of prolonged elevated CO2 on the concentration of fungal- and bacterial-derived compounds by quantifying the soil contents of the amino sugars glucosamine, galactosamine and muramic acid. Soil samples were collected from three different terrestrial ecosystems (grassland, an as

  12. Diversity, prevalence and virulence of fungal entomopathogens in colonies of the ant Formica selysi

    OpenAIRE

    Reber A.; Chapuisat M.

    2012-01-01

    The richness of the parasitic community associated with social insect colonies has rarely been investigated. Moreover, understanding how hosts and pathogens interact in nature is important to interpret results from laboratory experiments. Here, we assessed the diversity, prevalence and virulence of fungal entomopathogens present around and within colonies of the ant Formica selysi. We detected eight fungal species known to be entomopathogenic in soil sampled from the habitat of ants. Six of t...

  13. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites. PMID:26443032

  14. Organ Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Diseases Mycotic Diseases Branch Organ Transplant Patients and Fungal Infections Recommend on Facebook Tweet Share Compartir As an ... fungal infections. What you need to know about fungal infections Fungal infections can range from mild to life- ...

  15. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious that the a......Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  16. Bilateral endogenous fungal endophthalmitis

    OpenAIRE

    Michal, Wilczynski; Olena, Wilczynska; Wojciech, Omulecki

    2013-01-01

    Endogenous endophthalmitis is a rare and severe intraocular infection which can be vision-threatening. We describe a case of bilateral fungal endogenous endophthalmitis in a 64-year-old male which was successfully treated with systemic administration of fluconazole followed by pars plana vitrectomy with an intravitreous injection of amphotericin B.

  17. Fungal Wound Infection

    Centers for Disease Control (CDC) Podcasts

    2016-01-28

    Dr. David Tribble, acting director of the infectious disease clinical research program at Uniformed Services University of the Health Sciences, discusses fungal wound infections after combat trauma.  Created: 1/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/28/2016.

  18. Thai marine fungal diversity

    Directory of Open Access Journals (Sweden)

    Rattaket Choeyklin

    2006-07-01

    Full Text Available The marine fungal diversity of Thailand was investigated and 116 Ascomycota, 3 Basidiomycota, 28 anamorphic fungi, 7 Stramenopiles recorded, with 30 tentatively identified. These species have primarily been collected from driftwood and attached decayed wood of mangrove trees. The holotype number of 15 taxa is from Thailand and 33 are new records from the country.

  19. Parasites and Foodborne Illness

    Science.gov (United States)

    ... Web Content Viewer (JSR 286) Actions ${title} Loading... Parasites and Foodborne Illness Introduction Giardia duodenalis or intestinalis ... gondii Trichinella spiralis Taenia saginata/Taenia solium (Tapeworms) Parasites may be present in food or in water ...

  20. Diagnosis of Parasitic Diseases

    Science.gov (United States)

    ... blood sample and sending it to a lab. Blood smear This test is used to look for parasites ... found in the blood. By looking at a blood smear under a microscope, parasitic diseases such as filariasis, ...

  1. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Directory of Open Access Journals (Sweden)

    Rodolphe Elie Gozlan

    2014-02-01

    Full Text Available Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  2. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Science.gov (United States)

    Gozlan, Rodolphe E; Marshall, Wyth L; Lilje, Osu; Jessop, Casey N; Gleason, Frank H; Andreou, Demetra

    2014-01-01

    Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  3. A resource for the in silico identification of fungal polyketide synthases from predicted fungal proteomes.

    Science.gov (United States)

    Delgado, Javier A; Al-Azzam, Omar; Denton, Anne M; Markell, Samuel G; Goswami, Rubella S

    2012-06-01

    The goal of this study was to develop a tool specifically designed to identify iterative polyketide synthases (iPKSs) from predicted fungal proteomes. A fungi-based PKS prediction model, specifically for fungal iPKSs, was developed using profile hidden Markov models (pHMMs) based on two essential iPKS domains, the β-ketoacyl synthase (KS) domain and acyltransferase (AT) domain, derived from fungal iPKSs. This fungi-based PKS prediction model was initially tested on the well-annotated proteome of Fusarium graminearum, identifying 15 iPKSs that matched previous predictions and gene disruption studies. These fungi-based pHMMs were subsequently applied to the predicted fungal proteomes of Alternaria brassicicola, Fusarium oxysporum f.sp. lycopersici, Verticillium albo-atrum and Verticillium dahliae. The iPKSs predicted were compared against those predicted by the currently available mixed-kingdom PKS models that include both bacterial and fungal sequences. These mixed-kingdom models have been proven previously by others to be better in predicting true iPKSs from non-iPKSs compared with other available models (e.g. Pfam and TIGRFAM). The fungi-based model was found to perform significantly better on fungal proteomes than the mixed-kingdom PKS model in accuracy, sensitivity, specificity and precision. In addition, the model was capable of predicting the reducing nature of fungal iPKSs by comparison of the bit scores obtained from two separate reducing and nonreducing pHMMs for each domain, which was confirmed by phylogenetic analysis of the KS domain. Biological confirmation of the predictions was obtained by polymerase chain reaction (PCR) amplification of the KS and AT domains of predicted iPKSs from V. dahliae using domain-specific primers and genomic DNA, followed by sequencing of the PCR products. It is expected that the fungi-based PKS model will prove to be a useful tool for the identification and annotation of fungal PKSs from predicted proteomes. PMID:22112245

  4. Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium.

    Science.gov (United States)

    Simon, Anaele; Bindschedler, Saskia; Job, Daniel; Wick, Lukas Y; Filippidou, Sevasti; Kooli, Wafa M; Verrecchia, Eric P; Junier, Pilar

    2015-11-01

    Fungi and bacteria form various associations that are central to numerous environmental processes. In the so-called fungal highway, bacteria disperse along fungal mycelium. We developed a novel tool for the in situ isolation of bacteria moving along fungal hyphae as well as for the recovery of fungi potentially involved in dispersal, both of which are attracted towards a target culture medium. We present the validation and the results of the first in situ test. Couples of fungi and bacteria were isolated from soil. Amongst the enriched organisms, we identified several species of fast-growing fungi (Fusarium sp. and Chaetomium sp.), as well as various potentially associated bacterial groups, including Variovorax soli, Olivibacter soli, Acinetobacter calcoaceticus, and several species of the genera Stenotrophomonas, Achromobacter and Ochrobactrum. Migration of bacteria along fungal hyphae across a discontinuous medium was confirmed in most of the cases. Although the majority of the bacteria for which migration was confirmed were also positive for flagellar motility, not all motile bacteria dispersed using their potential fungal partner. In addition, the importance of hydrophobicity of the fungal mycelial surface was confirmed. Future applications of the columns include targeting different types of microorganisms and their interactions, either by enrichment or by state of the art molecular biological methods.

  5. Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium.

    Science.gov (United States)

    Simon, Anaele; Bindschedler, Saskia; Job, Daniel; Wick, Lukas Y; Filippidou, Sevasti; Kooli, Wafa M; Verrecchia, Eric P; Junier, Pilar

    2015-11-01

    Fungi and bacteria form various associations that are central to numerous environmental processes. In the so-called fungal highway, bacteria disperse along fungal mycelium. We developed a novel tool for the in situ isolation of bacteria moving along fungal hyphae as well as for the recovery of fungi potentially involved in dispersal, both of which are attracted towards a target culture medium. We present the validation and the results of the first in situ test. Couples of fungi and bacteria were isolated from soil. Amongst the enriched organisms, we identified several species of fast-growing fungi (Fusarium sp. and Chaetomium sp.), as well as various potentially associated bacterial groups, including Variovorax soli, Olivibacter soli, Acinetobacter calcoaceticus, and several species of the genera Stenotrophomonas, Achromobacter and Ochrobactrum. Migration of bacteria along fungal hyphae across a discontinuous medium was confirmed in most of the cases. Although the majority of the bacteria for which migration was confirmed were also positive for flagellar motility, not all motile bacteria dispersed using their potential fungal partner. In addition, the importance of hydrophobicity of the fungal mycelial surface was confirmed. Future applications of the columns include targeting different types of microorganisms and their interactions, either by enrichment or by state of the art molecular biological methods. PMID:26432804

  6. Fungal photobiology: a synopsis

    OpenAIRE

    Corrochano, Luis M.

    2011-01-01

    Fungi respond and adapt to many environmental signals including light. The photobiology of fungi has been extensively investigated, but in recent years the identification of the first fungal photoreceptor, WC-1 in the ascomycete Neurospora crassa, and the discovery that similar photoreceptors are required for photoreception in other ascomycete, basidiomycete and zygomycete fungi has allowed the molecular characterization of light reception and the early steps of signal transduction in a numbe...

  7. Paradigms for parasite conservation.

    Science.gov (United States)

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  8. Paradigms for parasite conservation.

    Science.gov (United States)

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  9. Investigations into rhizosphere microflora. IV. Fungal association in different root regions of some rainy-season crops

    OpenAIRE

    V. B. Srivastava

    2015-01-01

    Non-rhizosphere, rhizosphere and rhizoplane microflora of the crown and distal regions of Echinochloa crusgalli (L.) Beauv. and Paspalum scrobiculatum L. were studied from seedling stage to the harvest. The variation in bacterial and fungal flora in relation to host species, stage of development and żonę of the rhizosphere were studied. The differences between fungal and bacterial flora are described. The relation between rhizosphere microflora and roots exudates is described.

  10. Investigations into rhizosphere microflora. IV. Fungal association in different root regions of some rainy-season crops

    Directory of Open Access Journals (Sweden)

    V. B. Srivastava

    2015-05-01

    Full Text Available Non-rhizosphere, rhizosphere and rhizoplane microflora of the crown and distal regions of Echinochloa crusgalli (L. Beauv. and Paspalum scrobiculatum L. were studied from seedling stage to the harvest. The variation in bacterial and fungal flora in relation to host species, stage of development and żonę of the rhizosphere were studied. The differences between fungal and bacterial flora are described. The relation between rhizosphere microflora and roots exudates is described.

  11. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation

    NARCIS (Netherlands)

    Wagener, J.; Malireddi, R.K.; Lenardon, M.D.; Koberle, M.; Vautier, S.; MacCallum, D.M.; Biedermann, T.; Schaller, M.; Netea, M.G.; Kanneganti, T.D.; Brown, G.D.; Brown, A.J.; Gow, N.A.

    2014-01-01

    Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. W

  12. Fire and Parasites: An Under-Recognized Form of Anthropogenic Land Use Change and Mechanism of Disease Exposure.

    Science.gov (United States)

    Scasta, John Derek

    2015-09-01

    Anthropogenic land use changes have altered ecosystems and exacerbated the spread of infectious diseases. Recent reviews, however, have revealed that fire suppression in fire-prone natural areas has not been recognized as a form of anthropogenic land use change. Furthermore, fire suppression has been an under-recognized mechanism altering the risk and transmission of infectious disease pathogens and host-parasite dynamics. However, as settlement patterns changed, especially due to colonial expansion in North America, Africa, and Australia, fire suppression became a major form of land use change which has led to broad-scale ecosystem changes. Because parasites of humans and animals can vector viral, bacterial, prion, fungal, or protozoan pathogens, concomitant changes associated with anthropogenic-induced changes to fire frequencies and intensities are of concern. I provide reference to 24 studies that indicate that restoring fire in natural areas has the potential to reduce ectoparasites without wings such as ticks, chiggers, fleas, and lice; ectoparasites with wings such as mosquitos, horn flies, face flies, and stable flies; and endoparasites affecting livestock and wildlife. This suggests that fire ecology and parasitology be considered as a priority area for future research that has implications for both humans and animals.

  13. Fungal osteomyelitis and septic arthritis.

    Science.gov (United States)

    Bariteau, Jason T; Waryasz, Gregory R; McDonnell, Matthew; Fischer, Staci A; Hayda, Roman A; Born, Christopher T

    2014-06-01

    Management of fungal osteomyelitis and fungal septic arthritis is challenging, especially in the setting of immunodeficiency and conditions that require immunosuppression. Because fungal osteomyelitis and fungal septic arthritis are rare conditions, study of their pathophysiology and treatment has been limited. In the literature, evidence-based treatment is lacking and, historically, outcomes have been poor. The most common offending organisms are Candida and Aspergillus, which are widely distributed in humans and soil. However, some fungal pathogens, such as Histoplasma, Blastomyces, Coccidioides, Cryptococcus, and Sporothrix, have more focal areas of endemicity. Fungal bone and joint infections result from direct inoculation, contiguous infection spread, or hematogenous seeding of organisms. These infections may be difficult to diagnose and eradicate, especially in the setting of total joint arthroplasty. Although there is no clear consensus on treatment, guidelines are available for management of many of these pathogens.

  14. Systems Biology of Fungal Infection

    OpenAIRE

    FabianHorn; ThorstenHeinekamp; JohannesPollmächer; AxelABrakhage

    2012-01-01

    Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections. A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal i...

  15. Cystatins of parasitic organisms.

    Science.gov (United States)

    Klotz, Christian; Ziegler, Thomas; Daniłowicz-Luebert, Emilia; Hartmann, Susanne

    2011-01-01

    The cystatin superfamily comprises several groups of protease inhibitors. In this chapter we will focus on I25 family members, which consist predominantly of the type 2 cystatins. Recently, a wealth of information on these molecules and their activities has been described. Parasite cystatins are shown to have dual functions via interaction with both parasite and host proteases. Thereby, parasite cystatins are not only essentially involved in the regulation of physiological processes during parasite development, but also represent important pathogenicity factors. Interestingly, some studies indicate that parasite cystatins evolved exceptional immuno-modulatory properties. these capacities could be exploited to interfere with unwanted immune responses in unrelated human inflammatory diseases. We highlight the different biological roles of parasite cystatins and the anticipated future developments.

  16. Parasites of rhinoceros

    OpenAIRE

    Kettnerová, Lucie

    2013-01-01

    This thesis is focuses on parasites of rhinoceros. Thesis is in form a literary review, and is focused of parasites both in captivity and wildness. The aim of mine work was to describe the different kinds of parasites, their morphology, life cycles, and especially diseases that cause to the rhinoceros. Rhinoceros are endangered species, some of them are on the verge of extinction therefore they are in order to be saved often moved to reservations or zoos. In the new environment, they meet ...

  17. Neglected Parasitic Infections: Toxocariasis

    Centers for Disease Control (CDC) Podcasts

    2012-01-05

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: Neglected Parasitic Infections in the United States. Neglected Parasitic Infections are a group of diseases that afflict vulnerable populations and are often not well studied or diagnosed. A subject matter expert from CDC's Division of Parasitic Diseases and Malaria describes the epidemiology, diagnosis, and treatment of toxocariasis.  Created: 1/5/2012 by Center for Global Health, Division of Parasitic Diseases and Malaria (DPDM); Emergency Risk Communication Branch (ERCB)/Joint Information Center (JIC), Office of Public Health Preparedness and Response (OPHPR).   Date Released: 1/9/2012.

  18. Screening of endophytic bacteria against fungal plant pathogens.

    Science.gov (United States)

    Ohike, Tatsuya; Makuni, Kohei; Okanami, Masahiro; Ano, Takashi

    2013-12-01

    Bacterial endophytes were found from 6 plant leaves among 35 plant leaves screened. Two of the isolated bacteria showed antagonistic activity against fungal plant pathogens. An isolate named KL1 showed the clear inihibition against plant pathogens, Fusarium oxysporum and Rhizoctonia solani, on PDA as well as TSA plate. Supernatant of the bacterial culture also showed the clear inhibition against the fungal growth on the plate and the antibiotic substance was identified as iturin A by HPLC analysis. KL1 was identified as Bacillus sp. from the 16S rRNA gene analysis. Very thin hyphae of R. solani was miccroscopically observed when the fungus was co-cultivated with KL1. PMID:25078813

  19. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots.

    Science.gov (United States)

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  20. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots

    Science.gov (United States)

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  1. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots.

    Science.gov (United States)

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  2. Parasitic fungi of ornamental plants and herbs of Szczecin

    OpenAIRE

    Iwona Adamska

    2013-01-01

    In the years 2000-2001, the occurrence of fungi parasitizing on ornamental plants and herbs cultivated in the Vegetative Hall of the Agricultural University in Szczecin was investigated. The plants represented ca. 200 species. Disease and etiological symptoms were found in 37% of plant species. Most diseased plants came from the family Asteraceae. The plant species most frequently affected was Melisa officinalis. In the laboratory, 35 fungal species were recognized. Most fungi came from the ...

  3. Invasion of parasitic isopods in marine fishes

    Institute of Scientific and Technical Information of China (English)

    Ganapathy Rameshkumar; Samuthirapandian Ravichandran

    2013-01-01

    Objective: To carry out a detailed three-year observation study on isopod parasites infestation in fish.Methods:Fish samples were collected from different localities in various landing centers along the Tamil Nadu coastal area. The prevalence and mean intensity were calculated. The proximate composition of infestation and uninfestation were studied in different marine fishes. A comparative analysis of bacteria and fungi in the infected and uninfected regions of fishes were analysed.Results:Tweenty six species including 12 genera of isopods (Cymothoidae) distributed in 39 species of marine fishes along the Tamil Nadu coast. The isopod parasites were attached in three different microhabitats in host fishes viz., buccal, branchial and body surfaces. They exhibited host and site specific occurrence. Maximum prevalence 17.11% was recorded in March 2010 and minimum 0.27% in Febuary 2010. The intensity ranged from 1 to 1.7 parasites per fish during the different months from Decmber 2008 to November 2011. There was a decrease in the protein, carbohydrate and lipid content in the infested fishes compared to uninfected fishes. A comparative analysis of bacteria and fungi in the infected and uninfected region of fishes were analysed. It revealed that infected portions had dense bacterial load as observed in the lesions of infected fishes than uninfected fishes.Conclusion:Factors which are able to induce parasitic manifestation are stock quality, stocking density, environmental conditions, biological and physiological characteristics of parasite, zoo technical measures, food quantity, feeding strategies, etc.

  4. Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

    OpenAIRE

    Park, Sang Un; Lim, Hyoun-Sub; Park, Kee-Choon; Park, Young-Hwan; Bae, Hanhong

    2012-01-01

    In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fung...

  5. Contaminação bacteriana e fúngica de canudos de refrigerantes e seus recipientes em lanchonetes de município do interior de São Paulo Fungal and bacterial contamination of drinking straws and their containers in snack bars in a municipality of São Paulo state, Brazil

    Directory of Open Access Journals (Sweden)

    Francisco Rafael Martins Soto

    2009-12-01

    Full Text Available OBJETIVO: Avaliar o nível de contaminação bacteriana e fúngica de canudos de refrigerantes e seus recipientes em 30 lanchonetes do Município de Ibiúna (SP, correlacionando com as condições de higiene, processos e métodos de desinfecção destes estabelecimentos. MÉTODOS: Foram colhidas três amostras por estabelecimento nas embalagens fechadas, em recipientes e swab em toda a superfície de contato. Foi aplicado um questionário a fim de avaliar: a empresa fornecedora dos canudos, higienização, freqüência e desinfecção, e foram efetuadas inspeções sanitárias nos estabelecimentos. Para as análises microbiológicas foi utilizada a técnica de lavagem superficial e semeadura em meios, para contagem de bactérias mesófilas. As amostras turvas foram semeadas em meios de cultura para: Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Enterococcus, coliformes totais e/ou termotolerantes. RESULTADOS: Dentre os microorganismos isolados nas amostras dos canudos nos recipientes foi detectado Bacillus cereus em 36,6%, Enterococo spp. em 3,3%. O Bacillus cereus foi isolado em 46,6% nos swabs dos recipientes, e em 13,3%, Enterococos. Na análise de associação do nível de contaminação microbiana de canudos de refrigerantes e seus recipientes com as condições de higiene, os processos de higienização e a desinfecção dos estabelecimentos, não foi identifica significância estatística (p>0,05. CONCLUSÃO: O Bacillus cereus foi o microorganismo que prevaleceu nas embalagens íntegras dos canudos, nos seus recipientes e no swab das superfícies. Não foi comprovada a associação de fatores de risco de contaminação bacteriana e fúngica.OBJECTIVE: The objective of this study was to evaluate the fungal and bacterial contamination level of drinking straws and their containers of thirty snack bars at the municipality of Ibiuna (SP, Brazil and to correlate these data with conditions of hygiene and the processes and

  6. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract

    Science.gov (United States)

    Strati, Francesco; Di Paola, Monica; Stefanini, Irene; Albanese, Davide; Rizzetto, Lisa; Lionetti, Paolo; Calabrò, Antonio; Jousson, Olivier; Donati, Claudio; Cavalieri, Duccio; De Filippo, Carlotta

    2016-01-01

    The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here, we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal (GI) tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C), to acidic and oxidative stress, and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals' life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics-based approaches to

  7. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract.

    Science.gov (United States)

    Strati, Francesco; Di Paola, Monica; Stefanini, Irene; Albanese, Davide; Rizzetto, Lisa; Lionetti, Paolo; Calabrò, Antonio; Jousson, Olivier; Donati, Claudio; Cavalieri, Duccio; De Filippo, Carlotta

    2016-01-01

    The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here, we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal (GI) tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C), to acidic and oxidative stress, and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals' life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics-based approaches to

  8. Age and gender affect the composition of fungal population of the human gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Francesco Strati

    2016-08-01

    Full Text Available The fungal component of the human gut microbiota has been neglected for long time due to the low relative abundance of fungi with respect to bacteria, and only recently few reports have explored its composition and dynamics in health or disease. The application of metagenomics methods to the full understanding of fungal communities is currently limited by the under representation of fungal DNA with respect to the bacterial one, as well as by the limited ability to discriminate passengers from colonizers. Here we investigated the gut mycobiota of a cohort of healthy subjects in order to reduce the gap of knowledge concerning fungal intestinal communities in the healthy status further screening for phenotypical traits that could reflect fungi adaptation to the host. We studied the fecal fungal populations of 111 healthy subjects by means of cultivation on fungal selective media and by amplicon-based ITS1 metagenomics analysis on a subset of 57 individuals. We then characterized the isolated fungi for their tolerance to gastrointestinal tract-like challenges and their susceptibility to antifungals. A total of 34 different fungal species were isolated showing several phenotypic characteristics associated with intestinal environment such as tolerance to body temperature (37°C, to acidic and oxidative stress and to bile salts exposure. We found a high frequency of azoles resistance in fungal isolates, with potential and significant clinical impact. Analyses of fungal communities revealed that the human gut mycobiota differs in function of individuals’ life stage in a gender-related fashion. The combination of metagenomics and fungal cultivation allowed an in-depth understanding of the fungal intestinal community structure associated to the healthy status and the commensalism-related traits of isolated fungi. We further discussed comparatively the results of sequencing and cultivation to critically evaluate the application of metagenomics

  9. Current management of fungal infections.

    NARCIS (Netherlands)

    Meis, J.F.G.M.; Verweij, P.E.

    2001-01-01

    The management of superficial fungal infections differs significantly from the management of systemic fungal infections. Most superficial infections are treated with topical antifungal agents, the choice of agent being determined by the site and extent of the infection and by the causative organism,

  10. Hospitalized Patients and Fungal Infections

    Science.gov (United States)

    ... Care Med 1998;24:206-16. Alangaden GJ. Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infectious Disease Clinics ... 25:201-25. Zilberberg MD, Shorr AF. Fungal infections in the ICU. Infect Dis ... D. Nosocomial aspergillosis and building construction. Med Mycol 2009;47 ...

  11. Parasite infections revisited

    NARCIS (Netherlands)

    Wiegertjes, G.F.; Forlenza, M.; Joerink, M.; Scharsack, J.P.

    2005-01-01

    Studying parasites helps reveal basic mechanisms in immunology. For long this has been recognized for studies on the immune system of mice and man. But it is not true for immunological studies on fish. To support this argument we discuss selected examples of parasite infections not only in warm-bloo

  12. PARASITES OF FISH

    Science.gov (United States)

    The intent of this chapter is to describe the parasites of importance to fishes maintained and used in laboratory settings. In contrast to the frist edition, the focus will be only on those parasites that pose a serious threat to or are common in fishes held in these confined en...

  13. Parasites from the Past

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Fredensborg, Brian Lund; Nejsum, Peter;

    will investigate how the diversity of food-borne parasitic infections has changed with cultural and dietary habits, hunting practice and intensity of animal husbandry. This is done by isolating and typing ancient DNA remains from parasite eggs found in archeological samples from across Denmark....

  14. AIDS - associated parasitic diarrhoea

    Directory of Open Access Journals (Sweden)

    Arora D

    2009-01-01

    Full Text Available Since the advent of human immunodeficiency virus infection, with its profound and progressive effect on the cellular immune system, a group of human opportunistic pathogens has come into prominence. Opportunistic parasitic infection can cause severe morbidity and mortality. Because many of these infections are treatable, an early and accurate diagnosis is important. This can be accomplished by a variety of methods such as direct demonstration of parasites and by serological tests to detect antigen and/or specific antibodies. However, antibody response may be poor in these patients and therefore immunodiagnostic tests have to be interpreted with caution. Cryptosporidium parvum , Isospora belli , Cyclospora cayetanensis , Microsporidia, Entamoeba histolytica and Strongyloides stercoralis are the commonly detected parasites. Detection of these parasites will help in proper management of these patients because drugs are available for most of these parasitic infections.

  15. Fungal keratitis: A review

    International Nuclear Information System (INIS)

    Keratomycosis is a vision-threatening fungal corneal infection. The dramatic increase in the number of cases over the past three decades is attributable not only to better diagnostic recognition, improved laboratory techniques and greater awareness by the ophthalmic society as a whole, but is also due to a true increase in the incidence of keratitis related to the indiscriminate use of topical broad-spectrum antibiotics, corticosteroids and immunosuppressive drugs, as well as surgical trauma. Corneal trauma has remained the main predisposing factor over the years, though in recent years HIV-positive cases and AIDS are taking lead in certain areas. Aspergillus, Fusarium and Candida species remains the commonest 'organisms' isolated worldwide. Although the approach to this form of keratitis is similar to other types of microbial keratitis, it remains the most difficult in terms of diagnosis and management. Early recognition, prevention, prompt treatment and timely keratoplasty are crucial for a better outcome. (author)

  16. The Extracellular Matrix of Fungal Biofilms.

    Science.gov (United States)

    Mitchell, Kaitlin F; Zarnowski, Robert; Andes, David R

    2016-01-01

    A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field. PMID:27271680

  17. A Survey of Bacterial Infections in Bone Marrow Transplant Recipients

    OpenAIRE

    Shirazi MH; R Ranjbar; A. Ghasemi; S Paktarigh; N Sadeghifard; Pourmand MR

    2007-01-01

    "nBackground: Bone marrow transplant (BMT) recipients are prone to bacterial, viral and fungal infections. Bacterial infec­tion is considered as one of the common and serious complications in bone marrow transplant recipients. The aim of this study was to determine the rate of bacterial infections in bone marrow transplant recipients."nMethods: Fifty-two blood and 25 catheter samples were obtained from 23 patients who were hospitalized in bone marrow trans­plantation...

  18. The fungal consortium of Andromeda polifolia in bog habitats

    Directory of Open Access Journals (Sweden)

    N.V. Filippova

    2015-09-01

    Full Text Available (1 Andromeda polifolia (bog rosemary is a common plant species in northern circumboreal peatlands. While not a major peat-forming species in most peatlands, it is characterised by a substantial woody below-ground biomass component that contributes directly to the accumulation of organic matter below the moss surface, as well as sclerophyllous leaf litter that contributes to the accumulation of organic matter above the moss surface. Rather little is known about the fungal communities associated with this plant species. Hence, we investigated the fungal consortium of A. polifolia in three distinct vegetation communities of ombrotrophic bogs near Khanty-Mansiysk, West Siberia, Russia, in 2012 and 2013. These vegetation communities were forested bog (Tr = treed, Sphagnum-dominated lawn (Ln, and Eriophorum-Sphagnum-dominated hummock (Er. (2 In total, 37 fungal taxa, belonging to five classes and 16 families, were identified and described morphologically. Seven fungal species were previously known from Andromeda as host. Others are reported for the first time, thus considerably expanding the fungal consortium of this dwarf shrub. Most taxa were saprobic on fallen leaves of A. polifolia found amongst Sphagnum in the bog. Two taxa were parasitic on living plant tissues and one taxon was saprobic on dead twigs. Three taxa, recorded only on A. polifolia leaves and on no other plant species or materials, may be host-specific to this dwarf shrub. (3 A quantitative analysis of the frequency of occurrence of all taxa showed that one taxon (Coccomyces duplicarioides was very abundant, 64 % of the taxa occurred frequently, and 32 % of the taxa occurred infrequently. The mean Shannon diversity index of the community was 2.4. (4 There were no statistical differences in the fungal community composition of A. polifolia in the three vegetation communities investigated in this study. Redundancy analysis suggested that some fungal taxa were positively, and others

  19. [Parasitism and ecological parasitology].

    Science.gov (United States)

    Balashov, Iu S

    2011-01-01

    Parasitism as one of the life modes is a general biological phenomenon and is a characteristic of all viruses, many taxa of bacteria, fungi, protists, metaphytes, and metazoans. Zooparasitology is focused on studies of parasitic animals, particularly, on their taxonomy, anatomy, life cycles, host-parasite relations, biocoenotic connections, and evolution. Ecological parasitology is a component of ecology, as the scientific study of the relation of living organisms with each other and their surroundings. In the present paper, critical analysis of the problems, main postulates, and terminology of the modern ecological parasitology is given.

  20. Increased resin collection after parasite challenge: a case of self-medication in honey bees?

    Science.gov (United States)

    Simone-Finstrom, Michael D; Spivak, Marla

    2012-01-01

    The constant pressure posed by parasites has caused species throughout the animal kingdom to evolve suites of mechanisms to resist infection. Individual barriers and physiological defenses are considered the main barriers against parasites in invertebrate species. However, behavioral traits and other non-immunological defenses can also effectively reduce parasite transmission and infection intensity. In social insects, behaviors that reduce colony-level parasite loads are termed "social immunity." One example of a behavioral defense is resin collection. Honey bees forage for plant-produced resins and incorporate them into their nest architecture. This use of resins can reduce chronic elevation of an individual bee's immune response. Since high activation of individual immunity can impose colony-level fitness costs, collection of resins may benefit both the individual and colony fitness. However the use of resins as a more direct defense against pathogens is unclear. Here we present evidence that honey bee colonies may self-medicate with plant resins in response to a fungal infection. Self-medication is generally defined as an individual responding to infection by ingesting or harvesting non-nutritive compounds or plant materials. Our results show that colonies increase resin foraging rates after a challenge with a fungal parasite (Ascophaera apis: chalkbrood or CB). Additionally, colonies experimentally enriched with resin had decreased infection intensities of this fungal parasite. If considered self-medication, this is a particularly unique example because it operates at the colony level. Most instances of self-medication involve pharmacophagy, whereby individuals change their diet in response to direct infection with a parasite. In this case with honey bees, resins are not ingested but used within the hive by adult bees exposed to fungal spores. Thus the colony, as the unit of selection, may be responding to infection through self-medication by increasing the

  1. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity.

    Science.gov (United States)

    Wongsuk, Thanwa; Pumeesat, Potjaman; Luplertlop, Natthanej

    2016-05-01

    When microorganisms live together in high numbers, they need to communicate with each other. To achieve cell-cell communication, microorganisms secrete molecules called quorum-sensing molecules (QSMs) that control their biological activities and behaviors. Fungi secrete QSMs such as farnesol, tyrosol, phenylethanol, and tryptophol. The role of QSMs in fungi has been widely studied in both yeasts and filamentous fungi, for example in Candida albicans, C. dubliniensis, Aspergillus niger, A. nidulans, and Fusarium graminearum. QSMs impact fungal morphogenesis (yeast-to-hypha formation) and also play a role in the germination of macroconidia. QSMs cause fungal cells to initiate programmed cell death, or apoptosis, and play a role in fungal pathogenicity. Several types of QSMs are produced during stages of biofilm development to control cell population or morphology in biofilm communities. This review article emphasizes the role of fungal QSMs, especially in fungal morphogenesis, biofilm formation, and pathogenicity. Information about QSMs may lead to improved measures for controlling fungal infection. PMID:26972663

  2. The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N. and P.

    NARCIS (Netherlands)

    Limpens, J.; Jeffrey, T.A.G.; Baar, J.; Berendse, F.; Zijlstra, J.D.

    2003-01-01

    We report the effects of fertilisation with N and P on the infection of Sphagnum by its fungal parasite Lyophyllum palustre, the expansion of epiphytic algae and the interaction between the latter two from 1998 to 2001. We added 40 kg N ha(-1) yr(-1) or 3 kg P ha(-1) yr(-1) in a full factorial desig

  3. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  4. Pathoecology of Chiribaya parasitism

    Directory of Open Access Journals (Sweden)

    Martinson Elizabeth

    2003-01-01

    Full Text Available The excavations of Chiribaya culture sites in the Osmore drainage of southern Peru focused on the recovery of information about prehistoric disease, including parasitism. The archaeologists excavated human, dog, guinea pig, and llama mummies. These mummies were analyzed for internal and external parasites. The results of the analysis and reconstruction of prehistoric life from the excavations allows us to interpret the pathoecology of the Chiribaya culture.

  5. Ungulate malaria parasites

    OpenAIRE

    Thomas J. Templeton; Masahito Asada; Montakan Jiratanh; Ishikawa, Sohta A.; Sonthaya Tiawsirisup; Thillaiampalam Sivakumar; Boniface Namangala; Mika Takeda; Kingdao Mohkaew; Supawan Ngamjituea; Noboru Inoue; Chihiro Sugimoto; Yuji Inagaki; Yasuhiko Suzuki; Naoaki Yokoyama

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily dete...

  6. Complex Daphnia interactions with parasites and competitors.

    Science.gov (United States)

    Cáceres, C E; Davis, G; Duple, S; Hall, S R; Koss, A; Lee, P; Rapti, Z

    2014-12-01

    Species interactions can strongly influence the size and dynamics of epidemics in populations of focal hosts. The "dilution effect" provides a particularly interesting type of interaction from a biological standpoint. Diluters - other host species which resist infection but remove environmentally-distributed propagules of parasites (spores) - should reduce disease prevalence in focal hosts. However, diluters and focal hosts may compete for shared resources. This combination of positive (dilution) and negative (competition) effects could greatly complicate, even undermine, the benefits of dilution and diluter species from the perspective of the focal host. Motivated by an example from the plankton (i.e., zooplankton hosts, a fungal parasite, and algal resources), we study a model of dilution and competition. Our model reveals a suite of five results: • A diluter that is a superior competitor wipes out the host, regardless of parasitism. Although expected, this outcome is an ever-present danger in strategies that might use diluters to control disease. • If the diluter is an inferior competitor, it can reduce disease prevalence, despite the competition, as parameterized in our model. However, competition may also reduce density of susceptible hosts to levels below that seen in focal host-parasite systems alone. • As they decrease disease prevalence, diluters destabilize dynamics of the focal host and their resources. Thus, diluters undermine the stabilizing effects of disease. • The four species combination can generate very complex dynamics, including period-doubling bifurcations and torus (Neimark-Sacker) bifurcations. • At lower resource carrying capacity, the diluter’s dilution of spores is 'helpful' to the focal host, i.e., dilution can elevate host density by reducing disease. But, as the resource carrying capacity increases further, the equilibrium density of the diluter increases while the density of the focal host decreases, despite competition

  7. Fungal Biotransformation of Tetracycline Antibiotics.

    Science.gov (United States)

    Shang, Zhuo; Salim, Angela A; Khalil, Zeinab; Bernhardt, Paul V; Capon, Robert J

    2016-08-01

    The commercial antibiotics tetracycline (3), minocycline (4), chlortetracycline (5), oxytetracycline (6), and doxycycline (7) were biotransformed by a marine-derived fungus Paecilomyces sp. to yield seco-cyclines A-H (9-14, 18 and 19) and hemi-cyclines A-E (20-24). Structures were assigned by detailed spectroscopic analysis, and in the case of 10 X-ray crystallography. Parallel mechanisms account for substrate-product specificity, where 3-5 yield seco-cyclines and 6 and 7 yield hemi-cyclines. The susceptibility of 3-7 to fungal biotransformation is indicative of an unexpected potential for tetracycline "degradation" (i.e., antibiotic resistance) in fungal genomes. Significantly, the fungal-derived tetracycline-like viridicatumtoxins are resistant to fungal biotransformation, providing chemical insights that could inform the development of new tetracycline antibiotics resistant to enzymatic degradation. PMID:27419475

  8. Cancer Patients and Fungal Infections

    Science.gov (United States)

    ... site. Top of Page Preventing fungal infections in cancer patients Fungi are difficult to avoid because they are a natural part of the environment. Fungi live outdoors in soil, on plants, trees, and other vegetation. They are also on ...

  9. Parasites and human evolution.

    Science.gov (United States)

    Perry, George H

    2014-01-01

    Our understanding of human evolutionary and population history can be advanced by ecological and evolutionary studies of our parasites. Many parasites flourish only in the presence of very specific human behaviors and in specific habitats, are wholly dependent on us, and have evolved with us for thousands or millions of years. Therefore, by asking when and how we first acquired those parasites, under which environmental and cultural conditions we are the most susceptible, and how the parasites have evolved and adapted to us and we in response to them, we can gain considerable insight into our own evolutionary history. As examples, the tapeworm life cycle is dependent on our consumption of meat, the divergence of body and head lice may have been subsequent to the development of clothing, and malaria hyperendemicity may be associated with agriculture. Thus, the evolutionary and population histories of these parasites are likely intertwined with critical aspects of human biology and culture. Here I review the mechanics of these and multiple other parasite proxies for human evolutionary history and discuss how they currently complement our fossil, archeological, molecular, linguistic, historical, and ethnographic records. I also highlight potential future applications of this promising model for the field of evolutionary anthropology. PMID:25627083

  10. Parasites and human evolution.

    Science.gov (United States)

    Perry, George H

    2014-01-01

    Our understanding of human evolutionary and population history can be advanced by ecological and evolutionary studies of our parasites. Many parasites flourish only in the presence of very specific human behaviors and in specific habitats, are wholly dependent on us, and have evolved with us for thousands or millions of years. Therefore, by asking when and how we first acquired those parasites, under which environmental and cultural conditions we are the most susceptible, and how the parasites have evolved and adapted to us and we in response to them, we can gain considerable insight into our own evolutionary history. As examples, the tapeworm life cycle is dependent on our consumption of meat, the divergence of body and head lice may have been subsequent to the development of clothing, and malaria hyperendemicity may be associated with agriculture. Thus, the evolutionary and population histories of these parasites are likely intertwined with critical aspects of human biology and culture. Here I review the mechanics of these and multiple other parasite proxies for human evolutionary history and discuss how they currently complement our fossil, archeological, molecular, linguistic, historical, and ethnographic records. I also highlight potential future applications of this promising model for the field of evolutionary anthropology.

  11. Empirical support for optimal virulence in a castrating parasite.

    Directory of Open Access Journals (Sweden)

    Knut Helge Jensen

    2006-07-01

    Full Text Available The trade-off hypothesis for the evolution of virulence predicts that parasite transmission stage production and host exploitation are balanced such that lifetime transmission success (LTS is maximised. However, the experimental evidence for this prediction is weak, mainly because LTS, which indicates parasite fitness, has been difficult to measure. For castrating parasites, this simple model has been modified to take into account that parasites convert host reproductive resources into transmission stages. Parasites that kill the host too early will hardly benefit from these resources, while postponing the killing of the host results in diminished returns. As predicted from optimality models, a parasite inducing castration should therefore castrate early, but show intermediate levels of virulence, where virulence is measured as time to host killing. We studied virulence in an experimental system where a bacterial parasite castrates its host and produces spores that are not released until after host death. This permits estimating the LTS of the parasite, which can then be related to its virulence. We exposed replicate individual Daphnia magna (Crustacea of one host clone to the same amount of bacterial spores and followed individuals until their death. We found that the parasite shows strong variation in the time to kill its host and that transmission stage production peaks at an intermediate level of virulence. A further experiment tested for the genetic basis of variation in virulence by comparing survival curves of daphniids infected with parasite spores obtained from early killing versus late killing infections. Hosts infected with early killer spores had a significantly higher death rate as compared to those infected with late killers, indicating that variation in time to death was at least in part caused by genetic differences among parasites. We speculate that the clear peak in lifetime reproductive success at intermediate killing times

  12. Parasites in marine food webs

    Science.gov (United States)

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  13. The endosymbiont Arsenophonus is widespread in soybean aphid, Aphis glycines, but does not provide protection from parasitoids or a fungal pathogen

    Science.gov (United States)

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont, Arsenophonus sp., ...

  14. Bortezomib inhibits bacterial and fungal β-carbonic anhydrases.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-09-15

    Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from pathogenic fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, Malassezia globosa) and bacteria (three isoforms from Mycobacterium tuberculosis, Rv3273, Rv1284 and Rv3588), as well from the insect Drosophila melanogaster (DmeCA) and the plant Flaveria bidentis (FbiCA1) with the boronic acid peptidomimetic proteosome inhibitor bortezomib was investigated. Bortezomib was a micromolar inhibitor of all these enzymes, with KIs ranging between 1.12 and 11.30μM. Based on recent crystallographic data it is hypothesized that the B(OH)2 moiety of the inhibitor is directly coordinated to the zinc ion from the enzyme active site. The class of boronic acids, an under-investigated type of CA inhibitors, may lead to the development of anti-infectives with a novel mechanism of action, based on the pathogenic organisms CA inhibition. PMID:27469982

  15. Bacterial and fungal microbiome analysis of alfalfa rhizosphere soils

    Science.gov (United States)

    Soil microbial communities are increasingly being recognized for their critical roles in agriculture. While microbiome studies enabled by next generation sequencing platforms reveal soils to be some of the most diverse environments known, certain taxa may have disproportionate influence in their fu...

  16. Structural Analysis of Fungal Cerebrosides

    Directory of Open Access Journals (Sweden)

    Eliana eBarreto-Bergter

    2011-12-01

    Full Text Available Of the ceramide monohexosides (CMHs, gluco- and galactosylceramides are the main neutral glycosphingolipids expressed in fungal cells. Their structural determination is greatly dependent on the use of mass spectrometric techniques, including fast atom bombardment-mass spectrometry (FAB-MS, electrospray ionization (ESI-MS, and energy collision-induced dissociation mass spectrometry (ESI-MS/CID-MS. Nuclear magnetic resonance (NMR has also been used successfully. Such a combination of techniques, combined with classical analytical separation, such as HPTLC and column chromatography, has led to the structural elucidation of a great number of fungal CMHs. The structure of fungal CMH is conserved among fungal species and consists of a glucose or galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to hydroxylated fatty acids, most commonly having 16 or 18 carbon atoms and unsaturation between C-3 and C-4. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. Fungal cerebrosides were also characterized as antigenic molecules directly or indirectly involved in cell growth or differentiation in Schizophyllum commune, Cryptococcus neoformans, Pseudallescheria boydii, Candida albicans, Aspergillus nidulans, A.fumigatus and Colletotrichum gloeosporioides. Besides classical techniques for cerebroside (CMH analysis, we now describe new approaches, combining conventional TLC and mass spectrometry, as well as emerging technologies for subcellular localization and distribution of glycosphingolipids by SIMS and imaging MALDI TOF .

  17. Distribution of Parasitic Cestod

    Directory of Open Access Journals (Sweden)

    S Karimi

    2008-04-01

    Full Text Available Background: Ligulae intestinalis is a parasitic cestode, which has the economic-health importance in fishery industries. The aim of this study was to determine the prevalence of this parasite in Mazandaran. The effects of habitat temperature and kind of pool (sandy-cement were considered as well. Methods: In this study, 103 fish samples were obtained in all stages; the samples (male and female were divided into 3 groups based on length of fish, temperature, origin of cultured fish, kind of pool, height from sea and sex. Macroscopic and microscopic observations were carried out in all stages of the parasite (procercoid, plerocercoid and adult. Chi-square and Pearson's double square tests (P<0.05 were conducted in order to evaluate the prevalence and determination of reliability in six sampling areas, respectively. Results: Total rate of the parasites were 9.7% in all groups. There was significant difference between parasitism rate and height of sea level, kind of pool (maximum in sandy pools and high temperature. The multi analyses regarding to above-mentioned three criteria also indicated meaningful difference between these criteria and parasitism rate. Seasonal conditions enhance the prevalence of ligulae intestinalis. Conclusion: Flexibility in parasite's life cycle and choosing different hosts makes it challenging case in fishery industry; moreover its prevalence could be predicted according to environmental conditions so choosing the minimal at risk place for salmonids farming. Further studies are recommended for evaluating the problems in fish fertility and probable risk for infected fish consumers.

  18. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  19. Fungal-Fungal Interactions in Leaf-Cutting Ant Agriculture

    Directory of Open Access Journals (Sweden)

    Sunshine A. Van Bael

    2011-01-01

    Full Text Available Many organisms participate in symbiotic relationships with other organisms, yet studies of symbioses typically have focused on the reciprocal costs and benefits within a particular host-symbiont pair. Recent studies indicate that many ecological interactions involve alliances of symbionts acting together as mutualistic consortia against other consortia. Such interacting consortia are likely to be widespread in nature, even if the interactions often occur in a cryptic fashion. Little theory and empirical data exist concerning how these complex interactions shape ecological outcomes in nature. Here, we review recent work on fungal-fungal interactions between two consortia: (i leaf-cutting ants and their symbiotic fungi (the latter grown as a food crop by the former and (ii tropical plants and their foliar endophytes (the cryptic symbiotic fungi within leaves of the former. Plant characteristics (e.g., secondary compounds or leaf physical properties of leaves are involved in leaf-cutting ant preferences, and a synthesis of published information suggests that these plant traits could be modified by fungal presence. We discuss potential mechanisms for how fungal-fungal interactions proceed in the leaf-cutting ant agriculture and suggest themes for future research.

  20. Human Parasites in Medieval Europe: Lifestyle, Sanitation and Medical Treatment.

    Science.gov (United States)

    Mitchell, Piers D

    2015-01-01

    Parasites have been infecting humans throughout our evolution. However, not all people suffered with the same species or to the same intensity throughout this time. Our changing way of life has altered the suitability of humans to infection by each type of parasite. This analysis focuses upon the evidence for parasites from archaeological excavations at medieval sites across Europe. Comparison between the patterns of infection in the medieval period allows us to see how changes in sanitation, herding animals, growing and fertilizing crops, the fishing industry, food preparation and migration all affected human susceptibility to different parasites. We go on to explore how ectoparasites may have spread infectious bacterial diseases, and also consider what medieval medical practitioners thought of parasites and how they tried to treat them. While modern research has shown the use of a toilet decreases the risk of contracting certain intestinal parasites, the evidence for past societies presented here suggests that the invention of latrines had no observable beneficial effects upon intestinal health. This may be because toilets were not sufficiently ubiquitous until the last century, or that the use of fresh human faeces for manuring crops still ensured those parasite species were easily able to reinfect the population.

  1. A Fungal Signature in the Gut Microbiota of Pediatric Patients with Inflammatory Bowel Disease

    Science.gov (United States)

    Chehoud, Christel; Albenberg, Lindsey G.; Judge, Colleen; Hoffmann, Christian; Grunberg, Stephanie; Bittinger, Kyle; Baldassano, Robert N.; Lewis, James D.; Bushman, Frederic D.; Wu, Gary D.

    2015-01-01

    Background Inflammatory bowel disease (IBD) involves dysregulation of mucosal immunity in response to environmental factors such as the gut microbiota. The bacterial microbiota is often altered in IBD, but the connection to disease is not fully clarified, and gut fungi have recently been suggested to play a role as well. In this study, we compared microbes from all three domains of life–bacteria, archaea, and eukaryota–in pediatric patients with IBD and healthy controls. Methods A stool sample was collected from patients with IBD (n=34) or health control subjects (n=90), and bacterial, archaeal, and fungal communities were characterized by deep sequencing of rRNA gene segments specific to each domain. Results IBD patients (Crohn’s disease or ulcerative colitis) had lower bacterial diversity and distinctive fungal communities. Two lineages annotating as Candida were significantly more abundant in IBD patients (p = 0.0034 and p=0.00038, respectively) while a lineage annotating as Cladosporium was more abundant in healthy subjects (p=0.0025). There were no statistically significant differences in archaea, which were rare in pediatric samples compared to those from adults. Conclusions Pediatric IBD is associated with reduced diversity in both fungal and bacterial gut microbiota. Specific Candida taxa were increased in abundance in the IBD samples. These data emphasize the potential importance of fungal microbiota signatures as biomarkers of pediatric IBD, supporting their possible role in disease pathogenesis. PMID:26083617

  2. Treatment of lingual traumatic ulcer accompanied with fungal infections

    Directory of Open Access Journals (Sweden)

    Sella Sella

    2011-09-01

    Full Text Available Background: Traumatic ulcer is a common form of ulceration occured in oral cavity caused by mechanical trauma, either acute or chronic, resulting in loss of the entire epithelium. Traumatic ulcer often occurs in children that are usually found on buccal mucosa, labial mucosa of upper and lower lip, lateral tongue, and a variety of areas that may be bitten. To properly diagnose the ulcer, dentists should evaluate the history and clinical description in detail. If the lesion is allegedly accompanied by other infections, such as fungal, bacterial or viral infections, microbiological or serological tests will be required. One of the initial therapy given for fungal infection is nystatin which aimed to support the recovery and repair processes of epithelial tissue in traumatic ulcer case. Purpose: This case report is aimed to emphasize the importance of microbiological examination in suspected cases of ulcer accompanied with traumatic fungal infection. Case: A 12-year-old girl came to the clinic of Pediatric Dentistry, Faculty of Dentistry, University of Indonesia on June 9, 2011 accompanied with her mother. The patient who had a history of geographic tongue came with complaints of injury found in the middle of the tongue. The main diagnosis was ulcer accompanied with traumatic fungal infection based on the results of swab examination. Case management: This traumatic ulcer case was treated with Dental Health Education, oral prophylaxis, as well as prescribing and usage instructions of nystatin. The recovery and repair processes of mucosal epithelium of the tongue then occured after the use of nystatin. Conclusion: It can be concluded that microbiological examination is important to diagnose suspected cases of ulcer accompanied with traumatic fungal infection. The appropriate treatment such as nystatin can be given for traumatic fungal infection.Latar belakang: Ulkus traumatic merupakan bentuk umum dari ulserasi rongga mulut yang terjadi akibat trauma

  3. Fungal sensing of host environment.

    Science.gov (United States)

    Braunsdorf, C; Mailänder-Sánchez, D; Schaller, M

    2016-09-01

    To survive inside a host, fungi have to adapt to a changing and often hostile environment and therefore need the ability to recognize what is going on around them. To adapt to different host niches, they need to sense external conditions such as temperature, pH and to recognize specific host factors. The ability to respond to physiological changes inside the host, independent of being in a commensal, pathogenic or even symbiotic context, implicates mechanisms for sensing of specific host factors. Because the cell wall is constantly in contact with the surrounding, fungi express receptors on the surface of their cell wall, such as pheromone receptors, which have important roles, besides mediating chemotropism for mating. We are not restricting the discussion to the human host because the receptors and mechanisms used by different fungal species to sense their environment are often similar even for plant pathogens. Furthermore, the natural habitat of opportunistic pathogenic fungi with the potential to cause infection in a human host is in soil and on plants. While the hosts' mechanisms of sensing fungal pathogens have been addressed in the literature, the focus of this review is to fill the gap, giving an overview on fungal sensing of a host-(ile) environment. Expanding our knowledge on host-fungal interactions is extremely important to prevent and treat diseases of pathogenic fungi, which are important issues in human health and agriculture but also to understand the delicate balance of fungal symbionts in our ecosystem. PMID:27155351

  4. Microbiological diagnostics of fungal infections

    Directory of Open Access Journals (Sweden)

    Corrado Girmenia

    2013-07-01

    Full Text Available Laboratory tests for the detection of fungal infections are easy to perform. The main obstacle to a correct diagnosis is the correlation between the laboratory findings and the clinical diagnosis. Among pediatric patients, the most common fungal pathogen is Candida. The detection of fungal colonization may be performed through the use of chromogenic culture media, which allows also the identification of Candida subspecies, from which pathogenicity depends. In neonatology, thistest often drives the decision to begin a empiric therapy; in this regard, a close cooperation between microbiologists and clinicians is highly recommended. Blood culture, if positive, is a strong confirmation of fungal infection; however, its low sensitivity results in a high percentage of false negatives, thus decreasing its reliability. Molecular diagnostics is still under evaluation, whereas the detection of some fungal antigens, such as β-D-glucan, galactomannan, mannoprotein, and cryptococcal antigen in the serum is used for adults, but still under evaluations for pediatric patients.http://dx.doi.org/10.7175/rhc.v4i1S.862

  5. INTESTINAL PARASITES IN IRAN

    OpenAIRE

    Mohammad, K; M.R. Zalie; S. Sirous; Masjedi, M. R.

    1995-01-01

    The purpose of this study was to investigate the status and epidemiology of Intestinal Parasites in Iran. The information was driven from an extensive Health Survey which was done by the Ministry of Health and Medical Education, deputy of Research Affairs in 1990-92. Sampling fraction was 1 per 1000 of individuals aged between 2 and 69, the sampling method was cluster sampling and each cluster consisted of 7 families. Formal-ether was the method of finding parasites which included: Oxior, Asc...

  6. Standardization of fungal polymerase chain reaction for the early diagnosis of invasive fungal infection

    Directory of Open Access Journals (Sweden)

    P Deshpande

    2011-01-01

    Full Text Available Background: An early initiation of antifungal therapy in invasive fungal infections (IFIs is critical in reducing the high mortality rate. Current diagnosis of fungal infection relies on microscopy, culture, antigen, antibody specific tests and histological diagnosis. However, these tests either lack sensitivity or specificity. There is thus the need for a rapid, specific and accurate diagnostic method. Objective: The aim of our study was to establish PCR for the rapid detection of Candida and Aspergillus species in clinical specimens with improved sensitivity and specificity. Materials and Methods: A total of 71 proven cases of IFI (confirmed by culture were collected. A total of 15 healthy, 15 patients suffering from bacterial sepsis and 15 patients with HIV, HBV viral infections were included as controls. Clinical specimens were subjected to a standardized nested amplification to produce Round I (504 bp and Round II (150 bp amplicons. Restriction digestion was performed on these products for further identification. Results: Analytical sensitivity was determined using 10 6 -10 CFU/ml of cell suspension. The lower detection limit of the assay was 10 CFU/ml of blood. This test was 100% sensitive and specific with a positive predictive value of 100% and a negative predictive value of 96.7%. Conclusion: The assay was found to be effective for the rapid detection of Candida and Aspergillus in clinical specimens.

  7. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  8. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  9. Fungal infection risk groups among school children

    Directory of Open Access Journals (Sweden)

    Elżbieta Ejdas

    2014-08-01

    Full Text Available The aim of the study was to evaluate the relationship between ocurrence of fungi in children and living environment (city - countryside, sex, age, diet, undergone diseases therapy with antibiotics and exposure to hospital environment, and to indicate children potentially vulnerable to fungal infections. The material was consisted of swabs collected from the oral cavily, the throat and the nose of healthy children, aged 6-9 and 10-15, from both urban and rural environmens. Candida albicans, the basic aetiological factor in thc majority of mycoses recorded in humans, unquestionably prevailed in the group of the 13 speciec of yeast-like fungi and yeasts isolated. Records of C. glabrata and C. krusei increasing numbers of whose strains show resistance to basic antimycoties, as well as relatively frequent records of Trichosporon beigelii, Saccharomycopsis capsularis and Saccharomyces sp., fungi whose expansiveness and enzymatic activity have been growing, may be considered disconcerting. Vulnerability to fungal infection increases following anti-bacterial antibiotic therapy in the majority of subjects regardless season or age. This is particularly true primarily of the most stable ontocoenosis of the throat. Younger children, on the other hand, are the most vulnerable foUowing infection of the respiratory system. Fungi are likely to colonise the nose in this case. Children living in the countryside who had been ll immediately prior to the collection of the material constitute the highest risk group of the occurrence of fungi in any of the ontocoenoses studied. A greater number of positive inoculations were recorded in these children in comparison to the children from the city. It may be indicative of a more extensive spectrum of natural reservoirs of fungi and the vectors of their transmission in rural areas than those in the city, lower health hygiene and lower immunity or of a more common carriage of fungi among rural children.

  10. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  11. Map kinases in fungal pathogens.

    Science.gov (United States)

    Xu, J R

    2000-12-01

    MAP kinases in eukaryotic cells are well known for transducing a variety of extracellular signals to regulate cell growth and differentiation. Recently, MAP kinases homologous to the yeast Fus3/Kss1 MAP kinases have been identified in several fungal pathogens and found to be important for appressorium formation, invasive hyphal growth, and fungal pathogenesis. This MAP kinase pathway also controls diverse growth or differentiation processes, including conidiation, conidial germination, and female fertility. MAP kinases homologous to yeast Slt2 and Hog1 have also been characterized in Candida albicans and Magnaporthe grisea. Mutants disrupted of the Slt2 homologues have weak cell walls, altered hyphal growth, and reduced virulence. The Hog1 homologues are dispensable for growth but are essential for regulating responses to hyperosmotic stress in C. albicans and M. grisea. Overall, recent studies have indicated that MAP kinase pathways may play important roles in regulating growth, differentiation, survival, and pathogenesis in fungal pathogens. PMID:11273677

  12. Fungal laryngitis in immunocompetent patients.

    Science.gov (United States)

    Ravikumar, A; Prasanna Kumar, S; Somu, L; Sudhir, B

    2014-01-01

    The diagnosis of fungal laryngitis is often overlooked in immunocompetent patients because it is commonly considered a disease of the immunocompromised. Further confusion is caused by clinical and histological similarity to more common conditions like Leukoplakia. Demonstration of hyperkeratosis particularly if associated with intraepithelial neutrophils on biopsy should trigger a search for fungus using specialized stains. These patients usually present with hoarseness of voice. Pain is present inconsistently along with dysphagia and odynophagia. We present three cases of fungal laryngitis in immunocompetent patients out of which one underwent microlaryngeal surgery with excision biopsy. All these patients responded well with oral antifungal therapy.

  13. Foodborne parasites from wildlife

    DEFF Research Database (Denmark)

    Kapel, Christian Moliin Outzen; Fredensborg, Brian Lund

    2015-01-01

    The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission of food...

  14. Parasite-related diarrhoeas*

    OpenAIRE

    1980-01-01

    This article reviews available knowledge on the epidemiology, pathogenesis, clinical features, immunology, diagnosis, and therapy of parasite-related diarrhoeas of public health importance, primarily amoebiasis, giardiasis, trichuriasis, strongyloidiasis, balantidiasis, coccidioses, schistosomiasis, and capillariasis. Research priorities are recommended in each of these fields with the aim of developing better means of prevention and treatment.

  15. Candidate parasitic diseases.

    OpenAIRE

    Behbehani, K

    1998-01-01

    This paper discusses five parasitic diseases: American trypanosomiasis (Chagas disease), dracunculiasis, lymphatic filariasis, onchocerciasis and schistosomiasis. The available technology and health infrastructures in developing countries permit the eradication of dracunculiasis and the elimination of lymphatic filariasis due to Wuchereria bancrofti. Blindness due to onchocerciasis and transmission of this disease will be prevented in eleven West African countries; transmission of Chagas dise...

  16. Ungulate malaria parasites.

    Science.gov (United States)

    Templeton, Thomas J; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  17. Foodborne and waterborne parasites.

    Science.gov (United States)

    Pozio, Edoardo

    2003-01-01

    More than 72 species of protozoan and helminth parasites can reach humans by food and water, and most of these infections are zoonoses. Some parasites show a cosmopolitan distribution, others a more restricted distribution due to their complex life cycles, which need the presence of one or more intermediate hosts. Of this large number of pathogens, only Toxoplasma gondii can be transmitted to humans by two different ways, i.e., by cysts present in infected meat and by oocysts contaminating food and water. Eleven helminthic species (Taenia saginata, Taenia solium, Taenia asiatica, Trichinella spiralis, Tr. nativa, Tr. britovi, Tr. pseudospiralis, Tr. murrelli, Tr nelsoni, Tr. papuae and Tr. zimbabwensis) can grow in meat of different animal species and can be transmitted to humans by the consumption of raw meat or meat products. Twenty trematode species, four cestode species and seven nematode species can infect humans through the consumption of raw sea- and/or fresh-water food (fishes, molluscs, frogs, tadpoles, camarons, crayfishes). Six species of Cryptosporidium, Isospora belli, Cyclospora cayetanensis, Giardia duodenalis and Entamoeba histolytica/E. dispar can contaminate food and water. Among the helminths, seven trematode species, seven cestode species and five species of nematodes can reach humans by contaminated food and water. Diagnostic and detection methods that can be carried out routinely on food and water samples are available only for few parasites (Cryptosporidium sp., Giardia sp., Anisakidae, Trichinella sp., Taenia sp.), i.e., for parasites which represent a risk to human populations living in industrialised countries. The majority of food and waterborne infections of parasitic origin are related to poverty, low sanitation, and old food habits. PMID:15058817

  18. Spontaneous fungal peritonitis: Epidemiology, current evidence and future prospective

    Science.gov (United States)

    Fiore, Marco; Leone, Sebastiano

    2016-01-01

    Spontaneous bacterial peritonitis is a complication of ascitic patients with end-stage liver disease (ESLD); spontaneous fungal peritonitis (SFP) is a complication of ESLD less known and described. ESLD is associated to immunodepression and the resulting increased susceptibility to infections. Recent perspectives of the management of the critically ill patient with ESLD do not specify the rate of isolation of fungi in critically ill patients, not even the antifungals used for the prophylaxis, neither optimal treatment. We reviewed, in order to focus the epidemiology, characteristics, and, considering the high mortality rate of SFP, the use of optimal empirical antifungal therapy the current literature. PMID:27678356

  19. Parasite burdens in experimental families of coho salmon.

    Science.gov (United States)

    Yasutake, W.T.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    We examined the possibility that parasites affect survival rates of anadromous hatchery coho salmon Oncorhynchus kisutch during their period in the wild. Survival was estimated from the rates at which adults returned to the hatchery. The frequency of infection of heart tissue by metacercariae of Nanophyetus sp. was higher in individuals from families with relatively high survival. Various degrees of parasitic and bacterial infection were observed in all groups. We frequently saw extensive infection and tissue reaction to trophozoites of Ceratomyxa sp. (probably C. shasta) in the apparent absence of spores, suggesting that the clinical method now used to determine the presence of Ceratomyxa infection needs to be reassessed.

  20. Protective immune responses to fungal infections.

    Science.gov (United States)

    Rivera, A

    2014-09-01

    The incidence of fungal infections has been on the rise over several decades. Fungal infections threaten animals, plants and humans alike and are thus of significant concern to scientists across disciplines. Over the last decade, significant advances on fungal immunology have lead to a better understanding of important mechanisms of host protection against fungi. In this article, I review recent advances of relevant mechanisms of immune-mediated protection to fungal infections.

  1. Burden of fungal disease in Ireland

    OpenAIRE

    Dorgan, Eileen; Denning, David W; McMullan, Ronan

    2015-01-01

    Our objective was to estimate the burden of fungal disease on the island of Ireland, as part of a coordinated project estimating the global burden. Published epidemiology data describing fungal infection in Ireland were identified. Population and underlying disease data were collected for 2010 and a structured set of assumptions were applied to estimate burden of fungal disease based on immunosuppression, chronic disease, and other demographic information indicating predisposition to fungal i...

  2. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Science.gov (United States)

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  3. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Directory of Open Access Journals (Sweden)

    Krista L McGuire

    Full Text Available In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  4. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    Science.gov (United States)

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs. PMID:23469260

  5. microRNAs in parasites and parasite infection.

    Science.gov (United States)

    Zheng, Yadong; Cai, Xuepeng; Bradley, Janette E

    2013-03-01

    miRNAs, a subclass of small regulatory RNAs, are present from ancient unicellular protozoans to parasitic helminths and parasitic arthropods. The miRNA-silencing mechanism appears, however, to be absent in a number of protozoan parasites. Protozoan miRNAs and components of their silencing machinery possess features different from other eukaryotes, providing some clues on the evolution of the RNA-induced silencing machinery. miRNA functions possibly associate with neoblast biology, development, physiology, infection and immunity of parasites. Parasite infection can alter host miRNA expression that can favor both parasite clearance and infection. miRNA pathways are, thus, a potential target for the therapeutic control of parasitic diseases.

  6. (Post-)genomics approaches in fungal research

    NARCIS (Netherlands)

    Aguilar-Pontes, María Victoria; de Vries, Ronald P; Zhou, M.; van den Brink, J.

    2014-01-01

    To date, hundreds of fungal genomes have been sequenced and many more are in progress. This wealth of genomic information has provided new directions to study fungal biodiversity. However, to further dissect and understand the complicated biological mechanisms involved in fungal life styles, functio

  7. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  8. Fungal endophyte diversity in Sarracenia

    Science.gov (United States)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  9. Imaging fungal infections in children

    NARCIS (Netherlands)

    Ankrah, Alfred O.; Sathekge, Mike M; Dierckx, Rudi A.J.O.; Glaudemans, Andor W.J.M.

    2016-01-01

    Fungal infections in children rarely occur, but continue to have a high morbidity and mortality despite the development of newer antifungal agents. It is essential for these infections to be diagnosed at the earliest possible stage so appropriate treatment can be initiated promptly. The addition of

  10. The specific role of fungal community structure on soil aggregation and carbon sequestration: results from long-term field study in a paddy soil

    Science.gov (United States)

    Murugan, Rajasekaran; Kumar, Sanjay

    2015-04-01

    Soil aggregate stability is a crucial soil property that affects soil biota, biogeochemical processes and C sequestration. The relationship between soil aggregate stability and soil C cycling is well known but the influence of specific fungal community structure on this relationship is largely unknown in paddy soils. The aim of the present study was to evaluate the long-term fertilisation (mineral fertiliser-MIN; farmyard manure-FYM; groundnut oil cake-GOC) effects on soil fungal community shifts associated with soil aggregates under rice-monoculture (RRR) and rice-legume-rice (RLR) systems. Fungal and bacterial communities were characterized using phospholipid fatty acids, and glucosamine and muramic acid were used as biomarkers for fungal and bacterial residues, respectively. Microbial biomass C and N, fungal biomass and residues were significantly higher in the organic fertiliser treatments than in the MIN treatment, for all aggregate sizes under both crop rotation systems. In general, fungal/bacterial biomass ratio and fungal residue C/bacterial residue C ratio were significantly higher in macroaggregate fractions (> 2000 and 250-2000 μm) than in microaggregate fractions (53-250 and fungi (SF) in aggregate fractions > 2000 μm. In contrast, we found that arbuscular mycorrhizal fungi (AMF) was surprisingly higher in aggregate fractions > 2000 μm than in aggregate fraction 250-2000 μm under MIN treatment. The RLR system showed significantly higher AMF biomass and fungal residue C/ bacterial residue C ratio in both macroaggregate fractions compared to the RRR system. The strong relationships between SF, AMF and water stable aggregates shows the specific contribution of fungi community on soil aggregate stability. Our results highlight the fact that changes within fungal community structure play an important role in shaping the soil aggregate stability and C sequestration in tropical agricultural ecosystems.

  11. Cofactor-independent phosphoglycerate mutase has an essential role in Caenorhabditis elegans and is conserved in parasitic nematodes.

    Science.gov (United States)

    Zhang, Yinhua; Foster, Jeremy M; Kumar, Sanjay; Fougere, Marjorie; Carlow, Clotilde K S

    2004-08-27

    Phosphoglycerate mutases catalyze the interconversion of 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. They exist in two unrelated forms that are either cofactor (2,3-diphosphoglycerate)-dependent or cofactor-independent. The two enzymes have no similarity in amino acid sequence, tertiary structure, or catalytic mechanism. Certain organisms including vertebrates have only the cofactor-dependent form, whereas other organisms can possess the independent form or both. Caenorhabditis elegans has been predicted to have only independent phosphoglycerate mutase. In this study, we have cloned and produced recombinant, independent phosphoglycerate mutases from C. elegans and the human-parasitic nematode Brugia malayi. They are 70% identical to each other and related to known bacterial, fungal, and protozoan enzymes. The nematode enzymes possess the catalytic serine, and other key amino acids proposed for catalysis and recombinant enzymes showed typical phosphoglycerate mutase activities in both the glycolytic and gluconeogenic directions. The gene is essential in C. elegans, because the reduction of its activity by RNA interference led to embryonic lethality, larval lethality, and abnormal body morphology. Promoter reporter analysis indicated widespread expression in larval and adult C. elegans with the highest levels apparent in the nerve ring, intestine, and body wall muscles. The enzyme was found in a diverse group of nematodes representing the major clades, indicating that it is conserved throughout this phylum. Our results demonstrate that nematodes, unlike vertebrates, utilize independent phosphoglycerate mutase in glycolytic and gluconeogenic pathways and that the enzyme is probably essential for all nematodes.

  12. Parasitic fungi of ornamental plants and herbs of Szczecin

    Directory of Open Access Journals (Sweden)

    Iwona Adamska

    2013-12-01

    Full Text Available In the years 2000-2001, the occurrence of fungi parasitizing on ornamental plants and herbs cultivated in the Vegetative Hall of the Agricultural University in Szczecin was investigated. The plants represented ca. 200 species. Disease and etiological symptoms were found in 37% of plant species. Most diseased plants came from the family Asteraceae. The plant species most frequently affected was Melisa officinalis. In the laboratory, 35 fungal species were recognized. Most fungi came from the phylum Ascomycota (13 species, and least from the phylum Oomycota (3 species. The phylum Ascomycota was represented only by species of the order Erysiphales. Other relatively frequently found fungi also were members of the phylum Basidiomycota (11 species. Of the fungi recognized, 31 species were earlier frequently recorded in Poland, and three rarely. Erysiphe flexuosa parasitizing Aesculus hippocastanum was not recorded in Poland to date; in Europe this fungus was recognized only in Germany and Switzerland.

  13. Differential impact of simultaneous migration on coevolving hosts and parasites

    Directory of Open Access Journals (Sweden)

    Lopez-Pascua Laura DC

    2007-01-01

    Full Text Available Abstract Background The dynamics of antagonistic host-parasite coevolution are believed to be crucially dependent on the rate of migration between populations. We addressed how the rate of simultaneous migration of host and parasite affected resistance and infectivity evolution of coevolving meta-populations of the bacterium Pseudomonas fluorescens and a viral parasite (bacteriophage. The increase in genetic variation resulting from small amounts of migration is expected to increase rates of adaptation of both host and parasite. However, previous studies suggest phages should benefit more from migration than bacteria; because in the absence of migration, phages are more genetically limited and have a lower evolutionary potential compared to the bacteria. Results The results supported the hypothesis: migration increased the resistance of bacteria to their local (sympatric hosts. Moreover, migration benefited phages more than hosts with respect to 'global' (measured with respect to the whole range of migration regimes patterns of resistance and infectivity, because of the differential evolutionary responses of bacteria and phage to different migration regimes. Specifically, we found bacterial global resistance peaked at intermediate rates of migration, whereas phage global infectivity plateaued when migration rates were greater than zero. Conclusion These results suggest that simultaneous migration of hosts and parasites can dramatically affect the interaction of host and parasite. More specifically, the organism with the lower evolutionary potential may gain the greater evolutionary advantage from migration.

  14. Metazoan Parasites of Antarctic Fishes.

    Science.gov (United States)

    Oğuz, Mehmet Cemal; Tepe, Yahya; Belk, Mark C; Heckmann, Richard A; Aslan, Burçak; Gürgen, Meryem; Bray, Rodney A; Akgül, Ülker

    2015-06-01

    To date, there have been nearly 100 papers published on metazoan parasites of Antarctic fishes, but there has not yet been any compilation of a species list of fish parasites for this large geographic area. Herein, we provide a list of all documented occurrences of monogenean, cestode, digenean, acanthocephalan, nematode, and hirudinean parasites of Antarctic fishes. The list includes nearly 250 parasite species found in 142 species of host fishes. It is likely that there are more species of fish parasites, which are yet to be documented from Antarctic waters.

  15. Airborne bacterial communities in residences: similarities and differences with fungi.

    Directory of Open Access Journals (Sweden)

    Rachel I Adams

    Full Text Available Genetic analysis of indoor air has uncovered a rich microbial presence, but rarely have both the bacterial and fungal components been examined in the same samples. Here we present a study that examined the bacterial component of passively settled microbes from both indoor and outdoor air over a discrete time period and for which the fungal component has already been reported. Dust was allowed to passively settle in five common locations around a home - living room, bedroom, bathroom, kitchen, and balcony - at different dwellings within a university-housing complex for a one-month period at two time points, once in summer and again in winter. We amplified the bacterial 16S rRNA gene in these samples and analyzed them with high-throughput sequencing. Like fungal OTU-richness, bacterial OTU-richness was higher outdoors then indoors and was invariant across different indoor room types. While fungal composition was structured largely by season and residential unit, bacterial composition varied by residential unit and room type. Bacteria from putative outdoor sources, such as Sphingomonas and Deinococcus, comprised a large percentage of the balcony samples, while human-associated taxa comprised a large percentage of the indoor samples. Abundant outdoor bacterial taxa were also observed indoors, but the reverse was not true; this is unlike fungi, in which the taxa abundant indoors were also well-represented outdoors. Moreover, there was a partial association of bacterial composition and geographic distance, such that samples separated by even a few hundred meters tended have greater compositional differences than samples closer together in space, a pattern also observed for fungi. These data show that while the outdoor source for indoor bacteria and fungi varies in both space and time, humans provide a strong and homogenizing effect on indoor bacterial bioaerosols, a pattern not observed in fungi.

  16. Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments.

    Directory of Open Access Journals (Sweden)

    Punyasloke Bhadury

    Full Text Available Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99-100% and unpublished high-throughput 454 environmental datasets (>95%. BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.

  17. INTESTINAL PARASITES IN IRAN

    Directory of Open Access Journals (Sweden)

    K. Mohammad

    1995-12-01

    Full Text Available The purpose of this study was to investigate the status and epidemiology of Intestinal Parasites in Iran. The information was driven from an extensive Health Survey which was done by the Ministry of Health and Medical Education, deputy of Research Affairs in 1990-92. Sampling fraction was 1 per 1000 of individuals aged between 2 and 69, the sampling method was cluster sampling and each cluster consisted of 7 families. Formal-ether was the method of finding parasites which included: Oxior, Ascariasis, Giardiasis, Entamoeba-histolytica, Tinea, Strongyloidiasis, Ancylostoma, and Trichocephaliasis. The highest prevalence rate belonged to Giardiasis with 14.4% and the lowest one belonged to Tinea and Ancylostoma with 0.2%. The prevalence rate in rural area was significantly lower than urban area (p<0.0001.

  18. Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots

    Directory of Open Access Journals (Sweden)

    Guillaume eBourdel

    2016-05-01

    Full Text Available Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous patterns of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of

  19. The Chemical Basis of Fungal Bioluminescence.

    Science.gov (United States)

    Purtov, Konstantin V; Petushkov, Valentin N; Baranov, Mikhail S; Mineev, Konstantin S; Rodionova, Natalja S; Kaskova, Zinaida M; Tsarkova, Aleksandra S; Petunin, Alexei I; Bondar, Vladimir S; Rodicheva, Emma K; Medvedeva, Svetlana E; Oba, Yuichi; Oba, Yumiko; Arseniev, Alexander S; Lukyanov, Sergey; Gitelson, Josef I; Yampolsky, Ilia V

    2015-07-01

    Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

  20. Spectrum and risk factors for invasive candidiasis and non-Candida fungal infections after liver transplantation

    Institute of Scientific and Technical Information of China (English)

    SHI Shao-hua; LU An-wei; SHEN Yan; JIA Chang-ku; WANG Wei-lin; XIE Hai-yang; ZHANG Min; LIANG Ting-bo; ZHENG Shu-sen

    2008-01-01

    Background Invasive fungal infections are an important cause of posttransplant mortality in solid-organ recipients.The current trend is that the incidence of invasive candidiasis decreases significantly and invasive aspergillosis occurs later in the liver posttransplant recipients.The understanding of epidemiology and its evolving trends in the particular locality is beneficial to prophylactic and empiric treatment for transplant recipients.Methods A retrospective analysis was made of recorded data on the epidemiology,risk factors,and mortality of jnvasive fungal infections in 352 liver transplant recipients.Results Forty-two(11.9%)patients suffered from Invasive fungal infection.Candida species infections(53.3%)were the most common,followed by Aspergillus species(40.0%).There were 21 patients with a superficial fungal infection.The median time to onset of first invasive fungal infection was 13 days,first invasive Candida infection 9 days,and first invasive Aspergillus infection 21 days.Fifteen deaths were related to invasive fungal infection,10 to Aspergillus infection,and 5 to Candida infection.Invasive Candida species infections were associated with encephalopathy(P=0.009)and postoperative bacterial infection(P=0.0003)as demonstrated by multivariate analysis.Three independent risk factors of invasive Aspergillus infection were posttransplant laparotomy(P=0.004),renal dysfunction(P=0.005)and hemodialysis (P=0.001).Conclusions The leading etiologic species of invasive fungal infections are Candida and Aspergillus,which frequently occur in the first posttransplant month.EncephalOpathy and postoperative bacterial infection predispose to invasive Candida infection.POsttransDlant laparotomy and poor perioperative clinical status contribute to invasive Aspergillus infection.More studies are needed to determine the effect of prophylactic antifungal therapy in high risk Patients.

  1. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts.

    Science.gov (United States)

    Vannini, Candida; Carpentieri, Andrea; Salvioli, Alessandra; Novero, Mara; Marsoni, Milena; Testa, Lorenzo; de Pinto, Maria Concetta; Amoresano, Angela; Ortolani, Francesca; Bracale, Marcella; Bonfante, Paola

    2016-07-01

    Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions. PMID:26914272

  2. Fungal Metabolites for the Control of Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Andréia Bergamo Estrela

    2016-08-01

    Full Text Available Many microbes attach to surfaces and produce a complex matrix of polymers surrounding their cells, forming a biofilm. In biofilms, microbes are much better protected against hostile environments, impairing the action of most antibiotics. A pressing demand exists for novel therapeutic strategies against biofilm infections, which are a grave health wise on mucosal surfaces and medical devices. From fungi, a large number of secondary metabolites with antimicrobial activity have been characterized. This review discusses natural compounds from fungi which are effective against fungal and bacterial biofilms. Some molecules are able to block the cell communication process essential for biofilm formation (known as quorum sensing, others can penetrate and kill cells within the structure. Several targets have been identified, ranging from the inhibition of quorum sensing receptors and virulence factors, to cell wall synthesizing enzymes. Only one group of these fungal metabolites has been optimized and made it to the market, but more preclinical studies are ongoing to expand the biofilm-fighting arsenal. The broad diversity of bioactive compounds from fungi, their activities against various pathogens, and the multi-target trait of some molecules are promising aspects of fungal secondary metabolites. Future screenings for biofilm-controlling compounds will contribute to several novel clinical applications.

  3. The fungal colonisation of rock-art caves: experimental evidence

    Science.gov (United States)

    Jurado, Valme; Fernandez-Cortes, Angel; Cuezva, Soledad; Laiz, Leonila; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2009-09-01

    The conservation of rock-art paintings in European caves is a matter of increasing interest. This derives from the bacterial colonisation of Altamira Cave, Spain and the recent fungal outbreak of Lascaux Cave, France—both included in the UNESCO World Heritage List. Here, we show direct evidence of a fungal colonisation of rock tablets in a testing system exposed in Altamira Cave. After 2 months, the tablets, previously sterilised, were heavily colonised by fungi and bacteria. Most fungi isolated were labelled as entomopathogens, while the bacteria were those regularly identified in the cave. Rock colonisation was probably promoted by the dissolved organic carbon supplied with the dripping and condensation waters and favoured by the displacement of aerosols towards the interior of the cave, which contributed to the dissemination of microorganisms. The role of arthropods in the dispersal of spores may also help in understanding fungal colonisation. This study evidences the fragility of rock-art caves and demonstrates that microorganisms can easily colonise bare rocks and materials introduced into the cavity.

  4. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  5. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  6. A Review of Foodborne Bacterial and Parasitic Zoonoses in Vietnam

    OpenAIRE

    Carrique-Mas, Juan J.; Bryant, J.E.

    2013-01-01

    Vietnam has experienced unprecedented economic and social development in recent years, and the livestock sector is undergoing significant transformations. Although food animal production is still dominated by small-scale ‘backyard’ enterprises with mixed crop–livestock or livestock–aquatic systems, there is a trend towards more intensive and vertically integrated operations. Changes in animal production, processing and distribution networks for meat and animal products, and the shift from wet...

  7. Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections

    OpenAIRE

    Pallen, M. J.

    2014-01-01

    SUMMARY The term ‘shotgun metagenomics’ is applied to the direct sequencing of DNA extracted from a sample without culture or target-specific amplification or capture. In diagnostic metagenomics, this approach is applied to clinical samples in the hope of detecting and characterizing pathogens. Here, I provide a conceptual overview, before reviewing several recent promising proof-of-principle applications of metagenomics in virus discovery, analysis of outbreaks and detection of pathogens in ...

  8. Nattrassia mangiferae causing fungal keratitis

    Directory of Open Access Journals (Sweden)

    Kindo A

    2010-01-01

    Full Text Available We report a case of fungal keratitis caused by the coelomycetous fungus Nattrassia mangiferae in a 70 year old gentleman, agriculturist by occupation, with a history of injury to his right eye. The scraping showed narrow septate fungal hyphae on a KOH mount, isolation of a fast growing black mould, which demonstrated hyphae and arthroconidia of varying widths typical of the Scytalidium synanamorph (S. dimidiatum. The formation of the pycnidia, which at maturity, expressed conidia. The patient was started on topical itraconazole one hourly and topical atropine thrice a day. The patient was lost to follow up hence we are not able to comment on the final outcome of the patient.

  9. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  10. Directed Evolution of Fungal Laccases

    OpenAIRE

    Maté, Diana; García-Ruiz, Eva; Camarero, Susana; Alcalde, Miguel

    2011-01-01

    Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary e...

  11. Fungal genome resources at NCBI

    OpenAIRE

    Robbertse, B.; Tatusova, T.

    2011-01-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/...

  12. Fungal contaminants in cytopathology specimens

    Directory of Open Access Journals (Sweden)

    Prashant Sharma

    2014-02-01

    Full Text Available A pseudo-epidemic of environmental fungi, most likely by Fusarium spp., leading to inappropriate investigations for disseminated systemic mycosis is described. Subtle diagnostic clues, including the specimens affected, the nature of the host response, and the type of fungal elements noted helped to determine the nature of contaminants. The potential pitfall can be avoided by the knowledge of pertinent disease biology, prompt consultation for infectious diseases, and investigations of the potential environmental sources followed by source control.

  13. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  14. Fungal genome resources at NCBI.

    Science.gov (United States)

    Robbertse, B; Tatusova, T

    2011-09-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  15. Allergen Immunotherapy in an HIV+ Patient with Allergic Fungal Rhinosinusitis

    OpenAIRE

    Myles, Ian A.; Satyen Gada

    2015-01-01

    Patients with HIV/AIDS can present with multiple types of fungal rhinosinusitis, fungal balls, granulomatous invasive fungal rhinosinusitis, acute or chronic invasive fungal rhinosinusitis, or allergic fungal rhinosinusitis (AFRS). Given the variable spectrum of immune status and susceptibility to severe infection from opportunistic pathogens it is extremely important that clinicians distinguish aggressive fungal invasive fungal disease from the much milder forms such as AFRS. Here we descr...

  16. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  17. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  18. Eruption patterns of parasitic volcanoes

    OpenAIRE

    Izumi Yokoyama

    2015-01-01

    Eruption patterns of parasitic volcanoes are discussed in order to study their correlation to the activities of their parental polygenetic volcanoes. The distribution density of parasitic vents on polygenetic volcanoes is diversified, probably corresponding to the age and structure of parental volcanoes. Describing existing parasitic cones contextually in relation to parental volcanoes is as indispensable as collecting observational data of their actual formations. In the present paper, spati...

  19. Parasitic Diseases With Cutaneous Manifestations.

    Science.gov (United States)

    Ash, Mark M; Phillips, Charles M

    2016-01-01

    Parasitic diseases result in a significant global health burden. While often thought to be isolated to returning travelers, parasitic diseases can also be acquired locally in the United States. Therefore, clinicians must be aware of the cutaneous manifestations of parasitic diseases to allow for prompt recognition, effective management, and subsequent mitigation of complications. This commentary also reviews pharmacologic treatment options for several common diseases. PMID:27621348

  20. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  1. BACTERIAL DESEASES IN SEA FISH

    Directory of Open Access Journals (Sweden)

    Ivančica Strunjak-Perović

    1997-10-01

    Full Text Available With development of the fish culturing in the sea, the interest in their health also increased. The reason for this are diseases or rather mortality that occur in such controlled cultures and cause great economic losses. By growing large quantities of fish in rather small species, natural conditions are changed, so fish is more sensitive and prone to infection agents (viruses, bacteria, parasites. Besides, a large fish density in the cultural process accelerates spreading if the diseases, but also enables a better perception of them. In wild populations sick specimen very quickly become predator’s prey, witch makes it difficult to note any pathological changes in such fish. There are lots of articles on viral, bacterial and parasitic diseases nowdays, but this work deals exclusively with bacterial deseases that occur in the controlled sea cultures (vibriosis, furunculosis, pastherelosis, nocardiosis, mycobaceriosis, edwardsielosis, yersiniosis, deseases caused by bacteria of genera Flexibacter, Pseudomonas, Aeromonas, Streptococus and bacteria nephryithis. Yet, the knowledge of these deseases vary, depending on wether a fish species is being cultured for a longer period of time or is only being introduced in the controlled culture.

  2. New Plant-Parasitic Nematode from the Mostly Mycophagous Genus Bursaphelenchus Discovered inside Figs in Japan

    OpenAIRE

    Natsumi Kanzaki; Ryusei Tanaka; Giblin-Davis, Robin M.; Kerrie A Davies

    2014-01-01

    A new nematode species, Bursaphelenchus sycophilus n. sp. is described. The species was found in syconia of a fig species, Ficus variegata during a field survey of fig-associated nematodes in Japan. Because it has a well-developed stylet and pharyngeal glands, the species is considered an obligate plant parasite, and is easily distinguished from all other fungal-feeding species in the genus based upon these characters. Although B. sycophilus n. sp. shares an important typological character, m...

  3. Solitary Candida albicans Infection Causing Fournier Gangrene and Review of Fungal Etiologies.

    Science.gov (United States)

    Perkins, Tiffany A; Bieniek, Jared M; Sumfest, Joel M

    2014-01-01

    Polymicrobial bacterial infections are commonly found in cases of Fournier gangrene (FG), although fungal growth may occur occasionally. Solitary fungal organisms causing FG have rarely been reported. The authors describe a case of an elderly man with a history of diabetes who presented with a necrotizing scrotal and perineal soft tissue infection. He underwent emergent surgical debridement with findings of diffuse urethral stricture disease and urinary extravasation requiring suprapubic tube placement. Candida albicans was found to be the single causative organism on culture, and the patient recovered well following antifungal treatment. Fungal infections should be considered as rare causes of necrotizing fasciitis and antifungal treatment considered in at-risk immunodeficient individuals. PMID:25009452

  4. Invasive fungal infections after natural disasters.

    Science.gov (United States)

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  5. 肿瘤患者真菌感染分析%Fungal infection among tumor patients

    Institute of Scientific and Technical Information of China (English)

    景延婕; 赵玲华; 冯笑峰; 罗玲霞

    2011-01-01

    OBJECTIVE To investigate the distribution of nosocomial fungal infection among patients with tumors and to provide evidence on the rational control of fungal infection. METHODS Three thousand three hundred and twenty specimens of patients with tumors were cultivated and the determination of fungal infection was then performed, and the results were statistically analyzed. RESULTS 639 fungi were detected from 3320 samples (19. 25%). Candida albicans were found in 347 samples, which accounted for 54. 30% of total samples of fungal infection. Bacterial infection combined with fungal infection was found in 168 cases, accounting for 26. 29% of total fungal infection. Among the system of internal medicine, surgery and radiotherapy, fungal infection were most commonly found in patients of internal medicine, in which 334 samples were found infected with fungi, accounting for 52. 27% of total samples of fungal infection. CONCLUSION C. albicans is the most common fungus in tumor patients with single fungal infection. Importance should also be attached to mixed fungal infection. Distribution of pathogenic fungi and their resistance during the treatment should be mastered to provide evidence for rational control of fungal infection.%目的 了解肿瘤患者医院内真菌感染分布情况,为合理控制真菌感染提供依据.方法 对2008年住院患者3320份送检标本中真菌检出株数进行统计分析.结果 3320份送检标本中共检出真菌639株,检出率为19.25%;其中检出白色假丝酵母菌347株,占54.30%,细菌合并真菌感染168株,占26.29%;外科、内科、放疗系统中,内科真菌检出数最多,达334株,占52.27%.结论肿瘤患者并发单纯真菌感染以白色假丝酵母菌为主,混合感染者亦应引起重视;临床应及时掌握肿瘤患者治疗过程中引起真菌感染病原菌的分布及耐药性,为合理控制真菌感染提供依据.

  6. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata).

    Science.gov (United States)

    Strauss, Ursula; Human, Hannelie; Gauthier, Laurent; Crewe, Robin M; Dietemann, Vincent; Pirk, Christian W W

    2013-09-01

    The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly high. No single cause has been identified for these losses, but the interactions between several factors (mostly pathogens and parasites) have been held responsible. Work in the Americas on honeybees originating mainly from South Africa indicates that Africanised honeybees are less affected by the interplay of pathogens and parasites. However, little is known about the health status of South African honeybees (A. m. scutellata and A. m. capensis) in relation to pathogens and parasites. We therefore compared the seasonal prevalence of honeybee pathogens (viruses, bacteria, fungi) and parasites (mites, bee lice, wax moth, small hive beetles, A. m. capensis social parasites) between sedentary and migratory A. m. scutellata apiaries situated in the Gauteng region of South Africa. No significant differences were found in the prevalence of pathogens and parasites between sedentary and migratory apiaries. Three (Black queen cell virus, Varroa destructor virus 1 and Israeli acute paralysis virus) of the eight viruses screened were detected, a remarkable difference compared to European honeybees. Even though no bacterial pathogens were detected, Nosema apis and Chalkbrood were confirmed. All of the honeybee parasites were found in the majority of the apiaries with the most common parasite being the Varroa mite. In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy. PMID:23702244

  7. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata).

    Science.gov (United States)

    Strauss, Ursula; Human, Hannelie; Gauthier, Laurent; Crewe, Robin M; Dietemann, Vincent; Pirk, Christian W W

    2013-09-01

    The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly high. No single cause has been identified for these losses, but the interactions between several factors (mostly pathogens and parasites) have been held responsible. Work in the Americas on honeybees originating mainly from South Africa indicates that Africanised honeybees are less affected by the interplay of pathogens and parasites. However, little is known about the health status of South African honeybees (A. m. scutellata and A. m. capensis) in relation to pathogens and parasites. We therefore compared the seasonal prevalence of honeybee pathogens (viruses, bacteria, fungi) and parasites (mites, bee lice, wax moth, small hive beetles, A. m. capensis social parasites) between sedentary and migratory A. m. scutellata apiaries situated in the Gauteng region of South Africa. No significant differences were found in the prevalence of pathogens and parasites between sedentary and migratory apiaries. Three (Black queen cell virus, Varroa destructor virus 1 and Israeli acute paralysis virus) of the eight viruses screened were detected, a remarkable difference compared to European honeybees. Even though no bacterial pathogens were detected, Nosema apis and Chalkbrood were confirmed. All of the honeybee parasites were found in the majority of the apiaries with the most common parasite being the Varroa mite. In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy.

  8. Immune responses against protozoan parasites: a focus on the emerging role of Nod-like receptors.

    Science.gov (United States)

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2016-08-01

    Nod-like receptors (NLRs) have gained attention in recent years because of the ability of some family members to assemble into a multimeric protein complex known as the inflammasome. The role of NLRs and the inflammasome in regulating innate immunity against bacterial pathogens has been well studied. However, recent studies show that NLRs and inflammasomes also play a role during infections caused by protozoan parasites, which pose a significant global health burden. Herein, we review the diseases caused by the most common protozoan parasites in the world and discuss the roles of NLRs and inflammasomes in host immunity against these parasites. PMID:27032699

  9. Regulation of the fungal secretome.

    Science.gov (United States)

    McCotter, Sean W; Horianopoulos, Linda C; Kronstad, James W

    2016-08-01

    The ability of countless representatives of the Kingdom Fungi to adapt to and proliferate in diverse environments is facilitated by regulation of their secretomes to respond to changes in environmental conditions and to mediate interactions with other organisms. Secretome changes often fulfill common functions of nutrient acquisition, facilitation of host/symbiont interactions, cell wall modification, and optimization of the enzyme suite to adapt to new environmental resources. In this review, we expand on our recent work on signaling and the secretome in the pathogenic fungus Cryptococcus neoformans to consider a range of selected examples of regulation of fungal secretomes. These examples include the impact of carbon source and aspects of the response to plant and animal hosts. Additionally, the influence of key protein kinases (e.g., Pka1, Snf1) and transcription factors (e.g., Rim101/PacC) is highlighted to illustrate some underlying regulatory factors influencing the secretome. Although there is a wealth of information about fungal secretomes from both experimentation and genome sequence mining, there are also major gaps in our knowledge about the complete composition of fungal secretomes and mechanisms of dynamic change. For example, a more comprehensive understanding of the composition and regulation of the secretome will require consideration of the emerging roles of unconventional secretion and extracellular vesicles in delivering proteins outside the cell. Overall, changes in the secretome are well documented in diverse fungi and the underlying mechanisms are currently under investigation; however, there remain unknown steps in the regulation of secretory pathways and gaps in understanding the regulation of unconventional secretion, which warrant further research. PMID:26879194

  10. 5.5.Fungal disease

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930234 Penicilliosis marneffei report of a caseand review of literatures.KANG Xiaoming (康晓明),et al.Nanjing Army General Hosp,210002.Chin J Tuberc & Respir Dis 1992;15(6):336—338.Penicilliosis marneffei is a rare deep fungal in-fection.Southeast Asia is the endemic area.Inthe literatures before 1990,29 cases were re-ported and most of them were diagnosed patho-logically from autopsy.Since 1989 there havebeen more reports of P.marneffei in the HIV in-fected individuals or graft recipient,so far as

  11. Immune response to fungal infections.

    Science.gov (United States)

    Blanco, Jose L; Garcia, Marta E

    2008-09-15

    The immune mechanisms of defence against fungal infections are numerous, and range from protective mechanisms that were present early in evolution (innate immunity) to sophisticated adaptive mechanisms that are induced specifically during infection and disease (adaptive immunity). The first-line innate mechanism is the presence of physical barriers in the form of skin and mucous membranes, which is complemented by cell membranes, cellular receptors and humoral factors. There has been a debate about the relative contribution of humoral and cellular immunity to host defence against fungal infections. For a long time it was considered that cell-mediated immunity (CMI) was important, but humoral immunity had little or no role. However, it is accepted now that CMI is the main mechanism of defence, but that certain types of antibody response are protective. In general, Th1-type CMI is required for clearance of a fungal infection, while Th2 immunity usually results in susceptibility to infection. Aspergillosis, which is a disease caused by the fungus Aspergillus, has been the subject of many studies, including details of the immune response. Attempts to relate aspergillosis to some form of immunosuppression in animals, as is the case with humans, have not been successful to date. The defence against Aspergillus is based on recognition of the pathogen, a rapidly deployed and highly effective innate effector phase, and a delayed but robust adaptive effector phase. Candida albicans, part of the normal microbial flora associated with mucous surfaces, can be present as congenital candidiasis or as acquired defects of cell-mediated immunity. Resistance to this yeast is associated with Th1 CMI, whereas Th2 immunity is associated with susceptibility to systemic infection. Dermatophytes produce skin alterations in humans and other animals, and the essential role of the CMI response is to destroy the fungi and produce an immunoprotective status against re-infection. The resolution

  12. Repetitive elements in parasitic protozoa

    OpenAIRE

    Clayton Christine

    2010-01-01

    Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  13. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  14. Innovations in the field of fungal biofilms: looking for new targets and new chemical compounds.

    Science.gov (United States)

    Furlanetto, Costanza; Merluzzi, Sonia; Palcic, Stefano

    2016-09-01

    Biofilms pose a serious problem for public health. Penetration of pharmacological agents within a biofilm is hampered by the morphological structure of such microbial communities. A biofilm infection therefore entails adverse outcomes both in the field of cost management and patient prognosis. The problem is further complicated if the drugs available to combat a biofilm-related fungal infection versus a bacterial one are compared: in the case of a fungal infection, the drugs available are less efficacious than antibiotics used to counteract a bacterial infection. Furthermore, even the fairly recent introduction of antifungals, such as echinocandins, start presenting some limits of usage, such as ineffectiveness in treating some fungal populations and increased resistance. It therefore becomes imperative to search for innovative molecules in order to combat this condition. The discovery of new molecules and/or new targets can make a difference. This paper illustrates the main innovative molecules that are coming to light in the field of infection by fungal biofilms. PMID:27668897

  15. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.

    Science.gov (United States)

    Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini

    2016-10-01

    This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment. PMID:27411813

  16. Parasitic zoonotic diseases in Turkey

    Directory of Open Access Journals (Sweden)

    Nazmiye Altintas

    2008-12-01

    Full Text Available Zoonoses and zoonotic diseases are becoming more common and they are now receiving increased attention across the world. Zoonotic parasites are found in a wide variety of protozoa, cestodes, nematodes, trematodes and arthropods worldwide and many zoonotic parasites have assumed an important role. The importance of some parasitic zoonoses has increased in recent years due to the fact that they can be agents of opportunistic infections. Although a number of zoonotic parasites are often found and do cause serious illnesses in Turkey, some are more common and these diseases are more important as they cause serious public health problems, such as leishmaniasis, toxoplasmosis, cryptosporidiosis, echinococcosis, trichinellosis and toxocariasis. Information on these zoonotic diseases is provided here as these are the most important zoonotic parasitic diseases in Turkey.

  17. Serine proteases of parasitic helminths.

    Science.gov (United States)

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  18. Integrated parasite management

    DEFF Research Database (Denmark)

    Clausen, Jesper Hedegaard; Madsen, Henry; Van, Phan Thi;

    2015-01-01

    communities at risk through mass drug administration. However, we argue that treatment alone will not reduce the risk from eating infected fish and that sustainable effective control must adopt an integrated FZT control approach based on education, infrastructure improvements, and management practices...... that target critical control points in the aquaculture production cycle identified from a thorough understanding of FZT and host biology and epidemiology. We present recommendations for an integrated parasite management (IPM) program for aquaculture farms.......Fishborne zoonotic trematodes (FZT) are an emerging problem and there is now a consensus that, in addition to wild-caught fish, fish produced in aquaculture present a major food safety risk, especially in Southeast Asia where aquaculture is important economically. Current control programs target...

  19. Homeopathy in parasitic diseases

    Directory of Open Access Journals (Sweden)

    Silvana Marques de Araujo

    2012-09-01

    Full Text Available Introduction: The use of homeopathic medicines has increased, once traditional medicines sometimes do not produce the desired effects and because side effects sometimes compromise the treatment. In recent years, research on homeopathy has clearly developed, both in the implementation of more consistent methodologies and in the description of the data and published methods, improvement are still required in these matters. The acknowledgment of homeopathy depends on the credibility of the groups researching this topic Objective: list and criticize articles highlighting main effects, schedule of treatment and potencies used in different animals models. Material and Methods: A review of articles published since 2000 in journals indexed in the PubMed/Scielo databases was performed. Keywords used were parasitosis/homeopathy and parasitosis/ultra-diluted, in English and Portuguese. Specialized journals such as Homeopathy, International Journal of High Dilution Research, and Brazilian Homeopathic Journal were also used. The contents of each issue of these journals were examined for the "Use of highly diluted medication in parasitic infections." Results and Discussion: Thirty nine papers have been gathered. The methodology of the articles surveyed did not meet the requirements listed in the REHBaR[1]. Thirty seven reports have shown the benefits/effects of highly diluted medicine in the treatment of infectious diseases. In models where experimental conditions are carefully controlled, the conclusions follow the same pattern as those observed in the treatment of farm animals, where, even without completely controlled conditions, clinical result is positive. In fourteen reports using the same model, eight where animals were treated in a constant and prolonged way shown a better result, compared with six reports in which animals were treated for a short period of time, receiving a single daily dose. Several authors have conducted clinical trials using

  20. Natural parasite infection affects the tolerance but not the response to a simulated secondary parasite infection.

    Directory of Open Access Journals (Sweden)

    Heike Lutermann

    Full Text Available Parasites deplete the resources of their host and can consequently affect the investment in competing traits (e.g. reproduction and immune defence. The immunocompetence handicap hypothesis posits that testosterone (T mediates trade-offs between parasite defence and reproductive investment by suppressing immune function in male vertebrates while more recently a role for glucocorticoids (e.g. cortisol (C in resource allocation has been suggested. These hypotheses however, have not always found support in wild animals, possibly because most studies focus on a single parasite species, whereas infections with multiple parasites are the rule in nature. We measured body mass, T- and C-levels of wild male highveld mole-rats (Cryptomys hottentotus pretoriae naturally uninfected or infected with a cestode (Mathevotaenia sp. right after capture. Subsequently, we injected animals subcutaneously with a lipopolysaccharide (LPS to simulate a bacterial infection and recorded changes in body mass, food intake, haematological parameters and hormone levels. As a control, animals were injected with saline. Natural infection neither affected initial body mass nor C-levels, whereas infected males had significantly reduced T-levels. We observed significant reductions in food intake, body mass and T in response to LPS but not saline while C increased. However, this response did not vary with infection status. In contrast, final body mass and some haematological parameters were significantly lowered in infected males. Our results suggest that naturally infected males are able to compensate for resource depletion by physiological adjustments. However, this leaves them less tolerant to the challenges of a secondary infection.

  1. Fungal periprosthetic joint infection in total knee arthroplasty: a systematic review

    Directory of Open Access Journals (Sweden)

    Oliver Jakobs

    2015-03-01

    Full Text Available Fungal periprosthetic joint infection (PJI is a rare but devastating complication following total knee arthroplasty (TKA. A standardized procedure regarding an accurate treatment of this serious complication of knee arthroplasty is lacking. In this systematic review, we collected data from 36 studies with a total of 45 reported cases of a TKA complicated by a fungal PJI. Subsequently, an analysis focusing on diagnostic, medicaments and surgical procedures in the pre-, intra- and postoperative period was performed. Candida spp. accounts for about 80% (36 out of 45 cases of fungal PJIs and is therefore the most frequently reported pathogen. A systemic antifungal therapy was administered in all but one patient whereas a local antifungal therapy, e.g. the use of an impregnated spacer, is of inferior relevance. Resection arthroplasty with delayed re-implantation (two-stage revision was the surgical treatment of choice. However, in 50% of all reported cases the surgical therapy was heterogeneous. The outcome under a combined therapy was moderate with recurrent fungal PJI in 11 patients and subsequent bacterial PJI as a main complication in 5 patients. In summary, this systematic review integrates data from up to date 45 reported cases of a fungal PJI of a TKA. On the basis of the current literature strategies for the treatment of this devastating complication after TKA are discussed

  2. How have fisheries affected parasite communities?

    Science.gov (United States)

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  3. Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica.

    Science.gov (United States)

    Santiago, Iara F; Soares, Marco Aurélio; Rosa, Carlos A; Rosa, Luiz H

    2015-11-01

    We surveyed the diversity, distribution and ecology of non-lichenised fungal communities associated with the Antarctic lichens Usnea antarctica and Usnea aurantiaco-atra across Antarctica. The phylogenetic study of the 438 fungi isolates identified 74 taxa from 21 genera of Ascomycota, Basidiomycota and Zygomycota. The most abundant taxa were Pseudogymnoascus sp., Thelebolus sp., Antarctomyces psychrotrophicus and Cryptococcus victoriae, which are considered endemic and/or highly adapted to Antarctica. Thirty-five fungi may represent new and/or endemic species. The fungal communities displayed high diversity, richness and dominance indices; however, the similarity among the communities was variable. After discovering rich and diverse fungal communities composed of symbionts, decomposers, parasites and endemic and cold-adapted cosmopolitan taxa, we introduced the term "lichensphere". We hypothesised that the lichensphere may represent a protected natural microhabitat with favourable conditions able to help non-lichenised fungi and other Antarctic life forms survive and disperse in the extreme environments of Antarctica.

  4. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus.

    Directory of Open Access Journals (Sweden)

    Taisei Kikuchi

    2011-09-01

    Full Text Available Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in

  5. Naming names: the etymology of fungal entomopathogens.

    Science.gov (United States)

    The chapter introduces the reader to the etymology of the generic names given to 26 fungal entomopathogens. Possessing some knowledge on how a name originates sometimes provides us with information on a fungal characteristic that might help us identify the organism, e.g., Conidiobolus, Cordyceps, P...

  6. Ecological constraints limit the fitness of fungal hybrids in the Heterobasidion annosum species complex.

    Science.gov (United States)

    Garbelotto, Matteo; Gonthier, Paolo; Nicolotti, Giovanni

    2007-10-01

    The ability of two closely related species to maintain species boundaries in spite of retained interfertility between them is a documented driving force of speciation. Experimental evidence to support possible interspecific postzygotic isolation mechanisms for organisms belonging to the kingdom Fungi is still missing. Here we report on the outcome of a series of controlled comparative inoculation experiments of parental wild genotypes and F(1) hybrid genotypes between closely related and interfertile taxa within the Heterobasidion annosum fungal species complex. Results indicated that these fungal hybrids are not genetically unfit but can fare as well as parental genotypes when inoculated on substrates favorable to both parents. However, when placed in substrates favoring one of the parents, hybrids are less competitive than the parental genotypes specialized on that substrate. Furthermore, in some but not all fungus x plant combinations, a clear asymmetry in fitness was observed between hybrids carrying identical nuclear genomes but different cytoplasms. This work provides some of the first experimental evidence of ecologically driven postzygotic reinforcement of isolation between closely related fungal species characterized by marked host specificity. Host specialization is one of the most striking traits of a large number of symbiotic and parasitic fungi; thus, we suggest the ecological mechanism proven here to reinforce isolation among Heterobasidion spp. may be generally valid for host-specialized fungi. The validity of this generalization is supported by the low number of known fungal hybrids and by their distinctive feature of being found in substrates different from those colonized by parental species.

  7. Bacterial Hydrodynamics

    Science.gov (United States)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  8. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  9. Parasites in algae mass culture

    Directory of Open Access Journals (Sweden)

    Todd William Lane

    2014-06-01

    Full Text Available Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.

  10. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  11. Hydrodynamics, Fungal Physiology, and Morphology.

    Science.gov (United States)

    Serrano-Carreón, L; Galindo, E; Rocha-Valadéz, J A; Holguín-Salas, A; Corkidi, G

    2015-01-01

    Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most

  12. Virulence of mixed fungal infections in honey bee brood

    Directory of Open Access Journals (Sweden)

    Vojvodic Svjetlana

    2012-03-01

    Full Text Available Abstract Introduction Honey bees, Apis mellifera, have a diverse community of pathogens. Previous research has mostly focused on bacterial brood diseases of high virulence, but milder diseases caused by fungal pathogens have recently attracted more attention. This interest has been triggered by partial evidence that co-infection with multiple pathogens has the potential to accelerate honey bee mortality. In the present study we tested whether co-infection with closely related fungal brood-pathogen species that are either specialists or non-specialist results in higher host mortality than infections with a single specialist. We used a specially designed laboratory assay to expose honey bee larvae to controlled infections with spores of three Ascosphaera species: A. apis, the specialist pathogen that causes chalkbrood disease in honey bees, A. proliperda, a specialist pathogen that causes chalkbrood disease in solitary bees, and A. atra, a saprophytic fungus growing typically on pollen brood-provision masses of solitary bees. Results We show for the first time that single infection with a pollen fungus A. atra may induce some mortality and that co-infection with A. atra and A. apis resulted in higher mortality of honey bees compared to single infections with A. apis. However, similar single and mixed infections with A. proliperda did not increase brood mortality. Conclusion Our results show that co-infection with a closely related fungal species can either increase or have no effect on host mortality, depending on the identity of the second species. Together with other studies suggesting that multiple interacting pathogens may be contributing to worldwide honey bee health declines, our results highlight the importance of studying effects of multiple infections, even when all interacting species are not known to be specialist pathogens.

  13. Innate Defense against Fungal Pathogens.

    Science.gov (United States)

    Drummond, Rebecca A; Gaffen, Sarah L; Hise, Amy G; Brown, Gordon D

    2014-11-10

    Human fungal infections have been on the rise in recent years and proved increasingly difficult to treat as a result of the lack of diagnostics, effective antifungal therapies, and vaccines. Most pathogenic fungi do not cause disease unless there is a disturbance in immune homeostasis, which can be caused by modern medical interventions, disease-induced immunosuppression, and naturally occurring human mutations. The innate immune system is well equipped to recognize and destroy pathogenic fungi through specialized cells expressing a broad range of pattern recognition receptors (PRRs). This review will outline the cells and PRRs required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17 and recently characterized antifungal inflammasomes.

  14. Chapter 8: Invasive fungal rhinosinusitis.

    Science.gov (United States)

    Duggal, Praveen; Wise, Sarah K

    2013-01-01

    Invasive fungal rhinosinusitis (IFRS) is a disease of the paranasal sinuses and nasal cavity that typically affects immunocompromised patients in the acute fulminant form. Early symptoms can often mimic rhinosinusitis, while late symptoms can cause significant morbidity and mortality. Swelling and mucosal thickening can quickly progress to pale or necrotic tissue in the nasal cavity and sinuses, and the disease can rapidly spread and invade the palate, orbit, cavernous sinus, cranial nerves, skull base, carotid artery, and brain. IFRS can be life threatening if left undiagnosed or untreated. While the acute fulminant form of IFRS is the most rapidly progressive and destructive, granulomatous and chronic forms also exist. Diagnosis of IFRS often mandates imaging studies in conjunction with clinical, endoscopic, and histopathological examination. Treatment of IFRS consists of reversing the underlying immunosuppression, antifungal therapy, and aggressive surgical debridement. With early diagnosis and treatment, IFRS can be treated and increase patient survival.

  15. Density- and trait-mediated effects of a parasite and a predator in a tri-trophic food web.

    Science.gov (United States)

    Banerji, Aabir; Duncan, Alison B; Griffin, Joanne S; Humphries, Stuart; Petchey, Owen L; Kaltz, Oliver

    2015-05-01

    Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density or trait mediated. We studied a tri-trophic food chain comprised of (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum) and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling and analyses of host (Paramecium) morphology and behaviour. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. A mixture of density-mediated and

  16. Parasites in algae mass culture

    OpenAIRE

    ToddWilliamLane; LauraTruesdaleCarney

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential f...

  17. Serine Proteases of Parasitic Helminths

    OpenAIRE

    Yong YANG; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we...

  18. Pervasiveness of parasites in pollinators.

    Directory of Open Access Journals (Sweden)

    Sophie E F Evison

    Full Text Available Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris and a third of wasps (Vespula vulgaris, as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.

  19. Parasitic Effects on Memristor Dynamics

    Science.gov (United States)

    Itoh, Makoto; Chua, Leon O.

    2016-06-01

    In this paper, we show that parasitic elements have a significant effect on the dynamics of memristor circuits. We first show that certain 2-terminal elements such as memristors, memcapacitors, and meminductors can be used as nonvolatile memories, if the principle of conservation of state variables hold by open-circuiting, or short-circuiting, their terminals. We also show that a passive memristor with a strictly-increasing constitutive relation will eventually lose its stored flux when we switch off the power if there is a parasitic capacitance across the memristor. Similarly, a memcapacitor (resp., meminductor) with a positive memcapacitance (resp., meminductance) will eventually lose their stored physical states when we switch off the power, if it is connected to a parasitic resistance. We then show that the discontinuous jump that circuit engineers assumed to occur at impasse points of memristor circuits contradicts the principles of conservation of charge and flux at the time of the discontinuous jump. A parasitic element can be used to break an impasse point, resulting in the emergence of a continuous oscillation in the circuit. We also define a distance, a diameter, and a dimension, for each circuit element in order to measure the complexity order of the parasitic elements. They can be used to find higher-order parasitic elements which can break impasse points. Furthermore, we derived a memristor-based Chua’s circuit from a three-element circuit containing a memristor by connecting two parasitic memcapacitances to break the impasse points. We finally show that a higher-order parasitic element can be used for breaking the impasse points on two-dimensional and three-dimensional constrained spaces.

  20. Adaptations in the energy metabolism of parasites

    NARCIS (Netherlands)

    van Grinsven, K.W.A.

    2009-01-01

    For this thesis fundamental research was performed on the metabolic adaptations found in parasites. Studying the adaptations in parasite metabolisms leads to a better understanding of parasite bioenergetics and can also result in the identification of new anti-parasitic drug targets. We focussed on

  1. Fungal infection in organ transplant patients

    Institute of Scientific and Technical Information of China (English)

    洪微; 温海; 廖万清

    2003-01-01

    Purpose To review the characteristics and evolution of the fungal spectrum, and the risk factors causing fungal infection, and to make progress in diagnosing fungal infection after organ transplantation.Data sources An English-language literature search (MEDLINE 1990-2000) and bibliographic review of textbooks and review articles.Study selection Twenty-three articles were selected from the literature that specifically addressed the stated purpose.Results Fungal infections in organ transplant patients were generally divided into two types: ① disseminated primary or reactivation infection with one of the geographically restricted systemic mycoses; ② opportunistic infection by fungal species that rarely cause invasive infection in normal hosts. The risk factors of fungal infection after a transplant can be evaluated and predicted according to the organ recipient ’s conditions before, during and after the transplant. Progress in early diagnostic methods during the past 10 years has mainly revolved around two aspects, culture and non-culture. Conclusions It is important to undertake a systemic evaluation on the condition of the organ recipient before, during and after a transplant; should any risk factor for fungal infection be suspected, diagnosis should be made as early as possible by employing mycological techniques including culture and non-culture methods.

  2. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271

  3. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  4. Parasitic Pneumonia and Lung Involvement

    Directory of Open Access Journals (Sweden)

    Attapon Cheepsattayakorn

    2014-01-01

    Full Text Available Parasitic infestations demonstrated a decline in the past decade as a result of better hygiene practices and improved socioeconomic conditions. Nevertheless, global immigration, increased numbers of the immunocompromised people, international traveling, global warming, and rapid urbanization of the cities have increased the susceptibility of the world population to parasitic diseases. A number of new human parasites, such as Plasmodium knowlesi, in addition to many potential parasites, have urged the interest of scientific community. A broad spectrum of protozoal parasites frequently affects the respiratory system, particularly the lungs. The diagnosis of parasitic diseases of airway is challenging due to their wide varieties of clinical and roentgenographic presentations. So detailed interrogations of travel history to endemic areas are critical for clinicians or pulmonologists to manage this entity. The migrating adult worms can cause mechanical airway obstruction, while the larvae can cause airway inflammation. This paper provides a comprehensive review of both protozoal and helminthic infestations that affect the airway system, particularly the lungs, including clinical and roentgenographic presentations, diagnostic tests, and therapeutic approaches.

  5. Paleoparasitology: the origin of human parasites

    Directory of Open Access Journals (Sweden)

    Adauto Araujo

    2013-09-01

    Full Text Available Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  6. Hosts and parasites as aliens.

    Science.gov (United States)

    Taraschewski, H

    2006-06-01

    Over the past decades, various free-living animals (hosts) and their parasites have invaded recipient areas in which they had not previously occurred, thus gaining the status of aliens or exotics. In general this happened to a low extent for hundreds of years. With variable frequency, invasions have been followed by the dispersal and establishment of non-indigenous species, whether host or parasite. In the literature thus far, colonizations by both hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways. As to those factors permitting invasive success and colonization strength, various hypotheses have been put forward depending on the scientific background of respective authors and on the conspicuousness of certain invasions. Researchers who have tried to analyse characteristic developmental patterns, the speed of dispersal or the degree of genetic divergence in populations of alien species have come to different conclusions. Among parasitologists, the applied aspects of parasite invasions, such as the negative effects on economically important hosts, have long been at the centre of interest. In this contribution, invasions by hosts as well as parasites are considered comparatively, revealing many similarities and a few differences. Two helminths, the liver fluke, Fasciola hepatica, of cattle and sheep and the swimbladder nematode, Anguillicola crassus, of eels are shown to be useful as model parasites for the study of animal invasions and environmental global change. Introductions of F. hepatica have been associated with imports of cattle or other grazing animals. In various target areas, susceptible lymnaeid snails serving as intermediate hosts were either naturally present and/or were introduced from the donor continent of the parasite (Europe) and/or from other regions which were not within the original range of the parasite, partly reflecting progressive stages of a global biota change. In several

  7. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    NARCIS (Netherlands)

    Thieltges, D.W.; Amundsen, P.-A.; Hechinger, R.F.; Johnson, P.T.J.; Lafferty, K.D.; Mouritsen, K.N.; Preston, D.L.; Reise, K.; Zander, C.D.; Poulin, R.

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasit

  8. Fungal infections in neutropenic cancer patients

    International Nuclear Information System (INIS)

    Invasive fungal infections are important causes of morbidity and mortality in cancer patients with prolonged neutropenia following chemotherapy. Recent trends indicate a change toward infections by Aspergillus species, non-albicans species of Candida, and previously uncommon fungal pathogens. These have decreased susceptibility to current antifungal agents. In the last decade there has been much effort to find solutions for these changing trends. This article reviews current approaches to prevention and treatment of opportunistic fungal infections in postchemotherapy neutropenic patients and discussion future antifungal approaches and supportive methods. (author)

  9. Fungal spores as potential ice nuclei in fog/cloud water and snow

    Science.gov (United States)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  10. Re-Defining the Subsurface Biosphere: Characterization of Fungal Populations from Energy Limited Deep Marine Subsurface Sediments

    Science.gov (United States)

    Reese, B. K.; Ariza, M.; St. Peter, C.; Hoffman, C.; Edwards, K. J.; Mills, H. J.

    2012-12-01

    The detection and characterization of metabolically active fungal populations within the deep marine subsurface will alter current ecosystem models that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations not currently being considered in subsurface energy budgets. Sediments from the South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program (IODP) Expedition 329. Anaerobic and aerobic sediment slurry cultures using fresh sediment began directly following the completion of the Expedition (December 2010). From these cultures, multiple fungal lineages have been isolated on several media types that vary in carbon concentrations. Physical growth parameters of these subsurface fungal isolates were determined and compared to previously characterized lineages. Additionally, the overall diversity of metabolically active and dormant fungal populations was determined using high throughput sequencing of nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. This project provides a robust step in determining the importance and impact of fungal populations within the marine subsurface biosphere.

  11. Parasitism, the diversity of life, and paleoparasitology

    OpenAIRE

    Adauto Araújo; Ana Maria Jansen; Françoise Bouchet; Karl Reinhard; Luiz Fernando Ferreira

    2003-01-01

    The parasite-host-environment system is dynamic, with several points of equilibrium. This makes it difficult to trace the thresholds between benefit and damage, and therefore, the definitions of commensalism, mutualism, and symbiosis become worthless. Therefore, the same concept of parasitism may encompass commensalism, mutualism, and symbiosis. Parasitism is essential for life. Life emerged as a consequence of parasitism at the molecular level, and intracellular parasitism created evolutive ...

  12. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia.

    Science.gov (United States)

    Morrison, Hilary G; McArthur, Andrew G; Gillin, Frances D; Aley, Stephen B; Adam, Rodney D; Olsen, Gary J; Best, Aaron A; Cande, W Zacheus; Chen, Feng; Cipriano, Michael J; Davids, Barbara J; Dawson, Scott C; Elmendorf, Heidi G; Hehl, Adrian B; Holder, Michael E; Huse, Susan M; Kim, Ulandt U; Lasek-Nesselquist, Erica; Manning, Gerard; Nigam, Anuranjini; Nixon, Julie E J; Palm, Daniel; Passamaneck, Nora E; Prabhu, Anjali; Reich, Claudia I; Reiner, David S; Samuelson, John; Svard, Staffan G; Sogin, Mitchell L

    2007-09-28

    The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite. PMID:17901334

  13. Expanding Fungal Diets Through Synthetic Algal-Fungal Mutualism

    Science.gov (United States)

    Sharma, Alaisha; Galazka, Jonathan (Editor)

    2015-01-01

    Fungi can synthesize numerous molecules with important properties, and could be valuable production platforms for space exploration and colonization. However, as heterotrophs, fungi require reduced carbon. This limits their efficiency in locations such as Mars, where reduced carbon is scarce. We propose a system to induce mutualistic symbiosis between the green algae Chlamydomonas reinhardtii and the filamentous fungi Neurospora crassa. This arrangement would mimic natural algal-fungal relationships found in lichens, but have added advantages including increased growth rate and genetic tractability. N. crassa would metabolize citrate (C6H5O7 (sup -3)) and release carbon dioxide (CO2) that C. reinhardtii would assimilate into organic sugars during photosynthesis. C. reinhardtii would metabolize nitrate (NO3-) and release ammonia (NH3) as a nitrogen source for N. crassa. A N. crassa mutant incapable of reducing nitrate will be used to force this interaction. This system eliminates the need to directly supply its participants with carbon dioxide and ammonia. Furthermore, the release of oxygen by C. reinhardtii via photosynthesis would enable N. crassa to respire. We hope to eventually create a system closer to lichen, in which the algae transfers not only nitrogen but reduced carbon, as organic sugars, to the fungus for growth and production of valuable compounds.

  14. Evaluation of an Antibiotic-Producing Strain of Pseudomonas fluorescens for Suppression of Plant-Parasitic Nematodes

    OpenAIRE

    Timper, Patricia; Koné, Daouda; Yin, Jingfang; Ji, Pingsheng; McSpadden Gardener, Brian B.

    2009-01-01

    The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in suppression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producing P. fluorescens, suppresses numbers of both sedentary and migratory plant-parasitic nematodes. An experiment was conducted in steam-heated soil and included two seed treatments (with Wood1R and a c...

  15. PNNL Fungal Biotechnology Core DOE-OBP Project

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Scott E.; Bruno, Kenneth S.; Butcher, Mark G.; Collett, James R.; Culley, David E.; Dai, Ziyu; Magnuson, Jon K.; Panisko, Ellen A.

    2009-11-30

    In 2009, we continued to address barriers to fungal fermentation in the primary areas of morphology control, genomics, proteomics, fungal hyperproductivity, biomass-to-products via fungal based consolidated bioprocesses, and filamentous fungal ethanol. “Alternative renewable fuels from fungi” was added as a new subtask. Plans were also made to launch a new advanced strain development subtask in FY2010.

  16. Analysis of fungal ball rhinosinusitis by culturing fungal clumps under endoscopic surgery

    OpenAIRE

    Zhang, Junyi; Li, Yunchuan; Lu, Xinxin; Wang, Xiangdong; Zang, Hongrui; Wang, Tong; Zhou, Bing; Zhang, Luo

    2015-01-01

    Objective: This study was designed to investigate the clinical microbiology of fungal ball (FB) rhinosinusitis by culturing fungal clumps collected under endoscopic surgery. Methods: From April to November of 2012, fungal clumps were sampled by endoscopic surgery from patients diagnosed with FB using clinical and histopathological methods. The specimens were subjected to smear microscopy, and cultured for bacteria and fungi analysis. Results: Out of the 81 specimens from 80 patients, 69 (69/8...

  17. Bacterial Modulation of Plant Ethylene Levels.

    Science.gov (United States)

    Gamalero, Elisa; Glick, Bernard R

    2015-09-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  18. Tools and methods for detecting and characterizing giardia, cryptosporidium, and toxoplasma parasites in marine mollusks.

    Science.gov (United States)

    Hohweyer, Jeanne; Dumètre, Aurélien; Aubert, Dominique; Azas, Nadine; Villena, Isabelle

    2013-09-01

    Foodborne infections are of public health importance and deeply impact the global economy. Consumption of bivalve mollusks generates risk for humans because these filtering aquatic invertebrates often concentrate microbial pathogens from their environment. Among them, Giardia, Cryptosporidium, and Toxoplasma are major parasites of humans and animals that may retain their infectivity in raw or undercooked mollusks. This review aims to detail current and future tools and methods for ascertaining the load and potential infectivity of these parasites in marine bivalve mollusks, including sampling strategies, parasite extraction procedures, and their characterization by using microscopy and/or molecular techniques. Method standardization should lead to better risk assessment of mollusks as a source of these major environmental parasitic pathogens and to the development of safety regulations, similar to those existing for bacterial and viral pathogens encountered in the same mollusk species.

  19. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U;

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...

  20. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette;

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary meta...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  1. FUNGAL INFECTIONS IN LIVER TRANSPLANT RECIPIENTS1

    OpenAIRE

    Wajszczuk, Charles P.; Dummer, J. Stephen; Ho, Monto; Van Thiel, David H.; Starzl, Thomas E.; Iwatsuki, Shunzaburo; Shaw, Byers

    1985-01-01

    Sixty-two adults who underwent orthotopic liver transplantations between February 1981 and June 1983 were followed for a mean of 170 days after the operation. Twenty-six patients developed 30 episodes of significant fungal infection. Candida species and Torulopsis glabrata were responsible for 22 episodes and Aspergillus species for 6. Most fungal infections occurred in the first month after transplantation. In the first 8 weeks after transplantation, death occurred in 69% (18/26) of patients...

  2. Treatment of fungal infections: an update

    Directory of Open Access Journals (Sweden)

    Antonietta Giannattasio

    2014-06-01

    Full Text Available Fungal infections represent a serious problem in neonatal intensive care units (NICUs worldwide. Preterm infants are a vulnerable population for major events and adverse sequelae from fungal sepsis. The primary fungus of concern in neonates is C. albicans, whose colonization is associated with devastating complication and high rate of mortality. Among the risk factors responsible for development of invasive fungal infections, previous mucosal and skin colonization are of primary importance. Fungal colonization in neonates may be secondary to either maternal transmission or nosocomial acquisition in the nursery. Antifungal prophylaxis is currently applied in different NICUs and in various patients groups with successful results. Prophylactic drugs can include oral nystatin and oral or intravenous fluconazole. To date, antifungal prophylaxis with fluconazole is the recommended approach for neonates lower than 1,000 g and/or 27 weeks’ gestation or less, manly in NICUs with relatively high frequency of invasive candidiasis. First-line treatment of invasive fungal infections includes amphotericin B deoxycholate, lipid preparations of amphotericin B, fluconazole, or micafungin. However, data on pharmacokinetic, schedule treatment and appropriate dosage of antifungal agents in neonates, mainly in premature, are still limited. Future strategies to reduce neonatal morbidity and mortality derived from invasive fungal infections include new echinocandins not yet approved for neonatal use (caspofungin or anidulafungin and other adjuvant treatments as intravenous immunoglobulin, lactoferrin or probiotics. Since current therapies for systemic fungal diseases are not universally successful and morbidity remains high, future efforts will be also focused on better prevention of fungal diseases and understanding of appropriate dosing schedule of the available antifungal agents. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy

  3. Spontaneous course of an untreated fungal spondylitis

    International Nuclear Information System (INIS)

    After 29 known cases in the world, we report another case of fungal spondylitis being not yet treated. Within four months with increasing clinical complaints and without neurological defects the disease led to a complete involvement of two vertebras and their partial resorption. An early radiologic hint in fungal spondylitis is possible, a sure diagnosis, however, depends on puncture. Pathogenetic aspects and the importance of a new method to identify candida infection in blood-sample are discussed. (orig.)

  4. Striking a Balance: Fungal Commensalism versus Pathogenesis

    OpenAIRE

    Iliev, Iliyan D.; Underhill, David M.

    2013-01-01

    The environment is suffused with nearly countless types of fungi, and our immune systems must be tuned to cope with constant exposure to them. In addition, it is becoming increasingly clear that many surfaces of our bodies are colonized with complex populations of fungi (the mycobiome) in the same way that they are colonized with complex populations of bacteria. The immune system must tolerate colonization with commensal fungi but defend against fungal invasion. Truly life-threatening fungal ...

  5. Fungal dissemination by housefly (Musca domestica L.) and contamination of food commodities in rural areas of South Africa.

    Science.gov (United States)

    Phoku, J Z; Barnard, T G; Potgieter, N; Dutton, M F

    2016-01-18

    Several insects that act as vectors, including houseflies (Musca domestica L.), are often considered to be an important source of fungal contamination in human foods. Houseflies are also involved in the transmission of bacterial pathogens that may pose a serious hazard to human health. Thus, the rural population of South Africa, as typified by that in the Gauteng Province investigated in this study, is at high risk from fungal exposure disseminated by houseflies and it is therefore important to assess the role of flies in contaminating various food commodities. Eighty four samples of houseflies (captured from households and pit toilets) were studied for their potential to carry fungal spores into food commodities. The fungi occurring in samples of raw maize (15) and porridge (19) were also assessed. Fungal isolates were identified based on morphological characteristics by conventional identification methods. Fifteen genera of fungi were isolated and identified, of which Aspergillus, Fusarium, Penicillium, Cladosporium, Moniliella and Mucor were the most prevalent in all three sample types analysed. The incidence rates of fungal contamination per total fungal count isolated in houseflies, maize and porridge were recorded with mean fungal load of 2×10(8) CFU/ml, 1×10(7)CFU/g and 2×10(7)CFU/g respectively. Additionally, A. flavus, A. parasiticus, F. verticillioides, F. proliferatum, P. verrucosum, P. aurantiogriseum and M. suaveolens were the most frequent fungal isolates in houseflies with incidence rate of 34%, 11%, 27%, 21%, 22%, 17% and 32% respectively. F. verticillioides, A. flavus, A. niger and P. oslonii were the most prevalent species contaminating porridge and maize with incidence rate of 23%, 32%, 16% and 28% in maize samples, while incidence rates of 59%, 15% and 29% were recorded in porridge samples with the exception of F. verticillioides. The prevalence of these genera of fungi may pose serious health risks. PMID:26544205

  6. Fungal dissemination by housefly (Musca domestica L.) and contamination of food commodities in rural areas of South Africa.

    Science.gov (United States)

    Phoku, J Z; Barnard, T G; Potgieter, N; Dutton, M F

    2016-01-18

    Several insects that act as vectors, including houseflies (Musca domestica L.), are often considered to be an important source of fungal contamination in human foods. Houseflies are also involved in the transmission of bacterial pathogens that may pose a serious hazard to human health. Thus, the rural population of South Africa, as typified by that in the Gauteng Province investigated in this study, is at high risk from fungal exposure disseminated by houseflies and it is therefore important to assess the role of flies in contaminating various food commodities. Eighty four samples of houseflies (captured from households and pit toilets) were studied for their potential to carry fungal spores into food commodities. The fungi occurring in samples of raw maize (15) and porridge (19) were also assessed. Fungal isolates were identified based on morphological characteristics by conventional identification methods. Fifteen genera of fungi were isolated and identified, of which Aspergillus, Fusarium, Penicillium, Cladosporium, Moniliella and Mucor were the most prevalent in all three sample types analysed. The incidence rates of fungal contamination per total fungal count isolated in houseflies, maize and porridge were recorded with mean fungal load of 2×10(8) CFU/ml, 1×10(7)CFU/g and 2×10(7)CFU/g respectively. Additionally, A. flavus, A. parasiticus, F. verticillioides, F. proliferatum, P. verrucosum, P. aurantiogriseum and M. suaveolens were the most frequent fungal isolates in houseflies with incidence rate of 34%, 11%, 27%, 21%, 22%, 17% and 32% respectively. F. verticillioides, A. flavus, A. niger and P. oslonii were the most prevalent species contaminating porridge and maize with incidence rate of 23%, 32%, 16% and 28% in maize samples, while incidence rates of 59%, 15% and 29% were recorded in porridge samples with the exception of F. verticillioides. The prevalence of these genera of fungi may pose serious health risks.

  7. Experimental study on cryotherapy for fungal corneal ulcer

    OpenAIRE

    Chen, Yingxin; Yang, Weijia; Gao, Minghong; Belin, Michael Wellington; Yu, Hai; Yu, Jing

    2015-01-01

    Background Fungal corneal ulcer is one of the major causes of visual impairment worldwide. Treatment of fungal corneal ulcer mainly depends on anti-fungal agents. In the current study, we developed an integrated combination therapy of cryotherapy and anti-fungal agents to facilitate effective treatment of fungal corneal ulcer. Methods Rabbit models of cornea infection were established using a combined method of intrastromal injection and keratoplasty. After treatment with cryotherapy and anti...

  8. Lichen decline in areas with increased nitrogen deposition might be explained by parasitic fungi : A survey of parasitic fungi on the lichen Alectoria sarmentosa after 4 years of nitrogen fertilisation

    OpenAIRE

    Ström, Caspar

    2011-01-01

    Nitrogen (N) deposition in Europe has recently increased and is expected to continue to increase in the future. There is a well-documented decline in lichen diversity with higher N availability, although the mechanisms behind this are poorly known. In this study, I tested whether attacks by fungal parasites increase with higher N deposition. This pattern has been found in a number of studies on vascular plants, but it has never been investigated for lichens. I surveyed dark lesions and discol...

  9. Fungal allelochemicals in insect pest management.

    Science.gov (United States)

    Holighaus, Gerrit; Rohlfs, Marko

    2016-07-01

    Interactions between insects and fungi are widespread, and important mediators of these interactions are fungal chemicals that can therefore be considered as allelochemicals. Numerous studies suggest that fungal chemicals can affect insects in many different ways. Here, we apply the terminology established by insect-plant ecologists for categorizing the effect of fungal allelochemicals on insects and for evaluating the application potential of these chemicals in insect pest management. Our literature survey shows that fungal volatile and non-volatile chemicals have an enormous potential to influence insect behavior and fitness. Many of them still remain to be discovered, but some recent examples of repellents and toxins could open up new ways for developing safe insect control strategies. However, we also identified shortcomings in our understanding of the chemical ecology of insect-fungus interactions and the way they have been investigated. In particular, the mode-of-action of fungal allelochemicals has often not been appropriately designated or examined, and the way in which induction by insects affects fungal chemical diversity is poorly understood. This review should raise awareness that in-depth ecological studies of insect-fungus interactions can reveal novel allelochemicals of particular benefit for the development of innovative insect pest management strategies. PMID:27147531

  10. Structure and biological functions of fungal cerebrosides

    Directory of Open Access Journals (Sweden)

    Barreto-Bergter Eliana

    2004-01-01

    Full Text Available Ceramide monohexosides (CMHs, cerebrosides are glycosphingolipids composed of a hydrophobic ceramide linked to one sugar unit. In fungal cells, CMHs are very conserved molecules consisting of a ceramide moiety containing 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecanoic or 2-hydroxyhexadecanoic acids, and a carbohydrate portion consisting of one residue of glucose or galactose. 9-Methyl 4,8-sphingadienine-containing ceramides are usually glycosylated to form fungal cerebrosides, but the recent description of a ceramide dihexoside (CDH presenting phytosphingosine in Magnaporthe grisea suggests the existence of alternative pathways of ceramide glycosylation in fungal cells. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. In Pseudallescheria boydii, Candida albicans, Cryptococcus neoformans, Aspergillus nidulans, A. fumigatus, and Schizophyllum commune, CMHs are apparently involved in morphological transitions and fungal growth. The elucidation of structural and functional aspects of fungal cerebrosides may therefore contribute to the design of new antifungal agents inhibiting growth and differentiation of pathogenic species.

  11. Fungal Keratitis - Improving Diagnostics by Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Esben Nielsen

    2013-12-01

    Full Text Available Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12-69, 6 out of 17 (35% cultures were positive and a total of 6/7 (86% IVCM scans were positive. Three different categories of IVCM results for the grading of diagnostic certainty were formed. Conclusion: IVCM is a valuable tool for diagnosing filamentous fungal keratitis. In order to improve the reliability of IVCM, we suggest implementing a simple and clinically applicable grading system for aiding the interpretation of IVCM images of filamentous fungal keratitis.

  12. Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs

    OpenAIRE

    Jeffrey P Hoover; Robinson, Scott K.

    2007-01-01

    Why do many hosts accept costly avian brood parasitism even when parasitic eggs and nestlings differ dramatically in appearance from their own? Scientists argue that evolutionary lag or equilibrium can explain this evolutionary enigma. Few, however, consider the potential of parasitic birds to enforce acceptance by destroying eggs or nestlings of hosts that eject parasitic eggs and thereby reject parasitism. This retaliatory “mafia” behavior has been reported in one species of parasitic cucko...

  13. Parasitism, the diversity of life, and paleoparasitology

    Directory of Open Access Journals (Sweden)

    Adauto Araújo

    2003-01-01

    Full Text Available The parasite-host-environment system is dynamic, with several points of equilibrium. This makes it difficult to trace the thresholds between benefit and damage, and therefore, the definitions of commensalism, mutualism, and symbiosis become worthless. Therefore, the same concept of parasitism may encompass commensalism, mutualism, and symbiosis. Parasitism is essential for life. Life emerged as a consequence of parasitism at the molecular level, and intracellular parasitism created evolutive events that allowed species to diversify. An ecological and evolutive approach to the study of parasitism is presented here. Studies of the origin and evolution of parasitism have new perspectives with the development of molecular paleoparasitology, by which ancient parasite and host genomes can be recovered from disappeared populations. Molecular paleoparasitology points to host-parasite co-evolutive mechanisms of evolution traceable through genome retrospective studies.

  14. A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides.

    Science.gov (United States)

    Figueroa-López, Alejandro Miguel; Cordero-Ramírez, Jesús Damián; Quiroz-Figueroa, Francisco Roberto; Maldonado-Mendoza, Ignacio Eduardo

    2014-07-01

    A high-throughput antagonistic assay was developed to screen for bacterial isolates capable of controlling the maize fungal phytopathogen Fusarium verticillioides. This assay combines a straightforward methodology, in which the fungus is challenged with bacterial isolates in liquid medium, with a novel approach that uses the plant lectin wheat germ agglutinin (WGA) coupled to a fluorophore (Alexa-Fluor® 488) under the commercial name of WGA, Alexa Fluor® 488 conjugate. The assay is performed in a 96-well plate format, which reduces the required laboratory space and streamlines quantitation and automation of the process, making it fast and accurate. The basis of our assay is that fungal biomass can be assessed by WGA, Alexa Fluor® 488 conjugate staining, which recognizes the chitin in the fungal cell wall and thus permits the identification of potential antagonistic bacteria that inhibit fungal growth. This principle was validated by chitin-competition binding assays against WGA, Alexa Fluor® 488 conjugate; confocal laser microscopy confirmed that the fluorescent WGA, Alexa Fluor® 488 conjugate binds to the chitin of the fungal cell wall. The majority of bacterial isolates did not bind to the WGA, Alexa Fluor® 488 conjugate. Furthermore, including washing steps significantly reduced any bacterial staining to background levels, even in the rare cases where bacterial isolates were capable of binding to WGA. Confirmatory conventional agar plate antagonistic assays were also conducted to validate our technique. We are now successfully employing this large-scale antagonistic assay as a pre-screening step for potential fungal antagonists in extensive bacteria collections (on the order of thousands of isolates).

  15. Comparative Genomic Analysis of Drechmeria coniospora Reveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes

    Science.gov (United States)

    Thakur, Nishant; Arguel, Marie-Jeanne; Polanowska, Jolanta; Henrissat, Bernard; Record, Eric; Magdelenat, Ghislaine; Barbe, Valérie; Raffaele, Sylvain; Barbry, Pascal

    2016-01-01

    Drechmeria coniospora is an obligate fungal pathogen that infects nematodes via the adhesion of specialized spores to the host cuticle. D. coniospora is frequently found associated with Caenorhabditis elegans in environmental samples. It is used in the study of the nematode’s response to fungal infection. Full understanding of this bi-partite interaction requires knowledge of the pathogen’s genome, analysis of its gene expression program and a capacity for genetic engineering. The acquisition of all three is reported here. A phylogenetic analysis placed D. coniospora close to the truffle parasite Tolypocladium ophioglossoides, and Hirsutella minnesotensis, another nematophagous fungus. Ascomycete nematopathogenicity is polyphyletic; D. coniospora represents a branch that has not been molecularly characterized. A detailed in silico functional analysis, comparing D. coniospora to 11 fungal species, revealed genes and gene families potentially involved in virulence and showed it to be a highly specialized pathogen. A targeted comparison with nematophagous fungi highlighted D. coniospora-specific genes and a core set of genes associated with nematode parasitism. A comparative gene expression analysis of samples from fungal spores and mycelia, and infected C. elegans, gave a molecular view of the different stages of the D. coniospora lifecycle. Transformation of D. coniospora allowed targeted gene knock-out and the production of fungus that expresses fluorescent reporter genes. It also permitted the initial characterisation of a potential fungal counter-defensive strategy, involving interference with a host antimicrobial mechanism. This high-quality annotated genome for D. coniospora gives insights into the evolution and virulence of nematode-destroying fungi. Coupled with genetic transformation, it opens the way for molecular dissection of D. coniospora physiology, and will allow both sides of the interaction between D. coniospora and C. elegans, as well as the

  16. Investigations on fungal parasites of marine algae in India: An appraisal

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Raghukumar, S.

    stream_size 12 stream_content_type text/plain stream_name Recent_Adv_Phycol_1994_39.pdf.txt stream_source_info Recent_Adv_Phycol_1994_39.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  17. Fine-scale spatial genetic structure of a fungal parasite of coffee scale insects.

    Science.gov (United States)

    Jackson, Doug; Zemenick, Ash T; Malloure, Brian; Quandt, C Alisha; James, Timothy Y

    2016-09-01

    The entomopathogenic fungus Lecanicillium lecanii persists in a highly dynamic network of habitat patches (i.e., a metapopulation) formed by its primary host, the green coffee scale Coccus viridis. Lecanicillium lecanii is an important biological control of both C. viridis and the coffee rust, Hemileia vastatrix. Successfully managing this biocontrol agent will depend on an increased understanding of the characteristics of its dispersal, as migration between occupied and unoccupied patches is essential for the persistence of this metapopulation. In the present study, we employ a population genetics approach, and show that in our study system, a coffee farm in the Soconusco region of southern Mexico, L. lecanii is characterized by clear spatial genetic structure among plots within the farm but a lack of apparent structure at smaller scales. This is consistent with dispersal dominated by highly localized transport, such as by insects or rain splash, and less dependence on longer distance dispersal such as wind transport. The study site was dominated by a few multi-locus microsatellite genotypes, and their identities and large-scale locations persist across both study years, suggesting that local epizootics (outbreaks) are initiated each wet season by residual propagules from the previous wet season, and not by long-distance transport of propagules from other sites. The index of association, a measure of linkage disequilibrium, indicates that epizootics are primarily driven by asexual, clonal reproduction, which is consistent with the apparent lack of a teleomorph in the study site and the presence of only a single mating type across the site (MAT-1-2-1). Although the same predominant clonal genotypes were found across years, a drastic difference in genotypic diversity was witnessed across two sites between the two years, suggesting that interclonal selection was occurring. In light of the dispersal limitation of L. lecanii, spatial structure may be an essential axis of management to ensure the persistence of L. lecanii and preserve the ecosystem services provided by this versatile biocontrol agent in this and similar coffee farms. PMID:27449676

  18. Fine-scale spatial genetic structure of a fungal parasite of coffee scale insects.

    Science.gov (United States)

    Jackson, Doug; Zemenick, Ash T; Malloure, Brian; Quandt, C Alisha; James, Timothy Y

    2016-09-01

    The entomopathogenic fungus Lecanicillium lecanii persists in a highly dynamic network of habitat patches (i.e., a metapopulation) formed by its primary host, the green coffee scale Coccus viridis. Lecanicillium lecanii is an important biological control of both C. viridis and the coffee rust, Hemileia vastatrix. Successfully managing this biocontrol agent will depend on an increased understanding of the characteristics of its dispersal, as migration between occupied and unoccupied patches is essential for the persistence of this metapopulation. In the present study, we employ a population genetics approach, and show that in our study system, a coffee farm in the Soconusco region of southern Mexico, L. lecanii is characterized by clear spatial genetic structure among plots within the farm but a lack of apparent structure at smaller scales. This is consistent with dispersal dominated by highly localized transport, such as by insects or rain splash, and less dependence on longer distance dispersal such as wind transport. The study site was dominated by a few multi-locus microsatellite genotypes, and their identities and large-scale locations persist across both study years, suggesting that local epizootics (outbreaks) are initiated each wet season by residual propagules from the previous wet season, and not by long-distance transport of propagules from other sites. The index of association, a measure of linkage disequilibrium, indicates that epizootics are primarily driven by asexual, clonal reproduction, which is consistent with the apparent lack of a teleomorph in the study site and the presence of only a single mating type across the site (MAT-1-2-1). Although the same predominant clonal genotypes were found across years, a drastic difference in genotypic diversity was witnessed across two sites between the two years, suggesting that interclonal selection was occurring. In light of the dispersal limitation of L. lecanii, spatial structure may be an essential axis of management to ensure the persistence of L. lecanii and preserve the ecosystem services provided by this versatile biocontrol agent in this and similar coffee farms.

  19. Hypopyon in patients with fungal keratitis

    Institute of Scientific and Technical Information of China (English)

    XU Ling-juan; SONG Xiu-sheng; ZHAO Jing; SUN Shi-ying; XIE Li-xin

    2012-01-01

    Background Hypopyon is common in eyes with fungal keratitis.The evaluation of the clinical features,culture results and the risk factors for hypopyon and of the possible correlation between hypopyon and the treatment outcome could be helpful for making treatment decisions.Methods The medical records of 1066 inpatients (1069 eyes) with fungal keratitis seen at the Shandong Eye Institute from January 2000 to December 2009 were reviewed retrospectively for demographic features,risk factors,clinical characteristics,laboratory findings and treatment outcomes.The incidence of hypopyon,the fungal culture positivity for hypopyon,risk factors for hypopyon and the effect of hypopyon on the treatment and prognosis were determined.Results We identified 1069 eyes with fungal keratitis.Of the 850 fungal culture-positive eyes,the Fusarium species was the most frequent (73.6%),followed by Altemaria (10.0%) and Aspergillus (9.0%).Upon admission,562 (52.6%)eyes with hypopyon were identified.The hypopyon of 66 eyes was evaluated via fungal culturing,and 31 eyes (47.0%)were positive.A total of 194 eyes had ocular hypertension,and 172 (88.7%) of these eyes had hypopyon (P <0.001).Risk factors for incident hypopyon included long duration of symptoms (P <0.001),large lesion size (P <0.001) and infection caused by the Fusarium and Aspergillus species (P <0.001).The positivity of fungal culture for hypopyon was associated with duration of symptoms and lesion size.Surgical intervention was more common in cases with hypopyon (P <0.001).Hypopyon was a risk factor for the recurrence of fungal keratitis after corneal transplantation (P=0.002).Conclusions Hypopyon is common in patients with severe fungal keratitis and can cause ocular hypertension.About half of the hypopyon cases were positive based on fungal culture.Long duration of symptoms,large lesion size and infection with the Fusarium and Aspergillus species were risk factors for hypopyon.The presence of hypopyon

  20. An Ancient Protein Phosphatase, SHLP1, Is Critical to Microneme Development in Plasmodium Ookinetes and Parasite Transmission

    Directory of Open Access Journals (Sweden)

    Eva-Maria Patzewitz

    2013-03-01

    Full Text Available Signaling pathways controlled by reversible protein phosphorylation (catalyzed by kinases and phosphatases in the malaria parasite Plasmodium are of great interest, for both increased understanding of parasite biology and identification of novel drug targets. Here, we report a functional analysis in Plasmodium of an ancient bacterial Shewanella-like protein phosphatase (SHLP1 found only in bacteria, fungi, protists, and plants. SHLP1 is abundant in asexual blood stages and expressed at all stages of the parasite life cycle. shlp1 deletion results in a reduction in ookinete (zygote development, microneme formation, and complete ablation of oocyst formation, thereby blocking parasite transmission. This defect is carried by the female gamete and can be rescued by direct injection of mutant ookinetes into the mosquito hemocoel, where oocysts develop. This study emphasizes the varied functions of SHLP1 in Plasmodium ookinete biology and suggests that it could be a novel drug target for blocking parasite transmission.

  1. Oncogenic Brain Metazoan Parasite Infection

    Directory of Open Access Journals (Sweden)

    Angela N. Spurgeon

    2013-01-01

    Full Text Available Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100. The colocalization and temporal relationship of these two entities suggest a causal relationship.

  2. AN INTEGRATED APPROACH USING Bacillus subtilis B26 AND ESSENTIAL OILS TO LIMIT FUNGAL DISCOLORATION OF WOOD

    Directory of Open Access Journals (Sweden)

    Yu Wang,

    2012-06-01

    Full Text Available Bacillus subtilis and essential oils have been explored separately for their ability to limit colonization by wood stain and mold fungi, but neither approach has been completely effective. One alternative strategy would be to combine the bacterial biocontrol with one or more natural products extracts. In this report, the ability of combinations of B. subtilis B26 and 20 essential oils to limit fungal stain was explored on Douglas-fir sapwood wafers under controlled laboratory conditions. A number of extracts markedly improved the anti-fungal activity of B. subtilis B26, including 0.25% myrtlewood oil, 0.5% orange oil, 0.5% lime oil, and 1% Leyland cypress needles oil, which yielded improvements by 2 to 8 times. However, none of the combinations completely protected the wood from fungal attack. The results illustrate the difficulties associated with controlling the diverse array of organisms that can colonize freshly cut wood.

  3. Secondary Metabolites Control the Associated Bacterial Communities of Saprophytic Basidiomycotina Fungi

    OpenAIRE

    de Carvalho, Maira Peres; Türck, Patrick; Abraham, Wolf-Rainer

    2015-01-01

    Fungi grow under humid conditions and are, therefore, prone to biofilm infections. A 16S rRNA fingerprint analysis was performed on 49 sporocarps of Basidiomycotina in order to determine whether they are able to control these biofilms. Ninety-five bacterial phylotypes, comprising 4 phyla and 10 families, were identified. While ectomycorrhizal fungi harbored the highest bacterial diversity, saprophytic fungi showed little or no association with bacteria. Seven fungal species were screened for ...

  4. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens

    Directory of Open Access Journals (Sweden)

    Read Andrew F

    2009-04-01

    Full Text Available Abstract Background Temperature is a critical determinant of the development of malaria parasites in mosquitoes, and hence the geographic distribution of malaria risk, but little is known about the thermal preferences of Anopheles. A number of other insects modify their thermal behaviour in response to infection. These alterations can be beneficial for the insect or for the infectious agent. Given current interest in developing fungal biopesticides for control of mosquitoes, Anopheles stephensi were examined to test whether mosquitoes showed thermally-mediated behaviour in response to infection with fungal entomopathogens and the rodent malaria, Plasmodium yoelii. Methods Over two experiments, groups of An. stephensi were infected with one of three entomopathogenic fungi, and/or P. yoelii. Infected and uninfected mosquitoes were released on to a thermal gradient (14 – 38°C for "snapshot" assessments of thermal preference during the first five days post-infection. Mosquito survival was monitored for eight days and, where appropriate, oocyst prevalence and intensity was assessed. Results and conclusion Both infected and uninfected An. stephensi showed a non-random distribution on the gradient, indicating some capacity to behaviourally thermoregulate. However, chosen resting temperatures were not altered by any of the infections. There is thus no evidence that thermally-mediated behaviours play a role in determining malaria prevalence or that they will influence the performance of fungal biopesticides against adult Anopheles.

  5. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    Science.gov (United States)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  6. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats.

    Science.gov (United States)

    Comeau, André M; Vincent, Warwick F; Bernier, Louis; Lovejoy, Connie

    2016-01-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling. PMID:27444055

  7. Putative Rust Fungal Effector Proteins in Infected Bean and Soybean Leaves.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; Beard, Hunter S; Garrett, Wesley M; Islam, Nazrul

    2016-05-01

    The plant-pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but their effector repertoires are not understood. The discovery of rust fungus effectors may eventually help guide decisions and actions that mitigate crop production loss. Therefore, we used mass spectrometry to identify thousands of proteins in infected beans and soybeans and in germinated fungal spores. The comparative analysis between the two helped differentiate a set of 24 U. appendiculatus proteins targeted for secretion that were specifically found in infected beans and a set of 34 U. appendiculatus proteins targeted for secretion that were found in germinated spores and infected beans. The proteins specific to infected beans included family 26 and family 76 glycoside hydrolases that may contribute to degrading plant cell walls. There were also several types of proteins with structural motifs that may aid in stabilizing the specialized fungal haustorium cell that interfaces the plant cell membrane during infection. There were 16 P. pachyrhizi proteins targeted for secretion that were found in infected soybeans, and many of these proteins resembled the U. appendiculatus proteins found in infected beans, which implies that these proteins are important to rust fungal pathology in general. This data set provides insight to the biochemical mechanisms that rust fungi use to overcome plant immune systems and to parasitize cells.

  8. "Candidatus Mesochlamydia elodeae" (Chlamydiae: Parachlamydiaceae), a novel chlamydia parasite of free-living amoebae.

    Science.gov (United States)

    Corsaro, Daniele; Müller, Karl-Dieter; Wingender, Jost; Michel, Rolf

    2013-02-01

    Vannella sp. isolated from waterweed Elodea sp. was found infected by a chlamydia-like organism. This organism behaves like a parasite, causing the death through burst of its host. Once the vannellae degenerated, the parasite was successfully kept in laboratory within a Saccamoeba sp. isolated from the same waterweed sample, which revealed in fine through electron microscopy to harbor two bacterial endosymbionts: the chlamydial parasite we introduce and another endosymbiont initially and naturally present in the host. Herein, we provide molecular-based identification of both the amoeba host and its two endosymbionts, with special focus on the chlamydia parasite. High sequence similarity values of the 18S rDNA permitted to assign the amoeba to the species Saccamoeba lacustris (Amoebozoa, Tubulinea). The bacterial endosymbiont naturally harbored by the host belonged to Sphingomonas koreensis (Alpha-Proteobacteria). The chlamydial parasite showed a strict specificity for Saccamoeba spp., being unable to infect a variety of other amoebae, including Acanthamoeba, and it was itself infected by a bacteriophage. Sequence similarity values of the 16S rDNA and phylogenetic analysis indicated that this strain is a new member of the family Parachlamydiaceae, for which we propose the name "Candidatus Mesochlamydia elodeae."

  9. Expansion of the aspartate [beta]-semialdehyde dehydrogenase family: the first structure of a fungal ortholog

    Energy Technology Data Exchange (ETDEWEB)

    Arachea, B.T.; Liu, X.; Pavlovsky, A.G.; Viola, R.E. (Toledo)

    2010-08-13

    The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion of a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.

  10. Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain "IK726"

    DEFF Research Database (Denmark)

    Jensen, Dan Funck; Knudsen, Inge M.B.; Lübeck, Mette;

    2007-01-01

    . Among the success stories for control of seed- and soilborne diseases are fungal biocontrol agents based on Trichoderma harzianum, Clonostachys rosea and Conithyrium minitans, and bacterial biocontrol agents based on strains of Agrobacterium, Pseudomonas and Streptomyces. We have developed C. rosea...

  11. Sacral Rachipagus Parasite: A Case Report.

    Science.gov (United States)

    Rattan, Kamal Nain; Singh, Jasbir; Dalal, Poonam; Sonika, Pallavi; Rattan, Ananta

    2016-01-01

    We are reporting a case of sacral rachipagus parasite which was vaginally delivered as a large irregular mass attached to the sacral region by a vascular pedicle. This case was managed successfully by surgical excision of parasite.

  12. Sacral Rachipagus Parasite: A Case Report

    Directory of Open Access Journals (Sweden)

    Kamal Nain Rattan

    2016-03-01

    Full Text Available We are reporting a case of sacral rachipagus parasite which was vaginally delivered as a large irregular mass attached to the sacral region by a vascular pedicle. This case was managed successfully by surgical excision of parasite.

  13. Travel/Travelers and Parasitic Diseases

    Science.gov (United States)

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Travel/Travelers Recommend on Facebook Tweet Share Compartir International ... The Parasitic Illnesses That Can Be Acquired During Travel* Contaminated Food and Water More Common giardiasis cryptosporidiosis ...

  14. Parasitic Diseases - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Parasitic Diseases URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Parasitic Diseases - Multiple Languages To use the sharing features on ...

  15. Can Parasites Really Reveal Environmental Impact?

    Science.gov (United States)

    This review assesses the usefulness of parasites as bioindicators of environmental impact. Relevant studies published in the past decade were compiled; factorial meta-analysis demonstrated significant effects and interactions between parasite levels and the presence and concentra...

  16. Decoys in Predation and Parasitism

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2003-01-01

    Predator-prey or host-parasite dynamics can be altered by the presence of other species through several mechanisms. One such mechanism is the ‘‘decoy effect,’’ which itself can take a variety of forms. In its simplest form, the third species, which is inedible to the predator, nonetheless interferes

  17. Host genetics and parasitic infections.

    Science.gov (United States)

    Mangano, V D; Modiano, D

    2014-12-01

    Parasites still impose a high death and disability burden on human populations, and are therefore likely to act as selective factors for genetic adaptations. Genetic epidemiological investigation of parasitic diseases is aimed at disentangling the mechanisms underlying immunity and pathogenesis by looking for associations or linkages between loci and susceptibility phenotypes. Until recently, most studies used a candidate gene approach and were relatively underpowered, with few attempts at replicating findings in different populations. However, in the last 5 years, genome-wide and/or multicentre studies have been conducted for severe malaria, visceral leishmaniasis, and cardiac Chagas disease, providing some novel important insights. Furthermore, studies of helminth infections have repeatedly shown the involvement of common loci in regulating susceptibility to distinct diseases such as schistosomiasis, ascariasis, trichuriasis, and onchocherciasis. As more studies are conducted, evidence is increasing that at least some of the identified susceptibility loci are shared not only among parasitic diseases but also with immunological disorders such as allergy or autoimmune disease, suggesting that parasites may have played a role in driving the evolution of the immune system. PMID:25273270

  18. Parasitism and mutualism in Wolbachia

    DEFF Research Database (Denmark)

    Bordenstein, Seth R; Paraskevopoulos, Charalampos; Dunning Hotopp, Julie C;

    2009-01-01

    Ecological and evolutionary theories predict that parasitism and mutualism are not fixed endpoints of the symbiotic spectrum. Rather, parasitism and mutualism may be host or environment dependent, induced by the same genetic machinery, and shifted due to selection. These models presume the existe......Ecological and evolutionary theories predict that parasitism and mutualism are not fixed endpoints of the symbiotic spectrum. Rather, parasitism and mutualism may be host or environment dependent, induced by the same genetic machinery, and shifted due to selection. These models presume...... the existence of genetic or environmental variation that can spur incipient changes in symbiotic lifestyle. However, for obligate intracellular bacteria whose genomes are highly reduced, studies specify that discrete symbiotic associations can be evolutionarily stable for hundreds of millions of years...... in symbiotic lifestyle with a comprehensive, phylogenomic analysis. Contrary to previous claims, we show unequivocally that the transition in lifestyle cannot be reconstructed with current methods due to long-branch attraction (LBA) artifacts of the distant Anaplasma and Ehrlichia outgroups. Despite the use...

  19. The role of parasites and fungi in secondary infertility

    Directory of Open Access Journals (Sweden)

    Kranjčić-Zec Ivana F.

    2004-01-01

    Full Text Available Introduction Parasite-host relationships can cause diminished or absent ability to conceive, ectopic pregnancy or pregnancy with undesired course. Literature review There are reports that some protozoa, helminths and fungi may impair women's reproductive capacity, causing deformites of genital tract, so that conception is impossible, or, if it does occur, normal implantation and development of placenta are impossible. Schistosoma haematobium may cause vulvar papule, swelling, tumors, irregular vaginal hemorrhage, tubular infertility and ectopic pregnancies. Patients with cirrhosis caused by schistosomas have gonadal dysfunction and schistosomiasis itself can lead to tubular infertility. Some authors found microfilaria of Mansonella perstans in folicular aspirates in patients with tubular adhesions. Chronic Entamoeba histolytica infection can cause pelvic pain and dyspareunia in some patients. Although Trichomonas vaginalis is a common cause of tubal inflammation, this protozoa affects semen quality and leads to secondary infertility. Soluble parasite extract of T. vaginalis can lead to impaired motility of 50% spermatozoa in vitro and affects semen quality by increased viscosity and amount of debris, or damage spermatozoid membrane. In enterobiosis, presence of adult worms and eggs in fallopian tube, can be followed by chronic salpingitis and tubal occlusion. Also in ascariosis, presence of adult forms and eggs can lead to acute colpitis, chronic endometritis, salpingitis or ovarian abscess. The concequence of fungal infections, such as colpitis and endometritis, caused by Candida albicans, may be infertility. Also, according to some reports, C. albicans leads to decreased spermatozoan motility. Conclusion Hence parasites and fungi can cause infertility, we recommend examination of both partners in treatment of infertility.

  20. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  1. Complement and fungal pathogens: an update.

    Science.gov (United States)

    Speth, Cornelia; Rambach, Günter; Würzner, Reinhard; Lass-Flörl, Cornelia

    2008-11-01

    Fungal infections are a serious complication in immunocompromised patients such as human immunodeficiency virus-infected individuals, patients with organ transplantations or with haematological neoplasia. The lethality of opportunistic fungal infection is high despite a growing arsenal of antimycotic drugs, implying the urgent need for supportive immunological therapies to strengthen the current inefficient antimicrobial defences of the immunocompromised host. Therefore, increasing effort has been directed to investigating the interplay between fungi and the host immunity and thus to find starting points for additional therapeutic approaches. In this article, we review the actual state of the art concerning the role of complement in the pathogenesis of fungal infections. Important aspects include the activation of the complement system by the fungal pathogen, the efficiency of the complement-associated antimicrobial functions and the arsenal of immune evasion strategies applied by the fungi. The twin functions of complement as an interactive player of the innate immunity and at the same time as a modulator of the adaptive immunity make this defence weapon a particularly interesting therapeutic candidate to mobilise a more effective immune response and to strengthen in one fell swoop a broad spectrum of different immune reactions. However, we also mention the 'Yin-Yang' nature of the complement system in fungal infections, as growing evidence assigns to complement a contributory part in the pathogenesis of fungus-induced allergic manifestations. PMID:18705662

  2. Proteomics of survival structures of fungal pathogens.

    Science.gov (United States)

    Loginov, Dmitry; Šebela, Marek

    2016-09-25

    Fungal pathogens are causal agents of numerous human, animal, and plant diseases. They employ various infection modes to overcome host defense systems. Infection mechanisms of different fungi have been subjected to many comprehensive studies. These investigations have been facilitated by the development of various '-omics' techniques, and proteomics has one of the leading roles in this regard. Fungal conidia and sclerotia could be considered the most important structures for pathogenesis as their germination is one of the first steps towards a host infection. They represent interesting objects for proteomic studies because of the presence of unique proteins with unexplored biotechnological potential required for pathogen viability, development and the subsequent host infection. Proteomic peculiarities of survival structures of different fungi, including those of biotechnological significance (e.g., Asperillus fumigatus, A. nidulans, Metarhizium anisopliae), in a dormant state, as well as changes in the protein production during early stages of fungal development are the subjects of the present review. We focused on biological aspects of proteomic studies of fungal survival structures rather than on an evaluation of proteomic approaches. For that reason, proteins that have been identified in this context are discussed from the point of view of their involvement in different biological processes and possible functions assigned to them. This is the first review paper summarizing recent advances in proteomics of fungal survival structures. PMID:26777984

  3. Fungal endophytes: modifiers of plant disease.

    Science.gov (United States)

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation. PMID:26646287

  4. Fungal Involvement in Patients with Paranasal Sinusitis

    Directory of Open Access Journals (Sweden)

    P Kordbacheh

    2004-08-01

    Full Text Available Fungal involvement of the paranasal sinuses is frequently observed in the immunocompromised host and it can become lifethreatening if it is not diagnosed. Definitive diagnosis is made by tissue biopsy and culture. In this study biopsy materials of maxillary, ethmoidal and frontal sinuses of 60 patients with clinical manifestation of sinusitis and no response to medical therapy were assessed by mycological and pathological methods for the presence of fungi. Invasive fungal sinusitis was diagnosed in 3 patients and etiologic agents were Candida albicans, Rhizopus sp. and Aspergillus fumigatus. Predisposing factors in these patients were leukemia, diabetes mellitus and previous sinus and polyp surgery, respectively. Allergic fungal sinusitis also was seen in one patient and Alternaria sp. isolated from the biopsy material. Only the patient with allergic form of disease survived but all the patients with invasive form of fungal infection were expired. This clearly underscores the need of early recognition of fungal sinusitis in at risk population in order to start urgent treatment. In this study Nocardia asteroids also was isolated from the biopsy sample in a patient with sinunasal adenocarcinoma.

  5. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  6. Prevalence of Intestinal Parasites Infestation in Surat City of South Gujarat. A Hospital Based Study

    Directory of Open Access Journals (Sweden)

    Mandakini M Patel, Prashant R Patel, Bhavna Gamit, Jigna Modi, Suresh Padsala

    2014-01-01

    Full Text Available Introduction: Pathological intestinal infection by parasites causes malnutrition, decreased immunity, protein loss, mucosal loss in infants and lymphatic leakage and local hemorrhage. In developing countries parasitic infections are more prevalent than bacterial infection and causes significant morbidities. This study was undertaken to comprehend the prevalence of parasitic infections. Material and Methods: Both outdoor as well as indoor patients taking treatment in New Civil Hospital, Surat were included in present study. Naked eye physical examination, microscopic examination was carried out. Pa-rasites were identified in the received stool samples. All data were entered into excel spreadsheet 2007. The percentages of the parasites presents were calculated to find out prevalence of parasite infestations and data were analyzed for interpretation. Results: Total 1170 samples were included in present study, out of which 65 (5.56% were positive either for protozoal or helminthic infections. Helminth Infestation found in 45 (65.21% cases while Protozoal infestation found in 24 (34.79% cases while 4 (6.15% cases showed mixed infection of helminth and protozoa. Children under 18 years of age (6.23% were more commonly affected than adults (4.92%. The most common parasite encountered in present study was Giardia Lamblia (28.99% followed by Hymenolepys Nana (20.29%. Conclusion: The present study showed low prevalence of intestinal parasites might be due to improved sanitary practices, personal hygiene, safe drinking water and health awareness. Children showed higher pre-valence for intestinal parasites in comparison with adults. Prevalence of helminthes was higher than protozoa in present study.

  7. Emerging parasitic diseases of sheep.

    Science.gov (United States)

    Taylor, M A

    2012-09-30

    There have been changes in the emergence and inability to control of a number of sheep parasitic infections over the last decade. This review focuses on the more globally important sheep parasites, whose reported changes in epidemiology, occurrence or failure to control are becoming increasingly evident. One of the main perceived driving forces is climate change, which can have profound effects on parasite epidemiology, especially for those parasitic diseases where weather has a direct effect on the development of free-living stages. The emergence of anthelmintic-resistant strains of parasitic nematodes and the increasing reliance placed on anthelmintics for their control, can exert profound changes on the epidemiology of those nematodes causing parasitic gastroenteritis. As a consequence, the effectiveness of existing control strategies presents a major threat to sheep production in many areas around the world. The incidence of the liver fluke, Fasciola hepatica, is inextricably linked to high rainfall and is particularly prevalent in high rainfall years. Over the last few decades, there have also been increasing reports of other fluke associated diseases, such as dicroceliosis and paramphistomosis, in a number of western European countries, possibly introduced through animal movements, and able to establish with changing climates. External parasite infections, such as myiasis, can cause significant economic loss and presents as a major welfare problem. The range of elevated temperatures predicted by current climate change scenarios, result in an elongated blowfly season with earlier spring emergence and a higher cumulative incidence of fly strike. Additionally, legislative decisions leading to enforced changes in pesticide usage and choices have resulted in increased reports and spread of ectoparasitic infections, particularly mite, lice and tick infestations in sheep. Factors, such as dip disposal and associated environmental concerns, and, perhaps more

  8. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection

    Directory of Open Access Journals (Sweden)

    Himaman Winanda

    2011-05-01

    Full Text Available Abstract Background Parasites that manipulate host behavior can provide prominent examples of extended phenotypes: parasite genomes controlling host behavior. Here we focus on one of the most dramatic examples of behavioral manipulation, the death grip of ants infected by Ophiocordyceps fungi. We studied the interaction between O. unilateralis s.l. and its host ant Camponotus leonardi in a Thai rainforest, where infected ants descend from their canopy nests down to understory vegetation to bite into abaxial leaf veins before dying. Host mortality is concentrated in patches (graveyards where ants die on sapling leaves ca. 25 cm above the soil surface where conditions for parasite development are optimal. Here we address whether the sequence of ant behaviors leading to the final death grip can also be interpreted as parasite adaptations and describe some of the morphological changes inside the heads of infected workers that mediate the expression of the death grip phenotype. Results We found that infected ants behave as zombies and display predictable stereotypical behaviors of random rather than directional walking, and of repeated convulsions that make them fall down and thus precludes returning to the canopy. Transitions from erratic wandering to death grips on a leaf vein were abrupt and synchronized around solar noon. We show that the mandibles of ants penetrate deeply into vein tissue and that this is accompanied by extensive atrophy of the mandibular muscles. This lock-jaw means the ant will remain attached to the leaf after death. We further present histological data to show that a high density of single celled stages of the parasite within the head capsule of dying ants are likely to be responsible for this muscular atrophy. Conclusions Extended phenotypes in ants induced by fungal infections are a complex example of behavioral manipulation requiring coordinated changes of host behavior and morphology. Future work should address the

  9. Meningitis bacteriana Bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Ana Teresa Alvarado Guevara

    2006-03-01

    causales son virales lo cual conlleva a las diferentes sub-clasificaciones. También en ciertos casos puede ser ocasionada por hongos, bacterias atípicas, micobacterias y parásitos.In Costa Rica the bacterial meningitis had turn into a high-priority subject in which to monitoring epidemiologist. It had been talked about in the last months, to dice an increase in the attention is published of this subject, due to this phenomenon it becomes necessary to make a revision of topic. Meningitis is an inflammation of leptomeninges and colonization of the subarachnoid cerebrospinal fluid (LCR due to different agents, which produces meningeal symptoms (ex. migraine, neck rigidity, and photophobia and pleocytosis in LCR. De pending on the variables to take into account is possible to group it in different classifications, taking into account the time of evolution are possible to be divided in acute or chronic, to first with few hours or days of beginning of the symptoms, whereas the chronicle also presents a silence course but of the disease of approximately 4 weeks of instauration. There is a difference according to its etiologic agent; they can be infectious and non-infectious. Examples of common non-infectious causes include medications (ex, nonsteroidal anti-inflammatory drugs, and antibiotics and carcinomatosis. A classification exists as well according to the causal agent. The acute bacterial meningitis remarks a bacterial origin of the syndrome, which characterizes by the by an acute onset of meningeal symptoms and neutrophilic pleocytosis. Each one of the bacteriological agents, parasitic or fungus finishes by characterizing the different presentations of the clinical features (ex, meningocóccica meningitis, Cryptococcus meningitis. Finally, there is also the aseptic meningitis, denominated in this form because it’s nonpyogenic cellular response caused by many types of agents. The patients show an acute beginning of symptoms, fever and lymphocytic pleocytosis. After

  10. Immigration, parasitic infection, and United States religiosity.

    Science.gov (United States)

    Wall, Jaimie N; Shackelford, Todd K

    2012-04-01

    Fincher & Thornhill (F&T) present a powerful case for the relationship between parasite-stress and religiosity. We argue, however, that the United States may be more religious than can be accounted for by parasite-stress. This greater religiosity might be attributable to greater sensitivity to immigration, which may hyperactivate evolved mechanisms that motivate avoidance of potential carriers of novel parasites.

  11. 9 CFR 381.88 - Parasites.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Parasites. 381.88 Section 381.88 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.88 Parasites. Organs or other parts of carcasses which are found to be infested with parasites,...

  12. Microbial communities of urban stormwater sediments: the phylogenetic structure of bacterial communities varies with porosity.

    Science.gov (United States)

    Badin, Anne-Laure; Mustafa, Tarfa; Bertrand, Cédric; Monier, Armelle; Delolme, Cécile; Geremia, Roberto A; Bedell, Jean-Philippe

    2012-08-01

    This study focuses on the distribution of bacterial and fungal communities within the microstructure of a multi-contaminated sedimentary layer resulting from urban stormwater infiltration. Fractionation was performed on the basis of differential porosity and aggregate grain size, resulting in five fractions: leachable fitting macroporosity, 1000 μm. Amounts of both bacterial and fungal biomasses are greater in the < 10 μm and leachable fractions. The aggregates contain numerous bacteria but very low amounts of fungal biomass. Single-strand conformational polymorphism molecular profiles highlighted the differences between bacterial and fungal communities of the leachable fraction and those of the aggregates. Random Sanger sequencing of ssu clones revealed that these differences were mainly because of the presence of Epsilonproteobacteria and Firmicutes in the leachable fractions, while the aggregates contained more Cyanobacteria. The Cyanobacteria phylotypes in the aggregates were dominated by the sequences related to Microcoleus vaginatus while the leachable fractions presented the sequences of chloroplastic origin. Therefore, more than 50% of the phylotypes observed were related to Proteobacteria while 40% were related to Cyanobacteria and Bacteroidetes. Preferential distribution of clades in almost all the phyla or classes detected was observed. This study provides insight into the identities of dominant members of the bacterial communities of urban sediments. Microcoleus vaginatus appeared to predominate in pioneer soils. PMID:22404135

  13. Role of Gap Junctions and Hemichannels in Parasitic Infections

    Directory of Open Access Journals (Sweden)

    José Luis Vega

    2013-01-01

    Full Text Available In vertebrates, connexins (Cxs and pannexins (Panxs are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented.

  14. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  15. Biosorption of radionuclides by fungal biomass

    International Nuclear Information System (INIS)

    Four kinds of bioreactor were evaluated for thorium removal by fungal biomass. An air-lift bioreactor removed approximately 90-95% of the thorium supplied over extended time periods and exhibited a well-defined breakthrough point after biosorbent saturation. The air-lift bioreactor promoted efficient circulation and effective contact between the thorium solution and the mycelial pellets. Of several fungal species tested, Rhizopus arrhizus and Aspergillus niger were the most effective biosorbents. The efficiency of thorium biosorption by A. niger was markedly reduced in the presence of other inorganic solutes while thorium biosorption by R. arrhizus was relatively unaffected. Air-lift bioreactors containing R. arrhizus biomass could effectively remove thorium from acidic solution over a wide range of initial thorium concentrations. The biotechnological application and significance of these results are discussed in the wider context of fungal biosorption of radionuclides. (author)

  16. Identification & Characterization of Fungal Ice Nucleation Proteins

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  17. Fractal dimension based corneal fungal infection diagnosis

    Science.gov (United States)

    Balasubramanian, Madhusudhanan; Perkins, A. Louise; Beuerman, Roger W.; Iyengar, S. Sitharama

    2006-08-01

    We present a fractal measure based pattern classification algorithm for automatic feature extraction and identification of fungus associated with an infection of the cornea of the eye. A white-light confocal microscope image of suspected fungus exhibited locally linear and branching structures. The pixel intensity variation across the width of a fungal element was gaussian. Linear features were extracted using a set of 2D directional matched gaussian-filters. Portions of fungus profiles that were not in the same focal plane appeared relatively blurred. We use gaussian filters of standard deviation slightly larger than the width of a fungus to reduce discontinuities. Cell nuclei of cornea and nerves also exhibited locally linear structure. Cell nuclei were excluded by their relatively shorter lengths. Nerves in the cornea exhibited less branching compared with the fungus. Fractal dimensions of the locally linear features were computed using a box-counting method. A set of corneal images with fungal infection was used to generate class-conditional fractal measure distributions of fungus and nerves. The a priori class-conditional densities were built using an adaptive-mixtures method to reflect the true nature of the feature distributions and improve the classification accuracy. A maximum-likelihood classifier was used to classify the linear features extracted from test corneal images as 'normal' or 'with fungal infiltrates', using the a priori fractal measure distributions. We demonstrate the algorithm on the corneal images with culture-positive fungal infiltrates. The algorithm is fully automatic and will help diagnose fungal keratitis by generating a diagnostic mask of locations of the fungal infiltrates.

  18. Mucormycosis: a devastating fungal infection in diabetics

    International Nuclear Information System (INIS)

    Mucormycosis is a highly invasive, devastating and usually fatal fungal infection of the sinuses, brain, or lungs that occurs primarily in people with immune disorders. Despite advances in diagnosis and treatment, a high mortality still exists. We present a middle aged diabetic male with this serious fungal infection involving nose, paranasal area and adjacent periorbital regions with a high risk of progressing further towards the dura mater. He was promptly diagnosed and managed with serial surgical debridements with systemic antifungals and was later fitted with a nasal prosthesis. (author)

  19. Fungal outbreak in a show cave.

    Science.gov (United States)

    Jurado, V; Porca, E; Cuezva, S; Fernandez-Cortes, A; Sanchez-Moral, S; Saiz-Jimenez, C

    2010-08-01

    Castañar de Ibor Cave (Spain) was discovered in 1967 and declared a Natural Monument in 1997. In 2003 the cave was opened to public visits. Despite of extensive control, on 26 August 2008 the cave walls and sediments appeared colonized by long, white fungal mycelia. This event was the result of an accidental input of detritus on the afternoon of 24 August 2008. We report here a fungal outbreak initiated by Mucor circinelloides and Fusarium solani and the methods used to control it.

  20. Tropospheric ozone as a fungal elicitor

    Indian Academy of Sciences (India)

    Paolo Zuccarini

    2009-03-01

    Tropospheric ozone has been proven to trigger biochemical plant responses that are similar to the ones induced by an attack of fungal pathogens, i.e. it resembles fungal elicitors. This suggests that ozone can represent a valid tool for the study of stress responses and induction of resistance to pathogens. This review provides an overview of the implications of such a phenomenon for basic and applied research. After an introduction about the environmental implications of tropospheric ozone and plant responses to biotic stresses, the biochemistry of ozone stress is analysed, pointing out its similarities with plant responses to pathogens and its possible applications.