WorldWideScience

Sample records for bacterial ferric ion

  1. Thermodynamics of ion-exchange on ferric antimonate

    International Nuclear Information System (INIS)

    Rawat, J.P.; Muktawat, K.P.S.

    1981-01-01

    A simple approach to ion-exchange equilibria on ferric antimonate has been applied. The values of selectivity coefficients for Ba 2+ , Mg 2+ , Ca 2+ and Sr 2+ have been measured using equilibrium experiments at constant ionic strength and at different temperatures from 20 to 60 0 C. The thermodynamic equilibrium constant and values of ΔG 0 , ΔH 0 and ΔS 0 are reported. (author)

  2. Removing ferric ions from concentrated acid leaching solution of an uranium ore by jarosite

    International Nuclear Information System (INIS)

    Song Huanbi; Hu Yezang

    1997-01-01

    The author expounds the fundamental rules of removing ferric ions by jarosite and presents results of removing ferric ions from concentrated acid curing-trickle leaching solution of an uranium ore. It turns out that the method can be applied to uranium hydrometallurgical process effectively

  3. Binding of ferric ions is essential for the biological activity of glycine-extended gastrin

    International Nuclear Information System (INIS)

    Baldwin, G.S.; Pannequin, J.; Hollande, F.; Shulkes, A.

    2002-01-01

    Full text: Non-amidated gastrins, such as glycine-extended gastrin17 (Ggly), are now known to be biologically active. Ggly stimulates cell proliferation and migration, and was recently shown to bind two ferric ions with high affinity. The objective of the present work was to define the structure of Ggly for the first time, and to investigate the role of ferric ions in biological activity. Methods: The structure of Ggly, and the identity of the ammo acids that act as ferric ion ligands, were determined by NMR and fluorescence spectroscopy. The effect on the gastric epithelial cell line IMGE-5 of Ggly fragments, and of Ggy mutants with some or all of the five consecutive glutamate residues replaced by alanine, was measured in terms of cell proliferation, cell migration and phosphorylation of focal adhesion kinase. Results: Ggly adopts a well-defined loop stabilised by hydrophobic interactions between Leu5, Tyrl2, Trp 14 and Phe17. Studies with Ggly fragments indicated that ferric ions bind via the pentaglutamate sequence, which is necessary but not sufficient for full activity Selective replacement of some or all of the glutamates results in a reduction in ferric ion binding, and complete loss of biological activity. Conclusion: Our results are consistent with the hypothesis that ferric ion binding is necessary for biological activity

  4. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Pengyi; Pan Gang; Chen Hao

    2008-01-01

    The great enhancement of ferric ion on the photochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) under 254 nm UV light was reported. In the presence of 10 μM ferric ion, 47.3% of initial PFOA (48 μM) was decomposed and the defluorination ratio reached 15.4% within 4 h reaction time. While the degradation and defluorination ratio greatly increased to 80.2% and 47.8%, respectively, when ferric ion concentration increased to 80 μM, and the corresponding half-life was shortened to 103 min. Though the decomposition rate was significantly lowered under nitrogen atmosphere, PFOA was efficiently decomposed too. Other metal ions like Cu 2+ and Zn 2+ also slightly improved the photochemical decomposition of PFOA under irradiation of 254 nm UV light. Besides fluoride ion, other intermediates during PFOA decomposition including formic acid and five shorter-chain perfluorinated carboxylic acids (PFCAs) with C7, C6, C5, C4 and C3, respectively, were identified and quantified by IC or LC/MS. The mixture of PFOA and ferric ion had strong absorption around 280 nm. It is proposed that PFOA coordinates with ferric ion to form a complex, and its excitation by 254 nm UV light leads to the decomposition of PFOA in a stepwise way

  5. Effect of Ferric Ions on Bioleaching of Pentlandite Concentrate

    Science.gov (United States)

    Li, Qian; Lai, Huimin; Yang, Yongbin; Xu, Bin; Jiang, Tao; Zhang, Yaping

    The intensified effects of ferric phosphate and ferric sulfate as nutrient and oxidant on the bioleaching of pentlandite concentrate with Acidithiobacillus ferrooxidans and Sulfobacillus thermosulfidooxidans were studied. The results showed that the nickel leaching rate was enhanced continuously with FePO4 or Fe2(SO4)3 added in certain extent, but declined at excess. For A. ferrooxidans, the optimum additive amount of Fe2(SO4)3 was 6.63mM/L and the nickel leaching rate reached 71.76%. Compared with Fe2(SO4)3, the optimum additive amount of FePO4 was 26.52mM/L for both strains. For A. ferrooxidans and S. thermosulfidooxidans, the nickel leaching rate could increase to 98.06% and 98.11% which was 1.83 times and 1.55 times of the leachig rate of blank test, respectively.

  6. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    Science.gov (United States)

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  7. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    Science.gov (United States)

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simulation of ferric ions transfer in dosemeter Fricke-Xylenol-Gel in means no homogeneous

    International Nuclear Information System (INIS)

    Milani, Caio J.; Bevilacqua, Joyce da Silva; Cavinato, Christianne C.; Rodrigues Junior, Orlando; Campos, Leticia L.

    2013-01-01

    Dosimetry in three dimensions using Fricke-Xilenol-Gel dosimeters (FXG) allows the confirmation and a better understanding of a treatment by Radiotherapy. The technique involves the assessment of the irradiated volumes by magnetic resonance imaging (MRI) or optical-CT. On both cases, the time elapsed between the irradiation and the measurement is an important factor in the quality of results. The quality of the images can be compromised by the mobility of the ferric ions (Fe 3+ ), formed during the the interaction of the radiation with the matter, increasing the uncertainty in the determination of the isodoses in the volume. In this work, the phenomenon of the diffusion of the ferric ions formed by an irradiated region is simulated in a bidimensional domain. The dynamic of the Fe 3+ in Fricke-Gel is modeled by a parabolic partial differential equation and solved by the ADI-Peaceman-Rachford algorithm. Stability and consistency of the method guarantee the convergence of the numerical solution for a pre-defined error magnitude, based on choices for the discretization values of time and space. Homogeneous and non-homogeneous cases are presented considering an irradiated region and a physical barrier that prevents the movement of the ions, on the non-homogeneous case. Graphical visualizations of the phenomenon are presented for better understanding of the process. (author)

  9. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    International Nuclear Information System (INIS)

    Peng Zhang'e; Wu Feng; Deng Nansheng

    2006-01-01

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe 3+ ions was investigated. Algae, humic acid and Fe 3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10 9 cells L -1 raw Chlorella vulgaris, 4 mg L -1 humic acid and 20 μmol L -1 Fe 3+ . The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment

  10. Diffusion simulation of ferric ions in dosemeter Fricke-gel with variable diffusion coefficient

    International Nuclear Information System (INIS)

    Milani, Caio Jacob; Bevilacqua, Joyce da Silva; Rodrigues Junior, Orlando

    2014-01-01

    Dosimetry using dosimeters Fricke-xylenol-Gel (FXG) allows confirmation and better understanding of radiotherapy treatments. The technique involves the evaluation of volumes irradiated by magnetic resonance imaging (MRI) or CT-optical. In both cases, the time spent between the irradiation and measurement is an important factor that directly influences the results. The quality of the images can be compromised by the mobility of ferric ions (Fe 3+), formed during the interaction of radiation with matter, increasing the uncertainty in determining the isodose. In this work, we simulated the dynamic involving ferric ions formed in one irradiated region irradiated in a two-dimensional domain with a variable diffusion coefficient. This phenomenon is modeled by a differential equation and solved numerically by an efficient algorithm that generalizes the Crank-Nicolson method. The stability and consistency of the method guarantee the convergence of the numerical solution for a predefined tolerance based in the choice of discretization steps of time and space. Different continuous functions were chosen to represent the diffusion coefficient and graphical views of the phenomenon are presented for a better understanding of the process

  11. Ferrous and ferric ions-based high-throughput screening strategy for nitrile hydratase and amidase.

    Science.gov (United States)

    Lin, Zhi-Jian; Zheng, Ren-Chao; Lei, Li-Hua; Zheng, Yu-Guo; Shen, Yin-Chu

    2011-06-01

    Rapid and direct screening of nitrile-converting enzymes is of great importance in the development of industrial biocatalytic process for pharmaceuticals and fine chemicals. In this paper, a combination of ferrous and ferric ions was used to establish a novel colorimetric screening method for nitrile hydratase and amidase with α-amino nitriles and α-amino amides as substrates, respectively. Ferrous and ferric ions reacted sequentially with the cyanide dissociated spontaneously from α-amino nitrile solution, forming a characteristic deep blue precipitate. They were also sensitive to weak basicity due to the presence of amino amide, resulting in a yellow precipitate. When amino amide was further hydrolyzed to amino acid, it gave a light yellow solution. Mechanisms of color changes were further proposed. Using this method, two isolates with nitrile hydratase activity towards 2-amino-2,3-dimethyl butyronitrile, one strain capable of hydrating 2-amino-4-(hydroxymethyl phosphiny) butyronitrile and another microbe exhibiting amidase activity against 2-amino-4-methylsulfanyl butyrlamide were obtained from soil samples and culture collections of our laboratory. Versatility of this method enabled it the first direct and inexpensive high-throughput screening system for both nitrile hydratase and amidase. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zhang' e [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: zhepeng@126.com; Wu Feng [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: fengwu@whu.edu.cn; Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: nsdengwhu@163.com

    2006-12-15

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe{sup 3+} ions was investigated. Algae, humic acid and Fe{sup 3+} ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10{sup 9} cells L{sup -1} raw Chlorella vulgaris, 4 mg L{sup -1} humic acid and 20 {mu}mol L{sup -1} Fe{sup 3+}. The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment.

  13. Ion sorption onto hydrous ferric oxides: Effect on major element fluid chemistry at Aespoe, Sweden

    International Nuclear Information System (INIS)

    Bruton, C.J.; Viani, B.E.

    1996-06-01

    The observed variability of fluid chemistry at the Aespoe Hard Rock Laboratory is not fully described by conservative fluid mixing models. Ion exchange may account for some of the observed discrepancies. It is also possible that variably charged solids such as oxyhydroxides of Fe can serve as sources and sinks of anions and cations through surface complexation. Surface complexation reactions on hydrous ferric oxides involve sorption of both cations and anions. Geochemical modeling of the surface chemistry of hydrous ferric oxides (HFOs) in equilibrium with shallow HBH02 and deep KA0483A waters shows that HFOs can serve as significant, pH-sensitive sources and sinks for cations and anions. Carbonate sorption is favored especially at below-neutral pH. A greater mass of carbonate is sorbed onto HFO surfaces than is contained in the fluid when 10 g goethite, used as a proxy for HFOs, is in contact with 1 kg H 2 O. The masses of sorbent required to significantly impact fluid chemistry through sorption/desorption reactions seem to be reasonable when compared to the occurrences of HFOs at Aespoe. Thus, it is possible that small changes in fluid chemistry can cause significant releases of cations or anions from HFOs into the fluid phase or, alternately, result in uptake of aqueous species onto HFO surfaces. Simulations of the mixing of shallow HBH02 and native KA0483A waters in the presence of a fixed mass of goethite show that surface complexation does not cause the concentrations of Ca, Sr, and SO 4 to deviate from those that are predicted using conservative mixing models. Results for HCO 3 are more difficult to interpret and cannot be addressed adequately at this time

  14. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jie; Ju, Yuyun; Liu, Juanjuan; Zhang, Huige [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen, Xingguo, E-mail: chenxg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China)

    2015-01-07

    Highlights: • A new method for synthesis of the BPEI-CuNCs is established. • A facile approach for Fe{sup 3+} ion sensing by fluorescence quenching is developed. • The method for Fe{sup 3+} sensing has high sensitivity and excellent selectivity. - Abstract: In this report we reported a facile one-pot method for synthesis of water-soluble and stable fluorescent CuNCs at room temperature, in which branched polyethyleneimine (BPEI) served as capping scaffold and ascorbic acid as reducing agent. The prepared BPEI-CuNCs exhibited excellent properties such as good water-solubility, photostability and high stability toward high ionic strength. Based on the electron transfer induced fluorescence quenching mechanism, this fluorescence probe was used for the sensitive and selective determination of ferric ions (Fe{sup 3+}) in aqueous solution. The limit of detection was 340 nM in the linear range of 0.5–1000 μM, which was lower than the maximum level of Fe{sup 3+} permitted in drinking water by the U.S. Environmental Protection Agency. The method was successfully applied to the detection of Fe{sup 3+} in tap water, Yellow River water and human urine samples with the quantitative spike recoveries ranging from 95.3% to 112.0%.

  15. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor

    International Nuclear Information System (INIS)

    Feng, Jie; Ju, Yuyun; Liu, Juanjuan; Zhang, Huige; Chen, Xingguo

    2015-01-01

    Highlights: • A new method for synthesis of the BPEI-CuNCs is established. • A facile approach for Fe 3+ ion sensing by fluorescence quenching is developed. • The method for Fe 3+ sensing has high sensitivity and excellent selectivity. - Abstract: In this report we reported a facile one-pot method for synthesis of water-soluble and stable fluorescent CuNCs at room temperature, in which branched polyethyleneimine (BPEI) served as capping scaffold and ascorbic acid as reducing agent. The prepared BPEI-CuNCs exhibited excellent properties such as good water-solubility, photostability and high stability toward high ionic strength. Based on the electron transfer induced fluorescence quenching mechanism, this fluorescence probe was used for the sensitive and selective determination of ferric ions (Fe 3+ ) in aqueous solution. The limit of detection was 340 nM in the linear range of 0.5–1000 μM, which was lower than the maximum level of Fe 3+ permitted in drinking water by the U.S. Environmental Protection Agency. The method was successfully applied to the detection of Fe 3+ in tap water, Yellow River water and human urine samples with the quantitative spike recoveries ranging from 95.3% to 112.0%

  16. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima.

    Science.gov (United States)

    Hu, Jing; Guo, Huiyuan; Li, Junli; Gan, Qiuliang; Wang, Yunqiang; Xing, Baoshan

    2017-02-01

    The impacts of iron oxide nanoparticles (γ-Fe 2 O 3 NPs) and ferric ions (Fe 3+ ) on plant growth and molecular responses associated with the transformation and transport of Fe 2+ were poorly understood. This study comprehensively compared and evaluated the physiological and molecular changes of Citrus maxima plants as affected by different levels of γ-Fe 2 O 3 NPs and Fe 3+ . We found that γ-Fe 2 O 3 NPs could enter plant roots but no translocation from roots to shoots was observed. 20 mg/L γ-Fe 2 O 3 NPs had no impact on plant growth. 50 mg/L γ-Fe 2 O 3 NPs significantly enhanced chlorophyll content by 23.2% and root activity by 23.8% as compared with control. However, 100 mg/L γ-Fe 2 O 3 NPs notably increased MDA formation, decreased chlorophyll content and root activity. Although Fe 3+ ions could be used by plants and promoted the synthesis of chlorophyll, they appeared to be more toxic than γ-Fe 2 O 3 NPs, especially for 100 mg/L Fe 3+ . The impacts caused by γ-Fe 2 O 3 NPs and Fe 3+ were concentration-dependent. Physiological results showed that γ-Fe 2 O 3 NPs at proper concentrations had the potential to be an effective iron nanofertilizer for plant growth. RT-PCR analysis showed that γ-Fe 2 O 3 NPs had no impact on AHA gene expression. 50 mg/L γ-Fe 2 O 3 NPs and Fe 3+ significantly increased expression levels of FRO2 gene and correspondingly had a higher ferric reductase activity compared to both control and Fe(II)-EDTA exposure, thus promoting the iron transformation and enhancing the tolerance of plants to iron deficiency. Relative levels of Nramp3 gene expression exposed to γ-Fe 2 O 3 NPs and Fe 3+ were significantly lower than control, indicating that all γ-Fe 2 O 3 NPs and Fe 3+ treatments could supply iron to C. maxima seedlings. Overall, plants can modify the speciation and transport of γ-Fe 2 O 3 NPs or Fe 3+ for self-protection and development by activating many physiological and molecular processes. Copyright © 2016 Elsevier

  17. Effects of ferric ions on the catalytic ozonation process on sanitary landfill leachates

    Directory of Open Access Journals (Sweden)

    Messias Borges Silva

    2013-04-01

    Full Text Available Leachates exhibiting an unstable ratio of biochemical oxygen demand (BOD and chemical oxygen demand (COD of approximately 0.45 are typical of new landfills in the City of Cachoeira Paulista, Brazil. Although the organic matter portion is bio-treatable, the presence of refractory leached organic material requires unconventional effluent-treatment processes. Leachate treatment with ozone oxidation, in the presence of ferric ions, acts as catalyst in the formation of hydroxyl radicals. Ozone was obtained by corona-discharge from high-purity O2 gas. The treatment was performed in natura in a jacketed borosilicate glass reactor containing 900 ml of leachate. The analyzed response variable was expressed as the concentration of dissolved organic carbon (DOC. In order to determine the optimal proportions to produce the greatest degradation rate for organic materials, variations in experimental O2 flow-fed to the generator, the Fe(iii concentration, and the output of the ozonator were conducted over two experimental runs. Experimental models showed a DOC degradation on the order of 81.25%.

  18. Analysis of spatial diffusion of ferric ions in PVA-GTA gel dosimeters through magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, Maurizio [Dipartimento di Fisica e Chimica, Universitá di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Istituto Nazionale di Fisica Nucleare (INFN) – Gruppo V Sezione di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); ATeN Center, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Collura, Giorgio [Dipartimento di Fisica e Chimica, Universitá di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Istituto Nazionale di Fisica Nucleare (INFN) – Gruppo V Sezione di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Gallo, Salvatore, E-mail: salvatore.gallo05@unipa.it [Dipartimento di Fisica e Chimica, Universitá di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Istituto Nazionale di Fisica Nucleare (INFN) – Gruppo V Sezione di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Dipartimento di Fisica, Universitá di Milano, Via Giovanni Celoria 16, 20133 Milano (Italy); Nici, Stefania [Dipartimento di Fisica e Chimica, Universitá di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Tranchina, Luigi [ATeN Center, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Abbate, Boris Federico [U.O.C. Fisica Sanitaria, A.R.N.A.S., Ospedale Civico Palermo, Piazza Nicola Leotta 4, 90127 Palermo (Italy); Marineo, Sandra; Caracappa, Santo [Istituto Zooprofilattico Sperimentale della Sicilia (IZS), Via Gino Marinuzzi, 3, 90129 Palermo (Italy); and others

    2017-04-01

    Highlights: • Analysis of ferric ions diffusion throughout the gel matrix in PVA-GTA samples. • Measurements with preclinical 7T MRI scanner with spatial resolution of 200 μm. • Diffusion process is much slower for PVA-GTA gels than for agarose ones. - Abstract: This work focused on the analysis of the temporal diffusion of ferric ions through PVA-GTA gel dosimeters. PVA-GTA gel samples, partly exposed with 6 MV X-rays in order to create an initial steep gradient, were mapped using magnetic resonance imaging on a 7T MRI scanner for small animals. Multiple images of the gels were acquired over several hours after irradiation and were analyzed to quantitatively extract the signal profile. The spatial resolution achieved is 200 μm and this makes this technique particularly suitable for the analysis of steep gradients of ferric ion concentration. The results obtained with PVA-GTA gels were compared with those achieved with agarose gels, which is a standard dosimetric gel formulation. The analysis showed that the diffusion process is much slower (more than five times) for PVA-GTA gels than for agarose ones. Furthermore, it is noteworthy that the diffusion coefficient value obtained through MRI analysis is significantly consistent with that obtained in separate study Marini et al. (Submitted for publication) using a totally independent method such as spectrophotometry. This is a valuable result highlighting that the good dosimetric features of this gel matrix not only can be reproduced but also can be measured through independent experimental techniques based on different physical principles.

  19. Removal of some heavy metals from industrial waste water using polyacrylamide ferric antimonate as new ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2011-01-01

    Composite ion exchangers consist of one or more ion exchangers combined with another material, which can be inorganic or organic and may it be an ion exchanger. The reason for manufacturing a composite material is to produce a granular material, with sufficient strength for column use, from ion exchangers that do not form, or only form weak, granules themselves. Attempts in this study are focused to prepare composite ion exchangers for treatment of wastewater. Heavy metals when present in water in concentrations exceeding the permitted limits are injurious to the health. Hence, it is very important to treat such waters to remove the metal ions present before it is supplied for any useful purpose. Therefore, many investigations have studied to develop more effective process to treat such waste stream. Ion-exchange has been widely adopted in heavy metal containing wastewater and most of the ion-exchangers (i.e. ion-exchange media) currently being used are commercially mass-produced organic resins.Therefore, the main aim of this work is directed to find the optimum conditions for removal of some heavy metals from industrial waste water.1-Preparation of polyacrylamide ferric antimonate composite.2-Characterization of the prepared exchanger using IR spectra, X-ray diffraction pattern, DTA and TG analyses.3-Chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (ph heating temperature and reaction temperature).4-Kinetic studies of some heavy metals.5-Ion exchange isotherm.6-Breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain condition.

  20. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    Science.gov (United States)

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  1. Quinoline-substituted Zinc(II) phthalocyanine for the dual detection of ferric and zinc ions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ankush [Lyallpur Khalsa College of Engineering, Jalandhar (India); Kim, A Rong [Dong-A University, Busan (Korea, Republic of); Kim, Kyung Sub; Na, Kun [The Catholic University, Seoul (Korea, Republic of); Choi, Myung Seok [Konkuk University, Seoul (Korea, Republic of); Park, Jong S. [Pusan National University, Busan (Korea, Republic of)

    2015-09-15

    Here we present the synthesis and properties of quinoline-substituted zinc(II) phthalocyanine, Zn[Pc(O-QN){sub 4} ]. Zn[Pc(O-QN){sub 4} ] can function as a highly selective chemosensor against Fe{sup 3+} and Zn{sup 2+} ions, exhibiting efficient fluorescence quenching and enhancement, respectively. Various characterization techniques were employed to investigate the intermolecular interactions of Zn[Pc(O-QN){sub 4} ] with metal ions. A double-electron exchange and a forbidden photoinduced electron transfer behavior in Zn[Pc(O-QN){sub 4} ] were attributed to such opposite responses. Furthermore, by taking advantage of selectivity, we successfully employed Zn[Pc(O-QN)-4 ] to stain and record confocal fluorescence microscopy images of Chang liver cells in the presence of metal ions.

  2. A novel dansyl-based fluorescent probe for highly selective detection of ferric ions.

    Science.gov (United States)

    Yang, Min; Sun, Mingtai; Zhang, Zhongping; Wang, Suhua

    2013-02-15

    A novel dansyl-based fluorescent probe was synthesized and characterized. It exhibits high selectivity and sensitivity towards Fe(3+) ion. This fluorescent probe is photostable, water soluble and pH insensitive. The limit of detection is found to be 0.62 μM. These properties make it a good fluorescent probe for Fe(3+) ion detection in both chemical and biological systems. Spike recovery test confirms its practical application in tap water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. SEQUENTIAL EXTRACTION OF PHOSPHORUS BY MEHLICH-1 AND ION EXCHANGE RESIN FROM B HORIZONS OF FERRIC AND PERFERRIC LATOSOLS (OXISOLS

    Directory of Open Access Journals (Sweden)

    Danilo de Lima Camêlo

    2015-08-01

    Full Text Available In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1 and Ion Exchange Resin (IER, from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m. Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.

  4. Performance evaluation of ALCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well :Kirtland field trial - initial studies.

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Linnah L.; Krumhansl, James Lee; Siegel, Malcolm Dean; Khandaker, Nadim Reza

    2006-01-01

    This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH of 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.

  5. A Moessbauer study on the interaction between biomolecular lipid membranes and ferric ferrous ions

    International Nuclear Information System (INIS)

    Karvaly, B.; Badinka, C.; Keszthelyi, L.; Erdei, L.

    1975-01-01

    The results of Moessbauer experiments made on liposome systems of a large specific area are presented. In the study lecithin was used as a membrane-forming material. The measurements were carried out on frozen liposome systems, at various 57 Fe/lipid concentration ratios, pH values and temperatures. Since the presence of liposomes had no noticeable influence on the Moessbauer spectra of Fe 2+ ions, only lecithin Fe 3+ systems were considered. Moessbauer spectra in case of Fe 3+ solutions with lecithin showed marked quadrupole splitting (exhibiting an anomalous temperature dependence) which is not shown in case of pure Fe 3+ solution. (Z.S.)

  6. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance

    International Nuclear Information System (INIS)

    Wang, Xunying; Zhang, Linsong; Li, Guangfu; Zhang, Geng; Shao, Zhi-Gang; Yi, Baolian

    2015-01-01

    Highlights: • The cathode possesses higher tolerance for the Fe 3+ contamination than the anode. • Fe 3+ are mostly reduced to Fe 2+ rather than occur underpotential deposition. • Increased electrolysis voltage was mainly attributed to ohmic overpotential. • Voltage lags behind current for minutes in the multi-current-step test. • Poisoned electrolyser is mostly recovered by 0.5 M H 2 SO 4 solution treatment for 13 h. - Abstract: Fe 3+ is a sort of common metal ion contaminant for the solid polymer electrolyte (SPE) water electrolyser. In this paper, the effect of Fe 3+ on the performance of SPE water electrolyser has been investigated by both in-situ and ex-situ characterizations. The electron probe microanalysis and ultraviolet test results showed that Fe 3+ could migrate from the anode to the cathode and mostly be reduced to Fe 2+ in the cathode rather than occurred underpotential deposition as described in the previous report. The in-situ dynamic contamination test showed that the anode voltage increased sharply as soon as the Fe 3+ was fed into the anode, while the cathode voltage kept constant until the contamination time was over 30 minutes, indicating the higher tolerance of the cathode than the anode for the Fe 3+ contamination. The calculation results based on the electrochemistry impedance spectroscopy test results revealed that the striking increase of the electrolysis voltage was mainly attributed to the ohmic overpotential, which was due to the replacement of H + by Fe 3+ in the Nafion resin. Interestingly, the voltage lagged behind the current for several minutes in the multi-current-step test for the contaminated electrolyser, which phenomenon may be used for judging whether the SPE water electrolyser performance degradation is due to the metal ions contamination. Furthermore, recovery strategy has been developed, and it was found that the contaminated electrolyser could be mostly recovered by 0.5 M H 2 SO 4 solution treatment for 13 h

  7. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  8. Simulation of ferric ions transfer in dosemeter Fricke-Xylenol-Gel in means no homogeneous; Simulacao da difusao de ions ferricos em dosimetros Fricke-Xilenol-Gel em meios nao homogeneos

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Caio J.; Bevilacqua, Joyce da Silva, E-mail: caio.milani@usp.br, E-mail: joyce@ime.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Matematica e Estatistica. Departamento de Matematica Aplicada; Cavinato, Christianne C.; Rodrigues Junior, Orlando; Campos, Leticia L., E-mail: rodrijr@ipen.br, E-mail: Icrodri@ipen.br, E-mail: ccavinato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (lPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes

    2013-11-01

    Dosimetry in three dimensions using Fricke-Xilenol-Gel dosimeters (FXG) allows the confirmation and a better understanding of a treatment by Radiotherapy. The technique involves the assessment of the irradiated volumes by magnetic resonance imaging (MRI) or optical-CT. On both cases, the time elapsed between the irradiation and the measurement is an important factor in the quality of results. The quality of the images can be compromised by the mobility of the ferric ions (Fe{sup 3+}), formed during the the interaction of the radiation with the matter, increasing the uncertainty in the determination of the isodoses in the volume. In this work, the phenomenon of the diffusion of the ferric ions formed by an irradiated region is simulated in a bidimensional domain. The dynamic of the Fe{sup 3+} in Fricke-Gel is modeled by a parabolic partial differential equation and solved by the ADI-Peaceman-Rachford algorithm. Stability and consistency of the method guarantee the convergence of the numerical solution for a pre-defined error magnitude, based on choices for the discretization values of time and space. Homogeneous and non-homogeneous cases are presented considering an irradiated region and a physical barrier that prevents the movement of the ions, on the non-homogeneous case. Graphical visualizations of the phenomenon are presented for better understanding of the process. (author)

  9. Fluorescent sensors based on quinoline-containing styrylcyanine: determination of ferric ions, hydrogen peroxide, and glucose, pH-sensitive properties and bioimaging.

    Science.gov (United States)

    Yang, Xiaodong; Zhao, Peiliang; Qu, Jinqing; Liu, Ruiyuan

    2015-08-01

    A novel styrylcyanine-based fluorescent probe 1 was designed and synthesized via facile methods. Ferric ions quenched the fluorescence of probe 1, whereas the addition of ferrous ions led to only small changes in the fluorescence signal. When hydrogen peroxide was introduced into the solution containing probe 1 and Fe(2+) , Fe(2+) was oxidized to Fe(3+), resulting in the quenching of the fluorescence. The probe 1/Fe(2+) solution fluorescence could also be quenched by H2 O2 released from glucose oxidation by glucose oxidase (GOD), which means that probe 1/Fe(2+) platform could be used to detect glucose. Probe 1 is fluorescent in basic and neutral media but almost non-fluorescent in strong acidic environments. Such behaviour enables it to work as a fluorescent pH sensor in both the solution and solid states and as a chemosensor for detecting volatile organic compounds with high acidity and basicity. Subsequently, the fluorescence microscopic images of probe 1 in live cells and in zebrafish were achieved successfully, suggesting that the probe has good cell membrane permeability and a potential application for imaging in living cells and living organisms. Copyright © 2014 John Wiley & Sons, Ltd.

  10. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  11. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.

  12. Photocatalytic activity of ferric oxide/titanium dioxide nanocomposite films on stainless steel fabricated by anodization and ion implantation

    Science.gov (United States)

    Zhan, Wei-ting; Ni, Hong-wei; Chen, Rong-sheng; Yue, Gao; Tai, Jun-kai; Wang, Zi-yang

    2013-08-01

    A simple surface treatment was used to develop photocatalytic activity for stainless steel. AISI 304 stainless steel specimens after anodization were implanted by Ti ions at an extracting voltage of 50 kV with an implantation dose of 3 × 1015 atoms·cm-2 and then annealed in air at 450°C for 2 h. The morphology was observed by scanning electron microscopy. The microstructure was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The photocatalytic degradation of methylene blue solution was carried out under ultraviolet light. The corrosion resistance of the stainless steel was evaluated in NaCl solution (3.5 wt%) by electrochemical polarization curves. It is found that the Ti ions depth profile resembles a Gaussian distribution in the implanted layer. The nanostructured Fe2O3/TiO2 composite film exhibits a remarkable enhancement in photocatalytic activity referenced to the mechanically polished specimen and anodized specimen. Meanwhile, the annealed Ti-implanted specimen remains good corrosion resistance.

  13. Effect of dissolved ozone or ferric ions on photodegradation of thiacloprid in presence of different TiO2 catalysts

    International Nuclear Information System (INIS)

    Cernigoj, Urh; Stangar, Urska Lavrencic; Jirkovsky, Jaromir

    2010-01-01

    Combining TiO 2 photocatalysis with inorganic oxidants (such as O 3 and H 2 O 2 ) or transition metal ions (Fe 3+ , Cu 2+ and Ag + ) often leads to a synergic effect. Electron transfer between TiO 2 and the oxidant is usually involved. Accordingly, the degree of synergy could be influenced by TiO 2 surface area. With this in mind, the disappearance of thiacloprid, a neonicotinoid insecticide, was studied applying various photochemical AOPs and different TiO 2 photocatalysts. In photocatalytic ozonation experiments, synergic effect of three different TiO 2 photocatalysts was quantified. Higher surface area resulted in a more pronounced synergic effect but an increasing amount of TiO 2 did not influence the degree of the synergy. This supports the theory that the synergy is a consequence of adsorption of ozone on the TiO 2 surface. No synergy was observed in photocatalytic degradation of thiacloprid in the presence of dissolved iron(III) species performed under varied experimental conditions (concentration, age of iron(III) solution, different TiO 2 films, usage of TiO 2 slurries). This goes against the literature for different organic compounds (i.e., monuron). It indicates different roles of iron(III) in the photodegradation of different organic molecules. Moreover, TiO 2 surface area did not affect photodegradation efficiency in iron(III)-based experiments which could confirm absence of electron transfer between TiO 2 photocatalyst and iron(III).

  14. Kinetics of Np(4) oxidation reaction by persulphate in nitric acid solution in the presence of ferric ions as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Koltunov, V S; Marchenko, V I

    1976-01-01

    The kinetics of the reaction Np(IV) + Fe(III) = Np(V) + Fe(II)was investigated by a spectrophotometric method according to observation of the consumption of Np(IV) at 720 nm in a solution of HNO/sub 3/ + NaNO/sub 3/ in the concentration range; (F(III))equal (5.12-102.4).10/sup -3/ M, (H+) equal 0.14-1 M, (NO/sub 3//sup -/) = 0.5-2 M at an ionic strength of the solution ..mu.. = 0.2-2 and temperatures of 25-46/sup 0/C. To exclude the reverse reaction, (3-6).10/sup -2/ M (NH/sub 4/)/sub 2/S/sub 2/O/sub 8/, which rapidly oxidizes Fe(II), was added to the solution. The possible oxidation of Np(V) to Np(VI) was prevented by the addition of small quantities of N/sub 2/H/sub 4/. It was shown that the reaction rate is described by the equation -d(Np(IV))/dt=k(Np(IV))(Fe(III))/(H/sup +/)/sup 3/. where k = 0.490 +- 0.026 M/sup 2/.min/sup -1/ at 25/sup 0/ and ..mu.. = 1. The No/sub 3//sup -/ ions inhibit the reaction in the interval (NO/sub 3//sup -/) = 0-1 M and do not influence it at (NO/sub 3//sup -/) > 1 M. On the basis of an investigation of the dependence of k on the temperature, the energy (E = 32.5 kcal/mole), free energy (..delta..F* = 20.3 kcal/mole), and entropy (..delta..S* = 39 entropy units) of activation of the reaction were calculated. The reaction mechanism is discussed.

  15. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  16. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence

  17. Development of a radiochromic ferric oligomer hydrogel

    International Nuclear Information System (INIS)

    Jordan, Kevin; Sekimoto, Masaya

    2010-01-01

    Ferrous gelatin hydrogels were prepared by using sulphuric acid concentrations lower than required to maintain radiation induced ferric ions fully hydrated. The ferric hydroxyl species that are produced following irradiation exhibit a radiochromic response that can be probed with blue light. The dose distribution shapes were stable in time, indicating no long term diffusion. An over response to dose gradients was observed both in one centimeter cuvette samples and litre volumes probed with optical cone beam CT. This ferrous hydrogel may represent a model system for studying iron radiochemistry in biological systems.

  18. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  19. Application of air ions for bacterial de-colonization in air filters contaminated by aerosolized bacteria

    International Nuclear Information System (INIS)

    Kim, Yang Seon; Yoon, Ki Young; Park, Jae Hong; Hwang, Jungho

    2011-01-01

    We aerosolized the Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) bacteria and collected them on membrane filters. Then we generated air ions by applying a high voltage to a carbon fiber tip and applied them to the contaminated filters. The antibacterial efficiency was not significantly affected by the bacteria being Gram-positive or Gram-negative, however, negative ions showed a lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions. With a field emission scanning electron microscope (FE-SEM) images and fluorescence microscopy images using a LIVE/DEAD BacLight Bacterial Viability Kit, electrostatic disruption of the bacteria was found to be the dominant antibacterial effect. - Research Highlights: →This study examined the effects of air ions generated by a carbon fiber ionizer on the inactivation of bioaerosols. →When the ion exposure time and the ion generation concentration were increased, the antibacterial efficiency increased. →The bioaerosols carried a significant number of negative electrical charges. →Negative ions showed lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions.

  20. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    International Nuclear Information System (INIS)

    Nikolaev, A.G.; Yushkov, G.Yu.; Oks, E.M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E.S.; Brown, I.G.

    2014-01-01

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material

  1. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  2. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    Science.gov (United States)

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging.

    Science.gov (United States)

    Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Shim, Jae-Jin; Kalimuthu, Senthilkumar; Ahn, Byeong-Cheol; Lee, Yong Rok

    2016-05-01

    This paper reports turn-off fluorescence sensor for Fe(3+) ion in water using fluorescent N-doped carbon dots as a probe. A simple and efficient hydrothermal carbonization of Prunus avium fruit extract for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) is described. This green approach proceeds quickly and provides good quality N-CDs. The mean size of synthesized N-CDs was approximately 7nm calculated from the high-resolution transmission electron microscopic images. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy revealed the presence of -OH, -NH2, -COOH, and -CO functional groups over the surface of CDs. The N-CDs showed excellent fluorescent properties, and emitted blue fluorescence at 411nm upon excitation at 310nm. The calculated quantum yield of the synthesized N-CDs is 13% against quinine sulfate as a reference fluorophore. The synthesized N-CDs were used as a fluorescent probe towards the selective and sensitive detection of biologically important Fe(3+) ions in water by fluorescence spectroscopy and for bio-imaging of MDA-MB-231 cells. The limit of detection (LOD) and the Stern-Volmer quenching constant for the synthesized N-CDs were 0.96μM and 2.0958×10(3)M of Fe(3+) ions. The green synthesized N-CDs are efficiently used as a promising candidate for the detection of Fe(3+) ions and bio-imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Niu, Fushuang; Xu, Yuanhong; Liu, Mengli; Sun, Jing; Guo, Pengran; Liu, Jingquan

    2016-03-14

    Carbon nanodots (C-dots), a new type of potential alternative to conventional semiconductor quantum dots, have attracted numerous attentions in various applications including bio-chemical sensing, cell imaging, etc., due to their chemical inertness, low toxicity and flexible functionalization. Various methods including electrochemical (EC) methods have been reported for the synthesis of C-dots. However, complex procedures and/or carbon source-containing electrodes are often required. Herein, solid-state C-dots were simply prepared by bottom-up EC carbonization of nitriles (e.g. acetonitrile) in the presence of an ionic liquid [e.g. 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)], using carbon-free electrodes. Due to the positive charges of BMIM(+) on the C-dots, the final products presented in a precipitate form on the cathode, and the unreacted nitriles and BMIMPF6 can be easily removed by simple vacuum filtration. The as-prepared solid-state C-dots can be well dispersed in an aqueous medium with excellent photoluminescence properties. The average size of the C-dots was found to be 3.02 ± 0.12 nm as evidenced by transmission electron microscopy. Other techniques such as UV-vis spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were applied for the characterization of the C-dots and to analyze the possible generation mechanism. These C-dots have been successfully applied in efficient cell imaging and specific ferric ion detection.

  5. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1981-11-01

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40 0 C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  6. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    International Nuclear Information System (INIS)

    Wang, Hailong; Cheng, Xiaolin

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2) at the intracellular end and a ring of hydrophobic residues (I9) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  7. Gas-phase spectroscopy of ferric heme-NO complexes

    DEFF Research Database (Denmark)

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  8. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion

    International Nuclear Information System (INIS)

    Li, Linbo; Li, Lin; Wang, Chao; Liu, Kangyu; Zhu, Ruohua; Qiang, Hong; Lin, Yuqing

    2015-01-01

    We report on a single-step thermolysis strategy to prepare highly luminescent nitrogen-doped and amino acid-functionalized graphene quantum dots (NA-GQDs) by using glycine as both carbon and nitrogen source. The NA-GQDs display an excitation wavelength-dependent fluorescence with maximum excitation and emission wavelengths of 380 and 450 nm, respectively, and a quantum yield of ∼16 %. Fluorescence is quenched by Fe(III) and Hg(II), and the effect was used to develop a method for the determination of Fe(III). Quenching by Fe(III) is attributed to its higher thermodynamic affinity (compared to other transition-metal ions) for the ligands on the GQDs in which nitrogen atoms mainly act as the chelating atoms. A linear relationship was observed between fluorescence intensity and the concentration of Fe(III) over the 0.5 μM to 0.5 mM range. The detection limit is 0.1 μM. (author)

  9. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  10. 21 CFR 184.1297 - Ferric chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  11. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    International Nuclear Information System (INIS)

    Tuleta, M.; Gabla, L.; Szkarlat, A.

    2005-01-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  12. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Tuleta, M.; Gabla, L. [Jagiellonian Univ., Institute of Physics, Cracow (Poland); Szkarlat, A. [Clinical Children' s Hospital of the Jagiellonian Univ., Medical College, Lab. of Microbiology, Cracow (Poland)

    2005-04-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  13. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  14. Decreased bacterial growth on titanium nanoscale topographies created by ion beam assisted evaporation

    Directory of Open Access Journals (Sweden)

    Stolzoff M

    2017-02-01

    Full Text Available Michelle Stolzoff,1 Jason E Burns,2 Arash Aslani,2 Eric J Tobin,2 Congtin Nguyen,1 Nicholas De La Torre,3 Negar H Golshan,3 Katherine S Ziemer,3 Thomas J Webster1,3,4 1Department of Bioengineering, Northeastern University, Boston, 2N2 Biomedical, Bedford, MA, 3Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, University of King Abdulaziz, Jeddah, Saudi Arabia Abstract: Titanium is one of the most widely used materials for orthopedic implants, yet it has exhibited significant complications in the short and long term, largely resulting from poor cell–material interactions. Among these many modes of failure, bacterial infection at the site of implantation has become a greater concern with the rise of antibiotic-resistant bacteria. Nanostructured surfaces have been found to prevent bacterial colonization on many surfaces, including nanotextured titanium. In many cases, specific nanoscale roughness values and resulting surface energies have been considered to be “bactericidal”; here, we explore the use of ion beam evaporation as a novel technique to create nanoscale topographical features that can reduce bacterial density. Specifically, we investigated the relationship between the roughness and titanium nanofeature shapes and sizes, in which smaller, more regularly spaced nanofeatures (specifically 40–50 nm tall peaks spaced ~0.25 µm apart were found to have more effect than surfaces with high roughness values alone. Keywords: titanium, nanostructures, bacteria, bone ingrowth, surface roughness, IBAD 

  15. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment.

    Science.gov (United States)

    Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew

    2010-04-12

    In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop a positive charge in the

  16. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    Full Text Available Abstract Background In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. Methods A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. Results The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene

  17. Si+ ion implantation reduces the bacterial accumulation on the Ti6Al4V surface

    International Nuclear Information System (INIS)

    Gallardo-Moreno, A M; Pacha-Olivenza, M A; Perera-Nunez, J; Gonzalez-Carrasco, J L; Gonzalez-Martin, M L

    2010-01-01

    Ti6Al4V is one of the most commonly used biomaterials in orthopedic applications due to its interesting mechanical properties and reasonable biocompatibility. Nevertheless, after the implantation, microbial adhesion to its surface can provoke severe health problems associated to the development of biofilms and subsequent infectious processes. This work shows a modification of the Ti6Al4V surface by Si+ ion implantation which reduces the bacterial accumulation under shear forces. Results have shown that the number of bacteria remaining on the surface at the end of the adhesion experiments decreased for silicon-treated surface. In general, the new surface also behaved as less adhesive under in vitro flow conditions. Since no changes are observed in the electrical characteristics between the control and implanted samples, differences are likely related to small changes observed in hydrophobicity.

  18. Simple molecular model for the binding of antibiotic molecules to bacterial ion channels

    Science.gov (United States)

    Mafé, Salvador; Ramírez, Patricio; Alcaraz, Antonio

    2003-10-01

    A molecular model aimed at explaining recent experimental data by Nestorovich et al. [Proc. Natl. Acad. Sci. USA 99, 9789 (2002)] on the interaction of ampicillin molecules with the constriction zone in a channel of the general bacterial porin, OmpF (outer membrane protein F), is presented. The model extends T. L. Hill's theory for intermolecular interactions in a pair of binding sites [J. Am. Chem. Soc. 78, 3330 (1956)] by incorporating two binding ions and two pairs of interacting sites. The results provide new physical insights on the role of the complementary pattern of the charge distributions in the ampicillin molecule and the narrowest part of the channel pore. Charge matching of interacting sites facilitates drug binding. The dependence of the number of ampicillin binding events per second with the solution pH and salt concentration is explained qualitatively using a reduced number of fundamental concepts.

  19. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    Science.gov (United States)

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  20. Hydrolysis of ferric chloride in solution

    International Nuclear Information System (INIS)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox trademark process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200 degrees C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl 3 liquid + H 2 O → FeOCl solid + 2 HCl gas During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl solid + H 2 O → Fe 2 O 3 solid + 2 HCl gas . The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way

  1. Part 5: Experimental periods using a ferrous-ferric chloride blend

    African Journals Online (AJOL)

    drinie

    A blend of ferrous chloride and ferric chloride (FeCl2-FeCl3) was simultaneously dosed into an activated sludge system at .... theoretical oxygen demand for this reaction is small, namely 0.15 ...... The role of bacterial extracellular polymers.

  2. Preparation of ferric acetylacetonate, bonzonate and caprate labelled with Fe-55 and tests of application to liquid scintillation measurements

    International Nuclear Information System (INIS)

    Los Arcos, J.M.; Rodriguez Barquero, L.; Grau Malonda, A.

    1990-01-01

    The methods of preparation of ferric acetylacetonate, benzoate and caprate labelled with 55 Fe are described. The quenching effect, the spectral baehaviour and the count rate stability are studied by liquid scintillation measurements in toluene, INSTAGEL and HISAFE II, for two different values of the sample concentration. The ferric acetylaceton-ate is stable for all the three scintillators but shows a strong quench, while the ferric benzoate and caprate are stable only for INSTAGEL and HISAFE II showing no significant quench at the concentrat-ions of interest in habitual measurements. (Author)

  3. Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel NaVAb

    International Nuclear Information System (INIS)

    Ke, Song; Zangerl, Eva-Maria; Stary-Weinzinger, Anna

    2013-01-01

    Highlights: ► Ca 2+ translocates slowly in the filter, due to lack of “loose” knock-on mechanism. ► Identification of a high affinity binding site in Na V Ab selectivity filter. ► Changes of EEEE locus triggered by electrostatic interactions with Ca 2+ ions. -- Abstract: Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. In this study, we use molecular dynamics simulations and free energy calculations to investigate how the bacterial sodium channel Na V Ab (Arcobacter butzleri) differentiates between Na + and Ca 2+ ions. Multiple nanosecond molecular dynamics simulations revealed distinct binding patterns for these two cations in the selectivity filter and suggested a high affinity calcium binding site formed by backbone atoms of residues Leu-176 and Thr-175 (S CEN ) in the sodium channel selectivity filter

  4. Intravenous ferric carboxymaltose for anaemia in pregnancy.

    Science.gov (United States)

    Froessler, Bernd; Collingwood, Joshua; Hodyl, Nicolette A; Dekker, Gustaaf

    2014-03-25

    Iron deficiency is a common nutritional deficiency amongst women of childbearing age. Peri-partum iron deficiency anaemia (IDA) is associated with significant maternal, fetal and infant morbidity. Current options for treatment are limited: these include oral iron supplementation, which can be ineffective and poorly tolerated, and red blood cell transfusions, which carry an inherent risk and should be avoided. Ferric carboxymaltose is a new treatment option that may be better tolerated.The study was designed to assess the safety and efficacy of iron deficiency anaemia (IDA) correction with intravenous ferric carboxymaltose in pregnant women with mild, moderate and severe anaemia in the second and third trimester. Prospective observational study; 65 anaemic pregnant women received ferric carboxymaltose up to 15 mg/kg between 24 and 40 weeks of pregnancy (median 35 weeks gestational age, SD 3.6). Treatment effectiveness was assessed by repeat haemoglobin (Hb) measurements and patient report of well-being in the postpartum period. Safety was assessed by analysis of adverse drug reactions and fetal heart rate monitoring during the infusion. Intravenous ferric carboxymaltose infusion significantly increased Hb values (p anaemia in pregnancy.

  5. Electrical conduction studies in ferric-doped KHSO 4 single crystals

    Science.gov (United States)

    Sharon, M.; Kalia, A. K.

    1980-03-01

    Direct-current conductivity of ferric-doped (138, 267, and 490 ppm) single crystals of KHSO 4 has been studied. The mechanism for the dc conduction process is discussed. It is observed that the ferric ion forms a (Fe 3+-two vacancies) complex and the enthaply for its formation is 0.09 ± 0.01 eV. It is proposed that each ferric ion removes two protons from each HSO 4 dimer. The conductivity plot shows the presence of intrinsic and extrinsic regions. It is proposed that in the intrinsic region the dimer of HSO -4 breaks reversibly to form a long-chain monomer-type structure. The conductivity in the KHSO 4 crystal is proposed to be controlled by the rotation of HSO -4 tetrahedra along the axis which contains no hydrogen atom. Isotherm calculation for the trivalent-doped system is applied to this crystal and the results are compared with Co 2+-doped KHSO 4 crystal. The distribution coefficient of ferric ion in the KHSO 4 single crystal is calculated to be 4.5 × 10 -1. Ferric ion causes tapering in the crystal growth habit of KHSO 4 and it is believed to be due to the presence of (Fe 3+-two vacancies) complex. The enthalpy values for the various other processes are as follows: enthalpy for the breakage of HSO -4 dimer ( Hi) = 1.28 ± 0.01 eV; enthalpy for the rotation of HSO -4 tetrahedron ( Hm) = 0.58 ± 0.01 eV.

  6. FERRIC CITRATE: AN IRON-BASED ORAL PHOSPHATE BINDER

    Directory of Open Access Journals (Sweden)

    T. Christopher Bond

    2012-06-01

    Based on actual physician behavior in response to ferritin and TSAT increases and ferric citrate clinical trial results, and assuming equivalent pricing to other PBs, there would be cost savings with ferric citrate use through reduced ESA and iron use.

  7. Bacterial growth on ion exchange resin - investigations with a strong cationic exchanger. Pt. 3. Disinfection with peracetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Flemming, H.C.

    1984-12-01

    The suitability of peracetic acid (PAA) for the disinfection of ion exchangers was investigated. 0.02% PAA is suitable for satisfactory disinfection. In this way corrosive effects are strongly reduced. Ca/sup 2+/-ions seem to protect the bacteria, therefore the disinfection should be done with the Na/sup +/-form. The disinfection has no remanent effect and therefore is not suitable for preventing bacterial aftergrowth during off-periods. A combination of silver and disinfectant can accomplish this, until a new, silver-tolerant microflora has evolved. In this case the use of 0.02% PAA is imperative, because higher concentrations will dissolve the silver. As a principle the effectiveness of disinfection procedure should be monitored bacteriologically.

  8. Bacterial exopolysaccharides as a modern biotechnological tool for modification of fungal laccase properties and metal ion binding.

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Jaszek, Magdalena; Starosielec, Magdalena; Sulej, Justyna; Matuszewska, Anna; Janczarek, Monika; Bancerz, Renata; Wydrych, Jerzy; Wiater, Adrian; Jarosz-Wilkołazka, Anna

    2018-03-26

    Four bacterial EPSs extracted from Rhizobium leguminosarum bv. trifolii Rt24.2, Sinorhizobium meliloti Rm1021, Bradyrhizobium japonicum USDA110, and Bradyrhizobium elkanii USDA76 were determined towards their metal ion adsorption properties and possible modification of Cerrena unicolor laccase properties. The highest magnesium and iron ion-sorption capacity (~ 42 and ~ 14.5%, respectively) was observed for EPS isolated from B. japonicum USDA110. An evident influence of EPSs on the stability of laccase compared to the control values (without EPSs) was shown after 30-day incubation at 25 °C. The residual activity of laccases was obtained in the presence of Rh76EPS and Rh1021EPS, i.e., 49.5 and 41.5% of the initial catalytic activity, respectively. This result was confirmed by native PAGE electrophoresis. The EPS effect on laccase stability at different pH (from 3.8 to 7.0) was also estimated. The most significant changes at the optimum pH value (pH 5.8) was observed in samples of laccase stabilized by Rh76EPS and Rh1021EPS. Cyclic voltamperometry was used for analysis of electrochemical parameters of laccase stabilized by bacterial EPS and immobilized on single-walled carbon nanotubes (SWCNTs) with aryl residues. Laccases with Rh76EPS and Rh1021EPS had an evident shift of the value of the redox potential compared to the control without EPS addition. In conclusion, the results obtained in this work present a new potential use of bacterial EPSs as a metal-binding component and a modulator of laccase properties especially stability of enzyme activity, which can be a very effective tool in biotechnology and industrial applications.

  9. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.

    Science.gov (United States)

    Troxell, Bryan; Hassan, Hosni M

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe(3+). However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe(2+) as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.

  10. Sonochemical synthesis of a multi-responsive regenerable water-stable zinc(II) fluorescent probe for highly selective, sensitive and real-time sensing of benzaldehyde, ferric ion and PH.

    Science.gov (United States)

    Wang, Xin Rui; Wang, Xing Ze; Li, Yong; Liu, Kun; Liu, Shi Xin; Du, Jing; Huang, Zhuo; Luo, Yan; Huo, Jian Zhong; Wu, Xiang Xia; Liu, Yuan Yuan; Ding, Bin

    2018-06-01

    In this work, a novel water-stable coordination polymer with {4 4 } network topology {[Zn(L) 2 (NO 3 ) 2 ]} n (1) (L = 4,4'-Bis(triazol-1-ylmethyl)biphenyl) has been synthesized through the hydrothermal and sonochemical approaches. 1 has been characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy, UV-vis absorption spectrum and scanning electron microscopy (SEM). PXRD patterns of the as-synthesized samples 1 have confirmed the purity of the bulky samples. In the sonochemical preparation approaches, different ultrasound irradiation power and ultrasound time were also used in order to investigate the impact factor for morphology and size of nano-structured 1. Photo-luminescence studies have revealed that 1 can efficiently distinguish Fe 3+ from Fe 2+ and other metal ions. On the other hand, 1 also can exhibit a highly sensitive, excellently selective and real-time detection of benzaldehyde and pH through photo-luminescence quenching process. As for 1, density functional theory (DFT) and time-dependent DFT (TDDFT) theory has been applied to calculate these spectroscopic data, the result agree with the experimental results for detection of benzaldehyde. Photo-luminescent recyclability results indicated 1 can be reused at least five times in the detection process. To the best of our knowledge, this is the first example of a multi-responsive regenerable luminescent sensor for highly selective, sensitive and real-time sensing of Fe 3+ over Fe 2+ , benzaldehyde and pH values. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    Energy Technology Data Exchange (ETDEWEB)

    Mahadtanapuk, S. [Faculty of Agriculture and Natural Resources, University of Phayao, Maeka, Muang, Phayao 56000 (Thailand); Teraarusiri, W. [Central Laboratory, University of Phayao, Maeka, Muang, Phayao 56000 (Thailand); Nanakorn, W. [The Crown Property Bureau, 173 Nakhonratchasrima Road, Dusit, Bangkok 10300 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S., E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion beam bombardment induced mutation in bacterial B. licheniformis. • A mutant lost antifungal activity. • DNA fingerprint of the mutant was analyzed. • The lost gene was indentified to code for TrxR gene. • TrxR gene from B. licheniformis expressed the flower antagonism to fungi. - Abstract: This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  12. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    International Nuclear Information System (INIS)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L.D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion beam bombardment induced mutation in bacterial B. licheniformis. • A mutant lost antifungal activity. • DNA fingerprint of the mutant was analyzed. • The lost gene was indentified to code for TrxR gene. • TrxR gene from B. licheniformis expressed the flower antagonism to fungi. - Abstract: This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection

  13. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene.

    Science.gov (United States)

    Rugh, C L; Wilde, H D; Stack, N M; Thompson, D M; Summers, A O; Meagher, R B

    1996-01-01

    With global heavy metal contamination increasing, plants that can process heavy metals might provide efficient and ecologically sound approaches to sequestration and removal. Mercuric ion reductase, MerA, converts toxic Hg2+ to the less toxic, relatively inert metallic mercury (Hg0) The bacterial merA sequence is rich in CpG dinucleotides and has a highly skewed codon usage, both of which are particularly unfavorable to efficient expression in plants. We constructed a mutagenized merA sequence, merApe9, modifying the flanking region and 9% of the coding region and placing this sequence under control of plant regulatory elements. Transgenic Arabidopsis thaliana seeds expressing merApe9 germinated, and these seedlings grew, flowered, and set seed on medium containing HgCl2 concentrations of 25-100 microM (5-20 ppm), levels toxic to several controls. Transgenic merApe9 seedlings evolved considerable amounts of Hg0 relative to control plants. The rate of mercury evolution and the level of resistance were proportional to the steady-state mRNA level, confirming that resistance was due to expression of the MerApe9 enzyme. Plants and bacteria expressing merApe9 were also resistant to toxic levels of Au3+. These and other data suggest that there are potentially viable molecular genetic approaches to the phytoremediation of metal ion pollution. Images Fig. 2 Fig. 3 Fig. 4 PMID:8622910

  14. Total gastrectomy due to ferric chloride intoxication.

    Science.gov (United States)

    Menéndez, A Mesut; Abramson, Leonardo; Vera, Raúl A; Duza, Guillermo E; Palermo, Mariano

    2015-09-01

    The ferric chloride intoxication is frequently caused by accident. Its toxicity is generally underrated, which can lead to fatal evolution or irreversible consequences. In this case, the caustic condition of the substance is related to the toxic properties of iron. A 36-year-old male patient arrives by ambulance indicating sensory deterioration. He presents erosive injuries in the buccal cavity and in the oropharynx, brownish teeth and metabolic acidosis. Toxicology tests and ferritin blood dosage are requested, which show a result from 1400 mg/dl. The symptoms are interpreted as acute iron intoxication. Due to the unfavorable evolution of his condition, an abdominal and pelvic CT scan are performed, which show extensive pneumoperitoneum and free fluid in the abdominal cavity. An exploratory laparotomy, a total gastrectomy with esophagostomy and feeding jejunostomy, washing and drainage due to perforated gastric necrosis caused by caustic ingestion are performed. In our country, there is a high rate of intoxication caused by iron compounds, although it is not statistically measured. Nevertheless, the ferric chloride intoxication is extremely infrequent. The ingestion of this product leads to complications, which are associated with the iron concentration and its condition as a caustic agent. The surgical indications in the presence of intoxication caused by iron compounds are: stomach evacuation of iron, gastric necrosis, perforation or peritonitis and stenosis. Early or prophylactic gastrectomy is contraindicated. However, if complications that require immediate surgical intervention arise, there should be no hesitation and the corresponding procedure should be performed.

  15. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2014-01-01

    with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature......The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community...... showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor...

  16. Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.

    Science.gov (United States)

    Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen

    2009-01-30

    A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals.

  17. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    Science.gov (United States)

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.

  18. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    Science.gov (United States)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  19. Extraction with tributyl phosphate (TBP) from ferric nitrate solutions

    International Nuclear Information System (INIS)

    Kolarik, Z.; Grudpan, K.

    1985-01-01

    Ferric nitrate acts as a strong salting-out agent in the extraction of thorium(IV), uranyl, europium(III), samarium(III) and zirconium(IV) nitrates as well as of nitric acid with tributyl phosphate in dodecane. Nitric acid, if present in the extraction system together with large amounts of ferric nitrate, markedly suppresses the extraction of thorium(IV) and lanthanides(III) but significantly supports the extraction of zirconium(IV). Separation factors of different metal pairs are presented as functions of the concentrations of ferric nitrate and nitric acid

  20. Effect of three Electron Shuttles on Bioreduction of Ferric Iron in two Acidic and Calcareous soils

    Directory of Open Access Journals (Sweden)

    Setareh Sharifi

    2017-01-01

    from locations in Mashhad and Guilan cities, Iran, in 2015. The soil samples were air dried in a glasshouse and later subjected to general analysis. Some part of the soil samples were kept at 4 oC as fresh soil samples for bioreduction assay. In that part of experiment, all soil samples were treated with glucose (10 mM as electron donor. Native ferric iron considered as electron acceptor. Then soil samples were treated with AQS, humic acid and fulvic acid (as electron shuttles and inoculated with bacterial cells (Shewanella sp. and P. aeruginosa and they were incubated for 30 days in an incubator at 30 and 37 oC according to the optimum temperature for bacteria in an anaerobic condition. At the end of incubation time, ferrous and acid extractable iron were determined with Ferrozine assay by spectrophotometer in 562 nm (8, 25. Results and Discussion: Results showed that the AQS had a noticeable effect on ferrous iron concentrations in both acidic and calcareous soils. In these cases ferrous iron concentrations were 8 and 15.7 times higher compared to initial concentration in acidic and calcareous soils, respectively. The Shewanella sp. intensified ferrous iron concentration 7.2 and 16.3 fold in acidic and calcareous soils, respectively but P. aeruginosa increased it 5.6 and 12.1 fold compared to initial concentration of ferrous iron. In acidic soil, in the presence of Shewanella sp. and AQS, ferrous and acid extractable iron concentrations were 1.45 and 4.50 mg g-1, respectively. Results showed that 11.7 fold enhancements occur in the presence of Shewanella sp. and AQS compared to initial (0.385 mg g-1 concentration of iron in acidic soil. When P. aeruginosa was inoculated in acidic soil in the presence of AQS, soluble ferrous iron concentration was 1.27 mg g-1. The acid extractable iron in this treatment was 2.85 mg g-1. The concentration of soluble ferrous iron in calcareous soil was 0.81 mg g-1, when AQS was added to Shewanella sp. treatments. That value was 0

  1. Ferric chloride modified zeolite in wastewater on Cr (VI) adsorption characteristics

    Science.gov (United States)

    Wu, Xiaoqing; Zhang, Kang; Chen, Wen; Zhang, Hua

    2018-03-01

    Zeolite was modified by ferric chloride(Fe-Z) removal Cr (VI) ion from wastewater. The results showed that the effect of Cr(VI) adsorption on modified zeolite depended significantly on pH. It is favorable for the adsorption of Cr(VI) in acid condition. The Langmuir isotherm model has high fitting accuracy with experimental data, demonstrated that is monolayer adsorption and chemical adsorption.The pseudo-second-order equation provided the best correlation to the data. The model can describe the adsorption reaction process well.

  2. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples.

    Science.gov (United States)

    Goacher, Robyn E; Braham, Erick J; Michienzi, Courtney L; Flick, Robert M; Yakunin, Alexander F; Master, Emma R

    2017-12-29

    The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion. © 2017 Scandinavian Plant Physiology Society.

  3. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    Science.gov (United States)

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bioactive extracts of red seaweeds Pterocladiella capillacea and Osmundaria obtusiloba (Floridophyceae: Rhodophyta) with antioxidant and bacterial agglutination potential.

    Science.gov (United States)

    de Alencar, Daniel Barroso; de Carvalho, Fátima Cristiane Teles; Rebouças, Rosa Helena; Dos Santos, Daniel Rodrigues; Dos Santos Pires-Cavalcante, Kelma Maria; de Lima, Rebeca Larangeira; Baracho, Bárbara Mendes; Bezerra, Rayssa Mendes; Viana, Francisco Arnaldo; Dos Fernandes Vieira, Regine Helena Silva; Sampaio, Alexandre Holanda; de Sousa, Oscarina Viana; Saker-Sampaio, Silvana

    2016-04-01

    To evaluate the antioxidant, antibacterial and bacterial cell agglutination activities of the hexane (Hex) and 70% ethanol (70% EtOH) extracts of two species of red seaweeds Pterocladiella capillacea (P. capillacea) and Osmundaria obtusiloba. In vitro antioxidant activity was determined by DPPH radical scavenging assay, ferric-reducing antioxidant power assay, ferrous ion chelating assay, β-carotene bleaching assay and total phenolic content quantification. Antimicrobial activity was tested using the method of disc diffusion on Mueller-Hinton medium. The ability of algal extracts to agglutinate bacterial cells was also tested. The 70% EtOH extract of the two algae showed the highest values of total phenolic content compared to the Hex extract. The results of DPPH for both extracts (Hex, 70% EtOH) of Osmundaria obtusiloba (43.46% and 99.47%) were higher than those of P. capillacea (33.04% and 40.81%) at a concentration of 1000 μg/mL. As for the ferrous ion chelating, there was an opposite behavior, extracts of P. capillacea had a higher activity. The extracts showed a low ferric-reducing antioxidant power, with optical density ranging from 0.054 to 0.180. Antioxidant activities of all extracts evaluated for β-carotene bleaching were above 40%. There was no antibacterial activity against bacterial strains tested. However, the extracts of both species were able to agglutinate bacterial Gram positive cells of Staphylococcus aureus and Gram negative cells of Escherichia coli, multidrug-resistant Salmonella and Vibrio harveyi. This is the first report of the interaction between these algal extracts, rich in natural compounds with antioxidant potential, and Gram positive and Gram negative bacterial cells. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  5. The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes.

    Science.gov (United States)

    Grissa, Ibtissem; Bidard, Frédérique; Grognet, Pierre; Grossetete, Sandrine; Silar, Philippe

    2010-09-01

    Reactive Oxygen Species (ROS) are involved in plant biomass degradation by fungi and development of fungal structures. While the ROS-generating NADPH oxidases from filamentous fungi are under strong scrutiny, much less is known about the related integral Membrane (or Ferric) Reductases (IMRs). Here, we present a survey of these enzymes in 29 fungal genomes covering the entire available range of fungal diversity. IMRs are present in all fungal genomes. They can be classified into at least 24 families, underscoring the high diversity of these enzymes. Some are differentially regulated during colony or fruiting body development, as well as by the nature of the carbon source of the growth medium. Importantly, functional characterization of IMRs has been made on proteins belonging to only two families, while nothing or very little is known about the proteins of the other 22 families. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  7. Ferric Iron Reduction by Bacteria Associated with the Roots of Freshwater and Marine Macrophytes†

    Science.gov (United States)

    King, G. M.; Garey, Meredith A.

    1999-01-01

    In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 μmol g (dry weight)−1 day−1 for three freshwater macrophytes and rates between 15 and 83 μmol (dry weight)−1 day−1 for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32°C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments. PMID:10508065

  8. Restraining Sodium Volatilization in the Ferric Bauxite Direct Reduction System

    Directory of Open Access Journals (Sweden)

    Wentao Hu

    2016-03-01

    Full Text Available Direct reduction is an emerging utilization technology of ferric bauxite. However, it requires much more sodium carbonate than ordinary bauxite does. The volatilization is one of the most significant parts of sodium carbonate consumption, as reported in previous studies. Based on the new direct reduction method for utilization of ferric bauxite, this paper has systematically investigated factors including heating temperature, heating time, and sodium carbonate dosage influencing sodium volatilization. For the purpose of reducing sodium volatilization, the Box–Benhken design was employed, and the possibility of separating iron and sodium after direct reduction was also investigated.

  9. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Gravity settling of precipitated magnetite and ferric floc

    International Nuclear Information System (INIS)

    Holt, N.S.; Loft, P.R.

    1983-06-01

    A comparison is presented of the gravity settling performance of ferric floc and magnetite, both in batch settling tests, and on a continuous gravity settler. The precipitation of magnetite from solution on a continuous basis was also demonstrated, and the process was shown not to be significantly affected by the presence of a wide range of chemical species. (U.K.)

  11. Reaction of ferric leghemoglobin with H2O2

    DEFF Research Database (Denmark)

    Moreau, S; Davies, M J; Puppo, A

    1995-01-01

    Ferric leghemoglobin in the presence of H2O2 is known to give rise to protein radicals, at least one of which is centred on a tyrosine residue. These radicals are quenched by at least two processes. The first one involves an intramolecular heme-protein cross-link probably involving the tyrosine r...

  12. Equilibrium Studies of Fluoride Adsorption onto a Ferric Poly ...

    African Journals Online (AJOL)

    African countries along the Great Rift Valley are among areas of the world where excess fluoride in water sources is a major public health problem. In this work, the removal of fluoride (F) from water solutions using a ferric poly-mineral (FPM) from Kenya was therefore studied using batch adsorption experiments. The effect of ...

  13. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles

    NARCIS (Netherlands)

    Rohner, F.; Ernst, F.O.; Arnold, M.; Hilbe, M.; Biebinger, R.; Ehrensperger, F.; Pratsinis, S.E.; Langhans, W.; Hurrell, R.F.; Zimmermann, M.B.

    2007-01-01

    Particle size is a determinant of iron (Fe) absorption from poorly soluble Fe compounds. Decreasing the particle size of metallic Fe and ferric pyrophosphate added to foods increases Fe absorption. The aim of this study was to develop and characterize nanoparticles of FePO4 and determine their

  14. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites.

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Mihalache, Nicoleta; Botez, Adriana; Matei, Cristian; Berger, Daniela; Damian, Celina Maria; Ionita, Valentin

    2016-10-01

    In this study bacterial cellulose-magnetite composites were synthesised for the removal of chromium(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the bacterial cellulose-magnetite composites and to reveal the uniform dispersion of nanomagnetite in the BC matrix. Magnetic properties were also measured to confirm the magnetite immobilization on bacterial cellulose membrane. The effects of initial Cr(VI) concentration, solution pH and solid/liquid ratio upon chromium removal were examined using the statistical Box-Behnken Design. Because of the possibility of magnetite dissolution during chromium(VI) adsorption, the degree of iron leaching was also analysed in the same conditions as Cr(VI) adsorption. From the factors affecting chromium(VI) adsorption the most important was solution pH. The highest Cr(VI) removal efficiency was observed at pH 4, accompanied by the lowest iron leaching in the solution. The adsorption experiments also indicated that the adsorption process of chromium(VI) is well described by Freundlich adsorption model. Our results proved that the BC-magnetite composites could be used for an efficient removal of chromium(VI) from diluted solutions with a minimum magnetite dissolution during operation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology.

    Science.gov (United States)

    Judge, Kim; Hunt, Martin; Reuter, Sandra; Tracey, Alan; Quail, Michael A; Parkhill, Julian; Peacock, Sharon J

    2016-09-01

    Translating the Oxford Nanopore MinION sequencing technology into medical microbiology requires on-going analysis that keeps pace with technological improvements to the instrument and release of associated analysis software. Here, we use a multidrug-resistant Enterobacter kobei isolate as a model organism to compare open source software for the assembly of genome data, and relate this to the time taken to generate actionable information. Three software tools (PBcR, Canu and miniasm) were used to assemble MinION data and a fourth (SPAdes) was used to combine MinION and Illumina data to produce a hybrid assembly. All four had a similar number of contigs and were more contiguous than the assembly using Illumina data alone, with SPAdes producing a single chromosomal contig. Evaluation of the four assemblies to represent the genome structure revealed a single large inversion in the SPAdes assembly, which also incorrectly integrated a plasmid into the chromosomal contig. Almost 50 %, 80 % and 90 % of MinION pass reads were generated in the first 6, 9 and 12 h, respectively. Using data from the first 6 h alone led to a less accurate, fragmented assembly, but data from the first 9 or 12 h generated similar assemblies to that from 48 h sequencing. Assemblies were generated in 2 h using Canu, indicating that going from isolate to assembled data is possible in less than 48 h. MinION data identified that genes responsible for resistance were carried by two plasmids encoding resistance to carbapenem and to sulphonamides, rifampicin and aminoglycosides, respectively.

  16. Thermally assisted nanosecond laser generation of ferric nanoparticles

    Science.gov (United States)

    Kurselis, K.; Kozheshkurt, V.; Kiyan, R.; Chichkov, B.; Sajti, L.

    2018-03-01

    A technique to increase nanosecond laser based production of ferric nanoparticles by elevating temperature of the iron target and controlling its surface exposure to oxygen is reported. High power near-infrared laser ablation of the iron target heated up to 600 °C enhances the particle generation efficiency by more than tenfold exceeding 6 μg/J. Temporal and thermal dependencies of the particle generation process indicate correlation of this enhancement with the oxidative processes that take place on the iron surface during the per spot interpulse delay. Nanoparticles, produced using the heat-assisted ablation technique, are examined using scanning electron and transmission electron microscopy confirming the presence of 1-100 nm nanoparticles with an exponential size distribution that contain multiple randomly oriented magnetite nanocrystallites. The described process enables the application of high power lasers and facilitates precise, uniform, and controllable direct deposition of ferric nanoparticle coatings at the industry-relevant rates.

  17. Evaluation of oral abdominal contrast agent containing ferric ammonium citrate

    International Nuclear Information System (INIS)

    Shiga, Toshiko; Kawamura, Yasutaka; Iwasaki, Toshiko

    1991-01-01

    We evaluated the effectiveness of oral MRI contrast agent containing ferric ammonium citrate. Twenty patients were arbitrarily divided into 2 groups according to the given dose of 100 and 200 mg Fe of oral MRI contrast agent. MRI was performed before and immediately after ingesting 300 ml solution of oral MRI contrast agent using a 1.5 T superconducting system (GE: Signa). Each dose of 100 and 200 mg Fe of oral MRI contrast agent produced sufficient enhancement of gastrointestinal tract, enough to make clear the pancreatic contour and porta hepatis. There was no significant change in blood and urine analysis observed after taking oral MRI contrast agent. The use of ferric ammonium citrate as an oral MRI contrast agent seems to add valuable information in performing upper abdominal MRI imaging. (author)

  18. Study of the Efficiency of Arsenic Removal from Drinking Water by Granular Ferric Hydroxide (GFH

    Directory of Open Access Journals (Sweden)

    .R. Asgari

    2008-04-01

    Full Text Available Background and ObjectivePollution of surface and ground water to arsenic (As has been reported from many parts of the world and in some regions of Iran especially in Kurdistan province. Natural pollution of water to As is in fact dependent to geological characteristics of a region. To day, various methods have been recommended for As removal that each of which has special advantages and drawbacks. Granular ferric hydroxide (GFH is a relatively new adsorbent available in market which is principally introduced for As removal.MethodsThis study was an applied survey in which the effects of changing contact time, As concentration, adsorbent weight, pH as well as the effect of sulfate and chloride ions in arsenic removal were determined. Moreover, the model of absorption by GFH was studied and compared with Freundlich and Langmuir models. Raw data were analyzed by Excel and SPSS softwares. ResultsResults showed that As adsorption by GFH imitate both the Freundlich and Langmuir equations (with R2 >0.95. Optimum PH was 7.5 and duration of the process about 30 minutes was sufficient for optimum removal of As. It was also found that efficiency of As removal was high when small amounts of adsorbent were used. Furthermore, sulfate and chloride ions in concentrations used in this study had no noticeable effect on As removal and Fe added during process remains in the water more than the standard value (0.3 mg/l.ConclusionAccording to this study, GFH could be considered as a suitable adsorbent for As removal from polluted water resources because of its high performance without any needs to PH adjustment. However, there are few drawbacks such as Fe addition and relatively high initial cost. Keywords: Arsenic, Granular Ferric Hydroxide (GFH, Adsorption, Drinking Water

  19. Supramolecular Ferric Porphyrins as Cyanide Receptors in Aqueous Solution

    Science.gov (United States)

    2011-01-01

    All fundamental data about binding of the cyanide to a supramolecular complex composed of a per-O-methylated β-cyclodextrin dimer having an imidazole linker (Im3CD) and an anionic ferric porphyrin (Fe(III)TPPS) indicate that the Fe(III)TPPS/Im3CD complex is much better as an cyanide receptor in vivo than hydroxocobalamin, whose cyanide binding ability is lowered by its strong binding to serum proteins in the blood. PMID:24900285

  20. Intravenous ferric carboxymaltose accelerates erythropoietic recovery from experimental malarial anemia

    DEFF Research Database (Denmark)

    Maretty, Lasse; Sharp, Rebecca Emilie; Andersson, Mikael

    2012-01-01

    Iron restriction has been proposed as a cause of erythropoietic suppression in malarial anemia; however, the role of iron in malaria remains controversial, because it may increase parasitemia. To investigate the role of iron-restricted erythropoiesis, A/J mice were infected with Plasmodium chabaudi...... use of iron therapy in malaria and show the need for trials of intravenous ferric carboxymaltose as an adjunctive treatment for severe malarial anemia....

  1. SPECTROPHOTOMETRIC ASSESSMENT OF FERRIC REDUCING POWER OF THE INSTANT COFFEE

    OpenAIRE

    Tsiupko, T. G.; Tishchenko, E. A.; Voronova, O. B.

    2016-01-01

    The methods of antioxidant activity determination of foodstuffs using different indicator systems were discussed. The investigation of ferric reducing power (FRP) of coffee and its individual phenolic components such as chlorogenic (CGA), caffeic (СА), ferulic (FA), gallic (GA), vanillic (VA), protocatechuic (PCA) and uric (UA) acids as well as quercetin (Qu) and catechol (C) using the spectrophotometric method with Fe(III) - o-Phen indicator system was carried out. It was shown that the sens...

  2. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels.

    Science.gov (United States)

    Kang, Yu Jin; Chun, Sang-Jin; Lee, Sung-Suk; Kim, Bo-Yeong; Kim, Jung Hyeun; Chung, Haegeun; Lee, Sun-Young; Kim, Woong

    2012-07-24

    We demonstrate all-solid-state flexible supercapacitors with high physical flexibility, desirable electrochemical properties, and excellent mechanical integrity, which were realized by rationally exploiting unique properties of bacterial nanocellulose, carbon nanotubes, and ionic liquid based polymer gel electrolytes. This deliberate choice and design of main components led to excellent supercapacitor performance such as high tolerance against bending cycles and high capacitance retention over charge/discharge cycles. More specifically, the performance of our supercapacitors was highly retained through 200 bending cycles to a radius of 3 mm. In addition, the supercapacitors showed excellent cyclability with C(sp) (~20 mF/cm(2)) reduction of only <0.5% over 5000 charge/discharge cycles at the current density of 10 A/g. Our demonstration could be an important basis for material design and development of flexible supercapacitors.

  3. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xin-Jun [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Graduate Univ., Chinese Academy of Sciences, BJ (China); Yang Jing; Chen Xue-Ping; Sun Guo-Xin [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Zhu Yong-Guan [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Key Lab. of Urban Environment and Health, Inst. of Urban Environment, Chinese Academy of Sciences, Xiamen (China)

    2009-12-15

    Purpose: Dissimilatory iron-reducing bacteria have been described by both culture-dependent and -independent methods in various environments, including freshwater, marine sediments, natural wetlands, and contaminated aquifers. However, little is known about iron-reducing microbial communities in paddy soils. The goal of this study was to characterize iron-reducing microbial communities in paddy soil. Moreover, the effect of dissolved and solid-phase iron (III) species on the iron-reducing microbial communities was also investigated by enrichment cultures. Methods: Ferric citrate and ferrihydrite were used respectively to set up enrichment cultures of dissimilatory ironreducing microorganisms using 1% inoculum of soil samples, and the iron reduction was measured. Moreover, bacterial DNA was extracted and 16S rRNA genes were PCR-amplified, and subsequently analyzed by the clone library and terminal restriction fragment length polymorphism (T-RFLP). Results: Phylogenetic analysis of 16S rRNA gene sequences extracted from the enrichment cultures revealed that Bradyrhizobium, Bacteroides, Clostridium and Ralstonia species were the dominant bacteria in the ferric citrate enrichment. However, members of the genera Clostridium, Bacteroides, and Geobacter were the dominant micro-organisms in the ferrihydrite enrichment. Analysis of enrichment cultures by T-RFLP strongly supported the cloning and sequencing results. Conclusions: The present study demonstrated that dissimilatory iron-reducing consortia in As-contaminated paddy soil are phylogenetically diverse. Moreover, iron (III) sources as a key factor have a strong effect on the iron (III)-reducing microbial community structure and relative abundance in the enrichments. In addition, Geobacter species are selectively enriched by ferrihydrite enrichment cultures. (orig.)

  4. Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.

    Science.gov (United States)

    Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M

    2011-09-15

    The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes.

    Science.gov (United States)

    Lee, Hye-Jin; Kim, Hyung-Eun; Lee, Changha

    2017-03-01

    Combinations of Cu(II) with hydroxylamine (HA) and hydrogen peroxide (H 2 O 2 ) (i.e., Cu(II)/HA, Cu(II)/H 2 O 2 , and Cu(II)/HA/H 2 O 2 systems) were investigated for the control of P. aeruginosa biofilms on reverse osmosis (RO) membranes. These Cu(II)-based disinfection systems effectively inactivated P. aeruginosa cells, exhibiting different behaviors depending on the state of bacterial cells (planktonic or biofilm) and the condition of biofilm growth and treatment (normal or pressurized condition). The Cu(II)/HA and Cu(II)/HA/H 2 O 2 systems were the most effective reagents for the inactivation of planktonic cells. However, these systems were not effective in inactivating cells in biofilms on the RO membranes possibly due to the interactions of Cu(I) with extracellular polymeric substances (EPS), where biofilms were grown and treated in center for disease control (CDC) reactors. Different from the results using CDC reactors, in a pressurized cross-flow RO filtration unit, the Cu(II)/HA/H 2 O 2 treatment significantly inactivated biofilm cells formed on the RO membranes, successfully recovering the permeate flux reduced by the biofouling. The pretreatment of feed solutions by Cu(II)/HA and Cu(II)/HA/H 2 O 2 systems (applied before the biofilm formation) effectively mitigated the permeate flux decline by preventing the biofilm growth on the RO membranes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes

    KAUST Repository

    Ge, Qingchun; Fu, Fengjiang; Chung, Neal Tai-Shung

    2014-01-01

    Cupric and ferric hydroacid complexes have proven their advantages as draw solutes in forward osmosis in terms of high water fluxes, negligible reverse solute fluxes and easy recovery (Ge and Chung, 2013. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications 49, 8471-8473.). In this study, cobaltous hydroacid complexes were explored as draw solutes and compared with the ferric hydroacid complex to study the factors influencing their FO performance. The solutions of the cobaltous complexes produce high osmotic pressures due to the presence of abundant hydrophilic groups. These solutes are able to dissociate and form a multi-charged anion and Na+ cations in water. In addition, these complexes have expanded structures which lead to negligible reverse solute fluxes and provide relatively easy approaches in regeneration. These characteristics make the newly synthesized cobaltous complexes appropriate as draw solutes. The FO performance of the cobaltous and ferric-citric acid (Fe-CA) complexes were evaluated respectively through cellulose acetate membranes, thin-film composite membranes fabricated on polyethersulfone supports (referred as TFC-PES), and polybenzimidazole and PES dual-layer (referred as PBI/PES) hollow fiber membranes. Under the conditions of DI water as the feed and facing the support layer of TFC-PES FO membranes (PRO mode), draw solutions at 2.0M produced relatively high water fluxes of 39-48 LMH (Lm-2hr-1) with negligible reverse solute fluxes. A water flux of 17.4 LMH was achieved when model seawater of 3.5wt.% NaCl replaced DI water as the feed and 2.0M Fe-CA as the draw solution under the same conditions. The performance of these hydroacid complexes surpasses those of the synthetic draw solutes developed in recent years. This observation, along with the relatively easy regeneration, makes these complexes very promising as a novel class of draw solutes. © 2014 Elsevier Ltd.

  7. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes

    KAUST Repository

    Ge, Qingchun

    2014-07-01

    Cupric and ferric hydroacid complexes have proven their advantages as draw solutes in forward osmosis in terms of high water fluxes, negligible reverse solute fluxes and easy recovery (Ge and Chung, 2013. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications 49, 8471-8473.). In this study, cobaltous hydroacid complexes were explored as draw solutes and compared with the ferric hydroacid complex to study the factors influencing their FO performance. The solutions of the cobaltous complexes produce high osmotic pressures due to the presence of abundant hydrophilic groups. These solutes are able to dissociate and form a multi-charged anion and Na+ cations in water. In addition, these complexes have expanded structures which lead to negligible reverse solute fluxes and provide relatively easy approaches in regeneration. These characteristics make the newly synthesized cobaltous complexes appropriate as draw solutes. The FO performance of the cobaltous and ferric-citric acid (Fe-CA) complexes were evaluated respectively through cellulose acetate membranes, thin-film composite membranes fabricated on polyethersulfone supports (referred as TFC-PES), and polybenzimidazole and PES dual-layer (referred as PBI/PES) hollow fiber membranes. Under the conditions of DI water as the feed and facing the support layer of TFC-PES FO membranes (PRO mode), draw solutions at 2.0M produced relatively high water fluxes of 39-48 LMH (Lm-2hr-1) with negligible reverse solute fluxes. A water flux of 17.4 LMH was achieved when model seawater of 3.5wt.% NaCl replaced DI water as the feed and 2.0M Fe-CA as the draw solution under the same conditions. The performance of these hydroacid complexes surpasses those of the synthetic draw solutes developed in recent years. This observation, along with the relatively easy regeneration, makes these complexes very promising as a novel class of draw solutes. © 2014 Elsevier Ltd.

  8. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  9. Optical and electrical properties of thin films of bismuth ferric oxide

    International Nuclear Information System (INIS)

    Cardona R, D.

    2014-01-01

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe 2 O 3 ) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO 3 in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO 3 composition. These samples showed a secondary phase (Bi 2 5FeO 4 0 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe 2 O 3 ) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  10. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  11. Highly selective and sensitive fluorogenic ferric probes based on aggregation-enhanced emission with - SiMe3 substituted polybenzene

    Science.gov (United States)

    Wang, Xuefeng; Wang, Hua; Jiang, Qin; Lee, Yong-Ill; Feng, Shengyu; Liu, Hong-Guo

    2018-01-01

    In this study, thiophene was linked to polybenzene to generate novel fluorescent probes, namely 3,4-diphenyl-2,5-di(2-thienyl)phenyl-trimethylsilane (DPTB-TMS) with a - SiMe3 substituent and 3,4-diphenyl-2,5-di(2-thienyl)phenyl (DPTB) without the - SiMe3 substituent, respectively. Both of the two compounds exhibit aggregation-enhanced emission (AEE) properties in tetrahydrofuran/water mixtures due to restricted intramolecular rotation of the peripheral groups, which make the two compounds good candidates for the detection of Fe3 + ions in aqueous-based solutions. The fluorescence intensity of the two compounds decreases immediately and obviously upon addition of a trace amount of Fe3 +, and decreases continuously as the amount of Fe3 + increases. The fluorescence was quenched to 92% of its initial intensity when the amount of Fe3 + ions reached 6 μmol for DPTB-TMS and to 80% for DPTB in the systems, indicating that the compound with the - SiMe3 group is a more effective probe. The detection limit was found to be 1.17 μM (65 ppb). The detection mechanism is proposed to be static quenching. DPTB-TMS is highly efficient for the detection of ferric ions even in the presence of other metal ions. In addition, the method is also successfully applied to the detection of ferric ions in water, blood serum, or solid films. This indicates that these polybenzene compounds can be applied as low-cost, high selectivity, and high efficiency Fe3 + probes in water or in clinical applications.

  12. Radium behaviour during ferric oxi-hydroxides crystallization

    International Nuclear Information System (INIS)

    Bassot, S.; Stammose, D.; Benitah, S.

    2004-01-01

    In uranium mill tailings, oxides and oxi-hydroxides are responsible of about 70% of the radium immobilization, half being associated to amorphous forms (mainly hydrous ferric oxides and hydrous manganese oxides). With time, crystallization of these amorphous forms can occur, inducing a redistribution of radium between solid and solution. If the amount of mobile radium increases, the impact of these tailings on the environment may become significant. The aim of this study is to determine the amount of radium released in solution during the crystallization process of hydrous ferric oxide (HFO). The transformation of Ra-HFO co-precipitate in crystallized forms (goethite, hematite, is studied by ageing at 40 deg C for different solution compositions. Both solids and solutions are sampled for different times and analysed. The solid evolution is followed by specific area measurements (about 250 m2/g for HFO and about 10-20 m 2 /g for crystallized form) and by determination of the amorphous fraction according to a selective extraction procedure. The solutions were analysed for 226 radium activity, iron concentration and pH. In order to discriminate the part of radium included in the solid and the part of radium fixed on the solid surface, radium sorption onto HFO and crystallized forms is studied as a function of pH. The modelling of the sorption curves with JCHESS 2.0 code allow to point out the mechanisms responsible of the 226-radium distribution between solid and solution during the crystallization process of HFO. (author)

  13. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    Science.gov (United States)

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-05

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pHremoves iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating

    International Nuclear Information System (INIS)

    Lin Naiming; Huang Xiaobo; Zhang Xiangyu; Fan Ailan; Qin Lin; Tang Bin

    2012-01-01

    TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.

  15. Beta transmutations in apatites with ferric iron as an electron acceptor - implication for nuclear waste form development.

    Science.gov (United States)

    Yao, Ge; Zhang, Zelong; Wang, Jianwei

    2017-09-27

    , which is consistent with the minor structure distortions. Increased stability with favorable energetics and structural distortion by incorporating ferric ion is significant with respect without variable valence ions. The results confirm the structural and compositional adaptability of apatites upon beta transmutations. The study suggests that apatite-structured materials could be promising nuclear waste forms to mitigate the beta decay induced instability, by incorporating variable valence cations such as ferric iron in the structure. The study demonstrates a methodology which evaluates the structural stability of waste forms incorporating fission products undergoing beta decay.

  16. Subsurface injection of dissolved ferric chloride to form a chemical barrier: Laboratory investigations

    International Nuclear Information System (INIS)

    Morrison, S.J.; Spangler, R.R.; Morris, S.A.

    1996-01-01

    A chemical barrier is a permeable zone of reactive materials emplaced in the subsurface to remove ground-water contaminants while allowing clean ground water to pass through. Because dissolved ferric chloride hydrolyzes to amorphous ferric oxyhydroxide when it contacts calcite (CaCO 3 ), it may be viable to emplace a zone of amorphous ferric oxyhydroxide (an absorbent for U, Mo, and other inorganic contaminants) into calcite-bearing geologic units by injecting ferric chloride through wells. For a chemical barrier to be successful, it must remain permeable and must be immobile. This investigation monitored chemical compositions, hydraulic conductivity, and iron mobility in laboratory columns and in a two-dimensional tank to determine the viability of injecting ferric chloride to form an amorphous ferric oxyhydroxide chemical barrier. The authors introduced a ferric chloride solution (1,345 mg/1[0.024 m] Fe) to calcite-bearing alluvial gravel to form a chemical barrier of amorphous ferric oxyhydroxide, followed by solutions contaminated with U and Mo. The simulated chemical barriers decreased U and Mo concentrations to less than 0.05 mg/l (2.1 x 10 -7 m) and 0.01 (1.0 x 10 -7 m), respectively; however, the breakthrough front is spread out with concentrations increasing to more than regulatory guideline values sooner than predicted. The hydraulic conductivity of calcite-bearing alluvial gravel decreased substantially during ferric chloride introduction because of the formation of carbon dioxide but increased to within factors of 1 to 5 of the original value as synthetic ground water flowed through the system. Amorphous ferric oxyhydroxide that formed in these experiments remained immobile at flow rates exceeding those typical of ground water. These laboratory results, in conjunction with site-specific characterization data, can be used to design chemical barriers emplaced by injection of ferric chloride

  17. Absorption mechanisms for cationic and anionic mineral species on ferric iron polymer hydroxides and oxidation products of ferrous iron in aqueous media

    International Nuclear Information System (INIS)

    Gandon, Remi

    1982-01-01

    Adsorbents obtained by hydrolysing the Fe 3+ , 6H 2 O ion are made of polymers with aquo (H 2 O), hydroxo (-OH...) and oxo (...O...) ligands. Radioactive tracers reveal the importance of chemical mechanisms in adsorption phenomena on ferric oxide in aqueous media. Zn 2+ , Co 2+ and Mn 2+ cations are exchanged with hydrogen from hydroxo groups. CrO 4 2- , SeO 3 2- and Sb(OH) 6 - anions form covalent associations in place of iron ligands. The adsorption of hydrolyzed ions results in strong oxygen bridge bonds. In fresh water, Co and Mn participate alone in physical electrostatic adsorption. Iron II oxidation products generate chemical adsorptions. Zn 2+ and Sb(OH) 6 - associate with ferric hydroxides from oxidized Fe 2+ . 60 Co, 54 Mn and 51 Cr form covalent associations between unpaired 3d iron electrons and the adsorbed element. This process is not predominant with selenium IV or VI reduced to the metallic state or fixed on ferric hydroxide in the selenite form. These conclusions can be applied to pollutant analysis and to water purification and contribute to our understanding of the role of iron in the distribution of oligo-elements in aqueous media. (author) [fr

  18. Radioisotopic synovectomy using ferric hydroxide macroaggregated for chronic arthritis treatment

    International Nuclear Information System (INIS)

    Lima, Carla Flavia; Campos, Tarcisio P.R.

    2002-01-01

    Synovectomy radioisotopic is an arthritis treatment used in specific clinical conditions whose main goal is to sterilized the synovia. This treatment has specific and precise indications and it is considered to have an adequate response. The present work presents a modeling of an articulation (joint) based on its real geometric anatomy and chemical constitution. The internal dosimetry is evaluated by the Monte Carlo Code. The majority of the radionuclides were considered in the simulations. The syntheses of the ferric hydroxide macroaggregates with dysprosium and samarium have been prepared (Dy 165 -MHF and Sm 153 -MHF). Obtaining the cintilographic images of rabbits in which Dy 165 -MHF is injected is in progress. Biodistribution studies in addition with the internal dosimetry will certify the dose in the membrane of the synovia. (author)

  19. The equilibrium leach testing of ferric/aluminium hydroxide flocs

    International Nuclear Information System (INIS)

    Biddle, P.; Greenfield, B.F.; Greenham, P.S.; Rees, J.H.

    1987-09-01

    Equilibrium leach tests have been carried out on ferric/aluminium hydroxide flocs using cement and resin matrices, and cement and clay backfills in both air and nitrogen atmospheres. The equilibrium concentrations of a number of actinides and fission products were measured in leachates obtained over periods of up to a year. The lowest equilibrium actinide concentrations were found in leachates from systems with a cement backfill. Cement matrix-cement backfill was the most promising combination for limiting concentrations of long-lived radionuclides, resin-clay the least. Comparison of leachate concentrations with limiting drinking water concentrations are made and the high degree of protection afforded by candidate near field components shown. (author)

  20. The equilibrium leach testing of ferric/aluminium hydroxide flocs

    International Nuclear Information System (INIS)

    Biddle, P.; Greenfield, B.F.; Greenham, P.S.; Rees, J.H.

    1987-09-01

    Equilibrium leach tests have been carried out on ferric/aluminium hydroxide flocs using cement and resin matrices, and cement and clay backfills in both air and nitrogen atmospheres. The equilibrium concentrations of a number of actinides and fission products were measured in leachates obtained over periods of up to a year. The lowest equilibrium actinide concentrations were found in leachates from systems with a cement backfill. Cement matrix-cement backfill was the most promising combination for limiting concentrations of long-lived radionuclides, resin-clay the least. Comparisons of leachate concentrations with limiting drinking water concentrations are made and the high degree of protection afforded by candidate near field components shown. (author)

  1. Complex sulphide-barite ore leaching in ferric chloride solution

    Directory of Open Access Journals (Sweden)

    Miroslav Sokić

    2016-06-01

    Full Text Available The results of research on the leaching process of complex sulphide-barite ore were presented in this paper. The leaching process was carried out in a laboratory autoclave by ferric chloride solution. Considering that those minerals are represented in complex structural-textural relationships, it is not possible to extract lead, zinc and copper minerals from ore by flotation methods. The obtained results confirmed possibility of the ore processing directly, by chemical methods. The effect of temperature, time and oxygen partial pressure on the lead, zinc and copper dissolution was studied. The maximal leaching degree was achieved at 100 °C and amount of 91.5 % for Pb, 96.1 % for Zn and 60.7 % for Cu. Leaching at temperatures above 100 °C is impractical.

  2. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    Energy Technology Data Exchange (ETDEWEB)

    Garaje, Sunil N.; Apte, Sanjay K. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Kumar, Ganpathy [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Panmand, Rajendra P.; Naik, Sonali D. [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India); Mahajan, Satish M., E-mail: smahajan@tntech.edu [Department of Electrical and Computer Engineering, Tennessee Technological University, 1 William L. Jones Drive, Cookeville, TN 38505 (United States); Chand, Ramesh [Ministry of Communications and Information Technology, Department of Electronics and Information Technology (DeitY), Electronics Niketan, 6, CGO Complex, New Delhi 110003 (India); Kale, Bharat B., E-mail: bbkale@cmet.gov.in [Nanocomposite Group, Centre for Materials for Electronics Technology (C-MET), Department of Electronics and Information Technology (DeitY), Government of India, Panchawati, Off Pashan Road, Pune 411008 (India)

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  3. Arsenic removal from acidic solutions with biogenic ferric precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Ahoranta, Sarita H., E-mail: sarita.ahoranta@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Kokko, Marika E., E-mail: marika.kokko@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Papirio, Stefano, E-mail: stefano.papirio@unicas.it [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Özkaya, Bestamin, E-mail: bozkaya@yildiz.edu.tr [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Department of Environmental Engineering, Yildiz Technical University, Davutpasa Campus 34220, Esenler, Istanbul (Turkey); Puhakka, Jaakko A., E-mail: jaakko.puhakka@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2016-04-05

    Highlights: • Continuous and rapid arsenic removal with biogenic jarosite was achieved at pH 3.0. • Arsenic removal was inefficient below pH 2.4 due to reduced Fe–As co-precipitation. • As(V) had better sorption characteristics than As(III). • Biogenic jarosite adsorbed arsenic more effectively than synthetic jarosite. - Abstract: Treatment of acidic solution containing 5 g/L of Fe(II) and 10 mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7 h, 96–98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28 mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH < 2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment.

  4. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  5. Kinetic study of the reduction of Ferric-1, 10-Orthophenanthroline with Uranium (IV) DTPA

    International Nuclear Information System (INIS)

    Perveen, Rashida; Naqvi, Iftikhar Imam

    2006-01-01

    The reduction of ferric 1, 10-orthophenanthroline by Uranium (IV) complex of Diethylenetriaminepentaacetic acid was investigated in aqueous hydrochloride acid at 30C, ionic strength 0.01 mole dm-3 and pH 3.5. The mechanism and rate law for the formation of [Fe (opt) 3] was established by isolation method at constant and varying pH values. Spectroscopic method was employed for this investigation. The rate constant and order of reaction with respect to each of the reactant the [U (IV) DTPA] and [Fe(opt3)] was established by plotting a graph 1n (A-At) vs. time. The reaction was observed to be following first order with respect each of following reactants. Overall reaction order was found to be two, having the value of the rate constant 571.59 m min. at pH 3.5. Thermodynamic parameters for the reaction were determined to be E=26.47 kj mol, G=35.11 kj mol, H=24.86 mol and S= 50.17 mol. With the help of Arrhenius equation activation energy for the reaction was calculated. Change in enthalpy and entropy for the reaction (S, H) were determined from the slope and intercept of Eyring plot. Hydrogen ion dependence of the reaction was determined by varying the pH and the rate law was determined. (author)

  6. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi

    Science.gov (United States)

    Zarnowski, Robert; Woods, Jon P.

    2009-01-01

    In this study, extracellular glutathione-dependent ferric reductase (GSH-FeR) activities in different dimorphic zoopathogenic fungal species were characterized. Supernatants from Blastomyces dermatitidis, Histoplasma capsulatum, Paracoccidioides brasiliensis and Sporothrix schenckii strains grown in their yeast form were able to reduce iron enzymically with glutathione as a cofactor. Some variations in the level of reduction were noted amongst the strains. This activity was stable in acidic, neutral and slightly alkaline environments and was inhibited when trivalent aluminium and gallium ions were present. Using zymography, single bands of GSH-FeRs with apparent molecular masses varying from 430 to 460 kDa were identified in all strains. The same molecular mass range was determined by size exclusion chromatography. These data demonstrate that dimorphic zoopathogenic fungi produce and secrete a family of similar GSH-FeRs that may be involved in the acquisition and utilization of iron. Siderophore production by these and other fungi has sometimes been considered to provide a full explanation of iron acquisition in these organisms. Our work reveals an additional common mechanism that may be biologically and pathogenically important. Furthermore, while some characteristics of these enzymes such as extracellular location, cofactor utilization and large size are not individually unique, when considered together and shared across a range of fungi, they represent an important novel physiological feature. PMID:16000713

  7. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  8. Removal of the blue 1 dye of aqueous solutions using ferric zeolite

    International Nuclear Information System (INIS)

    Pinedo H, S. Y.

    2010-01-01

    amount of adsorbent from 10 to 200 mg of adsorbent and 10 ml of solution. Finally there was a column sorption test, obtaining the curve os load vs time of contact, and important design parameters such as the rupture time, it was at 100 minutes, with an initial concentration of 5 mg/L taking final concentration breakpoint of 0.4 mg/L, the results were evaluated with the Thomas model. The results of this work can conclude that it is possible to extend the scope of natural zeolites as adsorbents for the removal of organic pollutants in wastewater, by changing its outer surface with ferric chloride, without a significant effect on their ion exchange properties. (Author)

  9. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  10. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  11. The absorption and transportation of ferric-salt in apple trees

    International Nuclear Information System (INIS)

    Xiong Zhixun; Chen Meihong

    1994-01-01

    59 Fe tracer technique was used to study the ferric-salt absorption, utilization and transportation in apple trees. The results indicated that absorption and utilization rate of ferric salt was 0.056%∼0.110% for roots and 30% for leaves, and that Fe is not easily to be transferred from one part to another. Fulvic acid iron had a better effect than ferrous sulfate. Ferric-salt absorption, utilization and transference were different among the cultivars. Intensive injections of ferrous salt into the apple trunks seemed to be more effective for correcting of chlorosis

  12. Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Science.gov (United States)

    Jaén, Juan A.; Navarro, César

    2009-07-01

    Fourier transform infrared spectroscopy and Mössbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Mössbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  13. Moessbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    International Nuclear Information System (INIS)

    Jaen, Juan A.; Navarro, Cesar

    2009-01-01

    Fourier transform infrared spectroscopy and Moessbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Moessbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  14. Moessbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, Juan A., E-mail: jjaen@ancon.up.ac.p [Universidad de Panama, Depto. de Quimica Fisica, CITEN, Lab. No. 105, Edificio de Laboratorios Cientificos-VIP (Panama); Navarro, Cesar [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)

    2009-07-15

    Fourier transform infrared spectroscopy and Moessbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Moessbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  15. Preparation of polymeric aluminium ferric chloride from bauxite tailings

    Directory of Open Access Journals (Sweden)

    Ma D.

    2013-01-01

    Full Text Available Bauxite tailings are the main solid wastes in the ore dressing process. The Al2O3 and Fe2O3 contents in bauxite tailings can reach 50% and 13% respectively. The present study proposed a feasible method to use bauxite tailings to prepare polymeric aluminium ferric chloride (PAFC, a new composite inorganic polymer for water purification. Bauxite tailings roasted reacting with hydrochloric acid under air, pickle liquor which mainly contains Fe3+, Al3+ was generated, then calcium aluminate was used to adjust pH value and the basicity of the pickle liquor, the PAFC was subsequently prepared after the polymerization process. The optimal synthesizing parameters for the preparation of PAFC obtained were as follows: the concentration of hydrochloric acid of 24 wt%, ratio of hydrochloric acid to bauxite tailings of 6:1, temperature of 90ºC, leaching time of 2.5 hours, ration of pickle liquor to calcium aluminate of 12:1, polymerization temperature of 90ºC and polymerization time of about 3 hours. The basicity of PAFC was higher than 68%, the sum concentration of Al2O3 and Fe2O3 was beyond 12.5%. The results of flocculation tests indicate that the PAFC has a better performance of removing the turbidity of wastewater compared to PAC, and PAFC prepared by bauxite tailings is a kind of high quality flocculants.

  16. Iron fortification of flour with a complex ferric orthophosphate

    International Nuclear Information System (INIS)

    Hallberg, L.; Rossander-Hulthen, L.; Gramatkovski, E.

    1989-01-01

    The unexpectedly low bioavailability in humans of elemental iron powder prompted us to search for other Fe compounds suitable for Fe fortification of flour that fulfill the two requirements of insolubility in water (due to high water content of flour) and good bioavailability in humans. Systematic studies of compatibility, solubility, and bioavailability led to this study of a microcrystalline complex ferric orthophosphate (CFOP), Fe 3 H 8 (NH 4 )-(PO 4 )6.6H 2 O, a well-defined compound. This compound was labeled with 59 Fe, and the native Fe in meals was labeled with 55 FeCl3. The ratio of absorbed 59 Fe to absorbed 55 Fe is a direct measure of the fraction of CFOP that joins the nonheme Fe pool and that is made potentially available for absorption. The relative bioavailability of CFOP varied from 30% to 60% when labeled wheat rolls were served with different meals. The CFOP meets practical requirements of an Fe fortificant for flour well, with regard to both compatibility and bioavailability in humans

  17. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  18. Synthesis and characterization of redox-active ferric nontronite

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; Artyushkova, K.; Cerrato, J. M.; Kruichak, J. N.; Janish, M. T.; Sun, C. J.; Argo, J. M.; Washington, R. E.

    2017-10-01

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and its natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.

  19. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  20. Characterization of ferric arsenate-sulfate compounds: Implications for arsenic control in refractory gold processing residues

    Czech Academy of Sciences Publication Activity Database

    Paktunc, D.; Majzlan, J.; Palatinus, Lukáš; Dutrizac, J.; Klementová, Mariana; Poirier, G.

    2013-01-01

    Roč. 98, č. 4 (2013), s. 554-565 ISSN 0003-004X Institutional support: RVO:68378271 Keywords : arsenic * ferric arsenate sulfate * autoclave residue * hydrometallurgy Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.059, year: 2013

  1. Oxidation of Alcohols by Ferric Nitrate in the Presence of Barium ...

    African Journals Online (AJOL)

    NJD

    Oxidation, ferric nitrate, barium chloride, silica sulphuric acid, heterogeneous or solvent-free conditions. 1. Introduction ... economic advantage and environment protection. ... by TLC. After completion, structure of the product was charac-.

  2. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    Rouas, C.

    1988-12-01

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry [fr

  3. Ferric-Pyoverdine Recognition by Fpv Outer Membrane Proteins of Pseudomonas protegens Pf-5

    Science.gov (United States)

    Hartney, Sierra L.; Mazurier, Sylvie; Girard, Maëva K.; Mehnaz, Samina; Davis, Edward W.; Gross, Harald; Lemanceau, Philippe

    2013-01-01

    The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp. PMID:23222724

  4. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  5. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese

    DEFF Research Database (Denmark)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide an...

  6. Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability.

    Science.gov (United States)

    Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P

    2016-10-01

    Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cost-minimization analysis favours intravenous ferric carboxymaltose over ferric sucrose for the ambulatory treatment of severe iron deficiency.

    Directory of Open Access Journals (Sweden)

    Xavier Calvet

    Full Text Available OBJECTIVE: Intravenous iron is widely used to treat iron deficiency in day-care units. Ferric carboxymaltose (FCM allows administration of larger iron doses than iron sucrose (IS in each infusion (1000 mg vs. 200 mg. As FCM reduces the number of infusions required but is more expensive, we performed a cost-minimization analysis to compare the cost impact of the two drugs. MATERIALS AND METHODS: The number of infusions and the iron dose of 111 consecutive patients who received intravenous iron at a gastrointestinal diseases day-care unit from 8/2007 to 7/2008 were retrospectively obtained. Costs of intravenous iron drugs were obtained from the Spanish regulatory agencies. The accounting department of the Hospital determined hospital direct and indirect costs for outpatient iron infusion. Non-hospital direct costs were calculated on the basis of patient interviews. In the pharmacoeconomic model, base case mean costs per patient were calculated for administering 1000 mg of iron per infusion using FCM or 200 mg using IS. Sensitivity analysis and Monte Carlo simulation were performed. RESULTS: Under baseline assumptions, the estimated cost of iron infusion per patient and year was €304 for IS and €274 for FCM, a difference of €30 in favour of FCM. Adding non-hospital direct costs to the model increased the difference to €67 (€354 for IS vs. €287 for FCM. A Monte Carlo simulation taking into account non-hospital direct costs favoured the use of FCM in 97% of simulations. CONCLUSION: In this pharmacoeconomic analysis, FCM infusion reduced the costs of iron infusion at a gastrointestinal day-care unit.

  8. The Porphyromonas gingivalis ferric uptake regulator orthologue binds hemin and regulates hemin-responsive biofilm development.

    Directory of Open Access Journals (Sweden)

    Catherine A Butler

    Full Text Available Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator. Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM. The binding of hemin resulted in conformational changes of Zn(IIHar and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455 relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(IIHar bound the promoter region of dnaA (PGN_0001, one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.

  9. Cyanide binding to ferrous and ferric microperoxidase-11.

    Science.gov (United States)

    Ascenzi, Paolo; Sbardella, Diego; Santucci, Roberto; Coletta, Massimo

    2016-07-01

    Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low.

  10. Induction of hepatic and renal metallothionein synthesis by ferric nitrilotriacetate in mice: the role of MT as an antioxidant

    International Nuclear Information System (INIS)

    Min, Kyong-Son; Morishita, Fumio; Tetsuchikawahara, Noriko; Onosaka, Satomi

    2005-01-01

    Metallothionein (MT) demonstrates strong antioxidant properties, yet the physiological relevance of its antioxidant action is not clear. Injection of mice with ferric nitrilotriacetate (Fe-NTA) caused a dose-dependent increase in hepatic and renal MT. Fe-NTA caused a greater increase in hepatic and renal MT concentration (2.5- and 4-fold) compared with FeCl 3 at the same dose of ferric ion. MT mRNA levels were markedly elevated in both of tissues. Thiobarbituric acid (TBA) values in both tissues reached a maximum after 2-4 h. The MT concentrations were significantly increased after 2-4 h in liver and after 8-16 h in kidneys. Plasma concentrations of cytokines such as IL-6 and TNFα were elevated by 4 h; IL-6 levels were 24 times higher after Fe-NTA than that after injection of FeCl 3 . Pretreatment of mice with ZnSO 4 attenuated nephrotoxicity induced by Fe-NTA after 2 h, but was not effective 4 h after injection. After a Fe-NTA injection, a loss of Cd-binding properties of preinduced MT was observed only in kidneys of Zn-pretreated mice but not in liver. Treatment with BSO, glutathione (GSH) depletor, intensified a loss of its Cd-binding properties after a Fe-NTA injection. These results indicate that induction of MT synthesis may result from reactive oxygen species (ROS) generated by Fe-NTA, and MT may act in vivo as a complementary antioxidant

  11. Evolution of the local structure of ferric gels and polymers during the crystallisation of iron oxides. Application to uranium trapping

    International Nuclear Information System (INIS)

    Combes, Jean-Marie

    1988-01-01

    A first part of this research thesis reports the study of the structure of the main iron oxides and oxy-hydroxides, and of the protocols for the synthesis of ferric gels. The second part reports a topological approach by EXAFS (Extended X-Ray Absorption Fine Structure) of the structure of Mn and Fe oxides and oxy-hydroxides. The third part reports the study of the formation of ferric oxides from aqueous solutions by using a polyhedral approach by X-ray absorption spectroscopy in the case of hydrolysis and formation of ferric gels, and in the case of haematite formation from ferric gels. The next parts respectively report the study of the local structure of gels synthesised from iron(II), and the study of the local structure of natural ferric gels. Then, the author reports the study of sites of uranium bonding on ferric gels [fr

  12. Uranium potentiometer determination in inactive atmosphere with ferric sulfate

    International Nuclear Information System (INIS)

    Fernandez Cellini, R.; Alonso Lopez, J.

    1956-01-01

    Potenciometric titration of Uranium with (SO 4 ) 3 Fe 2 , using Cd as reducing agent has been studied; acidity and sensibility of this reaction are fixed. This method yields good results for uranite group, removing previously phosphate by ion exchange with Amberlite IR-120. (Author)

  13. Prediction of ferric iron precipitation in bioleaching process using partial least squares and artificial neural network

    Directory of Open Access Journals (Sweden)

    Golmohammadi Hassan

    2013-01-01

    Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.

  14. Evaluation of Ferric and Ferrous Iron Therapies in Women with Iron Deficiency Anaemia

    Science.gov (United States)

    Berber, Ilhami; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kuku, Irfan

    2014-01-01

    Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40 mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40 mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95 g/dL and 2.62% in the ferric group, while they were 2.25 g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339

  15. Role of Intravenous Ferric Carboxy-maltose in Pregnant Women with Iron Deficiency Anaemia.

    Science.gov (United States)

    Mishra, Vineet; Gandhi, Khusaili; Roy, Priyankur; Hokabaj, Shaheen; Shah, Kunur N

    2017-09-08

    Iron deficiency is a common nutritional deficiency amongst women of childbearing age. Peri-partum iron deficiency anaemia is associated with significant maternal, foetal and infant morbidity. Current options for treatment include oral iron, which can be ineffective and poorly tolerated, and red blood cell transfusions, which carry an inherent risk and should be avoided. Ferric carboxymaltose is a modern treatment option. The study was designed to assess the safety and efficacy of intravenous ferric carboxymaltose for correction of iron deficiency anaemia in pregnant women. A prospective study was conducted at Institute of Kidney Disease and Research Centre, Ahmedabad from January 2014 to December 2016. Antenatal women (108) with iron deficiency anaemia were the study subjects. Socio-demographic profile was recorded and anaemia was assessed based on recent haemoglobin reports. Iron deficiency was diagnosed on basis of serum ferritin value. Intravenous ferric carboxymaltose as per total correction dose (maximum 1500mg) was administered to all women; the improvement in haemoglobin levels were assessed after 3 weeks of total dose infusion. Most of the women(n= 45, 41.7%), were in the age group of 27-30 years. Most of the women (n = 64, 59.3%) had moderate anaemia as per WHO guidelines. Mean haemoglobin levels significantly increased over a period of 3 weeks after Ferric carboxymaltose administrationand no serious life threatening adverse events were observed. Intravenous ferric carboxymaltose was safe and effective in pregnent women with iron deficiency anaemia.

  16. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation.

    Science.gov (United States)

    Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan

    2008-05-21

    An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.

  17. Study of the Efficiency of Arsenic Removal from Drinking Water by Granular Ferric Hydroxide (GFH

    Directory of Open Access Journals (Sweden)

    A.R Asgari

    2012-05-01

    Full Text Available

    Background and Objective

    Pollution of surface and ground water to arsenic (As has been reported from many parts of the world and in some regions of Iran especially in Kurdistan province. Natural pollution of water to As is in fact dependent to geological characteristics of a region. To day, various methods have been recommended for As removal that each of which has special advantages and drawbacks. Granular ferric hydroxide (GFH is a relatively new adsorbent available in market which is principally introduced for As removal.

     

    Methods

    This study was an applied survey in which the effects of changing contact time, As concentration, adsorbent weight, pH as well as the effect of sulfate and chloride ions in arsenic removal were determined. Moreover, the model of absorption by GFH was studied and compared with Freundlich and Langmuir models. Raw data were analyzed by Excel and SPSS softwares.

     

    Results

    Results showed that As adsorption by GFH imitate both the Freundlich and Langmuir equations (with R2 >0.95. Optimum PH was 7.5 and duration of the process about 30 minutes was sufficient for optimum removal of As. It was also found that efficiency of As removal was high when small amounts of adsorbent were used. Furthermore, sulfate and chloride ions in concentrations used in this study had no noticeable effect on As removal and Fe added during process remains in the water more than the standard value (0.3 mg/l.

     

    Conclusion

    According to this study, GFH could be considered as a suitable adsorbent for As removal from polluted water resources because of its high performance without any needs to PH adjustment. However, there are few drawbacks such as Fe addition and relatively high initial cost.

  18. Forbidden transitions in the EPR spectrum of the ferric ion cubic symmetry in magesium oxide

    Energy Technology Data Exchange (ETDEWEB)

    de Biasi, R S [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Engenharia e Ciencia dos Materiais

    1979-03-01

    The spectrum of the ..delta..m /sub s/=2 transitions of Fe/sup 3 +/ in cubic symmetry sites in MgO has been measured at 9.25GHz. The orientation dependence of the transitions is found to be consistent with a spin Hamiltonian of cubic symmetry with g=2.0037(isotropic), a=0.0205/sup +/-0.00005 cm/sup -1/.

  19. Effect of ferrous/ferric ions molar ratio on reaction mechanism for ...

    Indian Academy of Sciences (India)

    Wintec

    Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan. MS received 25 ... methods, a mixed aqueous solution of Fe. 2+ ... (Quantum Design model MPMS) at a magnetic field of. 100 Oe ...

  20. Perianth bottom-specific blue color development in Tulip cv. Murasakizuisho requires ferric ions.

    Science.gov (United States)

    Shoji, Kazuaki; Miki, Naoko; Nakajima, Noriyuki; Momonoi, Kazumi; Kato, Chiharu; Yoshida, Kumi

    2007-02-01

    The entire flower of Tulipa gesneriana cv. Murasakizuisho is purple, except the bottom, which is blue. To elucidate the mechanism of the different color development in the same petal, we prepared protoplasts from the purple and blue epidermal regions and measured the flavonoid composition by HPLC, the vacuolar pH by a proton-selective microelectrode, and element contents by the inductively coupled plasma (ICP) method. Chemical analyses revealed that the anthocyanin and flavonol compositions in both purple and blue colored protoplasts were the same; delphinidin 3-O-rutinoside (1) and major three flavonol glycosides, manghaslin (2), rutin (3) and mauritianin (4). The vacuolar pH values of the purple and blue protoplasts were 5.5 and 5.6, respectively, without any significant difference. However, the Fe(3+) content in the blue protoplast was approximately 9.5 mM, which was 25 times higher than that in the purple protoplasts. We could reproduce the purple solution by mixing 1 with two equimolar concentrations of flavonol with lambda(vismax) = 539 nm, which was identical to that of the purple protoplasts. Furthermore, addition of Fe(3+) to the mixture of 1-4 gave the blue solution with lambda(vismax) = 615 nm identical to that of the blue protoplasts. We have established that Fe(3+) is essential for blue color development in the tulip.

  1. Inactivation of ferric uptake regulator (Fur) attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production.

    Science.gov (United States)

    Lee, Ai-Yun; Kao, Cheng-Yen; Wang, Yao-Kuan; Lin, Ssu-Yuan; Lai, Tze-Ying; Sheu, Bor-Shyang; Lo, Chien-Jung; Wu, Jiunn-Jong

    2017-08-01

    Flagellar motility of Helicobacter pylori has been shown to be important for the bacteria to establish initial colonization. The ferric uptake regulator (Fur) is a global regulator that has been identified in H. pylori which is involved in the processes of iron uptake and establishing colonization. However, the role of Fur in H. pylori motility is still unclear. Motility of the wild-type, fur mutant, and fur revertant J99 were determined by a soft-agar motility assay and direct video observation. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. Single bacterial motility and flagellar switching were observed by phase-contrast microscopy. Autoinducer-2 (AI-2) production in bacterial culture supernatant was analyzed by a bioluminescence assay. The fur mutant showed impaired motility in the soft-agar assay compared with the wild-type J99 and fur revertant. The numbers and lengths of flagellar filaments on the fur mutant cells were similar to those of the wild-type and revertant cells. Phenotypic characterization showed similar swimming speed but reduction in switching rate in the fur mutant. The AI-2 production of the fur mutant was dramatically reduced compared with wild-type J99 in log-phase culture medium. These results indicate that Fur positively modulates H. pylori J99 motility through interfering with bacterial flagellar switching. © 2017 John Wiley & Sons Ltd.

  2. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  3. [On bacterial aftergrowth in drinking and industrial water. II. Apparative and processing influence upon the growth and the possibility of disinfection of ion exchange resin filter systems (author's transl)].

    Science.gov (United States)

    Schubert, R H

    1975-12-01

    The comparative examination of numerous ion exchange resin filter systems for discontinuous water softening on the market revealed that apparative and processing characteristics are of great influence upon the aftergrowth of bacteria in the water of ion exchange resin systems. Within the examination it was taken into consideration that on the end-delivery-tube of the water pipe with regard to the colony count the conditions were more unfavourable during the long standstill over a weekend (table 1) than during the week (table2). The less favourable conditions have therefore been examined separately. The work has been divided in six test series. In the first one 5 ion exchange resin systems the types A-E are simultaneously tested with regard to the colony count in the water at the inflow to the apparatus and after the passage of it; regeneration twice a week with sodium chloride. The data ascertained in the course of several weeks (without first data on mondays) and the separated mondays data are examined according to logarithmic transformation with the assistance of variance analysis and the Newman Keuls-test for differences. The results show (tab. 4 and 5) that apparative parameters and such relevant to the technical process (tab. 3) have an influence upon the bacterial after growth of the water. The most favourable ion exchange resin filter is type E because it shows more favourable values than all other systems and the tapwater. In the second test serie the systems A-E have been regenerated with 1% Chloramin T containing sodium chloride. The results show again the type E as the statistically significant most favourable system in comparison with the others and the tapwater. In the third test serie it has been examined whether the long period of standstill of the brine in the resin bed which has probably been responsible for the good results of the type E would lead to values just as favourable if transferred to another type of apparatus. ...

  4. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  5. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  6. Efficacy of bacterial bioremediation: Demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.P.; Blumer, E.N.; Emmett, M.R.; Marshall, A.G.

    2000-02-01

    The authors present a method and example to establish complete incorporation of hydrocarbons into membrane phospholipids of putatively bioremediative bacteria. Bacteria are grown on minimal media containing a specified carbon source, either natural abundance or enriched. After extraction (but no other prior separation) of the membrane lipids, electrospray ionization yields a negative-ion FT-ICR mass spectrum containing prominent phospholipid parent ions. If {sup 13}C-enriched hydrocarbon incorporation is complete, then the mass of the parent ion will increase by n Da, in which n is the number of its constituent carbon atoms; moreover, the {sup 13}C isotopic distribution pattern will be reversed. The identities of the constituent fatty acids and polar headgroup are obtained by collisional dissociation (MS/MS), and their extent of {sup 13}C incorporation determined individually. The method is demonstrated for Rhodococcus rhodochrous (ATCC No. 53968), for which all 44 carbons of a representative phosphatidylinositol are shown to derive from the hydrocarbon source. Interestingly, although only C{sub 16} and C{sub 18} alkanes are provided in the growth medium, the bacteria synthesize uniformly enriched C16:0 and C19:0 fatty acids.

  7. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  8. THE SURFACE PHOTOCHEMISTRY OF PROCYMIDONE IN PRESENCE OF AMMONIUM FERRIC CITRATE

    Directory of Open Access Journals (Sweden)

    Ivan Osipov

    2015-12-01

    Full Text Available Procymidone was chosen as the model compound and its phototransformation was followed under sunlight irradiation. The main photodegradation products on silica is 3,5-dichloroaniline and 3,5-diclorphenilisocyanate. The use of ammonium ferric citrate enhances the degradation of the procymidone.

  9. Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-12-01

    Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.

  10. Evaluation of hydrous ferric oxide loaded activated carbon as a granular composite sorbent for radiostrontium

    International Nuclear Information System (INIS)

    Samanta, S.K.

    1997-01-01

    A composite sorbent was prepared in granular form by depositing hydrous ferric oxide inside the pores of activated carbon. The composite sorbent was found to show excellent sorption of radiostrontium in the presence of high sodium concentration under alkaline conditions. (author). 3 refs., 2 figs., 1 tab

  11. Safety and Efficacy of Ferric Carboxymaltose in Anemic Pregnant Women: A Retrospective Case Control Study

    NARCIS (Netherlands)

    Pels, Anouk; Ganzevoort, Wessel

    2015-01-01

    Background. Anemia during pregnancy is commonly caused by iron deficiency and can have severe consequences for both the mother and the developing fetus. The aim of this retrospective study was to assess the safety and efficacy of intravenous ferric carboxymaltose (FCM) in pregnant women. Methods.

  12. Photoexcitation dynamics of nitric oxide bound ferric myoglobin probed by femtosecond IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Park Jaehun

    2013-03-01

    Full Text Available Time-resolved vibrational spectra show that photolysis quantum yield of NO bound ferric myoglobin is smaller than 0.86, the deligated NO geminately rebinds with subnanosecond time scale, and the rebinding kinetics depends on protein conformation.

  13. Ferric carboxymaltose prevents recurrence of anemia in patients with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Evstatiev, Rayko; Alexeeva, Olga; Bokemeyer, Bernd

    2013-01-01

    Iron-deficiency anemia is the most common systemic complication of inflammatory bowel diseases (IBD). Iron-deficiency anemia recurs frequently and rapidly after iron-replacement therapy in patients with IBD. We performed a randomized, placebo-controlled trial to determine if administration...... of ferric carboxymaltose (FCM) prevents anemia in patients with IBD and low levels of serum ferritin....

  14. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  15. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images

    International Nuclear Information System (INIS)

    Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne

    1997-01-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK

  16. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  17. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  18. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  19. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  20. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  1. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  2. The effect of uranium on bacterial viability and cell surface morphology using atomic force microscopy in the presence of bicarbonate ions

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Medina, Paola; Katsenovich, Yelena; Musaramthota, Vishal; Lee, Michelle; Lee, Brady; Dua, Rupak; Lagos, Leonel

    2015-06-01

    Nuclear production facilities during the Cold War have caused liquid waste to leak and soak into the ground creating multiple radionuclide plumes. The Arthrobacter bacteria are one of the most common groups in soils and are found in large numbers in subsurface environments contaminated with radionuclides. This study experimentally analyzed changes on the bacteria surface after uranium exposure and evaluated the effect of bicarbonate ions on U(VI) toxicity of a less uranium tolerant Arthrobacter strain, G968, by investigating changes in adhesion forces and cells dimensions via atomic force microscopy (AFM). AFM and viability studies showed that samples containing bicarbonate are able to acclimate and withstand uranium toxicity. Samples containing no bicarbonate exhibited deformed surfaces and a low height profile, which might be an indication that the cells are not alive.

  3. Magnetostructural relationship for μ2-phenoxido bridged ferric dimers.

    Science.gov (United States)

    Yu, Fei; Cao, Zi-Heng; Ge, Jing-Yuan; Sun, Yi-Chen; Ouyang, Zhong-Wen; Zuo, Jing-Lin; Wang, Zhenxing; Kurmoo, Mohamedally

    2017-03-27

    Three Fe(iii) dimers, [Fe 2 (L-H) 2 ]·2CH 3 CN (1), [Fe 2 (L-OCH 3 ) 2 ] (2) and [Fe 2 (L-OC 2 H 5 ) 2 ]·2CH 3 CN (3), containing the pentadentate O,N,N,O,O-donor Schiff-base ligands with variable size pendants, were synthesized and structurally characterized. The three ligands were generated in situ from 2-(iminomethyl)phenol, 2-methoxy-6-(iminomethyl)phenol and 2-ethoxy-6-(iminomethyl)phenol, respectively. All three crystal structures contain centrosymmetric dimers of edge-sharing octahedra of Fe(iii) ions through a pair of μ 2 -phenoxido bridges. The exchange coupling is ferromagnetic for 1 (J = +0.47(1) cm -1 , ∠Fe-O-Fe = 98.02°) and 2 (J = +0.86(1) cm -1 , ∠Fe-O-Fe = 97.17°), but antiferromagnetic for 3 (J = -0.72(1) cm -1 , ∠Fe-O-Fe = 98.53°), which are correlated by high-field electron paramagnetic resonance revealing moderate magneto-anisotropy of D = -0.24(3) cm -1 , E = 0.08(1) cm -1 for 1, D = -0.38(1) cm -1 , E = 0.11(1) cm -1 for 2, and D = 0.30(3) cm -1 , E = 0.02(1) cm -1 for 3. The exchange couplings were further estimated by DFT calculations, which gave the finest Fe-O-Fe angle of 97.83° for the ferromagnetic-antiferromagnetic crossover.

  4. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.

    Science.gov (United States)

    Johnson, D B; Bridge, T A M

    2002-01-01

    To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.

  5. Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle.

    Science.gov (United States)

    Liu, Yulei; Wang, Lu; Wang, Xianshi; Huang, Zhuangsong; Xu, Chengbiao; Yang, Tao; Zhao, Xiaodan; Qi, Jingyao; Ma, Jun

    2017-11-01

    Thallium (Tl) is highly toxic to mammals and relevant pollution cases are increasing world-widely. Convenient and efficient method for the removal of trace Tl from contaminated source water is imperative. Here, the removal of trace Tl by K 2 FeO 4 [Fe(VI)] was investigated for the first time, with the exploration of reaction mechanisms. Six different types of water treatment agents (powdered activated carbon, Al 2 (SO 4 ) 3 , FeCl 3 , δ-MnO 2 , MnO 2 nano-particles, and K 2 FeO 4 ) were used for the removal of Tl in spiked river water, and K 2 FeO 4 showed excellent removal performance. Over 92% of Tl (1 μg/L) was removed within 5 min by applying 2.5 mg/L of K 2 FeO 4 (pH 7.0, 20 °C). XPS analysis revealed that in the reaction of Tl(I) with K 2 FeO 4 , Tl(I) was oxidized to Tl(III), and removed by the K 2 FeO 4 reduced ferric particles. The removal of Tl by in situ formed and ex situ formed ferric particle was examined respectively, and the results revealed that the removal of trace Tl could be attributed to the combination of adsorption and coprecipitation processes. The hydrodynamic size of the reduced particle from K 2 FeO 4 ranged from 10 nm to 100 nm, and its surface was negatively charged under neutral pH condition. These factors were conducive for the efficient removal of Tl by K 2 FeO 4 . The effects of solution pH, coexisting ions (Na + , Ca 2+ , and HCO 3 - ), humic acid, solution temperature, and reductive environment on the removal and desorption of Tl were investigated, and the elimination of Tl in polluted river water and reservoir water was performed. These results suggest that K 2 FeO 4 could be an efficient and convenient agent on trace Tl removal. Copyright © 2017. Published by Elsevier Ltd.

  6. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    Science.gov (United States)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  7. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    Science.gov (United States)

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  8. The influence of surfactant on the synthesis of gamma ferric oxide: implications on phase composition and magnetic properties

    International Nuclear Information System (INIS)

    Narasimhan, B.R.V.; Prabhakar, S.; Manohar, P.; Gnanam, F.D.

    2002-01-01

    It has already been established that ferrous carbonate precipitated from the reaction of ferrous sulphate and sodium carbonate, on direct thermal decomposition yields gamma ferric oxide. The present work describes the effect of sodium lauryl sulphate (Sodium dodecyl sulphate) on the synthesis of gamma ferric oxide when it is introduced during the precipitation of ferrous carbonate. Since ferrous carbonate undergoes rapid oxidation on standing in air, the extent of oxidation in presence of sodium lauryl sulphate is also studied using oxidation-reduction potential measurements. The ferric oxide powders are characterized for phase analysis (XRD), magnetic properties (VSM) and particle size analysis. (author)

  9. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  10. Pitting corrosion resistance of high alloy OCTG in ferric chloride solution

    International Nuclear Information System (INIS)

    Masamura, K.; Yamamoto, S.; Matsushima, I.

    1986-01-01

    The effects of alloying elements and precipitated phases on the corrosion rate of high alloy OCTG in the ferric chloride solution have been evaluated. The corrosion rate of Fe-Cr-Ni-Mo alloys without precipitated phases, e.g. carbides and sigma phase, can be estimated from the composition using the following equation: log(C.R.)=-0.144xPRE-7690/(273+T)+28.6 where C.R. is the corrosion rate in g/m/sup 2//hr; PRE is Cr+3Mo+16N in percent and T is the test temperature in 0 C. The activation energies of the ferric chloride test are almost the same regardless of PRE or Ni content when no detrimental phase precipitates. When carbides or the sigma phase precipitate, the corrosion rate is higher and the activation energy is lowered. This suggests that secondary phases give preferential sites for initiation of pitting corrosion

  11. Templated in-situ synthesis of gold nanoclusters conjugated to drug target bacterial enoyl-ACP reductase, and their application to the detection of mercury ions using a test stripe

    International Nuclear Information System (INIS)

    Ding, Han; Li, Hongwei; Liu, Pengchang; Wu, Yuqing; Shen, Jiacong; Hiltunen, J. Kalervo; Chen, Zhijun

    2014-01-01

    Fluorescent gold nanoclusters (AuNCs) were synthesized using a drug target bacterial enoyl-ACP reductase (FabI) as a template. The physical and chemical properties of the AuNCs were studied by UV-vis absorption, fluorescence, X-ray photoelectron spectroscopy and TEM. The AuNCs-FabI conjugate was prepared by in situ reduction of tetrachloroaurate in the presence of FabI. The conjugated particles were loaded onto nylon membranes by taking advantage of the electrostatic interaction between the negatively charged AuNCs-FabI and the nylon film which is positively charged at pH 7.4. This results in the formation of a test stripe with sensor spots that can be used to detect Hg(II) ion in the 1 nM to 10 μM concentration range. The test stripes are simple, convenient, selective, sensitive, and can be quickly read out with bare eyes after illumination with a UV lamp. (author)

  12. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  13. Isolation of Trichoderma harzianum (Rifai) growing on ferric hydroxide mud impregnated with gas oil

    Energy Technology Data Exchange (ETDEWEB)

    Gudin, C. (Lavera Refinery, France); Chater, K.W.A.

    1977-09-01

    In northern France, gas oil-impregnated ferric hydroxide mud was found to support fungal growth. The fungus was identified by the Commonwealth Mycological Institute, Kew, with whom a reference culture has been registered. Experiments indicated that its growth resulted from the biodegradation of the gas oil. It is believed that, in this unusual situation, contaminating hydrocarbons may be removed from the environment by microbial activity.

  14. FeII induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology

    International Nuclear Information System (INIS)

    Usman, M.; Abdelmoula, M.; Hanna, K.

    2012-01-01

    The Mössbauer spectroscopy was used to monitor the mineralogical transformations of ferrihydrite (F), lepidocrocite (L) and goethite (G) into magnetite as a function of aging time. Ferric oxyhydroxides were reacted with soluble Fe II and OH – in stoichiometric amounts to form magnetite at an initial pH of ∼9.7. Observed transformation extent into magnetite followed the order: F>L>G with almost 30% of untransformed G after 1 month. The departure from stoichiometry, δ, of magnetite (Fe 3−δ O 4 ) generated from F (δ∼0.04) and L (δ∼0.05) was relatively low as compared to that in magnetite from G (δ∼0.08). The analysis by transmission electron microscopy and BET revealed that generated magnetite was also different in terms of morphology, particle size and surface area depending on the nature of initial ferric oxyhydroxide. This method of preparation is a possible way to form nano-sized magnetite. - Graphical abstract: Mössbauer spectrum of the early stage of magnetite formation formed from the interaction of adsorbed Fe II species with goethite. Highlights: ► Ferric oxides were reacted with hydroxylated Fe II to form magnetite. ► Magnetite formation was quantified as a function of aging time. ► Complete transformation of ferrihydrite and lepidocrocite was achieved. ► Almost 70% of initial goethite was transformed. ► Resulting magnetites have differences in stoichiometry and morphological properties.

  15. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water

    International Nuclear Information System (INIS)

    Zhang Kai; Dwivedi, Vineet; Chi Chunyan; Wu Jishan

    2010-01-01

    A series of novel composites based on graphene oxide (GO) cross-linked with ferric hydroxide was developed for effective removal of arsenate from contaminated drinking water. GO, which was used as a supporting matrix here, was firstly treated with ferrous sulfate. Then, the ferrous compound cross-linked with GO was in situ oxidized to ferric compound by hydrogen peroxide, followed by treating with ammonium hydroxide. The morphology and composition of the composites were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The ferric hydroxide was found to be homogenously impregnated onto GO sheets in amorphous form. These composites were evaluated as absorbents for arsenate removal from contaminated drinking water. For the water with arsenate concentration at 51.14 ppm, more than 95% of arsenate was absorbed by composite GO-Fe-5 with an absorption capacity of 23.78 mg arsenate/g of composite. Effective arsenate removal occurred in a wide range of pH from 4 to 9. However, the efficiency of arsenate removal was decreased when pH was increased to higher than 8.

  16. Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric chloride

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-03-01

    Full Text Available Background Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. Method: In this work, turbidity removal efficiency of Descurainia Sophia seed extract was compared with Ferric chloride. Experiments were performed in laboratory scale. The coagulation experiments were done with kaolin as a model soil to produce turbidity in distilled water. The turbidity removal efficiency of Descurainia Sophia seed extract and Ferric chloride were conducted with jar test apparatus. In all experiments, initial turbidity was kept constant 100(NTU. Optimum combination of independent variables was used to compare two different types of coagulants. Result: The obtained results showed that Ferric chloride could remove 89.75% of the initial turbidity, while in case of Descurainia Sophia this value was 43.13%. The total organic carbon (TOC analysis of the treated water using seed extract showed an increased concentration of TOC equal to 0.99 mg/L. Conclusions: This research has shown that Descurainia Sophia seed extract has an acceptable potential in the coagulation/flocculation process to treat turbid water.

  17. Ferritin Elevation and Improved Responsiveness to Erythropoiesis-Stimulating Agents in Patients on Ferric Citrate Hydrate

    Directory of Open Access Journals (Sweden)

    Keitaro Yokoyama

    2017-05-01

    Discussion: It is suggested that not only iron load but also the erythropoiesis-stimulating agent dose reduction may be involved in ferritin elevation during ferric citrate hydrate treatment, resulting in a decrease of erythropoietin resistance index.

  18. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1MPa

    Science.gov (United States)

    Kong, W.G.; Wang, A.; Chou, I.-Ming

    2011-01-01

    Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.

  19. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid...

  20. Adherence rates to ferric citrate as compared to active control in patients with end stage kidney disease on dialysis.

    Science.gov (United States)

    Jalal, Diana; McFadden, Molly; Dwyer, Jamie P; Umanath, Kausik; Aguilar, Erwin; Yagil, Yoram; Greco, Barbara; Sika, Mohammed; Lewis, Julia B; Greene, Tom; Goral, Simin

    2017-04-01

    Oral phosphate binders are the main stay of treatment of hyperphosphatemia. Adherence rates to ferric citrate, a recently approved phosphate binder, are unknown. We conducted a post-hoc analysis to evaluate whether adherence rates were different for ferric citrate vs. active control in 412 subjects with end stage kidney disease (ESKD) who were randomized to ferric citrate vs. active control (sevelamer carbonate and/or calcium acetate). Adherence was defined as percent of actual number of pills taken to total number of pills prescribed. There were no significant differences in baseline characteristics including gender, race/ethnicity, and age between the ferric citrate and active control groups. Baseline phosphorus, calcium, and parathyroid hormone levels were similar. Mean (SD) adherence was 81.4% (17.4) and 81.7% (15.9) in the ferric citrate and active control groups, respectively (P = 0.88). Adherence remained similar between both groups after adjusting for gender, race/ethnicity, age, cardiovascular disease (CVD), and diabetic nephropathy (mean [95% CI]: 81.4% [78.2, 84.6] and 81.5% [77.7, 85.2] for ferric citrate and active control, respectively). Gender, race/ethnicity, age, and diagnosis of diabetic nephropathy did not influence adherence to the prescribed phosphate binder. Subjects with CVD had lower adherence rates to phosphate binder; this was significant only in the active control group. Adherence rates to the phosphate binder, ferric citrate, were similar to adherence rates to active control. Similar adherence rates to ferric citrate are notable since tolerance to active control was an entry criteria and the study was open label. Gender, race/ethnicity, nor age influenced adherence. © 2016 International Society for Hemodialysis.

  1. Reduction of costs for anemia-management drugs associated with the use of ferric citrate

    Directory of Open Access Journals (Sweden)

    Thomas A

    2014-05-01

    Full Text Available Anila Thomas,1 Leif E Peterson2 1Clinical Pharmacy Services, Houston Methodist Hospital, Houston, TX, USA; 2Center for Biostatistics, Houston Methodist Research Institute, Houston, TX, USA Background: Ferric citrate is a novel phosphate binder which has the potential to reduce usage of erythropoietin-stimulating agents (ESAs and intravenous (IV iron used for anemia management during hemodialysis (HD among patients with end-stage renal disease (ESRD. Currently, the potential health care cost savings on a national scale due to the use of ferric citrate in ESRD are undetermined. Methods: Per-patient-per-year costs of ESAs (Epogen® and Aranesp® [Amgen Inc., CA, USA] and IV iron (Venofer® [American Regent, Inc., NY, USA] and Ferrlecit® [Sanofi US, Bridgewater, NJ, USA] were based on RED BOOK™ (Truven Health Analytics New York, NY, USA costs combined with the Centers for Medicare and Medicaid Services (CMS base rate and actual usage in 2011 for the four drugs. The annual number of outpatients undergoing HD in the US was based on frequencies reported by the USRDS (United States Renal Data System. Monte Carlo uncertainty analysis was performed to determine total annual costs and cost reduction based on ferric citrate usage. Results: Total annual cost of ESAs and IV iron for anemia management in ESRD determined by Monte Carlo analysis assuming CMS base rate value was 5.127 (3.664–6.260 billion USD. For actual utilization in 2011, total annual cost of ESAs and IV iron was 3.981 (2.780–4.930 billion USD. If ferric citrate usage reduced ESA utilization by 20% and IV iron by 40%, then total cost would be reduced by 21.2% to 4.038 (2.868–4.914 billion USD for the CMS base rate, and by 21.8% to 3.111 (2.148–3.845 billion USD, based on 2011 actual utilization. Conclusion: It is likely that US health care costs for anemia-management drugs associated with ESRD among HD patients can be reduced by using ferric citrate as a phosphate binder. Keywords

  2. Extraction of metals from ores by bacterial leaching: present status and future prospects

    International Nuclear Information System (INIS)

    Kelly, D.P.

    1977-01-01

    The principal organism effecting bacterial leaching of ferrous and sulfide ores is Thiobacillus ferrooxidans, though other thiobacilli and other bacteria may be involved. The process depends on (a) direct solubilization of metal sulfides by bacterial oxidation; (b) dissolution of metal sulfides or oxides by ferric iron produced by bacterial pyrite oxidation. Mining spoil dumps and low grade ores can be leached for copper or uranium by cheap low-level technology. Dump leaching enables maximum recovery of valuable metal from any ore, but makes possible exploitation of very low grade Cu and U ores. Continuous extraction processes are possible where a continuously growing bacterial culture is fed with pyritic ores (or FeSO 4 or other sulfide) and continuous metal solubilization proceeds. Intimate contact between the bacteria and the ore to be leached (especially with uranium oxide ores) is not always necessary: leaching of UO 2 ores probably depends only on ferric iron reaction with the ore. Degradation of pyrite-containing rocks may also be developed as part of future recovery processes for petroleum from oil shales. Two-stage leaching systems present the best prospect for developing a higher-level technology for metal extraction. State 1: bacterial generation of Fe 3+ from pyrite or a Fe 2+ source; Stage 2: chemical leaching of ore by Fe 3+ in acid solution. Two-stage processes can be surface processes using crushed or milled ores or can be applied to underground solution mining, when an ore (e.g. uranium) can be leached by pumping Fe 3+ solutions through shattered underground deposits, metal recovered (e.g. solvent extraction) and Fe 3+ regenerated by bacterial oxidation at the surface. The use of controlled continuous microbial cultures to generate either bacteria or ferric iron is outlined

  3. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    compounds these must first be undergo extracellular hydrolysis. Bacteria have a great diversity with respect to types of metabolism that far exceeds the metabolic repertoire of eukaryotic organisms. Bacteria play a fundamental role in the biosphere and certain key processes such as, for example......, the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  4. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  5. Ferric citrate.

    Science.gov (United States)

    Cada, Dennis J; Cong, Jasen; Baker, Danial E

    2015-02-01

    Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are sent in print and are also available on-line. Monographs can be customized to meet the needs of a facility. A drug class review is now published monthly with The Formulary Monograph Service. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, call The Formulary at 800-322-4349. The February 2015 monograph topics are netupitant/palonosetron, naltrxone SR/bupropion SR, nintedanib, pirfenidone, and ivabradine. The Safety MUE is on netupitant/palonosetron.

  6. Safety and Efficacy of Intravenous Ferric Carboxy Maltose in Iron Deficiency Anaemia During Post-partum Period.

    Science.gov (United States)

    Mishra, Vineet; Roy, Priyankar; Gandhi, Khushali; Choudhary, Sumesh; Aggarwal, Rohina; Sokabaj, Shaheen

    2018-01-01

    Iron deficiency is the commonest treatable cause of postpartum anaemia. Parenteral iron therapy results in faster and higher replenishment of iron stores and correction of haemoglobin levels with better compliance. Ferric Carboxy Maltose is an effective and a safe option which can be administered intravenously in single total correction dose without any serious adverse effects.The study was done to evaluate the efficacy and safety of Ferric Carboxy Maltose in the treatment of iron deficiency anaemia in post-natal patients. It was an open, single arm study including 615 women with diagnosis of Iron deficiency anaemia and haemoglobin (Hb) levels between 4gm% and 11gm% from January 2013 to December 2016. Intravenous Ferric Carboxy Maltose(500-1500mg) was administered and the improvement in haemoglobin levels and iron stores were assessed after three weeks of total dose infusion. Out of the 615 women, 595 women were included in the analysis. Most of the women were in the age group of 27-30 years. Most of the women had mild anaemia as per World Health Organisation guidelines. Mean hemoglobin levels significantly increased over a period of three weeks after Ferric Carboxy Maltose administration. Other parameters like total iron binding capacity, Ferritin and Iron also had a significant improvement after Ferric Carboxy Maltose administration. No serious adverse events were observed after Ferric Carboxy Maltose. Intravenous Ferric Carboxy Maltose was an effective and a safe treatment option for iron deficiency anaemia and has an advantage of single administration of high doses without serious adverse effects.

  7. A Cost-effectiveness Analysis of Ferric Carboxymaltose in Patients With Iron Deficiency and Chronic Heart Failure in Spain.

    Science.gov (United States)

    Comín-Colet, Josep; Rubio-Rodríguez, Darío; Rubio-Terrés, Carlos; Enjuanes-Grau, Cristina; Gutzwiller, Florian S; Anker, Stefan D; Ponikowski, Piotr

    2015-10-01

    Treatment with ferric carboxymaltose improves symptoms, functional capacity, and quality of life in patients with chronic heart failure and iron deficiency. The aim of this study was to assess the cost-effectiveness of ferric carboxymaltose treatment vs no treatment in these patients. We used an economic model based on the Spanish National Health System, with a time horizon of 24 weeks. Patient characteristics and ferric carboxymaltose effectiveness (quality-adjusted life years) were taken from the Ferinject® Assessment in patients with IRon deficiency and chronic Heart Failure trial. Health care resource use and unit costs were taken either from Spanish sources, or from the above mentioned trial. In the base case analysis, patients treated with and without ferric carboxymaltose treatment acquired 0.335 and 0.298 quality-adjusted life years, respectively, representing a gain of 0.037 quality-adjusted life years for each treated patient. The cost per patient was €824.17 and €597.59, respectively, resulting in an additional cost of €226.58 for each treated patient. The cost of gaining 1 quality adjusted life year with ferric carboxymaltose was €6123.78. Sensitivity analyses confirmed the robustness of the model. The probability of ferric carboxymaltose being cost-effective (< €30 000 per quality-adjusted life year) and dominant (more effective and lower cost than no treatment) was 93.0% and 6.6%, respectively. Treatment with ferric carboxymaltose in patients with chronic heart failure and iron deficiency, with or without anemia, is cost-effective in Spain. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and

  9. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  10. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    Science.gov (United States)

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  11. Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents.

    Science.gov (United States)

    Yoo, Jong-Chan; Park, Sang-Min; Yoon, Geun-Seok; Tsang, Daniel C W; Baek, Kitae

    2017-10-01

    In this study, we evaluated the feasibility of using ferric salts including FeCl 3 and Fe(NO 3 ) 3 as extracting and oxidizing agents for a soil washing process to remediate Pb-contaminated soils. We treated various Pb minerals including PbO, PbCO 3 , Pb 3 (CO 3 ) 2 (OH) 2 , PbSO 4 , PbS, and Pb 5 (PO 4 ) 3 (OH) using ferric salts, and compared our results with those obtained using common washing agents of HCl, HNO 3 , disodium-ethylenediaminetetra-acetic acid (Na 2 -EDTA), and citric acid. The use of 50 mM Fe(NO 3 ) 3 extracted significantly more Pb (above 96% extraction) from Pb minerals except PbSO 4 (below 55% extraction) compared to the other washing agents. In contrast, washing processes using FeCl 3 and HCl were not effective for extraction from Pb minerals because of PbCl 2 precipitation. Yet, the newly formed PbCl 2 could be dissolved by subsequent wash with distilled water under acidic conditions. When applying our washing method to remediate field-contaminated soil from a shooting range that had high concentrations of Pb 3 (CO 3 ) 2 (OH) 2 and PbCO 3 , we extracted more Pb (approximately 99% extraction) from the soil using 100 mM Fe(NO 3 ) 3 than other washing agents at the same process conditions. Our results show that ferric salts can be alternative washing agents for Pb-contaminated soils in view of their extracting and oxidizing abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ferric ammonium citrate as a positive bowel contrast agent for MR imaging of the upper abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Kivelitz, D.; Taupitz, M.; Hamm, B. [Universitaetsklinikum Charite, Berlin (Germany). Inst. fuer Radiologie; Gehl, H.B. [Medizinische Univ. Luebeck (Germany). Inst. fuer Radiologie; Heuck, A. [Muenchen Univ. (Germany). Radiologische Klinik; Krahe, T. [Koeln Univ. (Germany). Inst. fuer Radiologische Diagnostik; Lodemann, K.P. [Bracco-Byk Gulden GmbH, Konstanz (Germany)

    1999-07-01

    Purpose: To evaluate the safety and diagnostic efficacy of two different doses of ferric ammonium citrate as a paramagnetic oral contrast agent for MR imaging of the upper abdomen. Material and methods: Ninety-nine adult patients referred for MR imaging for a known or suspected upper abdominal pathology were included in this randomized multicenter double-blind clinical trial. Imaging was performed with spin-echo (T1- and T2-weighted) and gradient-echo (T1-weighted) techniques before and after administration of either 1200 mg or 2400 mg of ferric ammonium citrate dissolved in 600 ml of water. Safety analysis included monitoring of vital signs, assessment of adverse events, and laboratory testing. Efficacy with regard to organ distension, contrast distribution, bowel enhancement and delineation of adjacent structures was graded qualitatively. Results: No serious adverse events were reported for either of the two concentrations. A total of 31 minor side effects were noted, of which significantly more occurred in the higher dose group (p<0.01). The diagnostic confidence in defining or excluding disease was graded as better after contrast administration for 48% of all images. Marked or moderate enhancement of the upper gastrointestinal tract was achieved at both doses in 69.5% of cases with no evident difference between the two doses. The higher dose tended to show better results in terms of the contrast assessment parameters. Conclusion: Ferric ammonium citrate is a safe and effective oral contrast agent for MR imaging of the upper abdomen at two different dose levels. The higher dose showed a tendency toward better imaging results while the lower dose caused significantly fewer side effects. Therefore, the 1200 mg dose can be recommended in view of the risk-to-benefit ratio. (orig.)

  13. Optical and electrical properties of thin films of bismuth ferric oxide; Propiedades opticas y electricas de peliculas delgadas de oxido de bismuto ferrico

    Energy Technology Data Exchange (ETDEWEB)

    Cardona R, D.

    2014-07-01

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe{sub 2}O{sub 3}) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO{sub 3} in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO{sub 3} composition. These samples showed a secondary phase (Bi{sub 2}5FeO{sub 4}0 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe{sub 2}O{sub 3}) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  14. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  15. [Topography structure and flocculation mechanism of polymeric phosphate ferric sulfate (PPFS)].

    Science.gov (United States)

    Zheng, Huai-li; Zhang, Hui-qin; Jiang, Shao-jie; Li, Fang; Jiao, Shi-jun; Fang, Hui-li

    2011-05-01

    Characteristics of polymeric phosphate ferric sulfate (PPFS) were investigated using FTIR (Fourier transform infrared spectrometer), XRD (X-ray diffraction) and SEM (scanning electron microscope) in the present study. The formed PPFS structure and morphology were stereo meshwork, which was clustered and close to coral reef, synthesis of high charge density, bioactive polyhydroxy and mixed polynuclear complex PPFS. The results showed that charge neutralization of PPFS had not played a decisive role in the coagulation beaker test and the zeta potential proved that PPFS was largely affected by bridging and netting sweep. Therefore, the coagulation mechanisms of PPFS were mainly composed of charge neutralization, adsorption bridging and netting sweep mechanisms.

  16. Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction

    Directory of Open Access Journals (Sweden)

    Wentao Hu

    2017-01-01

    Full Text Available The sodium leaching ratio (ηN of ferric bauxite direct reduction process is much lower than that of ordinary bauxite; thus, the former consumes more sodium than the latter. ηN can be promoted by increasing the dosage of sodium or restricted by increasing the heating temperature and time. However, the restriction effect of heating temperature is 16.67 times larger than that of heating time, and the restriction effect decreases 47.03 times faster when heating temperature increases than that process of heating time. These imply that ηN improves with the increasing sodium carbonate dosage and the decreasing heating temperature.

  17. A case of osteomalacia due to deranged mineral balance caused by saccharated ferric oxide and short-bowel syndrome

    Science.gov (United States)

    Nomoto, Hiroshi; Miyoshi, Hideaki; Nakamura, Akinobu; Nagai, So; Kitao, Naoyuki; Shimizu, Chikara; Atsumi, Tatsuya

    2017-01-01

    Abstract Rationale: Saccharated ferric oxide has been shown to lead to elevation of fibroblast growth factor 23, hypophosphatemia, and, consequently, osteomalacia. Moreover, mineral imbalance is often observed in patients with short-bowel syndrome to some degree. Patient concerns: A 62-year-old woman with short-bowel syndrome related with multiple resections of small intestines due to Crohn disease received regular intravenous administration of saccharated ferric oxide. Over the course of treatment, she was diagnosed with tetany, which was attributed to hypocalcemia. Additional assessments of the patient revealed not only hypocalcemia, but also hypophosphatemia, hypomagnesemia, osteomalacia, and a high concentration of fibroblast growth factor 23 (314 pg/mL). Diagnoses: We diagnosed her with mineral imbalance-induced osteomalacia due to saccharated ferric oxide and short-bowel syndrome. Interventions: Magnesium replacement therapy and discontinuation of saccharated ferric oxide alone. Outcomes: These treatments were able to normalize her serum mineral levels and increase her bone mineral density. Lessons: This case suggests that adequate evaluation of serum minerals, including phosphate and magnesium, during saccharated ferric oxide administration may be necessary, especially in patients with short-bowel syndrome. PMID:28953654

  18. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  19. In Situ Structural Characterization of Ferric Iron Dimers in Aqueous Solutions

    DEFF Research Database (Denmark)

    Zhu, Mengqiang; Puls, Brendan W.; Frandsen, Cathrine

    2013-01-01

    The structure of ferric iron (Fe3+) dimers in aqueous solutions has long been debated. In this work, we have determined the dimer structure in situ in aqueous solutions using extended X-ray absorption fine structure (EXAFS) spectroscopy. An Fe K-edge EXAFS analysis of 0.2 M ferric nitrate solutions...... at pH 1.28–1.81 identified a Fe–Fe distance at ∼3.6 Å, strongly indicating that the dimers take the μ-oxo form. The EXAFS analysis also indicates two short Fe–O bonds at ∼1.80 Å and ten long Fe–O bonds at ∼2.08 Å, consistent with the μ-oxo dimer structure. The scattering from the Fe–Fe paths interferes...... confirmed by Mössbauer analyses of analogous quick frozen solutions. This work also explores the electronic structure and the relative stability of the μ-oxo dimer in a comparison to the dihydroxo dimer using density function theory (DFT) calculations. The identification of such dimers in aqueous solutions...

  20. Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water.

    Science.gov (United States)

    Fox, Dawn I; Stebbins, Daniela M; Alcantar, Norma A

    2016-03-01

    New methods to remediate arsenic-contaminated water continue to be studied, particularly to fill the need for accessible methods that can significantly impact developing communities. A combination of cactus mucilage and ferric (Fe(III)) salt was investigated as a flocculation-coagulation system to remove arsenic (As) from water. As(V) solutions, ferric nitrate, and mucilage suspensions were mixed and left to stand for various periods of time. Visual and SEM observations confirmed the flocculation action of the mucilage as visible flocs formed and settled to the bottom of the tubes within 3 min. The colloidal suspensions without mucilage were stable for up to 1 week. Sample aliquots were tested for dissolved and total arsenic by ICP-MS and HGAFS. Mucilage treatment improved As removal (over Fe(III)-only treatment); the system removed 75-96% As in 30 min. At neutral pH, removal was dependent on Fe(III) and mucilage concentration and the age of the Fe(III) solution. The process is fast, achieving maximum removal in 30 min, with the majority of As removed in 10-15 min. Standard jar tests with 1000 μg/L As(III) showed that arsenic removal and settling rates were pH-dependent; As removal was between 52% (high pH) and 66% (low pH).

  1. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    Science.gov (United States)

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  2. Novel regeneration method for phosphate loaded granular ferric (hydr)oxide--a contribution to phosphorus recycling.

    Science.gov (United States)

    Kunaschk, Marco; Schmalz, Viktor; Dietrich, Norman; Dittmar, Thomas; Worch, Eckhard

    2015-03-15

    At a progressive rate, small wastewater treatment plants in rural areas need to be equipped with an additional phosphorus removal stage in order to achieve a good chemical status in the receiving natural water bodies. A conventional regeneration method for ferric (hydr)oxides such as phosphate specific adsorbents, which can be applied to remove and recover phosphorus in fixed bed filters, was investigated and improved. It was shown that a loss of up to 85% of the initial capacity can be observed when regeneration with 1 M NaOH is implemented. The losses are caused by surface blocking with different calcium-containing compounds as revealed by an EDX analysis. These blocking compounds could be removed completely with an additional acidic regeneration step at pH = 2.5. During the alkaline desorption that followed, complete phosphorus removal and a full recovery of the adsorption capacity were achieved for goethite-rich Bayoxide(®) E 33 HC (E33HC) and akaganéite-rich GEH(®) 104 (GEH). The regeneration procedure was repeated up to eight times without any signs of further decline in the phosphate adsorption capacity or any changes in the specific surface area or pore size distribution of the adsorbent. In contrast to GEH and E33HC, ferric hydroxide- and calcite-rich FerroSorp(®) Plus (FSP) was partly dissolved during acid treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Treatment of rheumatoid synovitis of the knee with intraarticular injection of dysprosium 165-ferric hydroxide macroaggregates

    International Nuclear Information System (INIS)

    Sledge, C.B.; Zuckerman, J.D.; Zalutsky, M.R.

    1986-01-01

    One hundred eight knees of 93 patients with seropositive rheumatoid arthritis and persistent synovitis of the knee were treated with an intraarticular injection of 270 mCi of dysprosium 165 bound to ferric hydroxide macroaggregate. Leakage of radioactivity from the injected joint was minimal. Mean leakage to the venous blood 3 hours after injection was 0.11% of the injected dose; this corresponds to a mean whole body dose of 0.2 rads. Mean leakage to the liver 24 hours after injection was 0.64% of the injected dose; this corresponds to a mean liver dose of 3.2 rads. In 7 additional patients examined, there was negligible or near negligible activity found in the draining inguinal lymph nodes. One-year followup was possible for 74 knees (63 patients). Sixty-one percent of the knees had good results, 23% had fair results, and 16% had poor results. There was a direct correlation between the radiographic stage and response to treatment. In knees with stage I radiographic changes, 72% showed good results; 93% showed improvement. In knees with stage II changes, 59% showed good results; 81% showed improvement. These preliminary results indicate that dysprosium 165-ferric hydroxide macroaggregate is an effective agent for radiation synovectomy. The low leakage rates observed offer a definite advantage over agents previously used

  4. Synovectomy of the rheumatoid knee using intra-articular injection of dysprosium-165-ferric hydroxide macroaggregates

    International Nuclear Information System (INIS)

    Sledge, C.B.; Zuckerman, J.D.; Shortkroff, S.; Zalutsky, M.R.; Venkatesan, P.; Snyder, M.A.; Barrett, W.P.

    1987-01-01

    One hundred and eleven patients who had seropositive rheumatoid arthritis and persistent synovitis of the knee were treated with intra-articular injection of 270 millicuries of dysprosium-165 bound to ferric hydroxide macroaggregates. A two-year follow-up was available for fifty-nine of the treated knees. Thirty-nine had a good result; nine, a fair result; and eleven, a poor result. Of the twenty-five knees that had Stage-I radiographic changes, nineteen had a good result. Of the thirty-four knees that had Stage-II radiographic changes, twenty showed a good result. Systemic spread of the radioactivity from the injected joint was minimum. The mean whole-body dose was calculated to be 0.3 rad and that to the liver twenty-four hours after injection, 3.2 rads. The results indicated that dysprosium-165-ferric hydroxide macroaggregate is an effective agent for performing radiation synovectomy, particularly in knees that have Stage-I radiographic changes. Because of the minimum rate of systemic spread of the dysprosium-165, it offers a definite advantage over agents that previously have been used

  5. Real-time monitoring of arsenic filtration by granular ferric hydroxide

    International Nuclear Information System (INIS)

    Fleming, D.E.B.; Eddy, I.S.; Gherase, M.R.; Gibbons, M.K.; Gagnon, G.A.

    2008-01-01

    Full text: Contamination of drinking water by arsenic is a serious public health issue in many parts of the world. One recent approach to this problem has been to filter out arsenic by use of granular ferric hydroxide (GFH), an adsorbent developed specifically for the selective removal of arsenic from water. Previous studies have documented the efficiency and high treatment capacity of this approach. We present a novel X-ray fluorescence method to monitor the accumulation of arsenic within a specially designed GFH column, as both a function of time (or water volume) and location along the column. Using a miniature X-ray tube and silicon PiN diode detector, X-ray fluorescence is used to detect characteristic X-rays of arsenic excited from within the GFH. Trials were performed using a water flow rate of approximately 1.5 litres per hour, with an added arsenic concentration of approximately 1000 μg per litre. In this paper, trial results are presented and potential applications described. Characteristic arsenic Kα X-ray peak area as a function of time, as measured at various locations along a granular ferric hydroxide (GFH) water filtration column

  6. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    Science.gov (United States)

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  7. Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor

    International Nuclear Information System (INIS)

    Ly, Nguyen Hoang; Joo, Sang-Woo; Cho, Kwang Hwi

    2015-01-01

    We performed density functional theory (DFT) calculations of 4-aminobenzo-15-crown-5 (4AB15C5) in conjugation with 4-mercaptobenzoic acid (4MCB) with the polarizable continuum model (PCM) while considering the aqueous media. After specific binding of the ferric ion onto the 4MCB.4AB15C5 compound, the Raman frequencies and intensities were estimated by DFT calculations with the PCM. It was predicted that the Raman intensities became significantly increased upon binding of the ferric ion. 4MCB.4AB15C5 could be assembled on gold nanoparticles (AuNPs) via the cleavage of the thiol bond. Colorimetric and UV.Vis absorption spectroscopy indicated that AuNPs became significantly aggregated in the presence of 1.10 mM of the ferric ion. Surface-enhanced Raman scattering (SERS) of 4MCB.4AB15C5 was used to identify the dissimilar spectral behaviors that yield a difference in intensity in the presence of the ferric ion. These changes were not observed in the other biological ions Zn 2+ , Mn 2+ , Fe 2+ , Na + , K + , Ca 2+ , Mg 2+ , NH 4+ , and Co 2+ . This study indicated that 4AB15C5 could be used to detect ferric ions in aqueous AuNP solutions by a combined method of colorimetric, UV.Vis absorption, and Raman spectroscopy. AuNPs.[4MCB. 4AB15C5] can thus be utilized as a selective turn-on sensor to Fe3 + in aqueous solutions above 1 mM.

  8. Change of pH and Iron Ion Concentration During Photodegradation of TCE with Ferrioxalate/UVvis Process

    International Nuclear Information System (INIS)

    Hareyama, Wataru; Suto, Koichi; Inoue, Chihiro; Chida, Tadashi; Nakazawa, Hiroshi

    2006-01-01

    Recently, some studies show various organic compounds such as pesticides and dyes degraded with the irradiation of ultraviolet light and visible light in the presence of oxalic acid and ferric ion (ferrioxalate/UVvis process). The process has much advance than other technologies because it can utilize the wavelength of 300∼450nm and also under the condition of neutral pH. Chlorinated organic compounds such as trichloroethene (TCE), which have caused ground water pollution on a lot of sites, have never been applied by photodegradation with this process. In this study, we showed the degradation of TCE in the presence of oxalic acid and iron ion and the change of pH, ferric and ferrous ion concentration during the photodegradation of TCE with ferrioxalate/UV-vis process. TCE was degraded in the presence of oxalic acid and iron ion. In the reactions, the equilibrium of oxalate ion and iron ion is important since it determines the amount of ferrioxalate complex which absorbs light and induces the reactions of the degradation of TCE. Thus, the pH value and iron ion concentration are the important factors which determine the amount of ferrioxalate complex. The pH is nearly constant during the photodegradation of TCE. The ferrous ion concentration was decreased as soon as beginning photodegradation of TCE, and then the ferrous ion concentration and ferric ion concentration became constant

  9. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    Halbert, B.B.; Scharer, J.M.; Knapp, R.A.

    1984-07-01

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  10. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  11. Implementation of ferric hydroxide-based media for removal of toxic metalloids

    Science.gov (United States)

    Szlachta, Małgorzata; Wójtowicz, Patryk

    2017-11-01

    Effective removal of inorganic arsenic species is possible by application of the sorption technique with the use of iron-based sorbents. This study investigates the removal of arsenic(III) and arsenic(V) from an aqueous solution by application of a granular ferric hydroxide-based sorbent. The performance of tested media was evaluated based on the batch and fixed-bed adsorption studies. The efficiency of the process was determined with various treatment times, adsorbent doses, initial concentrations of arsenic and various solution temperatures. The obtained adsorption data were fitted with pseudo-first and second-order kinetic models and Langmuir and Freundlich isotherm equations. It was observed that the overall arsenite removal was lower when compared to the arsenate, and all tested operating parameters influenced the process efficiency. The experiments under dynamic conditions showed high treatment capacity and stability of tested adsorbent over a long period of time.

  12. Characterization of sonicated natural zeolite/ferric chloride hexahydrate by infrared spectroscopy

    Science.gov (United States)

    Prasetyo, T. A. B.; Soegijono, B.

    2018-03-01

    The characteristics of sonicated Bayah natural zeolite with and without ferric chloride hexahydrate solution using infrared method has been studied. High intensity ultrasonic waves were exposed to the samples for 40 min, 80 min and 120 min. Infra red spectra analysis was conducted to evaluate zeolite vibrational spectrum contributions, namely, the vibrations from the framework of the zeolite, from the charge-balancing cations, and from the relatively isolated groups, such as the surface OH groups and their behavior after sonication process. An addition of FeCl3.6H2O and sonication process on natural zeolite improved secondary building units link by forming oxygen bridges and also close relationship with duration of applied high intensity ultrasonic process. Longer ultrasonic process resulted in more increment of O-H absorbance.

  13. Segmentation of the potential consumers of ferric medicines based on data of iron deficiency anemia prevalence

    Directory of Open Access Journals (Sweden)

    Z. N. Mnushko

    2013-08-01

    Full Text Available INTRODUCTION. According to WHO 3.6 billion of people on the planet have latent iron deficiency and another 1.8 billion of people suffer from iron deficiency anemia (IDA. According to the Ministry of Health of Ukraine information the prevalence and the incidence of iron deficiency anemia is 1163.9 and 404.5 per 100 000 persons, respectively. However, this information is only clinically confirmed cases of IDA. The largest share in the structure of morbidity has the latent iron deficiency, which is characterized by less prominent clinical manifestations. Treatment of IDA aimed not only at addressing anemia as a symptom, but also at the elimination of iron deficiency and replenishment of its reserves in the organism, which can be achieved by taking ferric drugs. Today ferric drugs market is characterized by high leveled competition, stable demand and a wide range of products. Therefore, an important issue in the study of the market is to find the best ways to determining its potential capacity to expand the marketing potential and to provide iron supplementation as many consumers who need treatment and prevention of iron deficiency. GOAL OF THE STUDY. the segmentation of the population that needs treatment and prevention of iron deficiency on the basis of the etiological factors that cause development of anemia, based on official statistics on morbidity. MATERIALS AND METODS. According to the standard classification of the iron deficiency we have identified four main groups of etiological factors that lead to the development of IDA: bleeding, iron malabsorption, increased body's need for iron, as well as complicated genesis factors. In order to determine the total number of individual segments we have analyzed the reports of the State Statistics Committee of Ukraine, Health Statistics Centre of Ministry of Health of Ukraine, as well as electronic database of medical statistics “Health for All”. RESULTS AND DISCUSSION. According to the estimates

  14. Design, fabrication and cold tests of a super ferric octupole corrector for the LHC

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Calero, J.; Laurent, G.; Russenschuck, S.; Siegel, N.; Traveria, M.; Aguirre, P.; Etxeandia, J.; Garcia, J.

    1996-01-01

    In the corrections scheme of the LHC it is planed to install octupole corrector magnets in the short straight section of the lattice. Initially these correctors were distributed windings on the cold bore tube nested in the tuning quadrupoles. The latter being suppressed a new compact super ferric design was chosen for the octupole prototype, suitable for a two-in-one configuration. This prototype was designed by CERN and CEDEX/Spain, built at INDAR/Spain and tested at CEDEX. The paper reports on the design of the prototype, describes the fabrication and assembly and presents the measurement results. Special interest has been taken to design a simple and compact magnet, easy to fabricate and training free below nominal field. First results show the feasibility of the solution wich will be finally confirmed by magnetic measurement. (Author) 4 refs

  15. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian [Yangtze Normal Univ., Fuling (China)

    2012-11-15

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.

  16. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry.

    Science.gov (United States)

    He, Yu-Cai; Ma, Cui-Luan; Xu, Jian-He; Zhou, Li

    2011-02-01

    Nitrile-hydrolyzing enzymes (nitrilase or nitrile hydratase/amidase) have been widely used in the pharmaceutical industry for the production of carboxylic acids and their derivatives, and it is important to build a method for screening for nitrile-hydrolyzing enzymes. In this paper, a simple, rapid, and high-throughput screening method based on the ferric hydroxamate spectrophotometry has been proposed. To validate the accuracy of this screening strategy, the nitrilases from Rhodococcus erythropolis CGMCC 1.2362 and Alcaligenes sp. ECU0401 were used for evaluating the method. As a result, the accuracy for assaying aliphatic and aromatic carboxylic acids was as high as the HPLC-based method. Therefore, the method may be potentially used in the selection of microorganisms or engineered proteins with nitrile-hydrolyzing enzymes.

  17. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Prajakta R.; Krishnamurthy, V.N.; Joshi, Satyawati S. [Department of Chemistry, University of Pune, Pune 411007 (India)

    2006-12-15

    A comparative study of the thermal decomposition of ammonium perchlorate (AP)/hydroxy terminated polybutadiene (HTPB) based composite propellants has been carried out in presence and absence of nano iron oxide at different heating rates in a dynamic nitrogen atmosphere using differential scanning calorimetry. The pronounced effect was a lowering of the high temperature decomposition by 49 C. A higher heat release up to 40% was observed in presence of nano ferric oxide (3.5 nm). The kinetic parameters were evaluated using the Kissinger method. The increase of the rate constant in the catalyzed propellant confirmed the enhancement of the catalytic activity of ammonium perchlorate. The scanning electron micrographs of nano Fe{sub 2}O{sub 3} incorporated in HTPB revealed a well-separated characteristic necklace-like structure of {alpha}-Fe{sub 2}O{sub 3} particles at high magnification. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. The Porphyromonas gingivalis ferric uptake regulator orthologue does not regulate iron homeostasis

    Directory of Open Access Journals (Sweden)

    Catherine Butler

    2015-09-01

    Full Text Available Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that has an absolute requirement for iron which it transports from the host as heme and/or Fe2+. Iron transport must be regulated to prevent toxic effects from excess metal in the cell. P. gingivalis has one ferric uptake regulator (Fur orthologue encoded in its genome called Har, which would be expected to regulate the transport and usage of iron within this bacterium. As a gene regulator, inactivation of Har should result in changes in gene expression of several genes compared to the wild-type. This dataset (GEO accession number GSE37099 provides information on expression levels of genes in P. gingivalis in the absence of Har. Surprisingly, these genes do not relate to iron homeostasis.

  19. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    International Nuclear Information System (INIS)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian

    2012-01-01

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly

  20. Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD

    DEFF Research Database (Denmark)

    Roger, Simon D; Gaillard, Carlo A; Bock, Andreas H

    2017-01-01

    -label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient......: These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD.......Background: The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. Methods: FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open...

  1. Renal function in patients with non-dialysis chronic kidney disease receiving intravenous ferric carboxymaltose

    DEFF Research Database (Denmark)

    Macdougall, Iain C; Bock, Andreas H; Carrera, Fernando

    2017-01-01

    BACKGROUND: Preclinical studies demonstrate renal proximal tubular injury after administration of some intravenous iron preparations but clinical data on renal effects of intravenous iron are sparse. METHODS: FIND-CKD was a 56-week, randomized, open-label, multicenter study in which patients...... with non-dialysis dependent chronic kidney disease (ND-CKD), anemia and iron deficiency without erythropoiesis-stimulating agent therapy received intravenous ferric carboxymaltose (FCM), targeting either higher (400-600 μg/L) or lower (100-200 μg/L) ferritin values, or oral iron. RESULTS: Mean (SD) e...... quartiles of FCM dose, change in ferritin or change in TSAT versus change in eGFR. Dialysis initiation was similar between groups. Renal adverse events were rare, with no indication of between-group differences. CONCLUSION: Intravenous FCM at doses that maintained ferritin levels of 100-200 μg/L or 400...

  2. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  3. A study on the alkali leaching of complex compound for molybdenum trioxide and ferric oxide

    International Nuclear Information System (INIS)

    Kim, C.G.; Whang, Y.K.

    1981-01-01

    This study is to determine the alkali-leaching meachanism by which complex compound by the reaction made between molybdenite (MoS 2 ) and ferric oxide (Fe 2 O 3 ) in the roasted are when molybdenum trioxide (MoO 3 ) is formed by the roasting reaction of molybdenite concentrate. The results obtained from this experiment are summarized as follows: The heating reaction analysis shows that the complex compound of iron molybdates (Fe 2 O 3 .3-4 MoO 3 ) is formed by the reaction of molybdenum trioxide and ferric oxide at temperatures of above 500 0 C. It is shown that at various reaction temperature below 400 0 C molybdenum trioxide is almost completely leached by caustic soda irrespective of the mole ratio of two chemical samples used for the experiment, whereas at temperature above 400 0 C the leaching rate of molybdenum trioxide decreases except that it varies from 70.77% at a temperature of 900 0 C at which the mole ratio is 1 to 1 to 84.08% at a temperature of 1000 0 C. The x-ray diffraction analysis has shown that the complex compound reacted at a temperature of 1000 0 C produces a complex compound with the crystal structure of iron molybdates, and the alkali-leached residues even with 19.0% of molybdenum trioxide, however, contain only α-Fe 2 O 3 , without showing iron molybdates. The crystalline compound of iron molybdates obtained as a result of heating reaction was leached by using caustic soda, while MoO 3 and Fe 2 O 3 in the leaching residue was found to contain other compounds unable to be leached by caustic soda. (author)

  4. Structural characterization of ferric hemoglobins from three antarctic fish species of the suborder notothenioidei.

    Science.gov (United States)

    Vergara, Alessandro; Franzese, Marisa; Merlino, Antonello; Vitagliano, Luigi; Verde, Cinzia; di Prisco, Guido; Lee, H Caroline; Peisach, Jack; Mazzarella, Lelio

    2007-10-15

    Spontaneous autoxidation of tetrameric Hbs leads to the formation of Fe (III) forms, whose physiological role is not fully understood. Here we report structural characterization by EPR of the oxidized states of tetrameric Hbs isolated from the Antarctic fish species Trematomus bernacchii, Trematomus newnesi, and Gymnodraco acuticeps, as well as the x-ray crystal structure of oxidized Trematomus bernacchii Hb, redetermined at high resolution. The oxidation of these Hbs leads to formation of states that were not usually detected in previous analyses of tetrameric Hbs. In addition to the commonly found aquo-met and hydroxy-met species, EPR analyses show that two distinct hemichromes coexist at physiological pH, referred to as hemichromes I and II, respectively. Together with the high-resolution crystal structure (1.5 A) of T. bernacchii and a survey of data available for other heme proteins, hemichrome I was assigned by x-ray crystallography and by EPR as a bis-His complex with a distorted geometry, whereas hemichrome II is a less constrained (cytochrome b5-like) bis-His complex. In four of the five Antartic fish Hbs examined, hemichrome I is the major form. EPR shows that for HbCTn, the amount of hemichrome I is substantially reduced. In addition, the concomitant presence of a penta-coordinated high-spin Fe (III) species, to our knowledge never reported before for a wild-type tetrameric Hb, was detected. A molecular modeling investigation demonstrates that the presence of the bulkier Ile in position 67beta in HbCTn in place of Val as in the other four Hbs impairs the formation of hemichrome I, thus favoring the formation of the ferric penta-coordinated species. Altogether the data show that ferric states commonly associated with monomeric and dimeric Hbs are also found in tetrameric Hbs.

  5. The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia)

    Science.gov (United States)

    Majzlan, Juraj; Lalinská, Bronislava; Chovan, Martin; Jurkovič, L.'ubomír; Milovská, Stanislava; Göttlicher, Jörg

    2007-09-01

    The abandoned Sb deposit Pezinok in Slovakia is a significant source of As and Sb pollution that can be traced in the upper horizons of soils kilometers downstream. The source of the metalloids are two tailing impoundments which hold ˜380,000 m 3 of mining waste. The tailings and the discharged water have circumneutral pH values (7.0 ± 0.6) because the acidity generated by the decomposition of the primary sulfides (pyrite, FeS 2; arsenopyrite, FeAsS; berthierite, FeSb 2S 4) is rapidly neutralized by the abundant carbonates. The weathering rims on the primary sulfides are iron oxides which act as very efficient scavengers of As and Sb (with up to 19.2 wt% As and 23.7 wt% Sb). In-situ μ-XANES experiments indicate that As in the weathering rims is fully oxidized (As 5+). The pore solutions in the impoundment body contain up to 81 ppm As and 2.5 ppm Sb. Once these solutions are discharged from the impoundments, they precipitate or deposit masses of As-rich hydrous ferric oxide (As-HFO) with up to 28.3 wt% As 2O 5 and 2.7 wt% Sb. All As-HFO samples are amorphous to X-rays. They contain Fe and As in their highest oxidation state and in octahedral and tetrahedral coordination, respectively, as suggested by XANES and EXAFS studies on Fe K and As K edges. The iron octahedra in the As-HFO share edges to form short single chains and the chains polymerize by sharing edges or corners with the adjacent units. The arsenate ions attach to the chains in a bidentate-binuclear and monodentate fashion. In addition, hydrogen-bonded complexes may exist to satisfy the bonding requirements of all oxygen atoms in the first coordination sphere of As 5+. Structural changes in the As-HFO samples were traced by chemical analyses and Fe EXAFS spectroscopy during an ageing experiment. As the samples age, As becomes more easily leachable. EXAFS spectra show a discernible trend of increasing number of Fe-Fe pairs at a distance of 3.3-3.5 Å, that is, increasing polymerization of the iron

  6. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    Directory of Open Access Journals (Sweden)

    Yali Song

    2015-06-01

    Full Text Available Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM as a pretreatment prior to polyvinylidene fluoride (PVDF microfiltration (MF membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling.

  7. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    Science.gov (United States)

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  9. Effect of dissolved ozone or ferric ions on photodegradation of thiacloprid in presence of different TiO2 catalysts

    Czech Academy of Sciences Publication Activity Database

    Černigoj, U.; Štangar, U. L.; Jirkovský, Jaromír

    2010-01-01

    Roč. 177, 1-3 (2010), s. 399-406 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40400503 Keywords : neonicotionoid pesticides * photocatalysis * ozonation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.723, year: 2010

  10. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  11. DMPD: Role of Nods in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17379560 Role of Nods in bacterial infection. Bourhis LL, Werts C. Microbes Infect.... 2007 Apr;9(5):629-36. Epub 2007 Jan 27. (.png) (.svg) (.html) (.csml) Show Role of Nods in bacterial infect...ion. PubmedID 17379560 Title Role of Nods in bacterial infection. Authors Bourhis LL, Werts C. Publication M

  12. Cofortification of ferric pyrophosphate and citric acid/trisodium citrate into extruded rice grains doubles iron bioavailability through in situ generation of soluble ferric pyrophosphate citrate complexes.

    Science.gov (United States)

    Hackl, Laura; Cercamondi, Colin I; Zeder, Christophe; Wild, Daniela; Adelmann, Horst; Zimmermann, Michael B; Moretti, Diego

    2016-05-01

    Iron fortification of rice is a promising strategy for improving iron nutrition. However, it is technically challenging because rice is consumed as intact grains, and ferric pyrophosphate (FePP), which is usually used for rice fortification, has low bioavailability. We investigated whether the addition of a citric acid/trisodium citrate (CA/TSC) mixture before extrusion increases iron absorption in humans from FePP-fortified extruded rice grains. We conducted an iron absorption study in iron-sufficient young women (n = 20), in which each participant consumed 4 different meals (4 mg Fe/meal): 1) extruded FePP-fortified rice (No CA/TSC); 2) extruded FePP-fortified rice with CA/TSC added before extrusion (CA/TSC extruded); 3) extruded FePP-fortified rice with CA/TSC solution added after cooking and before consumption (CA/TSC solution); and 4) nonextruded rice fortified with a FeSO4 solution added after cooking and before consumption (reference). Iron absorption was calculated from erythrocyte incorporation of stable iron isotopes 14 d after administration. In in vitro experiments, we assessed the soluble and dialyzable iron from rice meals in which CA/TSC was added at different preparation stages and from meals with different iron:CA:TSC ratios. Fractional iron absorption was significantly higher from CA/TSC-extruded meals (3.2%) than from No CA/TSC (1.7%) and CA/TSC solution (1.7%; all P solubility and dialyzability were higher in CA/TSC-extruded rice than in rice with No CA/TSC and CA/TSC solution, and solubility increased with higher amounts of added CA and TSC in extruded rice. Iron bioavailability nearly doubled when CA/TSC was extruded with FePP into fortified rice, resulting in iron bioavailability comparable to that of FeSO4 We attribute this effect to an in situ generation of soluble FePP citrate moieties during extrusion and/or cooking because of the close physical proximity of FePP and CA/TSC in the extruded rice matrix. This trial was registered at

  13. Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars

    Science.gov (United States)

    Mao, J.; Schroeder, C.; Haderlein, S.

    2012-12-01

    NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X

  14. Removal of the blue 1 dye of aqueous solutions using ferric zeolite; Remocion del colorante azul 1 de soluciones acuosas utilizando zeolita ferrica

    Energy Technology Data Exchange (ETDEWEB)

    Pinedo H, S. Y.

    2010-07-01

    amount of adsorbent from 10 to 200 mg of adsorbent and 10 ml of solution. Finally there was a column sorption test, obtaining the curve os load vs time of contact, and important design parameters such as the rupture time, it was at 100 minutes, with an initial concentration of 5 mg/L taking final concentration breakpoint of 0.4 mg/L, the results were evaluated with the Thomas model. The results of this work can conclude that it is possible to extend the scope of natural zeolites as adsorbents for the removal of organic pollutants in wastewater, by changing its outer surface with ferric chloride, without a significant effect on their ion exchange properties. (Author)

  15. Sodium nitroprusside may modulate Escherichia coli antioxidant enzyme expression by interacting with the ferric uptake regulator.

    Science.gov (United States)

    Bertrand, R; Danielson, D; Gong, V; Olynik, B; Eze, M O

    2012-01-01

    Efforts to explore possible relationships between nitric oxide (NO) and antioxidant enzymes in an Escherichia coli model have uncovered a possible interaction between sodium nitroprusside (SNP), a potent, NO-donating drug, and the ferric uptake regulator (Fur), an iron(II)--dependent regulator of antioxidant and iron acquisition proteins present in Gram-negative bacteria. The enzymatic profiles of superoxide dismutase and hydroperoxidase during logarithmic phase of growth were studied via non-denaturing polyacrylamide gel electrophoresis and activity staining specific to each enzyme. Though NO is known to induce transcription of the manganese-bearing isozyme of SOD (MnSOD), treatment with SNP paradoxically suppressed MnSOD expression and greatly enhanced the activity of the iron-containing equivalent (FeSOD). Fur, one of six global regulators of MnSOD transcription, is uniquely capable of suppressing MnSOD while enhancing FeSOD expression through distinct mechanisms. We thus hypothesize that Fur is complacent in causing this behaviour and that the iron(II) component of SNP is activating Fur. E. coli was also treated with the SNP structural analogues, potassium ferricyanide (PFi) and potassium ferrocyanide (PFo). Remarkably, the ferrous PFo was capable of mimicking the SNP-related pattern, whereas the ferric PFi was not. As Fur depends upon ferrous iron for activation, we submit this observation of redox-specificity as preliminary supporting evidence for the hypothesized Fur-SNP interaction. Iron is an essential metal that the human innate immune system sequesters to prevent its use by invading pathogens. As NO is known to inhibit iron-bound Fur, and as activated Fur regulates iron uptake through feedback inhibition, we speculate that the administration of this drug may disrupt this strategic management of iron in favour of residing Gram-negative species by providing a source of iron in an otherwise iron-scarce environment capable of encouraging its own uptake

  16. Optimizing iron delivery in the management of anemia: patient considerations and the role of ferric carboxymaltose

    Directory of Open Access Journals (Sweden)

    Toblli JE

    2014-12-01

    Full Text Available Jorge Eduardo Toblli, Margarita Angerosa Nephrology Section, Department of Internal Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Argentina Abstract: With the challenge of optimizing iron delivery, new intravenous (iv iron–carbohydrate complexes have been developed in the last few years. A good example of these new compounds is ferric carboxymaltose (FCM, which has recently been approved by the US Food and Drug Administration for the treatment of iron deficiency anemia in adult patients who are intolerant to oral iron or present an unsatisfactory response to oral iron, and in adult patients with non-dialysis-dependent chronic kidney disease (NDD-CKD. FCM is a robust and stable complex similar to ferritin, which minimizes the release of labile iron during administration, allowing higher doses to be administered in a single application and with a favorable cost-effective rate. Cumulative information from randomized, controlled, multicenter trials on a diverse range of indications, including patients with chronic heart failure, postpartum anemia/abnormal uterine bleeding, inflammatory bowel disease, NDD-CKD, and those undergoing hemodialysis, supports the efficacy of FCM for iron replacement in patients with iron deficiency and iron-deficiency anemia. Furthermore, as FCM is a dextran-free iron–carbohydrate complex (which has a very low risk for hypersensitivity reactions with a small proportion of the reported adverse effects in a large number of subjects who received FCM, it may be considered a safe drug. Therefore, FCM appears as an interesting option to apply high doses of iron as a single infusion in a few minutes in order to obtain the quick replacement of iron stores. The present review on FCM summarizes diverse aspects such as pharmacology characteristics and analyzes trials on the efficacy/safety of FCM versus oral iron and different iv iron compounds in multiple clinical scenarios. Additionally, the

  17. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    Science.gov (United States)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  18. Ion-ion collisions

    International Nuclear Information System (INIS)

    Salzborn, Erhard; Melchert, Frank

    2000-01-01

    Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)

  19. The effect of ammonium ferric hexacyanoferrate on reducing radiocaesium transfer from grass silage to sheep

    Directory of Open Access Journals (Sweden)

    A. PAASIKALLIO

    2008-12-01

    Full Text Available A study was carried out to examine the effect of ammonium ferric hexacyanoferrate (AFCF on the transfer of radiocaesium from grass silage to the tissues of male lambs. During ensiling, a formic acid based additive and AFCF were sprayed on grass contaminated with 134Cs and the mixture was allowed to incubate for 45 days. A dose of 21 mg AFCF d-1, fed to sheep offered contaminated silage for fourteen days, reduced 134Cs transfer to muscle by 45% compared to that of control sheep. An equivalent dose of AFCF administered in a capsule reduced transfer by only 3%. In another experiment, AFCF intake of 50, 100 and 150 mg d-1 for ten days reduced 134Cs transfer to sheep muscle by 75, 82 and 86%, respectively. In control lambs, of average live weight 38 and 47 kg, the feed to muscle 134Cs transfer coefficient averaged 0.15 d kg-1, but equilibrium between tissue and feed 134Cs had probably not been reached due to the short feeding period. Increasing doses of AFCF from 0 to 150 mg d-1 increased the faecal/urinary 134Cs ratio from 2 to 42.;

  20. Acid-curing and ferric-trickle leaching effluent used in closed circuit uranium extractive process

    International Nuclear Information System (INIS)

    Jin Suoqing; Xiang Qinfang; Guo Jianzheng; Lu Guizhu; Su Yanru

    1998-01-01

    The new uranium ore process consists of crushing ore, mixing crushed ore with strong acid in rotating drums and curing the mixture in piles, trickle-leaching the ore beds with ferric solution, extracting uranium from pregnant solution with tertiary amine, precipitating product and disposing residue tailings. All the process effluent is used in closed circuit. There will be no process water to be discharged in the flowsheet except the tailings carrying off 15% water because during leaching moisture content of the ore rises to 15%. Tailings produced by the process are moist and friable, and can be disposed of on a pile or returned to the mine. Main technical parameters of the process: (a) water consumption is 0.2∼0.3 m 3 /t ore, electric power consumption is 20∼30 kW·h/t ore; (b) ore crushing up to -5∼-7 mm, leaching period is 12∼45 d, U content of residue is 0.01%∼0.02%, producing pregnant solution is 0.3∼0.5 m 3 /t ore, which is 1/5∼1/8 that of conventional agitation leaching process; (c) organic agent consumption is 1/5∼1/8 that of the conventional agitation process. All the research results above are tested by the pilot-plant test and industrial test. The new process has been applied to recovery of uranium in the mine located at northeast of China

  1. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms.

    Science.gov (United States)

    Wu, Xiaojing; Clavaguera, Carine; Lagardère, Louis; Piquemal, Jean-Philip; de la Lande, Aurélien

    2018-04-16

    We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H 2 O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.

  2. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride

    Science.gov (United States)

    Barsoom, B. N.; Abdelsamad, A. M. E.; Adib, N. M.

    2006-07-01

    A simple and accurate spectrophotometric method for the determination of arbutin (glycosylated hydroquinone) is described. It is based on the oxidation of arbutin by periodate in presence of iodate. Excess periodate causes liberation of iodine at pH 8.0. The unreacted periodate is determined by measurement of the liberated iodine spectrophotometrically in the wavelength range (300-500 nm). A calibration curve was constructed for more accurate results and the correlation coefficient of linear regression analysis was -0.9778. The precision of this method was better than 6.17% R.S.D. ( n = 3). Regression analysis of Bear-Lambert plot shows good correlation in the concentration range 25-125 ug/ml. The identification limit was determined to be 25 ug/ml a detailed study of the reaction conditions was carried out, including effect of changing pH, time, temperature and volume of periodate. Analyzing pure and authentic samples containing arbutin tested the validity of the proposed method which has an average percent recovery of 100.86%. An alternative method is also proposed which involves a complexation reaction between arbutin and ferric chloride solution. The produced complex which is yellowish-green in color was determined spectophotometrically.

  3. Will the application of Ammonium-Ferric-Hexacyano-Ferrate enhance the vertical migration of radiocaesium?

    International Nuclear Information System (INIS)

    Vandenhove, H.; Bacquoy, C.; Hees, M. van; Lewyckyj, N.; Vandecasteele, C.

    1998-01-01

    The consideration of a possible enhanced vertical migration of radiocaesium with the application of ammonium-ferric-hexacyano-ferrate (AFCF) as countermeasure, due to the colloidal nature of AFCF, made us set up a series of migration experiments. For the study two soil types were considered, which were either left unplanted or cultivated with ryegrass. Two AFCF concentrations, 1 and 10 g m -2 , and an untreated control were applied. A simple diffusion-convection model was fitted to the data.The application of AFCF did not enhance the downward migration of radiocaesium in the profile. Moreover, for an unplanted sandy soil the application of AFCF significantly retarded the migration: 10 g AFCF m -2 decreased the convection term, V, from 0·78 to 0·42 cm a -1 and the diffusion component, D, from 0·21 to 0·09 cm 2 a -1 . For all other experimental conditions (unplanted loamy soil, ryegrass cultivated sandy and loamy soil), the application of AFCF did not have any effect on radiocaesium migration. Since AFCF does not promote the vertical migration of radiocaesium, enhanced groundwater contamination is improbable. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite-galena flotation separation

    Science.gov (United States)

    Yu, Jin-sheng; Liu, Run-qing; Wang, Li; Sun, Wei; Peng, Hong; Hu, Yue-hua

    2018-05-01

    Selective recovery of chalcopyrite-galena ore by flotation remains a challenging issue. The development of highly efficient, low-cost, and environmentally friendly depressants for this flotation is necessary because most of available reagents (e.g., K2Cr2O4) are expensive and adversely affect the environment. In this study, ferric chromium lignin sulfonate (FCLS), which is a waste-product from the paper and pulp industry, was introduced as a selective depressant for galena with butyl xanthate (BX) as a collector. Results show that the residue recovery of Pb in Cu concentrate was substantially reduced to 4.73% using FCLS compared with 10.71% using the common depressant K2Cr2O4. The underlying mechanisms were revealed using zeta-potential measurements and X-ray photoelectron spectroscopy (XPS). Zeta-potential measurements revealed that FCLS was more efficiently absorbed onto galena than onto chalcopyrite. XPS measurements further suggested that FCLS enhanced the surface oxidation of galena but prevented that of chalcopyrite. Thus, FCLS could be a potential candidate as a depressant for chalcopyrite-galena flotation because of its low cost and its lack of detrimental effects on the environment.

  5. A radioisotope study of the dispersion of ferric hydroxide floc in Bass Strait

    International Nuclear Information System (INIS)

    Davison, A.

    1983-01-01

    The dispersion of ferric hydroxide floc in Bass Strait waters adjacent to Burnie, Tasmania, has been investigated using radioisotope tracer techniques. Gold-198 labelled floc was employed to follow the movement of floc produced by dilution of the iron-rich effluent from a titanium dioxide plant. Dispersion was determined under calm and storm conditions. Tidal and wind-driven currents were measured, oscillating wave generated currents were calculated, and lateral and vertical dispersion coefficients were determined. It is concluded that floc disperses episodically during storms. The agglomerated floc remains trapped in a stable seabed layer which spreads slowly at seabed level when wind velocities are less than 15 m s -1 . When wind velocities exceed this level, the wave generated oscillating currents at seabed level, 30 m below the surface, are strong enough to raise the floc into suspension where advective dispersion occurs. Since tidal currents in the area are negligible, the direction of floc movement depends on the direction of the wind-driven current during each storm

  6. Effect of Arsenic on the Formation and Adsorption Property of Ferric Hydroxide Precipitates in ZVI Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xing; Xi, Beidou; Zhao, Ying; Shi, Qiantao; Meng, Xiaoguang; Mao, Xuhui; Jiang, Yonghai; Ma, Zhifei; Tan, Wenbing; Liu, Hongliang; Gong, Bin (Stevens); (Beijing NU); (CRAES); (Wuhan)

    2017-08-14

    Treatment of arsenic by zerovalent iron (ZVI) has been studied extensively. However, the effect of arsenic on the formation of ferric hydroxide precipitates in the ZVI treatment has not been investigated. We discovered that the specific surface area (ca. 187 m2/g) and arsenic content (ca. 67 mg/g) of the suspended solids (As-containing solids) generated in the ZVI treatment of arsenic solutions were much higher than the specific surface area (ca. 37 m2/g) and adsorption capacity (ca.12 mg/g) of the suspended solids (As-free solids) generated in the arsenic-free solutions. Arsenic in the As-containing solids was much more stable than the adsorbed arsenic in As-free solids. XRD, SEM, TEM, and selected area electron diffraction (SAED) analyses showed that the As-containing solids consisted of amorphous nanoparticles, while the As-free solids were composed of micron particles with weak crystallinity. Extended X-ray absorption fine structure (EXAFS) analysis determined that As(V) was adsorbed on the As-containing suspended solids and magnetic solid surfaces through bidentate binuclear complexation; and As(V) formed a mononuclear complex on the As-free suspended solids. The formation of the surface As(V) complexes retarded the bonding of free FeO6 octahedra to the oxygen sites on FeO6 octahedral clusters and prevented the growth of the clusters and their development into 3-dimensional crystalline phases.

  7. Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa

    Directory of Open Access Journals (Sweden)

    Christopher T. Ruhland

    2007-06-01

    Full Text Available We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm on the maximum photochemical efficiency of photosystem II (Fv/Fm, bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B or by 19% (near-ambient UV-B over the 52 day experiment (04 July - 25 August 2002. Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower Fv/Fm values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls.

  8. EVALUATION OF FERRIC CHLORIDE AND ALUM EFFICIENCIES IN ENHANCED COAGULATION FOR TOC REMOVAL AND RELATED RESIDUAL METAL CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    A. Mesdaghinia, M. T. Rafiee, F. Vaezi and A. H. Mahvi

    2005-07-01

    Full Text Available Although the removal of colloidal particles continues to be an important reason for using coagulation, a newer objective, the removal of natural organic matter (NOM to reduce the formation of disinfection by-products (DBPs, is growing in importance. Enhanced coagulation is thus introduced to most water utilities treating surface water. Bench-scale experiments were conducted to compare the effectiveness of alum and ferric chloride in removing DBPs precursors from eight synthetic water samples, each representing a different element of the USEPA’s 3×3 enhanced coagulation matrix. The effect of enhanced coagulation on the residual metal (aluminum/iron concentration in the treated water was assessed as well. The removal of total organic carbon (TOC was dependent on the coagulant type and was enhanced with increasing coagulant dose, but the latter had no further considerable effect in case of increasing to high levels. For all the treated samples coagulation with ferric chloride proved to be more effective than alum at similar doses and the mean values of treatment efficiencies were 51% and 32% for ferric chloride and alum, respectively. Ferric chloride was therefore considered the better chemical for enhancing the coagulation process. Besides, due to less production of sludge by this coagulant, it would be predicted that treatment plants would be confronted to fewer problems with respect to final sludge disposal. Measurements of residual metal in treated water indicated that iron and aluminum concentrations had been increased as expected but the quality of water concerning the residual metal deteriorated much more in cases of under-dosing. Despite expecting high residual Al and Fe concentrations under enhanced coagulation, metal concentrations were frequently remained low and were not increased appreciably.

  9. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  10. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  11. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  12. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    Science.gov (United States)

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  13. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  14. Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate

    Science.gov (United States)

    Deike, R.G.; Granina, L.; Callender, E.; McGee, J.J.

    1997-01-01

    Phosphate-bearing, ferric iron and siliceous crusts ranging in age from Recent to approximately 65,000 yr B.P. are observed in sediments of Lake Baikal. In younger sediments the crusts are at the base of a spectrum of secondary iron and manganese oxides that accumulate near the sediment/water interface in the zone of positive oxidation potential beneath an oxygenated water column. In areas where the average Quaternary sedimentation rates have been slow (e.g. 0.026 mm/yr), the crusts are more common, and span a wider range of ages. No crusts have been found where the Quaternary sedimentation mode has been deltaic and rapid (0.15 mm/yr). Independent core correlation based on magnetic properties of the sediment suggests that crusts can be correlated over most of Academician Ridge, an area that is particularly sensitive to climatic events affecting the concentration of suspended sediment. These crusts may be indicative of periods of low suspended sediment concentration, which occur during sustained transitions from glacial periods of high detrital input, to interglacial periods of high diatom sedimentation. The crusts are dominated by iron-rich and siliceous amorphous mineral phases, with an FeO:SiO2 by weight of 3:1. Regardless of age or location in the lake the Fe phase always includes Ca, P and Mn. Extensive microprobe data for these four elements recast as normalized elemental weight percent reveal linear trends of Ca:P and Fe:P. With increasing P, Ca also increases such that the two elements maintain a linear relationship passing very close to the origin and with a mean molar Ca:P=0.3 (too low for well-characterized apatite). Conversely, with increasing P, Fe decreases (mean molar Fe:P=3.4). There is no correlation between Mn and P. Molar Fe:P ratios for vivianite (an Fe(II) phosphate mineral observed in sediments closely below some crusts) are clustered around a stoichiometric composition. The covariant increase in Ca:P and the corresponding decrease in Fe:P may

  15. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  16. Relative bioavailability of micronized, dispersible ferric pyrophosphate added to an apple juice drink.

    Science.gov (United States)

    Roe, Mark A; Collings, Rachel; Hoogewerff, Jurian; Fairweather-Tait, Susan J

    2009-03-01

    Food iron fortification is a sustainable and relatively simple strategy to reduce/prevent iron deficiency but is a challenge for the food industry because of possible adverse organoleptic changes caused by the added iron. A micronized dispersible ferric pyrophosphate, trademarked as SunActive Fe, has recently been developed. SunActive Fe has a small particle size, is water soluble and may be suitable for fortifying liquid products. To determine the relative bioavailability of SunActive Fe and its suitability for addition to pure apple juice. Iron absorption from SunActive Fe added to pure apple juice (Minute Maid) was compared with absorption from ferrous sulphate, a highly bioavailable form of iron, in 15 women with relatively low iron stores. Both forms of iron were enriched with an iron stable isotope and iron absorption from the apple juice drinks was calculated from the isotopic enrichment of red blood cells 14 days after the last test meal. Although mean absorption of iron from SunActive Fe was significantly lower than from ferrous sulphate (5.5% compared with 9.1%), the mean bioavailability of SunActive Fe iron relative to ferrous sulphate was 0.6, indicating that it is a good source of bioavailable iron. Iron Absorption from SunActive Fe was positively correlated (r = 0.97, P = 0.01) with absorption from ferrous sulphate, and negatively correlated with serum ferritin concentration (ferrous sulphate r = -0.81, P apple juice and is a potentially useful fortificant for liquid food products.

  17. Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate.

    Science.gov (United States)

    Cercamondi, Colin I; Duchateau, Guus S M J E; Harika, Rajwinder K; van den Berg, Robin; Murray, Peter; Koppenol, Wieneke P; Zeder, Christophe; Zimmermann, Michael B; Moretti, Diego

    2016-08-01

    Fe fortification of centrally manufactured and frequently consumed condiments such as bouillon cubes could help prevent Fe deficiency in developing countries. However, Fe compounds that do not cause sensory changes in the fortified product, such as ferric pyrophosphate (FePP), exhibit low absorption in humans. Tetra sodium pyrophosphate (NaPP) can form soluble complexes with Fe, which could increase Fe bioavailability. Therefore, the aim of this study was to investigate Fe bioavailability from bouillon cubes fortified with either FePP only, FePP+NaPP, ferrous sulphate (FeSO4) only, or FeSO4+NaPP. We first conducted in vitro studies using a protocol of simulated digestion to assess the dialysable and ionic Fe, and the cellular ferritin response in a Caco-2 cell model. Second, Fe absorption from bouillon prepared from intrinsically labelled cubes (2·5 mg stable Fe isotopes/cube) was assessed in twenty-four Fe-deficient women, by measuring Fe incorporation into erythrocytes 2 weeks after consumption. Fe bioavailability in humans increased by 46 % (P<0·005) when comparing bouillons fortified with FePP only (4·4 %) and bouillons fortified with FePP+NaPP (6·4 %). Fe absorption from bouillons fortified with FeSO4 only and with FeSO4+NaPP was 33·8 and 27·8 %, respectively (NS). The outcome from the human study is in agreement with the dialysable Fe from the in vitro experiments. Our findings suggest that the addition of NaPP could be a promising strategy to increase Fe absorption from FePP-fortified bouillon cubes, and if confirmed by further research, for other fortified foods with complex food matrices as well.

  18. Surface complexation modeling of Cu(II adsorption on mixtures of hydrous ferric oxide and kaolinite

    Directory of Open Access Journals (Sweden)

    Schaller Melinda S

    2008-09-01

    Full Text Available Abstract Background The application of surface complexation models (SCMs to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO, pure kaolinite (from two sources and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples.

  19. Protective Effect of Low Dose Gamma Irradiation against Oxidative Damage in Rats Administrated with Ferric- Nitrilotriacetate

    International Nuclear Information System (INIS)

    Mansonr, S.Z.

    2009-01-01

    Many studies have demonstrated the beneficial adaptive response of low dose gamma-irradiation. Low dose gamma-irradiation (LDR) might be effective for the prevention of various reactive oxygen species-related diseases. Ferric nitrilotriacetate (Fe-NTA) is a strong oxidant, which generates highly reactive hydroxyl radical and causes injuries of various organs including the kidney and liver. This study was designed to investigate the ability of low dose gamma-irradiation to restrain Fe-NT A induced oxidative stress. Sprague Dawley male albino rats were subjected to low dose gamma-irradiation (50 cGy). Animals were challenged with Fe-NT A (9 mg Fe/kg body weight, intraperitoneally). Results showed that Fe-NTA enhances lipid peroxidation (LPx) accompanied with reduction in glutathione (GSH) content, antioxidant enzymes, viz., glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and phase-U metabolizing enzyme glutathione-S-transferase (GST). Fe-NTA also enhances the concentration of blood urea nitrogen (BUN) and serum creatinine as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) activities. Exposure to low dose gamma- irradiation (3 h after Fe-NTA administration) resulted in a significant decrease in LPx, BUN, serum creatinine contents as well as ALT, AST and GGT enzyme activities. GSH content; GST and antioxidant enzymes were also recovered to significant level. Thus, our data suggest that exposure to LDR might be a useful antioxidant mediator to suppress the Fe-NTA induced-oxidative damage in rats

  20. Protective Effect of Low Dose Gamma Irradiation against Oxidative Damage in Rats Administrated with Ferric- Nitrilotriacetate

    International Nuclear Information System (INIS)

    Mansonr, S.Z.

    2008-01-01

    Many studies have demonstrated the beneficial adaptive response of low dose gamma-irradiation. Low dose gamma-irradiation (LDR) might be effective for the prevention of various reactive oxygen species-related diseases. Ferric nitrilotriacetate (Fe-NTA) is a strong oxidant, which generates highly reactive hydroxyl radical and causes injuries of various organs including the kidney and liver. This study was designed to investigate the ability of low dose gamma-irradiation to restrain Fe-NT A induced oxidative stress. Sprague Dawley male albino rats were subjected to low dose gamma-irradiation (50 cGy). Animals were challenged with Fe-NT A (9 mg Fe/kg body weight, intraperitoneally). Results showed that Fe-NTA enhances lipid peroxidation (LPx) accompanied with reduction in glutathione (GSH) content, antioxidant enzymes, viz., glutathione peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT) and phase-U metabolizing enzyme glutathione-S-transferase (GST). Fe-NTA also enhances the concentration of blood urea nitrogen (BUN) and serum creatinine as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) activities. Exposure to low dose gamma- irradiation (3 h after Fe-NTA administration) resulted in a significant decrease in LPx, BUN, serum creatinine contents as well as ALT, AST and GGT enzyme activities. GSH content; GST and antioxidant enzymes were also recovered to significant level. Thus, our data suggest that exposure to LDR might be a useful antioxidant mediator to suppress the Fe-NTA induced-oxidative damage in rats

  1. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    Science.gov (United States)

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  2. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride.

    Science.gov (United States)

    Hai, K; Sawase, T; Matsumura, H; Atsuta, M; Baba, K; Hatada, R

    2000-04-01

    This in vitro study evaluated the corrosion resistance of a titanium nitride (TiN) ion-plated magnetic stainless steel (447J1) for the purpose of applying a magnetic attachment system to implant-supported prostheses made of titanium. The surface hardness of the TiN ion-plated 447J1 alloy with varying TiN thickness was determined prior to the corrosion testing, and 2 micrometers thickness was confirmed to be appropriate. Ions released from the 447J1 alloy, TiN ion-plated 447J1 alloy, and titanium into a 2% lactic acid aqueous solution and 0.1 mol/L phosphate buffered saline (PBS) were determined by means of an inductively coupled plasma atomic emission spectroscopy (ICP-AES). Long-term corrosion behaviour was evaluated using a multisweep cyclic voltammetry. The ICP-AES results revealed that the 447J1 alloy released ferric ions into both media, and that the amount of released ions increased when the alloy was coupled with titanium. Although both titanium and the TiN-plated 447J1 alloy released titanium ions into lactic acid solution, ferric and chromium ions were not released from the alloy specimen for all conditions. Cyclic voltamograms indicated that the long-term corrosion resistance of the 447J1 alloy was considerably improved by ion-plating with TiN.

  3. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  4. Comment on "Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes by Hye-Jin Lee, Hyung-Eun Kim, Changha Lee [Water Research 110, 2017, 83-90]".

    Science.gov (United States)

    Chen, Long; Peng, Ying; Tang, Min; Wu, Feng

    2017-07-01

    The methodology employed by Lee et al. to terminate their bactericidal assays was found to be flawed via our demonstrations. Briefly, EDTA or sulfite combining with cupric ion did not fully terminate, and instead even boosted the P. aeruginosa death. We therefore suggested them to seek for other means of reaction termination, such as the combination of buffering agent PBS and Cu(II)-complexing agent EDTA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, Vasiliy; Derbenev, Yaroslav; Harwood, Leigh; Hutton, Andrew; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Yunhai; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli; Gerity, James; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  6. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, V. S.; Derbenev, Ya. S.; Harwood, L.; Hutton, A.; Lin, F.; Pilat, F.; Zhang, Y.; Cai, Y.; Nosochkov, Y. M.; Sullivan, M.; Wang, M-H; Wienands, U.; Gerity, J.; Mann, T.; McIntyre, P.; Pogue, N. J.; Satttarov, A.

    2015-01-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated superconducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  7. The new generation of intravenous iron: chemistry, pharmacology, and toxicology of ferric carboxymaltose.

    Science.gov (United States)

    Funk, Felix; Ryle, Peter; Canclini, Camillo; Neiser, Susann; Geisser, Peter

    2010-01-01

    An ideal preparation for intravenous iron replacement therapy should balance effectiveness and safety. Compounds that release iron rapidly tend to cause toxicity, while large molecules can induce antibody formation and cause anaphylactic reactions. There is therefore a need for an intravenous iron preparation that delivers appropriate amounts of iron in a readily available form but with minimal side effects and thus with an excellent safety profile. In this paper, a review is given on the chemistry, pharmacology, and toxicology of ferric carboxymaltose (FCM, Ferinject), a stable and robust complex formulated as a colloidal solution with a physiological pH. The complex is gradually taken up mainly from the hepatic reticulo-endothelial system (RES), followed by effective delivery of iron to the endogeneous transport system for the haem synthesis in new erythrocytes, as shown in studies on the pharmacodynamics and pharmacokinetics with radio-labelled FCM. Studies with radio-labelled FCM also demonstrated a barrier function of the placenta and a low transfer of iron into the milk of lactating rats. Safety pharmacology studies indicated a favourable profile with regard to cardiovascular, central nervous, respiratory, and renal toxicity. A high maximum non-lethal dose was demonstrated in the single-dose toxicity studies. Furthermore, based on the No-Observed-Adverse-Effect-Levels (NOAELs) found in repeated-dose toxicity studies and on the cumulative doses administered, FCM has good safety margins. Reproductive and developmental toxicity studies did not reveal any direct or indirect harmful effects. No genotoxic potential was found in in vitro or in vivo studies. Moreover, antigenicity studies showed no cross-reactivity of FMC with anti-dextran antibodies and also suggested that FCM does not possess sensitizing potential. Lastly, no evidence of irritation was found in local tolerance studies with FCM. This excellent toxicity profile and the high effectiveness of FCM allow

  8. Ferric iron partitioning between pyroxene and melt during partial melting of the Earth's upper mantle

    Science.gov (United States)

    Rudra, A.; Hirschmann, M. M.

    2017-12-01

    The oxidation state of the Earth's mantle influences melt production, volatile behavior, partitioning of key trace elements and possible saturation of alloy at depth. Average Fe3+/FeT ratios in MORBs indicate oxygen fugacitiy of the source regions is close to QFM, in contrast to a 3 log unit variation of fO2 recorded by abyssal peridotites. Quantification of the relationship between basalt and source Fe3+/FeT, oxygen fugacity, and melting requires constraints on Fe3+ partitioning between melt and mantle minerals and in particular the principal Fe3+ host, pyroxene. McCanta et al. (2004) investigated valence dependent partitioning of Fe between Martian ferroan pigeonites and melt, but behavior in terrestrial pyroxene compositions relevant to MORB petrogenesis has not been investigated. We are conducting 1 atm controlled fO2 experiments over 4 log unit variation of fO2 between ΔQFM = 2.5 to -1.5 to grow pyroxenes of variable tetrahedral and octahedral cationic population from andesitic melts of varying Mg#, alumina and alkali content. Dynamic crystallization technique facilitates growth of pyroxene crystals (100-200 um) that EPMA analyses show to be compositionally homogeneous and in equilibrium with the melt. Fe3+/FeT ratio of the synthetic pyroxenes have been analyzed by XAFS spectroscopy at the APS (GSECARS) synchrotron. To quantify the x-ray anisotropy in pyroxenes, we collected Fe K-edge XAFS spectra of oriented natural single crystals for a wide range compositions whose Fe3+/FeT ratios we determined by Mossbauer spectroscopy. We have collected both XANES and EXAFS spectral regions spanning from 7020-7220 eV to explore predictive capabilities of different spectral regions about ferric iron concentration and site occupancy. Our results will document the Fe3+ compatibility in pyroxenes of different compositions under a variety of fO2 conditions, which in turn will better constrain the interrelationship between mantle redox and melting.

  9. Assessing the costs and benefits of perioperative iron deficiency anemia management with ferric carboxymaltose in Germany

    Directory of Open Access Journals (Sweden)

    Froessler B

    2018-04-01

    Full Text Available Bernd Froessler,1,2 Alexandra M Rueger,3,4 Mark P Connolly5,6 1Department of Anesthesia, Lyell McEwin Hospital, Elizabeth Vale, SA, Australia; 2Discipline of Acute Care Medicine, University of Adelaide, Adelaide, SA, Australia; 3Vifor Pharma, Munich, Germany; 4Charité Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Kardiologie Campus Virchow-Klinikum, Berlin, Germany; 5Unit of PharmacoEpidemiology and PharmacoEconomics, Department of Pharmacy, University of Groningen, Groningen, the Netherlands; 6Global Market Access Solutions Sàrl, St-Prex, Switzerland Background: Perioperative administration of ferric carboxymaltose (FCM was previously shown to reduce both the need for transfusions and the hospital length of stay in patients with preoperative iron deficiency anemia (IDA. In this study, we estimated the economic consequences of perioperative administration using FCM vs usual care in patients with IDA from the perspective of a German hospital using decision-analytic modeling.Materials and methods: The model was populated with clinical inputs (transfusion rates, blood units transfused, hospital length of stay from a previously reported randomized trial comparing FCM vs usual care for managing IDA patients undergoing elective abdominal surgery. We applied a hospital perspective to all costs, excluding surgery-related costs in both treatment arms. One-way sensitivity analyses were undertaken to evaluate key drivers of cost analysis.Results: The average costs per case treated using FCM compared to usual care were €2,461 and €3,246, respectively, for resource expenses paid by hospital per case. This would suggest potential savings achieved with preoperative intravenous iron treatment per patient of €786 per case. A sensitivity analysis varying the key input parameters indicated the cost analysis is most sensitive to changes in the length of stay and the cost of hospitalization per day.Conclusion: Perioperative administration

  10. Uranium removal from drinking water by adsorption onto granular ferric hydroxide (GEH)

    International Nuclear Information System (INIS)

    Bahr, Carsten

    2012-01-01

    Uranium contamination of groundwater is encountered in many regions worldwide. Effective and simple removal technologies are required by waterworks faced with this problem, particularly in Germany which set a specification for maximum permissible uranium content in drinking water in November 2011. The present thesis examines the suitability of Granular Ferric Hydroxide (GEH) as a water treatment adsorbent for uranium removal. Adsorption isotherms generated in the studies showed that GEH is capable of adsorbing uranium, in fact achieving highest loading levels as compared to other oxide-based absorbents. Experimental data for uranium adsorption as a function of pH for the model systems U(VI) / H 2 O and U(VI) / H 2 O / CO 2 successfully fits the Surface Complexation Model using the adjusted parameter set for ferrihydrite. Test findings showed that adsorption capacity varies substantially depending on the water matrix processed and is significantly reduced when real ground water or drinking water is processed. The main parameters influencing adsorption capacity were found to be pH and the associated carbonate concentration, as well as the concentrations of calcium and phosphate and to a lesser extent of sulfate and humic substances. The reduced capacity is caused by adsorption competition and changes in chemical speciation of uranium brought about by the water matrix at hand. Both the kinetics and the dynamics of adsorption can be successfully described by the Homogeneous Surface Diffusion Model (HSDM). The characteristic transport coefficients for film diffusion and particle diffusion were determined using empirical correlations and lab testing. The comparatively slow kinetics of adsorption are caused by the rate-determining particle diffusion and lead to a relatively flat breakthrough curve. Experiments on small adsorber columns (RSSCT method) were used to simulate uranium breakthrough in GEH fixed-bed filters on a laboratory scale, permitting accurate prediction

  11. Redox Evolution in Magma Oceans Due to Ferric/Ferrous Iron Partitioning

    Science.gov (United States)

    Schaefer, L.; Elkins-Tanton, L. T.; Pahlevan, K.

    2017-12-01

    A long-standing puzzle in the evolution of the Earth is that while the present day upper mantle has an oxygen fugacity close to the QFM buffer, core formation during accretion would have occurred at much lower oxygen fugacities close to IW. We present a new model based on experimental evidence that normal solidification and differentiation processes in the terrestrial magma ocean may explain both core formation and the current oxygen fugacity of the mantle without resorting to a change in source material or process. A commonly made assumption is that ferric iron (Fe3+) is negligible at such low oxygen fugacities [1]. However, recent work on Fe3+/Fe2+ ratios in molten silicates [2-4] suggests that the Fe3+ content should increase at high pressure for a given oxygen fugacity. While disproportionation was not observed in these experiments, it may nonetheless be occurring in the melt at high pressure [5]. Therefore, there may be non-negligible amounts of Fe3+ formed through metal-silicate equilibration at high pressures within the magma ocean. Homogenization of the mantle and further partitioning of Fe2+/Fe3+ as the magma ocean crystallizes may explain the oxygen fugacity of the Earth's mantle without requiring additional oxidation mechanisms. We present here models using different parameterizations for the Fe2+/Fe3+ thermodynamic relationships in silicate melts to constrain the evolution of the redox state of the magma ocean as it crystallizes. The model begins with metal-silicate partitioning at high pressure to form the core and set the initial Fe3+ abundance. Combined with previous work on oxygen absorption by magma oceans due to escape of H from H2O [6], we show that the upper layers of solidifying magma oceans should be more oxidized than the lower mantle. This model also suggests that large terrestrial planets should have more oxidized mantles than small planets. From a redox perspective, no change in the composition of the Earth's accreting material needs to be

  12. Postviral Complications: Bacterial Pneumonia.

    Science.gov (United States)

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  13. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California

    Science.gov (United States)

    Williams, Amy J.; Alpers, Charles N.; Sumner, Dawn Y.; Campbell, Kate M.

    2017-01-01

    A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.

  14. Potential side effects of ammonium-ferric-hexacyano-ferrate application: enhanced radiostrontium transfer and free cyanide release

    International Nuclear Information System (INIS)

    Vandenhove, Hildegarde; Hees, May van; Vandecasteele, Christian

    2000-01-01

    The effect of the application of ammonium-ferric-hexacyano-ferrate (AFCF), effective in reducing soil-to-plant radiocaesium transfer, on radiostrontium transfer was tested for ryegrass grown under greenhouse conditions on sandy soil for 310 days. Identical radiostrontium transfer factors (9.4 kg kg -1 ) were obtained with 0 or 10 g AFCF m -2 applied. Amending AFCF to planted or uncovered sandy or loamy soils in quantities of up to 100 g AFCF m -2 did not result in detectable levels of free cyanide. Negative side effects of AFCF application to soil are hence unlikely

  15. Bacterial vaginosis - aftercare

    Science.gov (United States)

    Bacterial vaginosis (BV) is a type of vaginal infection. The vagina normally contains both healthy bacteria and unhealthy bacteria. BV occurs when more unhealthy bacteria grow than healthy bacteria. No one knows ...

  16. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  17. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  18. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    direct or indirect evidence of a compatible bacterial pathogen. Inflammation may be .... cardinal features (fever, confusion, headache and neck stiffness). .... specificity, inappropriate indications or poor sampling technique may diminish this ...

  19. Molecular dynamics investigation of ferrous-ferric electron transfer in a hydrolyzing aqueous solution: Calculation of the pH dependence of the diabatic transfer barrier and the potential of mean force

    International Nuclear Information System (INIS)

    Rustad, James R.; Rosso, Kevin M.; Felmy, Andrew R.

    2004-01-01

    We present a molecular model for ferrous-ferric electron transfer in an aqueous solution that accounts for electronic polarizability and exhibits spontaneous cation hydrolysis. An extended Lagrangian technique is introduced for carrying out calculations of electron-transfer barriers in polarizable systems. The model predicts that the diabatic barrier to electron transfer increases with increasing pH, due to stabilization of the Fe 3+ by fluctuations in the number of hydroxide ions in its first coordination sphere, in much the same way as the barrier would increase with increasing dielectric constant in the Marcus theory. We have also calculated the effect of pH on the potential of mean force between two hydrolyzing ions in aqueous solution. As expected, increasing pH reduces the potential of mean force between the ferrous and ferric ions in the model system. The magnitudes of the predicted increase in diabatic transfer barrier and the predicted decrease in the potential of mean force nearly cancel each other at the canonical transfer distance of 0.55 nm. Even though hydrolysis is allowed in our calculations, the distribution of reorganization energies has only one maximum and is Gaussian to an excellent approximation, giving a harmonic free energy surface in the reorganization energy F(ΔE) with a single minimum. There is thus a surprising amount of overlap in electron-transfer reorganization energies for Fe 2+ -Fe(H 2 O) 6 3+ , Fe 2+ -Fe(OH)(H 2 O) 5 2+ , and Fe 2+ -Fe(OH) 2 (H 2 O) + couples, indicating that fluctuations in hydrolysis state can be viewed on a continuum with other solvent contributions to the reorganization energy. There appears to be little justification for thinking of the transfer rate as arising from the contributions of different hydrolysis states. Electronic structure calculations indicate that Fe(H 2 O) 6 2+ -Fe(OH) n (H 2 O) 6-n (3-n)+ complexes interacting through H 3 O 2 - bridges do not have large electronic couplings

  20. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. A case of osteomalacia due to deranged mineral balance caused by saccharated ferric oxide and short-bowel syndrome: A case report.

    Science.gov (United States)

    Nomoto, Hiroshi; Miyoshi, Hideaki; Nakamura, Akinobu; Nagai, So; Kitao, Naoyuki; Shimizu, Chikara; Atsumi, Tatsuya

    2017-09-01

    Saccharated ferric oxide has been shown to lead to elevation of fibroblast growth factor 23, hypophosphatemia, and, consequently, osteomalacia. Moreover, mineral imbalance is often observed in patients with short-bowel syndrome to some degree. A 62-year-old woman with short-bowel syndrome related with multiple resections of small intestines due to Crohn disease received regular intravenous administration of saccharated ferric oxide. Over the course of treatment, she was diagnosed with tetany, which was attributed to hypocalcemia. Additional assessments of the patient revealed not only hypocalcemia, but also hypophosphatemia, hypomagnesemia, osteomalacia, and a high concentration of fibroblast growth factor 23 (314 pg/mL). We diagnosed her with mineral imbalance-induced osteomalacia due to saccharated ferric oxide and short-bowel syndrome. Magnesium replacement therapy and discontinuation of saccharated ferric oxide alone. These treatments were able to normalize her serum mineral levels and increase her bone mineral density. This case suggests that adequate evaluation of serum minerals, including phosphate and magnesium, during saccharated ferric oxide administration may be necessary, especially in patients with short-bowel syndrome.

  2. Bacterial community composition in the water column of a lake formed by a former uranium open pit mine.

    Science.gov (United States)

    Edberg, Frida; Andersson, Anders F; Holmström, Sara J M

    2012-11-01

    Mining of pyrite minerals is a major environmental issue involving both biological and geochemical processes. Here we present a study of an artificial lake of a former uranium open pit mine with the aim to connect the chemistry and bacterial community composition (454-pyrosequencing of 16S rRNA genes) in the stratified water column. A shift in the water chemistry from oxic conditions in the epilimnion to anoxic, alkaline, and metal and sulfide-rich conditions in the hypolimnion was corresponded by a strong shift in the bacterial community, with few shared operational taxonomic units (OTU) between the water layers. The epilimnetic bacterial community of the lake (~20 years old) showed similarities to other temperate freshwater lakes, while the hypolimnetic bacterial community showed similarity to extreme chemical environments. The epilimnetic bacterial community had dominance of Actinobacteria and Betaproteobacteria. The hypolimnion displayed a higher bacterial diversity and was dominated by the phototrophic green sulphur bacterium of the genus Chlorobium (ca. 40 % of the total community). Deltaproteobacteria were only represented in the hypolimnion and the most abundant OTUs were affiliated with ferric iron and sulfate reducers of the genus Geobacter and Desulfobulbus, respectively. The chemistry is clearly controlling, especially the hypolimnetic, bacterial community but the community composition also indicates that the bacteria are involved in metal cycling in the lake.

  3. Comparison of two modified coal ash ferric-carbon micro-electrolysis ceramic media for pretreatment of tetracycline wastewater.

    Science.gov (United States)

    Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu

    2017-05-01

    Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.

  4. Extraction of uranium from coarse ore and acid-curing and ferric sulphate-trickle leaching process

    International Nuclear Information System (INIS)

    Jin Suoqing

    1994-01-01

    On the basis of analysis of the problems in the technology of the traditional uranium hydrometallurgy and the limitations of thin layer leaching process (TLL), a new leaching system-acid-curing and ferric sulphate-trickle leaching (AFL) process (NGJ in Chinese) has developed for extraction of uranium from the coarse ore. The ferric sulphate solution was used for trickling the acid-cured uranium ore and the residual leaching reaction incomplete in TLL process can be improved in this process. And the AFL process has a wide applicability to China's uranium ores, being in competition with the traditional agitation leaching process for treating coarse ores. The uranium ore processing technology based on the AFL process will become one of the new basic technologies of uranium hydrometallurgy. A series of difficulties will be basically overcome associated with fine grinding because of its elimination in the presented process. Moreover, the situation of the present uranium hydrometallurgy can be also changed owing to without technological effluent discharge

  5. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O2 and H2O2 Yield Ferric Heme b.

    Science.gov (United States)

    Streit, Bennett R; Celis, Arianna I; Shisler, Krista; Rodgers, Kenton R; Lukat-Rodgers, Gudrun S; DuBois, Jennifer L

    2017-01-10

    A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O 2 and H 2 O 2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O 2 to the ferric state. The subsequent second-order reaction between the ferric complex and H 2 O 2 is slow, pH-dependent, and further decelerated by D 2 O 2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H 2 O 2 . Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H 2 O 2 cleavage is therefore unclear. From a cellular perspective, the use of H 2 O 2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.

  6. Removal of Sb(III and Sb(V by Ferric Chloride Coagulation: Implications of Fe Solubility

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Inam

    2018-04-01

    Full Text Available Coagulation and precipitation appear to be the most efficient and economical methods for the removal of antimony from aqueous solution. In this study, antimony removal from synthetic water and Fe solubility with ferric chloride (FC coagulation has been investigated. The effects of pH, FC dosage, initial antimony loading and mixed Sb(III, Sb(V proportions on Fe solubility and antimony removal were studied. The results showed that the Sb(III removal efficiency increased with the increase of solution pH particularly due to an increase in Fe precipitation. The Sb(V removal was influenced by the solution pH due to a change in Fe solubility. However, the Fe solubility was only impaired by the Sb(III species at optimum pH 7. The removal efficiencies of both Sb species were enhanced with an increase in FC dose. The quantitative analysis of the isotherm study revealed the strong adsorption potential of Sb(III on Fe precipitates as compared to Sb(V. Furthermore, the removal behavior of antimony was inhibited in mixed proportion with high Sb(V fraction. In conclusion, this study contributes to better understanding the fate of Sb species, their mobilities, and comparative removal behavior, with implications for Fe solubility using ferric chloride in different aqueous environments.

  7. Ferric Iron Precipitation in the Nagahama Bay, Satsuma Iwo-Jima Island, Kagoshima

    Science.gov (United States)

    Nagata, T.; Kiyokawa, S.; Ikehara, M.; Oguri, K.; Goto, S.; Ito, T.; Yamaguchi, K. E.; Ueshiba, T.

    2010-12-01

    Satsuma-Iwojima island is active volcanic island and 6 x 3 km in size, located 38km south of Kyushu island, Japan. The reddish brown water along the coast of the Iwo-dake volcano at the center of the island formed by neutralization through mixing of shallow hydrothermal fluid and seawater. The reddish brown water contains reddish ferrihydrite (Fe3+) that is derived from oxidation of Fe2+ from acidic hot spring (Shikaura and Tazaki, 2001). In the Nagahama Bay with its opening to the south, red-colored Fe-rich water is affected by tidal current, but sedimentation of the ferric hydroxide is confirmed to occur in the ocean bottom (Ninomiya and Kiyokawa, 2009). Here we focus other lines of evidence from long term observations and meteorological records as important factor to form thick iron rich sediments. Meteorological and stationary observations: We used weather record in the Satsuma Iwo-jima and cross-checked with stationary observations, which enabled us to observe color changes of the surface of Nagahama Bay. It was made clear that north wind condition in the Nagahama Bay resulted in changes of the color of its surface, from red to green, by intrusion of ocean water coming from outside. Long term temperature monitoring: The temperature of seawater in the Nagahama Bay fluctuated synchronically with the air temperature. But that of hot spring water rather remained constant regardless of the seasonal change. We observed that seawater temperature in the Nagahama Bay is low at high tide and high at low tide, and the rage of temperature change is maximum at the spring tide and minimum at the neap tide. In other words, the amount of discharge of hot spring and that of seawater inflow vary inversely. Core sample: In the Nagahama Bay, iron rich sediments that is more than 1 m thick were identified. The core sample shows lithology as following; upper part, 10-20cm thick, formed loose Fe-rich deposit, lower portion formed alteration of weakly consolidated Fe-rich orange

  8. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  9. Bacterial Acclimation Inside an Aqueous Battery.

    Science.gov (United States)

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  10. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  11. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  12. Independent behavior of bacterial laccases to inducers and metal ...

    African Journals Online (AJOL)

    Valued Acer Customer

    2012-05-15

    May 15, 2012 ... The medium for production was a high nitrogen medium containing ... effects of metal ions on either laccase production or laccase activity were not clear. ... this study was to isolate bacterial strains that produce ... The growth of cell culture was measured by using optical ... Conditions of laccase production.

  13. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  14. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  15. STRUCTURAL ORGANIZATION OF BACTERIAL UREASES

    Directory of Open Access Journals (Sweden)

    Lisnyak YuV

    2016-09-01

    nickel ions to this complex, UreE and (UreDFG3 are then released from the activated enzyme. An understanding of structural organization of bacterial ureases is the necessary factor in the studies of structure-function relationships of these enzymes, mechanisms of their enzyme and non-enzyme activity, in design of new safe and efficient enzyme inhibitors aimed to struggle with infectious diseases promoted by urease activity.

  16. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  17. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Alanine dosimetry using a spectrophotometric ferric-xylenol orange complex readout

    International Nuclear Information System (INIS)

    Laere, K. van; Buysse, J.; Berkvens, P.

    1989-01-01

    The spectrophotometric dosimetric method using the indirect oxidation of ferrous ions after dissolution of irradiated DL-and L-alanine has been thoroughly investigated with respect to its composition, read-out procedure and dose-response. Optimal concentration of 0.10 N H 2 SO 4 , 0.2 mM xylenol orange and 0.2 mM Fe 2+ were found, giving an absorption maximum at 547 nm. Standardization of chemical processing procedures allows a reproducibility better than 0.5%. The useful dose range has been extended to 0.03-12 kGy by means of slightly different read-out procedure. The quantitative concept of ''indirect yield'', G id , was introduced for this procedure as a measure of the indirect oxidation capacity of the radicals. It was found to be G id,0 (Fe 3+ ) 7.1 ions/100 eV transferred into the alanine. The spectrophotometric readout combines the highly advantageous use of alanine as a dosemeter with the straightforwardness, accuracy and low costs of the chemical procedure. (author)

  19. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation.

    Science.gov (United States)

    Seifan, Mostafa; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-04-01

    Recently, magnetic iron oxide nanoparticles (IONs) have been used to control and modify the characteristics of concrete and mortar. Concrete is one of the most used materials in the world; however, it is susceptible to cracking. Over recent years, a sustainable biotechnological approach has emerged as an alternative approach to conventional techniques to heal the concrete cracks by the incorporation of bacterial cells and nutrients into the concrete matrix. Once cracking occurs, CaCO 3 is induced and the crack is healed. Considering the positive effects of IONs on the concrete properties, the effect of these nanoparticles on bacterial growth and CaCO 3 biosynthesis needs to be evaluated for their possible application in bio self-healing concrete. In the present work, IONs were successfully synthesized and characterized using various techniques. The presence of IONs showed a significant effect on both bacterial growth and CaCO 3 precipitation. The highest bacterial growth was observed in the presence of 150 μg/mL IONs. The highest concentration of induced CaCO 3 (34.54 g/L) was achieved when the bacterial cells were immobilized with 300 μg/mL of IONs. This study provides new data and supports the possibility of using IONs as a new tool in designing the next generation of bio self-healing concrete.

  20. An investigation of magnox sludge and alumino-ferric floc waste simulate, immobilised by a cementitious matrix

    International Nuclear Information System (INIS)

    Halley, D.G.

    1983-09-01

    Magnox sludge and alumino ferric floc simulates, prepared using non-radioactive tracers were immobilised by a cementitious system. Formulation design aimed at optimising pollutant leaching with permeability and compressive strength as secondary considerations. The behaviour of the products under accelerated weathering conditions was investigated. The study was divided into two parts: Formulation design in Phase I and the systematic testing of the optimum formulations under freeze-thaw, and hydration -dehydration conditions in Phase 2. Analytical method development for leachate analysis continued through both Phases. The Barnwood method of leach testing was used. The immobilised waste had good physical properties (i.e. high strength and low permeability) and a significant improvement was achieved during the course of the work in the leach rates of the tracers, particularly of caesium and strontium. (author)

  1. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  2. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  3. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  4. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  5. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  6. Recoil ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Olson, R.E.

    1991-01-01

    The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)

  7. Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose.

    Science.gov (United States)

    Neiser, Susann; Rentsch, Daniel; Dippon, Urs; Kappler, Andreas; Weidler, Peter G; Göttlicher, Jörg; Steininger, Ralph; Wilhelm, Maria; Braitsch, Michaela; Funk, Felix; Philipp, Erik; Burckhardt, Susanna

    2015-08-01

    The advantage of the new generation IV iron preparations ferric carboxymaltose (FCM), ferumoxytol (FMX), and iron isomaltoside 1000 (IIM) is that they can be administered in relatively high doses in a short period of time. We investigated the physico-chemical properties of these preparations and compared them with those of the older preparations iron sucrose (IS), sodium ferric gluconate (SFG), and low molecular weight iron dextran (LMWID). Mössbauer spectroscopy, X-ray diffraction, and Fe K-edge X-ray absorption near edge structure spectroscopy indicated akaganeite structures (β-FeOOH) for the cores of FCM, IIM and IS, and a maghemite (γ-Fe2O3) structure for that of FMX. Nuclear magnetic resonance studies confirmed the structure of the carbohydrate of FMX as a reduced, carboxymethylated, low molecular weight dextran, and that of IIM as a reduced Dextran 1000. Polarography yielded significantly different fingerprints of the investigated compounds. Reductive degradation kinetics of FMX was faster than that of FCM and IIM, which is in contrast to the high stability of FMX towards acid degradation. The labile iron content, i.e. the amount of iron that is only weakly bound in the polynuclear iron core, was assessed by a qualitative test that confirmed decreasing labile iron contents in the order SFG ≈ IS > LMWID ≥ FMX ≈ IIM ≈ FCM. The presented data are a step forward in the characterization of these non-biological complex drugs, which is a prerequisite to understand their cellular uptake mechanisms and the relationship between the structure and physiological safety as well as efficacy of these complexes.

  8. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study.

    Science.gov (United States)

    Cui, Jinli; Jing, Chuanyong; Che, Dongsheng; Zhang, Jianfeng; Duan, Shuxuan

    2015-06-01

    Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono- and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (<10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L-0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water. Copyright © 2015. Published by Elsevier B.V.

  9. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase.

    Science.gov (United States)

    Kumar, Devesh; de Visser, Samuël P; Shaik, Sason

    2005-06-08

    The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.

  10. Bioavailability and the mechanisms of intestinal absorption of iron from ferrous ascorbate and ferric polymaltose in experimental animals

    International Nuclear Information System (INIS)

    Johnson, G.; Jacobs, P.

    1990-01-01

    The comparative bioavailability from matching quantities of iron in the form of ferrous ascorbate or ferric polymaltose was defined in rats. Studies were carried out in the intact animals under basal conditions and also when requirements for this metal were either increased or decreased by manipulating stores or erythropoietic activity. No significant difference was found in the total quantity of iron absorbed from either salt or complex under any of these circumstances, suggesting that the mucosal mechanism regulating the overall process was common to both. However, the rate of transfer from the lumen into portal blood was distinctive, reaching a maximum with salt at 30 min compared to 24 h for the complex. To explore the possibility that iron from the two sources was initially handled by different subcellular pathways, the radiolabeled compounds were instilled into loops of bowel that had been isolated between ligatures in vivo. Enterocytes were harvested and fractionated, and incorporation into ferritin and transferrin was determined using RIA. From salt, iron appeared rapidly in duodenal but not ileal ferritin, whereas mucosal transferrin increased under conditions of stimulated absorption, suggesting that this protein may act as a shuttle for the metal. In contrast, iron from polymaltose showed a cumulative incorporation into duodenal ferritin over time that correlated with iron absorption, defined by the appearance of radiolabel in the serum and in the carcass; a similar pattern was demonstrable in ileal mucosal cells. Conversely, binding of iron to transferrin was minimal. No iron polymaltose was found within the mucosal cells. It is suggested that the low rate of iron transfer from this ferric complex may reflect its extracellular breakdown in the lumen of the gastrointestinal tract

  11. Formation, aggregation and reactivity of amorphous ferric oxyhydroxides on dissociation of Fe(III)-organic complexes in dilute aqueous suspensions

    Science.gov (United States)

    Bligh, Mark W.; Waite, T. David

    2010-10-01

    While chemical reactions that take place at the surface of amorphous ferric oxides (AFO) are known to be important in aquatic systems, incorporation of these reactions into kinetic models is hindered by a lack of ability to reliably quantify the reactivity of the surface and the changes in reactivity that occur over time. Long term decreases in the reactivity of iron oxides may be considered to result from changes in the molecular structure of the solid, however, over shorter time scales where substantial aggregation may occur, the mechanisms of reactivity loss are less clear. Precipitation of AFO may be described as a combination of homogeneous and heterogeneous reactions, however, despite its potentially significant role, the latter reaction is usually neglected in kinetic models of aquatic processes. Here, we investigate the role of AFO in scavenging dissolved inorganic ferric (Fe(III)) species (Fe') via the heterogeneous precipitation reaction during the net dissociation of organically complexed Fe(III) in seawater. Using sulfosalicylic acid (SSA) as a model ligand, AFO was shown to play a significant role in inducing the net dissociation of the Fe-SSA complexes with equations describing both the heterogeneous precipitation reaction and the aging of AFO being required to adequately describe the experimental data. An aggregation based mechanism provided a good description of AFO aging over the short time scale of the experiments. The behaviour of AFO described here has implications for the bioavailability of iron in natural systems as a result of reactions involving AFO which are recognised to occur over time scales of minutes, including adsorption of Fe' and AFO dissolution, precipitation and ageing.

  12. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.

    Science.gov (United States)

    Vu, B Christie; Nothnagel, Henry J; Vuletich, David A; Falzone, Christopher J; Lecomte, Juliette T J

    2004-10-05

    The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed

  13. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  14. Studies on the preparation of ferric-hydroxide macro aggregate and hydroxyapatite particles labelled with Sm-153, Ho-166 and/or Dy-165 for radiation synovectomy

    International Nuclear Information System (INIS)

    Le Van So; Pham Ngoc Dien; Truong Hong Nghia; Nguyen Thi Thu; Nguyen Cong Duc; Vo Thji Cam Hoa; Bui Van Cuong

    2004-01-01

    The modified methods for the preparation of Hydroxyapatite particle (HA) and Ferric Hydroxide Macro Aggregated (FHMA of high stability and uniformity in particle size and of good geometrical shape suitable for production of radiolabeled carrier for radiation synovectomy purpose were developed. 165 Dy, 166 Ho and/or 153 Sm labeled HA and FHMA were produced using a simple labelling method. (author)

  15. Dual fortification of salt with iodine and iron: a randomized, double-blind, controlled trial of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India

    NARCIS (Netherlands)

    Andersson, M.; Thankachan, P.; Muthayya, S.; Goud, R.B.; Kurpad, A.V.; Hurrell, R.F.

    2008-01-01

    Background:Dual fortification of salt with iodine and iron could be a sustainable approach to combating iodine and iron deficiencies. Objective:We compared the efficacy of dual-fortified salt (DFS) made by using 2 proposed contrasting formulas-one fortifying with iron as micronized ground ferric

  16. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  17. Bacterial infec tions in travellers

    African Journals Online (AJOL)

    namely bacterial causes of travellers' diarrhoea and skin infections, as well as .... Vaccination: protective efficacy against typhoid may be overcome by ingesting a high bacterial load. Vaccine ..... preparation such as cream sauce. Only after ...

  18. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  19. Ion colliders

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  20. Ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  1. Structure of bacterial lipopolysaccharides.

    Science.gov (United States)

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  2. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  3. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  4. Bacterial control of cyanobacteria

    CSIR Research Space (South Africa)

    Ndlela, Luyanda L

    2017-08-01

    Full Text Available of biological control appears to be direct contact. • Ndlela, L. L. et al. (2016) ‘An overview of cyanobacterial bloom occurrences and research in Africa over the last decade’, Harmful Algae, 60 • Gumbo, J.R. et al. (2010) The Isolation and identification... of Predatory Bacteria from a Microcystis algal Bloom.. African Journal of Biotechnology, 9. *Special acknowledgement goes to the National Research foundation for funding this presentation Bacterial control of cyanobacteria Luyanda...

  5. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  6. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  7. Hard X-ray total scattering study on the structure of Si-dopped ferric oxyhydroxides and products of their transformation

    Science.gov (United States)

    Pieczara, Gabriela; Borkiewicz, Olaf; Manecki, Maciej; Rzepa, Grzegorz

    2016-04-01

    Here we report the results of a detailed structural investigation, using synchrotron-based pair distribution function analyses (PDF) and high-resolution X-ray diffraction (HR-XRD), on a series of Si-bearing synthetic analogues of ferrihydrite with a range of Si/Fe ratio relevant to geological environments and on products of their thermal transformation. Hard X-ray total scattering data suitable for PDF analyses have been collected at the PDF-dedicated beamline 11-ID-B and the HR-XRD data at beamline 11-BM of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Ferrihydrite is a poorly crystalline, nano-sized hydrous ferric oxyhydroxide with a nominal/ideal formula Fe5HO8•4H2O. Its chemical composition however, can vary significantly and the atomic structure is yet to be fully understood despite multitude of structural studies undertaken over the past two decades (Michel et al., 2007; Manceau, 2009). One of the most commonly discussed and still unsettled contention points regarding the structural arrangements of ferrihydrite is related to the presence or absence of tetraherdally coordinated iron(III) within its structure. The majority of experimental work carried out to date focused on pure, synthetic ferrihydrite analogues with chemical composition close to ideal/nominal. This approach is clearly a significant oversimplification of natural ferrihydrite which always contains substantial amounts of admixtures, with Si, C, P, As, Ca, S and Al being the most common. One of the most important and the most commonly encountered impurities is Si, in the form of silicate ion that has strong affinity for ferrihydrite. SiO2content in natural ferrihydrites can vary substantially but generally falls with the range of 2.6-31.5 wt% (Cismasu et al., 2011). In certain environments however, such as modern seafloor hydrothermal vents, higher Si/Fe ratios (up to ca. 3) have been reported (Sun et al., 2013). The results of previous reports indicate that silicate

  8. ion irradiation

    Indian Academy of Sciences (India)

    Swift heavy ions interact predominantly through inelastic scattering while traversing any polymer medium and produce excited/ionized atoms. Here samples of the polycarbonate Makrofol of approximate thickness 20 m, spin coated on GaAs substrate were irradiated with 50 MeV Li ion (+3 charge state). Build-in ...

  9. Ion microprobes

    International Nuclear Information System (INIS)

    Coles, J.N.; Long, J.V.P.

    1977-01-01

    An ion microprobe is described that has an ion extraction arrangement comprising two separate paths for ions and electrons diverging from a common point. A cone shaped or pyramidal guard electrode surrounds each path the apex angles being equal and coinciding with the said point. The guard electrodes are positioned to lie tangentially to each other and to a planar surface including the said point. An aperture is provided for the two paths at the apexes of both guard electrodes, and electrical connections between the guard electrodes enable the same potential to be applied to both guard electrodes. Means are provided for generating oppositely polarised electric fields within the guard electrodes, together with means for causing a focused ion beam to strike the common point without suffering astigmatism. The means for causing a focused ion beam to strike the said point includes an ion gun for directing an ion beam along one of the paths and means to provide an axial accelerating field there along. Optical viewing means are also provided. Existing designs enable only ions or electrons, but not both, to be extracted at any one time. (U.K.)

  10. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.

    Science.gov (United States)

    Bligh, Mark W; Maheshwari, Pradeep; David Waite, T

    2017-11-01

    Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1-60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5-10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging

  11. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Lili [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China); Ma Wei, E-mail: chmawv@yahoo.com [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China); Han Mei; Cheng Zihong [College of Chemistry, Dalian University of Technology, Dalian, Liaoning 116023 (China)

    2011-02-15

    Research highlights: {yields} The reconstruction processes of CH-Mg/Al and CH-Mg/Al/Fe were fast and efficient, but the adsorption of Cr (VI) on CH-Mg/Al/Fe reached equilibrium faster. {yields} The removal mechanism involved not only intercalation but also adsorption on external surface of the layers and interlayer anion exchange. {yields} The existence of Fe3{sup +} in Mg/Al calcined hydrotalcite led to the interlayer anion exchange more difficult and it is affected equilibrium amount of Cr (VI) adsorption. - Abstract: The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on removal of Cr (VI) from aqueous solution was studied from aspects of structure characteristics, adsorption properties and mechanism discussions. The calcined hydrotalcites (CH-Mg/Al and CH-Mg/Al/Fe) were obtained by thermal decomposition of their corresponding precursors and characterized by XRD, TEM, pH{sub PZC} and FTIR. The adsorption properties were studied as a function of pH, initial Cr (VI) concentration and contact time. The results showed that the nature of adsorption is endothermic and spontaneous for both CH-Mg/Al and CH-Mg/Al/Fe, but the thermodynamic parameter value changes revealed the addition of Fe{sup 3+} is disadvantage to adsorption process and the theoretical saturated adsorption capacity decreased by approximately 10.2 mg/g at tested temperatures. The removal mechanism involved not only intercalation but adsorption on external surface of the layers and interlayer anion exchange for both CH-Mg/Al and CH-Mg/Al/Fe. Furthermore, the results also indicated that intercalation accounts for a large proportion during removal process whatever for CH-Mg/Al, or for CH-Mg/Al/Fe. Additionally, the replacement of Al{sup 3+} by Fe{sup 3+} in CH-Mg/Al led to the interlayer anion exchange more difficult. On the basis of the results, it is concluded that the existence of ferric iron in calcined Mg/Al hydrotalcite is unfavorable to removal of Cr (VI) from aqueous solution.

  12. Superiority of ferric chloride as coagulant over alum and ferrous sulphate at controlled pH and cost comparison of these coagulant

    International Nuclear Information System (INIS)

    Irfan, M.

    2008-01-01

    This study was conducted by author as a member of Specialty Chemical Division of Sitara Chemical Industries which is the largest chlor -alkali manufacturing industry in Pakistan. Sitara is also producing FeCl/sub 3/ as a byproduct to consume its additional quantity of chlorine produced during electrolysis of brine solution for caustic soda preparation. Most of the industries are using Alum along with other polymers for treatment of effluent waste water. Treatment system is based on sand bed filters. For coagulation of unwanted materials present in the water, Alum is being used with Anionic Polymer (Accofloc-A2125) as flocculent. But the ferric chloride is not only functions as a reactants to remove water impurities but it also functions as a both coagulant and a Flocculent. This study was conducted for finding best alternative chemicals to improve treated water quality. For this purpose Ferric Chloride (FeCl/sub 3/) is used as best alternative of alum for better removal of turbidity, heavy metals and micro organisms to eradicate above said problems and for better removal of turbidity, heavy metals and micro, organisms to eradicate health problems. As per lab scale results quality of treated water with Ferric Chloride (FeCl/sub 3/) proved better than that of Alum. The main objective of this research is to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD which present in significant quantity. Three types of coagulants were examined using standard jar test apparatus, i.e., aluminum sulphate (alum), ferric chloride (FeCl/sub 3/) and ferrous sulphate (FeSO/sub 4/). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing and 50 rpm of slow mixing and 60 minutes settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl/sub 3/ was found to be superior compared with other

  13. Kinetic study of ion exchange in phosphoric acid chelating resin

    International Nuclear Information System (INIS)

    Brikci-Nigassa, Mounir; Hamouche, Hafida

    1995-11-01

    Uranium may be recovered as a by product of wet phosphoric acid using a method based on specific ion exchange resins. These resins called chelates contain amino-phosphonic functional groups. The resin studied in this work is a purolite S-940; uranium may be loaded on this resin from 30% P2O5 phosphoric acid in its reduced state. The influence of different parameters on the successive steps of the process have been studied in batch experiments: uranium reduction, loading and oxydation. Uranium may be eluted with ammonium carbonate and the resin regeneration may be done with hydrochloric acid.Ferric ions reduce the effective resin capacity considerably and inert fixation conditions are proposed to enhance uranium loading

  14. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  15. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  16. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  17. An experimental study on accelerated fouling of aluminum oxide and ferric oxide particles in internally enhanced tubes

    Energy Technology Data Exchange (ETDEWEB)

    Abedin, Mohammad Zoynal; Kim, Nae Hyun [School of Mechanical System Engineering, Incheon National University, Incheon (Korea, Republic of)

    2016-12-15

    This paper describes the results of accelerated particulate fouling tests performed on three enhanced tubes and a plain tube. The tests were performed using ferric oxide and aluminum oxide as foulant materials. Three enhanced tubes included 25 start, 10 start helically ribbed tubes and a ripple tube. Effects of the water velocity (0.9 to 1.8 m/s) and foulant concentration (750 to 2500 ppm) were investigated. At 750 ppm, the enhanced tubes fouled almost the same as the plain tube for the entire velocity range tested (0.9 to 1.8 m/s). The enhanced tube fouled faster than the plain tube for cases of high concentration combined with low velocities. Of the three enhanced tubes, the 25 start helically ribbed tube fouled faster than the ripple and the 10 start helically ribbed tubes. One thing to be noted is that the fouling concentrations used in the tests are significantly higher than would be expected in commercial heat exchangers. Also, the velocity range investigated is lower than would be expected in heat exchanger operation.

  18. Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils.

    Science.gov (United States)

    Dai, Guofei; Zhong, Jiayou; Song, Lirong; Guo, Chunjing; Gan, Nanqin; Wu, Zhenbin

    2015-07-01

    Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.

  19. Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil.

    Science.gov (United States)

    Huang, Bin; Yu, Kewei; Gambrell, Robert P

    2009-01-01

    A laboratory soil slurry experiment and an outdoor pot experiment were conducted to study effects of ferric iron (Fe(III)) reduction and regeneration on nitrous oxide (N(2)O) and methane (CH(4)) emissions in a rice (Oryza sativa L.) soil. The anoxic slurry experiment showed that enhancing microbial Fe(III) reduction by ferrihydrite amendment (40 mol Fe g(-1)) transitionally stimulated N(2)O production and lowered CH(4) production by 16% during an initial 33-day incubation. Increased regeneration of Fe(III) through a 4-day aeration period in the Fe-amended slurry compared to the control slurry reduced CH(4) emission by 30% in the subsequent 15-day anaerobic incubation. The pot experiment showed that ferrihydrite amendment (63 micromol Fe g(-1)) stimulated N(2)O fluxes in the days following flooding. The Fe amendment suppression on CH(4) emission was obscured in the early season but became significant upon reflooding in the mid- and late-seasons. As a result, seasonal CH(4) emission in Fe-amended pots was 26% lower than the control with a single 2-day drainage and 69% lower with a double 2-day drainage. The reduction in CH(4) emission upon reflooding from the Fe-amended pots was mainly attributed to the increased Fe(III) regeneration during drainage showing a mechanism of Fe(III) regeneration in mitigating CH(4) emission by short-term drainage in flooded soils.

  20. Dragon Fruit Foliage Plant-Based Coagulant for Treatment of Concentrated Latex Effluent: Comparison of Treatment with Ferric Sulfate

    Directory of Open Access Journals (Sweden)

    Juferi Idris

    2013-01-01

    Full Text Available The effectiveness of dragon fruit foliage as a natural coagulant for treatment of concentrated latex effluent was investigated and compared with ferric sulfate, a chemical coagulant. Dragon fruit is a round and often red-colored fruit with scales-like texture and is native to south American countries which is also cultivated and heavily marketed in southeast Asian countries. Its foliage represents a part of its overall plant system. Latex effluent is one of the main byproduct from rubber processing factories in Malaysia. Three main parameters investigated were chemical oxygen demand (COD, suspended solids (SS, and turbidity of effluent. Coagulation experiments using jar test were performed with a flocculation system where the effects of latex effluent pH as well as coagulation dosage on coagulation effectiveness were examined. The highest recorded COD, SS, and turbidity removal percentages for foliage were observed for effluent pH 10 at 94.7, 88.9, and 99.7%, respectively. It is concluded that the foliage showed tremendous potential as a natural coagulant for water treatment purposes. The foliage could be used in the pretreatment stage of Malaysian latex effluent prior to secondary treatment.

  1. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH.

    Science.gov (United States)

    Fujii, Manabu; Imaoka, Akira; Yoshimura, Chihiro; Waite, T D

    2014-04-15

    Thermodynamic and kinetic parameters for ferric iron (Fe[III]) complexation by well-characterized humic substances (HS) from various origins were determined by a competitive ligand method with 5-sulfosalicylic acid at circumneutral pH (6.0-8.0) and an ionic strength of ∼0.06 M. The measured Fe binding properties including conditional stability constants and complexation capacities ranged over more than 2 orders of magnitude, depending on the origin and the particular operationally defined fraction of HS examined. Statistical comparison of the complexation parameters to a range of chemical properties of the HS indicated a strong positive correlation between Fe(III) complexation capacity and aromatic carbon content in the HS at all pHs examined. In contrast, the complexation capacity was determined to be up to a few orders of magnitude smaller than the concentration of carboxylic and phenolic groups present. Therefore, specific functional groups including those resident in the proximity of aromatic structures within the HS are likely preferable for Fe(III) coordination under the conditions examined. Overall, our results suggest that the concentration of dissolved Fe(III) complexes in natural waters is substantially influenced by variation in HS characteristics in addition to other well-known factors such as HS concentration and nature and concentration of competing cations present.

  2. Influence of Carbon Sources and Electron Shuttles on Ferric Iron Reduction by Cellulomonas sp. Strain ES6

    Energy Technology Data Exchange (ETDEWEB)

    Dr Robin Gerlach; Erin K. Field; Sridhar Viamajala; Brent M. Peyton; William A. Apel; Al B. Cunningham

    2011-09-01

    Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy's Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.

  3. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Physicochemical Characterization

    Directory of Open Access Journals (Sweden)

    Dajun Sun

    2018-01-01

    Full Text Available The objective of this study was to evaluate physicochemical equivalence between brand (i.e., Ferrlecit and generic sodium ferric gluconate (SFG in sucrose injection by conducting a series of comparative in vitro characterizations using advanced analytical techniques. The elemental iron and carbon content, thermal properties, viscosity, particle size, zeta potential, sedimentation coefficient, and molecular weight were determined. There was no noticeable difference between brand and generic SFG in sucrose injection for the above physical parameters evaluated, except for the sedimentation coefficient determined by sedimentation velocity analytical ultracentrifugation (SV-AUC and molecular weight by asymmetric field flow fractionation-multi-angle light scattering (AFFF-MALS. In addition, brand and generic SFG complex products showed comparable molecular weight distributions when determined by gel permeation chromatography (GPC. The observed minor differences between brand and generic SFG, such as sedimentation coefficient, do not impact their biological activities in separate studies of in vitro cellular uptake and rat biodistribution. Coupled with the ongoing clinical study comparing the labile iron level in healthy volunteers, the FDA-funded post-market studies intended to illustrate comprehensive surveillance efforts ensuring safety and efficacy profiles of generic SFG complex in sucrose injection, and also to shed new light on the approval standards on generic parenteral iron colloidal products.

  5. Non-transferrin-bound iron (NTBI uptake by T lymphocytes: evidence for the selective acquisition of oligomeric ferric citrate species.

    Directory of Open Access Journals (Sweden)

    Joao Arezes

    Full Text Available Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI. NTBI is responsible for the toxicity associated with iron-overload pathologies but the mechanisms leading to NTBI uptake are not fully understood. Here we show for the first time that T lymphocytes are able to take up and accumulate NTBI in a manner that resembles that of hepatocytes. Moreover, we show that both hepatocytes and T lymphocytes take up the oligomeric Fe3Cit3 preferentially to other iron-citrate species, suggesting the existence of a selective NTBI carrier. These results provide a tool for the identification of the still elusive ferric-citrate cellular carrier and may also open a new pathway towards the design of more efficient iron chelators for the treatment of iron overload disorders.

  6. Novel approach to zinc removal from circum-neutral mine waters using pelletised recovered hydrous ferric oxide.

    Science.gov (United States)

    Mayes, William M; Potter, Hugh A B; Jarvis, Adam P

    2009-02-15

    Data are presented which evaluate the performance of a pilot-scale treatment system using pelletised hydrous ferric oxide (HFO; a waste stream from coal mine water treatment) as a high surface area sorbent for removing zinc (Zn) from a metal mine water discharge in the North Pennines Orefield, UK. Over a 10-month period the system removed Zn at mean area- and volume-adjusted removal rates of 3.7 and 8.1gm(-3)day(-1), respectively, with a mean treatment efficiency of 32% at a low mean residence time of 49min. There were seasonal effects in Zn removal owing to establishment and dieback of algae in the treatment tank. This led to increased Zn uptake in early summer months followed by slight Zn release upon algae senescence. In addition to these biosorptive processes, the principal sinks for Zn appear to be (1) sorption onto the HFO surface, and (2) precipitation with calcite-dominated secondary minerals. The latter were formed as a product of dissolution of portlandite in the cement binder and calcium recarbonation. Further optimisation of the HFO pelletisation process holds the possibility for providing a low-cost, low footprint treatment option for metal rich mine waters, in addition to a valuable after-use for recovered HFO from coal mine water treatment facilities.

  7. K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Na(v Channels.

    Directory of Open Access Journals (Sweden)

    Van Ngo

    2016-01-01

    Full Text Available Crystal structures of several bacterial Na(v channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na(v channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na(vAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Na(v channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of Na(vAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be 'locked' in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose "knock-on" mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Na(v channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free

  8. Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.)

    OpenAIRE

    El Jemli, Meryem; Kamal, Rabie; Marmouzi, Ilias; Zerrouki, Asmae; Cherrah, Yahia; Alaoui, Katim

    2016-01-01

    Objective. The aim of this work is to study and compare the antioxidant properties and phenolic contents of aqueous leaf extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus Phoenicea, and Tetraclinis articulata from Morocco. Methods. Antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging ability, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) assays. Also the total phenolic ...

  9. Diluting ferric carboxymaltose in sodium chloride infusion solution (0.9% w/v) in polypropylene bottles and bags: effects on chemical stability.

    Science.gov (United States)

    Philipp, Erik; Braitsch, Michaela; Bichsel, Tobias; Mühlebach, Stefan

    2016-01-01

    This study was designed to assess the physicochemical stability of colloidal ferric carboxymaltose solution (Ferinject) when diluted and stored in polypropylene (PP) bottles and bags for infusion. Two batches of ferric carboxymaltose solution (Ferinject) were diluted (500 mg, 200 mg and 100 mg iron in 100 mL saline) in PP bottles or bags under aseptic conditions. The diluted solutions were stored at 30°C and 75%±5% relative humidity (rH) for 72 h, and samples were withdrawn aseptically at preparation and after 24 h, 48 h and 72 h. Multiple parameters were used to test stability-related measures (pH, total iron and iron (II) content, molecular weight range determination, microbial contamination and particles count ≥10 μm). Overall, Ferinject diluted in 0.9% (w/v) NaCl solution and stored in PP bottles and bags was stable within the specifications for the complex and the acceptability limits set for all assays. In both containers, total iron content remained stable, within 10% of the theoretical iron content, and levels of iron (II) remained far below the threshold of acceptability. All preparations were free from sediments, particle numbers were acceptable and there was no microbial contamination. The molecular weight distribution and polydispersity index were also acceptable. Under the tested experimental conditions, colloidal ferric carboxymaltose solution (Ferinject) diluted in saline in PP infusion bottles or bags demonstrated physical and chemical stability for up to 72 h at 30°C and 75% rH. Because of the lack of additional clinical data, when using ferric carboxymaltose, physicians/pharmacists should refer to the dilution and storing recommendations given in the product's summary of product characteristics.

  10. Supplementation with a dietary multicomponent (Lafergin(®)) based on Ferric Sodium EDTA (Ferrazone(®)): results of an observational study.

    Science.gov (United States)

    Cignini, Pietro; Mangiafico, Lucia; Padula, Francesco; D'Emidio, Laura; Dugo, Nella; Aloisi, Alessia; Giorlandino, Claudio; Vitale, Salvatore Giovanni

    2015-01-01

    During pregnancy, iron deficiency anemia is recognized as a specific risk factor for both adverse maternal and perinatal outcome. We decided to test the hypothesis that the daily administration of Lafergin(®), a dietary multicomponent based on Ferrazone(®) (Ferric Sodium EDTA), Lactoferrin, Vitamin C and Vitamin B12, from first trimester of pregnancy until the end of gestation, may significantly reduce, in anemic women, the severity of anemia compared to controls who received ferrous sulfate or liposomal iron.

  11. Bacterial polyhydroxyalkanoates: Still fabulous?

    Science.gov (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert

    2016-11-01

    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  13. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.......Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par...

  15. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  17. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  18. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  19. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  20. Cost-effectiveness analysis of ferric carboxymaltose in iron-deficient patients with chronic heart failure in Sweden.

    Science.gov (United States)

    Hofmarcher, Thomas; Borg, Sixten

    2015-01-01

    Iron deficiency is a common but treatable comorbidity in chronic heart failure (CHF) that is associated with impaired health-related quality-of-life (HRQoL). This study evaluates the cost-effectiveness of the intravenous iron preparation ferric carboxymaltose (FCM) for the treatment of iron deficiency in CHF from a Swedish healthcare perspective. A cost-effectiveness analysis with a time horizon of 24 weeks was performed to compare FCM treatment with placebo. Data on health outcomes and medical resource use were mainly taken from the FAIR-HF trial and combined with Swedish cost data. An incremental cost-effectiveness ratio (ICER) was calculated as well as the change in per-patient costs for primary care and hospital care. In the FCM group compared with placebo, quality-adjusted life years (QALYs) are higher (difference = 0.037 QALYs), but so are per-patient costs [(difference = SEK 2789 (€303)]. Primary care and hospital care equally share the additional costs, but within hospitals there is a major shift of costs from inpatient care to outpatient care. The ICER is SEK 75,389 (€8194) per QALY. The robustness of the result is supported by sensitivity analyses. Treatment of iron deficiency in CHF with FCM compared with placebo is estimated to be cost-effective. The ICER in the base case scenario is twice as high as previously thought, but noticeably below SEK 500,000 (€54,300) per QALY, an informal average reference value used by the Swedish Dental and Pharmaceutical Benefits Agency. Increased HRQoL and fewer hospitalizations are the key drivers of this result.

  1. Synthesis of LiFePO4/C cathode material from ferric oxide and organic lithium salts

    International Nuclear Information System (INIS)

    Shi Zhongqi; Huang Ming; Huai Yongjian; Lin Ziji; Yang Kerun; Hu Xuebu; Deng Zhenghua

    2011-01-01

    Research highlights: → LiFePO 4 can be synthesized from Fe 2 O 3 by a sequence of free-radical reactions. → Organic lithium salts can avoid the composition segregation of the precursor. → Low cost ferric oxide and environmentally friendly distilled water are used. - Abstract: LiFePO 4 /C cathode material has been simply synthesized via a modified in situ solid-state reaction route using the raw materials of Fe 2 O 3 , NH 4 H 2 PO 4 , Li 2 C 2 O 4 and lithium polyacrylate (PAALi). The sintering temperature of LiFePO 4 /C precursor is studied by thermo-gravimetric (TG)/differential thermal analysis (DTA). The physical properties of LiFePO 4 /C are then investigated through analysis using by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and the electrochemical properties are investigated by electrochemical impedance spectra (EIS), cyclic voltammogram (CV) and constant current charge/discharge test. The LiFePO 4 /C composite with the particle size of ∼200 nm shows better discharge capacity (156.4 mAh g -1 ) than bare LiFePO 4 (52.3 mAh g -1 ) at 0.2 C due to the improved electronic conductivity which is demonstrated by EIS. The as-prepared LiFePO 4 /C through this method also shows excellent high-rate characteristic and cycle performance. The initial discharge capacity of the sample is 120.5 mAh g -1 and the capacity retention rate is 100.6% after 50 cycles at 5 C rate. The results prove that the using of organic lithium salts can obtain a high performance LiFePO 4 /C composite.

  2. Bioavailability of iron in cottonseed meal, ferric sulfate, and two ferrous sulfate by-products of the galvanizing industry.

    Science.gov (United States)

    Boling, S D; Edwards, H M; Emmert, J L; Biehl, R R; Baker, D H

    1998-09-01

    Iron depletion-repletion assays were carried out with young chicks to establish Fe bioavailability values for Fe2(SO4)3.7H2O (22.7% Fe), Fe-ZnSO4.H2O (20.2% Fe, 13.0% Zn), Zn-FeSO4.H2O (20.2% Zn, 14.2% Fe), and cottonseed meal (200 mg Fe/kg). Standard hemoglobin response curves were established using feed-grade FeSO4.H2O (28.8% Fe) or reagent-grade FeSO4.7H2O (20.1% Fe) as standards such that relative bioavailability (RBV) could be assessed for the experimental sources of Fe. Weight gain, hemoglobin, and hematocrit responded linearly (P 0.10) from the standard. However, evaluation of all criteria of response (hemoglobin, hematocrit, weight gain) suggested that neither Fe-ZnSO4.H2O nor Zn-FeSO4.H2O had different Fe RBV values than FeSO4.H2O. Standard-curve calculations were used for assessment of Fe RBV in Fe2(SO4)3.7H2O and cottonseed meal, as only a single level of Fe addition was studied for each of these products. Iron RBV in Fe2(SO4)3.7H2O was estimated to be 37%, whereas Fe RBV in cottonseed meal was found to be 56%. Both of these values were lower (P galvanizing industry, are excellent sources of bioavailable Fe, whereas ferric sulfate and cottonseed meal are relatively poor sources of usable Fe.

  3. Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice?

    Science.gov (United States)

    Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa

    2008-12-01

    Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.

  4. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection

    Science.gov (United States)

    Marie, Mohammed; Manoharan, Anishkumar; Kuchuk, Andrian; Ang, Simon; Manasreh, M. O.

    2018-03-01

    An enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (Fe2O3) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with Fe2O3. The immobilized surface was coated with a layer of nafion membrane. The fabricated glucose sensor was characterized amperometrically at room temperature using three electrodes stationed in the phosphate buffer solution, where ZnO NRs/Fe2O3/nafion membrane was the sensing or working electrode, and platinum plate and silver/silver chloride were used as the counter and reference electrodes, respectively. The proposed non-enzymatic and modified glucose sensor exhibited a high sensitivity in the order of 0.052 μA cm-2 (mg/dL)-1, a lower detection limit of around 0.95 mmol L-1, a sharp and fast response time of ˜1 s, and a linear response to changes in glucose concentrations from 100-400 mg dL-1. The linear amperometric response of the sensor covers the physiological and clinical interest of glucose levels for diabetic patients. The device continues to function accurately after multiple measurements with a good reproducibility. The proposed glucose sensor is expected to be used clinically for in vivo monitoring of glucose.

  5. Effects of suspended particles on the rate of mass transfer to a rotating disk electrode. [Ferric cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Roha, D.J.

    1981-06-01

    Limiting currents for the reduction of ferric cyanide at a rotating disk were determined in the presence of 0 to 40 percent by volume of spherical glass beads. Experiments were conducted with six different particle diameters, and with rotation speeds in the range of 387 to 270 rpm, usong both a 0.56 cm and a 1.41 cm radius disk electrode. It was established that at a given rpm upon addition of glass beads in the limiting current, i/sub L/, may increase to more than three times its value without solids. This increase in limiting current density is greater at high rotation speeds and with the larger disk electrode. i/sub L/ as a function of particle diameter yields at maximum at approx. 10 ..mu..m. Two mass transfer models are offered to explain this behavior, both of which assume that the beads are in contact with the disk electrode and moving parallel to its surface. In the surface renewal model it is assumed that complete mixing takes place with the passage of each bead and the boundary layer is replaced with fresh bulk solution. While with the particle film model it is assumed the bead and a clinging film of fluid rotate together. The film promotes mass transfer by alternately absorbing and desorbing the diffusing species. The particle film model best explains the observed behavior of the limiting current density. Calculations of stirring power required verses i/sub L/ observed, show that adding beads to increase i/sub L/ consumes less additional power than simply increasing the rotation speed alone and even permits a decrease in the amount of stirring energy required per unit reactant consumed, at limiting current conditions.

  6. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  7. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  8. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  9. The effect of pH and storage on copper speciation and bacterial growth in complex growth media

    DEFF Research Database (Denmark)

    Hasman, Henrik; Bjerrum, Morten J.; Christiansen, Lasse Engbo

    2009-01-01

    correlation between the free copper concentration and bacterial growth, than for the total copper concentration and growth. Furthermore, it is shown that the initial pH influences the amount of free copper ions in the media and that this has a direct effect on the ability of bacterial cultures to grow......In this paper we examine how the bacterial growth is influenced by the availability of copper ions in complex Mueller Hinton growth media. The data shows that the free copper concentration is seven to eight orders of magnitude lower the total copper concentration and that there seems to be a better....... However, there still remains an effect of pH on bacterial growth which cannot be attributed to the influence of the Cu2+ concentration alone. The study also shows that the sterilization treatment can have some effect on the availability of copper ions in the media over time. Freshly autoclaved and sterile...

  10. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  11. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  12. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  13. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  14. Ion source

    International Nuclear Information System (INIS)

    1977-01-01

    The specifications of a set of point-shape electrodes of non-corrodable material that can hold a film of liquid material of equal thickness is described. Contained in a jacket, this set forms an ion source. The electrode is made of tungsten with a glassy carbon layer for insulation and an outer layer of aluminium-oxide ceramic material

  15. Electrochemistry of carbonaceous materials; 1. Oxidation of Sardinian coal by Fe(III) ions

    Energy Technology Data Exchange (ETDEWEB)

    Tomat, R.; Salmaso, R.; Zecchin, S. (CNR-Instituto di Polarografia ed Elettrochimica Preparativa, Padova (Italy))

    1992-04-01

    Oxidation of subbitiminous coal (Sulcis basin, Sardinia, Italy) by Fe(III) ions in aqueous H{sub 2}SO{sub 4} solution was investigated over a wide temperature range (20-80{degree}C). Experimental results are in accord with a reaction scheme involving a reversible complex between coal particles and Fe(III) ions as a first step in the oxidation process. At low coal concentration, the reaction rate follows first-order kinetics in both coal and ferric ions (overall second order), while at sufficiently high coal concentration, the reaction rate is consistent with first-order kinetics in Fe(III) concentration, appearing to be independent of coal concentration. The kinetic results obtained give preliminary information on the advantageous use of the Fe(III)/slurried coal reaction system to depolarize the anodic compartment of an electrolysis cell, for the production of H{sub 2}. 11 refs., 5 figs.

  16. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    Science.gov (United States)

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  17. Photocatalytic evaluation of self-assembled porous network structure of ferric oxide film fabricated by dry deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yunchan; Kim, Hyungsub; Lee, Geon-Yong; Pawar, Rajendra C.; Lee, Jai-Sung; Lee, Caroline Sunyong, E-mail: sunyonglee@hanyang.ac.kr

    2016-09-15

    Ferric oxide powder in the alpha phase (α-Fe{sub 2}O{sub 3}) was deposited on an aluminum oxide (Al{sub 2}O{sub 3}) substrate by a nanoparticle deposition system using the dry deposition method. X-ray diffraction (XRD) images confirmed that the phase of the deposited α-Fe{sub 2}O{sub 3} did not change. The deposited α-Fe{sub 2}O{sub 3} was characterized in terms of its microstructure using scanning electron microscopy (SEM). A porous network microstructure formed when small agglomerates of Fe{sub 2}O{sub 3} (SAF) were deposited. The deposition and formation mechanism of the microstructure were investigated using SEM and three-dimensional (3D) profile analysis. First, a dense coating layer formed when the film was thinner than the particle size. After that, as the film thickness increased to over 5 μm, the porous network structure formed by excavating the surface of the coating layer as it was bombarded by particles. Rhodamine B (RhB) was degraded after 6 h of exposure to the Fe{sub 2}O{sub 3} coating layer with SAF, which has good photocatalytic activity and a high porous network structure. The kinetic rate constants of the SAF and large agglomerates of Fe{sub 2}O{sub 3} (LAF) were calculated to be 0.197(h{sup −1}) and 0.128(h{sup −1}), respectively, based on the absorbance results. Using linear sweep voltammetry, we confirmed that the photoelectric effect occurred in the coating layer by measuring the resulting current under illuminated and dark conditions. - Graphical abstract: Self-assembled porous photocatalytic film fabricated by dry deposition method for water purification. - Highlights: • Different sizes of Fe{sub 2}O{sub 3} agglomerates were used to form porous network structure. • Fe{sub 2}O{sub 3} agglomerate particles were deposited using solvent-free process. • Self-assembled porous network microstructure formed better with small agglomerates of Fe{sub 2}O{sub 3}. • Fabricated porous network structure showed its potential to be used

  18. Synthesis of LiFePO{sub 4}/C cathode material from ferric oxide and organic lithium salts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zhongqi; Huang Ming [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing, 100039 (China); Huai Yongjian [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing, 100039 (China); China Aviation Lithium Battery Co., Ltd, Luoyang, Henan 471003 (China); Lin Ziji; Yang Kerun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing, 100039 (China); Hu Xuebu [Department of Chemistry and Materials, Sichuan Normal University, Chengdu, Sichuan 610068 (China); Zhongke Laifang Power Science and Technology Co., Ltd., Chengdu, Sichuan 610041 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.c [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Graduate School of Chinese Academy of Sciences, Beijing, 100039 (China); Zhongke Laifang Power Science and Technology Co., Ltd., Chengdu, Sichuan 610041 (China)

    2011-04-15

    Research highlights: {yields} LiFePO{sub 4} can be synthesized from Fe{sub 2}O{sub 3} by a sequence of free-radical reactions. {yields} Organic lithium salts can avoid the composition segregation of the precursor. {yields} Low cost ferric oxide and environmentally friendly distilled water are used. - Abstract: LiFePO{sub 4}/C cathode material has been simply synthesized via a modified in situ solid-state reaction route using the raw materials of Fe{sub 2}O{sub 3}, NH{sub 4}H{sub 2}PO{sub 4}, Li{sub 2}C{sub 2}O{sub 4} and lithium polyacrylate (PAALi). The sintering temperature of LiFePO{sub 4}/C precursor is studied by thermo-gravimetric (TG)/differential thermal analysis (DTA). The physical properties of LiFePO{sub 4}/C are then investigated through analysis using by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and the electrochemical properties are investigated by electrochemical impedance spectra (EIS), cyclic voltammogram (CV) and constant current charge/discharge test. The LiFePO{sub 4}/C composite with the particle size of {approx}200 nm shows better discharge capacity (156.4 mAh g{sup -1}) than bare LiFePO{sub 4} (52.3 mAh g{sup -1}) at 0.2 C due to the improved electronic conductivity which is demonstrated by EIS. The as-prepared LiFePO{sub 4}/C through this method also shows excellent high-rate characteristic and cycle performance. The initial discharge capacity of the sample is 120.5 mAh g{sup -1} and the capacity retention rate is 100.6% after 50 cycles at 5 C rate. The results prove that the using of organic lithium salts can obtain a high performance LiFePO{sub 4}/C composite.

  19. 188Re radiopharmaceuticals for radiosynovectomy: evaluation and comparison of tin colloid, hydroxyapatite and tin-ferric hydroxide macroaggregates

    International Nuclear Information System (INIS)

    Savio, Eduardo; Ures, María Cristina; Zeledón, Patricia; Trindade, Victoria; Paolino, Andrea; Mockford, Virginia; Malanga, Antonio; Fernández, Marcelo; Gaudiano, Javier

    2004-01-01

    Radiosynovectomy is a therapy used to relieve pain and inflammation from rheumatoid arthritis and related diseases. In this study three 188 Re particulate compounds were characterized according to their physico-chemical properties and their biological behavior in rabbits. The results were compared in order to establish which was the radiopharmaceutical that better fits the requirements of this kind of radiotherapy. Three radiopharmaceutical formulations, tin colloid, hydroxyapatite particles (HA) and ferric hydroxide macroaggregates coated with tin colloid (FHMA), were physically characterized (number, volume and surface of the particles). For this purpose laser diffraction methodology was used. To evaluate cavity leakage of activity the following studies in New Zealand rabbits were performed: scintigraphic images for 48 hr after intraarticular injection of each radiopharmaceutical, biodistribution at 48 hr and urine samples collection during the first 24 hr post-radiopharmaceutical administration. Labeling procedures for 188 Re-HA and 188 Re-Sn-FHMA were labour intensive while 188 Re-Sn was easily prepared. Furthermore, 188 Re-Sn colloid offered the greatest surface area in the 2–10 microm range and was obtained with a radiochemical purity over 95%, while percentage of bound activity for 188 Re-HA and 188 Re-Sn-FHMA were 55% and 92% respectively. Stability was verified for the three radiopharmaceuticals for 24 hr. Scintigraphic studies and biodistribution in rabbits after intraarticular administration of the radiopharmaceuticals showed relevant activity only in the knee, this being over 90% of the residual activity in the whole body at 48 hr in every case. Renal elimination of 188 Re-Sn colloid and 188 Re-Sn-FHMA was detected by activity measurements in urine samples, during the first 12 hr post-radiopharmaceutical injection. The percentage of activity retained in the knee was 69.1% for 188 Re-Sn colloid, 55.1% for 188 Re-Sn-FHMA and 33.6% for 188 Re-HA. The 188

  20. Neurological sequelae of bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van de Beek, Diederik

    2016-01-01

    We reported on occurrence and impact of neurological sequelae after bacterial meningitis. We reviewed occurrence of neurological sequelae in children and adults after pneumococcal and meningococcal meningitis. Most frequently reported sequelae are focal neurological deficits, hearing loss, cognitive

  1. Bacterial tracheitis in Down's syndrome.

    OpenAIRE

    Cant, A J; Gibson, P J; West, R J

    1987-01-01

    Four children with Down's syndrome and bacterial tracheitis are described. In three the infection was due to Haemophilus influenza. In patients with Down's syndrome presenting with stridor tracheitis should be considered and appropriate treatment started.

  2. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  3. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  4. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  5. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  6. Ion-ion collisions and ion storage rings

    International Nuclear Information System (INIS)

    Mowat, J.R.

    1988-01-01

    Improved understanding of fundamental ion-ion interactions is expected to emerge from research carried out with ion storage rings. In this short survey the significant advantages and unique features that make stored ions useful targets for collision experiments are reviewed and discussed. It is pointed out that improvements to existing ion-ion experiments, as well as qualitatively new experiments, should occur over the next few years as ion storage rings become available for atomic physics. Some new experiments are suggested which are difficult if not impossible with present-day technology, but which seem feasible at storage rings facilities. (orig.)

  7. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  8. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  9. Mixed moderate thermophilic bioleaching of Cu, Mo and Re from molybdenite concentrate: effects of silver ion, medium and energy sources

    Directory of Open Access Journals (Sweden)

    Hadi Abdollahi

    2017-12-01

    Full Text Available This study evaluates the effects of different additives such as silver ion, medium and energy sources on the efficiency of mixed moderate thermophilic bioleaching approach to extract Cu, Mo and Re from molybdenite concentrate containing 0.98% Cu, 1.56% Fe, 53.84% Mo, and 0.055% Re. Molybdenite was the major phase of Mo-bearing mineral and chalcopyrite, covellite and pyrite were distinguished as minor phases. The higher copper extraction was obtained in tests with silver additives in all types and quantities rather than tests without silver ion. Kinetic of copper dissolution varied in these experiments and depended on the types and amounts of silver, and other supplemented additives such as ferric ion. There was no clear difference in the copper extraction by various culture media and 100% of Cu was dissolved after 30 days of treatment, using 50 mg/L of silver nitrate as additives. In the best condition and without silver additives, maximum 60% of copper was extracted even in the presence of energy sources such as sulfur, ferrous and ferric ions. In the most effective test with initial pH 1.57, 50 mg/L silver nitrate, and 50 g/L ferric sulfate, 100% of copper was dissolved in less than a week with highest kinetics rate. Molybdenum and rhenium extraction had the same tends with redox potential graph. By increasing the redox potential to the 550-600mV, molybdenite started to dissolve and finally, molybdenum and rhenium were extracted 2% and 9.53% in the best condition; respectively.

  10. The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.

    2008-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.

  11. Biological regeneration of ferric ("Fe3+") solution during desulphurisation of gaseous streams: effect of nutrients and support material

    CSIR Research Space (South Africa)

    Mulopo, J

    2015-03-01

    Full Text Available + are reduced to ferrous ions Fe2+. During the industrial regeneration of Fe3+, nutrients and trace minerals usually provided in a laboratory setup are not present and this depletion of nutrients may have a negative impact on the bacteria responsible for ferrous...

  12. Uranium potentiometer determination in inactive atmosphere with ferric sulfate; Determinacion poteniometrica de uranio en atmosfera inerte con sulfato ferrico

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Cellini, R; Alonso Lopez, J

    1956-07-01

    Potentiometric titration of Uranium with (SO{sub 4}){sub 3} Fe{sub 2}, using Cd as reducing agent has been studied; acidity and sensibility of this reaction are fixed. This method yields good results for uranite group, removing previously phosphate by ion exchange with Amberlite IR-120. (Author)

  13. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    International Nuclear Information System (INIS)

    Zaki, Sahar; El Kady, M.F.; Abd-El-Haleem, Desouky

    2011-01-01

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: → About 300 bacterial isolates were screened for their ability to produce nanosilvers → Five of them were potential candidates for synthesis of silver nanoparticles → Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. → The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (AgNPs) in all positive

  14. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  15. Effect of Weak Magnetic Field on Bacterial Growth

    Science.gov (United States)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  16. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fracti...

  17. Pyrolysis of the mixture of MSWI fly ash and sewage sludge for co-disposal: Effect of ferrous/ferric sulfate additives.

    Science.gov (United States)

    Hu, Yuyan; Yang, Fan; Chen, Fangfang; Feng, Yuheng; Chen, Dezhen; Dai, Xiaohu

    2018-05-01

    Co-pyrolysis with sewage sludge was proved to be an efficient pre-treatment for sanitary landfill of municipal solid waste incineration (MSWI) fly ash (FA). In this study, to improve the stabilization effect of heavy metals, mixed ferrous/ferric sulfate was added into the FA/SS mixture before pyrolysis. To examine the feasibility of the landfill of co-pyrolysis char, toxicity characteristic leaching procedure (HJ/T300) was conducted. In addition, physio-chemical characteristics of char were also tested to explain the stability of heavy metals, including the speciation, mineralogical composition and the morphological features of them. The results indicated that within the range that the obtained char could meet the standard for landfill (GB16889-2008), the appropriate addition of mixed ferrous/ferric sulfates benefit to raising the FA ratio in the FA/SS mixture. The maximum ratio of 67 wt% is achieved when the additive was 1.5 wt% of dried SS (based on iron element) and the pyrolysis temperature was 500 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Porphyria Cutanea Tarda in a Patient with End-Stage Renal Disease: A Case of Successful Treatment with Deferoxamine and Ferric Carboxymaltose

    Directory of Open Access Journals (Sweden)

    Natacha Rodrigues

    2017-01-01

    Full Text Available Porphyria cutanea tarda (PCT is a rare disease, with a strong association with hepatitis C virus. PCT is particularly problematic in end-stage renal disease patients as they have no renal excretion of porphyrins and these are poorly dialyzed. Also, conventional treatment of PCT is compromised in these patients as hydroxychloroquine is contraindicated, phlebotomies with the stipulated frequency are poorly tolerated in already anaemia-prone patients, and iron-chelating agents are less efficient in removing iron and contribute to worsening anaemia. The authors report a patient on haemodialysis, with hepatitis C infection, that is diagnosed with PCT. Despite the good clinical results with deferoxamine, she became dependent on blood transfusions because of her ferropenic state. Every time oxide iron was started, the patient developed clinical features of the disease, resolving after the suspension of the drug. A decision was made to start the patient on ferric carboxymaltose, which was well tolerated without disease symptoms and need of further blood transfusions. This case suggests that deferoxamine is efficient in treatment of porphyria cutanea tarda. Also, ferric carboxymaltose may be a valuable option for refractory anaemia in patients with this disease and end-stage renal disease, as it seems to provide iron without clinical relapse of the disease.

  19. Stabilized-solubilized ferric pyrophosphate as a new iron source for food fortification. Bioavailability studies by means of the prophylactic-preventive method in rats.

    Science.gov (United States)

    Salgueiro, M J; Arnoldi, S; Kaliski, M A; Torti, H; Messeri, E; Weill, R; Zubillaga, M; Boccio, J

    2009-02-01

    The purpose of the present work was to evaluate the iron bioavailability of a new ferric pyrophosphate salt stabilized and solubilized with glycine. The prophylactic-preventive test in rats, using ferrous sulfate as the reference standard, was applied as the evaluating methodology both using water and yogurt as vehicles. Fifty female Sprague-Dawley rats weaned were randomized into five different groups (group 1: FeSO(4); group 2: pyr; group 3: FeSO(4) + yogurt; group 4: pyr + yogurt and group 5: control). The iron bioavailability (BioFe) of each compound was calculated using the formula proposed by Dutra-de-Oliveira et al. where BioFe % = (HbFef - HbFei) x 100/ToFeIn. Finally, the iron bioavailability results of each iron source were also given as relative biological value (RBV) using ferrous sulfate as the reference standard. The results showed that both BioFe % and RBV % of the new iron source tested is similar to that of the reference standard independently of the vehicle employed for the fortification procedure (FeSO(4) 49.46 +/- 12.0% and 100%; Pyr 52.66 +/- 15.02% and 106%; FeSO(4) + yogurth 54.39 +/- 13.92% and 110%; Pyr + yogurt 61.97 +/- 13.54% and 125%; Control 25.30 +/- 6.60, p soluble ferric pyrophosphate may be considered as an optimal iron source for food fortification.

  20. Comparison of ferric chloride and aluminum sulfate on phosphorus removal and membrane fouling in MBR treating BAF effluent of municipal wastewater

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-12-01

    Full Text Available A membrane bioreactor (MBR was used for treating biological aerated filter effluent in a municipal wastewater plant, and chemical phosphorus removal was accomplished in the MBR. The results showed that ferric chloride of 20 mg/L and aluminum sulfate of 30 mg/L were the optimal dosages for total phosphorus (TP removal, and the TP removal efficiency was over 80%. In long-term continuous operations, both ferric chloride and aluminum sulfate effectively mitigated membrane fouling, with the corresponding growth rate of transmembrane pressure decreased to 0.08 and 0.067 kPa/d, respectively. Sludge particle sizes analysis demonstrated that the decrease of particle sizes lower than 50 μm was the main reason for membrane fouling control. Simultaneously, the proteins and polysaccharide (PS concentrations in the MBR supernatant were analyzed, and the PS concentration significantly decreased to 2.02 mg/L at aluminum sulfate of 30 mg/L, indicating the flocculation of aluminum sulfate on PS was the main reason for mitigation of membrane fouling.

  1. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: In Vitro Cellular Uptake

    Directory of Open Access Journals (Sweden)

    Min Wu

    2017-12-01

    Full Text Available Iron deficiency anemia is a common clinical consequence for people who suffer from chronic kidney disease, especially those requiring dialysis. Intravenous (IV iron therapy is a widely accepted safe and efficacious treatment for iron deficiency anemia. Numerous IV iron drugs have been approved by U.S. Food and Drug Administration (FDA, including a single generic product, sodium ferric gluconate complex in sucrose. In this study, we compared the cellular iron uptake profiles of the brand (Ferrlecit® and generic sodium ferric gluconate (SFG products. We used a colorimetric assay to examine the amount of iron uptake by three human macrophage cell lines. This is the first published study to provide a parallel evaluation of the cellular uptake of a brand and a generic IV iron drug in a mononuclear phagocyte system. The results showed no difference in iron uptake across all cell lines, tested doses, and time points. The matching iron uptake profiles of Ferrlecit® and its generic product support the FDA’s present position detailed in the draft guidance on development of SFG complex products that bioequivalence can be based on qualitative (Q1 and quantitative (Q2 formulation sameness, similar physiochemical characterization, and pharmacokinetic bioequivalence studies.

  2. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 These test methods cover procedures for the determination of the resistance of stainless steels and related alloys to pitting and crevice corrosion (see Terminology G 15) when exposed to oxidizing chloride environments. Six procedures are described and identified as Methods A, B, C, D, E, and F. 1.1.1 Method A—Ferric chloride pitting test. 1.1.2 Method B—Ferric chloride crevice test. 1.1.3 Method C—Critical pitting temperature test for nickel-base and chromium-bearing alloys. 1.1.4 Method D—Critical crevice temperature test for nickel-base and chromium-bearing alloys. 1.1.5 Method E—Critical pitting temperature test for stainless steels. 1.1.6 Method F—Critical crevice temperature test for stainless steels. 1.2 Method A is designed to determine the relative pitting resistance of stainless steels and nickel-base, chromium-bearing alloys, whereas Method B can be used for determining both the pitting and crevice corrosion resistance of these alloys. Methods C, D, E and F allow for a rankin...

  3. High affinity (3H) β-Alanine uptake by scar margins of ferric chloride-induced epileptogenic foci in rat isocortex

    International Nuclear Information System (INIS)

    Robitaille, Y.; Sherwin, A.

    1984-01-01

    Cortical astrocytes of normal mammalian brain are endowed with a high affinity uptake system for β-Alanine which is competitively inhibited by gamma aminobutyric acid (GABA), a neurotransmitter strongly implicated in epileptogenesis. The authors evaluated ( 3 H) β-Alanine uptake by reactive astrocytes proliferating within scar of epileptogenic foci induced in rat motor cortex by microinjections of 100 mM ferric chloride. Following in vitro incubation of scar tissue with ( 3 H) β-Alanine, ultrastructural morphometry of grain patterns at 5, 30 and 120 days post injection revealed early and significant grain count increases over astroglial processes, predominantly those related to perivascular glial end-feet. Astrocytic cell body and endothelial cell counts showed a more gradual and stepwise increase. Similar data were obtained by comparing visual and edited mean astrocytic grain counts. These results suggest that the enhanced uptake of reactive astrocytes may reflect a marked decrease of inhibitory GABAergic neurons within ferric chloride-induced scars. 7 figures, 1 table

  4. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils

    Science.gov (United States)

    Ghorbanzadeh, N.; Lakzian, A.; Haghnia, G. H.; Karimi, A. R.

    2014-12-01

    Iron is an essential element for all organisms which plays a crucial role in important biochemical processes such as respiration and photosynthesis. Iron deficiency seems to be an important problem in many calcareous soils. Biological dissimilatory Fe(III) reduction increases iron availability through reduction of Fe(III) to Fe(II). The aim of this study was to isolate, identify and evaluate some bacterial isolates for their abilities to reduce Fe(III) in two calcareous soils. Three bacterial isolates were selected and identified from paddy soils by using 16S rRNA amplification and then inoculated to sterilized and non-sterilized calcareous soils in the presence and absence of glucose. The results showed that all isolates belonged to Bacillus genus and were capable of reducing Fe(III) to Fe(II) in vitro condition. The amount of Fe(III) reduction in sterilized calcareous soils was significantly higher when inoculated with PS23 isolate and Shewanella putrefaciens ( S. putrefaciens) (as positive control) compared to PS16 and PS11 isolates. No significant difference was observed between PS11 and PS16 isolates in the presence of indigenous microbial community. The results also revealed that glucose had a significant effect on Fe(III) reduction in the examined calcareous soil samples. The amount of Fe(III) reduction increased two-fold when soil samples were treated with glucose and inoculated by S. putrefaciens and PS23 in non-sterilized soils.

  5. Mechanics of torque generation in the bacterial flagellar motor.

    Science.gov (United States)

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  6. Ferric iron remediation and stabilisation (firs) - developing a new robust electrokinetic remediation technique for heavy metal and radionuclide contaminated sites

    International Nuclear Information System (INIS)

    Faulkner, D.; Hopkinson, L.; Cundy, A.

    2005-01-01

    Electrokinetic remediation is an emerging technology that has generated considerable interest as a technique for the in-situ remediation of contaminated clay-rich soils and sediments. Despite promising experimental results, however, at present there is no standardised universal electrokinetic soil/sediment remediation approach. Many of the current technologies are technically complex and energy intensive, and geared towards the removal of 90% or more of specific contaminants, under very specific field or laboratory-based conditions. However, in the real environment a low-tech, low-energy contaminant reduction / containment technique may be more appropriate and realistic. Such a technique, FIRS (Ferric Iron Remediation and Stabilisation), is discussed here. The FIRS technique involves the application of a low magnitude (typically less than 0.2 V/cm) direct electric potential between two or more sacrificial, iron-rich, electrodes emplaced either side of a contaminated soil or sediment. The electric potential is used to generate a strong pH (and Eh) gradient within the soil column (pH 2 - 13), which acts to re-mobilize contaminants in the treated soil, and force the precipitation of an impermeable, sorptive iron-rich barrier or 'pan' in the soil between the electrodes. Geochemical data from bench-scale treatment cells indicate that the FIRS technique can significantly reduce the concentration of a range of heavy metals and radionuclides in contaminated soils, by remobilization of contaminants followed by precipitation on, or around, the iron-rich barrier generated by the technique. In addition, arsenic seems highly amenable to the FIRS treatment, due to its solubility under the high pH conditions generated near to the cathode, and its marked geochemical affinity with the freshly precipitated iron oxides and oxy-hydroxides in the iron barrier. Geotechnical tests indicate that the iron barrier produced by the technique is practically impervious (permeability 10 -9 m

  7. Development of bacterially resistant polyurethane for coating medical devices

    International Nuclear Information System (INIS)

    Roohpour, Nima; Moshaverinia, Alireza; Wasikiewicz, Jaroslaw M; Paul, Deepen; Vadgama, Pankaj; Wilks, Mark; Millar, Michael

    2012-01-01

    Polyurethanes have been widely used in medicine for coating and packaging implantable and other medical devices. Polyether-urethanes, in particular, have superior mechanical properties and are biocompatible, but in common with other medical materials they are susceptible to microbial film formation. In this study, polyether-urethane was end-capped with silver lactate and silver sulfadiazine functional groups to produce a bacterially resistant polymer without sacrificing the useful mechanical properties of the polyether-polyurethane. The silver ions were covalently incorporated into the polymer during chain extension of the prepolymer. The functionalized polymers were structurally characterized by light scattering, electron microscopy, NMR, FTIR and Raman spectroscopy. Mechanical properties, hydrophilicity, in vitro stability and antibacterial action of polymers were also investigated. Results indicate that both silver salts were successfully incorporated into the polymer structure without significant effect on mechanical properties, whilst conferring acceptable bacterial resistance.

  8. Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers.

    Science.gov (United States)

    Saylan, Yeşeren; Tamahkar, Emel; Denizli, Adil

    2017-11-01

    Here, we developed the lysozyme imprinted bacterial cellulose (Lyz-MIP/BC) nanofibers via the surface imprinting strategy that was designed to recognize lysozyme. This study includes the molecular imprinting method onto the surface of bacterial cellulose nanofibers in the presence of lysozyme by metal ion coordination, as well as further characterizations methods FTIR, SEM and contact angle measurements. The maximum lysozyme adsorption capacity of Lyz-MIP/BC nanofibers was found to be 71 mg/g. The Lyz-MIP/BC nanofibers showed high selectivity for lysozyme towards bovine serum albumin and cytochrome c. Overall, the Lyz-MIP/BC nanofibers hold great potential for lysozyme recognition due to the high binding capacity, significant selectivity and excellent reusability.

  9. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  10. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  11. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  12. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-08-01

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  13. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  14. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  15. Heavy ions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  16. Bacterial computing with engineered populations.

    Science.gov (United States)

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Community-acquired bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G.; Wijdicks, Eelco

    2016-01-01

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma

  18. Food irradiation and bacterial toxins

    International Nuclear Information System (INIS)

    Tranter, H.S.; Modi, N.K.; Hambleton, P.; Melling, J.; Rose, S.; Stringer, M.F.

    1987-01-01

    The authors' findings indicate that irradiation confers no advantage over heat processing in respect of bacterial toxins (clostridium botulinum, neurotoxin A and staphylococcal enterotoxin A). It follows that irradiation at doses less than the ACINF recommended upper limit of 10 kGy could not be used to improve the ambient temperature shelf life on non-acid foods. (author)

  19. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  20. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  1. bacterial flora and antibiotic sensitivity

    African Journals Online (AJOL)

    Purulent pelvic collections are common pathologies observed in contemporary gynaecological practice. They may originate from chronic pelvic inflammatory disease, from abortions or following normal deliveries. This study was designed to compare the bacterial flora in purulent pelvic collections obtained from HIV infected ...

  2. Preparation and characterization of some antimonates as ion exchangers and their application sorption of molybdenum from nitric acid solutions

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Mowafy, E.A.; Ibrahim, G.M.

    2000-01-01

    Various antimonate compounds are well known as important inorganic ion exchangers, since they have radiation stabilities and also high selectivities towards different cations. Ceric, silicon and ferric antimonates were prepared in our laboratories. Characterization of these materials has been described using different techniques, including thermal analysis, surface area measurements, X-ray diffraction and Ir-spectroscopy. The selectivities of these exchangers towards molybdenum have measured under different conditions and a comparison between them had been conducted to enable the suitable exchanger that can be used in the separation of molybdenum from fission products

  3. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    Science.gov (United States)

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  5. Prostatitis-bacterial - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000395.htm Prostatitis - bacterial - self-care To use the sharing features ... enable JavaScript. You have been diagnosed with bacterial prostatitis . This is an infection of the prostate gland. ...

  6. Adjunctive Corticosteroids in Adults with Bacterial Meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; de Gans, Jan

    2005-01-01

    Bacterial meningitis is a complex disorder in which neurologic injury is caused, in part, by the causative organism and, in part, by the host's own inflammatory response. In studies of experimental bacterial meningitis, adjuvant treatment with corticosteroids, specifically dexamethasone, has

  7. Antimicrobial susceptibility in community-acquired bacterial ...

    African Journals Online (AJOL)

    Objectives: To determine the antimicrobial susceptibility patterns of Streptococcus pneumoniae and Haemophilus influenzae, two bacterial pathogens commonly associated with communityacquired pneumonia. Design: Cross-sectional study. Setting: Bacterial isolates were obtained from adults suspected to have ...

  8. Endocarditis in adults with bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2013-01-01

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with

  9. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Simultaneous separation of copper, cadmium and cobalt from sea-water by co-flotation with octadecylamine and ferric hydroxide as collectors.

    Science.gov (United States)

    Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A

    1984-08-01

    A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.

  11. Bacterial cells with improved tolerance to polyamines

    DEFF Research Database (Denmark)

    2017-01-01

    Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds.......Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds....

  12. Bacterial cells with improved tolerance to polyols

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds.......The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds....

  13. Comparison of the Performance of Corn Starch Coagulant Aid Accompany with Alum, Polyaluminum Chloride and Ferric Chloride Coagulants in Turbidity Removal from Water

    Directory of Open Access Journals (Sweden)

    Leila Mosleh

    2014-09-01

    Full Text Available Background: The most important process in water treatment plant is coagulation and flocculation. Regular chemical coagulant which used in Iran are aluminum sulfate (Alum and ferric chloride. Chemical coagulants have hazardous effect on human health and their cost is high for developing country. The purpose of this study was to evaluate the comparison of chemical coagulants accompany with corn starch as a coagulant aid, for the turbidity removal from water. Methods: This study was accomplished in pilot-scale with synthetic turbid water using clay. In this research, initial turbidity of 250 and 500 NTU was experimented. Chemical coagulant dose during the experiment was 1, 2 and 5 ppm and natural coagulant dose was 0, 0.1, 0.3, 0.5 and 0.7 ppm. Results: The results showed that maximum removal efficiency of turbidity in initial turbidity of 250 NTU belonged to poly aluminum chloride with 5 ppm dosage and corn starch with 0.7 ppm dosage which removed and reduced the initial turbidity to 98.48% and 3.73 NTU, respectively. Moreover, in initial turbidity of 500 NTU the maximum removal efficiency was 98.52% which belonged to ferric chloride and corn starch (5 and 0.7 ppm respectively and reduced the initial turbidity to 7.4 NTU. Conclusions: The results of this study showed that using natural coagulant aid reduce the chemical coagulant consumption, and also does not have significant effect on pH range and reduce the health risks. While huge amount of required polyelectrolytes for water treatment plant imported to the country and the production of corn starch in our country is high, it is hope that the results of this project can be used in industrial scale.

  14. New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Functional Theory Calculations, and Vibrational Spectroscopy.

    Science.gov (United States)

    Wang, Shaofeng; Ma, Xu; Zhang, Guoqing; Jia, Yongfeng; Hatada, Keisuke

    2016-11-15

    Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO 4 ) x (H 2 AsO 4 ) 1-x (OH) y ·zH 2 O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO 4 tetrahedra and FeO 6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.

  15. The Bacterial Sequential Markov Coalescent.

    Science.gov (United States)

    De Maio, Nicola; Wilson, Daniel J

    2017-05-01

    Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example, leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions (homoplasies) inconsistent with the hypothesis of a single evolutionary tree. Bacterial recombination is typically modeled as statistically akin to gene conversion in eukaryotes, i.e. , using the coalescent with gene conversion (CGC). However, this model can be very computationally demanding as it needs to account for the correlations of evolutionary histories of even distant loci. So, with the increasing popularity of whole genome sequencing, the need has emerged for a faster approach to model and simulate bacterial genome evolution. We present a new model that approximates the coalescent with gene conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based on a similar idea to the sequential Markov coalescent (SMC)-an approximation of the coalescent with crossover recombination. However, bacterial recombination poses hurdles to a sequential Markov approximation, as it leads to strong correlations and linkage disequilibrium across very distant sites in the genome. Our BSMC overcomes these difficulties, and shows a considerable reduction in computational demand compared to the exact CGC, and very similar patterns in simulated data. We implemented our BSMC model within new simulation software FastSimBac. In addition to the decreased computational demand compared to previous bacterial genome evolution simulators, FastSimBac provides more general options for evolutionary scenarios, allowing population structure with migration, speciation, population size changes, and recombination hotspots. FastSimBac is

  16. Bacterial reproductive pathogens of cats and dogs.

    Science.gov (United States)

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  17. Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals

    NARCIS (Netherlands)

    Zimmermann, M.B.; Biebinger, R.; Egli, I.; Zeder, C.; Hurrell, R.F.

    2011-01-01

    Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric

  18. Applications of inorganic ion exchangers; I-sorption and fixation of some radionuclides in synthetic iron (III)titanate ion exchanger

    International Nuclear Information System (INIS)

    Abou-Mesalam, M.M.; El-Naggar, I.M.

    2002-01-01

    Iron(III) titanate as inorganic ion exchange material has been synthesized by addition of ferric nitrate solution to titanium tetrachloride (dissolved in 4M HCI) with molar ratio equal to unity. The data obtained proposed that the chemical formula of iron(III) titanate may written either as Fe 1 .3 (TiO). 2h 2 O or Fe(TiO 4 ) 0 .76.1.5H 2 O. The surface area values of unloaded and loaded iron(III) titanate with Cs + , Co 2 + and Eu 3 + ions were measured using BET-technique. The selectiy sequence for sorption of Cs + , Co 2 + and Fu 3 + ions on iron (III) titanate was found to be; Co 2 + > Eu 3 + > Cs + . The leach rate values of Cs + , Co 2 + and Fu 3 + ions from iron (II) titanate heated to 1000 degree C different leachants were determined and shows lower values compared to those obtained from unheated iron (III) titanate (dried at 50 degree C) which elucidate the suitability of iron (III) titanate in fixation of Cs + , Co 2 + and Eu 3 + ions by thermal treatment up to1000 degree.

  19. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Pacha-Olivenza, Miguel A.; Calzado-Martín, Alicia; Multigner, Marta; Vera, Carolina; Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M.; González-Carrasco, José Luis; Vilaboa, Nuria

    2014-01-01

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10 16 ions/cm 2 ; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed

  20. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pacha-Olivenza, Miguel A. [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); Calzado-Martín, Alicia [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Multigner, Marta [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vera, Carolina [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M. [Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); González-Carrasco, José Luis [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); and others

    2014-08-15

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10{sup 16} ions/cm{sup 2}; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  1. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  2. Bacterial streamers in curved microchannels

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  3. Collective Functionality through Bacterial Individuality

    Science.gov (United States)

    Ackermann, Martin

    According to the conventional view, the properties of an organism are a product of nature and nurture - of its genes and the environment it lives in. Recent experiments with unicellular organisms have challenged this view: several molecular mechanisms generate phenotypic variation independently of environmental signals, leading to variation in clonal groups. My presentation will focus on the causes and consequences of this microbial individuality. Using examples from bacterial genetic model systems, I will first discuss different molecular and cellular mechanisms that give rise to bacterial individuality. Then, I will discuss the consequences of individuality, and focus on how phenotypic variation in clonal populations of bacteria can promote interactions between individuals, lead to the division of labor, and allow clonal groups of bacteria to cope with environmental uncertainty. Variation between individuals thus provides clonal groups with collective functionality.

  4. Recoil ion spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Beyer, H.F.; Mann, R.

    1984-01-01

    This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC

  5. The bacterial sequential Markov coalescent

    OpenAIRE

    De Maio, N; Wilson, DJ

    2017-01-01

    Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions that are not consistent with the hypothesis of a si...

  6. Bacterial sex in dental plaque.

    Science.gov (United States)

    Olsen, Ingar; Tribble, Gena D; Fiehn, Nils-Erik; Wang, Bing-Yan

    2013-01-01

    Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  7. Bacterial sex in dental plaque

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2013-06-01

    Full Text Available Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  8. Polymorphism in Bacterial Flagella Suspensions

    Science.gov (United States)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  9. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  10. Bacterial Biofilms in Jones Tubes.

    Science.gov (United States)

    Ahn, Eric S; Hauck, Matthew J; Kirk Harris, Jonathan; Robertson, Charles E; Dailey, Roger A

    To investigate the presence and microbiology of bacterial biofilms on Jones tubes (JTs) by direct visualization with scanning electron microscopy and polymerase chain reaction (PCR) of representative JTs, and to correlate these findings with inflammation and/or infection related to the JT. In this study, prospective case series were performed. JTs were recovered from consecutive patients presenting to clinic for routine cleaning or recurrent irritation/infection. Four tubes were processed for scanning electron microscopy alone to visualize evidence of biofilms. Two tubes underwent PCR alone for bacterial quantification. One tube was divided in half and sent for scanning electron microscopy and PCR. Symptoms related to the JTs were recorded at the time of recovery. Seven tubes were obtained. Five underwent SEM, and 3 out of 5 showed evidence of biofilms (60%). Two of the 3 biofilms demonstrated cocci and the third revealed rods. Three tubes underwent PCR. The predominant bacteria identified were Pseudomonadales (39%), Pseudomonas (16%), and Staphylococcus (14%). Three of the 7 patients (43%) reported irritation and discharge at presentation. Two symptomatic patients, whose tubes were imaged only, revealed biofilms. The third symptomatic patient's tube underwent PCR only, showing predominantly Staphylococcus (56%) and Haemophilus (36%) species. Two of the 4 asymptomatic patients also showed biofilms. All symptomatic patients improved rapidly after tube exchange and steroid antibiotic drops. Bacterial biofilms were variably present on JTs, and did not always correlate with patients' symptoms. Nevertheless, routine JT cleaning is recommended to treat and possibly prevent inflammation caused by biofilms.

  11. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  12. Detergent-compatible bacterial amylases.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  13. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids.

    Science.gov (United States)

    Banerjee, Sambuddha; Paul, Subrata; Nguyen, Leonard T; Chu, Byron C H; Vogel, Hans J

    2016-01-01

    The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low μM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with μM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.

  14. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  15. New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis.

    Science.gov (United States)

    Oberbach, Andreas; Schlichting, Nadine; Feder, Stefan; Lehmann, Stefanie; Kullnick, Yvonne; Buschmann, Tilo; Blumert, Conny; Horn, Friedemann; Neuhaus, Jochen; Neujahr, Ralph; Bagaev, Erik; Hagl, Christian; Pichlmaier, Maximilian; Rodloff, Arne Christian; Gräber, Sandra; Kirsch, Katharina; Sandri, Marcus; Kumbhari, Vivek; Behzadi, Armirhossein; Behzadi, Amirali; Correia, Joao Carlos; Mohr, Friedrich Wilhelm; Friedrich, Maik

    2017-01-01

    In infective endocarditis (IE), a severe inflammatory disease of the endocardium with an unchanged incidence and mortality rate over the past decades, only 1% of the cases have been described as polymicrobial infections based on microbiological approaches. The aim of this study was to identify potential biodiversity of bacterial species from infected native and prosthetic valves. Furthermore, we compared the ultrastructural micro-environments to detect the localization and distribution patterns of pathogens in IE. Using next-generation sequencing (NGS) of 16S rDNA, which allows analysis of the entire bacterial community within a single sample, we investigated the biodiversity of infectious bacterial species from resected native and prosthetic valves in a clinical cohort of 8 IE patients. Furthermore, we investigated the ultrastructural infected valve micro-environment by focused ion beam scanning electron microscopy (FIB-SEM). Biodiversity was detected in 7 of 8 resected heart valves. This comprised 13 bacterial genera and 16 species. In addition to 11 pathogens already described as being IE related, 5 bacterial species were identified as having a novel association. In contrast, valve and blood culture-based diagnosis revealed only 4 species from 3 bacterial genera and did not show any relevant antibiotic resistance. The antibiotics chosen on this basis for treatment, however, did not cover the bacterial spectra identified by our amplicon sequencing analysis in 4 of 8 cases. In addition to intramural distribution patterns of infective bacteria, intracellular localization with evidence of bacterial immune escape mechanisms was identified. The high frequency of polymicrobial infections, pathogen diversity, and intracellular persistence of common IE-causing bacteria may provide clues to help explain the persistent and devastating mortality rate observed for IE. Improved bacterial diagnosis by 16S rDNA NGS that increases the ability to tailor antibiotic therapy may

  16. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  17. Laser ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskij, Yu

    1979-02-01

    The characteristics a laser source of multiply-ionized ions are described with regard to the interaction of laser radiation and matter, ion energy spectrum, angular ion distribution. The amount of multiple-ionization ions is evaluated. Out of laser source applications a laser injector of multiple-ionization ions and nuclei, laser mass spectrometry, laser X-ray microradiography, and a laser neutron generators are described.

  18. Exchange of rotor components in functioning bacterial flagellar motor

    International Nuclear Information System (INIS)

    Fukuoka, Hajime; Inoue, Yuichi; Terasawa, Shun; Takahashi, Hiroto; Ishijima, Akihiko

    2010-01-01

    The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP, and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s -1 , meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.

  19. Structural transformations of heat-treated bacterial iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki, E-mail: hideki-h@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan); Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Nakanishi, Koji [Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011 (Japan); Yogi, Chihiro [SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Peterlik, Herwig [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Takada, Jun [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2015-04-01

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe{sub 2}O{sub 3}·8SiO{sub 2}·P{sub 2}O{sub 5}·30H{sub 2}O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO{sub 6} octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe{sub 2}O{sub 3}/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe{sub 2}O{sub 3} >700 °C. • FeO{sub 6} octahedra were highly distorted <500 °C. • Formation of face-sharing FeO{sub 6} was promoted >500 °C, releasing the local strain of FeO{sub 6}.

  20. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  1. Negative ion sources

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1983-01-01

    Negative ion sources have been originally developed at the request of tandem electrostatic accelerators, and hundreds of nA to several μA negative ion current has been obtained so far for various elements. Recently, the development of large current hydrogen negative ion sources has been demanded from the standpoint of the heating by neutral particle beam injection in nuclear fusion reactors. On the other hand, the physical properties of negative ions are interesting in the thin film formation using ions. Anyway, it is the present status that the mechanism of negative ion action has not been so fully investigated as positive ions because the history of negative ion sources is short. In this report, the many mechanisms about the generation of negative ions proposed so far are described about negative ion generating mechanism, negative ion source plasma, and negative ion generation on metal surfaces. As a result, negative ion sources are roughly divided into two schemes, plasma extraction and secondary ion extraction, and the former is further classified into the PIG ion source and its variation and Duoplasmatron and its variation; while the latter into reflecting and sputtering types. In the second half of the report, the practical negative ion sources of each scheme are described. If the mechanism of negative ion generation will be investigated more in detail and the development will be continued under the unified know-how as negative ion sources in future, the development of negative ion sources with which large current can be obtained for any element is expected. (Wakatsuki, Y.)

  2. Functional microdomains in bacterial membranes.

    Science.gov (United States)

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  3. Ion sources for heavy ion fusion

    International Nuclear Information System (INIS)

    Yu, S.S.; Eylon, S.; Chupp, W.

    1995-09-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K + ions of 950 mA peak from a 6.7 inch curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 micros. The measured normalized edge emittance of less than 1 π mm-mr is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described

  4. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  5. pH dependence of cyanide binding to the ferric heme domain of the direct oxygen sensor from Escherichia coli and the effect of alkaline denaturation.

    Science.gov (United States)

    Bidwai, Anil K; Ok, Esther Y; Erman, James E

    2008-09-30

    The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.

  6. Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse RemodelingCLINICAL PERSPECTIVE

    Energy Technology Data Exchange (ETDEWEB)

    Kali, Avinash; Cokic, Ivan; Tang, Richard; Dohnalkova, Alice; Kovarik, Libor; Yang, Hsin-Jung; Kumar, Andreas; Prato, Frank S.; Wood, John C.; Underhill, David; Marban, Eduardo; Dharmakumar, Rohan

    2016-11-01

    Emerging evidence now supports the notion that persistent microvascular obstruction (PMO) may be more predictive of major adverse cardiovascular events than MI size itself. But, how PMO, a phenomenon limited to the acute/sub-acute period of MI, imparts adverse remodeling throughout the post MI period, particularly after its resolution, is incompletely understood. We hypothesized that PMOs resolve into chronic iron crystals within MI territories and actively impart a proinflammatory burden and adverse remodeling of infarction and LV in the chronic phase of MI. Canine models reperfused (n=20) and non-reperfused (n=20) with and without PMO were studied with serial cardiac MRI to characterize the spatiotemporal relationships between PMO, iron deposition, and infarct and LV remodeling indices between acute (day 7, post MI) and chronic (week 8, post MI). Histopathology and immunohistochemistry were used to validate the iron deposition, microscopically map and quantify the relationship between iron-rich chronic MI regions against pro-inflammatory macrophages, proinflammatory cytokines and matrix metalloproteinase. Atomic resolution transmission electron microscopy (TEM) was used to determine the crystallinity of iron and assess the physical effects of iron on lysosomes within macrophages, and energy-dispersive X-ray spectroscopy (EDS) to identify the chemical composition of the iron composite. Results showed that PMOs lead to iron deposition within chronic MI and that the extent of chronic iron deposition is strongly related to PMO Volume (r>0.6, p<0.001). TEM and EDS analysis showed that iron within chronic MI is found within macrophages as aggregates of nanocrystals of ~2.5 nm diameter in ferric state. Correlative histological studies showed that iron content, proinflammatory burden and collagen degrading enzyme were highly correlated (r >0.7, p<0.001). Iron within chronic MI was significantly associated with infarct resorption (r>0.5, p<0.001) and adverse structural (r

  7. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  8. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    Science.gov (United States)

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  9. Radiological aspects of bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.; Ewing, D.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    Clinical, radiological, and pathological data derived from an analysis of over 70 cases of bacterial lung abscess are presented. Etiologic agents and risk factors are presented. Key radiographic findings are discussed, and those that are most useful in differentiating bacterial lung abscess from cavitated carcinoma, infected cyst, and emphysema are emphasized. Radiographic aspects of the complications of bacterial lung abscess are illustrated, and radiological approaches to their therapy are discussed

  10. Bacterial, Fungal, Parasitic, and Viral Myositis

    OpenAIRE

    Crum-Cianflone, Nancy F.

    2008-01-01

    Infectious myositis may be caused by a broad range of bacterial, fungal, parasitic, and viral agents. Infectious myositis is overall uncommon given the relative resistance of the musculature to infection. For example, inciting events, including trauma, surgery, or the presence of foreign bodies or devitalized tissue, are often present in cases of bacterial myositis. Bacterial causes are categorized by clinical presentation, anatomic location, and causative organisms into the categories of pyo...

  11. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-01-01

    The purpose of this study was to investigate further the potential for ion-exchange media (resin beads or powdered filter media) to support biological growth. A mixed microbial culture was grown from resin wastes obtained from the BNL HFBR by mixing the resin with a nutrient salt solution containing peptone and yeast extract. Bacterial and fungal growths appeared in the solution and on the resins after 7 to 10 days incubation at 337/degree/C. The mixed microbial cultures were used to inoculate several resin types, both irradiated and unirradiated. 12 refs., 5 tabs

  12. Balance of bacterial species in the gut

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Balance of bacterial species in the gut. Protective. Lactobacillus species. Bifidobacterium species. Selected E. coli. Saccharomyces boulardii. Clostridium butyricum.

  13. Myo-inositol-14C, phytic acid-14C and ferric phytate-14C metabolism through microbian action in an andosol soil

    International Nuclear Information System (INIS)

    Gonzalez I, J.

    1977-01-01

    The myo-inositol- 14 C, phytic acid- 14 C and ferric phytate- 14 C compounds were incubated in an andosol soil at 70% of the field capacity and at 36.5 deg C during twelve days. These compounds suffered a microbian oxidation at 14 CO 2 of 61.0, 1.9 and 0% respectively. The fixation of the phytic acid- 14 C was observed through the fast decrease in the metabolism, due to the formation of complexes with the Fe and Al (phytates). The myo-inositol- 14 C metabolism was reduced by a factor of nine at the second incubation day. The following mechanisms were observed in the myo-inositol metabolism: (i) adsorption of the inositol by the soil minerals, (ii) adsorption by humic acids, (iii) myo-inositol phosphorylation and (iv) epimerization of myo-inositol to chiro-inositol. It was found that the (i) and (ii) formation depends on the soil microbian activity. The (i), (ii) and (iii) interactions were considered as possible mechanisms for the inhibition of the myo-inositol microbian oxidation. The inhibition of the myo-inositol oxidation through adsorption or phosphorylation is considered as a chemical blockade for the hydroaxial group, avoiding this way a microbian oxidation stereospecific of this hydroxil group. (author)

  14. Determination of the biodistribution and biokinetics of radiopharmaca like 166Ho-ferric-hydroxide or 153Sm-EDTMP used for therapeutic treatment by energy dispersive measurements

    International Nuclear Information System (INIS)

    Fischer, H.; Poljanc, K.; Aiginger, H.; Pruefert, U.; Granegger, S.; Ofluoglu, S.; Pirich, Ch.; Sinzinger, H.; Dudczak, R.; Steger, F.

    2003-01-01

    The activity distribution of beta-emitting radionuclides in the human body and the respective therapeutic dose distribution in the target and the unwanted leakage in the other organs was determined by measurement of corresponding gamma-lines. The measurement was done by scanning in a whole-body counter in the General Hospital Vienna. It is possible to localize activity and dose distribution by means of the detected activity profiles of the four detectors. Two typical treatments are reported: the treatment of synovitis using radiation of 166 Ho-Ferric-Hydroxide (characteristic gamma-line: 81 keV) and radionuclide therapy focused at the palliative treatment of bone metastases with 153 Sm-EDTMP, a bone seeking beta-emitting radionuclide (characteristic gamma-line: 103 keV). For the determination of the applied dose, the leakage and the quality assurance spectroscopic data of a clinical whole-body counter can be a useful tool for controlling and monitoring in health care. (authors)

  15. Mechanism of pyrrhotite formation from ferric oxyhydroxide catalyst; Kokoritsu sekitan ekika shokubai no kaihatsu (Okishi suisankatetsu shokubai karano pyrrhotite seisei kyodo)

    Energy Technology Data Exchange (ETDEWEB)

    Tazawa, K.; Koyama, T.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    It is thought that iron-based catalysts for coal liquefaction exercise their catalytic activity by forming pyrrhotite (Fe(1-x)S). However, there are still a lot of unknown problems remained concerning the formation and agglomeration behaviors of pyrrhotite. These make a difficulty for improving the activity of iron-based catalysts. In this study, sulfiding behaviors of {alpha}-iron oxyhydroxide ({alpha}-FeOOH) and {gamma}-iron oxyhydroxide ({gamma}-FeOOH) were investigated to reveal the formation and agglomeration behaviors of pyrrhotite. It was found that pyrrhotite was easily converted from ferric oxyhydroxide catalysts having large specific surface areas at the sulfiding temperature below 250{degree}C, and fine crystallites of pyrrhotite were formed at the initial stage of sulfiding. Crystal growth of pyrrhotite at the sulfiding temperature over 350{degree}C depended on the catalyst forms. It was also found that smaller crystallites of pyrrhotite were formed from {gamma}-FeOOH than from {alpha}-FeOOH and amorphous iron oxyhydroxide. 5 refs., 7 figs., 1 tab.

  16. Electrochemical sensing of hydroxylamine using a wax impregnated graphite electrode modified with a nanocomposite consisting of ferric oxide and copper hexacyanoferrate

    International Nuclear Information System (INIS)

    Allibai Mohanan, Vinu Mohan; Kacheri Kunnummal, Aswini; Biju, Valsala Madhavan Nair

    2016-01-01

    The authors describe a wax-impregnated graphite electrode modified with ferric oxide (Fe_2O_3) and copper hexacyanoferrate(II), and its application as an electrochemical sensor for hydroxylamine. The presence of Fe_2O_3 nanoparticles enhance the electron transfer kinetics and electrocatalytic activities, and also enlarge the surface area of the modified electrode. As compared to the unmodified electrode, 16.9 and 30.1 fold enhancements in amperometric response was observed for copper hexacyanoferrate(II) and the nanocomposite modified electrodes, respectively. Also, the presence of Fe_2O_3 in the nanocomposite enhances the anodic current response by 1.78 fold when compared to copper hexacyanoferrate(II) alone modified electrode. The electron transfer coefficient, electron transfer rate constant, diffusion coefficient and catalytic rate constant for the electro-oxidation of hydroxylamine were determined. Amperometry performed at a working voltage of 750 mV (vs. Ag/AgCl) revealed a detection range that extends from 0.8 μM to 100 μM, a detection limit of 0.5 μM (at an S/N ratio of 3) and a sensitivity of 0.0924 mA⋅mM"−"1. The modified electrode is remarkably stable and was successfully applied to the determination of hydroxylamine in spiked water samples. (author)

  17. Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L., J. oxycedrus (L., J. phoenicea (L. and Tetraclinis articulata (L.

    Directory of Open Access Journals (Sweden)

    Meryem El Jemli

    2016-01-01

    Full Text Available Objective. The aim of this work is to study and compare the antioxidant properties and phenolic contents of aqueous leaf extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus Phoenicea, and Tetraclinis articulata from Morocco. Methods. Antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical-scavenging ability, Trolox equivalent antioxidant capacity (TEAC, and ferric reducing antioxidant power (FRAP assays. Also the total phenolic and flavonoids contents of the extracts were determined spectrophotometrically. Results. All the extracts showed interesting antioxidant activities compared to the standard antioxidants (butylated hydroxytoluene (BHT, quercetin, and Trolox. The aqueous extract of Juniperus oxycedrus showed the highest antioxidant activity as measured by DPPH, TEAC, and FRAP assays with IC50 values of 17.91±0.37 μg/mL, 19.80±0.55 μg/mL, and 24.23±0.07 μg/mL, respectively. The strong correlation observed between antioxidant capacities and their total phenolic contents indicated that phenolic compounds were a major contributor to antioxidant properties of these plants extracts. Conclusion. These results suggest that the aqueous extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus phoenicea, and Tetraclinis articulata can constitute a promising new source of natural compounds with antioxidants ability.

  18. Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.).

    Science.gov (United States)

    El Jemli, Meryem; Kamal, Rabie; Marmouzi, Ilias; Zerrouki, Asmae; Cherrah, Yahia; Alaoui, Katim

    2016-01-01

    Objective. The aim of this work is to study and compare the antioxidant properties and phenolic contents of aqueous leaf extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus Phoenicea, and Tetraclinis articulata from Morocco. Methods. Antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging ability, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) assays. Also the total phenolic and flavonoids contents of the extracts were determined spectrophotometrically. Results. All the extracts showed interesting antioxidant activities compared to the standard antioxidants (butylated hydroxytoluene (BHT), quercetin, and Trolox). The aqueous extract of Juniperus oxycedrus showed the highest antioxidant activity as measured by DPPH, TEAC, and FRAP assays with IC50 values of 17.91 ± 0.37 μg/mL, 19.80 ± 0.55 μg/mL, and 24.23 ± 0.07 μg/mL, respectively. The strong correlation observed between antioxidant capacities and their total phenolic contents indicated that phenolic compounds were a major contributor to antioxidant properties of these plants extracts. Conclusion. These results suggest that the aqueous extracts of Juniperus thurifera, Juniperus oxycedrus, Juniperus phoenicea, and Tetraclinis articulata can constitute a promising new source of natural compounds with antioxidants ability.

  19. The Role of Intermediates in the Process of Red Ferric Pigment Manufacture from FeSO4.7H2O

    International Nuclear Information System (INIS)

    Zboril, Radek; Mashlan, Miroslav; Petridis, Dimitris; Krausova, Dagmar; Pikal, Petr

    2002-01-01

    One method of industrial manufacture of red ferric pigments is based on the thermal decomposition of FeSO 4 .7H 2 O into α-Fe 2 O 3 (copperas red). The difficult reproducibility of the color quality of the final pigment is the main problem of this process. One of the factors that can influence the pigment color is contamination by some of the intermediates formed during the transformation process. The identification of two groups of intermediates is the basic result of an extensive laboratory investigation carried out using 57 Fe Moessbauer spectroscopy and X-ray powder diffraction (XRD). The first group of intermediates includes sulfato-phases as FeSO 4 .H 2 O, FeSO 4 , Fe(OH)SO 4 , Fe 2 O(SO 4 ) 2 , Fe 2 O(SO 4 ) 2 .xH 2 O x element of (0,1), and Fe 2 (SO 4 ) 3 . Thermally metastable polymorphs of iron(III) oxide, β-Fe 2 O 3 , γ-Fe 2 O 3 and ε-Fe 2 O 3 , represent the other group. Moessbauer characterization of all intermediate products is given. A significant influence of β-Fe 2 O 3 on the pigment color was found.

  20. Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries.

    Science.gov (United States)

    Raudonis, Raimondas; Raudone, Lina; Jakstas, Valdas; Janulis, Valdimaras

    2012-04-13

    ABTS and FRAP post-column techniques evaluate the antioxidant characteristics of HPLC separated compounds with specific reagents. ABTS characterize their ability to scavenge free radicals by electron-donating antioxidants, resulting in the absorbance decrease of the chromophoric radical. FRAP - is based on the reduction of Fe(III)-tripyridyltriazine complex to Fe(II)-tripyridyltriazine at low pH by electron-donating antioxidants, resulting in an absorbance increase. Both post-column assays were evaluated and compared according to the following validation parameters: specificity, precision, limit of detection (LoD), limit of quantitation (LoQ) and linearity. ABTS and FRAP post-column assays were specific, repeatable and sensitive and thus can be used for the evaluation of antioxidant active compounds. Antioxidant active compounds were quantified according to TEAC for each assay and ABTS/FRAP ratio was derived. No previous records of antioxidative activity of leaves and fruits of strawberries (Fragaria viridis, Fragaria moschata) research have been found. The research results confirm the reliability of ABTS and FRAP post-column assays for screening of antioxidants in complex mixtures and the determination of radical scavenging and ferric reducing ability by their TEAC values. Copyright © 2012 Elsevier B.V. All rights reserved.