WorldWideScience

Sample records for bacterial feeding induces

  1. Characterisation of the gastrointestinal bacterial community in pigs fed fermented liquid feed and dry feed

    DEFF Research Database (Denmark)

    Højberg, Ole; Knudsen, B.; Canibe, N.

    2001-01-01

    Feeding pigs with fermented liquid feed (FLF) has been shown to reduce the number of enteropathogens such as Salmonella and Brachyospira hyodysenteriae as well as coliform bacteria in general in the gastrointestinal tract (GIT). Also the commensal bacterial populations have been shown to respond...

  2. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs

    Science.gov (United States)

    Wang, Weimin; Li, Chong; Li, Fadi; Wang, Xiaojuan; Zhang, Xiaoxue; Liu, Ting; Nian, Fang; Yue, Xiangpeng; Li, Fei; Pan, Xiangyu; La, Yongfu; Mo, Futao; Wang, Fangbin; Li, Baosheng

    2016-01-01

    Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep. PMID:27576848

  3. Het effect van voersamenstelling op bacteriële darmaandoeningen bij varkens = The effect of feed composition on bacterial intestinal diseases in pigs

    NARCIS (Netherlands)

    Meulen, van der J.; Peet-Schwering, van der C.M.C.

    2007-01-01

    Feed composition, and especially carbohydrate composition, may affect the development of enteric bacterial diseases. Also the kind of feed ingredients (soybean or not) and feed treatment (milling size, pelletizing, fermentation) may be important. A more coarse grinding, no pelletizing and

  4. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis.

    Science.gov (United States)

    Telleria, Erich L; Sant'Anna, Maurício R Viana; Alkurbi, Mohammad O; Pitaluga, André N; Dillon, Rod J; Traub-Csekö, Yara M

    2013-01-11

    Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.

  5. Early Administration of Probiotics Alters Bacterial Colonization and Limits Diet-Induced Gut Dysfunction and Severity of Necrotizing Enterocolitis in Preterm Pigs

    DEFF Research Database (Denmark)

    Siggers, Richard H.; Siggers, Jayda; Boye, Mette

    2008-01-01

    Following preterm birth, bacterial colonization and interal formula feeding predispose neonates to gut dysfunction and necrotizing enterocilitis (NEC), a serious gastrointestinal inflammatory disease. We hypothesized that administration of probiotics would beneficially influence early bacterial...... colonization, thereby reducing the susceptibility to formula-induced gut atrophy, dysfunction, and NEC. Caesarean-delivered preterm pigs were provided total parenteral nutrition (1.5 d) followed by enteral feeding (2d) with porcine colosstrum (COLOS; n= 5), formula (FORM; n = 9), or formula with probiotics...

  6. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes.

    Science.gov (United States)

    Meyer, Susan L F; Halbrendt, John M; Carta, Lynn K; Skantar, Andrea M; Liu, Ting; Abdelnabby, Hazem M E; Vinyard, Bryan T

    2009-12-01

    The antibiotic 2,4-diacetylphloroglucinol (DAPG) is produced by some isolates of the beneficial bacterium Pseudomonas fluorescens. DAPG is toxic to many organisms, and crop yield increases have been reported after application of DAPG-producing P. fluorescens. This study was conducted to determine whether DAPG is toxic to selected nematodes. The plant-parasitic nematodes Heterodera glycines, Meloidogyne incognita, Pratylenchus scribneri and Xiphinema americanum, and the bacterial-feeding nematodes Caenorhabditis elegans, Pristionchus pacificus, and Rhabditis rainai, were immersed in concentrations ranging from 0 to 100 μg/ml DAPG. Egg hatch and viability of juveniles and adults were determined. DAPG was toxic to X. americanum adults, with an LD₅₀ of 8.3 μg/ml DAPG. DAPG decreased M. incognita egg hatch, but stimulated C. elegans hatch during the first hours of incubation. Viability of M. incognita J2 and of C. elegans J1 and adults was not affected. There were no observed effects on the other nematodes. The study indicated that DAPG is not toxic to all nematodes, and did not affect the tested species of beneficial bacterial-feeding nematodes. Augmentation of DAPG-producing P. fluorescens populations for nematode biocontrol could be targeted to specific nematode species known to be affected by this compound and by other antibiotics produced by the bacteria, or these bacteria could be used for other possible effects, such as induced plant resistance.

  7. Bacterial microflora of poultry feed and its control by gamma irradiation

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Youssef, Y.A.; Roushdy, H.M.; Aziz, N.H.

    1986-01-01

    The common bacteria isolated from the poultry feed samples were classified in the families of Pseudomonadaceae, Micrococcacae, Bacililaceae and Enterobacteriaceae. These species of bacteria were identified as 10 species of Gram-negative and 13 species of Gram-positive. We found that radiation dose required to inhibit completely the natural bacterial flora in tested samples of poultry feed was 20 KGY. The most radioresistant bacterial isolates which resisted a sublethal dose of 15 KGY were identified as bacillus cereus, Bacillus polymxa and Bacillus megaterium. The dose response curves of B, cereus and B, polymxa started by shoulder portion followed by an exponential death, whereas, B, megaterium exhibited straight line relationship directly. The D 10 -value of B. megaterium spores (3.30 KGY) was about 1.5 and 1.7 folds as the D 10 value B. polymxa and B, cereus, respectively. The present work indicated also that the exposure of poultry feed to irradiation dose 10 KGY (1 Mrad) reduced greatly number of bacteria destroyed all spoilage and pathogenic bacteria especially Salmonella, and finally increased the shelf-life during storage periods. Higher radiation dose 15 KGY, failed to show any better reduction of viable bacterial counts. Part of this work presented in (FAO/IAEA) international symposium for food irradiation processing, Washington, D.C., U.S.A. (4-8 March, 1985)

  8. Lesion bacterial communities in American lobsters with diet-induced shell disease.

    Science.gov (United States)

    Quinn, Robert A; Metzler, Anita; Tlusty, Michael; Smolowitz, Roxanna M; Leberg, Paul; Chistoserdov, Andrei Y

    2012-04-26

    In southern New England, USA, shell disease affects the profitability of the American lobster Homarus americanus fishery. In laboratory trials using juvenile lobsters, exclusive feeding of herring Clupea harengus induces shell disease typified initially by small melanized spots that progress into distinct lesions. Amongst a cohabitated, but segregated, cohort of 11 juvenile lobsters fed exclusively herring, bacterial communities colonizing spots and lesions were investigated by denaturing gradient gel electrophoresis of 16S rDNA amplified using 1 group-specific and 2 universal primer sets. The Bacteroidetes and Proteobacteria predominated in both spots and lesions and included members of the orders Flavobacteriales (Bacteriodetes), Rhodobacterales, Rhodospirillales and Rhizobiales (Alphaproteobacteria), Xanthomonadales (Gammaproteobacteria) and unclassified Gammaproteobacteria. Bacterial communities in spot lesions displayed more diversity than communities with larger (older) lesions, indicating that the lesion communities stabilize over time. At least 8 bacterial types persisted as lesions developed from spots. Aquimarina 'homaria', a species commonly cultured from lesions present on wild lobsters with epizootic shell disease, was found ubiquitously in spots and lesions, as was the 'Candidatus Kopriimonas aquarianus', implicating putative roles of these species in diet-induced shell disease of captive lobsters.

  9. Fungal and bacterial metabolites in commercial poultry feed from Nigeria.

    Science.gov (United States)

    Ezekiel, C N; Bandyopadhyay, R; Sulyok, M; Warth, B; Krska, R

    2012-08-01

    Metabolites of toxigenic fungi and bacteria occur as natural contaminants (e.g. mycotoxins) in feedstuffs making them unsafe to animals. The multi-toxin profiles in 58 commercial poultry feed samples collected from 19 districts in 17 states of Nigeria were determined by LC/ESI-MS/MS with a single extraction step and no clean-up. Sixty-three (56 fungal and seven bacterial) metabolites were detected with concentrations ranging up to 10,200 µg kg⁻¹ in the case of aurofusarin. Fusarium toxins were the most prevalent group of fungal metabolites, whereas valinomycin occurred in more than 50% of the samples. Twelve non-regulatory fungal and seven bacterial metabolites detected and quantified in this study have never been reported previously in naturally contaminated stored grains or finished feed. Among the regulatory toxins in poultry feed, aflatoxin concentrations in 62% of samples were above 20 µg kg⁻¹, demonstrating high prevalence of unsafe levels of aflatoxins in Nigeria. Deoxynivalenol concentrations exceeded 1000 µg kg⁻¹ in 10.3% of samples. Actions are required to reduce the consequences from regulatory mycotoxins and understand the risks of the single or co-occurrence of non-regulatory metabolites for the benefit of the poultry industry.

  10. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities.

    Directory of Open Access Journals (Sweden)

    Sebastian Germerodt

    2016-06-01

    Full Text Available Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability, we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters' periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations.

  11. Validation of growth as measurand for bacterial adhesion to food and feed ingredients

    NARCIS (Netherlands)

    Becker, P.M.; Galletti, S.; Roubos-van den Hil, P.J.; Wikselaar, van P.G.

    2007-01-01

    Aims: A miniaturized adhesion test was designed to study the binding capacity of food and feed ingredients for bacterial cells. Methods and Results: Bacteria were allowed to adhere to different fibrous materials supplied as well coatings in microtitration plates. The amount of bacteria retained on

  12. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.

    Science.gov (United States)

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-08-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.

  13. Bacterial contamination of ready-to-use 1-L feeding bottles and administration sets in severely compromised intensive care patients

    NARCIS (Netherlands)

    Mathus-Vliegen, L. M.; Binnekade, J. M.; de Haan, R. J.

    2000-01-01

    OBJECTIVE: In intensive care patients, enteral feeding requires sterile feedings because of infectious complications and adequate supplements to meet nutritional needs. Heretofore, prepacked, large-volume formula containers were developed, but bacterial contamination occurred in 4% to 15%. Our

  14. Response of Intestinal Bacterial Flora to the Long-term Feeding of Aflatoxin B1 (AFB1) in Mice.

    Science.gov (United States)

    Yang, Xiai; Liu, Liangliang; Chen, Jing; Xiao, Aiping

    2017-10-12

    In order to investigate the influence of aflatoxin B1 (AFB1) on intestinal bacterial flora, 24 Kunming mice (KM mice) were randomly placed into four groups, which were labeled as control, low-dose, medium-dose, and high-dose groups. They were fed intragastrically with 0.4 mL of 0 mg/L, 2.5 mg/L, 4 mg/L, or 10 mg/L of AFB1 solutions, twice a day for 2 months. The hypervariable region V3 + V4 on 16S rDNA of intestinal bacterial flora was sequenced by the use of a high-flux sequencing system on a Miseq Illumina platform; then, the obtained sequences were analyzed. The results showed that, when compared with the control group, both genera and phyla of intestinal bacteria in the three treatment groups decreased. About one third of the total genera and one half of the total phyla remained in the high-dose group. The dominant flora were Lactobacillus and Bacteroides in all groups. There were significant differences in the relative abundance of intestinal bacterial flora among groups. Most bacteria decreased as a whole from the control to the high-dose groups, but several beneficial and pathogenic bacterial species increased significantly with increasing dose of AFB1. Thus, the conclusion was that intragastric feeding with 2.5~10 mg/mL AFB1 for 2 months could decrease the majority of intestinal bacterial flora and induce the proliferation of some intestinal bacteria flora.

  15. Pine Defensive Monoterpene α-Pinene Influences the Feeding Behavior of Dendroctonus valens and Its Gut Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Letian Xu

    2016-11-01

    Full Text Available The exposure to plant defense chemicals has negative effects on insect feeding activity and modifies insect gut microbial community composition. Dendroctonus valens is a very destructive forest pest in China, and harbors a large diversity and abundance of gut microorganisms. Host pine defensive chemicals can protect the pines from attack by the holobiont. In this study, boring length of D. valens feeding on 0 mg/g α-pinene and 9 mg/g α-pinene concentration in phloem media for 6 and 48 h were recorded, and their gut bacterial communities were analyzed in parallel. Nine milligram per gram α-pinene concentration significantly inhibited boring length of D. valens and altered its gut microbial community structure after 6 h. The inhibition of boring length from 9 mg/g α-pinene in diets ceased after 48 h. No significant differences of the bacterial communities were observed between the beetles in 0 and 9 mg/g α-pinene concentration in phloem media after 48 h. Our results showed that the inhibition of the feeding behavior of D. valens and the disturbance to its gut bacterial communities in 9 mg/g α-pinene concentration in phloem media after 6 h were eliminated after 48 h. The resilience of gut bacterial community of D. valens may help the beetle catabolize pine defense chemical.

  16. Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus

    Directory of Open Access Journals (Sweden)

    Misako Okumura

    2017-11-01

    Full Text Available Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.

  17. Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects.

    Science.gov (United States)

    Luan, Jun-Bo; Chen, Wenbo; Hasegawa, Daniel K; Simmons, Alvin M; Wintermantel, William M; Ling, Kai-Shu; Fei, Zhangjun; Liu, Shu-Sheng; Douglas, Angela E

    2015-09-15

    Genomic decay is a common feature of intracellular bacteria that have entered into symbiosis with plant sap-feeding insects. This study of the whitefly Bemisia tabaci and two bacteria (Portiera aleyrodidarum and Hamiltonella defensa) cohoused in each host cell investigated whether the decay of Portiera metabolism genes is complemented by host and Hamiltonella genes, and compared the metabolic traits of the whitefly symbiosis with other sap-feeding insects (aphids, psyllids, and mealybugs). Parallel genomic and transcriptomic analysis revealed that the host genome contributes multiple metabolic reactions that complement or duplicate Portiera function, and that Hamiltonella may contribute multiple cofactors and one essential amino acid, lysine. Homologs of the Bemisia metabolism genes of insect origin have also been implicated in essential amino acid synthesis in other sap-feeding insect hosts, indicative of parallel coevolution of shared metabolic pathways across multiple symbioses. Further metabolism genes coded in the Bemisia genome are of bacterial origin, but phylogenetically distinct from Portiera, Hamiltonella and horizontally transferred genes identified in other sap-feeding insects. Overall, 75% of the metabolism genes of bacterial origin are functionally unique to one symbiosis, indicating that the evolutionary history of metabolic integration in these symbioses is strongly contingent on the pattern of horizontally acquired genes. Our analysis, further, shows that bacteria with genomic decay enable host acquisition of complex metabolic pathways by multiple independent horizontal gene transfers from exogenous bacteria. Specifically, each horizontally acquired gene can function with other genes in the pathway coded by the symbiont, while facilitating the decay of the symbiont gene coding the same reaction. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds

    OpenAIRE

    Fall, Saliou; Hamelin, J.; Ndiaye, Farma; Assigbetse, Komi; Aragno, M.; Chotte, Jean-Luc; Brauman, Alain

    2007-01-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect ...

  19. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    Science.gov (United States)

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  20. Characterization of Chemically-Induced Bacterial Ghosts (BGs Using Sodium Hydroxide-Induced Vibrio parahaemolyticus Ghosts (VPGs

    Directory of Open Access Journals (Sweden)

    Hyun Jung Park

    2016-11-01

    Full Text Available Acellular bacterial ghosts (BGs are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH, acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 106 CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS, anti-inflammatory cytokine (IL-10, and dual activities (IL-6 in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning

  1. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  2. Monkey Feeding Assay for Testing Emetic Activity of Staphylococcal Enterotoxin.

    Science.gov (United States)

    Seo, Keun Seok

    2016-01-01

    Staphylococcal enterotoxins (SEs) are unique bacterial toxins that cause gastrointestinal toxicity as well as superantigenic activity. Since systemic administration of SEs induces superantigenic activity leading to toxic shock syndrome that may mimic enterotoxic activity of SEs such as vomiting and diarrhea, oral administration of SEs in the monkey feeding assay is considered as a standard method to evaluate emetic activity of SEs. This chapter summarizes and discusses practical considerations of the monkey feeding assay used in studies characterizing classical and newly identified SEs.

  3. Insulin Resistance Induced by Short term Fructose Feeding may not ...

    African Journals Online (AJOL)

    Fructose feeding causes insulin resistance and invariably Non-Insulin Dependent Diabetes Mellitus (NIDDM) in rats and genetically predisposed humans. The effect of insulin resistance induced by short term fructose feeding on fertility in female rats was investigated using the following parameters: oestrous phase and ...

  4. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    Science.gov (United States)

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    Science.gov (United States)

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  6. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour.

    Science.gov (United States)

    Fetissov, Sergueï O

    2017-01-01

    The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.

  7. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  8. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence

  9. Enteral Feeding Set Handling Techniques.

    Science.gov (United States)

    Lyman, Beth; Williams, Maria; Sollazzo, Janet; Hayden, Ashley; Hensley, Pam; Dai, Hongying; Roberts, Cristine

    2017-04-01

    Enteral nutrition therapy is common practice in pediatric clinical settings. Often patients will receive a pump-assisted bolus feeding over 30 minutes several times per day using the same enteral feeding set (EFS). This study aims to determine the safest and most efficacious way to handle the EFS between feedings. Three EFS handling techniques were compared through simulation for bacterial growth, nursing time, and supply costs: (1) rinsing the EFS with sterile water after each feeding, (2) refrigerating the EFS between feedings, and (3) using a ready-to-hang (RTH) product maintained at room temperature. Cultures were obtained at baseline, hour 12, and hour 21 of the 24-hour cycle. A time-in-motion analysis was conducted and reported in average number of seconds to complete each procedure. Supply costs were inventoried for 1 month comparing the actual usage to our estimated usage. Of 1080 cultures obtained, the overall bacterial growth rate was 8.7%. The rinse and refrigeration techniques displayed similar bacterial growth (11.4% vs 10.3%, P = .63). The RTH technique displayed the least bacterial growth of any method (4.4%, P = .002). The time analysis in minutes showed the rinse method was the most time-consuming (44.8 ± 2.7) vs refrigeration (35.8 ± 2.6) and RTH (31.08 ± 0.6) ( P refrigerating the EFS between uses is the next most efficacious method for handling the EFS between bolus feeds.

  10. Rapid and Persistent Suppression of Feeding Behavior Induced by Sensitization Training in "Aplysia"

    Science.gov (United States)

    Acheampong, Ama; Kelly, Kathleen; Shields-Johnson, Maria; Hajovsky, Julie; Wainwright, Marcy; Mozzachiodi, Riccardo

    2012-01-01

    In "Aplysia," noxious stimuli induce sensitization of defensive responses. However, it remains largely unknown whether such stimuli also alter nondefensive behaviors. In this study, we examined the effects of noxious stimuli on feeding. Strong electric shocks, capable of inducing sensitization, also led to the suppression of feeding. The use of…

  11. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    DEFF Research Database (Denmark)

    Ip Cho, Simon; Sundelin, Thomas; Erbs, Gitte

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposin...

  12. Motivation of hens to obtain feed during a molt induced by feed withdrawal, wheat middlings, or melengestrol acetate.

    Science.gov (United States)

    Koch, J M; Lay, D C; McMunn, K A; Moritz, J S; Wilson, M E

    2007-04-01

    Traditionally, molting was initiated by withdrawing feed. However, public criticism of feed deprivation, based on the perception that it inhumanely increases hunger, has led the poultry industry to ban the practice. Thus far, alternatives have not been demonstrated to ameliorate the increase in hunger that led to the ban on inducing molting by feed deprivation. Incorporating melengestrol acetate (MGA), an orally active progestin, into a balanced layer diet induces molting and increases postmolt egg quality. Hy-Line W-98 hens (n = 60) were randomly assigned to a balanced layer ration (control), a balanced layer ration containing MGA, or a 94% wheat middlings diet (wheat) for 20 d, or were feed deprived for 8 d. Hens were trained to peck a switch to receive a feed reward based on a progressive ratio reinforcement schedule. Motivation of hens to acquire feed was measured as the total number of pecks recorded in 15 min on d 0, 4, 8, 12, 16, and 20. On d 20, abdominal fat pad and digesta-free gizzards were weighed. The number of pecks in the feed-deprived group was greater than controls by d 4 and remained greater at d 8, when these hens were removed from the experiment. Hens in the wheat group that were rewarded with a layer diet pecked more than controls from d 8 to 20. Hens in the MGA group pecked for a reward at the same rate as control hens throughout the experiment. Hens fed the wheat diet had heavier gizzards compared with control and MGA-fed hens. Hens fed MGA had greater abdominal fat pad compared with wheat and control hens. Hens molted using a diet containing MGA have a similar motivation to obtain feed as control hens; therefore, this alternative does not appear to increase hunger. However, hens molted with a wheat middling diet appear to be as motivated to obtain feed as did the feed-deprived hens.

  13. Presence of pups suppresses hunger-induced feeding in virgin adult mice of both sexes.

    Science.gov (United States)

    Han, Ying; Li, Xing-Yu; Wang, Shao-Ran; Wei, Yi-Chao; Xu, Xiao-Hong

    2017-10-24

    Despite recent progress on neural pathways underlying individual behaviors, how an animal balances and prioritizes behavioral outputs remains poorly understood. While studying the relationship between hunger-induced feeding and pup-induced maternal behaviors in virgin female mice, we made the unexpected discovery that presence of pups strongly delayed and decreased food consumption. Strikingly, presence of pups also suppressed feeding induced by optogenetic activation of Agrp neurons. Such a suppressive effect inversely correlated with the extents of maternal behaviors, but did not rely on the display of these behaviors, and was also present in virgin males. Furthermore, chemogenetic activation of Vglut2+ neurons in the medial preoptic area (mPOA), a region critical for maternal behaviors and motivation, was sufficient to suppress hunger-induced feeding. However, muscimol inhibition of the mPOA, while disrupting maternal behaviors, did not prevent pup suppression of feeding, indicating that neural pathways in other brain regions may also mediate such an effect. Together, these results provide novel insights into neural coordination of pup care and feeding in mice and organizations of animal behaviors in general. Copyright © 2017. Published by Elsevier Ltd.

  14. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes.

    Science.gov (United States)

    Yang, Chao; Fei, Yuda; Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients.

  15. EFFECT OF FEED DEPRIVATION TIME ON BACTERIAL CONTAMINATION OF SKIN AND CARCASS IN MEAT GOATS

    Directory of Open Access Journals (Sweden)

    M. Vanguru

    2009-06-01

    Full Text Available Previous research has shown that diet and feed deprivation time prior to slaughter can influence the fecal shedding of bacteria in goats. This experiment was conducted to determine the effects of feed deprivation time (FDT on skin and carcass bacterial counts. Thirty-two Boer × Spanish goats (BW = 18.8 ± 0.82 kg were randomly assigned to one of 4 FDT (0, 9, 18, or 27 h before slaughter. Immediately after slaughter and evisceration, the pH values of rumen liquor and cecal digesta were determined. Rumen and rectal content samples were collected and transported to the laboratory for culture and determination of microbial load. Initial pH of Longissimus muscle (LM was determined at 15 min postmortem on each carcass. Swab samples were collected from skin (leg; 25 cm2 area and carcass (flank, brisket and leg; 75 cm2 area of each animal to assess the bacterial load. The 27-h FDT group had higher (P 0.05 by FDT.  The microbial counts of rumen and fecal contents were not influenced by FDT.  The E. coli, total coliform (TCC, and total plate counts of rumen content were 2.93, 3.14, and 6.08 log10CFU/g, respectively, and those of fecal contents were 3.56, 7.25 and 6.81 log10CFU/g, respectively. The FDT had no effect on the initial (pH = 6.87 of LM. The E. coli, TCC, and aerobic plate counts on skin were 1.13, 1.49, and 3.78 log10CFU/cm2, respectively, and those on carcasses were 1.51, 1.65, and 3.11 log10CFU/cm2, respectively. Both skin and carcass microbial counts were not affected (P > 0.05 by FDT. The results indicate that feed deprivation time alone up to 27 h may not significantly influence gut, skin, or carcass microbial loads.

  16. The In-Feed Antibiotic Carbadox Induces Phage Gene Transcription in the Swine Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Timothy A. Johnson

    2017-08-01

    Full Text Available Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome and phage population dynamics (fecal dsDNA viromes. Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences and SEED subsystems databases. When the beta diversities of microbial FIGfam annotations were compared, the control and carbadox communities were distinct 2 days after carbadox introduction. This effect was driven by carbadox-associated lower expression of FIGfams (n = 66 related to microbial respiration, carbohydrate utilization, and RNA metabolism (q < 0.1, suggesting bacteriostatic or bactericidal effects within certain populations. Interestingly, carbadox treatment caused greater expression of FIGfams related to all stages of the phage lytic cycle 2 days following the introduction of carbadox (q ≤0.07, suggesting the carbadox-mediated induction of prophages and phage DNA recombination. These effects were diminished by 7 days of continuous carbadox in the feed, suggesting an acute impact. Additionally, the viromes included a few genes that encoded resistance to tetracycline, aminoglycoside, and beta-lactam antibiotics but these did not change in frequency over time or with treatment. The results show decreased bacterial growth and metabolism, prophage induction, and potential transduction of bacterial fitness genes in swine gut bacterial communities as a result of carbadox administration.

  17. The In-Feed Antibiotic Carbadox Induces Phage Gene Transcription in the Swine Gut Microbiome

    Science.gov (United States)

    Johnson, Timothy A.; Severin, Andrew J.; Bayles, Darrell O.; Nasko, Daniel J.; Wommack, K. Eric; Howe, Adina

    2017-01-01

    ABSTRACT Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome) and phage population dynamics (fecal dsDNA viromes). Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences) and SEED subsystems databases. When the beta diversities of microbial FIGfam annotations were compared, the control and carbadox communities were distinct 2 days after carbadox introduction. This effect was driven by carbadox-associated lower expression of FIGfams (n = 66) related to microbial respiration, carbohydrate utilization, and RNA metabolism (q < 0.1), suggesting bacteriostatic or bactericidal effects within certain populations. Interestingly, carbadox treatment caused greater expression of FIGfams related to all stages of the phage lytic cycle 2 days following the introduction of carbadox (q ≤0.07), suggesting the carbadox-mediated induction of prophages and phage DNA recombination. These effects were diminished by 7 days of continuous carbadox in the feed, suggesting an acute impact. Additionally, the viromes included a few genes that encoded resistance to tetracycline, aminoglycoside, and beta-lactam antibiotics but these did not change in frequency over time or with treatment. The results show decreased bacterial growth and metabolism, prophage induction, and potential transduction of bacterial fitness genes in swine gut bacterial communities as a result of carbadox administration. PMID:28790203

  18. Repeated pulse feeding induces functional stability in anaerobic digestion.

    Science.gov (United States)

    De Vrieze, Jo; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is an environmental key technology in the future bio-based economy. To achieve functional stability, a minimal microbial community diversity is required. This microbial community should also have a certain 'elasticity', i.e. the ability to rapidly adapt to suboptimal conditions or stress. In this study it was evaluated whether a higher degree of functional stability could be achieved by changing the feeding pattern, which can change the evenness, dynamics and richness of the bacterial community. The first reactor (CSTR stable ) was fed on daily basis, whereas the second reactor (CSTR dynamic ) was fed every 2 days. Average biogas production was 0.30 l CH4 l(-1) day(-1) in both reactors, although daily variation was up to four times higher in the CSTR dynamic compared with the CSTR stable during the first 50 days. Bacterial analysis revealed that this CSTR dynamic had a two times higher degree of bacterial community dynamics. The CSTR dynamic also appeared to be more tolerant to an organic shock load of 8 g COD l(-1) and ammonium levels up to 8000 mg TAN l(-1). These results suggest that the regular application of a limited pulse of organic material and/or a variation in the substrate composition might promote higher functional stability in anaerobic digestion. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding.

    Science.gov (United States)

    Qi, Yue; Fu, Melissa; Herzog, Herbert

    2016-02-01

    Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Specific amplification of bacterial DNA by optimized so-called universal bacterial primers in samples rich of plant DNA.

    Science.gov (United States)

    Dorn-In, Samart; Bassitta, Rupert; Schwaiger, Karin; Bauer, Johann; Hölzel, Christina S

    2015-06-01

    Universal primers targeting the bacterial 16S-rRNA-gene allow quantification of the total bacterial load in variable sample types by qPCR. However, many universal primer pairs also amplify DNA of plants or even of archaea and other eukaryotic cells. By using these primers, the total bacterial load might be misevaluated, whenever samples contain high amounts of non-target DNA. Thus, this study aimed to provide primer pairs which are suitable for quantification and identification of bacterial DNA in samples such as feed, spices and sample material from digesters. For 42 primers, mismatches to the sequence of chloroplasts and mitochondria of plants were evaluated. Six primer pairs were further analyzed with regard to the question whether they anneal to DNA of archaea, animal tissue and fungi. Subsequently they were tested with sample matrix such as plants, feed, feces, soil and environmental samples. To this purpose, the target DNA in the samples was quantified by qPCR. The PCR products of plant and feed samples were further processed for the Single Strand Conformation Polymorphism method followed by sequence analysis. The sequencing results revealed that primer pair 335F/769R amplified only bacterial DNA in samples such as plants and animal feed, in which the DNA of plants prevailed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes.

    Science.gov (United States)

    Santini, Alessandro; Ronchi, Dario; Garbellini, Manuela; Piga, Daniela; Protti, Alessandro

    2017-07-01

    Linezolid inhibits bacterial growth by targeting bacterial ribosomes and by interfering with bacterial protein synthesis. Lactic acidosis is a rare, but potentially lethal, side effect of linezolid. Areas covered: The pathogenesis of linezolid-induced lactic acidosis is reviewed with special emphasis on aspects relevant to the recognition, prevention and treatment of the syndrome. Expert opinion: Linezolid-induced lactic acidosis reflects the untoward interaction between the drug and mitochondrial ribosomes. The inhibition of mitochondrial protein synthesis diminishes the respiratory chain enzyme content and thus limits aerobic energy production. As a result, anaerobic glycolysis and lactate generation accelerate independently from tissue hypoxia. In the absence of any confirmatory test, linezolid-induced lactic acidosis should be suspected only after exclusion of other, more common, causes of lactic acidosis such as hypoxemia, anemia or low cardiac output. Normal-to-high whole-body oxygen delivery, high venous oxygen saturation and lack of response to interventions that effectively increase tissue oxygen provision all suggest a primary defect in oxygen use at the mitochondrial level. During prolonged therapy with linezolid, blood drug and lactate levels should be regularly monitored. The current standard-of-care treatment of linezolid-induced lactic acidosis consists of drug withdrawal to reverse mitochondrial intoxication and intercurrent life support.

  2. Bacterial lipoprotein-induced tolerance is reversed by overexpression of IRAK-1.

    LENUS (Irish Health Repository)

    Li, Chong Hui

    2012-03-01

    Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and\\/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.

  3. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats.

    Science.gov (United States)

    Zhang, Ruiyang; Ye, Huimin; Liu, Junhua; Mao, Shengyong

    2017-09-01

    This study evaluated the effects of high-grain diets on the rumen fermentation, epithelial bacterial community, morphology of rumen epithelium, and local inflammation of goats during high-grain feeding. Twelve 8-month-old goats were randomly assigned to two different diets, a hay diet or a high-grain diet (65% grain, HG). At the end of 7 weeks of treatment, samples of rumen content and rumen epithelium were collected. Rumen pH was lower (P rumen epithelial bacterial community, with an increase in the proportion of genus Prevotella and a decrease in the relative abundance of the genera Shuttleworthia and Fibrobacteres. PICRUSt analysis suggested that the HG-fed group had a higher (P rumen epithelial injury and upregulated (P rumen pH, LPS level, and rumen epithelial bacteria abundance. In conclusion, our results indicated that the alterations in the rumen environment and epithelial bacterial community which were induced by HG feeding may result in the damage and local inflammation in the rumen epithelium, warranting further study of rumen microbial-host interactions in the HG feeding model.

  4. The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background

    International Nuclear Information System (INIS)

    Belov, O.V.; Kapralov, M.I.; Chuluunbaatar, O.; Sweilam, N.H.

    2012-01-01

    A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, a mathematical model of the bacterial mismatch repair system is developed. Within this model, the key pathways of this type of repair are simulated on the basis of modern experimental data related to its mechanisms. Here we have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Using our calculations, we have tested the hypothesis that the bacterial mismatch repair system is responsible for the removal of the nucleotides misincorporated by DNA polymerase V (the UmuD' 2 C complex) during ultraviolet-induced SOS response. For the theoretical analysis of the mutation frequency, we have combined the proposed mathematical approach with the model of SOS-induced mutagenesis in the E.coli bacterial cell developed earlier. Our calculations support the hypothesis that methyl-directed mismatch repair influences the mutagenic effect of ultraviolet radiation

  5. Transition from parenteral to enteral nutrition induces immediate diet-dependent gut histological and immunological responses in preterm neonates

    DEFF Research Database (Denmark)

    Siggers, Jayda; Sangild, Per T.; Jensen, Tim Kåre

    2011-01-01

    bacterial groups (Clostridium, Enterococcus, Streptococcus species) increased with time. We conclude that a switch from parenteral to enteral nutrition rapidly induces diet-dependent histopathological, functional, and proinflammatory insults to the immature intestine. Great care is required when introducing......-six preterm pigs were fed total parenteral nutrition (TPN) for 48 h followed by enteral feeding for 0, 8, 17, or 34 h with either colostrum (Colos, n = 20) or formula (Form, n = 31). Macroscopic NEC lesions were detected in Form pigs throughout the enteral feeding period (20/31, 65%), whereas most Colos pigs...... no histopathological lesions, increased maltase activity, and induced changes in gene expressions related to tissue development. Total bacterial density was high after 2 days of parenteral feeding and was not significantly affected by diet (colostrum, formula) or length of enteral feeding (8–34 h), except that a few...

  6. Bacterial carbohydrate-degrading capacity in foal faeces: changes from birth to pre-weaning and the impact of maternal supplementation with fermented feed products.

    Science.gov (United States)

    Faubladier, Céline; Julliand, Véronique; Danel, Justine; Philippeau, Christelle

    2013-09-28

    The present study aimed at (1) describing age-related changes in faecal bacterial functional groups involved in carbohydrate degradation and in their activities in foals (n 10) from birth (day (d) 0) to 6 months (d180) and (2) investigating the effect of maternal supplementation (five mares per treatment) from d - 45 to d60 with fermented feed products on response trends over time of the foal bacterial carbohydratedegrading capacity. Maternal supplementation with fermented feed products stimulated foal growth from d0 to d60 and had an impact on the establishment of some digestive bacterial groups and their activities in foals from d0 to d5 but not in the longer term. Irrespective of the maternal treatment, total bacteria, total anaerobic, lactate-utilising and amylolytic bacteria were established immediately after birth (Panaerobes and lactate utilisers were established rapidly between d0 and d2 (P=0·021 and 0·066, respectively) and the increase in the percentage of propionate occurred earlier (P=0·013). Maternal supplementation had no effect on the establishment of fibrolytic bacteria and their activity. Cellulolytic bacteria and Fibrobacter succinogenes first appeared at d2 and d5, and increased progressively, reaching stable values at d30 and d60, respectively. From the second week of life, the increase in the molar percentage of acetate and the ratio (acetate + butyrate):propionate (P<0·05) suggested that fibrolytic activity had begun. From d60, only minor changes in bacterial composition and activities occurred, showing that the bacterial carbohydrate-degrading capacity was established at 2 months of age.

  7. Bacterial feeding induces changes in immune-related gene expression and has trans-generational impacts in the cabbage looper (Trichoplusia ni

    Directory of Open Access Journals (Sweden)

    Vogel Heiko

    2009-05-01

    Full Text Available Abstract Background Poly- and oligophagous insects are able to feed on various host plants with a wide range of defense strategies. However, diverse food plants are also inhabited by microbiota differing in quality and quantity, posing a potential challenge for immune system mediated homeostasis in the herbivore. Recent studies highlight the complex interactions between environmentally encountered microorganisms and herbivorous insects, pointing to a potential adaptational alteration of the insects' physiology. We performed a differential gene expression analysis in whole larvae and eggs laid by parents grown on different diets to identify potential novel genes related to elevated microbial content in the caterpillars' food. Results We used GeneFishing, a novel differential display method, to study the effects of dietary bacteria on the general gene expression in different life stages and tissues of the cabbage looper (Trichoplusia ni. We were able to visualize several hundred transcripts on agarose gels, one fifth of which were differentially expressed between treatments. The largest number of differentially expressed genes was found in defense-related processes (13 and in recognition and metabolism (16. 21 genes were picked out and further tested for differential gene expression by an independent method (qRT-PCR in various tissues of larvae grown on bacterial and bacteria-free diet, and also in adults. We detected a number of genes indicative of an altered physiological status of the insect, depending on the diet, developmental stage and tissue. Conclusion Changes in immune status are accompanied by specific changes in the transcript levels of genes connected to metabolism and homeostasis of the organism. Our findings show that larval feeding on bacteria-rich diet leads to substantial gene expression changes, potentially resulting in a reorganization of the insects' metabolism to maintain organismal homeostasis, not only in the larval but also

  8. Differentiation of bacterial feeding nematodes in soil ecological studies by means of arbitrarily primed PCR

    Science.gov (United States)

    Van Der Knaap, Esther; Rodriguez, Russell J.; Freckman, Diana W.

    1993-01-01

    Arbitrarily-primed polymerase chain reaction (ap-PCR) was used to differentiate closely related bacterial-feeding nematodes of the genera: Caenorhabditis, Acrobeloides, Cephalobus and Zeldia. Average percentage similarity of bands generated by ap-PCR with seven different primers between 14 isolates of Caenorhabditis elegans was ⪢ 90%, whereas between C. elegans, C. briggsae and C. remanei similarity was nematode populations were also obtained from ap-PCR analysis of single worms. Due to the difficulty of identification of soil nematodes, the ap-PCR offers potential as a rapid and reliable technique to assess biodiversity. Ap-PCR will make it feasible, for the first time, to study the ecological interactions of unique nematode genotypes in soil habitats.

  9. Feeding difficulties in children with food protein-induced gastrointestinal allergies.

    Science.gov (United States)

    Meyer, Rosan; Rommel, Nathalie; Van Oudenhove, Lukas; Fleming, Catharine; Dziubak, Robert; Shah, Neil

    2014-10-01

    There is paucity of data on the prevalence of feeding difficulties in Food Protein-Induced Gastrointestinal Allergies (FPIGA) and their clinical characteristics. However, it is a commonly reported problem by clinicians. We set out to establish the occurrence of feeding difficulties in children with FPIGA, the association with gastrointestinal and extra-intestinal symptoms and number of foods eliminated from the diet. This retrospective observational analysis was performed in patients seen between 2002 and 2009 at Great Ormond Street Children's Hospital, Gastroenterology Department, London. Medical records where FPIGA was documented using the terms from the National Institute of Allergy and Infectious Disease and National Institute of Clinical Excellence and confirmed using an elimination diet, followed by a challenge were included. Feeding difficulties were assessed using a criteria previously used in healthy toddlers in the UK. Data from 437 children (203 female) were collected. Significantly more children with feeding difficulties presented with abdominal distention and bloating (P = 0.002), vomiting (P foods eliminated from the diet in the children with/without feeding difficulties (P = 0.028). Clinical manifestations like vomiting, constipation, rectal bleeding, weight loss, and the presence of extra-intestinal manifestations in addition to the number of foods avoided are in our FPIGA population linked to feeding difficulties. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  10. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs

    Directory of Open Access Journals (Sweden)

    Simon Ipcho

    2016-06-01

    Full Text Available Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals.

  11. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  12. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    Science.gov (United States)

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  13. Changes in ruminal bacterial community composition following feeding of alfalfa ensiled with a lactic acid bacterial inoculant.

    Science.gov (United States)

    Mohammed, R; Stevenson, D M; Beauchemin, K A; Muck, R E; Weimer, P J

    2012-01-01

    Some silage inoculants help to improve silage quality and promote an increase in milk production, possibly through altering the rumen microflora. We hypothesized that rumen bacterial community composition (BCC) would be different in cows fed alfalfa ensiled with the inoculant Lactobacillus plantarum MTD/1 (LP) compared with those fed alfalfa ensiled without the inoculant (Ctrl). Eight ruminally cannulated Holstein cows were allotted to 2 diets (Ctrl or LP) in a double crossover design with four 28-d periods. Diets were formulated to contain (% dry matter basis) 28.0% neutral detergent fiber and 16.2% crude protein, and contained alfalfa silage, 50.9; corn silage, 20.6; high-moisture shelled corn, 21.4; soy hulls, 4.7; plus minerals and vitamins, 2.4. Ruminal digesta were collected just before feeding on 3 consecutive days near the end of each period, and were separated into solid and liquid phases. Microbial DNA was extracted from each phase, amplified by PCR using domain-level bacterial primers, and subjected to automated ribosomal intergenic spacer analysis. The pH was 4.56 and 4.86 and the lactate-to-acetate ratio 9.8 and 4.4, respectively, for the treated and untreated alfalfa silages. Dry matter intakes and milk production data were not influenced by diets but showed a cow effect. Total volatile fatty acids (mM) tended to be greater for LP compared with Ctrl. Individual volatile fatty acids were not influenced by diets but showed a significant cow effect. Ruminal acetate (mol/100 mol) and acetate-to-propionate ratio were lower and propionate (mol/100 mol) greater for the 2 milk fat-depressed (MFD; content) cows compared with the other 6 cows. Correspondence analysis of the 265 peaks in the automated ribosomal intergenic spacer analysis profile across the 188 samples revealed that the first 2 components contributed 7.1 and 3.8% to the total variation in the profile. The ordination points representing the liquid and solid phases clustered separately, indicating

  14. Metamorphosis of a butterfly-associated bacterial community.

    Science.gov (United States)

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  15. Metamorphosis of a butterfly-associated bacterial community.

    Directory of Open Access Journals (Sweden)

    Tobin J Hammer

    Full Text Available Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  16. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  17. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    Science.gov (United States)

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  18. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  19. Molecular analyses of two bacterial sampling methods in ligature-induced periodontitis in rats.

    Science.gov (United States)

    Fontana, Carla Raquel; Grecco, Clovis; Bagnato, Vanderlei Salvador; de Freitas, Laura Marise; Boussios, Constantinos I; Soukos, Nikolaos S

    2018-02-01

    The prevalence profile of periodontal pathogens in dental plaque can vary as a function of the detection method; however, the sampling technique may also play a role in determining dental plaque microbial profiles. We sought to determine the bacterial composition comparing two sampling methods, one well stablished and a new one proposed here. In this study, a ligature-induced periodontitis model was used in 30 rats. Twenty-seven days later, ligatures were removed and microbiological samples were obtained directly from the ligatures as well as from the periodontal pockets using absorbent paper points. Microbial analysis was performed using DNA probes to a panel of 40 periodontal species in the checkerboard assay. The bacterial composition patterns were similar for both sampling methods. However, detection levels for all species were markedly higher for ligatures compared with paper points. Ligature samples provided more bacterial counts than paper points, suggesting that the technique for induction of periodontitis could also be applied for sampling in rats. Our findings may be helpful in designing studies of induced periodontal disease-associated microbiota.

  20. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation.

    Science.gov (United States)

    Seifan, Mostafa; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-04-01

    Recently, magnetic iron oxide nanoparticles (IONs) have been used to control and modify the characteristics of concrete and mortar. Concrete is one of the most used materials in the world; however, it is susceptible to cracking. Over recent years, a sustainable biotechnological approach has emerged as an alternative approach to conventional techniques to heal the concrete cracks by the incorporation of bacterial cells and nutrients into the concrete matrix. Once cracking occurs, CaCO 3 is induced and the crack is healed. Considering the positive effects of IONs on the concrete properties, the effect of these nanoparticles on bacterial growth and CaCO 3 biosynthesis needs to be evaluated for their possible application in bio self-healing concrete. In the present work, IONs were successfully synthesized and characterized using various techniques. The presence of IONs showed a significant effect on both bacterial growth and CaCO 3 precipitation. The highest bacterial growth was observed in the presence of 150 μg/mL IONs. The highest concentration of induced CaCO 3 (34.54 g/L) was achieved when the bacterial cells were immobilized with 300 μg/mL of IONs. This study provides new data and supports the possibility of using IONs as a new tool in designing the next generation of bio self-healing concrete.

  1. Bacterial colonization and gut development in preterm neonates

    DEFF Research Database (Denmark)

    Cilieborg, Malene S.; Boye, Mette; Sangild, Per Torp

    2012-01-01

    Necrotizing enterocolitis (NEC) develops in 5–10% of preterm infants in association with enteral feeding and bacterial colonization. It remains unclear how diet and bacteria interact to protect or provoke the immature gastrointestinal tract. Understanding the factors that control bacterial...

  2. Utilization of Natural Products as Functional Feed

    OpenAIRE

    Stella Magdalena; Natadiputri G H; Nailufar; Purwadaria T

    2013-01-01

    The use of antibiotics as feed additive improves performance in livestock. However, scientific data related to the use of antibiotics in feed merge spreading of bacterial resistance in animal and human bodies, therefore the usage of antibiotics in animal production is restricted. This condition raise the utilization of natural antibiotic as functional feed such as phytogenics (essential oil, flavonoid, saponin, and tannin), enzyme, probiotic, and prebiotic to improve the livestock’s performan...

  3. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats.

    Science.gov (United States)

    Zhang, R Y; Jin, W; Feng, P F; Liu, J H; Mao, S Y

    2018-03-19

    In the current intensive production system, ruminants are often fed high-grain (HG) diets. However, this feeding pattern often causes rumen metabolic disorders and may further trigger laminitis, the exact mechanism is not clear. This study investigated the effect of HG diet feeding on fermentative and microbial changes in the rumen and on the expression of pro-inflammatory cytokines and matrix metalloproteinases (MMPs) in the lamellar tissue. In all, 12 male goats were fed a hay diet (0% grain; n=6) or an HG diet (56.5% grain; n=6). On day 50 of treatment, samples of blood, rumen content, and lamellar tissue of hooves of goats were collected. The data showed that compared with the hay group, HG-fed goats had lower (Pdiet feeding altered the composition of rumen bacterial community, and correspondingly, the results suggested that their functions in the HG group were also altered. HG diet feeding increased (Pbacterial community, and lead to higher levels of LPS in the peripheral blood, and further activated the inflammatory response in lamellar tissues, which may progress to the level of laminar damage.

  4. Voluntary feed intake in rainbow trout is regulated by diet-induced differences in oxygen use.

    Science.gov (United States)

    Saravanan, Subramanian; Geurden, Inge; Figueiredo-Silva, A Cláudia; Kaushik, Sadasivam; Verreth, Johan; Schrama, Johan W

    2013-06-01

    This study investigated the hypothesis that the voluntary feed intake in fish is regulated by diet-induced differences in oxygen use. Four diets were prepared with a similar digestible protein:digestible energy ratio (18 mg/kJ), but which differed in the composition of nonprotein energy source. This replacement of fat (F) by starch (S) was intended to create a diet-induced difference in oxygen use (per unit of feed): diets F30-S70, F50-S50, F65-S35, and F80-S20 with digestible fat providing 28, 49, 65, and 81% of the nonprotein digestible energy (NPDE), respectively. Each diet was fed to satiation to triplicate groups of 20 rainbow trout for 6 wk. As expected, diet-induced oxygen use decreased linearly (R(2) = 0.89; P digestible and metabolizable energy intakes of trout slightly increased with increasing NPDE as fat (i.e., decreasing starch content) (R(2) = 0.30, P = 0.08; and R(2) = 0.34, P = 0.05, respectively). Oxygen consumption of trout fed to satiation declined with increasing dietary NPDE as fat (R(2) = 0.48; P = 0.01). The inverse relation between digestible energy intake of trout and the diet-induced oxygen use (R(2) = 0.33; P = 0.05) suggests a possible role of diet-induced oxygen use in feed intake regulation as shown by the replacement of dietary fat by starch.

  5. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation

    International Nuclear Information System (INIS)

    Shukla, Pradeep K.; Chaudhry, Kamaljit K.; Mir, Hina; Gangwar, Ruchika; Yadav, Nikki; Manda, Bhargavi; Meena, Avtar S.; Rao, RadhaKrishna

    2016-01-01

    Alcohol consumption is one of the major risk factors for colorectal cancer. However, the mechanism involved in this effect of alcohol is unknown. We evaluated the effect of chronic ethanol feeding on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in mouse colon. Inflammation in colonic mucosa was assessed at a precancerous stage by evaluating mucosal infiltration of neutrophils and macrophages, and analysis of cytokine and chemokine gene expression. Chronic ethanol feeding significantly increased the number and size of polyps in colon of AOM/DSS treated mice. Confocal microscopic and immunoblot analyses showed a significant elevation of phospho-Smad, VEGF and HIF1α in the colonic mucosa. RT-PCR analysis at a precancerous stage indicated that ethanol significantly increases the expression of cytokines IL-1α, IL-6 and TNFα, and the chemokines CCL5/RANTES, CXCL9/MIG and CXCL10/IP-10 in the colonic mucosa of AOM/DSS treated mice. Confocal microscopy showed that ethanol feeding induces a dramatic elevation of myeloperoxidase, Gr1 and CD68-positive cells in the colonic mucosa of AOM/DSS-treated mice. Ethanol feeding enhanced AOM/DSS-induced suppression of tight junction protein expression and elevated cell proliferation marker, Ki-67 in the colonic epithelium. This study demonstrates that chronic ethanol feeding promotes colonic tumorigenesis potentially by enhancing inflammation and elevation of proinflammatory cytokines and chemokines

  6. A new model for the spectral induced polarization signature of bacterial growth in porous media

    Science.gov (United States)

    Zhang, C.; Revil, A.; Atekwana, E. A.; Jardani, A.; Smith, S.

    2012-12-01

    Recent biogeophysics studies demonstrated the sensitivity of complex conductivity to bacterial growth and microbial mediated mineral transformations in porous media. Frequency-domain induced polarization is a minimally invasive manner to measure the complex conductivity of a material over a broad range of frequencies. The real component of complex conductivity is associated with electromigration of the charge carriers, and the imaginary component represents reversible energy storage of charge carriers at polarization length scales. Quantitative relationship between frequency-domain induced polarization responses and bacterial growth and decay in porous media is analyzed in this study using a new developed model. We focus on the direct contribution of bacteria themselves to the complex conductivity in porous media in the absence of biomineralization. At low frequencies, the induced polarization of bacteria (α-polarization) is related to the properties of the electrical double layer surrounding the membrane surface of bacteria. Surface conductivity and α-polarization are due to the Stern layer of the counterions occurring in a brush of polymers coating the surface of the bacteria, and can be related to the cation exchange capacity of the bacteria. From the modeling results, at low frequencies (model with reactive transport modeling in which the evolution of bacterial populations are usually described by Monod kinetics, we show that the changes in imaginary conductivity with time can be used to determine bacterial growth kinetics parameters such as the growth and endogenous decay coefficient.

  7. Utilization of Natural Products as Functional Feed

    Directory of Open Access Journals (Sweden)

    Stella Magdalena

    2013-03-01

    Full Text Available The use of antibiotics as feed additive improves performance in livestock. However, scientific data related to the use of antibiotics in feed merge spreading of bacterial resistance in animal and human bodies, therefore the usage of antibiotics in animal production is restricted. This condition raise the utilization of natural antibiotic as functional feed such as phytogenics (essential oil, flavonoid, saponin, and tannin, enzyme, probiotic, and prebiotic to improve the livestock’s performance, quality, and health. Functional feeds increase profitability in animal husbandry production and its use is feeds are expected to be functional foods that may have positive effects in human nutrition.

  8. Microbiological quality of commercially available poultry feeds sold ...

    African Journals Online (AJOL)

    Food poisoning and infection by bacterial and fungal genera pose obvious health threat to both animals and humans. Pfizer, Guinea, Extra, Top, NOM and Master brands of feed sold in Owerri Metropolis were analysed for their bacterial and fungal quality. The genera of bacteria and fungi isolated and their percentage ...

  9. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: impacts on immunity and metabolism.

    Science.gov (United States)

    Dong, Guozhong; Liu, Shimin; Wu, Yongxia; Lei, Chunlong; Zhou, Jun; Zhang, Sen

    2011-08-09

    Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA), occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS) is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA), haptoglobin (Hp), LPS binding protein (LBP), and C-reactive protein (CRP) in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydroxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn) are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP) are associated with declines in milk fat content

  10. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: Impacts on immunity and metabolism

    Directory of Open Access Journals (Sweden)

    Zhou Jun

    2011-08-01

    Full Text Available Abstract Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA, occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA, haptoglobin (Hp, LPS binding protein (LBP, and C-reactive protein (CRP in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydoxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP are associated with declines in

  11. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    OpenAIRE

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2012-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substra...

  12. Are grazer-induced adaptations of bacterial abundance and morphology timedependent?

    Directory of Open Access Journals (Sweden)

    Gianluca CORNO

    2006-02-01

    Full Text Available Predation by protists is a well known force that shapes bacterial communities and can lead to filamentous forms and aggregations of large cell clusters. These classic resistance strategies were observed as a direct consequence of predation by heteroand mixotrophic flagellates (the main group of bacteria predators in water on natural assemblages of bacteria and on single plastic strains. Recently it was shown that a long time exposure (about 30 days of a bacterial strain, characterized by high degree of phenotypic plasticity, to flagellates, without direct predation, enhanced the formation of resistant forms (filaments in a continuous culture system. Target prey populations and predators were separated by a dialysis membrane. Moreover, the positive impact on bacterial growth, due to the chemical excretes released by flagellates was demonstrated for exudates of photosynthetic activity. The same positive impact may also be seen in response to exudates related to grazing. In this study, two short-term experiments (<100 hours were conducted to test for modifications in the morphology and productivity of three different bacterial strains that were induced by the presence of active predators, but without direct predation. The growth and morphological distribution of each of the selected strains was tested separately using batch cultures. Cultures were either enriched with carbon in the presence or absence of flagellate predators, or included pre-filtered exudates from flagellate activity. In a second experiment, bottles were provided with a central dialysis bag that contained active flagellates, and were inoculated with the selected bacterial strains. In this way, bacteria were exposed to the presence of predators without direct predation. The bacterial strains used in this experience were characterised by a high degree of phenotypic plasticity and exhibited different successful strategies of resistance against grazing. The flagellates selected as

  13. Prevalence of bacterial contamination of powdered infant feeds in a ...

    African Journals Online (AJOL)

    Background The study arose as part of a nutrition model regarding the introduction of ready-to-use (RTU) infant feeds in place of powdered infant feeds (PIFs) as a standard formula for infants under the age of 1 year who are unable to be breastfed. Internationally and locally there is grave concern regarding the safety and ...

  14. Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function.

    Science.gov (United States)

    Flues, Sebastian; Bass, David; Bonkowski, Michael

    2017-08-01

    Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Effects of feeding bentonite clay upon ochratoxin A-induced immunosuppression in broiler chicks.

    Science.gov (United States)

    Khatoon, Aisha; Khan, Muhammad Zargham; Abidin, Zain Ul; Bhatti, Sheraz Ahmed

    2018-03-01

    A presence of mycotoxins in feed is one of the most alarming issues in the poultry feed industry. Ochratoxins, produced by several Aspergillus and Penicillium species, are important mycotoxin regarding the health status of poultry birds. Ochratoxins are further classified into to several subtypes (A, B, C, etc) depending on their chemical structures, but ochratoxin A (OTA) is considered the most important and toxic. Bentonite clay, belonging to phyllosilicates and formed from weathering of volcanic ashes, has adsorbent ability for several mycotoxins. The present study was designed to study the effects of bentonite clay upon OTA-induced immunosuppression in broiler chicks. For this, 480 day-old broiler chicks were procured from a local hatchery and then different combinations of OTA (0.15, 0.3, or 1.0 mg/kg) and bentonite clay (5, 10, and 20 g/kg) were incorporated into their feed. At 13, 30, and 42 days of age, parameters such as antibody responses to sheep red blood cells, in situ lymphoproliferative responses to mitogen (PHA-P), and in situ phagocytic activity (i.e., via carbon clearance) were determined respectively. The results indicated there was a significant reduction of total antibody and immunoglobulin titres, lymphoproliferative responses, and phagocytic potential in OTA-treated birds, suggesting clear immunosuppression by OTA in birds in a dose-dependent manner. These results were also significantly lower in all combination groups (OTA with bentonite clay), suggesting few to no effects of feeding bentonite clay upon OTA- induced alterations in different immune parameters.

  16. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive.

    Directory of Open Access Journals (Sweden)

    Alexandre Thibodeau

    Full Text Available Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 10(9 CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05. Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.

  17. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Farooq W A; Atif M; Tawfik W; Alsalhi M S; Alahmed Z A; Sarfraz M; Singh J P

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria. (plasma technology)

  18. Methods for baiting and enriching fungus-feeding (Mycophagous) rhizosphere bacteria

    NARCIS (Netherlands)

    Ballhausen, Max Bernhard; Veen, Van J.A.; Hundscheid, M.P.J.; Boer, De Wietse

    2015-01-01

    Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires

  19. Effect of feeding tannin degrading bacterial culture (Streptococcus gallolyticus strain TDGB 406) on nutrient utilization, urinary purine derivatives and growth performance of goats fed on Quercus semicarpifolia leaves.

    Science.gov (United States)

    Kumar, K; Chaudhary, L C; Agarwal, N; Kamra, D N

    2014-10-01

    To study the effect of supplementation of tannin degrading bacterial culture (Streptococcus gallolyticus strain TDGB 406) on growth performance, nutrient utilization and urinary purine derivatives of goats fed on oak (Quercus semicarpifolia) leaves. For growth study, eighteen billy goats (4 month old, average body weight 9.50 ± 1.50 kg) were distributed into three groups of six animals each. The animals of group 1 served as control while animals of groups 2 (T1) and 3 (T2) were given (@ 5 ml/kg live weight) autoclaved and live culture of isolate TDGB 406 (10(6) cells/ml) respectively. The animals were fed measured quantity of dry oak leaves as the main roughage source and ad libitum maize hay along with fixed quantity of concentrate mixture. The feeding of live culture of isolate TDGB 406 (probiotic) did not affect dry matter intake and digestibility of nutrients except that of dry matter and crude protein, which was higher in T2 group as compared to control. All the animals were in positive nitrogen balance. There was no significant effect of feeding isolate TDGB 406 on urinary purine derivatives (microbial protein production) in goats. The body weight gain and average live weight gain was significantly higher (p = 0.071) in T2 group as compared to control. Feed conversion efficiency was also better in the goats fed on live culture of TDGB 406 (T2). The feeding of tannin degrading bacterial isolate TDGB 406 as probiotic resulted in improved growth performance and feed conversion ratio in goats fed on oak leaves as one of the main roughage source. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  20. Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea)

    International Nuclear Information System (INIS)

    Lapanje, A.; Drobne, D.; Nolde, N.; Valant, J.; Muscet, B.; Leser, V.; Rupnik, M.

    2008-01-01

    The aim of our work was to assess the pollution-induced community tolerance (PICT) of isopod gut microbiota and pollution-induced isopod population tolerance (PIPT). Animals collected from a chronically Hg polluted and an unpolluted location were exposed for 14 days to 10 μg Hg/g dry food under laboratory conditions. The lysosomal membrane stability, hepatopancreas epithelium thickness, feeding activity and animal bacterial gut microbiota composition were determined. The results confirm the hypothesis that the response to short-term Hg exposure differs for animals from the Hg polluted and the unpolluted field locations. The animals and their gut microbiota from the Hg polluted location were less affected by Hg in a short-term feeding experiment than those from the unpolluted environment. We discuss the pollution-induced population tolerance of isopods and their gut microbiota as a measure of effects of long-term environmental pollution. The ecological consequences of such phenomena are also discussed. - Isopods (Porcellio scaber) as well as their bacterial gut community from a mercury-polluted site are mercury tolerant

  1. Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea)

    Energy Technology Data Exchange (ETDEWEB)

    Lapanje, A. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Institute of Physical Biology, Veliko Mlacevo 59, 1290 Grosuplje (Slovenia)], E-mail: ales.lapanje@bf.uni-lj.si; Drobne, D. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Nolde, N. [Institute Jozef Stefan, Department of Environmental Sciences, Jamova 39, 1000 Ljubljana (Slovenia); Valant, J. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Muscet, B. [Institute of Physical Biology, Veliko Mlacevo 59, 1290 Grosuplje (Slovenia); Leser, V. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Rupnik, M. [Institute of Public Health, Prvomajska 1, 2000 Maribor (Slovenia); Faculty of Medicine, University of Maribor, Slomskov trg 15, 2000 Maribor (Slovenia)

    2008-06-15

    The aim of our work was to assess the pollution-induced community tolerance (PICT) of isopod gut microbiota and pollution-induced isopod population tolerance (PIPT). Animals collected from a chronically Hg polluted and an unpolluted location were exposed for 14 days to 10 {mu}g Hg/g dry food under laboratory conditions. The lysosomal membrane stability, hepatopancreas epithelium thickness, feeding activity and animal bacterial gut microbiota composition were determined. The results confirm the hypothesis that the response to short-term Hg exposure differs for animals from the Hg polluted and the unpolluted field locations. The animals and their gut microbiota from the Hg polluted location were less affected by Hg in a short-term feeding experiment than those from the unpolluted environment. We discuss the pollution-induced population tolerance of isopods and their gut microbiota as a measure of effects of long-term environmental pollution. The ecological consequences of such phenomena are also discussed. - Isopods (Porcellio scaber) as well as their bacterial gut community from a mercury-polluted site are mercury tolerant.

  2. Feeding induced by cannabinoids is mediated independently of the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Puspha Sinnayah

    2008-05-01

    Full Text Available Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance.Here, we show that peripherally administered CB1-R antagonist (AM251 or agonist equally suppressed or stimulated feeding respectively in A(y , which lack a functional melanocortin system, and wildtype mice, demonstrating that cannabinoid effects on feeding do not require melanocortin circuitry. CB1-R antagonist or agonist administered into the ventral tegmental area (VTA equally suppressed or stimulated feeding respectively, in both genotypes. In addition, peripheral and central cannabinoid administration similarly induced c-Fos activation in brain sites suggesting mediation via motivational dopaminergic circuitry. Amperometry-detected increases in evoked dopamine (DA release by the CB1-R antagonist in nucleus accumbens slices indicates that AM251 modulates DA release from VTA terminals.Our results demonstrate that the effects of cannabinoids on energy balance are independent of hypothalamic melanocortin circuitry and is primarily driven by the reward system.

  3. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken.

    Science.gov (United States)

    Gao, Pengfei; Ma, Chen; Sun, Zheng; Wang, Lifeng; Huang, Shi; Su, Xiaoquan; Xu, Jian; Zhang, Heping

    2017-08-03

    Reducing antibiotics overuse in animal agriculture is one key in combat against the spread of antibiotic resistance. Probiotics are a potential replacement of antibiotics in animal feed; however, it is not clear whether and how probiotics and antibiotics differ in impact on physiology and microbial ecology of host animals. Host phenotype and fecal microbiota of broilers with either antibiotics or probiotics as feed additive were simultaneously sampled at four time points from birth to slaughter and then compared. Probiotic feeding resulted in a lower feed conversion ratio (FCR) and induced the highest level of immunity response, suggesting greater economic benefits in broiler farming. Probiotic use but not antibiotic use recapitulated the characteristics of age-dependent development of gut microbiota in the control group. The maturation of intestinal microbiota was greatly accelerated by probiotic feeding, yet significantly retarded and eventually delayed by antibiotic feeding. LP-8 stimulated the growth of many intestinal Lactobacillus spp. and led to an altered bacterial correlation network where Lactobacillus spp. are negatively correlated with 14 genera and positively linked with none, yet from the start antibiotic feeding featured a less-organized network where such inter-genera interactions were fewer and weaker. Consistently, microbiota-encoded functions as revealed by metagenome sequencing were highly distinct between the two groups. Thus, "intestinal microbiota maturation index" was proposed to quantitatively compare impact of feed additives on animal microecology. Our results reveal a tremendous potential of probiotics as antibiotics' substitute in poultry farming.

  4. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Science.gov (United States)

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  5. Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis.

    Science.gov (United States)

    Be'er, Avraham; Florin, E-L; Fisher, Carolyn R; Swinney, Harry L; Payne, Shelley M

    2011-01-01

    Natural habitats vary in available nutrients and room for bacteria to grow, but successful colonization can lead to overcrowding and stress. Here we show that competing sibling colonies of Paenibacillus dendritiformis bacteria survive overcrowding by switching between two distinct vegetative phenotypes, motile rods and immotile cocci. Growing colonies of the rod-shaped bacteria produce a toxic protein, Slf, which kills cells of encroaching sibling colonies. However, sublethal concentrations of Slf induce some of the rods to switch to Slf-resistant cocci, which have distinct metabolic and resistance profiles, including resistance to cell wall antibiotics. Unlike dormant spores of P. dendritiformis, the cocci replicate. If cocci encounter conditions that favor rods, they secrete a signaling molecule that induces a switch to rods. Thus, in contrast to persister cells, P. dendritiformis bacteria adapt to changing environmental conditions by inducible and reversible phenotypic switching. In favorable environments, species may face space and nutrient limits due to overcrowding. Bacteria provide an excellent model for analyzing principles underlying overcrowding and regulation of density in nature, since their population dynamics can be easily and accurately assessed under controlled conditions. We describe a newly discovered mechanism for survival of a bacterial population during overcrowding. When competing with sibling colonies, Paenibacillus dendritiformis produces a lethal protein (Slf) that kills cells at the interface of encroaching colonies. Slf also induces a small proportion of the cells to switch from motile, rod-shaped cells to nonmotile, Slf-resistant, vegetative cocci. When crowding is reduced and nutrients are no longer limiting, the bacteria produce a signal that induces cocci to switch back to motile rods, allowing the population to spread. Genes encoding components of this phenotypic switching pathway are widespread among bacterial species, suggesting

  6. Current issues connected with usage of genetically modified crops in production of feed and livestock feeding.

    Science.gov (United States)

    Kwiatek, K; Mazur, M; Sieradzki, Z

    2008-01-01

    Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.

  7. Induction of bacterial blight resistance in elite Indian rice cultivars using gamma-rays and ethyl methanesulfonate

    International Nuclear Information System (INIS)

    Agrawal, P.K.; Gosal, S.S.; Sidhu, G.S.

    2001-01-01

    Rice is the most important cereal crop in the world feeding more than 50 percent of the human population. During the last 30 years, induced mutation breeding has played a significant role in rice breeding programmes. Rice mutants with higher yield, greater tolerance to diseases and pests and other agronomic qualities have been released for commercial cultivation in many countries. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae is the second important disease in Southeast Asia. In the Basmati field sometime the yield loss is up to 100%. Moreover, there is no resistance source available. In Basmati rice, which is known for its quality and aroma. Induction of bacterial blight resistance in Basmati will help in developing high yielding Basmati type cultivars without compromising the quality

  8. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  9. Reactive arthritis induced by bacterial vaginosis: Prevention with an effective treatment

    Directory of Open Access Journals (Sweden)

    Zohreh Aminzadeh

    2013-01-01

    Full Text Available We report a 42-year-old woman with reactive arthritis induced by bacterial vaginosis who presented with oligoarthritis with an additive form, arthralgia, and enthesitis. She hasn′t had a history of diarrhea or dysuria or vaginal secretion, or sexually transmitted infections (STIs. The laboratory tests were normal except for a high erythrocyte sedimentation rate (ESR. Her pelvic examination revealed homogeneous white grey and malodorous vaginal discharge on the vaginal wall and Pap smear and Gram-stained smear of vaginal swab was consistent with bacterial vaginosis. She responded to metronidazole therapy and her six-month follow up hasn′t shown recurrence of arthritis. As reactive arthritis (ReA is a paradigm of a rheumatic disease in which the initiating infectious cause is known, so early use of antimicrobial drugs may prevent the development of musculoskeletal symptoms which are triggered by infections.

  10. Phloem development in nematode-induced feeding sites: The implications of auxin and cytokinin

    Directory of Open Access Journals (Sweden)

    Birgit eAbsmanner

    2013-07-01

    Full Text Available Sedentary plant parasitic nematodes such as root-knot nematodes and cyst nematodes induce giant cells or syncytia, respectively, in their host plant’s roots. These highly specialized structures serve as feeding sites from which exclusively the nematodes withdraw nutrients. While giant cells are symplastically isolated and obtain assimilates by transporter-mediated processes syncytia are massively connected to the phloem by plasmodesmata. To support the feeding sites and the nematode during their development, phloem is induced around syncytia and giant cells. In the case of syncytia the unloading phloem consists of sieve elements and companion cells and in the case of root knots it consists exclusively of sieve elements. We applied immunohistochemistry to identify the cells within the developing phloem that responded to auxin and cytokinin. Both feeding sites themselves did not respond to either hormone. We were able to show that in root knots an auxin response precedes the differentiation of these auxin responsive cells into phloem elements. This process appears to be independent of B-type Arabidopsis response regulators. Using additional markers for tissue identity we provide evidence that around giant cells protophloem is formed and proliferates dramatically. In contrast, the phloem around syncytia responded to both hormones. The presence of companion cells as well as hormone-responsive sieve elements suggests that metaphloem development occurs. The implication of auxin and cytokinin in the further development of the metaphloem is discussed.

  11. Mating in the Closest Living Relatives of Animals Is Induced by a Bacterial Chondroitinase.

    Science.gov (United States)

    Woznica, Arielle; Gerdt, Joseph P; Hulett, Ryan E; Clardy, Jon; King, Nicole

    2017-09-07

    We serendipitously discovered that the marine bacterium Vibrio fischeri induces sexual reproduction in one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta. Although bacteria influence everything from nutrition and metabolism to cell biology and development in eukaryotes, bacterial regulation of eukaryotic mating was unexpected. Here, we show that a single V. fischeri protein, the previously uncharacterized EroS, fully recapitulates the aphrodisiac-like activity of live V. fischeri. EroS is a chondroitin lyase; although its substrate, chondroitin sulfate, was previously thought to be an animal synapomorphy, we demonstrate that S. rosetta produces chondroitin sulfate and thus extend the ancestry of this important glycosaminoglycan to the premetazoan era. Finally, we show that V. fischeri, purified EroS, and other bacterial chondroitin lyases induce S. rosetta mating at environmentally relevant concentrations, suggesting that bacteria likely regulate choanoflagellate mating in nature. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Temporal relationships exist between cecum, ileum and litter bacterial microbiomes in a commercial turkey flock, and subtherapeutic penicillin treatment impacts ileum bacterial community establishment

    Directory of Open Access Journals (Sweden)

    Jessica L Danzeisen

    2015-11-01

    Full Text Available Gut health is paramount for commercial poultry production, and improved methods to assess gut health are critically needed to better understand how the avian gastrointestinal tract matures over time. One important aspect of gut health is the totality of bacterial populations inhabiting different sites of the avian gastrointestinal tract, and associations of these populations with the poultry farm environment, since these bacteria are thought to drive metabolism and prime the developing host immune system. In this study, a single flock of commercial turkeys was followed over the course of twelve weeks to examine bacterial microbiome inhabiting the ceca, ileum, and corresponding poultry litter. Furthermore, the effects of low-dose, growth-promoting penicillin treatment (50 g/ton in feed on the ileum bacterial microbiome were also examined during the early brood period. The cecum and ileum bacterial communities of turkeys were distinct, yet shifted in parallel to one another over time during bird maturation. Corresponding poultry litter was also distinct yet more closely represented the ileal bacterial populations than cecal bacterial populations, and also changed parallel to ileum bacterial populations over time. Penicillin applied at low dose in feed significantly enhanced early weight gain in commercial poults, and this correlated with predictable shifts in the ileum bacterial populations in control versus treatment groups. Overall, this study identified the dynamics of the turkey gastrointestinal microbiome during development, correlations between bacterial populations in the gastrointestinal tract and the litter environment, and the impact of low-dose penicillin on modulation of bacterial communities in the ileum. Such modulations provide a target for alternatives to low-dose antibiotics.

  13. Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition

    DEFF Research Database (Denmark)

    Bjørnvad, Charlotte R.; Thymann, Thomas; Deutz, Nicolaas E.

    2008-01-01

    Preterm neonates have an immature gut and metabolism and may benefit from total parenteral nutrition (TPN) before enteral food is introduced. Conversely,delayed enteral feeding may inhibit gut maturation and sensitize to necrotizing enterocolitis (NEC). Intestinal mass and NEC lesions were first...... formula after TPN. Conversely, colostrum milk diets improve gut maturation and NEC resistance in preterm pigs subjected to a few days of TPN after birth....

  14. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  15. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    Science.gov (United States)

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  16. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens.

    Science.gov (United States)

    Haney, Cara H; Wiesmann, Christina L; Shapiro, Lori R; Melnyk, Ryan A; O'Sullivan, Lucy R; Khorasani, Sophie; Xiao, Li; Han, Jiatong; Bush, Jenifer; Carrillo, Juli; Pierce, Naomi E; Ausubel, Frederick M

    2017-10-31

    Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture. © 2017 John Wiley & Sons Ltd.

  17. Aflatoxins Associated with Storage Fungi in Fish Feed

    African Journals Online (AJOL)

    Timothy Ademakinwa

    This study investigates storage fungi and aflatoxin in fish feed stored under three different ... secondary metabolites of fungi which are formed ... Department of Marine Sciences, Faculty of ... antibiotic is to inhibit the growth of any bacterial.

  18. Disruption of bacterial balance in the gut of Portunus trituberculatus induced by Vibrio alginolyticus infection

    Science.gov (United States)

    Xia, Mengjie; Pei, Feng; Mu, Changkao; Ye, Yangfang; Wang, Chunlin

    2018-04-01

    Gut microbiota impacts the health of crustaceans. Vibrio alginolyticus is a main causative pathogen that induces the vibriosis in farmed swimming crabs, Portunus trituberculatus. However, it remains unknown whether gut bacteria perform functions during the progression of vibriosis. In this study, 16S rRNA gene amplicon sequencing was used to investigate temporal alteration of gut bacterial community in swimming crabs in response to 72-h V. alginolyticus challenge. Our results show that V. alginolyticus infection resulted in dynamic changes of bacterial community composition in swimming crabs. Such changes were highlighted by the overwhelming overabundance of Vibrio and a signifi cant fluctuation in the gut bacteria including the bacteria with high relative abundance and especially those with low relative abundance. These findings reveal that crab vibriosis gradually develops with the infection time of V. alginolyticus and tightly relates to the dysbiosis of gut bacterial community structure. This work contributes to our appreciation of the importance of the balance of gut bacterial community structure in maintaining the health of crustaceans.

  19. Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens

    Directory of Open Access Journals (Sweden)

    Lu Yiming

    2011-03-01

    Full Text Available Abstract Background The Ahringer C. elegans RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1 mis-annotation (the clone with the retired gene name should be remapped to the actual target gene; 2 nonspecific PCR amplification; 3 cross-RNAi; 4 mis-operation such as sample loading error, etc. Results Here we performed a reliability analysis on the Ahringer C. elegans RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3% of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54% bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs. The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (http://biocompute.bmi.ac.cn/CelRNAi/ was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies. Conclusions Because of the potential unreliability of the Ahringer C. elegans RNAi feeding library, we strongly suggest the user examine

  20. Modelling and Analysis of the Feeding Regimen Induced Entrainment of Hepatocyte Circadian Oscillators Using Petri Nets

    Science.gov (United States)

    Tareen, Samar Hayat Khan; Ahmad, Jamil

    2015-01-01

    Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system. PMID:25789928

  1. Modelling and analysis of the feeding regimen induced entrainment of hepatocyte circadian oscillators using petri nets.

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    Full Text Available Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.

  2. Investigation of the bacterial communities associated with females of Lutzomyia sand fly species from South America.

    Directory of Open Access Journals (Sweden)

    Mauricio R V Sant'Anna

    Full Text Available Phlebotomine sand flies are vectors of Leishmania that are acquired by the female sand fly during blood feeding on an infected mammal. Leishmania parasites develop exclusively in the gut lumen during their residence in the insect before transmission to a suitable host during the next blood feed. Female phlebotomine sand flies are blood feeding insects but their life style of visiting plants as well as animals, and the propensity for larvae to feed on detritus including animal faeces means that the insect host and parasite are exposed to a range of microorganisms. Thus, the sand fly microbiota may interact with the developing Leishmania population in the gut. The aim of the study was to investigate and identify the bacterial diversity associated with wild adult female Lutzomyia sand flies from different geographical locations in the New World. The bacterial phylotypes recovered from 16S rRNA gene clone libraries obtained from wild caught adult female Lutzomyia sand flies were estimated from direct band sequencing after denaturing gradient gel electrophoresis of bacterial 16 rRNA gene fragments. These results confirm that the Lutzomyia sand flies contain a limited array of bacterial phylotypes across several divisions. Several potential plant-related bacterial sequences were detected including Erwinia sp. and putative Ralstonia sp. from two sand fly species sampled from 3 geographically separated regions in Brazil. Identification of putative human pathogens also demonstrated the potential for sand flies to act as vectors of bacterial pathogens of medical importance in addition to their role in Leishmania transmission.

  3. Modulation of Intestinal Barrier and Bacterial Endotoxin Production Contributes to the Beneficial Effect of Nicotinic Acid on Alcohol-Induced Endotoxemia and Hepatic Inflammation in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhong

    2015-10-01

    Full Text Available Alcohol consumption causes nicotinic acid deficiency. The present study was undertaken to determine whether dietary nicotinic acid supplementation provides beneficial effects on alcohol-induced endotoxin signaling and the possible mechanisms at the gut-liver axis. Male Sprague-Dawley rats were pair-fed the Lieber-DeCarli liquid diets containing ethanol or isocaloric maltose dextrin for eight weeks, with or without dietary supplementation with 750 mg/liter nicotinic acid. Chronic alcohol feeding elevated the plasma endotoxin level and activated hepatic endotoxin signaling cascade, which were attenuated by nicotinic acid supplementation. Alcohol consumption remarkably decreased the mRNA levels of claudin-1, claudin-5, and ZO-1 in the distal intestine, whereas nicotinic acid significantly up-regulated these genes. The concentrations of endotoxin, ethanol, and acetaldehyde in the intestinal contents were increased by alcohol exposure, and niacin supplementation reduced the intestinal endotoxin and acetaldehyde levels. Nicotinic acid supplementation upregulated the intestinal genes involved in aldehyde detoxification via transcriptional regulation. These results demonstrate that modulation of the intestinal barrier function and bacterial endotoxin production accounts for the inhibitory effects of nicotinic acid on alcohol-induced endotoxemia and hepatic inflammation.

  4. Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae).

    Science.gov (United States)

    Dias, Graciela G; Ferreira, Bruno G; Moreira, Gilson R P; Isaias, Rosy M S

    2013-03-01

    Galling sap-feeding insects are presumed to cause only minor changes in host plant tissues, because they usually do not require development of nutritive tissues for their own use. This premise was examined through comparison of the histometry, cytometry and anatomical development of non-galled leaves and galls of Calophya duvauae (Scott) (Hemiptera: Calophyidae) on Schinus polygamus (Cav.) Cabrera (Anacardiaceae). Cell fates changed from non-galled leaves to galls during the course of tissue differentiation. C. duvauae caused changes in dermal, ground, and vascular systems of the leaves of S. polygamus. Its feeding activity induced the homogenization of the parenchyma, and the neoformation of vascular bundles and trichomes. The histometric and cytometric data revealed compensatory effects of hyperplasia and cell hypertrophy in the epidermis, with hyperplasia predominating in the adaxial epidermis. There was a balance between these processes in the other tissues. Thus, we found major differences between the developmental pathways of non-galled leaves and galls. These changes were associated with phenotypic alterations related to shelter and appropriate microenvironmental conditions for the gall inducer. The nondifferentiation of a typical nutritive tissue in this case was compared to other non-phylogenetically related arthropod gall systems, and is suggested to result from convergence associated with the piercing feeding apparatus of the corresponding gall-inducer.

  5. A bacterial cocaine esterase protects against cocaine-induced epileptogenic activity and lethality.

    Science.gov (United States)

    Jutkiewicz, Emily M; Baladi, Michelle G; Cooper, Ziva D; Narasimhan, Diwahar; Sunahara, Roger K; Woods, James H

    2009-09-01

    Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (-)-2beta-carbomethoxy-3beta-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted.

  6. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  7. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency.

    Science.gov (United States)

    Guan, Le Luo; Nkrumah, Joshua D; Basarab, John A; Moore, Stephen S

    2008-11-01

    Linkage of rumen microbial structure to host phenotypical traits may enhance the understanding of host-microbial interactions in livestock species. This study used culture-independent PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the microbial profiles in the rumen of cattle differing in feed efficiency. The analysis of detectable bacterial PCR-DGGE profiles showed that the profiles generated from efficient steers clustered together and were clearly separated from those obtained from inefficient steers, indicating that specific bacterial groups may only inhabit in efficient steers. In addition, the bacterial profiles were more likely clustered within a certain breed, suggesting that host genetics may play an important role in rumen microbial structure. The correlations between the concentrations of volatile fatty acids and feed efficiency traits were also observed. Significantly higher concentrations of butyrate (P < 0.001) and valerate (P = 0.006) were detected in the efficient steers. Our results revealed potential associations between the detectable rumen microbiota and its fermentation parameters with the feed efficiency of cattle.

  8. Incorporation of 15N and 14C into amino acids of bacterial and protozoal protein in the rumen of the cow on urea-rich feed

    Directory of Open Access Journals (Sweden)

    Eeva-Liisa Syväoja

    1979-01-01

    Full Text Available The utilization of the non-protein nitrogen and carbon of feed by rumen microorganisms for the synthesis of protein was studied by administering [U-14C] sucrose and 15NH4Cl to a cow on urea-rich, low-protein feed. By studying the labelling of the protozoa and bacteria and the amino acids isolated from them at intervals up to 48 hours afterwards, it was found that the bacteria synthesized amino acids from nonprotein nitrogen much more rapidly and effectively than the protozoa. Also the labelling of the carbon in the amino acids of the bacteria was more rapid than in the protozoa. In both protozoa and bacteria there was intracellular storage of [14C] sucrose. Of the bacterial amino acids the most vigorous 14C labelling was found in Glu, Arg, Lys, Val and Ala and the weakest labelling in Gly, His and Ser. Of the protozoal amino acids Ala, Asp, Glu, Leu and Lys had the highest labelling and Pro, Gly, His and Phe the lowest. In the bacterial protein the labelling of Pro and Arg was ten times that of the corresponding protozoal amino acids, and Asp, Ser and Ala four times. After the 15NH4Cl dose the half-life of 15N in the rumen fluid was estimated to be 3.3 h. Labelled ammonium nitrogen was about 11 —15 % of the bacterial nitrogen and 2—3 % of the protozoal nitrogen after 1 h. Of the protozoal amino acids Ala, Glu, Val, Asp and Met had the most vigorous labelling, and of the bacterial amino acids Glu, Asp, Ser, He and Tyr. The slowest incorporation of ammonium nitrogen was into His, Pro, Arg and Gly in both bacteria and protozoa. The labelling of the bacterial amino acids was approximately 7—8 times more vigorous than that of the protozoal amino acids. The labelling of Ala was only 4 times, and that of Val, Met and Glu 5 times more vigorous than with protozoal protein. The pathway of histidine synthesis seemed to be restricted in both bacteria and protozoa and therefore may be a limiting factor in protein synthesis, particularly in cows fed

  9. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    Directory of Open Access Journals (Sweden)

    James Angus Chandler

    2014-07-01

    Full Text Available Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila.

  10. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Heegaard, Peter M. H.; Thymann, Thomas

    2014-01-01

    Background & aims Only few hours of formula feeding may induce proinflammatory responses and predispose to necrotizing enterocolitis (NEC) in preterm pigs. We hypothesized that bovine colostrum, rich in bioactive factors, would improve intestinal function in preterm pigs following an initial...... exposure to formula feeding after some days of total parenteral nutrition (TPN). Methods After receiving TPN for 2 days, preterm pigs were fed formula (FORM, n = 14), bovine colostrum (COLOS, n = 6), or formula (6 h) followed by bovine colostrum (FCOLOS, n = 14). Intestinal lesions, function, and structure...... and FCOLOS pigs, relative to FORM pigs. Intestinal gene expression of serum amyloid A, IL-1β, -6 and -8, and bacterial abundance, correlated positively with NEC severity of the distal small intestine. Conclusions Bovine colostrum restores intestinal function after initial formula-induced inflammation...

  11. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control

    KAUST Repository

    Araú jo, Paula A.; Miller, Daniel J.; Correia, Patrí cia B.; van Loosdrecht, Mark C.M.; Kruithof, Joop C.; Freeman, Benny Dean; Paul, Donald; Vrouwenvelder, Johannes S.

    2012-01-01

    surface modification agents expected to resist protein and bacterial adhesion, while copper feed spacer coatings and biocides infused in feed spacers are expected to restrict biological growth. Our studies showed that polydopamine and polydopamine-. g

  12. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.

    Science.gov (United States)

    Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal

    2016-06-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative

  13. Antibiotic-induced change of bacterial communities associated with the copepod Nitocra spinipes.

    Directory of Open Access Journals (Sweden)

    Anna Edlund

    Full Text Available Environmental pressures, such as physical factors, diet and contaminants may affect interactions between microbial symbionts and their multicellular hosts. Despite obvious relevance, effects of antimicrobial contaminants on host-symbiont relations in non-target aquatic organisms are largely unknown. We show that exposure to antibiotics had negative effects on survival and juvenile development of the copepod Nitocra spinipes and caused significant alterations in copepod-associated bacterial communities. The significant positive correlations between indices of copepod development and bacterial diversity indicate that disruption of the microflora was likely to be an important factor behind retarded juvenile development in the experimental animals. Moreover, as evidenced by ribotype distribution in the bacterial clone libraries, the exposure to antibiotics caused a shift in dominance from Betaproteobacteria to Cardinium bacteria; the latter have been shown to cause reproductive manipulations in various terrestrial arthropods. Thus, in addition to providing evidence that the antibiotic-induced perturbation of the microbial community associates with reductions in fitness-related traits of the host, this study is the first record of a copepod serving as a host for endosymbiotic Cardinium. Taken together, our results suggest that (1 antimicrobial substances and possibly other stressors can affect micobiome and symbiont-mediated interactions in copepods and other hosts, and (2 Cardinium endosymbionts may occur in other copepods and affect reproduction of their hosts.

  14. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  15. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass.

    Science.gov (United States)

    Osimani, Andrea; Milanović, Vesna; Cardinali, Federica; Garofalo, Cristiana; Clementi, Francesca; Pasquini, Marina; Riolo, Paola; Ruschioni, Sara; Isidoro, Nunzio; Loreto, Nino; Franciosi, Elena; Tuohy, Kieran; Petruzzelli, Annalisa; Foglini, Martina; Gabucci, Claudia; Tonucci, Franco; Aquilanti, Lucia

    2018-05-02

    Tenebrio molitor represents one of the most popular species used for the large-scale conversion of plant biomass into protein and is characterized by high nutritional value. In the present laboratory study, the bacterial biota characterizing a pilot production chain of fresh T. molitor larvae was investigated. To this end, different batches of fresh mealworm larvae, their feeding substrate (wheatmeal) and frass were analyzed by viable microbial counts, PCR-DGGE and Illumina sequencing. Moreover, the occurrence of Coxiella burnetii, Pseudomonas aeruginosa and Shiga toxin-producing E. coli (STEC) was assessed through qualitative real-time PCR assays. Microbial viable counts highlighted low microbial contamination of the wheatmeal, whereas larvae and frass were characterized by high loads of Enterobacteriaceae, lactic acid bacteria, and several species of mesophilic aerobes. Spore-forming bacteria were detected to a lesser extent in all the samples. The combined molecular approach used to profile the microbiota confirmed the low microbial contamination of wheatmeal and allowed the detection of Enterobacter spp., Erwinia spp., Enterococcus spp. and Lactococcus spp. as dominant genera in both larvae and frass. Moreover, Klebsiella spp., Pantoea spp., and Xenorhabdus spp. were found to be in the minority. Entomoplasmatales (including Spiroplasma spp.) constituted a major fraction of the microbiota of one batch of larvae. From the real-time PCR assays, no sample was positive for either C. burnetii or STEC, whereas P. aeruginosa was detected in one sample of frass. Based on the overall results, two sources of microbial contamination were hypothesized, namely feeding with wheatmeal and vertical transmission of microorganisms from mother to offspring. Since mealworms are expected to be eaten as a whole, the overall outcomes collected in this laboratory study discourage the consumption of fresh mealworm larvae. Moreover, microbial loads and the absence of potential pathogens

  16. Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo – a new animal model

    Directory of Open Access Journals (Sweden)

    Hafner Mathias

    2002-08-01

    Full Text Available Abstract Background Existing animal models provide only indirect information about the pathogenesis of infections caused by indigenous gastrointestinal microflora and the kinetics of bacterial translocation. The aim of this study was to develop a novel animal model to assess bacterial translocation and intestinal barrier function in vivo. Methods In anaesthetized male Wistar rats, 0.5 ml of a suspension of green fluorescent protein-transfected E. coli was administered by intraluminal injection in a model of small bowel obstruction. Animals were randomly subjected to non-ischemic or ischemic bowel obstruction. Ischemia was induced by selective clamping of the terminal mesenteric vessels feeding the obstructed bowel loop. Time intervals necessary for translocation of E. coli into the submucosal stroma and the muscularis propria was assessed using intravital microscopy. Results Bacterial translocation into the submucosa and muscularis propria took a mean of 36 ± 8 min and 80 ± 10 min, respectively, in small bowel obstruction. Intestinal ischemia significantly accelerated bacterial translocation into the submucosa (11 ± 5 min, p E. coli were visible in frozen sections of small bowel, mesentery, liver and spleen taken two hours after E. coli administration. Conclusions Intravital microscopy of fluorescent bacteria is a novel approach to study bacterial translocation in vivo. We have applied this technique to define minimal bacterial transit time as a functional parameter of intestinal barrier function.

  17. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization.

    Directory of Open Access Journals (Sweden)

    Mohamed Youssef Banora

    2011-12-01

    Full Text Available Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2 and two γ-tubulin complex proteins genes (GCP3 and GCP4 are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.

  18. Contribution of endogenous and exogenous damage to the total radiation-induced damage in the bacterial spore

    International Nuclear Information System (INIS)

    Jacobs, G.P.; Samuni, A.; Czapski, G.

    1980-01-01

    Radical scavengers such as polyethylene glycol 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous damage to the total radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous

  19. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  20. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    Science.gov (United States)

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  1. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs

    NARCIS (Netherlands)

    Winsen, van R.L.; Urlings, B.A.P.; Lipman, L.J.A.; Snijders, J.M.A.; Keuzenkamp, D.; Verheijden, J.H.M.; Knapen, van F.

    2001-01-01

    An in vivo experiment was performed with pigs to study the inhibitory effect of fermented feed on the bacterial population of the gastrointestinal tract. Results demonstrated a significant positive correlation between pH and lactobacilli in the stomach contents of pigs in dry feed as well as in the

  2. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis.

    Science.gov (United States)

    Fozo, E M; Rucks, E A

    2016-01-01

    In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora. © 2016 Elsevier Ltd All rights reserved.

  3. Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, . LX-20 as a Potential Feed Enzyme Source

    Directory of Open Access Journals (Sweden)

    Inkyung Park

    2012-06-01

    Full Text Available An Antarctic bacterial isolate displaying extracellular α-galactosidic activity was named Paenibacillus sp. LX-20 based on 16S rRNA gene sequence analysis. Optimal activity for the LX-20 α-galactosidase occurred at pH 6.0–6.5 and 45°C. The enzyme immobilized on the smart polymer Eudragit L-100 retained 70% of its original activity after incubation for 30 min at 50°C, while the free enzyme retained 58% of activity. The enzyme had relatively high specificity for α-D-galactosides such as p-nitrophenyl-α-galactopyranoside, melibiose, raffinose and stachyose, and was resistant to some proteases such as trypsin, pancreatin and pronase. Enzyme activity was almost completely inhibited by Ag+, Hg2+, Cu2+, and sodium dodecyl sulfate, but activity was not affected by β-mercaptoethanol or EDTA. LX-20 α-galactosidase may be potentially useful as an additive for soybean processing in the feed industry.

  4. DGGE and 16S rDNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice.

    Science.gov (United States)

    Wang, Hai-Feng; Zhu, Wei-Yun; Yao, Wen; Liu, Jian-Xin

    2007-01-01

    The effect of feeding whole crop rice (WCR) to growing-finishing pigs at three levels 0 (Control), 10% and 20% on bacterial communities in colon content and feces was analyzed using 16S rDNA-based techniques. Amplicons of the V6-V8 variable regions of bacterial 16S rDNA were analyzed by denaturing gradient gel electrophoresis (DGGE), cloning and sequencing. The total number of DGGE bands and Shannon index of diversity for feces samples were higher in the pigs fed WCR-containing diets compared with the control, while a decrease trend was observed in these two parameters for colon content samples with the inclusion of WCR in the diets, although statistical differences were not significant. In general, the intestinal bacterial communities were prone to form the cluster for pig fed the same diet. Feeding of WCR induced the presence of special DGGE band with the sequence showing 99% similarity to that of Lactobacillus reuteri (DSM 20016T). The sequences of seven amplicons in total nine clones showed less than 97% similarity with those of previously identified or unidentified bacteria, suggesting that most bacteria in gastrointestinal tracts have not been cultured or identified. The results suggest that the diet containing WCR did not affect the major groups of bacteria, but stimulated the growth of L. reuteri-like species.

  5. Lactobacillus paracasei feeding improves the control of secondary experimental meningococcal infection in flu-infected mice.

    Science.gov (United States)

    Belkacem, Nouria; Bourdet-Sicard, Raphaëlle; Taha, Muhamed-Kkeir

    2018-04-10

    The use of probiotics to improve anti-microbial defence, such as for influenza infections, is increasingly recommended. However, no data are available on the effect of probiotics on flu-associated secondary bacterial infections. There is strong evidence of a spatiotemporal association between influenza virus infection and invasive Neisseria meningitidis. We thus investigated the effect of feeding mice Lactobacillus paracasei CNCM I-1518 in a mouse model of sequential influenza-meningococcal infection. We intranasally infected BALB/c mice with a strain of influenza A virus (IAV) H3N2 that was first adapted to mice. Seven days later, a secondary bacterial infection was induced by intranasal administration of bioluminescent N. meningitidis. During the experiment, mice orally received either L. paracasei CNCM I-1518 or PBS as a control. The effect of L. paracasei administration on secondary bacterial infection by N. meningitidis was evaluated. Oral consumption of L. paracasei CNCM I-1518 reduced the weight loss of infected mice and lowered the bioluminescent signal of infecting meningococci. This improvement was associated with higher recruitment of inflammatory myeloid cells, such as interstitial monocytes and dendritic cells, to the lungs. Our data highlight the role of the gut-lung axis. L. paracasei CNCM I-1518 may boost the defence against IAV infection and secondary bacterial infection, which should be further studied and validated in clinical trials.

  6. Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study.

    Science.gov (United States)

    Dani, Carlo; Biadaioli, Roberto; Bertini, Giovanna; Martelli, Elena; Rubaltelli, Firmino F

    2002-08-01

    It has been suggested that probiotics can reduce the overgrowth of pathogens in the bowels of preterm infants and contribute to the reduction of the incidence of nosocomial infections in neonatal intensive care units (NICUs). The purpose of this study was to evaluate the effectiveness of Lactobacillus GG supplementation in reducing the incidence of urinary tract infections (UTIs), bacterial sepsis and necrotizing enterocolitis (NEC) in preterm infants. A double-blind study was conducted in 12 Italian NICUs. Newborn infants with a gestational age probiotics group (n = 295) and the placebo group (n = 290) exhibited similar clinical characteristics. The duration of Lactobacillus GG and placebo supplementation was 47.3 +/- 26.0 and 48.2 +/- 24.3 days, respectively. Although UTIs (3.4 vs. 5.8%) and NEC (1.4 vs. 2.7%) were found less frequently in the probiotic group compared to the control group, these differences were not significant. Bacterial sepsis was more frequent in the probiotics group (4.4%, n = 11) than in the placebo group (3.8%, n = 9), but the difference was not significant. Seven days of Lactobacillus GG supplementation starting with the first feed is not effective in reducing the incidence of UTIs, NEC and sepsis in preterm infants. Further studies are required to confirm our results in lower birthweight populations. Copyright 2002 S. Karger AG, Basel

  7. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.; van Steen, M.S.H.; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M.; Picioreanu, C.

    2014-01-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic

  8. The contribution of endogenous and exogenous effects to radiation-induced damage in the bacterial spore

    International Nuclear Information System (INIS)

    Jacobs, G.P.; Samuni, A.; Czapski, G.

    1985-01-01

    Radical scavengers such as polyethylene glycol 400 and 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous effects to the gamma-radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous both in the presence of 1 atmosphere of oxygen, and in anoxia. (author)

  9. Ghrelin signaling in the ventral tegmental area mediates both reward-based feeding and fasting-induced hyperphagia on high-fat diet.

    Science.gov (United States)

    Wei, X J; Sun, B; Chen, K; Lv, B; Luo, X; Yan, J Q

    2015-08-06

    Ghrelin is a potent orexigenic hormone that acts in the central nervous system to stimulate food intake via the growth hormone secretagogue receptor (GHSR) that is abundantly expressed in the ventral tegmental area (VTA). Not only does ghrelin modulate feeding behavior via a homeostatic mechanism, but numerous studies have identified ghrelin as a key regulator of reward-based hedonic feeding behaviors. Nutritional states influence ghrelin and GHSR expression as well as the behavioral sensitivity to reward-inducing stimuli. In the current study, we examined the role of ghrelin at the VTA level in food intake in two different nutritional states, satiety and hunger, by using a restricted feeding model. In this model, rats were conditioned to a daily 3-h (h) feeding session on standard chow for 10days and a high-fat diet (HFD) was supplied either in the third hour after 2h of chow diet intake, or at the beginning of a daily meal on the test day. We found that intra-VTA microinjection of 1, 2, and 4μg of ghrelin, induced a dose-related increase of 1h of reward-based feeding on HFD in sated rats, as well as a 24-h body weight gain. The overconsumption stimulated by ghrelin could be attenuated by 10μg of direct infusion of the ghrelin receptor antagonist D-Lys3-GHRP-6 into the VTA. Moreover, our data showed that the injection of 1, 2, and 4μg of ghrelin in the VTA, enhanced fasting-induced hyperphagia on HFD in a dose-related manner following a 21-h food restriction as well as a 24-h body weight gain. Conversely, hyperphagia on HFD that is potentiated by ghrelin could be blocked by pretreatment with a 10-μg D-Lys3-GHRP-6 intra-VTA microinjection. Collectively, these data demonstrate that ghrelin signaling at the VTA level mediates both reward-based eating and fasting-induced hyperphagia and provides a primary target for the control of the intake of rewarding food. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Inhibition of radiation-induced transformation in vitro by bacterial endotoxins

    International Nuclear Information System (INIS)

    Carew, J.A.; Collins, M.F.; Kennedy, A.R.

    1988-01-01

    Bacterial endotoxins (lipopolysaccharides) were found to suppress X-ray-induced malignant transformation of C3H/10T1/2 cells. Endotoxins were effective if present either throughout the 6-week transformation assay period, or for the final 4-week phase, but not when present only for the initial 2-week phase. Neither growth nor survival of C3H/10T1/2 cells, or a radiation-transformed cell line derived from them, were affected by endotoxins. Also, the endotoxins did not affect the formation of foci by the radiation transformed cells when these cells were co-cultured with untransformed cells. These results suggest that endotoxins exert their effect directly upon the transformation process itself, perhaps at a 'late' step in the conversion of an untransformed to a transformed cell. (author)

  11. Inhibition of radiation-induced transformation in vitro by bacterial endotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Carew, J A; Collins, M F; Kennedy, A R

    1988-05-01

    Bacterial endotoxins (lipopolysaccharides) were found to suppress X-ray-induced malignant transformation of C3H/10T1/2 cells. Endotoxins were effective if present either throughout the 6-week transformation assay period, or for the final 4-week phase, but not when present only for the initial 2-week phase. Neither growth nor survival of C3H/10T1/2 cells, or a radiation-transformed cell line derived from them, were affected by endotoxins. Also, the endotoxins did not affect the formation of foci by the radiation transformed cells when these cells were co-cultured with untransformed cells. These results suggest that endotoxins exert their effect directly upon the transformation process itself, perhaps at a 'late' step in the conversion of an untransformed to a transformed cell.

  12. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats.

    Science.gov (United States)

    Moubarz, Gehan; Embaby, Mohamed A; Doleib, Nada M; Taha, Mona M

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes.

  13. Autoantibodies to αS1-Casein Are Induced by Breast-Feeding

    Science.gov (United States)

    Petermann, Klaudia; Vordenbäumen, Stefan; Maas, Ruth; Braukmann, Achim; Bleck, Ellen; Saenger, Thorsten; Schneider, Matthias; Jose, Joachim

    2012-01-01

    Background The generation of antibodies is impaired in newborns due to an immature immune system and reduced exposure to pathogens due to maternally derived antibodies and placental functions. During nursing, the immune system of newborns is challenged with multiple milk-derived proteins. Amongst them, caseins are the main constituent. In particular, human αS1-casein (CSN1S1) was recently shown to possess immunomodulatory properties. We were thus interested to determine if auto-antibodies to CSN1S1 are induced by breast-feeding and may be sustained into adulthood. Methods 62 sera of healthy adult individuals who were (n = 37) or were not (n = 25) breast-fed against human CSN1S1 were investigated by a new SD (surface display)-ELISA. For cross-checking, these sera were tested for anti Epstein-Barr virus (EBV) antibodies by a commercial ELISA. Results IgG-antibodies were predominantly detected in individuals who had been nursed. At a cut-off value of 0.4, the SD-ELISA identified individuals with a history of having been breast-fed with a sensitivity of 80% and a specificity of 92%. Under these conditions, 35 out of 37 sera from healthy donors, who where breast-fed, reacted positively but only 5 sera of the 25 donors who were not breast-fed. The duration of breast-feeding was of no consequence to the antibody reaction as some healthy donors were only short term breast-fed (5 days minimum until 6 weeks maximum), but exhibited significant serum reaction against human CSN1S1 nonetheless. Conclusion We postulate that human CSN1S1 is an autoantigen. The antigenicity is orally determined, caused by breast-feeding, and sustained into adulthood. PMID:22496735

  14. ST2 negatively regulates TLR2 signaling, but is not required for bacterial lipoprotein-induced tolerance.

    LENUS (Irish Health Repository)

    Liu, Jinghua

    2010-05-15

    Activation of TLR signaling is critical for host innate immunity against bacterial infection. Previous studies reported that the ST2 receptor, a member of the Toll\\/IL-1 receptor superfamily, functions as a negative regulator of TLR4 signaling and maintains LPS tolerance. However, it is undetermined whether ST2 negatively regulates TLR2 signaling and furthermore, whether a TLR2 agonist, bacterial lipoprotein (BLP)-induced tolerance is dependent on ST2. In this study, we show that BLP stimulation-induced production of proinflammatory cytokines and immunocomplex formation of TLR2-MyD88 and MyD88-IL-1R-associated kinase (IRAK) were significantly enhanced in ST2-deficient macrophages compared with those in wild-type controls. Furthermore, overexpression of ST2 dose-dependently attenuated BLP-induced NF-kappaB activation, suggesting a negative regulatory role of ST2 in TLR2 signaling. A moderate but significantly attenuated production of TNF-alpha and IL-6 on a second BLP stimulation was observed in BLP-pretreated, ST2-deficient macrophages, which is associated with substantially reduced IRAK-1 protein expression and downregulated TLR2-MyD88 and MyD88-IRAK immunocomplex formation. ST2-deficient mice, when pretreated with a nonlethal dose of BLP, benefitted from an improved survival against a subsequent lethal BLP challenge, indicating BLP tolerance develops in the absence of the ST2 receptor. Taken together, our results demonstrate that ST2 acts as a negative regulator of TLR2 signaling, but is not required for BLP-induced tolerance.

  15. Bacterial Feeders, the Nematode Caenorhabditis elegans and the Flagellate Cercomonas longicauda, have different Effects on Outcome of Competition among the Pseudomonas Biocontrol Strains CHA0 and DSS73

    DEFF Research Database (Denmark)

    Pedersen, Annette; Nybroe, Ole; Winding, Anne

    2009-01-01

    How bacterial feeding fauna affects colonization and survival of bacteria in soil is not well understood, which constrains the applicability of bacterial inoculants in agriculture. This study aimed to unravel how food quality of bacteria and bacterial feeders with different feeding habits (the......50090 or one of two biocontrol strains P. fluorescens CHA0 or Pseudomonas sp. DSS73) or combinations of two bacterial strains. DSM50090 is a suitable food bacterium, DSS73 is of intermediate food quality, and CHA0 is inedible to the bacterial feeders. Bacterial and protozoan cell numbers were measured...... predation pressure. Hence, the results suggested that the outcome of competition among bacteria depended on their ability to cope with the prevailing bacterial predator....

  16. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  17. Changes in microbial water quality in RAS following altered feed loading

    DEFF Research Database (Denmark)

    Rojas-Tirado, Paula Andrea; Pedersen, Per Bovbjerg; Vadstein, Olav

    2018-01-01

    and inorganic nutrients available for microbial growth in RAS. How these nutrient inputs affect and regulate bacteria in RAS water is, however, unclear. To investigate this relationship and the associated water quality dynamics, the effects of altered feed loading on microbial water quality in RAS was studied....... The study included six independent, identical pilot-scale RAS, each with a total volume of 1.7 m3 (make-up water: 80 L/day) stocked with juvenile rainbow trout (Oncorhynchus mykiss). All systems had been operating with constant and identical feed loading of 3.13 kg feed/m3 make-up water for a period......Intensive recirculating aquaculture systems (RAS) with its hyper-eutrophic water offer ideal conditions for bacterial growth, abundance and activity, potentially affecting fish and system performance. Feed composition and feed loading in particular will have significant impact on organic...

  18. Influences on the Emissions of Bacterial Plasmas Generated through Nanosecond Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Malenfant, Dylan J.

    In the past decade, laser-induced breakdown spectroscopy has been shown to provide compositional data that can be used for discrimination between bacterial specimens at the strain level. This work demonstrates the viability of this technique in a clinical setting. Studies were conducted to investigate the impact of emissions generated by a nitrocellulose filter paper background on the classification of four species: E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa. Limits of detection were determined as 48+/-12 kCFU per ablation event for new mounting procedures using standard diagnostic laboratory techniques, and a device for centrifuge filtration was designed for sampling from low-titer bacterial suspensions. Plasma emissions from samples grown at biological levels of magnesium, zinc, and glucose were shown not to deviate from controls. A limit of detection for environmental zinc was found to be 11 ppm. Discrimination with heat-killed samples was demonstrated, providing a sterile diagnostic environment.

  19. An early feeding regime and a high-density amino acid diet on growth performance of broilers under subclinical necrotic enteritis challenge

    Directory of Open Access Journals (Sweden)

    Chake Keerqin

    2017-03-01

    Full Text Available Broilers that have early access to feed have been shown to have enhanced immune system and gut development and heightened resilience against necrotic enteritis (NE. This study examined the effect of early feeding a high amino acid density diet on performance of broilers under a sub-clinical NE challenge model. Ross 308 broilers (n = 576 were assigned to a 2 × 2 × 2 factorial design with 2 feeding regimes (feed access either within 6 h post-hatch or after 48 h post-hatch, 2 diets (control diet or the control diet with an additional 10% digestible amino acids [HAA] and either presence or absence of NE challenge. Oral administrations of Eimeria species (d 9 and a field strain of Clostridium perfringens (d 14 were used to induce NE. Broiler performance was analysed at d 13, 23, 30 and 35. Intestinal lesion score and bacterial count were analysed on d 16. The NE challenge reduced overall bird performance and induced severe intestinal lesions, without causing notable mortality. At d 23 bird weight was significantly lower (P < 0.001 in the challenged birds compared with the unchallenged birds, but by d 30 the challenged birds had recovered and challenge no longer had an impact on bird performance. Birds fed the HAA diet had greater body weight by d 35 and heightened Lactobacillus content in the ileum at d 16 (P < 0.05. Birds that were fed the HAA diet after a period of fasting performed better in terms of feed conversion ratio (FCR under challenge. The findings from this study suggest there are beneficial effects of feeding high amino acid diets to birds in response to external stresses, such as post-hatch fasting and subclinical NE.

  20. Acute insulin-induced elevations of circulating leptin and feeding inhibition in lean but not obese rats.

    Science.gov (United States)

    Singh, Kimberly A; Boozer, Carol N; Vasselli, Joseph R

    2005-08-01

    Insulin has been shown to stimulate leptin mRNA expression acutely in rat adipose tissue, but its short-term effects on circulating leptin levels, and subsequent feeding behavior, have not been well described. We used 11-mo-old female selectively bred obesity-resistant (OR) and obesity-prone (OP) Sprague-Dawley rats maintained on laboratory chow to investigate this question. At testing, body weights and basal leptin levels of the OP rats were significantly elevated compared with the OR rats. In the 3-h fasted state, injection of 2.0 U insulin/kg ip resulted in significant elevations of plasma leptin at 4 h postinjection in both OP and OR groups (hour 4, +2.50 and +5.98 ng/ml, respectively). In separate feeding tests with the same groups, intake of laboratory chow pellets was significantly inhibited during hours 2-4 after 2.0 U/kg of insulin in the OR (-80.1%, P < 0.05), but not in the OP group, compared with intake after saline injections. In feeding tests with palatable moderately high-fat pellets after 2.0 and 3.0 U insulin/kg ip, significant decreases between hours 2 and 4 in intake were seen in the OR group only (-41.0 and -68.3%, respectively). Thus feeding inhibition coincides with insulin-induced elevations of plasma leptin in lean but not obese Sprague-Dawley rats. Our data suggest that elevations of leptin within the physiological range may contribute to short-term inhibition of food intake in rats and that this process may be stimulated by feeding-related insulin release.

  1. Bacterial infection increases risk of carcinogenesis by targeting mitochondria

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A.B.; Desler, Claus; Rasmussen, Lene Juel

    2017-01-01

    pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce...... or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis....

  2. Frequency Of Isolation Of Salmonella From Commercial Poultry Feeds And Their Anti-Microbial Resistance Profiles, Imo State, Nigeria

    OpenAIRE

    Okoli IC; Ndujihe GE; Ogbuewu IP

    2006-01-01

    This study was conducted to determine the frequency of isolation of salmonella and their microbial resistance profiles across different commercial poultry feeds sold in Imo State, Nigeria. Thirty-six bulk feed samples were colleted from 154 bag across different feed types and brands which included Guinea (GF), Top (TF), Vital (VF), Extra (EF), Animal care (AF) and livestock (LF) feeds. The salmonella isolated were tested against 14 anti-microbial drugs using the disc diffusion method. Bacteri...

  3. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  4. Peripheral ischaemic retinopathy and neovascularisation in a patient with subacute streptococcus mitis-induced bacterial endocarditis

    OpenAIRE

    Leysen, LS; Kreps, EO; De Schryver, I; Hoornaert, KP; Smith, V; De Zaeytijd, J

    2017-01-01

    Objective: To describe a patient with peripheral retinal ischaemia and neovascularisation who was diagnosed with streptococcus mitis-induced bacterial endocarditis. Methods: Retrospective analysis of case report. A 57-year-old man presented with a history of a rapidly progressive, bilateral, painless visual loss. He also suffered from pain in the neck and lower back and a weight loss of 10 kg. He underwent a full ophthalmologic work-up, laboratory investigations, and imaging of the spine.R...

  5. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe.

    Science.gov (United States)

    Fillol-Salom, Alfred; Martínez-Rubio, Roser; Abdulrahman, Rezheen F; Chen, John; Davies, Robert; Penadés, José R

    2018-06-06

    Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a universal class of mobile genetic elements.

  6. Neuronal Goα and CAPS regulate behavioral and immune responses to bacterial pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Ferdinand C O Los

    Full Text Available Pore-forming toxins (PFTs are abundant bacterial virulence factors that attack host cell plasma membranes. Host defense mechanisms against PFTs described to date all function in the host tissue that is directly attacked by the PFT. Here we characterize a rapid and fully penetrant cessation of feeding of Caenorhabditis elegans in response to PFT attack. We demonstrate via analyses of C. elegans mutants that inhibition of feeding by PFT requires the neuronal G protein Goα subunit goa-1, and that maintenance of this response requires neuronally expressed calcium activator for protein secretion (CAPS homolog unc-31. Independently from their role in feeding cessation, we find that goa-1 and unc-31 are additionally required for immune protection against PFTs. We thus demonstrate that the behavioral and immune responses to bacterial PFT attack involve the cross-talk between the nervous system and the cells directly under attack.

  7. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Dowd, Carola D; Chronis, Demosthenis; Radakovic, Zoran S; Siddique, Shahid; Schmülling, Thomas; Werner, Tomáš; Kakimoto, Tatsuo; Grundler, Florian M W; Mitchum, Melissa G

    2017-10-01

    Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Impact of well intake systems on bacterial, algae, and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah

    2014-07-18

    The intake system can play a significant role in improving the feed water quality and ultimately influence the performance of downstream components of the seawater reverse osmosis desalination processes. In most cases, open-ocean intakes produce poor feed water quality in terms of the abundance of naturally occurring organic matter, which increases the risk of membrane fouling. An alternative intake is the subsurface system, which is based on the riverbank filtration concept that provides natural filtration and biological treatment of the feed water prior to the entry of the water into the desalination plant. The use of subsurface intakes normally improves the raw water quality by reducing suspended solids, algae, bacterial, and dissolved organic carbon concentrations. Therefore, the risk of biofouling caused by these substances can be reduced by implementing the appropriate type of intake system. The use of well intake systems was investigated along the Red Sea shoreline of Saudi Arabia in the Jeddah region. Data were collected from a seawater reverse osmosis (SWRO) plant with a capacity of 10,000 m3/d. The well system produces feed water from an artificial-fill peninsula that was constructed atop of the seabed. Ten wells have been constructed on the peninsula for extracting raw seawater. Water samples were collected from nearby surface seawater as a reference and from selected individual wells. The percentage of algae and bacterial removal by induced filtration process was evaluated by comparison of the seawater concentrations with the well discharges. Transparent exopolymer particles and organic carbon fractions reduction was also measured. The quality of raw water extracted from the well systems was highly improved compared with the raw seawater source. It was observed that algae were virtually 100% removed and the bacterial concentration was significantly removed by the aquifer matrix. The detailed analysis of organic carbon fraction using liquid

  9. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Kim, Daniel; Beck, Bo Ram; Lee, Sun Min; Jeon, Jongsu; Lee, Dong Wook; Lee, Jae Il; Song, Seong Kyu

    2016-08-01

    The aim of this study was to develop a fish feed vaccine that provides effective disease prevention and convenient application. A lactic acid bacterium (LAB), Lactococcus lactis BFE920, was modified to express the SiMA antigen, a membrane protein of Streptococcus iniae. The antigen was engineered to be expressed under the nisin promoter, which is induced by nisin produced naturally by the host LAB. Various sizes (40 ± 3.5 g, 80 ± 2.1 g, and 221 ± 2.4 g) of olive flounder (Paralichthys olivaceus) were vaccinated by feeding the extruded pellet feed, onto which the SiMA-expressing L. lactis BFE920 (1.0 × 10(7) CFU/g) was adsorbed. Vaccine-treated feed was administered twice a day for 1 week, and priming and boosting were performed with a 1-week interval in between. The vaccinated fish had significantly elevated levels of antigen-specific serum antibodies and T cell marker mRNAs: CD4-1, CD4-2, and CD8a. In addition, the feed vaccine significantly induced T cell effector functions, such as the production of IFN-γ and activation of the transcription factor that induces its expression, T-bet. When the flounder were challenged by intraperitoneal infection and bath immersion with S. iniae, the vaccinated fish showed 84% and 82% relative percent survival (RPS), respectively. Furthermore, similar protective effects were confirmed even 3 months after vaccination in a field study (n = 4800), indicating that this feed vaccine elicited prolonged duration of immunopotency. In addition, the vaccinated flounder gained 21% more weight and required 16% less feed to gain a unit of body weight compared to the control group. The data clearly demonstrate that the L. lactis BFE920-SiMA feed vaccine has strong protective effects, induces prolonged vaccine efficacy, and has probiotic effects. In addition, this LAB-based fish feed vaccine can be easily used to target many different pathogens of diverse fish species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  11. Growth performance and carcase quality in broiler chickens fed on bacterial protein grown on natural gas.

    Science.gov (United States)

    Øverland, M; Schøyen, H F; Skrede, A

    2010-10-01

    1. The effects of increasing concentrations (0, 40, 80 or 120 g/kg) of bacterial protein meal (BPM) and bacterial protein autolysate (BPA) grown on natural gas on growth performance and carcase quality in broiler chickens were examined. 2. Adding BPM to diets reduced feed intake and improved gain: feed from 0 to 21 d and overall to 35 d, but did not significantly affect weight gain compared to the soybean meal based control diet. 3. Increasing concentrations of BPA significantly reduced growth rate, feed intake, gain: feed, carcase weight and dressing percentage, but significantly increased carcase dry matter, fat and energy content. 4. Adding BPM to diets had no effect on viscosity of diets and jejunal digesta, and minor effects on litter quality, whereas BPA increased the viscosity of diets and jejunal digesta, improved litter quality at 21 d, but decreased litter quality at 32 d. 5. To conclude, broiler chickens performed better on a BPM product with intact proteins than on an autolysate with ruptured cell walls and a high content of free amino acids and low molecular-weight peptides.

  12. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae

    DEFF Research Database (Denmark)

    Leser, Thomas D.; Lindecrona, Rikke Hvid; Jensen, Tim Kåre

    2000-01-01

    Bacterial communities in the large intestines of pigs were compared using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the 16S ribosomal DNA. The pigs were fed different experimental diets based on either modified standard feed or cooked rice supplemented with die......Bacterial communities in the large intestines of pigs were compared using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the 16S ribosomal DNA. The pigs were fed different experimental diets based on either modified standard feed or cooked rice supplemented...

  13. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens.

    Science.gov (United States)

    Rehman, Habib Ur; Vahjen, Wilfried; Awad, Wageha A; Zentek, Jürgen

    2007-10-01

    The gastrointestinal tract is a dynamic ecosystem containing a complex microbial community. In this paper, the indigenous intestinal bacteria and the microbial fermentation profile particularly short chain fatty acids (SCFA), lactate, and ammonia concentrations are reviewed. The intestinal bacterial composition changes with age. The bacterial density of the small intestine increases with age and comprises of lactobacilli, streptococci, enterobacteria, fusobacteria and eubacteria. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium spp., Clostridium spp., Lactobacillus spp., Fusobacterium spp. and Bacteroides) are predominating caecal bacteria in young broilers. Data from culture-based studies showed that bifidobacteria could not be isolated from young birds, but were recovered from four-week-old broilers. Caecal lactobacilli accounted for 1.5-24% of the caecal bacteria. Gene sequencing of caecal DNA extracts showed that the majority of bacteria belonged to Clostridiaceae. Intestinal bacterial community is influenced by the dietary ingredients, nutrient levels and physical structure of feed. SCFA and other metabolic products are affected by diet formulation and age. Additional studies are required to know the bacterial metabolic activities together with the community analysis of the intestinal bacteria. Feed composition and processing have great potential to influence the activities of intestinal bacteria towards a desired direction in order to support animal health, well-being and microbial safety of broiler meat.

  14. The Effect of Cell Immobilization by Calcium Alginate on Bacterially Induced Calcium Carbonate Precipitation

    Directory of Open Access Journals (Sweden)

    Mostafa Seifan

    2017-10-01

    Full Text Available Microbially induced mineral precipitation is recognized as a widespread phenomenon in nature. A diverse range of minerals including carbonate, sulphides, silicates, and phosphates can be produced through biomineralization. Calcium carbonate (CaCO3 is one of the most common substances used in various industries and is mostly extracted by mining. In recent years, production of CaCO3 by bacteria has drawn much attention because it is an environmentally- and health-friendly pathway. Although CaCO3 can be produced by some genera of bacteria through autotrophic and heterotrophic pathways, the possibility of producing CaCO3 in different environmental conditions has remained a challenge to determine. In this study, calcium alginate was proposed as a protective carrier to increase the bacterial tolerance to extreme environmental conditions. The model showed that the highest concentration of CaCO3 is achieved when the bacterial cells are immobilized in the calcium alginate beads fabricated using 1.38% w/v Na-alginate and 0.13 M CaCl2.

  15. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure.

    Science.gov (United States)

    Danielsson, Rebecca; Dicksved, Johan; Sun, Li; Gonda, Horacio; Müller, Bettina; Schnürer, Anna; Bertilsson, Jan

    2017-01-01

    Methane (CH 4 ) is produced as an end product from feed fermentation in the rumen. Yield of CH 4 varies between individuals despite identical feeding conditions. To get a better understanding of factors behind the individual variation, 73 dairy cows given the same feed but differing in CH 4 emissions were investigated with focus on fiber digestion, fermentation end products and bacterial and archaeal composition. In total 21 cows (12 Holstein, 9 Swedish Red) identified as persistent low, medium or high CH 4 emitters over a 3 month period were furthermore chosen for analysis of microbial community structure in rumen fluid. This was assessed by sequencing the V4 region of 16S rRNA gene and by quantitative qPCR of targeted Methanobrevibacter groups. The results showed a positive correlation between low CH 4 emitters and higher abundance of Methanobrevibacter ruminantium clade. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) level of bacteria showed two distinct clusters ( P microbial population or host genetic differences that is reflected in bacterial and archaeal (or methanogens) populations.

  16. Effects of antibiotic on the bacterial microflora in two commercially important catfish species, Clarias batrachus and Heteropneustes fossilis in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Shahdat Hossain

    2014-11-01

    Full Text Available Objective: To assess the effects of a widely used antibiotic, oxytetracycline (OTC on the bacterial microflora in two catfish species under artificial culture conditions in the laboratory. Methods: The experiment was conducted in the Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh-2202. The fish were reared in six aquaria (size 37 cm×30 cm×60 cm where three aquaria served as replicates of the antibiotic treatment groups and the remaining three aquaria served as an untreated control group. Each aquarium was stocked with 25 fish on an average body weight 15 g. OTC was administered to the fish in the treatment groups at the rate of 2 g/kg in-feed twice daily upto ad libitum, whereas fish in the untreated control groups were given the same feed without antibiotics for 20 d. During the experiment, bacterial loads were estimated as colony forming unit (CFU/g by every alternate day in the aquarium water, gills, skin and intestine of fish. Results: The administration of OTC in feed resulted in gradual decrease of bacterial loads in the gills, intestine and skin of the two catfish species tested. In contrast, the bacterial loads remain unchanged or slightly increased in the control groups not fed with OTC. Water quality parameters such as dissolved oxygen, pH and total hardness were found to be within suitable range in the test aquaria but not in control aquarium throughout the experimental period. Conclusions: The results of this experiment showed that in-feed antibiotic OTC for a period of 20 d reduced the bacterial loads in the gills, intestines and skin of treated fish.

  17. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L.

    Science.gov (United States)

    Gomi, Kenji; Satoh, Masaru; Ozawa, Rika; Shinonaga, Yumi; Sanada, Sachiyo; Sasaki, Katsutomo; Matsumura, Masaya; Ohashi, Yuko; Kanno, Hiroo; Akimitsu, Kazuya; Takabayashi, Junji

    2010-01-01

    A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.

  18. Evaluating portable wire-flooring models for inducing bacterial chondronecrosis with osteomyelitis in broilers.

    Science.gov (United States)

    Gilley, A D; Lester, H; Pevzner, I Y; Anthony, N B; Wideman, R F

    2014-06-01

    Rearing broilers on flat or sloping wire flooring is an effective method for consistently triggering lameness attributable to bacterial chondronecrosis with osteomyelitis (BCO). Portable obstacles known as speed bumps (SB) also consistently trigger modest incidences of BCO when they are installed between feed and water lines in litter flooring facilities. Two experiments were conducted to determine the most effective broiler age for introducing the SB into litter flooring pens, and to evaluate alternative configurations of the traditional SB with the expectation that amplified mechanical challenges to the legs of broilers should increase the incidence of BCO. Broiler chicks obtained from commercial hatcheries (lines B and D in experiment 1, lines A and B in experiment 2) were reared in floor pens with ad libitum feed and water and a 23L:1D photoperiod. In experiment 1, the 5 floor treatments included wood shavings litter only (L), flat wire only (W), or litter plus SB installed at 14, 28, or 42 d of age. Line B was more susceptible to lameness than line D (25.9 vs. 15.3% for all treatments combined; P = 0.001). Both lines developed low incidences of lameness on L (11 to 13%), intermediate incidences on SB regardless of day of installation (12 to 23%), and high incidences on W (21 to 39%). In experiment 2, broilers were reared with 7 floor treatments, including L, W, SB with a 50% slope (SB50%); SB50% with a limbo bar installed over the apex; SB with a 66% slope and limbo bar; SB50% with a nipple water line suspended over the apex; and a pagoda-top SB. All SB were inserted on d 28. Line B was more susceptible to lameness than line A (20.2 vs. 16.1% for all treatments combined; P broilers. Poultry Science Association Inc.

  19. Gamma radiation-induced mutant of NSIC RC144 with broad-spectrum resistance to bacterial blight

    International Nuclear Information System (INIS)

    Alfonso, A.A.; Avellanoza, E.S.; Miranda, R.T.; Espejo, E.O.; Garcia, N.S.

    2014-01-01

    Mutant lines derived from gamma radiation-treated commercial variety NSIC RC144 were produced and screened for novel resistance to bacterial blight, one of the most serious diseases of rice. Preliminary screening of a bulk M2 population through induced method using race 3 of the pathogen Xanthomonas oryzae pv. oryzae (Xoo) resulted in the selection of 89 resistant plants. Subsequent repeated bacterial blight screenings and generation advance for five seasons resulted in the selection of two highly resistant M7 sister lines whose origin can be traced to a single M2 plant. DNA fingerprinting using 63 genome-wide simple sequence repeat (SSR) markers revealed an identical pattern in these lines. Using the same set of markers, they also exhibited 98% similarity to wild type NSIC RC144 indicating that the resistance is due to mutation and not due to genetic admixture or seed impurity. Two seasons of bacterial blight screening using 14 local isolates representing ten races of Xoo revealed an identical reaction pattern in these lines. The reaction pattern was observed to be unique compared to known patterns in four IRBB isolines (IRBB 4, 5, 7 and 21) with strong resistant reaction to bacterial blight suggesting possible novel resistance. The susceptible reaction in F1 testcrosses using Xoo race 6 and the segregation patterns in two F2 populations that fit with the expected 3 susceptible: 1 resistant ratio (P = 0.4, ns) suggest a single-gene recessive mutation in these lines. These mutants are now being used as resistance donor in the breeding program while further molecular characterization to map and characterize the mutated gene is being pursued

  20. Rumen distension and contraction influence feed preference by sheep.

    Science.gov (United States)

    Villalba, J J; Provenza, F D; Stott, R

    2009-01-01

    Distension of the rumen limits feed intake by livestock. Ruminal dysfunctions due to bloat, which causes distension by accumulation of excessive gas within the rumen, also reduce feeding. We hypothesized that excessive levels of rumen distension cause feed aversions and that preference increases for feeds eaten in association with recovery from bloat. To test these hypotheses, we determined whether 12 commercial crossbred lambs (average initial BW of 43 +/- 2 kg) could associate ingestion of specific feeds with the consequences of increased intraruminal pressure and its subsidence. Six of the lambs were fitted with rumen cannulas and offered ground alfalfa for 30 min after a rubber balloon was inserted into the rumen of each animal and distended with air to volumes of 1.8, 2.5, or 4.5 L. Subsequently, balloons were deflated and alfalfa was offered again for a second period of 30 min. Feed intake was not affected when the balloon was not distended (P = 0.45 to 0.93), but distension reduced feed intake (P rumen distension (P = 0.17 to P = 0.87). Thus, rumen distension and recovery from distension induced feed aversions and preferences, respectively, which may be critical in learning avoidance of bloat-inducing plants and preferences for plants and supplements that relieve the incidence of bloat.

  1. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance.

    Science.gov (United States)

    Contreras, G Andres; Thelen, Kyan; Schmidt, Sarah E; Strieder-Barboza, Clarissa; Preseault, Courtney L; Raphael, William; Kiupel, Matti; Caron, John; Lock, Adam L

    2016-12-01

    Excessive rates of demand lipolysis in the adipose tissue (AT) during periods of negative energy balance (NEB) are associated with increased susceptibility to disease and limited lactation performance. Lipolysis induces a remodeling process within AT that is characterized by an inflammatory response, cellular proliferation, and changes in the extracellular matrix (ECMT). The adipose tissue macrophage (ATM) is a key component of the inflammatory response. Infiltration of ATM-forming cellular aggregates was demonstrated in transition cows, suggesting that ATM trafficking and phenotype changes may be associated with disease. However, it is currently unknown if ATM infiltration occurs in dairy cows only during NEB states related to the transition period or also during NEB-induced lipolysis at other stages of lactation. The objective of this study was to evaluate changes in ATM trafficking and inflammatory phenotypes, and the expression of genetic markers of AT remodeling in healthy late-lactation cows during feed restriction-induced NEB. After a 14-d (d -14 to d -1) preliminary period, Holstein cows were randomly assigned to 1 of 2 feeding protocols, ad libitum (AL) or feed restriction (FR), for 4 d (d 1-4). Caloric intake was reduced in FR to achieve a targeted energy balance of -15 Mcal/d of net energy for lactation. Omental and subcutaneous AT samples were collected laparoscopically to harvest stromal vascular fraction (SVF) cells on d -3 and 4. The FR induced a NEB of -14.1±0.62 Mcal/d of net energy for lactation, whereas AL cows remained in positive energy balance (3.2±0.66 Mcal/d of NE L ). The FR triggered a lipolytic response reflected in increased plasma nonesterified fatty acids (0.65±0.05 mEq/L on d 4), enhanced phosphorylation of hormone sensitive lipase, and reduced adipocyte diameter. Flow cytometry and immunohistochemistry analysis revealed that on d 4, FR cows had increased numbers of CD172a + , an ATM (M1 and M2) surface marker, cells in SVF that

  2. The effects of DL-AP5 and glutamate on ghrelin-induced feeding behavior in 3-h food-deprived broiler cockerels

    NARCIS (Netherlands)

    Taati, Majid; Nayebzadeh, Hassan; Zendehdel, Morteza

    This study was designed to examine the effects of intracerebroventricular injection of DL-AP5 (N-methyl-D-aspartate (NMDA) receptor antagonist) and glutamate on ghrelin-induced feeding behavior in 3-h food-deprived (FD3) broiler cockerels. At first, guide cannula was surgically implanted in the

  3. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The gut microbiota in larvae of the housefly Musca domestica and their horizontal transfer through feeding.

    Science.gov (United States)

    Zhao, Yao; Wang, Wanqiang; Zhu, Fen; Wang, Xiaoyun; Wang, Xiaoping; Lei, Chaoliang

    2017-12-01

    House fly larvae provide a prolific and sustainable source of proteins used in poultry and fish feed. Wheat bran is a superior diet for house fly larvae and has been widely investigated to exploit its potential in the food and feed area. Using Illumina MiSeq 16S rDNA sequencing, this study investigated the gut microbiota of house fly larvae feeding on wheat bran and the bacterial community in the wheat bran. The bacterial communities in the house fly larvae were dominated by the phyla Proteobacteria and Firmicutes. Enterobacteriaceae and Providencia were the predominant bacteria at the family and genus levels, respectively. Some bacteria in the phyla Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes may be transferred from the gut of house flies to the wheat bran during feeding and may be involved in degrading and utilizing polysaccharides in the cell wall of wheat bran. The significance of the gut microbiota of house fly larvae, their transferring and roles in degradation of wheat bran is discussed. These findings regarding the gut microbiota of house fly larvae will provide opportunities for research on the impact of microbial communities on poultry and fish.

  5. Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata

    OpenAIRE

    Malacrinò, Antonino; Campolo, Orlando; Medina, Raul F; Palmeri, Vincenzo

    2018-01-01

    Microorganisms are acknowledged for their role in shaping insects' evolution, life history and ecology. Previous studies have shown that microbial communities harbored within insects vary through ontogenetic development and among insects feeding on different host-plant species. In this study, we characterized the bacterial microbiota of the highly polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and when feeding on different host-plant speci...

  6. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles.

    Science.gov (United States)

    Farag, Mohamed A; Zhang, Huiming; Ryu, Choong-Min

    2013-07-01

    Certain plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) and plant growth promotion in the absence of physical contact with plants via volatile organic compound (VOC) emissions. In this article, we review the recent progess made by research into the interactions between PGPR VOCs and plants, focusing on VOC emission by PGPR strains in plants. Particular attention is given to the mechanisms by which these bacterial VOCs elicit ISR. We provide an overview of recent progress in the elucidation of PGPR VOC interactions from studies utilizing transcriptome, metabolome, and proteome analyses. By monitoring defense gene expression patterns, performing 2-dimensional electrophoresis, and studying defense signaling null mutants, salicylic acid and ethylene have been found to be key players in plant signaling pathways involved in the ISR response. Bacterial VOCs also confer induced systemic tolerance to abiotic stresses, such as drought and heavy metals. A review of current analytical approaches for PGPR volatile profiling is also provided with needed future developments emphasized. To assess potential utilization of PGPR VOCs for crop plants, volatile suspensions have been applied to pepper and cucumber roots and found to be effective at protecting plants against plant pathogens and insect pests in the field. Taken together, these studies provide further insight into the biological and ecological potential of PGPR VOCs for enhancing plant self-immunity and/or adaptation to biotic and abiotic stresses in modern agriculture.

  7. The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens.

    Science.gov (United States)

    Dalia, A M; Loh, T C; Sazili, A Q; Jahromi, M F; Samsudin, A A

    2017-08-18

    Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers. Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite. The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of

  8. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism.

    Science.gov (United States)

    Meng, Fantao; Han, Yong; Srisai, Dollada; Belakhov, Valery; Farias, Monica; Xu, Yong; Palmiter, Richard D; Baasov, Timor; Wu, Qi

    2016-03-29

    Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes.

  9. Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response.

    Science.gov (United States)

    Chukwudi, Chinwe Uzoma; Good, Liam

    2018-01-01

    The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok + cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    This study was designed to assess the effects of protein malnutrition (PM) associated with antibiotic on growth weight, cecal bacterial overgrowth and enterobacteria translocation. Eighteen Gnotobiotic young Wistar rats (135 ± 2.35 g) were treated orally with antibiotic and submitted to dietary restriction based on maize diet ...

  11. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control

    KAUST Repository

    Araújo, Paula A.

    2012-06-01

    The influence of polydopamine- and polydopamine-. graft-poly(ethylene glycol)-coated feed spacers and membranes, copper-coated feed spacers, and commercially-available biostatic feed spacers on biofouling has been studied in membrane fouling simulators. Feed spacers and membranes applied in practical membrane filtration systems were used; biofouling development was monitored by feed channel pressure drop increase and biomass accumulation. Polydopamine and polydopamine-. g-PEG are hydrophilic surface modification agents expected to resist protein and bacterial adhesion, while copper feed spacer coatings and biocides infused in feed spacers are expected to restrict biological growth. Our studies showed that polydopamine and polydopamine-. g-PEG coatings on feed spacers and membranes, copper coatings on feed spacers, and a commercial biostatic feed spacer did not have a significant impact on feed channel pressure drop increase and biofilm accumulation as measured by ATP and TOC content. The studied spacer and membrane modifications were not effective for biofouling control; it is doubtful that feed spacer and membrane modification, in general, may be effective for biofouling control regardless of the type of applied coating. © 2012 Elsevier B.V.

  12. Functional recovery of biofilm bacterial communities after copper exposure

    International Nuclear Information System (INIS)

    Boivin, Marie-Elene Y.; Massieux, Boris; Breure, Anton M.; Greve, Gerdit D.; Rutgers, Michiel; Admiraal, Wim

    2006-01-01

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 μmol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 μmol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 μmol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days. - Genetically different bacterial communities can have similar functions and tolerance to copper

  13. The Gut Microbiomes of Two Pachysoma MacLeay Desert Dung Beetle Species (Coleoptera: Scarabaeidae: Scarabaeinae Feeding on Different Diets.

    Directory of Open Access Journals (Sweden)

    Philippa Z N Franzini

    Full Text Available Micro-organisms inhabiting animal guts benefit from a protected and nutrient-rich environment while assisting the host with digestion and nutrition. In this study we compare, for the first time, the bacterial and fungal gut communities of two species of the small desert dung beetle genus Pachysoma feeding on different diets: the detritivorous P. endroedyi and the dry-dung-feeding P. striatum. Whole-gut microbial communities from 5 individuals of each species were assessed using 454 pyrosequencing of the bacterial 16S rRNA gene and fungal ITS gene regions. The two bacterial communities were significantly different, with only 3.7% of operational taxonomic units shared, and displayed intra-specific variation. The number of bacterial phyla present within the guts of P. endroedyi and P. striatum individuals ranged from 6-11 and 4-7, respectively. Fungal phylotypes could only be detected within the gut of P. striatum. Although the role of host phylogeny in Pachysoma microbiome assembly remains unknown, evidence presented in this study suggests that host diet may be a deterministic factor.

  14. Drug Insight: adjunctive therapies in adults with bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Weisfelt, Martijn; de Gans, Jan; Tunkel, Allan R.; Wijdicks, Eelco F. M.

    2006-01-01

    Despite the availability of effective antibiotics, mortality and morbidity rates associated with bacterial meningitis are high. Studies in animals have shown that bacterial lysis, induced by treatment with antibiotics, leads to inflammation in the subarachnoid space, which might contribute to an

  15. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence

    Directory of Open Access Journals (Sweden)

    Kay eGully

    2015-01-01

    Full Text Available Members of the AtPep group of Arabidopsis endogenous peptides have frequently been reported to induce pattern-triggered immunity and to increase resistance to diverse pathogens by amplifying the innate immune response. Here, we made the surprising observation that dark-induced leaf senescence was accelerated by the presence of Peps. Adult leaves as well as leaf discs of Col-0 wild type plants showed a Pep-triggered early onset of chlorophyll breakdown and leaf yellowing whereas pepr1 pepr2 double mutant plants were insensitive. In addition, this response was dependent on ethylene signaling and inhibited by the addition of cytokinins. Notably, addition of the bacterial elicitors flg22 or elf18, both potent inducers of pattern-triggered immunity, did not provoke an early onset of leaf senescence.Continuous darkness leads to energy deprivation and starvation and therewith promotes leaf senescence. We found that continuous darkness also strongly induced PROPEP3 transcription. Moreover, Pep-perception led to a rapid induction of PAO, APG7 and APG8a, genes indispensable for chlorophyll degradation as well as autophagy, respectively, and all three hallmarks of starvation and senescence. Notably, addition of sucrose as a source of energy inhibited the Pep-triggered early onset of senescence. In conclusion, we report that Pep-perception accelerates dark/starvation-induced senescence via an early induction of chlorophyll degradation and autophagy. This represents a novel and unique characteristic of PEPR signaling, unrelated to pattern-triggered immunity.

  16. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma.

    Science.gov (United States)

    Jeong, Won-Seok; Kwon, Jae-Sung; Lee, Jung-Hwan; Uhm, Soo-Hyuk; Ha Choi, Eun; Kim, Kwang-Mahn

    2017-07-26

    Here, we investigated the antibacterial effects of chemical changes induced by nonthermal atmospheric pressure plasma (NTAPP) on smooth and rough Ti. The morphologies of smooth and rough surfaces of Ti were examined using scanning electron microscopy (SEM). Both Ti specimens were then treated for 10 min by NTAPP with nitrogen gas. The surface roughness, chemistry, and wettability were examined by optical profilometry, x-ray photoelectron spectroscopy, and water contact angle analysis, respectively. Bacterial attachment was measured by determining the number of colony forming units and by SEM analysis. The rough Ti showed irregular micropits, whereas smooth Ti had a relatively regular pattern on the surface. There were no differences in morphology between samples before and after NTAPP treatment. NTAPP treatment resulted in changes from hydrophobic to hydrophilic properties on rough and smooth Ti; rough Ti showed relatively higher hydrophilicity. Before NTAPP treatment, Streptococcus sanguinis (S. sanguinis) showed greater attachment on rough Ti, and after NTAPP treatment, there was a significant reduction in bacterial attachment. Moreover, the bacterial attachment rate was significantly lower on rough Ti, and the structure of S. sanguinis colonies were significantly changed on NTAPP-treated Ti. NTAPP treatment inhibited bacterial attachment surrounding titanium implants, regardless of surface topography. Therefore, NTAPP treatment on Ti is a next-generation tool for antibacterial applications in the orthopaedic and dental fields.

  17. Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: The simulation model 'BACWAVE-WEB'

    NARCIS (Netherlands)

    Zelenev, V.V.; Bruggen, van A.H.C.; Leffelaar, P.A.; Bloem, J.; Semenov, A.M.

    2006-01-01

    Recently, regular oscillations in bacterial populations and growth rates of bacterial feeding nematodes (BFN) were shown to occur after addition of fresh organic matter to soil. This paper presents a model developed to investigate potential mechanisms of those oscillations, and whether they were

  18. A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Wieczorek, K; Elashry, A; Quentin, M; Grundler, F M W; Favery, B; Seifert, G J; Bohlmann, H

    2014-09-01

    Pectin in the primary plant cell wall is thought to be responsible for its porosity, charge density, and microfibril spacing and is the main component of the middle lamella. Plant-parasitic nematodes secrete cell wall-degrading enzymes that macerate the plant tissue, facilitating the penetration and migration within the roots. In sedentary endoparasitic nematodes, these enzymes are released only during the migration of infective juveniles through the root. Later, nematodes manipulate the expression of host plant genes, including various cell wall enzymes, in order to induce specific feeding sites. In this study, we investigated expression of two Arabidopsis pectate lyase-like genes (PLL), PLL18 (At3g27400) and PLL19 (At4g24780), together with pectic epitopes with different degrees of methylesterification in both syncytia induced by the cyst nematode Heterodera schachtii and giant cells induced by the root-knot nematode Meloidogyne incognita. We confirmed upregulation of PLL18 and PLL19 in both types of feeding sites with quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ RT-PCR. Furthermore, the functional analysis of mutants demonstrated the important role of both PLL genes in the development and maintenance of syncytia but not giant cells. Our results show that both enzymes play distinct roles in different infected root tissues as well as during parasitism of different nematodes.

  19. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations.

    Science.gov (United States)

    Looft, Torey; Allen, Heather K; Cantarel, Brandi L; Levine, Uri Y; Bayles, Darrell O; Alt, David P; Henrissat, Bernard; Stanton, Thaddeus B

    2014-08-01

    Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.

  20. Bacterial incorporation of tritiated thymidine and populations of bacteriophagous fauna in the rhizosphere of wheat

    DEFF Research Database (Denmark)

    Christensen, Henrik; Griffiths, Bryan; Christensen, Søren

    1992-01-01

    Bacterial and microfaunal populations, and bacterial productivity measured by tritiated thymidine (3HTdr) incorporation, in the rhizosphere of wheat seedlings were measured. Soil from planted pots was fractionated into rhizosphere and non-rhizosphere (bulk) soil, while unplanted soil was taken from...... pots without plants. Total bacterial counts and biovolume did not differ between fractions but viable (plate) counts were 8 times higher in the rhizosphere compared to bulk and unplanted soil. 3HTdr was incorporated at a constant rate with low variability in bulk or unplanted soil. In rhizosphere soil...... 3HTdr incorporation was lower than in bulk or unplanted soils and showed high variability. The populations of bacterial-feeding protozoa and nematodes indicated that rhizosphere bacterial activity was actually 3–4 times greater in rhizosphere than bulk soil in accordance with the results...

  1. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Klug, Gabriele

    2013-03-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail.

  2. Perturbations of gut microbiome genes in infants with atopic dermatitis according to feeding type.

    Science.gov (United States)

    Lee, Min-Jung; Kang, Mi-Jin; Lee, So-Yeon; Lee, Eun; Kim, Kangjin; Won, Sungho; Suh, Dong In; Kim, Kyung Won; Sheen, Youn Ho; Ahn, Kangmo; Kim, Bong-Soo; Hong, Soo-Jong

    2018-04-01

    Perturbations of the infant gut microbiota can shape development of the immune system and link to the risk of allergic diseases. We sought to understand the role of the gut microbiome in patients with atopic dermatitis (AD). The metagenome of the infant gut microbiome was analyzed according to feeding types. Composition of the gut microbiota was analyzed in fecal samples from 129 infants (6 months old) by using pyrosequencing, including 66 healthy infants and 63 infants with AD. The functional profile of the gut microbiome was analyzed by means of whole-metagenome sequencing (20 control subjects and 20 patients with AD). In addition, the total number of bacteria in the feces was determined by using real-time PCR. The gut microbiome of 6-month-old infants was different based on feeding types, and 2 microbiota groups (Bifidobacterium species-dominated and Escherichia/Veillonella species-dominated groups) were found in breast-fed and mixed-fed infants. Bacterial cell amounts in the feces were lower in infants with AD than in control infants. Although no specific taxa directly correlated with AD in 16S rRNA gene results, whole-metagenome analysis revealed differences in functional genes related to immune development. The reduction in genes for oxidative phosphorylation, phosphatidylinositol 3-kinase-Akt signaling, estrogen signaling, nucleotide-binding domain-like receptor signaling, and antigen processing and presentation induced by reduced colonization of mucin-degrading bacteria (Akkermansia muciniphila, Ruminococcus gnavus, and Lachnospiraceae bacterium 2_1_58FAA) was significantly associated with stunted immune development in the AD group compared with the control group (P gut microbiome can be associated with AD because of different bacterial genes that can modulate host immune cell function. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    OpenAIRE

    Brandt, Stephanie M.; Schneider, David S.

    2007-01-01

    Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized th...

  4. Short-Term Fructose Feeding Induces Inflammation and Oxidative Stress in the Hippocampus of Young and Adult Rats.

    Science.gov (United States)

    Cigliano, Luisa; Spagnuolo, Maria Stefania; Crescenzo, Raffaella; Cancelliere, Rosa; Iannotta, Lucia; Mazzoli, Arianna; Liverini, Giovanna; Iossa, Susanna

    2018-04-01

    The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.

  5. HrpNEa-induced deterrent effect on phloem feeding of the green ...

    Indian Academy of Sciences (India)

    In response to the phloem-feeding stress, plants defend themselves by .... was quantified as a percentage decrease in the number of feeding aphids .... increased with time during the course of 24 h monitoring ... spent outside the cuticle (nonpenetration; figure 3A, np) ..... R2R3-MYB gene family from Arabidopsis thaliana.

  6. A Bacterial Quorum-Sensing Precursor Induces Mortality in the Marine Coccolithophore, Emiliania huxleyi.

    Science.gov (United States)

    Harvey, Elizabeth L; Deering, Robert W; Rowley, David C; El Gamal, Abrahim; Schorn, Michelle; Moore, Bradley S; Johnson, Matthew D; Mincer, Tracy J; Whalen, Kristen E

    2016-01-01

    Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cell-cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g., rapid cell lysis). In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of inter-domain interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes.

  7. Peripheral ischaemic retinopathy and neovascularisation in a patient with subacute streptococcus mitis-induced bacterial endocarditis.

    Science.gov (United States)

    Leysen, Laura S; Kreps, Elke O; De Schryver, Ilse; Hoornaert, Kristien P; Smith, Vanessa; De Zaeytijd, Julie

    2017-01-01

    Objective: To describe a patient with peripheral retinal ischaemia and neovascularisation who was diagnosed with streptococcus mitis-induced bacterial endocarditis. Methods: Retrospective analysis of case report. A 57-year-old man presented with a history of a rapidly progressive, bilateral, painless visual loss. He also suffered from pain in the neck and lower back and a weight loss of 10 kg. He underwent a full ophthalmologic work-up, laboratory investigations, and imaging of the spine. Results: BCVA was reduced to 20/40 in the right eye and 20/32 in the left eye. Fundoscopy showed rare intra-retinal haemorrhages including few Roth spots and cotton wool lesions. Fluorescein angiography demonstrated large areas of peripheral retinal ischaemia and neovascularisation. Imaging of the spine showed spondylodiscitis on several levels. Further imaging and blood cultures confirmed bacterial endocarditis of the mitral valve. Streptococcus mitis was subsequently identified as the causative organism. Conclusion: Peripheral retinal ischaemia and neovascularisation were previously unrecognised as a feature of infectious endocarditis. Therefore, their presence, apart from the classic Roth spots, should prompt the consideration of infectious endocarditis in the etiologic work-up.

  8. Peripheral ischaemic retinopathy and neovascularisation in a patient with subacute streptococcus mitis-induced bacterial endocarditis

    Directory of Open Access Journals (Sweden)

    Leysen, Laura S.

    2017-09-01

    Full Text Available Objective: To describe a patient with peripheral retinal ischaemia and neovascularisation who was diagnosed with streptococcus mitis-induced bacterial endocarditis. Methods: Retrospective analysis of case report. A 57-year-old man presented with a history of a rapidly progressive, bilateral, painless visual loss. He also suffered from pain in the neck and lower back and a weight loss of 10 kg. He underwent a full ophthalmologic work-up, laboratory investigations, and imaging of the spine.Results: BCVA was reduced to 20/40 in the right eye and 20/32 in the left eye. Fundoscopy showed rare intra-retinal haemorrhages including few Roth spots and cotton wool lesions. Fluorescein angiography demonstrated large areas of peripheral retinal ischaemia and neovascularisation. Imaging of the spine showed spondylodiscitis on several levels. Further imaging and blood cultures confirmed bacterial endocarditis of the mitral valve. Streptococcus mitis was subsequently identified as the causative organism. Conclusion: Peripheral retinal ischaemia and neovascularisation were previously unrecognised as a feature of infectious endocarditis. Therefore, their presence, apart from the classic Roth spots, should prompt the consideration of infectious endocarditis in the etiologic work-up.

  9. Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics.

    Science.gov (United States)

    Saitta, Kyle S; Zhang, Carmen; Lee, Kang Kwang; Fujimoto, Kazunori; Redinbo, Matthew R; Boelsterli, Urs A

    2014-01-01

    1.  We have previously demonstrated that a small molecule inhibitor of bacterial β-glucuronidase (Inh-1; [1-((6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-(4-ethoxyphenyl)-1-(2-hydroxyethyl)thiourea]) protected mice against diclofenac (DCF)-induced enteropathy. Here we report that Inh-1 was equally protective against small intestinal injury induced by other carboxylic acid-containing non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin (10 mg/kg, ip) and ketoprofen (100 mg/kg, ip). 2.  Inh-1 provided complete protection if given prior to DCF (60 mg/kg, ip), and partial protection if administered 3-h post-DCF, suggesting that the temporal window of mucosal protection can be extended for drugs undergoing extensive enterohepatic circulation. 3.  Pharmacokinetic analysis of Inh-1 revealed an absolute bioavailability (F) of 21% and a short t1/2 of <1 h. This low F was shown to be due to hepatic first-pass metabolism, as confirmed with the pan-CYP inhibitor, 1-aminobenzotriazole. 4.  Using the fluorescent probe 5 (and 6)-carboxy-2',7'-dichlorofluorescein, we demonstrated that Inh-1 did not interfere with hepatobiliary export of glucuronides in gall bladder-cannulated mice. 5.  These data are compatible with the hypothesis that pharmacological inhibition of bacterial β-glucuronidase-mediated cleavage of NSAID glucuronides in the small intestinal lumen can protect against NSAID-induced enteropathy caused by locally high concentrations of NSAID aglycones.

  10. Induced polarization and self-potential geophysical signature of bacterial activity in porous media (Invited)

    Science.gov (United States)

    Revil, A.

    2013-12-01

    The first part of the presentation will be dedicated to the spectral induced polarization signature of bacteria in porous media. We developed a quantitative model to investigate frequency-domain induced polarization response of suspensions of bacteria and bacteria growth in porous media. Induced polarization of bacteria (alpha-polarization) is related to the properties of the electrical double layer of the bacteria. Surface conductivity and alpha-polarization are due to the Stern layer of counterions occurring in a brush of polymers coating the surface of the bacteria. These phenomena can be related to the cation exchange capacity of the bacteria. The mobility of the counterions in this Stern layer is found to be very small (4.7×10-10 m2s-1 V-1 at 25°C). This implies a very low relaxation frequency for the alpha-polarization of the bacteria cells (typically around 0.1 to 5 Hertz) in agreement with experimental observations. This new model can be coupled to reactive transport modeling codes in which the evolution of bacterial populations are usually described by Monod kinetics. We show that the growth rate and endogenous decay coefficients of bacteria in a porous sand can be inferred non-intrusively from time lapse frequency-domain induced polarization data. The second part of the presentation will concern the biogeobattery mechanism showing new data, the concept of transient biogeobattery and the influence of the concentration of the electron acceptors in the process.

  11. period-Regulated Feeding Behavior and TOR Signaling Modulate Survival of Infection.

    Science.gov (United States)

    Allen, Victoria W; O'Connor, Reed M; Ulgherait, Matthew; Zhou, Clarice G; Stone, Elizabeth F; Hill, Vanessa M; Murphy, Keith R; Canman, Julie C; Ja, William W; Shirasu-Hiza, Mimi M

    2016-01-25

    Most metazoans undergo dynamic, circadian-regulated changes in behavior and physiology. Currently, it is unknown how circadian-regulated behavior impacts immunity against infection. Two broad categories of defense against bacterial infection are resistance, control of microbial growth, and tolerance, control of the pathogenic effects of infection. Our study of behaviorally arrhythmic Drosophila circadian period mutants identified a novel link between nutrient intake and tolerance of infection with B. cepacia, a bacterial pathogen of rising importance in hospital-acquired infections. We found that infection tolerance in wild-type animals is stimulated by acute exposure to dietary glucose and amino acids. Glucose-stimulated tolerance was induced by feeding or direct injection; injections revealed a narrow window for glucose-stimulated tolerance. In contrast, amino acids stimulated tolerance only when ingested. We investigated the role of a known amino-acid-sensing pathway, the TOR (Target of Rapamycin) pathway, in immunity. TORC1 is circadian regulated and inhibition of TORC1 decreased resistance, as in vertebrates. Surprisingly, inhibition of the less well-characterized TOR complex 2 (TORC2) dramatically increased survival, through both resistance and tolerance mechanisms. This work suggests that dietary intake on the day of infection by B. cepacia can make a significant difference in long-term survival. We further demonstrate that TOR signaling mediates both resistance and tolerance of infection and identify TORC2 as a novel potential therapeutic target for increasing survival of infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists

    NARCIS (Netherlands)

    Geisen, Stefan

    2016-01-01

    Abstract Protists (=protozoa) are commonly treated as bacterivores that control the bacterial energy channel in soil food webs. This ecologist’s perspective is, however, challenged by taxonomic studies showing that a range of protists feed on fungi, other protists and even nematodes. Recently, it

  13. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists

    NARCIS (Netherlands)

    Geisen, Stefan

    2016-01-01

    Protists (=protozoa) are commonly treated as bacterivores that control the bacterial energy channel in soil food webs. This ecologist’s perspective is, however, challenged by taxonomic studies showing that a range of protists feed on fungi, other protists and even nematodes. Recently, it was

  14. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms.

    Science.gov (United States)

    Yang, Jin-Long; Shen, Pei-Jing; Liang, Xiao; Li, Yi-Feng; Bao, Wei-Yang; Li, Jia-Le

    2013-01-01

    The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate, Pseudoalteromonas sp. 4, had a no inducing activity. The inducing activity of individual bacterial isolates was not correlated either with their phylogenetic relationship or with the surfaces from which they were isolated. Among the eight bacterial species that demonstrated inducing activity, bacterial density was significantly correlated with the inducing activity for each strain, with the exception of Vibrio sp. 1. The Shewanella sp. 1 BF cue that was responsible for inducing larval settlement and metamorphosis was further investigated. Treatment of the BFs with formalin, antibiotics, ultraviolet irradiation, heat, and ethanol resulted in a significant decrease in their inducing activities and cell survival. BF-conditioned water (CW) did not induce larval metamorphosis, but it triggered larval settlement behavior. A synergistic effect of CW with formalin-fixed Shewanella sp. 1 BF significantly promoted larval metamorphosis. Thus, a cocktail of chemical cues derived from bacteria may be necessary to stimulate larval settlement and metamorphosis in this species.

  15. Experimental Bacterial Endocarditis in the Opossum (Didelphis virginiana)

    Science.gov (United States)

    Sherwood, B. F.; Rowlands, D. T.; Vakilzadeh, J.; LeMay, J. C.

    1971-01-01

    It was possible to induce bacterial endocarditis in opossums with single intravenous injections of Streptococcus viridans or Staphylococcus aureus. Fiftyeight percent of those animals given Streptococcus viridans developed bacterial endocarditis in which most of the lesions were on the left side of the heart. The experimentally induced streptococcal disease was similar to that which may occur spontaneously in opossums, both with respect to the distribution and structure of the vegetations. Single injections of Staphylococcus aureus resulted in endocarditis in 100% of the test animals. These lesions differed from those due to streptococci by having a relatively high frequency of right- as well as left-sided valvular disease and by being somewhat smaller than those due to streptococci.Endocarditis could not be successfully induced with injection of three different fungi. PMID:5133514

  16. Sodium thiosulphate induced immobilized bacterial disintegration of sludge: An energy efficient and cost effective platform for sludge management and biomethanation.

    Science.gov (United States)

    Ushani, U; Kavitha, S; Yukesh Kannah, R; Gunasekaran, M; Kumar, Gopalakrishnan; Nguyen, Dinh Duc; Chang, Soon Woong; Rajesh Banu, J

    2018-07-01

    The present study aimed to gain better insights into profitable biomethanation through sodium thiosulphate induced immobilized protease secreting bacterial disintegration (STS-IPBD) of sludge. STS disperse the flocs at 0.08 g/g SS of dosage and assists the subsequent bacterial disintegration. Immobilization of bacteria increases the hydrolytic activity of cells towards effective liquefaction of sludge. A higher liquefaction of 22% was accomplished for STS-IPBD when compared to immobilized protease secreting bacterial disintegration (IPBD alone). The kinetic parameters of Line Weaver Burk plot analysis revealed a maximal specific growth rate (µmax) of 0.320 h -1 for immobilized cells when compared to suspended free cells showing the benefit of immobilization. Floc dispersion and immobilization of bacteria imparts a major role in biomethanation as the methane generation (0.32 gCOD/g COD) was higher in STS-IPBD sample. The cost analysis showed that STS - IPBD was a feasible process with net profit of 2.6 USD/Ton of sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats

    Science.gov (United States)

    Hussain, Mona A.; Abogresha, Noha M.; Tamany, Dalia A.; Lotfy, Mariam

    2016-01-01

    Introduction Globally, the prevalence of overweight and obesity is increasing, predisposing females to health hazards including compromised reproductive capacity. Our objective was to investigate the effect of ad libitum, isocalorically and hypocalorically restricted high-fat diet (HFD) feeding on reproductive function in diet-induced obese female rats. Material and methods Twenty female albino Sprague Dawley rats were used; 5 rats were kept on a standard pellet animal diet to serve as a control group (A) and 15 rats were fed a HFD for 9 weeks to induce obesity. The HFD fed animals were equally divided into three groups: an ad libitum HFD group (B), an isocalorically restricted HFD group (C), and a hypocalorically restricted HFD group (D). Estrous cyclicity, hormonal levels, ovarian histopathology and caspase-3 immunoreactivity were evaluated. Results The HFD-fed rats in groups B, C and D had significant irregularity in estrous cyclicity Vs group A (p = 0.001, 0.003 and 0.034 respectively). Groups C and D had significant reduction in serum progesterone level (p = 0.006 and 0.018 Vs A). Isocaloric restriction of HFD feeding significantly increased serum LH. Groups B and C had a significant increase in caspase-3 expression in the ovary (p < 0.001). Conclusions Ad libitum HFD interfered with the normal estrous cycle and enhanced apoptosis of luteal cells in obese female rats. The HFD restriction interfered with the normal estrous cycle and caused functional insufficiency of the corpus luteum in obese female rats. These results suggest that HFD feeding determinately affects female reproductive function independently of caloric intake. PMID:27478474

  18. Short-chain inulin-like fructans reduce endotoxin and bacterial translocations and attenuate development of TNBS-induced colitis in rats.

    Science.gov (United States)

    Ito, Hiroyuki; Tanabe, Hiroki; Kawagishi, Hirokazu; Tadashi, Wada; Yasuhiko, Tomono; Sugiyama, Kimio; Kiriyama, Shuhachi; Morita, Tatsuya

    2009-10-01

    Anti-inflammatory effects of short-chain inulin-like fructans (SCF) on trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated in rats, focusing specifically on endotoxin and bacterial translocations. SCF with degrees of polymerization (DP) of 4 and 8 were used. Rats were fed either control diet or diets including 60 g DP4 or DP8 per kilogram for 7 days, and then received intracolonic TNBS and were fed the respective diets for a further 10 days. DP4 and DP8 significantly reduced colonic injuries as assessed by damage score, but the reduction of colonic myeloperoxidase activity was manifest solely with DP8. At 3 days after colitis induction, bacterial translocation to the mesenteric lymph node was significantly lower in the DP4 and DP8 groups, but significant reduction in the portal endotoxin concentration was achieved solely in the DP8 group. Immediately prior to colitis induction, cecal immunoglobulin A and mucin concentrations were higher in the DP4 and DP8 groups, but these changes were abolished at 10 days post colitis induction. The data suggest that SCF exert prophylactic effects against TNBS colitis, presumably as a result of inhibitory effects on endotoxin and bacterial translocations.

  19. Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring.

    Science.gov (United States)

    Sellayah, Dyan; Dib, Lea; Anthony, Frederick W; Watkins, Adam J; Fleming, Tom P; Hanson, Mark A; Cagampang, Felino R

    2014-10-01

    Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Female MF-1 mice were fed a normal protein (NP, 18% casein) or a protein-restricted (PR, 9% casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45% kcal fat) or standard chow (C, 7% kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.

  20. EVALUATION OF THE MICROBIAL CONTAMINATION OF HOSPITAL-MADE ENTERAL FEEDINGS

    Directory of Open Access Journals (Sweden)

    KATHIA ROSSI ROLIM LOPES

    2009-07-01

    Full Text Available

    ABSTRACT: The quality of enteral feeding formulations prepared at hospital, which are intended for feeding children with malnutrition and diarrhoea, was investigated. A total of eight freshly prepared samples and ten frozen samples were analised. Five of the frozen samples were thawed in the hospital, and the other five in the laboratory, in similar conditions, i. e. in water bath at 50ºC. The freshly prepared samples showed mesophilic aerobic bacteria count varying between 10 to 104 CFU/ml. The presence of total coliform (three samples, fecal coliform (two samples and B. cereus (one sample was also detected. The samples thawed in the laboratory showed a satisfactory quality whilst the formulations thawed in hospital showed higher mesophiles counts and improper counts of S. aureus (two samples and B. cereus (one sample. These results were probably due to a erroneous manipulation of some untrained personnel and emphasize the importance to keep a permanent quality control to avoid the occurrence of contamination, specially for feeding formulations intended for populations at high risk. KEYWORDS: Enteral feeding; bacterial contamination; control.

  1. Effect of Unripe Plantain (Musa paradisiaca) and Ginger (Zingiber officinale) on Blood Glucose, Body Weight and Feed Intake of Streptozotocin-induced Diabetic Rats.

    Science.gov (United States)

    M, Iroaganachi; C O, Eleazu; P N, Okafor; N, Nwaohu

    2014-01-01

    To determine the effect of unripe plantain (Musa paradisiaca) and ginger (Zingiber officinale) on blood glucose (BG), feed intake (FI) and weight of streptozotocin (STZ) induced diabetic rats. Twenty four male albino rats were used and were divided into 4 groups of 6 rats each. Group 1 (non-diabetic) and Group 2 (diabetic) received standard rat feed; Group 3 received unripe plantain incorporated feed (810 /kg body weight) and Group 4 received unripe plantain+ginger incorporated feed (710:100 g/kg body weight). The weights and FI of the rats were measured daily throughout the experimentation. Groups 3 and 4 rats had 159.52% and 71.83% decreases in BG but 24.91% and 35.32% decreases in weights compared with groups 1 and 2 rats that had 2.09% and 22.94% increases in BG with 13.42% increase and 45.36% decrease in weights respectively. The FI of the experimental rats did not differ significantly from each other (P>0.05) at the end of experimentation. The standard rat feed contained higher amounts of Ca but lower amounts of Mg and Fe compared with the unripe plantain and unripe plantain+ginger incorporated feeds. Combination of unripe plantain and ginger at the dose used in the management of diabetes was not very effective compared with unripe plantain alone.

  2. A novel host-proteome signature for distinguishing between acute bacterial and viral infections.

    Directory of Open Access Journals (Sweden)

    Kfir Oved

    Full Text Available Bacterial and viral infections are often clinically indistinguishable, leading to inappropriate patient management and antibiotic misuse. Bacterial-induced host proteins such as procalcitonin, C-reactive protein (CRP, and Interleukin-6, are routinely used to support diagnosis of infection. However, their performance is negatively affected by inter-patient variability, including time from symptom onset, clinical syndrome, and pathogens. Our aim was to identify novel viral-induced host proteins that can complement bacterial-induced proteins to increase diagnostic accuracy. Initially, we conducted a bioinformatic screen to identify putative circulating host immune response proteins. The resulting 600 candidates were then quantitatively screened for diagnostic potential using blood samples from 1002 prospectively recruited patients with suspected acute infectious disease and controls with no apparent infection. For each patient, three independent physicians assigned a diagnosis based on comprehensive clinical and laboratory investigation including PCR for 21 pathogens yielding 319 bacterial, 334 viral, 112 control and 98 indeterminate diagnoses; 139 patients were excluded based on predetermined criteria. The best performing host-protein was TNF-related apoptosis-inducing ligand (TRAIL (area under the curve [AUC] of 0.89; 95% confidence interval [CI], 0.86 to 0.91, which was consistently up-regulated in viral infected patients. We further developed a multi-protein signature using logistic-regression on half of the patients and validated it on the remaining half. The signature with the highest precision included both viral- and bacterial-induced proteins: TRAIL, Interferon gamma-induced protein-10, and CRP (AUC of 0.94; 95% CI, 0.92 to 0.96. The signature was superior to any of the individual proteins (P<0.001, as well as routinely used clinical parameters and their combinations (P<0.001. It remained robust across different physiological systems

  3. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  4. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis

    Science.gov (United States)

    Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins are central regulators of plant growth and development, but little is known about their mode of action. By using differential display, we identified a gene, IBC6 (for induced by cytokinin), from etiolated Arabidopsis seedlings, that is induced rapidly by cytokinin. The steady state level of IBC6 mRNA was elevated within 10 min by the exogenous application of cytokinin, and this induction did not require de novo protein synthesis. IBC6 was not induced by other plant hormones or by light. A second Arabidopsis gene with a sequence highly similar to IBC6 was identified. This IBC7 gene also was induced by cytokinin, although with somewhat slower kinetics and to a lesser extent. The pattern of expression of the two genes was similar, with higher expression in leaves, rachises, and flowers and lower transcript levels in roots and siliques. Sequence analysis revealed that IBC6 and IBC7 are similar to the receiver domain of bacterial two-component response regulators. This homology, coupled with previously published work on the CKI1 histidine kinase homolog, suggests that these proteins may play a role in early cytokinin signaling.

  5. Anticonvulsant effect of time-restricted feeding in a pilocarpine-induced seizure model: Metabolic and epigenetic implications.

    Directory of Open Access Journals (Sweden)

    Jorge eLandgrave-Gómez

    2016-01-01

    Full Text Available A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL and a second group underwent a time-restricted feeding (TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE, and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 hours after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (β-HB concentration, an endogenous inhibitor of histone deacetylases (HDACs. Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3 in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the

  6. Anti-bacterial activity of Achatina CRP and its mechanism of action.

    Science.gov (United States)

    Mukherjee, Sandip; Barman, Soma; Mandal, Narayan Chandra; Bhattacharya, Shelley

    2014-07-01

    The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 microg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells.

  7. Inducing preschool children's emotional eating: relations with parental feeding practices.

    Science.gov (United States)

    Blissett, Jackie; Haycraft, Emma; Farrow, Claire

    2010-08-01

    Children's emotional eating is related to greater body mass index and a less-healthy diet, but little is known about the early development of this behavior. This study aimed to examine the relations between preschool children's emotional eating and parental feeding practices by using experimental manipulation of child mood and food intake in a laboratory setting. Twenty-five 3-5-y-old children and their mothers sat together and ate a standard meal to satiety. Mothers completed questionnaires regarding their feeding practices. Children were assigned to a control or negative mood condition, and their consumption of snack foods in the absence of hunger was measured. Children whose mothers often used food to regulate emotions ate more cookies in the absence of hunger than did children whose mothers used this feeding practice infrequently, regardless of condition. Children whose mothers often used food for emotion regulation purposes ate more chocolate in the experimental condition than in the control condition. The pattern was reversed for children of mothers who did not tend to use food for emotion regulation. There were no significant effects of maternal use of restriction, pressure to eat, and use of foods as a reward on children's snack food consumption. Children of mothers who use food for emotion regulation consume more sweet palatable foods in the absence of hunger than do children of mothers who use this feeding practice infrequently. Emotional overeating behavior may occur in the context of negative mood in children whose mothers use food for emotion regulation purposes. This trial was registered at clinicaltrials.gov as NCT01122290.

  8. Diet-induced obesity attenuates fasting-induced hyperphagia.

    Science.gov (United States)

    Briggs, D I; Lemus, M B; Kua, E; Andrews, Z B

    2011-07-01

    Obesity impairs arcuate (ARC) neuropeptide Y (NPY)/agouti-releated peptide (AgRP) neuronal function and renders these homeostatic neurones unresponsive to the orexigenic hormone ghrelin. In the present study, we investigated the effect of diet-induced obesity (DIO) on feeding behaviour, ARC neuronal activation and mRNA expression following another orexigenic stimulus, an overnight fast. We show that 9 weeks of high-fat feeding attenuates fasting-induced hyperphagia by suppressing ARC neuronal activation and hypothalamic NPY/AgRP mRNA expression. Thus, the lack of appropriate feeding responses in DIO mice to a fast is caused by failure ARC neurones to recognise and/or respond to orexigenic cues. We propose that fasting-induced hyperphagia is regulated not by homeostatic control of appetite in DIO mice, but rather by changes in the reward circuitry. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  9. Broad-Range Bacterial Capture from Fluid-Samples: Implications for Amplification-Free Contamination Detection

    Directory of Open Access Journals (Sweden)

    Monika WEBER

    2016-08-01

    Full Text Available Fluid-Screen, Inc. presents a bacterial concentration and filtration method based on dielectrophoresis and alternating current kinetics. Dielectrophoresis has been previously shown to induce particle motion; however, bacterial capture efficiency and reproducibility have consistently been low, reducing its potential for practical applications. In this study, we introduce a novel, patent-pending electrode system optimized to simultaneously capture a wide range of bacterial species from a variety of aqueous solutions. Specifically, we show that the method of dielectrophoresis used induces responses in both characteristic Gram- negative Escherichia coli and Gram-positive Enterococcus faecalis bacteria, as well as with Bacillus subtilis and Aestuariimicrobium kwangyangense. We have adapted the electrode design to create a bacterial sample preparatio unit, termed the sample sorter, that is able to capture multiple bacterial species and release them simultaneously for bacterial concentration and exchange from complex matrices to defined buffer media. This technology can be used on its own or in conjunction with standard bacterial detection methods such as mass spectroscopy. The Fluid-Screen product will dramatically improve testing and identification of bacterial contaminants in various industrial settings by eliminating the need for amplification of samples and by reducing the time to identification.

  10. Adaptations in bacterial and fungal communities to termite fungiculture

    DEFF Research Database (Denmark)

    Otani, Saria

    in the bacterial and fungal communities. To do this, we used pyrosequencing, fluorescent in situ hybridisation, light and confocal microscopy, enzymatic assays, chemical extractions, in vitro assays, and feeding experiments in this thesis work to elucidate these predicted changes in fungus-growing termite...... in the proportion of fungal material provided to the cockroaches. However, gut microbiotas remained distinct from those of termites after Termitomyces-feeding, indicating that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions......, and possibly gut microenvironment constrain the magnitude of change. This thesis also characterises the fungus comb fungal communities (mycobiotas) in fungusgrowing termites, and shows that non-Termitomyces fungi were essentially absent in combs, and that Termitomyces fungal crops are maintained...

  11. Honey feeding protects kidney against cisplatin nephrotoxicity through suppression of inflammation.

    Science.gov (United States)

    Hamad, Rania; Jayakumar, Calpurnia; Ranganathan, Punithavathi; Mohamed, Riyaz; El-Hamamy, Mahmoud M I; Dessouki, Amina A; Ibrahim, Abdelazim; Ramesh, Ganesan

    2015-08-01

    Cisplatin is a highly effective chemotherapeutic drug used to treat a wide variety of solid tumors. However, its use was limited due its dose-limiting toxicity to the kidney. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Honey is a naturally occurring complex liquid and widely used in traditional Ayurvedic medicine to treat many illnesses. However, its effect on cisplatin nephrotoxicity is unknown. To determine the role of honey in cisplatin nephrotoxicity, animals were pretreated orally for a week and then cisplatin was administered. Honey feeding was continued for another 3 days. Our results show that animals with cisplatin-induced kidney dysfunction, as determined by increased serum creatinine, which received honey feeding had less kidney dysfunction. Improved kidney function was associated with better preservation of kidney morphology in honey-treated group as compared to the cisplatin alone-treated group. Interestingly, honey feeding significantly reduced cisplatin-induced tubular epithelial cell death, immune infiltration into the kidney as well as cytokine and chemokine expression and excretion as compared to cisplatin treated animals. Western blot analysis shows that cisplatin-induced increase in phosphorylation of NFkB was completely suppressed with honey feeding. In conclusion, honey feeding protects the kidney against cisplatin nephrotoxicity through suppression of inflammation and NFkB activation. © 2015 Wiley Publishing Asia Pty Ltd.

  12. A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    Elizabeth L Harvey

    2016-02-01

    Full Text Available Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here we report the isolation of 2-heptyl-4-quinolone (HHQ, released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cell-cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g. rapid cell lysis. In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of interkingdom interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes.

  13. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    Science.gov (United States)

    Brandt, Stephanie M.; Schneider, David S.

    2009-01-01

    Summary Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized the ovary in a previously undescribed manner; bacteria were found in the posterior of the ovary, adjacent to the lateral oviduct. This local infection in the ovary resulted in melanization and activation of the cellular immune response at the site of infection. PMID:17400292

  14. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    Directory of Open Access Journals (Sweden)

    Drevinek Pavel

    2009-12-01

    Full Text Available Abstract Background The Lactic Acid Bacteria (LAB are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i the initial cultivable LAB strain diversity in the human gut, and (ii the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156 contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be

  15. Intermittent fasting promotes bacterial clearance and intestinal IgA production in Salmonella typhimurium-infected mice.

    Science.gov (United States)

    Godínez-Victoria, M; Campos-Rodriguez, R; Rivera-Aguilar, V; Lara-Padilla, E; Pacheco-Yepez, J; Jarillo-Luna, R A; Drago-Serrano, M E

    2014-05-01

    The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, α- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-α and interferon-γ) and anti-inflammatory cytokine (transforming growth factor-β) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells. © 2014 John Wiley & Sons Ltd.

  16. Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance.

    Science.gov (United States)

    Duarte, Cristian; López, Jorge; Benítez, Samanta; Manríquez, Patricio H; Navarro, Jorge M; Bonta, Cesar C; Torres, Rodrigo; Quijón, Pedro

    2016-02-01

    The effects of global stressors on a species may be mediated by the stressors' impact on coexisting taxa. For instance, herbivore-algae interactions may change due to alterations in algal nutritional quality resulting from high CO2 levels associated with ocean acidification (OA). We approached this issue by assessing the indirect effects of OA on the trophic interactions between the amphipod Orchestoidea tuberculata and the brown alga Durvillaea antarctica, two prominent species of the South-east Pacific coast. We predicted that amphipod feeding behavior and performance (growth rate) will be affected by changes in the palatability of the algae exposed to high levels (1000 ppm) of CO2. We exposed algae to current and predicted (OA) atmospheric CO2 levels and then measured their nutritive quality and amphipod preference in choice trials. We also assessed consumption rates separately in no-choice trials, and measured amphipod absorption efficiency and growth rates. Protein and organic contents of the algae decreased in acidified conditions and amphipods showed low preference for these algae. However, in the no-choice trials we recorded higher grazing rates on algae exposed to OA. Although amphipod absorption efficiency was lower on these algae, growth rates did not differ between treatments, which suggests the occurrence of compensatory feeding. Our results suggest that changes in algal nutritional value in response to OA induce changes in algal palatability and these in turn affect consumers' food preference and performance. Indirect effects of global stressors like OA can be equally or more important than the direct effects predicted in the literature.

  17. Introducing enteral feeding induces intestinal subclinical inflammation and respective chromatin changes in preterm pigs

    DEFF Research Database (Denmark)

    Willems, Rhea; Krych, Lukasz; Rybicki, Verena

    2015-01-01

    AIM: To analyze how enteral food introduction affects intestinal gene regulation and chromatin structure in preterm pigs. MATERIALS & METHODS: Preterm pigs were fed parenteral nutrition plus/minus slowly increasing volumes of enteral nutrition. Intestinal gene-expression and chromatin structure......; no significant differences for colostrum) with corresponding decondensed chromatin configurations. On histology this correlated with mild mucosal lesions, particularly in formula-fed pigs. In CaCo-2 cells, histone hyperacetylation led to a marked increase in TLR4 mRNA and increased IL8 expression upon...... stimulation with lipopolysaccharide (median: 7.0; interquartile range: 5.63-8.85) compared with naive cells (median 4.2; interquartile range: 2.45-6.33; p = 0.03). CONCLUSION: Enteral feeding, particular with formula, induces subclinical inflammation in the premature intestine and more open chromatin...

  18. Bacterial Actins? An Evolutionary Perspective

    Science.gov (United States)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  19. Lactobacillus rhamnosus L34 Attenuates Gut Translocation-Induced Bacterial Sepsis in Murine Models of Leaky Gut.

    Science.gov (United States)

    Panpetch, Wimonrat; Chancharoenthana, Wiwat; Bootdee, Kanthika; Nilgate, Sumanee; Finkelman, Malcolm; Tumwasorn, Somying; Leelahavanichkul, Asada

    2018-01-01

    Gastrointestinal (GI) bacterial translocation in sepsis is well known, but the role of Lactobacillus species probiotics is still controversial. We evaluated the therapeutic effects of Lactobacillus rhamnosus L34 in a new sepsis model of oral administration of pathogenic bacteria with GI leakage induced by either an antibiotic cocktail (ATB) and/or dextran sulfate sodium (DSS). GI leakage with ATB, DSS, and DSS plus ATB (DSS+ATB) was demonstrated by fluorescein isothiocyanate (FITC)-dextran translocation to the circulation. The administration of pathogenic bacteria, either Klebsiella pneumoniae or Salmonella enterica serovar Typhimurium, enhanced translocation. Bacteremia was demonstrated within 24 h in 50 to 88% of mice with GI leakage plus the administration of pathogenic bacteria but not with GI leakage induction alone or bacterial gavage alone. Salmonella bacteremia was found in only 16 to 29% and 0% of mice with Salmonella and Klebsiella administrations, respectively. Klebsiella bacteremia was demonstrated in 25 to 33% and 10 to 16% of mice with Klebsiella and Salmonella administrations, respectively. Lactobacillus rhamnosus L34 attenuated GI leakage in these models, as shown by the reductions of FITC-dextran gut translocation, serum interleukin-6 (IL-6) levels, bacteremia, and sepsis mortality. The reduction in the amount of fecal Salmonella bacteria with Lactobacillus treatment was demonstrated. In addition, an anti-inflammatory effect of the conditioned medium from Lactobacillus rhamnosus L34 was also demonstrated by the attenuation of cytokine production in colonic epithelial cells in vitro In conclusion, Lactobacillus rhamnosus L34 attenuated the severity of symptoms in a murine sepsis model induced by GI leakage and the administration of pathogenic bacteria. Copyright © 2017 American Society for Microbiology.

  20. Feed contamination with Fusarium mycotoxins induces a corticosterone stress response in broiler chickens.

    Science.gov (United States)

    Antonissen, G; De Baere, S; Devreese, M; Van Immerseel, F; Martel, A; Croubels, S

    2017-01-01

    The aim of the present study was to evaluate the effect of the Fusarium mycotoxins deoxynivalenol (DON) and fumonisins (FBs) on the stress response in broiler chickens, using corticosterone (CORT) in plasma as a biomarker. Chickens were fed either a control diet, a DON contaminated diet, a FBs contaminated diet, or a DON and FBs contaminated diet for 15 d at concentrations close to the European Union maximum guidance levels for DON and FBs in poultry. Mean plasma CORT levels were significantly higher in broiler chickens fed a DON contaminated and a DON and FBs contaminated diet compared to birds fed a control diet. A similar trend was observed for animals fed a FBs contaminated diet. Consequently, feeding broilers a diet contaminated with DON and/or FBs induced a CORT stress response, which may indicate a negative effect on animal welfare. © 2016 Poultry Science Association Inc.

  1. Feeding Releases Endogenous Opioids in Humans.

    Science.gov (United States)

    Tuulari, Jetro J; Tuominen, Lauri; de Boer, Femke E; Hirvonen, Jussi; Helin, Semi; Nuutila, Pirjo; Nummenmaa, Lauri

    2017-08-23

    The endogenous opioid system supports a multitude of functions related to appetitive behavior in humans and animals, and it has been proposed to govern hedonic aspects of feeding thus contributing to the development of obesity. Here we used positron emission tomography to investigate whether feeding results in hedonia-dependent endogenous opioid release in humans. Ten healthy males were recruited for the study. They were scanned with the μ-opioid-specific ligand [ 11 C]carfentanil three times, as follows: after a palatable meal, a nonpalatable meal, and after an overnight fast. Subjective mood, satiety, and circulating hormone levels were measured. Feeding induced significant endogenous opioid release throughout the brain. This response was more pronounced following a nonpalatable meal versus a palatable meal, and independent of the subjective hedonic responses to feeding. We conclude that feeding consistently triggers cerebral opioid release even in the absence of subjective pleasure associated with feeding, suggesting that metabolic and homeostatic rather than exclusively hedonic responses play a role in the feeding-triggered cerebral opioid release. SIGNIFICANCE STATEMENT The endogenous opioid system supports both hedonic and homeostatic functions. It has been proposed that overeating and concomitant opioid release could downregulate opioid receptors and promote the development of obesity. However, it remains unresolved whether feeding leads to endogenous opioid release in humans. We used in vivo positron emission tomography to test whether feeding triggers cerebral opioid release and whether this response is associated with pleasurable sensations. We scanned volunteers using the μ-opioid receptor-specific radioligand [ 11 C]carfentanil three times, as follows: after an overnight fast, after consuming a palatable meal, and after consuming a nonpalatable meal. Feeding led to significant endogenous opioid release, and this occurred also in the absence of feeding

  2. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals

    DEFF Research Database (Denmark)

    Øverland, Margareth; Tauson, Anne-Helene; Shearer, Karl

    2010-01-01

    ingredients for animals. We present results from earlier work and recent findings concerning bacterial protein, including the production process, chemical composition, effects on nutrient digestibility, metabolism, and growth performance in several monogastric species, including pigs, broiler chickens, mink......Bacterial proteins represent a potential future nutrient source for monogastric animal production because they can be grown rapidly on substrates with minimum dependence on soil, water, and climate conditions. This review summarises the current knowledge on methane-utilising bacteria as feed...... Methylococcus capsulatus (Bath), is a promising source of protein based on criteria such as amino acid composition, digestibility, and animal performance and health. Future research challenges include modified downstream processing to produce value-added products, and improved understanding of factors...

  3. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M.; Gil, Francisco J.

    2016-01-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  4. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  5. Tetranychus urticae mites do not mount an induced immune response against bacteria.

    Science.gov (United States)

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio

    2017-06-14

    The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.

  6. The bacterial preparation OK432 induces IL-12p70 secretion in human dendritic cells in a TLR3 dependent manner.

    Science.gov (United States)

    Hovden, Arnt-Ove; Karlsen, Marie; Jonsson, Roland; Appel, Silke

    2012-01-01

    Dendritic cells (DC) used in therapeutic cancer immunotherapy have to be able to stimulate T cells resulting in an immune response that can efficiently target the cancer cells. One of the critical hurdles has been the lack of IL-12p70 production when maturating the DC, which is rectified by using the bacterial preparation OK432 (trade name Picibanil) to mature the cells. In order to identify the mechanism behind OK432 stimulation of DC, we investigated the contribution of different TLR to examine their involvement in IL-12p70 production. By combining different inhibitors of TLR signaling, we demonstrate here that TLR3 is responsible for the IL-12p70 production of DC induced by OK432. Moreover, our data suggest that the ligand triggering IL-12p70 secretion upon TLR3 stimulation is sensitive to proteinase and partly also RNAse treatment. The fact that a bacterial compound like OK432 can activate the TLR3 pathway in human DC is a novel finding. OK432 demonstrates a critical ability to induce IL-12p70 production, which is of great relevance in DC based cancer immunotherapy.

  7. The bacterial preparation OK432 induces IL-12p70 secretion in human dendritic cells in a TLR3 dependent manner.

    Directory of Open Access Journals (Sweden)

    Arnt-Ove Hovden

    Full Text Available Dendritic cells (DC used in therapeutic cancer immunotherapy have to be able to stimulate T cells resulting in an immune response that can efficiently target the cancer cells. One of the critical hurdles has been the lack of IL-12p70 production when maturating the DC, which is rectified by using the bacterial preparation OK432 (trade name Picibanil to mature the cells. In order to identify the mechanism behind OK432 stimulation of DC, we investigated the contribution of different TLR to examine their involvement in IL-12p70 production. By combining different inhibitors of TLR signaling, we demonstrate here that TLR3 is responsible for the IL-12p70 production of DC induced by OK432. Moreover, our data suggest that the ligand triggering IL-12p70 secretion upon TLR3 stimulation is sensitive to proteinase and partly also RNAse treatment. The fact that a bacterial compound like OK432 can activate the TLR3 pathway in human DC is a novel finding. OK432 demonstrates a critical ability to induce IL-12p70 production, which is of great relevance in DC based cancer immunotherapy.

  8. Feed or bioenergy production from agri-industrial residues?

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Astrup, Thomas Fruergaard

    induced GHG emissions). All in all, the use of biomasses that are today used as animal feed (e.g. beet molasses) induced significant GHG emissions through iLUC. These were quantified at between 1-3.5 t CO2/t dry residue depending upon the nutritional value. The recommendation is to avoid the use...

  9. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection.

    Directory of Open Access Journals (Sweden)

    Marco A Ataide

    2014-01-01

    Full Text Available Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1β. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1β expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1β upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14(+CD16(-Caspase-1(+ and CD14(dimCD16(+Caspase-1(+ monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1β after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1β and hypersensitivity to secondary bacterial infection during malaria.

  10. Significant improvement of intestinal microbiota of gibel carp (Carassius auratus gibelio) after traditional Chinese medicine feeding.

    Science.gov (United States)

    Wu, Z B; Gatesoupe, F-J; Li, T T; Wang, X H; Zhang, Q Q; Feng, D Y; Feng, Y Q; Chen, H; Li, A H

    2018-03-01

    Increasing attention has been attracted to intestinal microbiota, due to interactions with nutrition, metabolism and immune defence of the host. Traditional Chinese medicine (TCM) feed additives have been applied in aquaculture to improve fish health, but the interaction with fish gut microbiota is still poorly understood. This study aimed to explore the effect of adding TCM in feed on the intestinal microbiota of gibel carp (Carassius auratus gibelio). Bacterial communities of 16 fish intestinal contents and one water sample were characterized by high-throughput sequencing and analysis of the V4-V5 region of the 16S rRNA gene. The results showed that the composition and structure of the bacterial community were significantly altered by the TCM feeding. Some phyla increased markedly (Proteobacteria, Actinobacteria, Acidobacteria, etc.), while Fusobacteria were significantly reduced. Concurrently, the richness and diversity of the taxonomic units increased, and the microbiota composition of TCM-treated fish was more homogeneous among individuals. At the genus level, the addition of TCM tended to reduce the incidence of potential pathogens (Aeromonas, Acinetobacter and Shewanella), while stimulating the emergence of some potential probiotics (Lactobacillus, Lactococcus, Bacillus and Pseudomonas). These data suggested that the feed additive could regulate the fish intestinal microbiota by reinforcing the microbial balance. This study may provide useful information for further application of TCM for diseases prevention and stress management in aquaculture. © 2017 The Society for Applied Microbiology.

  11. Effect of radurization on the storage life of pollen substitutes utilized in the feeding of honey bee (Apis mellifera L.)

    International Nuclear Information System (INIS)

    Szymas, B.; Przybyl, A.

    1993-01-01

    In spite of treatment under high pressure and in elevated temperature, the pollen substitutes are not free from microbial contamination, and the pasteurizing effect may be achieved through the use of gamma irradiation. In the case of feed for honey bees, the dose of 5 KGy resulted in decrease of bacterial contamination by 2-3 log cycles. The problem whether such treatment could influence the nutritive value of two protein-rich feeds for honey bees, was the scope of this work. Two protein feeds were used for the feeding studies. The feeds had the following composition: powder milk, casein, Torula fodder yeasts, extruded maize, potato pulp, maltodextrin, sunflower oil, vitamin mixture, milk acid. Besides, feed I contained blood meal and ground rape, while feed II contained fish meal and soya meal instead. On the basis of the experiment, it was found that extruded and radurized protein feeds, after one-years storage at 6 C, did not lose their nutritive value. (orig./vhe)

  12. Bacterial communities of disease vectors sampled across time, space, and species.

    Science.gov (United States)

    Jones, Ryan T; Knight, Rob; Martin, Andrew P

    2010-02-01

    A common strategy of pathogenic bacteria is to form close associations with parasitic insects that feed on animals and to use these insects as vectors for their own transmission. Pathogens interact closely with other coexisting bacteria within the insect, and interactions between co-occurring bacteria may influence the vector competency of the parasite. Interactions between particular lineages can be explored through measures of alpha-diversity. Furthermore, general patterns of bacterial community assembly can be explored through measures of beta-diversity. Here, we use pyrosequencing (n=115,924 16S rRNA gene sequences) to describe the bacterial communities of 230 prairie dog fleas sampled across space and time. We use these communinty characterizations to assess interactions between dominant community members and to explore general patterns of bacterial community assembly in fleas. An analysis of co-occurrence patterns suggests non-neutral negative interactions between dominant community members (Pspace (phylotype-based: R=0.418, Pspace and time.

  13. Digestive microbiota is different in pigs receiving antimicrobials or a feed additive during the nursery period.

    Directory of Open Access Journals (Sweden)

    Cassandra Soler

    Full Text Available Antimicrobials have been used in a prophylactic way to decrease the incidence of digestive disorders during the piglet post-weaning period. Nowadays, it is urgent to reduce their consumption in livestock to address the problem of antimicrobial resistance. In this study, the effect of a product on piglet microbiota has been investigated as an alternative to antimicrobials. Three groups of ten post-weaning pigs were sampled at 0, 15 and 30 days one week post-weaning; the control, antibiotic and feed additive group received a standard post-weaning diet without antibiotics or additives, the same diet as the control group but with amoxicillin and colistin sulphate and the same diet as the control group but with a feed additive (Sanacore-EN, Nutriad International N.V., respectively. The total DNA extracted from faeces was used to amplify the 16S RNA gene for massive sequencing under manufacturer's conditions. Sequencing data was quality filtered and analyzed using QIIME software and suitable statistical methods. In general terms, age modifies significantly the microbiota of the piglets. Thus, the oldest the animal, the highest bacterial diversity observed for the control and the feed additive groups. However, this diversity was very similar in the antibiotic group throughout the trial. Interestingly, a clear increase in abundance of Bacillus and Lactobacillus spp was detected within the feed additive group versus the antibiotic and control groups. In conclusion, the feed additive group had a positive effect in the endogenous microbiota of post-weaning pigs increasing both, the diversity of bacterial families and the abundance of lactic acid bacteria during the post-weaning period.

  14. Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations.

    Directory of Open Access Journals (Sweden)

    Sina-Catherine Siegerstetter

    Full Text Available Intestinal microbe-host interactions can affect the feed efficiency (FE of chickens. As inconsistent findings for FE-associated bacterial taxa were reported across studies, the present objective was to identify whether bacterial profiles and predicted metabolic functions that were associated with residual feed intake (RFI and performance traits in female and male chickens were consistent across two different geographical locations. At six weeks of life, the microbiota in ileal, cecal and fecal samples of low (n = 34 and high (n = 35 RFI chickens were investigated by sequencing the V3-5 region of the 16S rRNA gene. Location-associated differences in α-diversity and relative abundances of several phyla and genera were detected. RFI-associated bacterial abundances were found at the phylum and genus level, but differed among the three intestinal sites and between males and females. Correlation analysis confirmed that, of the taxonomically classifiable bacteria, Lactobacillus (5% relative abundance and two Lactobacillus crispatus-OTUs in feces were indicative for high RFI in females (P < 0.05. In males, Ruminococcus in cecal digesta (3.1% relative abundance and Dorea in feces (<0.1% relative abundance were best indicative for low RFI, whereas Acinetobacter in feces (<1.5% relative abundance related to high RFI (P < 0.05. Predicted metabolic functions in feces of males confirmed compositional relationships as functions related to amino acid, fatty acid and vitamin metabolism correlated with low RFI, whereas an increasing abundance of bacterial signaling and interaction (i.e. cellular antigens genes correlated with high RFI (P < 0.05. In conclusion, RFI-associated bacterial profiles could be identified across different geographical locations. Results indicated that consortia of low-abundance taxa in the ileum, ceca and feces may play a role for FE in chickens, whereby only bacterial FE-associations found in ileal and cecal digesta may serve as useful

  15. Effects of KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets

    Directory of Open Access Journals (Sweden)

    Yuanliang Hu

    2014-08-01

    Full Text Available This research focused on the effects of different doses of Bacillus subtilis KN-42 on the growth performance, diarrhea incidence, faecal bacterial flora, and the relative number of Lactobacillus and Escherichia coli in faeces of weaned piglets to determine whether the strain can serve as a candidate antimicrobial growth promoter. A total of 360 piglets (initial body weight 7.14±0.63 kg weaned at 26±2 days of age were randomly allotted to 5 treatment groups (4 pens per treatment with 18 pigs per pen for a 28-day trial. Dietary treatments were basal diet without any antimicrobial (negative control; NC, basal diet supplemented with 120 mg/kg feed of neomycin sulfate (positive control; PC and basal diet supplemented with 2×109 (L, 4×109 (M and 20×109 (H CFU/kg feed of B. subtilis KN-42. During the overall period, average daily gain and feed efficiency of piglets were higher in groups PC, M, and H than those in group NC (p<0.05, and all probiotics and antibiotics groups had a lower diarrhea index than group NC (p<0.05. The 16S rDNA gene-based methods were used to analyze faecal bacterial flora on day 28 of experiment. The result of denaturing gradient gel electrophoresis analysis showed that supplementation of B. subtilis KN-42 to the diet changed the bacterial communities, with a higher bacterial diversity and band number in group M than in the other four groups. Real-time polymerase chain reaction analysis showed that the relative number of Lactobacillus were higher in groups PC and H than in group NC (p<0.05, and the supplemented B. subtilis KN-42 to the diet also reduced the relative number of E. coli (p<0.05. These results suggest that dietary addition of B. subtilis KN-42 can improve the growth performance and gastrointestinal health of piglets.

  16. Radiation control of salmonellae in food and feed products

    Energy Technology Data Exchange (ETDEWEB)

    1963-12-01

    A panel on radiation control of harmful organisms, primarily Salmonella, transmitted by food and feed products was convened by the International Atomic Energy Agency (IAEA) in December 1962. Transmission of pests and diseases is a consequence of the growth in world trade. As most food and feed products are distributed from large centralized plants, primary infection at such centers can lead to the spread of diseases over wide areas and among a great number of people. The main purpose of this panel was to advise the Director General of the International Atomic Energy Agency as to how the Agency could assist in solving the problem of bacterial infection of food and animal feeds. The panel meeting was attended by twelve experts on public health problems, food hygiene, radiomicrobiology and radiation technology and by representatives from the Food and Agriculture Organization of the United Nations (FAO) and the World Health organization (WHO). In view of the seriousness of the spread of Salmonella and other organisms and the fact that radiation control seems to offer significant advantages in a number of cases, it was recommended by the panel members that the Agency publish the papers presented. Refs, figs and tabs.

  17. Radiation control of salmonellae in food and feed products

    International Nuclear Information System (INIS)

    1963-01-01

    A panel on radiation control of harmful organisms, primarily Salmonella, transmitted by food and feed products was convened by the International Atomic Energy Agency (IAEA) in December 1962. Transmission of pests and diseases is a consequence of the growth in world trade. As most food and feed products are distributed from large centralized plants, primary infection at such centers can lead to the spread of diseases over wide areas and among a great number of people. The main purpose of this panel was to advise the Director General of the International Atomic Energy Agency as to how the Agency could assist in solving the problem of bacterial infection of food and animal feeds. The panel meeting was attended by twelve experts on public health problems, food hygiene, radiomicrobiology and radiation technology and by representatives from the Food and Agriculture Organization of the United Nations (FAO) and the World Health organization (WHO). In view of the seriousness of the spread of Salmonella and other organisms and the fact that radiation control seems to offer significant advantages in a number of cases, it was recommended by the panel members that the Agency publish the papers presented. Refs, figs and tabs

  18. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    Science.gov (United States)

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  19. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed

    DEFF Research Database (Denmark)

    Larsen, Nadja; Thorsen, Line; Kpikpi, Elmer Nayra

    2014-01-01

    for use as probiotic additives in pig feed. A total of 245 bacterial isolates derived from African fermented food, feces and soil were identified by 16S rRNA gene sequencing and screened for antimicrobial activity and growth in the presence of antibiotics, bile salts and at pH 4.0. Thirty-three Bacillus......Bacillus spp. are commonly used as probiotic species in the feed industry, however, their benefits need to be confirmed. This study describes a high throughput screening combined with the detailed characterization of endospore-forming bacteria with the aim to identify new Bacillus spp. strains...

  20. Viral-bacterial associations in acute apical abscesses.

    Science.gov (United States)

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  1. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  2. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota.

    Science.gov (United States)

    Martin, Rocio; Makino, Hiroshi; Cetinyurek Yavuz, Aysun; Ben-Amor, Kaouther; Roelofs, Mieke; Ishikawa, Eiji; Kubota, Hiroyuki; Swinkels, Sophie; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Knol, Jan

    2016-01-01

    Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with a higher risk of diseases later in life. Fecal samples were collected from 108 healthy neonates in the first half year of life. The composition and functionality of the microbiota was characterized by measuring 33 different bacterial taxa by qPCR/RT qPCR, and 8 bacterial metabolites. Information regarding gender, place and mode of birth, presence of siblings or pets; feeding pattern and antibiotic use was collected by using questionnaires. Regression analysis techniques were used to study associations between microbiota parameters and confounding factors over time. Bacterial DNA was detected in most meconium samples, suggesting bacterial exposure occurs in utero. After birth, colonization by species of Bifidobacterium, Lactobacillus and Bacteroides was influenced by mode of delivery, type of feeding and presence of siblings, with differences found at species level and over time. Interestingly, infant-type bifidobacterial species such as B. breve or B. longum subsp infantis were confirmed as early colonizers apparently independent of the factors studied here, while B. animalis subsp. lactis presence was found to be dependent solely on the type of feeding, indicating that it might not be a common infant gut inhabitant. One interesting and rather unexpected confounding factor was gender. This study contributes to our understanding of the composition of the microbiota in early life and the succession process and the evolution of the microbial community as a function of time and events occurring during the first 6 months of life. Our results provide new insights that could be taken into consideration when selecting nutritional supplementation strategies to support the

  3. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Rocio Martin

    Full Text Available Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with a higher risk of diseases later in life. Fecal samples were collected from 108 healthy neonates in the first half year of life. The composition and functionality of the microbiota was characterized by measuring 33 different bacterial taxa by qPCR/RT qPCR, and 8 bacterial metabolites. Information regarding gender, place and mode of birth, presence of siblings or pets; feeding pattern and antibiotic use was collected by using questionnaires. Regression analysis techniques were used to study associations between microbiota parameters and confounding factors over time. Bacterial DNA was detected in most meconium samples, suggesting bacterial exposure occurs in utero. After birth, colonization by species of Bifidobacterium, Lactobacillus and Bacteroides was influenced by mode of delivery, type of feeding and presence of siblings, with differences found at species level and over time. Interestingly, infant-type bifidobacterial species such as B. breve or B. longum subsp infantis were confirmed as early colonizers apparently independent of the factors studied here, while B. animalis subsp. lactis presence was found to be dependent solely on the type of feeding, indicating that it might not be a common infant gut inhabitant. One interesting and rather unexpected confounding factor was gender. This study contributes to our understanding of the composition of the microbiota in early life and the succession process and the evolution of the microbial community as a function of time and events occurring during the first 6 months of life. Our results provide new insights that could be taken into consideration when selecting nutritional supplementation strategies to

  4. Feeding stimulants in an omnivorous species, crucian carp Carassiuscarassius (Linnaeus 1758)

    OpenAIRE

    Olsén, K Håkan; Lundh, Torbjörn

    2016-01-01

    Many fish are during feeding dependent on both an olfactory and gustatory sense. Olfaction that acts as the distance sense induces arousal, food search behaviour and attraction to the source, followed by examination of food items by the gustatory sense. During buccal handling the fish decide if the feed will be rejected or swallowed. Amino acids are often stimulatory to the gustatory sense and can act as feeding stimulants. There are, however, inter-species differences concerning what kinds o...

  5. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?

    Directory of Open Access Journals (Sweden)

    Choong-Min eRyu

    2016-02-01

    Full Text Available Biological control (biocontrol agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR. Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 hours post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen

  6. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    Science.gov (United States)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  7. Helicobacter pylori-induced IL-33 modulates mast cell responses, benefits bacterial growth, and contributes to gastritis.

    Science.gov (United States)

    Lv, Yi-Pin; Teng, Yong-Sheng; Mao, Fang-Yuan; Peng, Liu-Sheng; Zhang, Jin-Yu; Cheng, Ping; Liu, Yu-Gang; Kong, Hui; Wang, Ting-Ting; Wu, Xiao-Long; Hao, Chuan-Jie; Chen, Weisan; Yang, Shi-Ming; Zhao, Yong-Liang; Han, Bin; Ma, Qiang; Zou, Quan-Ming; Zhuang, Yuan

    2018-04-25

    Interleukin (IL)-induced inflammatory responses are critical for the pathogenesis of Helicobacter pylori (H. pylori)-induced gastritis. IL-33 represents a recently discovered proinflammatory cytokine involved in inflammatory diseases, but its relevance to H. pylori-induced gastritis is unknown. Here, we found that gastric IL-33 mRNA and protein expression were elevated in gastric mucosa of both patients and mice infected with H. pylori, which is positively correlated with bacterial load and the degree of gastritis. IL-33 production was promoted via extracellular regulated protein kinases (ERK) signaling pathway activation by gastric epithelial cells in a cagA-dependent manner during H. pylori infection, and resulted in increased inflammation and bacteria burden within the gastric mucosa. Gastric epithelial cell-derived IL-33 promoted TNF-α production from mast cells in vitro, and IL-33 increased TNF-α production in vivo. Increased TNF-α inhibited gastric epithelial cell proliferation, conducing to the progress of H. pylori-associated gastritis and bacteria colonization. This study defined a patent regulatory networks involving H. pylori, gastric epithelial cell, IL-33, mast cell, and TNF-α, which jointly play a pathological effect within the gastric circumstances. It may be a valuable strategy to restrain this IL-33-dependent pathway in the treatment of H. pylori-associated gastritis.

  8. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut

    Energy Technology Data Exchange (ETDEWEB)

    Lapanje, Ales, E-mail: ales@ifb.s [Institute of Physical Biology, Ljubljana (Slovenia); Zrimec, Alexis [Institute of Physical Biology, Ljubljana (Slovenia); Drobne, Damjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana (Slovenia); Rupnik, Maja [Institute of Public Health Maribor, Maribor (Slovenia)

    2010-10-15

    In previous studies we detected lower species richness and lower Hg sensitivity of the bacteria present in egested guts of Porcellio scaber (Crustacea, Isopoda) from chronically Hg polluted than from unpolluted environment. Basis for such results were further investigated by sequencing of 16S rRNA genes of mercury-resistant (Hg{sup r}) isolates and clone libraries. We observed up to 385 times higher numbers of Hg{sup r} bacteria in guts of animals from polluted than from unpolluted environment. The majority of Hg{sup r} strains contained merA genes. Sequencing of 16S rRNA clones from egested guts of animals from Hg-polluted environments showed elevated number of bacteria from Pseudomonas, Listeria and Bacteroidetes relatives groups. In animals from pristine environment number of bacteria from Achromobacter relatives, Alcaligenes, Paracoccus, Ochrobactrum relatives, Rhizobium/Agrobacterium, Bacillus and Microbacterium groups were elevated. Such bacterial community shifts in guts of animals from Hg-polluted environment could significantly contribute to P. scaber Hg tolerance. - Chronic environmental mercury pollution induces bacterial community shifts and presence of elevated number as well as increased diversity of Hg-resistant bacteria in guts of isopods.

  9. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut

    International Nuclear Information System (INIS)

    Lapanje, Ales; Zrimec, Alexis; Drobne, Damjana; Rupnik, Maja

    2010-01-01

    In previous studies we detected lower species richness and lower Hg sensitivity of the bacteria present in egested guts of Porcellio scaber (Crustacea, Isopoda) from chronically Hg polluted than from unpolluted environment. Basis for such results were further investigated by sequencing of 16S rRNA genes of mercury-resistant (Hg r ) isolates and clone libraries. We observed up to 385 times higher numbers of Hg r bacteria in guts of animals from polluted than from unpolluted environment. The majority of Hg r strains contained merA genes. Sequencing of 16S rRNA clones from egested guts of animals from Hg-polluted environments showed elevated number of bacteria from Pseudomonas, Listeria and Bacteroidetes relatives groups. In animals from pristine environment number of bacteria from Achromobacter relatives, Alcaligenes, Paracoccus, Ochrobactrum relatives, Rhizobium/Agrobacterium, Bacillus and Microbacterium groups were elevated. Such bacterial community shifts in guts of animals from Hg-polluted environment could significantly contribute to P. scaber Hg tolerance. - Chronic environmental mercury pollution induces bacterial community shifts and presence of elevated number as well as increased diversity of Hg-resistant bacteria in guts of isopods.

  10. Changes in bacterial gut community of Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks after feeding on termiticidal bait material

    Science.gov (United States)

    Rachel A. Arango; Frederick Green III; Kenneth F. Raffa

    2014-01-01

    In this study, 454-pyrosequencing was used to evaluate the effect of two termiticidal baits, hexaflumuron and diflubenzuron, on the bacterial gut community in two Reticulitermes flavipes colonies and one Reticulitermes tibialis colony. Results showed two bacterial groups to be most abundant in the gut, the Bacteroidetes and...

  11. Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. larval growth and physiology.

    Science.gov (United States)

    Movva, Vijaya; Pathipati, Usha Rani

    2017-05-01

    We studied the role of induced plant phenols as a defense response to insect herbivory. Phenolic compounds were induced in Capsicum annuum L., the source of many culinary peppers, after feeding by different stages of the insect pest, Spodoptera litura F. The phenols were identified and quantified using high performance liquid chromatography (HPLC) and effects produced by these phenols on larval development were studied. Vanillic acid was identified in plants challenged by second, fourth, and fifth instar larvae, but not in plants challenged by third instar nor unchallenged plants. Syringic acid production was induced in chili plants infested with second (0.429 ± 0.003 μg/g fresh weight, fourth (0.396 ± 0.01 μg/g fresh weight), and fifth instar (5.5 ± 0.06 μg/g fresh weight) larvae, compared to untreated plants (0.303 ± 0.01 μg/g fresh weight) plants. Leaves surface treated with the rutin deterred oviposition. Dietary exposure to chlorogenic acid, vanillic acid, syringic acid, sinapic acid, and rutin led to enhanced activities of detoxifying enzymes, β-glucosidase, carboxyl esterase, glutathione S-transferase, and glutathione reductase in the midgut tissues of all the larval instars, indicating the toxic nature of these compounds. Protein carbonyl content and acetylcholinesterase activity was analyzed to appreciate the role of induced plant phenols in insect protein oxidation and terminating nerve impulses. © 2017 Wiley Periodicals, Inc.

  12. Enhanced particle fluxes and heterotrophic bacterial activities in Gulf of Mexico bottom waters following storm-induced sediment resuspension

    Science.gov (United States)

    Ziervogel, K.; Dike, C.; Asper, V.; Montoya, J.; Battles, J.; D`souza, N.; Passow, U.; Diercks, A.; Esch, M.; Joye, S.; Dewald, C.; Arnosti, C.

    2016-07-01

    -amended compared to the unamended treatments. The broader range and higher activities of polysaccharide hydrolases in the presence of resuspended sediments compared to the unamended water reflected enzymatic capabilities typical for benthic bacteria. Our data suggest that the formation of BNLs in the deep Gulf of Mexico can lead to transport of sedimentary organic matter into bottom waters, stimulating bacterial food web interactions. Such storm-induced resuspension may represent a possible mechanism for the redistribution of sedimented oil-fallout from the Deepwater Horizon spill in 2010.

  13. Bacterial challenge of NISSHO ultrafilter ETF 609: results of in vitro testing.

    Science.gov (United States)

    Krautzig, S; Lonnemann, G; Shaldon, S; Koch, K M

    1996-07-01

    In hemodialysis, a certain degree of bacterial contamination on the dialysate side is a regular finding. Concern has been growing that this contamination may lead to a chronic inflammatory response in the patient. Ultrafiltration of dialysate can be used to reduce bacterial content and levels of cytokine-inducing substances upstream of the patient's dialyzer. The aim of this study was to test in vitro the rejection capacity of a polysulfone hollow-fiber ultrafilter (ETF 609, NISSHO Co., Osaka, Japan) challenged with bacterial filtrates derived from Pseudomonas aeruginosa PA103. Results showed a reduction of interleukin-1 beta-inducing activity (measured on peripheral blood mononuclear cells) from 5,035 +/- 394 pg/ml prefilter to nondetectable levels postfilter and endotoxin levels (limulus amebocyte lysate assay) of 4,167 +/- 1,079 versus 12 +/- 2 pg/ml, respectively. In conclusion, ultrafiltration of dialysate with the polysulfone ultrafilter ETF 609 leads to a potent reduction of cytokine-inducing activity.

  14. Efficacy of a Feed Dispenser for Horses in Decreasing Cribbing Behaviour

    Directory of Open Access Journals (Sweden)

    Silvia Mazzola

    2016-01-01

    Full Text Available Cribbing is an oral stereotypy, tends to develop in captive animals as a means to cope with stress, and may be indicative of reduced welfare. Highly energetic diets ingested in a short time are one of the most relevant risk factors for the development of cribbing. The aim of this study was to verify whether feeding cribbing horses through a dispenser that delivers small quantities of concentrate when activated by the animal decreases cribbing behaviour, modifies feeding behaviour, or induces frustration. Ten horses (mean age 14 y, balanced for sex, breed, and size (mean height 162 cm, were divided into two groups of 5 horses each: Cribbing and Control. Animals were trained to use the dispenser and videorecorded continuously for 15 consecutive days from 1 h prior to feeding to 2 h after feeding in order to measure their behaviours. The feed dispenser, Quaryka®, induced an increase in time necessary to finish the ration in both groups of horses (P<0.05. With Quaryka, cribbers showed a significant reduction of time spent cribbing (P<0.05. After removal of the feed dispenser (Post-Quaryka, cribbing behaviour significantly increased. The use of Quaryka may be particularly beneficial in horses fed high-energy diets and ingesting the food too quickly.

  15. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Directory of Open Access Journals (Sweden)

    Mohamed Adam

    Full Text Available The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  16. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  17. Independent behavior of bacterial laccases to inducers and metal ...

    African Journals Online (AJOL)

    Valued Acer Customer

    2012-05-15

    May 15, 2012 ... The medium for production was a high nitrogen medium containing ... effects of metal ions on either laccase production or laccase activity were not clear. ... this study was to isolate bacterial strains that produce ... The growth of cell culture was measured by using optical ... Conditions of laccase production.

  18. Deciphering the bacterial microbiome of citrus plants in response to ‘Candidatus Liberibacter asiaticus’-infection and antibiotic treatment

    Science.gov (United States)

    Huanglongbing (HLB), the most devastating citrus disease worldwide, is vectored by phloem-feeding insects, and the pathogen in the USA is Candidatus Liberibacter asiaticus (Las). The bacterial microbiome of citrus after Las-infection and treatments with ampicillin (Amp) and gentamicin (Gm) was chara...

  19. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Directory of Open Access Journals (Sweden)

    Uri Sela

    2018-01-01

    Full Text Available A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  20. Scheduled feeding results in adipogenesis and increased acylated ghrelin

    OpenAIRE

    Verbaeys, I.; Tolle, V.; SWENNEN, Quirine; Zizzari, P.; Buyse, J.; Epelbaum, J.; Cokelaere, M.

    2011-01-01

    Ghrelin, known to stimulate adipogenesis, displays an endogenous secretory rhythmicity closely related to meal patterns. Therefore, a chronic imposed feeding schedule might induce modified ghrelin levels and consequently adiposity. Growing Wistar rats were schedule-fed by imposing a particular fixed feeding schedule of 3 meals/day without caloric restriction compared with total daily control intake. After 14 days, their body composition was measured by DEXA and compared with ad libitum-fed co...

  1. Turbidity-induced changes in feeding strategies of fish in estuaries

    African Journals Online (AJOL)

    1991-11-12

    Nov 12, 1991 ... in hatching success (Rosenthal & Alderdice 1976), egg sur- .... ther turbidity reduces feeding rate and thirdly whether turbi- dity reduces the reactive ...... composition and suspended sediment on insect predation by the torrent ...

  2. The normal bacterial flora prevents GI disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The normal bacterial flora prevents GI disease. Inhibits pathogenic enteric bacteria. Decrease luminal pH; Secrete bacteriocidal proteins; Colonization resistance; Block epithelial binding – induce MUC2. Improves epithelial and mucosal barrier integrity. Produce ...

  3. Nutritional Value of Irradiated Animal Feed By-Products

    International Nuclear Information System (INIS)

    El-Din Farag, M.D.H.

    1998-01-01

    Animal feed by-products, widely used in animal diets, are sources of disease organisms for animals and for human beings. Salmonella is the principal genus of concern.Radiation treatment (radicidation, radurization) is a promising method of decontamination of feed ingredients. Commercial samples of fish, meat, and blood meals were sealed by heat in polyethylene bags and irradiated at dose levels of 5.0, 10, 20 and 50 kGy. Their chemical analysis were carried out according to A. O. A.C [1] and the total protein efficiency (TPE) of the three animal feed by-products was determined according to Wood ham (2) by using one day old Dokki-4 chicks. Radiation induced an insignificant effect on the chemical constituent of meals. Also, the same trend was observed with TPE of both fish and meat meals. However, irradiation treatments improved TPE values of irradiated blood meal samples. From the results, it could be concluded that irradiation of animal feed by-products up to a dose level of 50 Gy has no adverse effects on the nutritional value of animal feed by-products

  4. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  5. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  6. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  7. Arcuate Na+,K+-ATPase senses systemic energy states and regulates feeding behavior through glucose-inhibited neurons.

    Science.gov (United States)

    Kurita, Hideharu; Xu, Kai Y; Maejima, Yuko; Nakata, Masanori; Dezaki, Katsuya; Santoso, Putra; Yang, Yifei; Arai, Takeshi; Gantulga, Darambazar; Muroya, Shinji; Lefor, Alan K; Kakei, Masafumi; Watanabe, Eiju; Yada, Toshihiko

    2015-08-15

    Feeding is regulated by perception in the hypothalamus, particularly the first-order arcuate nucleus (ARC) neurons, of the body's energy state. However, the cellular device for converting energy states to the activity of critical neurons in ARC is less defined. We here show that Na(+),K(+)-ATPase (NKA) in ARC senses energy states to regulate feeding. Fasting-induced systemic ghrelin rise and glucose lowering reduced ATP-hydrolyzing activity of NKA and its substrate ATP level, respectively, preferentially in ARC. Lowering glucose concentration (LG), which mimics fasting, decreased intracellular NAD(P)H and increased Na(+) concentration in single ARC neurons that subsequently exhibited [Ca(2+)]i responses to LG, showing that they were glucose-inhibited (GI) neurons. Third ventricular injection of the NKA inhibitor ouabain induced c-Fos expression in agouti-related protein (AgRP) neurons in ARC and evoked neuropeptide Y (NPY)-dependent feeding. When injected focally into ARC, ouabain stimulated feeding and mRNA expressions for NPY and AgRP. Ouabain increased [Ca(2+)]i in single NPY/AgRP neurons with greater amplitude than in proopiomelanocortin neurons in ARC. Conversely, the specific NKA activator SSA412 suppressed fasting-induced feeding and LG-induced [Ca(2+)]i increases in ARC GI neurons. NPY/AgRP neurons highly expressed NKAα3, whose knockdown impaired feeding behavior. These results demonstrate that fasting, via ghrelin rise and LG, suppresses NKA enzyme/pump activity in ARC and thereby promotes the activation of GI neurons and NPY/AgRP-dependent feeding. This study identifies ARC NKA as a hypothalamic sensor and converter of metabolic states to key neuronal activity and feeding behaviour, providing a new target to treat hyperphagic obesity and diabetes. Copyright © 2015 the American Physiological Society.

  8. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi.

    Science.gov (United States)

    Swain, Durga Madhab; Yadav, Sunil Kumar; Tyagi, Isha; Kumar, Rahul; Kumar, Rajeev; Ghosh, Srayan; Das, Joyati; Jha, Gopaljee

    2017-09-01

    Some bacteria can feed on fungi, a phenomenon known as mycophagy. Here we show that a prophage tail-like protein (Bg_9562) is essential for mycophagy in Burkholderia gladioli strain NGJ1. The purified protein causes hyphal disintegration and inhibits growth of several fungal species. Disruption of the Bg_9562 gene abolishes mycophagy. Bg_9562 is a potential effector secreted by a type III secretion system (T3SS) and is translocated into fungal mycelia during confrontation. Heterologous expression of Bg_9562 in another bacterial species, Ralstonia solanacearum, confers mycophagous ability in a T3SS-dependent manner. We propose that the ability to feed on fungi conferred by Bg_9562 may help the bacteria to survive in certain ecological niches. Furthermore, considering its broad-spectrum antifungal activity, the protein may be potentially useful in biotechnological applications to control fungal diseases.Some bacteria can feed on live fungi through unclear mechanisms. Here, the authors show that a T3SS-secreted protein, which is homologous to phage tail proteins, allows a Burkholderia gladioli strain to kill and feed on various fungal species.

  9. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study

    KAUST Repository

    Bucs, Szilard

    2014-06-01

    Feed spacers and hydrodynamics have been found relevant for the impact of biofouling on performance in reverse osmosis (RO) and nanofiltration (NF) membrane systems.The objectives of this study on biofouling development were to determine the impact of (i) linear flow velocity and bacterial cell load, (ii) biomass location and (iii) various feed spacer geometries as applied in practice as well as a modified geometry spacer.A three-dimensional mathematical model for biofouling of feed spacer channels including hydrodynamics, solute mass transport and biofilm formation was developed in COMSOL Multiphysics and MATLAB software.Results of this study indicate that the feed channel pressure drop increase caused by biofilm formation can be reduced by using thicker and/or modified feed spacer geometry and/or a lower flow rate in the feed channel. The increase of feed channel pressure drop by biomass accumulation is shown to be strongly influenced by the location of biomass. Results of numerical simulations are in satisfactory agreement with experimental data, indicating that this micro-scale mechanistic model is representative for practice. The developed model can help to understand better the biofouling process of spiral-wound RO and NF membrane systems and to develop strategies to reduce and control biofouling. © 2013 Elsevier B.V.

  10. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study

    KAUST Repository

    Bucs, Szilard; Radu, Andrea I.; Lavric, Vasile; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2014-01-01

    Feed spacers and hydrodynamics have been found relevant for the impact of biofouling on performance in reverse osmosis (RO) and nanofiltration (NF) membrane systems.The objectives of this study on biofouling development were to determine the impact of (i) linear flow velocity and bacterial cell load, (ii) biomass location and (iii) various feed spacer geometries as applied in practice as well as a modified geometry spacer.A three-dimensional mathematical model for biofouling of feed spacer channels including hydrodynamics, solute mass transport and biofilm formation was developed in COMSOL Multiphysics and MATLAB software.Results of this study indicate that the feed channel pressure drop increase caused by biofilm formation can be reduced by using thicker and/or modified feed spacer geometry and/or a lower flow rate in the feed channel. The increase of feed channel pressure drop by biomass accumulation is shown to be strongly influenced by the location of biomass. Results of numerical simulations are in satisfactory agreement with experimental data, indicating that this micro-scale mechanistic model is representative for practice. The developed model can help to understand better the biofouling process of spiral-wound RO and NF membrane systems and to develop strategies to reduce and control biofouling. © 2013 Elsevier B.V.

  11. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  12. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding.

    Directory of Open Access Journals (Sweden)

    Nicole Speed

    Full Text Available The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt involved in insulin signaling induced by exposure to a high-fat (HF diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT. Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake.We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia.Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to "the fast food

  13. Impact of well intake systems on bacterial, algae, and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah; Almashharawi, Samir; Kammourie, Nizar; Missimer, Thomas M.

    2014-01-01

    natural filtration and biological treatment of the feed water prior to the entry of the water into the desalination plant. The use of subsurface intakes normally improves the raw water quality by reducing suspended solids, algae, bacterial, and dissolved

  14. Effectiveness of oxytetracycline in reducing the bacterial load in rohu fish (Labeo rohita, Hamilton under laboratory culture condition

    Directory of Open Access Journals (Sweden)

    Syed Ariful Haque

    2014-04-01

    Full Text Available Objective: To observe the effectiveness of most widely used antibiotic, oxytetracycline (OTC in reducing the bacterial load in rohu fish under artificial culture condition in the laboratory. Methods: The experiment was conducted in the Faculty Fisheries, Bangladesh Agricultural University, Mymensingh-2202. The fish were reared in 8 aquaria where fish in 5 aquaria were used for replication of the treatment (experimental group and fish in remaining 3 aquaria were considered as a control (Control group. OTC was fed to the fish in the experimental aquarium at the rate of 2 g/kg through diet twice daily whereas fish reared under control condition was given feed without antibiotic for 20 d and bacterial content in the aquarium water, gills, skin and intestine of fish were estimated at every alternative day after onset of the experiment. Results: Rearing the fish with OTC treated feed resulted in gradual decrease of bacterial load in the aquarium water, gills, intestine and skin of the fish whereas the content remain unchanged or little increased in the control group. Water quality parameters such as dissolved oxygen, pH and total hardness were within the suitable range in the experimental aquarium but not in control aquaria throughout the experimental period. Conclusions: These results suggest that OTC could be a potential antibiotic to reduce the bacterial load in fish and can be used commercially for maintaining the fish health in aquarium conditions.

  15. A New Pharmacological Agent (AKB-4924) Stabilizes Hypoxia Inducible Factor (HIF) and Increases Skin Innate Defenses Against Bacterial Infection

    Science.gov (United States)

    Okumura, Cheryl Y.M.; Hollands, Andrew; Tran, Dan N.; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A.; Johnson, Randall S.; Nizet, Victor

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 (Akebia Therapeutics) increases HIF-1α levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and -resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinitobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections. PMID:22371073

  16. Cooperative Optimization QoS Cloud Routing Protocol Based on Bacterial Opportunistic Foraging and Chemotaxis Perception for Mobile Internet

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available In order to strengthen the mobile Internet mobility management and cloud platform resources utilization, optimizing the cloud routing efficiency is established, based on opportunistic bacterial foraging bionics, and puts forward a chemotaxis perception of collaborative optimization QoS (Quality of Services cloud routing mechanism. The cloud routing mechanism is based on bacterial opportunity to feed and bacterial motility and to establish the data transmission and forwarding of the bacterial population behavior characteristics. This mechanism is based on the characteristics of drug resistance of bacteria and the structure of the field, and through many iterations of the individual behavior and population behavior the bacteria can be spread to the food gathering area with a certain probability. Finally, QoS cloud routing path would be selected and optimized based on bacterial bionic optimization and hedge mapping relationship between mobile Internet node and bacterial population evolution iterations. Experimental results show that, compared with the standard dynamic routing schemes, the proposed scheme has shorter transmission delay, lower packet error ratio, QoS cloud routing loading, and QoS cloud route request overhead.

  17. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana.

    Science.gov (United States)

    Doornbos, Rogier F; Geraats, Bart P J; Kuramae, Eiko E; Van Loon, L C; Bakker, Peter A H M

    2011-04-01

    Systemically induced resistance is a promising strategy to control plant diseases, as it affects numerous pathogens. However, since induced resistance reduces one or both growth and activity of plant pathogens, the indigenous microflora may also be affected by an enhanced defensive state of the plant. The aim of this study was to elucidate how much the bacterial rhizosphere microflora of Arabidopsis is affected by induced systemic resistance (ISR) or systemic acquired resistance (SAR). Therefore, the bacterial microflora of wild-type plants and plants affected in their defense signaling was compared. Additionally, ISR was induced by application of methyl jasmonate and SAR by treatment with salicylic acid or benzothiadiazole. As a comparative model, we also used wild type and ethylene-insensitive tobacco. Some of the Arabidopsis genotypes affected in defense signaling showed altered numbers of culturable bacteria in their rhizospheres; however, effects were dependent on soil type. Effects of plant genotype on rhizosphere bacterial community structure could not be related to plant defense because chemical activation of ISR or SAR had no significant effects on density and structure of the rhizosphere bacterial community. These findings support the notion that control of plant diseases by elicitation of systemic resistance will not significantly affect the resident soil bacterial microflora.

  18. Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding.

    Science.gov (United States)

    Kohno, Daisuke; Yada, Toshihiko

    2012-12-01

    NPY neuron in the hypothalamic arcuate nucleus is a key feeding center. Studies have shown that NPY neuron in the arcuate nucleus has a role to induce food intake. The arcuate nucleus is structurally unique with lacking blood brain barrier. Peripheral energy signals including hormones and nutrition can reach the arcuate nucleus. In this review, we discuss sensing and integrating peripheral signals in NPY neurons. In the arcuate nucleus, ghrelin mainly activates NPY neurons. Leptin and insulin suppress the ghrelin-induced activation in 30-40% of the ghrelin-activated NPY neurons. Lowering glucose concentration activates 40% of NPY neurons. These results indicate that NPY neuron in the arcuate nucleus is a feeding center in which major peripheral energy signals are directly sensed and integrated. Furthermore, there are subpopulations of NPY neurons in regard to their responsiveness to peripheral signals. These findings suggest that NPY neuron in the arcuate nucleus is an essential feeding center to induce food intake in response to peripheral metabolic state. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction

    Science.gov (United States)

    Kidd, Petra; Kuffner, Melanie; Prieto-Fernández, Ángeles; Hann, Stephan; Monterroso, Carmela; Sessitsch, Angela; Wenzel, Walter; Puschenreiter, Markus

    2013-01-01

    The bioavailability of metals in soil is often cited as a limiting factor of phytoextraction (or phytomining). Bacterial metabolites, such as organic acids, siderophores, or biosurfactants, have been shown to mobilize metals, and their use to improve metal extraction has been proposed. In this study, the weathering capacities of, and Ni mobilization by, bacterial strains were evaluated. Minimal medium containing ground ultramafic rock was inoculated with either of two Arthrobacter strains: LA44 (indole acetic acid [IAA] producer) or SBA82 (siderophore producer, PO4 solubilizer, and IAA producer). Trace elements and organic compounds were determined in aliquots taken at different time intervals after inoculation. Trace metal fractionation was carried out on the remaining rock at the end of the experiment. The results suggest that the strains act upon different mineral phases. LA44 is a more efficient Ni mobilizer, apparently solubilizing Ni associated with Mn oxides, and this appeared to be related to oxalate production. SBA82 also leads to release of Ni and Mn, albeit to a much lower extent. In this case, the concurrent mobilization of Fe and Si indicates preferential weathering of Fe oxides and serpentine minerals, possibly related to the siderophore production capacity of the strain. The same bacterial strains were tested in a soil-plant system: the Ni hyperaccumulator Alyssum serpyllifolium subsp. malacitanum was grown in ultramafic soil in a rhizobox system and inoculated with each bacterial strain. At harvest, biomass production and shoot Ni concentrations were higher in plants from inoculated pots than from noninoculated pots. Ni yield was significantly enhanced in plants inoculated with LA44. These results suggest that Ni-mobilizing inoculants could be useful for improving Ni uptake by hyperaccumulator plants. PMID:23793627

  20. Antibiotic-Induced Anomalous Statistics of Collective Bacterial Swarming

    Science.gov (United States)

    Benisty, Sivan; Ben-Jacob, Eshel; Ariel, Gil; Be'er, Avraham

    2015-01-01

    Under sublethal antibiotics concentrations, the statistics of collectively swarming Bacillus subtilis transitions from normal to anomalous, with a heavy-tailed speed distribution and a two-step temporal correlation of velocities. The transition is due to changes in the properties of the bacterial motion and the formation of a motility-defective subpopulation that self-segregates into regions. As a result, both the colonial expansion and the growth rate are not affected by antibiotics. This phenomenon suggests a new strategy bacteria employ to fight antibiotic stress.

  1. Blood feeding by the Rocky Mountain spotted fever vector, Dermacentor andersoni, induces interleukin-4 expression by cognate antigen responding CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Wikel Stephen K

    2009-10-01

    Full Text Available Abstract Background Tick modulation of host defenses facilitates both blood feeding and pathogen transmission. Several tick species deviate host T cell responses toward a Th2 cytokine profile. The majority of studies of modulation of T cell cytokine expression by ticks were performed with lymphocytes from infested mice stimulated in vitro with polyclonal T cell activators. Those reports did not examine tick modulation of antigen specific responses. We report use of a transgenic T cell receptor (TCR adoptive transfer model reactive with influenza hemagglutinin peptide (110-120 to examine CD4+ T cell intracellular cytokine responses during infestation with the metastriate tick, Dermacentor andersoni, or exposure to salivary gland extracts. Results Infestation with pathogen-free D. andersoni nymphs or administration of an intradermal injection of female or male tick salivary gland extract induced significant increases of IL-4 transcripts in skin and draining lymph nodes of BALB/c mice as measured by quantitative real-time RT-PCR. Furthermore, IL-10 transcripts were significantly increased in skin while IL-2 and IFN-γ transcripts were not significantly changed by tick feeding or intradermal injection of salivary gland proteins, suggesting a superimposed Th2 response. Infestation induced TCR transgenic CD4+ T cells to divide more frequently as measured by CFSE dilution, but more notably these CD4+ T cells also gained the capacity to express IL-4. Intracellular levels of IL-4 were significantly increased. A second infestation administered 14 days after a primary exposure to ticks resulted in partially reduced CFSE dilution with no change in IL-4 expression when compared to one exposure to ticks. Intradermal inoculation of salivary gland extracts from both male and female ticks also induced IL-4 expression. Conclusion This is the first report of the influence of a metastriate tick on the cytokine profile of antigen specific CD4+ T cells. Blood feeding

  2. Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm

    Directory of Open Access Journals (Sweden)

    Nora eMellouk

    2016-04-01

    Full Text Available Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  3. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air.

    Science.gov (United States)

    McGarvey, J A; Franco, R B; Palumbo, J D; Hnasko, R; Stanker, L; Mitloehner, F M

    2013-06-01

    To describe, at high resolution, the bacterial population dynamics and chemical transformations during the ensiling of alfalfa and subsequent exposure to air. Samples of alfalfa, ensiled alfalfa and silage exposed to air were collected and their bacterial population structures compared using 16S rRNA gene libraries containing approximately 1900 sequences each. Cultural and chemical analyses were also performed to complement the 16S gene sequence data. Sequence analysis revealed significant differences (P alfalfa-derived library contained mostly sequences associated with the Gammaproteobacteria (including the genera: Enterobacter, Erwinia and Pantoea); the ensiled material contained mostly sequences associated with the lactic acid bacteria (LAB) (including the genera: Lactobacillus, Pediococcus and Lactococcus). Exposure to air resulted in even greater percentages of LAB, especially among the genus Lactobacillus, and a significant drop in bacterial diversity. In-depth 16S rRNA gene sequence analysis revealed significant bacterial population structure changes during ensiling and again during exposure to air. This in-depth description of the bacterial population dynamics that occurred during ensiling and simulated feed out expands our knowledge of these processes. © 2013 The Society for Applied Microbiology No claim to US Government works.

  4. Characterization of resistant tomato mutants to bacterial canker ...

    African Journals Online (AJOL)

    Yomi

    2012-04-19

    Apr 19, 2012 ... Cmm bacteria induce bacterial canker and wilt during infection. It is unknown ... are able to degrade plant cell walls and attack xylem vessels and ... seedlings were transferred into plastic pots at four to five true leaf stages.

  5. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections.

    Science.gov (United States)

    Singh, Rashmi; Khatri, Preeti; Srivastava, Nidhi; Jain, Shruti; Brahmachari, Vani; Mukhopadhyay, Asish; Mazumder, Shibnath

    2017-04-01

    The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC 50 ) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes. Fluoride affected DNA repair machinery by abrogating the expression of the DNA repair gene rad51 and growth arrest and DNA damage inducible beta a gene gadd45ba. The upregulated expression of casp3a coupled with altered Bcl-2 associated X protein/B-cell lymphoma 2 ratio (baxa/bcl2a) clearly suggested chronic fluoride exposure induced the apoptotic cascade in zebrafish. Fluoride-exposed zebrafish when challenged with non-lethal dose of fish pathogen A. hydrophila revealed gross histopathology in spleen, bacterial persistence and significant mortality. We report that fluoride interferes with system-level output of pro-inflammatory cytokines tumour necrosis factor-α, interleukin-1β and interferon-γ, as a consequence, bacteria replicate efficiently causing significant fish mortality. We conclude, chronic fluoride exposure impairs the redox balance, affects DNA repair machinery with pro-apoptotic implications and suppresses pro-inflammatory cytokines expression abrogating host immunity to bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2013-12-01

    Full Text Available Reactive oxygen species (ROS generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H₂O₂ and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O₂− and H₂O₂ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H₂O₂and sodium nitroprusside (SNP nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H₂O₂and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10⁶ and 10⁷ cfu/ml of R. solanacearum. H₂O₂- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC’ was calculated to compare disease protection by H₂O₂ and/or SNP with untreated control. Neither H₂O₂ nor SNP protect the tomato seedlings from the bacterial wilt, but H₂O₂+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H₂O₂ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

  7. Feeding a high-concentrate corn straw diet induced epigenetic alterations in the mammary tissue of dairy cows.

    Directory of Open Access Journals (Sweden)

    Guozhong Dong

    Full Text Available The objective of this study was to investigate the effects of feeding a high-concentrate corn straw (HCS diet (65% concentrate+35% corn straw on the epigenetic changes in the mammary tissue of dairy cows in comparison with a low-concentrate corn straw (LCS diet (46% concentrate+54% corn straw and with a low-concentrate mixed forage (LMF diet (46% concentrate+54% mixed forage.Multiparous mid-lactation Chinese Holstein cows were fed one of these three diets for 6 weeks, at which time blood samples and mammary tissue samples were collected. Mammary arterial and venous blood samples were analyzed for lipopolysaccharide (LPS concentrations while mammary tissue samples were assayed for histone H3 acetylation and the methylation of specific genes associated with fat and protein synthesis.Extraction of histones and quantification of histone H3 acetylation revealed that acetylation was significantly reduced in cows fed the HCS diet, as compared with cows fed the LCS diet. Cows fed the HCS diet had significantly higher LPS concentrations in the mammary arterial blood, as compared with cows fed the LCS diet. We found that the extent of histone H3 acetylation was negatively correlated with LPS concentrations. The methylation of the stearoyl-coenzyme A desaturase gene associated with milk fat synthesis was increased in cows fed the HCS diet. By contrast, methylation of the gene encoding the signal transducer and activator of transcription 5A was reduced in cows fed the HCS diet, suggesting that feeding a high-concentrate corn straw diet may alter the methylation of specific genes involved in fat and protein synthesis in the mammary tissue of dairy cows.Feeding the high-concentrate diet induced epigenetic changes in the mammary tissues of dairy cows, possibly through effecting the release of differing amounts of LPS into the mammary blood.

  8. Role of melanocortins in the central control of feeding.

    Science.gov (United States)

    Vergoni, A V; Bertolini, A

    2000-09-29

    The injection of a melanocortin peptide or of melanocortin peptide analogues into the cerebrospinal fluid or into the ventromedial hypothalamus in nanomolar or subnanomolar doses induces a long-lasting inhibition of food intake. The effect keeps significant for up to 9 h and has been observed in all animal species so far tested, the most susceptible being the rabbit. The anorectic effect of these peptides is a primary one, not secondary to the shift towards other components of the complex melanocortin-induced behavioral syndrome, in particular grooming. The site of action is in the brain, and the effect is not adrenal-mediated because it is fully exhibited also by adrenalectomized animals. It is a very strong effect, because the degree of feeding inhibition is not reduced in conditions of hunger, either induced by 24 h starvation, or by insulin-induced hypoglycemia, or by stimulation of gamma-aminobutyric acid (GABA), noradrenergic or opioid systems. The microstructural analysis of feeding behavior suggests that melanocortins act as satiety-inducing agents, because they do not significantly modify the latencies to start eating, but shorten the latencies to stop eating. The mechanism of action involves the activation of melanocortin MC(4) receptors, because selective melanocortin MC(4) receptor antagonists inhibit the anorectic effect of melanocortins, while inducing per se a strong stimulation of food intake and a significant increase in body weight. Melanocortins seem to play an important role in stress-induced anorexia, because such condition, in rats, is significantly attenuated by the blockage of melanocortin MC(4) receptors; such a role is not secondary to an increased release of corticotropin-releasing factor (CRF), because, on the other hand, the CRF-induced anorexia is not affected at all by the blockage of melanocortin MC(4) receptors. The physiological meaning of the feeding inhibitory effect of melanocortins, and, by consequence, the physiological role

  9. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis.

    Science.gov (United States)

    Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran

    2018-01-01

    Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Health, body condition and blood metabolites in reindeer after submaintenance feed intake and subsequent feeding

    Directory of Open Access Journals (Sweden)

    A. Nilsson

    2000-03-01

    Full Text Available The transition from experimentally induced poor nutritional conditions to feeding was studied with 69 eight-month-old female reindeer (Rangifer tarandus tarandus. During a pre-experimental period, all reindeer were fed a simulated winter diet with 80% lichens Cladina spp. and 20% Vaccinum myrtillus shrubs and Salix spp. leaves (lichen diet ad lib. The reindeer were divided into five groups. A control group (group C was fed the lichen diet ad lib. throughout the experiment. Four groups were fed half of that ration for eight days and were then totally deprived of feed for one day (restriction period. During the following 34 days (feeding period the groups were re-fed the lichen diet (group L, fed pelleted reindeer feed combined with either lichen (group PL or grass silage (group PS, or fed silage with a gradually increasing addition of pellets (group SP. Weekly measurements of blood samples and body weighr showed that the control group remained clinically healthy and had stable blood plasma concentrations of protein, urea, glucose and insulin throughout the experiment, but they lost weight. At slaughter, before and after the restriction period, all animals had lost rumen-free body weight, but the reindeer fed a restricted amount of feed lost more than the control group. Also the plasma metabolites were affected by the restricted feeding, with increased concentrations of urea and decreased concentrations of glucose. Group L responded immediately to the ad lib. feeding with blood metabolite levels rapidly approaching those of group C. The body weight developments were similar in groups L and C. Although the feed rations were increased gradually, diarrhoea occurred in some animals belonging to groups PL and PS within the first week of the feeding period. All reindeer recovered, after antibiotic treatment of the worst affected animals. The PL and PS groups, which had high contents of metabolisable energy and crude protein in their diets, showed

  11. Overview of FEED, the feeding experiments end-user database.

    Science.gov (United States)

    Wall, Christine E; Vinyard, Christopher J; Williams, Susan H; Gapeyev, Vladimir; Liu, Xianhua; Lapp, Hilmar; German, Rebecca Z

    2011-08-01

    The Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy.

  12. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle.

    Science.gov (United States)

    Carberry, Ciara A; Kenny, David A; Han, Sukkyan; McCabe, Matthew S; Waters, Sinead M

    2012-07-01

    Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.

  13. Natural blood feeding and temperature shift modulate the global transcriptional profile of Rickettsia rickettsii infecting its tick vector.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda B M Galletti

    Full Text Available Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF, the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10°C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.

  14. Characterization and safety evaluation of a Deinococcus member as feed additive for hens.

    Science.gov (United States)

    Wu, Szu-Yin; Li, I-Chen; Lin, Yi-Chin; Chen, Chin-Chu

    2016-04-01

    As previous studies mainly focus on understanding the mechanisms of radioresistance in Deinococcus bacteria, the present study aimed at characterizing and verifying the safety use of the GKB-Aid 1995 strain, a member of the radiation-resistant bacterial genus Deinococcus, as an ingredient in feed supplements. Using Vitek 2 system and 16S rRNA gene sequencing, GKB-Aid 1995 most resembles Deinococcus grandis. The Ames test, in vitro chromosomal test, in vivo micronucleus test and acute toxicity test were performed subsequently for its safety evaluation. As there is a possibility that the pigment of GKB-Aid 1995 can pass from feed to eggs intended for human consumption, an acute toxicity test was also carried out in pigmented egg yolk. The results confirmed that GKB-Aid 1995 was non-genotoxic in three genotoxicity experiments, and the LD50 of GKB-Aid 1995 and the pigmented egg yolk in ICR mice was greater than 10 and 12 g kg(-1) body weight, respectively. Overall, these data indicate that GKB-Aid 1995 is a non-toxic substance with no genotoxicity and is therefore safe to be used as a feed supplement or feed additive. This study suggests there is potential in developing GKB-Aid 1995 as an animal feed additive intended to enhance yolk coloration to meet the demand of consumers. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Application of a good manufacturing practices checklist and enumeration of total coliform in swine feed mills

    Directory of Open Access Journals (Sweden)

    Debora da Cruz Payao Pellegrini

    2014-02-01

    Full Text Available A cross-sectional study in four swine feed mills aimed to evaluate the correlation between the score of the inspection checklist defined in the Normative Instruction 4 (IN 4/ Brazilian Ministry of Agriculture, Livestock and Food Supply, and the enumeration of total coliforms throughout the manufacturing process. The most of non-conformities was found in the physical structure of the feed mills. Feed mill B showed the lowest number of unconformities while units A and D had the largest number of nonconformities. In 38.53% (489/1269 of the samples the presence of total coliform was detected, however no significant difference in the bacterial counts was observed between sampling sites and feed mills. The logistic regression pointed higher odds ratio (OR for total coliforms isolation at dosing (OR = 9.51, 95% CI: 4.43 to 20.41, grinding (OR = 7.10, 95% CI = 3.27 to 15.40 and residues (OR = 6.21, 95% CI: 3.88 to 9.95 In spite of having the second score in the checklist inspection, feed mill C presented the highest odds for total coliforms isolation (OR= 2,43, IC 95%: 1,68-3,53. The data indicate no association between the score of checklist and the presence of hygienic indicators in feed mills.

  16. Effect of feed presentation on feeding patterns of dairy calves.

    Science.gov (United States)

    Miller-Cushon, E K; Bergeron, R; Leslie, K E; Mason, G J; DeVries, T J

    2013-01-01

    The objectives of this study were to determine the effect of feed presentation on meal frequency and duration, as well as diurnal feeding patterns of dairy calves, and to assess any longer-term differences in feeding patterns resulting from previous experience. Twenty Holstein bull calves were exposed from wk 1 to 8 of life to 1 of 2 feed presentation treatments: concentrate and chopped grass hay (Feed was provided ad libitum. Calves received 8L/d of milk replacer (1.2 kg of dry matter), with the amount progressively reduced after 5 wk to facilitate weaning by the end of wk 7. At the beginning of wk 9, all calves received the MIX diet and remained on trial for an additional 3 wk. Feeding behavior was recorded from video for 4d during wk 6, 8, 9, and 11. In wk 6, calves fed MIX spent more time feeding than calves fed COM (56.7 vs. 46.8 min/d). In wk 8, calves fed MIX spent more time feeding (174.0 vs. 139.1 min/d) and had a lower rate of intake (11.5 vs. 14.7 g/min) compared with calves fed COM. Meal frequency was similar between treatments (12.2 meals/d). Diurnal feeding patterns in wk 8 were also affected by feed presentation, with calves fed MIX spending less time feeding at time of feed delivery and more time feeding throughout the rest of the daylight hours than calves fed COM. Diurnal feeding patterns of hay and concentrate in wk 8 differed for calves fed COM, with more time spent consuming hay at time of feed delivery and less time spent consuming hay throughout the rest of the day. Once calves previously fed COM were transitioned to the MIX diet in wk 9, meal frequency, meal duration, and diurnal feeding patterns were similar between treatments: both treatments spent similar amounts of time feeding (173.9 min/d) and had similar peaks in feeding activity at time of feed delivery, sunrise, and sunset. Provision of hay and concentrate to young calves as a mixed ration, compared with separate components, increases time spent feeding and results in more evenly

  17. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  18. Endogenous Antimicrobial Peptide Expression in Response to Bacterial Epidermal Colonization

    Directory of Open Access Journals (Sweden)

    Michael Brandwein

    2017-11-01

    Full Text Available Bacterial commensal colonization of human skin is vital for the training and maintenance of the skin’s innate and adaptive immune functions. In addition to its physical barrier against pathogen colonization, the skin expresses a variety of antimicrobial peptides (AMPs which are expressed constitutively and induced in response to pathogenic microbial stimuli. These AMPs are differentially effective against a suite of microbial skin colonizers, including both bacterial and fungal residents of the skin. We review the breadth of microorganism-induced cutaneous AMP expression studies and their complementary findings on the efficacy of skin AMPs against different bacterial and fungal species. We suggest further directions for skin AMP research based on emerging skin microbiome knowledge in an effort to advance our understanding of the nuanced host–microbe balance on human skin. Such advances should enable the scientific community to bridge the gap between descriptive disease-state AMP studies and experimental single-species in vitro studies, thereby enabling research endeavors that more closely mimic the natural skin environs.

  19. Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    Science.gov (United States)

    Baladi, S.; Kantengwa, S.; Donati, Y. R. A.; Polla, B. S.

    1994-01-01

    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor. PMID:18472933

  20. Ingestion of a marked bacterial pathogen of cotton conclusively demonstrates feeding by first instar southern green stink bug (Hemiptera: Pentatomidae)

    Science.gov (United States)

    Long-held dogma dictates that 1st instars of Nezara viridula (L.) do not feed, yet recent observations of stylet activity within a food source suggest otherwise. As a cosmopolitan pest of cotton and other high-value cash crops, confirmation of feeding by 1st instars may ultimately influence the biol...

  1. Aggregation-Induced-Emission Materials with Different Electric Charges as an Artificial Tongue: Design, Construction, and Assembly with Various Pathogenic Bacteria for Effective Bacterial Imaging and Discrimination.

    Science.gov (United States)

    Liu, Guang-Jian; Tian, Sheng-Nan; Li, Cui-Yun; Xing, Guo-Wen; Zhou, Lei

    2017-08-30

    Imaging-based total bacterial count and type identification of bacteria play crucial roles in clinical diagnostics, public health, biological and medical science, and environmental protection. Herein, we designed and synthesized a series of tetraphenylethenes (TPEs) functionalized with one or two aldehyde, carboxylic acid, and quaternary ammonium groups, which were successfully used as fluorescent materials for rapid and efficient staining of eight kinds of representative bacterial species, including pathogenic bacteria Vibrio cholera, Klebsiella pneumoniae, and Listeria monocytogenes and potential bioterrorism agent Yersinia pestis. By comparing the fluorescence intensity changes of the aggregation-induced-emission (AIE) materials before and after bacteria incubation, the sensing mechanisms (electrostatic versus hydrophobic interactions) were simply discussed. Moreover, the designed AIE materials were successfully used as an efficient artificial tongue for bacteria discrimination, and all of the bacteria tested were identified via linear discriminant analysis. Our current work provided a general method for simultaneous broad-spectrum bacterial imaging and species discrimination, which is helpful for bacteria surveillance in many fields.

  2. Study of Tannin- degrading bacteria isolated from Pistachio soft hulls and feces of goat feeding on it

    Directory of Open Access Journals (Sweden)

    Arezoo Tahmourespour

    2017-01-01

    Full Text Available Introduction: Tannins (tannic acid are toxic, high molecular weight and water- soluble polyphenols that are present in many plants such as pistachio and its by- products. Wide ranges of microorganisms including bacteria tolerate tannin and degrade it. The aim of this study was to isolate and characterize tannin- tolerant bacteria from pistachio soft hulls (P- SH and feces of goat before and after feeding on this by- product as tannin rich diet. Materials and methods: Tannin tolerant bacteria were isolated from enrichment cultures of samples in medium containing tannic acid as a sole source of carbon and energy. Tannin hydrolyzing ability of isolates was confirmed by observation of clear zones around the colonies. The increasing concentrations of tannin on minimal salt medium (MSM agar plates were used to test the maximum tolerable concentrations (MTCs. Furthermore, in the supplemented media tannin concentrations were measured by bovine serum albumin (BSA precipitation assay during time intervals. Results: Tannin- degrading bacterial population of P- SH was about only 10.3% of total population. More than 50 percent of tannin degrading strains were isolated from goat feces after grazing on tannin rich diet. Isolated bacteria were Gram- negative and positive rod species belonging to Klebsiella, Pseudomonas, Bacillus, Escherichia and Enterobacter genera. Among the isolated bacteria 71.4% could tolerate the concentration of 64 g/l of tannin in their media while only 7.2% were able to tolerate the maximum tannin concentration of 16 g/l. Bacterial isolates of goat feces could degrade tannin more than 72% after 72 h of incubation. In the case of soft P- SH isolates, the biodegradation percentage was between 17- 75%. Discussion and conclusion: Feeding of tannin rich diet induced a shift in digestive system microbial profile with increased population of tannin tolerant bacteria. The ability of isolated strains provides novel insights for the role they can

  3. Time-scales of hydrological forcing on the geochemistry and bacterial community structure of temperate peat soils

    Science.gov (United States)

    Nunes, Flavia L. D.; Aquilina, Luc; De Ridder, Jo; Francez, André-Jean; Quaiser, Achim; Caudal, Jean-Pierre; Vandenkoornhuyse, Philippe; Dufresne, Alexis

    2015-10-01

    Peatlands are an important global carbon reservoir. The continued accumulation of carbon in peatlands depends on the persistence of anoxic conditions, in part induced by water saturation, which prevents oxidation of organic matter, and slows down decomposition. Here we investigate how and over what time scales the hydrological regime impacts the geochemistry and the bacterial community structure of temperate peat soils. Peat cores from two sites having contrasting groundwater budgets were subjected to four controlled drought-rewetting cycles. Pore water geochemistry and metagenomic profiling of bacterial communities showed that frequent water table drawdown induced lower concentrations of dissolved carbon, higher concentrations of sulfate and iron and reduced bacterial richness and diversity in the peat soil and water. Short-term drought cycles (3-9 day frequency) resulted in different communities from continuously saturated environments. Furthermore, the site that has more frequently experienced water table drawdown during the last two decades presented the most striking shifts in bacterial community structure, altering biogeochemical functioning of peat soils. Our results suggest that the increase in frequency and duration of drought conditions under changing climatic conditions or water resource use can induce profound changes in bacterial communities, with potentially severe consequences for carbon storage in temperate peatlands.

  4. DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain

    International Nuclear Information System (INIS)

    Canuto, K S; Sergio, L P S; Marciano, R S; Guimarães, O R; Polignano, G A C; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Biostimulation of tissues by low intensity lasers has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases, but their effects on DNA are controversial. The objective of this work was to evaluate effects of low intensity infrared laser exposure on survival and bacterial filamentation in Escherichia coli cultures, and induction of DNA lesions in bacterial plasmids. In E. coli cultures and plasmids exposed to an infrared laser at fluences used to treat pain, bacterial survival and filamentation and DNA lesions in plasmids were evaluated by electrophoretic profile. Data indicate that the infrared laser (i) increases survival of E. coli wild type in 24 h of stationary growth phase, (ii) induces bacterial filamentation, (iii) does not alter topological forms of plasmids and (iv) does not alter the electrophoretic profile of plasmids incubated with exonuclease III or formamidopyrimidine DNA glycosylase. A low intensity infrared laser at the therapeutic fluences used to treat pain can alter survival of E. coli wild type, induce filamentation in bacterial cells, depending on physiologic conditions and DNA repair, and induce DNA lesions other than single or double DNA strand breaks or alkali-labile sites, which are not targeted by exonuclease III or formamidopyrimidine DNA glycosylase. (letter)

  5. A membrane-bound matrix-metalloproteinase from Nicotiana tabacum cv. BY-2 is induced by bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Wahner Verena

    2009-06-01

    Full Text Available Abstract Background Plant matrix metalloproteinases (MMP are conserved proteolytic enzymes found in a wide range of monocotyledonous and dicotyledonous plant species. Acting on the plant extracellular matrix, they play crucial roles in many aspects of plant physiology including growth, development and the response to stresses such as pathogen attack. Results We have identified the first tobacco MMP, designated NtMMP1, and have isolated the corresponding cDNA sequence from the tobacco suspension cell line BY-2. The overall domain structure of NtMMP1 is similar to known MMP sequences, although certain features suggest it may be constitutively active rather than dependent on proteolytic processing. The protein appears to be expressed in two forms with different molecular masses, both of which are enzymatically active as determined by casein zymography. Exchanging the catalytic domain of NtMMP1 with green fluorescent protein (GFP facilitated subcellular localization by confocal laser scanning microscopy, showing the protein is normally inserted into the plasma membrane. The NtMMP1 gene is expressed constitutively at a low level but can be induced by exposure to bacterial pathogens. Conclusion Our biochemical analysis of NtMMP1 together with bioinformatic data on the primary sequence indicate that NtMMP1 is a constitutively-active protease. Given its induction in response to bacterial pathogens and its localization in the plasma membrane, we propose a role in pathogen defense at the cell periphery.

  6. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  7. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...

  8. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability.

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    Full Text Available Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß. Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3 inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis.

  9. Towards allele mining of bacterial wilt disease resistance gene in tomato

    International Nuclear Information System (INIS)

    Galvez, H.F.; Narciso, J.O.; Opina, N.L.; Canama, A.O.; Colle, M.G.; Latiza, M.A.; Caspillo, C.L.; Bituin, J.L.; Frankie, R.B.; Hautea, D.M.

    2005-01-01

    Tomato (Lycopersicon esculentum Mill.) is the most important vegetable commodity of the Philippines. Bacterial wilt caused by Ralstonia solanacearum is one serious constraint in tomato production particularly during off-season planting. A major locus derived from H7996 that confers resistance to bacterial wilt has been mapped in the tomato genome. To validate the biological function of the resistance locus and generate multiple allele -mimics-, targeted mutation was induced in tomato using gamma ray and ethyl methane sulfonate (EMS) mutagens. Suitable mutagen treatment was established by evaluating a wide range of mutagen doses/concentrations for a) percent seed germination, b) reduction in plant height, and c) loss of resistance. Six hundred Gy and 1.0% EMS were identified to generate large M1 families of H7996. From 10,000 initial seeds treated with either gamma ray or EMS, a total of 3,663 M1 plants were generated. M2 seeds were harvested from all surviving M1 plants. Several DNA markers have been resourced and are being developed specific to the bacterial wilt resistant gene. In the large M2 population, of H7996, both the phenotypic manifestation of bacterial wilt susceptibility and nucleotide changes in the resistance locus will be evaluated. Large M3 families for the different allele series of the bacterial wilt resistance gene will be established for future high throughput TILLING (Targeting Induced Local Lesions in Genomes) analysis in the gene region

  10. Effect of Bacterial Endotoxins on Superovulated Mouse Embryos In Vivo: Is CSF-1 Involved in Endotoxin-Induced Pregnancy Loss?

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Jaiswal

    2006-01-01

    Full Text Available Mammalian embryonic development is regulated by several cytokines and growth factors from embryonic or maternal origins. Since CSF-1 plays important role in embryonic development and implantation, we investigated its role in gram-negative bacterial LPS-induced implantation failure. The effect of LPS on normal (nonsuperovulated and superovulated in vivo-produced embryos was assessed by signs of morphological degeneration. A significantly similar number of morphologically degenerated embryos recovered from both nonsuperovulated and superovulated LPS treated animals on day 2.5 of pregnancy onwards were morphologically and developmentally abnormal as compared to their respective controls (P < .001. Normal CSF-1 expression level and pattern were also altered through the preimplantation period in the mouse embryos and uterine horns after LPS treatment. This deviation from the normal pattern and level of CSF-1 expression in the preimplantation embryos and uterine tissues suggest a role for CSF-1 in LPS-induced implantation failure.

  11. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a rye-based diet.

    Science.gov (United States)

    Latorre, J D; Hernandez-Velasco, X; Bielke, L R; Vicente, J L; Wolfenden, R; Menconi, A; Hargis, B M; Tellez, G

    2015-01-01

    1. The effects of the dietary inclusion of a Bacillus-based direct-fed microbial (DFM) candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation were evaluated in broilers consuming rye-based diets. 2. In the present study, control mash rye-based diets (CON) or Bacillus-DFM supplemented diets (TRT) were administered ad libitum to male broilers in three independent experiments. 3. In Experiments 1 and 2 (n = 25/group), liver samples were taken to evaluate bacterial translocation, digesta samples were used for viscosity measurements and the intestinal microbial flora was evaluated from different intestinal sections to enumerate total recovered gram-negative bacteria (TGB), lactic acid bacteria (LAB) and anaerobic bacteria (TAB). Additionally, both tibias were removed for assessment of bone quality. 4. In Experiment 3, each experimental group had 8 replicates of 20 chickens (n = 160/group). Weekly, body weight (BW), feed intake (FI) and feed conversion ratio (FCR) were evaluated. At d 28-of-age, samples were taken to determine bacterial translocation, digesta viscosity and bone quality characteristics. 5. In all experiments, consumption of Bacillus-DFM reduced bacterial translocation to the liver and digesta viscosity. Additionally, DFM supplementation improved BW, bone quality measurements and FCR. Moreover, chickens fed on the Bacillus-DFM diet in Experiments 1 and 2 showed a significant reduction in the number of gram-negative and anaerobic bacteria in the duodenal content compared to control. 6. In summary, chickens fed on a rye-based diet without DFM inclusion showed an increase in bacterial translocation and digesta viscosity, accompanied by reduced performance and bone quality variables relative to the Bacillus-DFM candidate group. Hence, incorporation into the feed of a selected DFM ameliorated the adverse anti-nutritional effects related to utilisation of rye-based diets in broilers chickens.

  12. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts

    International Nuclear Information System (INIS)

    Lv, Lu; Yu, Xin; Xu, Qian; Ye, Chengsong

    2015-01-01

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water. - Highlights: • The halogenated N-DBPs could induce bacterial antibiotic resistance. • Both individual and multiple resistances could be induced. • Efflux mechanism played an important role in the induced antibiotic resistance. • The halogenated N-DBPs induced bacterial antibiotic resistance via mutagenesis. • Effects of N-DBPs on antibiotic resistance may be universal to waterborne pathogens. - Halogenated N-DBPs could increase antibiotic resistance, even multidrug resistance via mutagenesis, contributing to the enrichment of antibiotic resistant bacteria in drinking water

  13. Metabolic changes and induction of hepatic lipidosis during feed restriction in llamas.

    Science.gov (United States)

    Tornquist, S J; Cebra, C K; Van Saun, R J; Smith, B B; Mattoon, J S

    2001-07-01

    To determine whether feed restriction induces hepatic lipidosis (HL) in llamas and to evaluate the metabolic changes that develop during feed restriction. 8 healthy adult female llamas. Llamas were fed grass hay at a rate of 0.25% of their body weight per day for 13 to 28 days. Llamas were monitored by use of clinical observation, serum biochemical analyses, and ultrasound-guided liver biopsies. All 8 llamas lost weight and mobilized fat. Five llamas developed HL, including 4 that were nursing crias. During the period of feed restriction, mean serum concentration of bile acids and activities of aspartate aminotransferase (AST), sorbitol dehydrogenase (SDH), and gamma-glutamyl transferase (GGT) were significantly higher in llamas that developed HL, compared with llamas that did not. Mean insulin-to-cortisol concentration ratios were lower in llamas with HL before and up to 7 days of feed restriction, compared with those that did not develop HL. HL in llamas may be induced by severe feed restriction, particularly in the face of increased energy demand. Llamas with weight loss attributable to inadequate dietary intake may develop biochemical evidence of hepatopathy and HL. Increases in serum concentration of bile acids and activities of GGT, AST, and SDH may indicate the development of HL in llamas and identify affected animals for aggressive therapeutic intervention.

  14. Lactobacillus plantarum L9 but not Lactobacillus acidophilus LA reduces tumour necrosis factor induced bacterial translocation in Caco-2 cells.

    Science.gov (United States)

    Wang, B; Chen, J; Wang, S; Zhao, X; Lu, G; Tang, X

    2017-05-30

    Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis and multiple organ dysfunction syndromes. Inflammatory cytokines increase paracellular permeability that allows increased luminal bacteria to translocate across mucosal epithelium and further deteriorate the gut barrier. In order to reduce this risk, the prophylactic use of probiotics has been recently addressed. In this paper, we investigate the protective role toward tumour necrosis factor (TNF)-α induced non-pathogenic Escherichia coli translocation across Caco-2 monolayers of Lactobacillus strains. According to our experimental data, Lactobacillus plantarum L9 and Lactobacillus acidophilus LA have good capacities to adhere to Caco-2 cells. Addition of L. plantarum L9 and L. acidophilus LA to the enterocyte monolayer surface result in significant inhibition of E. coli adhesion and cell internalisation. However, L. plantarum L9 and L. acidophilus LA did not inhibit the growth of the non-pathogenic E. coli B5 after 24 h incubation. Exposure to TNF-α for 6 h caused a dramatic increase in E. coli B5 translocation across Caco-2 cells, which was uncoupled from increases in paracellular permeability. Pretreatment with L. plantarum L9 prevent TNF-α induced transcellular bacterial translocation and IL-8 production in Caco-2 cells. L. plantarum L9 also did not affect the integrity of the monolayers, as indicated by lactate dehydrogenase release, horseradish peroxidase permeability, and transepithelial electrical resistance. L. plantarum L9 showed the potential to protect enterocytes from an acute inflammatory response and therefore could be good potential prophylactic agents in counteracting bacterial translocation.

  15. Release of bacterial alkaline phosphatase in the rumen of cattle fed a feedlot bloat-provoking diet or a hay diet.

    Science.gov (United States)

    Cheng, K J; Hironaka, R; Costerton, J W

    1976-05-01

    Alkaline phosphatase (APase) was present in the bovine rumen in both cell-free and cell-associated states and levels of the enzyme varied with dietary regime. Reaction product deposition showed that the enzyme was associated with the mixed bacterial population. No enzyme was observed to be associated with protozoa. Trace activity of APase was also detected in the saliva. The presence of large amounts of APase in cell-free rumen fluid of cattle fed fine concentrate feed is believed to be due, in part, to the breakage of bacterial cells that occurs in the rumen.

  16. Gender-specific feeding rates in planktonic copepods with different feeding behavior

    DEFF Research Database (Denmark)

    van Someren Gréve, Hans; Almeda, Rodrigo; Lindegren, Martin

    2017-01-01

    Planktonic copepods have sexually dimorphic behaviors, which can cause differences in feeding efficiency between genders. Copepod feeding rates have been studied extensively but most studies have focused only on females. In this study, we experimentally quantified feeding rates of males and females...... copepods, particularly in ambush feeders, where the males must sacrifice feeding for mate searching. We conducted gender-specific functional feeding response experiments using prey of different size and motility. In most cases, gender-specific maximum ingestion and clearance rates were largely explained...... in copepods with different feeding behavior: ambush feeding (Oithona nana), feeding-current feeding (Temora longicornis) and cruising feeding (Centropages hamatus). We hypothesize that carbon-specific maximum ingestion rates are similar between genders, but that maximum clearance rates are lower for male...

  17. Prospects of complete feed system in ruminant feeding: A review

    Directory of Open Access Journals (Sweden)

    Yasir Afzal Beigh

    2017-04-01

    Full Text Available Effective utilization of available feed resources is the key for economical livestock rearing. Complete feed system is one of the latest developments to exploit the potential of animal feed resources in the best possible way. The complete feed is a quantitative mixture of all dietary ingredients, blended thoroughly to prevent separation and selection, fed as a sole source of nutrients except water and is formulated in a desired proportion to meet the specific nutrient requirements. The concentrate and roughage levels may vary according to the nutrient requirement of ruminants for different production purposes. The complete feed with the use of fibrous crop residue is a noble way to increase the voluntary feed intake and thus animal's production performance. In this system of feeding, the ruminant animals have continuous free choice availability of uniform feed mixture, resulting in more uniform load on the rumen and less fluctuation in release of ammonia which supports more efficient utilization of ruminal non-protein nitrogen. Feeding complete diet stabilizes ruminal fermentation, thereby improves nutrient utilization. This feeding system allows expanded use of agro-industrial byproducts, crop residues and nonconventional feeds in ruminant ration for maximizing production and minimizing feeding cost, thus being increasingly appreciated. However, to extend the concept extensively to the field and make this technology successful and viable for farmers, more efforts are needed to be taken.

  18. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  19. Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper

    OpenAIRE

    Beom Ryong Kang; Jang Hoon Lee; Young Cheol Kim

    2018-01-01

    Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum). Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after...

  20. Effects of feeding Mediterranean buffalo sorghum silage versus maize silage on the rumen microbiota and milk fatty acid content.

    Science.gov (United States)

    Ann Huws, Sharon; Chiariotti, Antonella; Sarubbi, Fiorella; Carfì, Francesca; Pace, Vilma

    2012-01-01

    Sorghum presents a sustainable feedstock for Mediterranean buffaloes due to its reduced water and nitrogen requirements compared with maize, which is currently fed primarily. We investigated the effects of feeding sorghum as opposed to maize on Mediterranean buffalo rumen microbial diversity and milk fatty acid content. Four cannulated lactating Mediterranean buffalo cows were fed a basal diet for one month before switching either to maize or sorghum-silage based diets for a 3-month period. Buffaloes were then changed over to the contrasting diet for a further one month. Rumen and milk samples were collected at the end of each month. DGGE- and T-RFLP-based dendrograms generated from rumen samples did not show an effect of diet on rumen bacterial diversity. Milk samples also did not differ in terms of their fatty acid content post sorghum feeding as compared with maize feeding. Thus, sorghum provides an environmentally beneficial alternative to maize for feeding Mediterranean buffalo with little effect on rumen microbial diversity or milk fatty acid composition compared with maize feeding.

  1. The Effect of Chrysonilia crassa Additive on Duodenal & Caecal Morphology, Bacterial & Fungal Number, and Productivity of Ayam Kampung

    Directory of Open Access Journals (Sweden)

    Turrini Yudiarti

    2012-10-01

    Full Text Available Fungi is a microorganism that can live in gastrointestinal tract of chicken. One type of fungi is multicellular or filamentous fungi. C.crassa is a species of filamentous fungi that has been isolated in the earlier study and it showed the best probiotic potency in vitro. The obyective of this research was to study the effect of addition of dried culture of  C.crassa in feed on intestinal & caecal morphology, bacterial & fungal number, and  productivity of indigenous chicken (ayam kampung. Research used completely randomized design with four treatments. The treatments were the level of  dried culture in basal diet (0%, 0.25 %,  0.50 % and 0.75 %. Each treatment was replicated 5 times and each replicate consists of 10 chickens. The parameters observed were : villi morphology, number of bacteria and fungi in the duodenum and cecum of chickens aged 1, 21 and 35 days and productivity i.e. feed intake, final body weight and feed conversion. The results showed that 0.50% dried culture of C.crassa could increase the duodenal villi width, decreased the number of bacterial and fungal colonies in duodenum and caecum, but it did not increase productivity. The conclusion : C.crassa could stimulate the duodenal villi development and decreased the number of the bacteria and fungi in the gastrointestinal tract, yet it has no positive impact on the chicken productivity.

  2. The Effect of Chrysonilia crassa Additive on Duodenal & Caecal Morphology, Bacterial & Fungal Number, and Productivity of Ayam Kampung

    Directory of Open Access Journals (Sweden)

    T. Yudiarti

    2012-10-01

    Full Text Available Fungi is a microorganism that can live in gastrointestinal tract of chicken. One type of fungi is multicellular or filamentous fungi. C.crassa is a species of filamentous fungi that has been isolated in the earlier study and it showed the best probiotic potency in vitro. The obyective of this research was to study the effect of addition of dried culture of C.crassa in feed on intestinal & caecal morphology, bacterial & fungal number, and productivity of indigenous chicken (ayam kampung. Research used completely randomized design with four treatments. The treatments were the level of dried culture in basal diet (0%, 0.25 %, 0.50 % and 0.75 %. Each treatment was replicated 5 times and each replicate consists of 10 chickens. The parameters observed were : villi morphology, number of bacteria and fungi in the duodenum and cecum of chickens aged 1, 21 and 35 days and productivity i.e. feed intake, final body weight and feed conversion. The results showed that 0.50% dried culture of C.crassa could increase the duodenal villi width, decreased the number of bacterial and fungal colonies in duodenum and caecum, but it did not increase productivity. The conclusion : C.crassa could stimulate the duodenal villi development and decreased the number of the bacteria and fungi in the gastrointestinal tract, yet it has no positive impact on the chicken productivity

  3. Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Bolch, Christopher J S; Bejoy, Thaila A; Green, David H

    2017-01-01

    Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum , we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20-115 moles photons PAR m -2 s -1 ). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that

  4. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    Science.gov (United States)

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  5. Bacterial Acclimation Inside an Aqueous Battery.

    Science.gov (United States)

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  6. Multiple bacterial species reside in chronic wounds

    DEFF Research Database (Denmark)

    Gjødsbøl, Kristine; Christensen, Jens Jørgen; Karlsmark, Tonny

    2006-01-01

    . aeruginosa were found to be significantly larger than ulcers without the presence of P. aeruginosa (P wound is colonised by multiple bacterial species and that once they are established many of them persist in the wound. Our results suggest that the presence...... of P. aeruginosa in venous leg ulcers can induce ulcer enlargement and/or cause delayed healing....

  7. Psychological stress exposure to aged mice causes abnormal feeding patterns with changes in the bout number.

    Science.gov (United States)

    Yamada, Chihiro; Mogami, Sachiko; Hattori, Tomohisa

    2017-11-09

    Stress responses are affected by aging. However, studies on stress-related changes in feeding patterns with aging subject are minimal. We investigated feeding patterns induced by two psychological stress models, revealing characteristics of stress-induced feeding patterns as "meal" and "bout" (defined as the minimum feeding behavior parameters) in aged mice. Feeding behaviors of C57BL/6J mice were monitored for 24 h by an automatic monitoring device. Novelty stress reduced the meal amount over the 24 h in both young and aged mice, but as a result of a time course study it was persistent in aged mice. In addition, the decreased bout number was more pronounced in aged mice than in young mice. The 24-h meal and bout parameters did not change in either the young or aged mice following water avoidance stress (WAS). However, the meal amount and bout number increased in aged mice for 0-6 h after WAS exposure but remained unchanged in young mice. Our findings suggest that changes in bout number may lead to abnormal stress-related feeding patterns and may be one tool for evaluating eating abnormality in aged mice.

  8. Development, prevention, and treatment of feeding tube dependency.

    Science.gov (United States)

    Krom, Hilde; de Winter, J Peter; Kindermann, Angelika

    2017-06-01

    Enteral nutrition is effective in ensuring nutritional requirements and growth. However, when tube feeding lasts for a longer period, it can lead to tube dependency in the absence of medical reasons for continuation of tube feeding. Tube-dependent children are unable or refuse to start oral activities and they lack oral skills. Tube dependency has health-, psychosocial-, and economy-related consequences. Therefore, the transition to oral feeding is of great importance. However, this transition can be very difficult and needs a multidisciplinary approach. Most studies for treatment of tube dependency are based on behavioral interventions, such as family therapy, individual behavior therapy, neuro-linguistic programming, and parental anxiety reduction. Furthermore, oral motor therapy and nutritional adjustments can be helpful in tube weaning. The use of medication has been described in the literature. Although mostly chosen as the last resort, hunger-inducing methods, such as the Graz-model and the Dutch clinical hunger provocation program, are also successful in weaning children off tube feeding. The transition from tube to oral feeding is important in tube-dependent children but can be difficult. We present an overview for the prevention and treatment of tube dependency. What is known: • Longer periods of tube feeding can lead to tube dependency. • Tube weaning can be very difficult. What is new: • Weaning as soon as possible and therefore referral to a multidisciplinary team are recommended. • An overview of treatment options for tube dependency is presented in this article.

  9. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  10. Effects of feed intake and dietary urea concentration on ruminal dilution rate and efficiency of bacteria growth in steers

    International Nuclear Information System (INIS)

    Firkins, J.L.; Lewis, S.M.; Montgomery, L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.

    1987-01-01

    Four multiple-fistulated steers (340 kg) were fed a diet containing 50% ground grass hay, 20% dry distillers grains, and 30% concentrate at two intakes (7.2 or 4.8 kg DM/d). Urea (.4 or 1.2% of the diet) was infused continuously into the steers' rumens. The experimental design was a 4 x 4 Latin square with a 2 x 2 factorial arrangement of treatments. Infusing urea at .4 or 1.2% of the diet resulted in ruminal NH 3 N concentration of 4.97 and 9.10 mg/dl, respectively. Feeding steers at high rather than low intake decreased ruminal and total tract digestibilities of organic matter, NDF, and ADF but did not increase ruminal escape of N. However, apparent N escape from the rumen calculated using purines, but not 15 N, as a bacterial marker was higher when 1.2 vs. .4% urea was infused. Feeding at high rather than at low intake increased the total pool of viable bacteria per gram organic matter fermented in the rumen. Although ruminal fluid outflows and particulate dilution rates were greater when steers were fed at high than low intakes, efficiencies of bacterial protein synthesis were unaffected by intake. The possibility of increased N recycling within the rumen with feeding at the higher intake is discussed

  11. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Sun Weiwei

    2011-01-01

    Full Text Available Abstract Background Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2, one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. Results The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. Conclusions The repression in phloem-feeding activities of

  12. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae.

    Science.gov (United States)

    Zhang, Chunling; Shi, Haojie; Chen, Lei; Wang, Xiaomeng; Lü, Beibei; Zhang, Shuping; Liang, Yuan; Liu, Ruoxue; Qian, Jun; Sun, Weiwei; You, Zhenzhen; Dong, Hansong

    2011-01-13

    Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis) PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT) Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana) plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. The repression in phloem-feeding activities of M. persicae as a result of AtPP2-A1 overexpression, and

  13. Molecular characterization of an unauthorized genetically modified Bacillus subtilis production strain identified in a vitamin B2 feed additive.

    Science.gov (United States)

    Paracchini, Valentina; Petrillo, Mauro; Reiting, Ralf; Angers-Loustau, Alexandre; Wahler, Daniela; Stolz, Andrea; Schönig, Birgit; Matthies, Anastasia; Bendiek, Joachim; Meinel, Dominik M; Pecoraro, Sven; Busch, Ulrich; Patak, Alex; Kreysa, Joachim; Grohmann, Lutz

    2017-09-01

    Many food and feed additives result from fermentation of genetically modified (GM) microorganisms. For vitamin B2 (riboflavin), GM Bacillus subtilis production strains have been developed and are often used. The presence of neither the GM strain nor its recombinant DNA is allowed for fermentation products placed on the EU market as food or feed additive. A vitamin B 2 product (80% feed grade) imported from China was analysed. Viable B. subtilis cells were identified and DNAs of two bacterial isolates (LHL and LGL) were subjected to three whole genome sequencing (WGS) runs with different devices (MiSeq, 454 or HiSeq system). WGS data revealed the integration of a chloramphenicol resistance gene, the deletion of the endogenous riboflavin (rib) operon and presence of four putative plasmids harbouring rib operons. Event- and construct-specific real-time PCR methods for detection of the GM strain and its putative plasmids in food and feed products have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2015-07-01

    Full Text Available The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promoters. In fact, several clay materials are routinely added to animal feed with the aim of improving growth and animal product quality. However, recent findings suggest that sepiolite, a clay additive, mediates the direct transfer of plasmids between different bacterial species. We therefore hypothesize that clays present in animal feed facilitate the horizontal transfer of resistance determinants in the digestive tract of farm animals.

  15. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system

    DEFF Research Database (Denmark)

    Montagner, Giulia; Bezzerri, Valentino; Cabrini, Giulio

    2017-01-01

    of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably...... are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection....

  16. EFFICACY OF TOMATO AND / OR GARLIC IN AMELIORATING CARDIAC DISORDERS INDUCED BY FEEDING RATS FRYING OIL

    International Nuclear Information System (INIS)

    OSMAN, N.N.

    2007-01-01

    Tomato (Lycopersicon esculentum) and garlic (Allium cepa) are important constituents of the human diet. Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidaemia, thrombosis, hypertension and diabetes. Tomato has anti-mutagenic activities and contains lycopene (a powerful antioxidant) that appears to prevent oxidation of low density lipoprotein cholesterol (LDL-c) and reduces the risk of developing atherosclerosis and coronary heart disease. The present study was carried out to investigate the potential protective effects of tomato or garlic alone or their combination against cardiac disorders in rats fed commercial diet fortified with frying oil (15% w/w) for 30 days. Thirty male Wistar albino rats were used and were divided into five groups; group 1, control (rats fed diet containing 15% w/w fresh oil); group 2, animals fed diets fortified with frying oil; groups 3-5, rats fed as in group 2 and received tomato (500 mg/kg body weight), garlic (125 mg/kg body weight) and a combination of tomato and garlic by gavage, respectively.Total cholesterol (TC), triacylglycerols (TAG), phospholipids (PL), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c),and very low density lipoprotein cholesterol (VLDL-c) were estimated in the serum of different animal groups. Lactic dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate aminotransferase (AST) alanine aminotransferase (ALT), triiodothyronine (T3), thyroxine (T4) and thyroid stimulating hormone (TSH) were determined in the serum as well as lipid peroxidation level (TBARS) and reduced glutathione (GSH) content were assessed in cardiac tissues.The results obtained revealed that, feeding rats on frying oil induced a notable increase in lipid profile, LDL-c, VLDL-c and TBARS associated with a marked depletion in GSH. Elevation in specific heart enzymes, LDL, CPK, ALT

  17. Survival of Salmonella enterica in poultry feed is strain dependent.

    Science.gov (United States)

    Andino, Ana; Pendleton, Sean; Zhang, Nan; Chen, Wei; Critzer, Faith; Hanning, Irene

    2014-02-01

    Feed components have low water activity, making bacterial survival difficult. The mechanisms of Salmonella survival in feed and subsequent colonization of poultry are unknown. The purpose of this research was to compare the ability of Salmonella serovars and strains to survive in broiler feed and to evaluate molecular mechanisms associated with survival and colonization by measuring the expression of genes associated with colonization (hilA, invA) and survival via fatty acid synthesis (cfa, fabA, fabB, fabD). Feed was inoculated with 1 of 15 strains of Salmonella enterica consisting of 11 serovars (Typhimurium, Enteriditis, Kentucky, Seftenburg, Heidelberg, Mbandanka, Newport, Bairely, Javiana, Montevideo, and Infantis). To inoculate feed, cultures were suspended in PBS and survival was evaluated by plating samples onto XLT4 agar plates at specific time points (0 h, 4 h, 8 h, 24 h, 4 d, and 7 d). To evaluate gene expression, RNA was extracted from the samples at the specific time points (0, 4, 8, and 24 h) and gene expression measured with real-time PCR. The largest reduction in Salmonella occurred at the first and third sampling time points (4 h and 4 d) with the average reductions being 1.9 and 1.6 log cfu per g, respectively. For the remaining time points (8 h, 24 h, and 7 d), the average reduction was less than 1 log cfu per g (0.6, 0.4, and 0.6, respectively). Most strains upregulated cfa (cyclopropane fatty acid synthesis) within 8 h, which would modify the fluidity of the cell wall to aid in survival. There was a weak negative correlation between survival and virulence gene expression indicating downregulation to focus energy on other gene expression efforts such as survival-related genes. These data indicate the ability of strains to survive over time in poultry feed was strain dependent and that upregulation of cyclopropane fatty acid synthesis and downregulation of virulence genes were associated with a response to desiccation stress.

  18. Evaluation of the protective effect of pentoxifylline on carrageenan-induced chronic non-bacterial prostatitis in rats.

    Science.gov (United States)

    Hajighorbani, Mahboobeh; Ahmadi-Hamedani, Mahmood; Shahab, Elaheh; Hayati, Farzad; Kafshdoozan, Khatereh; Keramati, Keivan; Amini, Amin Hossein

    2017-06-01

    Chronic non-bacterial prostatitis (CNP) is the most common type of prostatitis and oxidative stress (OS) was shown to be highly elevated in prostatitis patients. This study aimed to investigate the protective effect of pentoxifylline (PTX) on CNP induced by carrageenan in rats. Male adult Wistar rats (n = 30) were divided into control, CNP and three treatment groups (n = 6) including CNP + cernilton and CNP + PTX groups. CNP was induced by single intraprostatic injection of 1% carrageenan (100 µl). Rats in treatment groups received orally cernilton 100 mg/kg and PTX at 50 and 100 mg/kg 1 week after CNP induction for 21 days. Prostatic index (PI), prostatic specific antigen (PSA), tumor-necrosis factor alpha (TNF-α), serum lipid peroxidation (MDA), blood urea nitrogen, creatinine and histopathological changes were compared between groups. There were significant increase of PI, serum levels of PSA, TNF-α and MDA in CNP group at 29 day. In treatment groups, significant reduction in PI, serum levels of PSA, TNF-α, MDA and creatinine was observed especially in rats treated with dose of 50 mg/kg of PTX. In CNP group, histopathological changes of the prostate such as leucocyte infiltration, large involutions and projection into the lumen and reducing the volume of the lumen were observed as well. Whereas PTX, especially at dose of 50 mg/kg, could improve the above-mentioned changes remarkably in CNP treated rats. For the first time, our findings indicated that PTX improved CNP induced by carrageenan in rats.

  19. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.

    Science.gov (United States)

    Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor

    2012-09-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.

  20. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    Science.gov (United States)

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  1. Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Smith Craig

    2009-09-01

    , irrespective of feeding regime, act as loci for the bacterial attachment and multiplication of numerous opportunistic pathogens within the Enterobacteriaceae family. Subsequently, these organisms will enter the stomach as a bolus with each feed. Therefore, enteral feeding tubes are an important risk factor to consider with respect to neonatal infections.

  2. Chemopreventive effect of myrtenal on bacterial enzyme activity and the development of 1,2-dimethyl hydrazine-induced aberrant crypt foci in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Lokesh Kumar Booupathy

    2016-01-01

    Full Text Available Colon cancer remains as a serious health problem around the world despite advances in diagnosis and treatment. Dietary fibers are considered to reduce the risk of colon cancer as they are converted to short chain fatty acids by the presence of anaerobic bacteria in the intestine, but imbalanced diet and high fat consumption may promote tumor formation at different sites, including the large bowel via increased bacterial enzymes activity. The present study was conducted to characterize the inhibitory action of myrtenal on bacterial enzymes and aberrant crypt foci (ACF. Experimental colon carcinogenesis induced by 1,2-dimethylhydrazine is histologically, morphologically, and anatomically similar to human colonic epithelial neoplasm. Discrete microscopic mucosal lesions such as ACF and malignant tumors function as important biomarkers in the diagnosis of colon cancer. Methylene blue staining was carried out to visualize the impact of 1,2-dimethylhydrazine and myrtenal. Myrtenal-treated animals showed decreased levels of bacterial enzymes such as β-glucuronidase, β-glucosidase, and mucinase. Characteristic changes in the colon were noticed by inhibiting ACF formation in the colon. In conclusion, treatment with myrtenal provided altered pathophysiological condition in colon cancer-bearing animals with evidence of decreased crypt multiplicity and tumor progression.

  3. Feed network and electromagnetic radiation source

    Science.gov (United States)

    Ardavan, Arzhang; Singleton, John; Linehan, Kevin E.; Ardavan, Houshang; Schmidt-Zwiefel, Andrea Caroline

    2017-01-17

    An antenna may include a volume polarization current radiator and a feed network. The volume polarization current radiator, includes a dielectric solid (such as a dielectric strip), and a plurality of closely-spaced excitation elements (24), each excitation element (24) being configured to induce a volume polarization current distribution in the dielectric solid proximate to the excitation element when a voltage is applied to the excitation element. The feed network is coupled to the volume polarization current radiator. The feed network also includes a plurality of passive power divider elements (32) and a plurality of passive delay elements (d1-d6) coupling the first port (30) and the plurality of second ports (108, 109, 164), the plurality of power divider elements (32) and the plurality of phase delay elements (d1-d6) being configured such that a radio-frequency signal that is applied to the first port (30) experiences a progressive change of phase as it is coupled to the plurality of second ports (108, 109, 164) so as to cause the volume polarization current distribution to propagate along the dielectric solid.

  4. Applicability of in silico genotoxicity models on food and feed ingredients.

    Science.gov (United States)

    Vuorinen, Anna; Bellion, Phillip; Beilstein, Paul

    2017-11-01

    Evaluation of the genotoxic potential of food and feed ingredients is required in the development of new substances and for their registration. In addition to in vitro and in vivo assays, in silico tools such as expert alert-based and statistical models can be used for data generation. These in silico models are commonly used among the pharmaceutical industry, whereas the food industry has not widely adopted them. In this study, the applicability of in silico tools for predicting genotoxicity was evaluated, with a focus on bacterial mutagenicity, in vitro and in vivo chromosome damage assays. For this purpose, a test set of 27 food and feed ingredients including vitamins, carotenoids, and nutraceuticals with experimental genotoxicity data was constructed from proprietary data. This dataset was run through multiple models and the model applicability was analyzed. The compounds were generally within the applicability domain of the models and the models predicted the compounds correctly in most of the cases. Although the regulatory acceptance of in silico tools as single data source is still limited, the models are applicable and can be used in the safety evaluation of food and feed ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Bacterial subversion of host actin dynamics at the plasma membrane.

    Science.gov (United States)

    Carabeo, Rey

    2011-10-01

    Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion. © 2011 Blackwell Publishing Ltd.

  6. Island phytophagy: explaining the remarkable diversity of plant-feeding insects.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2012-08-22

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.

  7. Frequency Of Isolation Of Salmonella From Commercial Poultry Feeds And Their Anti-Microbial Resistance Profiles, Imo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Okoli IC

    2006-09-01

    Full Text Available This study was conducted to determine the frequency of isolation of salmonella and their microbial resistance profiles across different commercial poultry feeds sold in Imo State, Nigeria. Thirty-six bulk feed samples were colleted from 154 bag across different feed types and brands which included Guinea (GF, Top (TF, Vital (VF, Extra (EF, Animal care (AF and livestock (LF feeds. The salmonella isolated were tested against 14 anti-microbial drugs using the disc diffusion method. Bacterial load enumeration of the samples indicated a range of <30 colony forming unit (CFU to overgrowth at 104 serial dilutions. Eight feed samples (22.2% which cuts across the entire feed brands expect EF were positive for salmonella. The highest prevalence of 28.8% and 25.0% were recorded for LF and TF respectively, while VF, GF and AF had 11.1 and 10.0% respectively. Salmonella isolates showed high rates of resistance (51-100% against nitrofurantoin, ampicillin, tetracycline and ceftriazole, while moderate rates (31-50% were recorded for chloramphenicol, oxfloxacin and cotrimoxazole. Low resistance rates (1-30% were on the other hand recorded against ciprofloxacin and amoxycillin clavulanate (Augumentine, whereas zero resistance was demonstrated against pefloxacin, gentamycin, streptomycin and nalidixic. Commercial feeds form important channels for the dissemination of multi-drug resistant salmonella in Imo State, Nigeria.

  8. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    Science.gov (United States)

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  9. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  10. Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Powers, Bethany R; Ritter, Sue

    2014-02-15

    Previous work has shown that hindbrain catecholamine neurons are required components of the brain's glucoregulatory circuitry. However, the mechanisms and circuitry underlying their glucoregulatory functions are poorly understood. Here we examined three drugs, glucosamine (GcA), phloridzin (Phl) and 5-thio-d-glucose (5TG), that stimulate food intake but interfere in different ways with cellular glucose utilization or transport. We examined feeding and blood glucose responses to each drug in male rats previously injected into the hypothalamic paraventricular nucleus with anti-dopamine-β-hydroxylase conjugated to saporin (DSAP), a retrogradely transported immunotoxin that selectively lesions noradrenergic and adrenergic neurons, or with unconjugated saporin (SAP) control. Our major findings were 1) that GcA, Phl, and 5TG all stimulated feeding in SAP controls whether injected into the lateral or fourth ventricle (LV or 4V), 2) that each drug's potency was similar for both LV and 4V injections, 3) that neither LV or 4V injection of these drugs evoked feeding in DSAP-lesioned rats, and 4) that only 5TG, which blocks glycolysis, stimulated a blood glucose response. The antagonist of the MEK/ERK signaling cascade, U0126, attenuated GcA-induced feeding, but not Phl- or 5TG-induced feeding. Thus GcA, Phl, and 5TG, although differing in mechanism and possibly activating different neural populations, stimulate feeding in a catecholamine-dependent manner. Although results do not exclude the possibility that catecholamine neurons possess glucose-sensing mechanisms responsive to all of these agents, currently available evidence favors the possibility that the feeding effects result from convergent neural circuits in which catecholamine neurons are a required component.

  11. De Novo Endotoxin-Induced Production of Antibodies against the Bile Salt Export Pump Associated with Bacterial Infection following Major Hepatectomy

    Directory of Open Access Journals (Sweden)

    Kun-Ming Chan

    2018-01-01

    Full Text Available Background. Clinically severe infection-related inflammation after major liver resection may cause hyperbilirubinemia. This study aims to clarify the impact of bacterial infection and endotoxins on the hepatobiliary transporter system and to explore possible mechanisms of endotoxin-related postoperative hyperbilirubinemia. Method. Mice that underwent major hepatectomy with removal of at least 70% of liver volume were exposed to lipopolysaccharide (LPS at different dosages. Subsequently, hepatobiliary transporter compounds related to bile salt excretion were further investigated. Results. The expression of genes related to hepatobiliary transporter compounds was not significantly different in the liver tissue of mice after major hepatectomy and LPS exposure. However, bile salt export pump (BSEP protein expression within the liver tissue of mice treated with LPS after major hepatectomy was relatively weaker and was even further reduced in the high-dose LPS group. The formation of antibodies against the BSEP in response to endotoxin exposure was also detected. Conclusion. This study illustrates a possible mechanism whereby the dysfunction of hepatobiliary transporter systems caused by endotoxin-induced autoantibodies may be involved in the development of postoperative jaundice associated with bacterial infection after major hepatectomy.

  12. Chronic ethanol feeding modulates the synthesis of digestive enzymes

    International Nuclear Information System (INIS)

    Ponnappa, B.C.; Hoek, J.B.; Rubin, E.

    1987-01-01

    The effects of chronic ethanol feeding on pancreatic protein synthesis were investigated. Protein synthesis was assessed by studying the rate of incorporation of 3 H-leucine into TCA-precipitable proteins in isolated pancreatic acini from rats. Chronic ethanol ingestion increased the rate of pancreatic protein synthesis by 2-4 fold. The onset of the increase in protein synthesis was detectable two days after ethanol feeding, reached a maximum after 7 days and remained unchanged after 4 months on the ethanol-containing diet. The rate of synthesis of individual digestive enzymes was studied by SDS-PAGE on extracts obtained from purified zymogen granules. Ethanol feeding induced an increase in the rate of synthesis of most of the digestive enzymes; chymotrypsinogen, trypsinogen and an unidentified protein were increased to a greater extent than other digestive enzymes. By contrast, the synthesis of amylase was selectively decreased after ethanol feeding. These results suggest that chronic ethanol ingestion has specific effects on the rate of synthesis of individual digestive enzymes in the exocrine pancreas

  13. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    Directory of Open Access Journals (Sweden)

    Andressa Vilas Boas Nogueira

    2014-01-01

    Full Text Available The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS of low (CTSL and high (CTSH magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2 and prostaglandin E2 (PGE2 was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG and receptor activator of nuclear factor kappa-B ligand (RANKL were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P<0.05 increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

  14. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  15. Induction of bacterial lipoprotein tolerance is associated with suppression of toll-like receptor 2 expression.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Tolerance to bacterial cell wall components including lipopolysaccharide (LPS) may represent an essential regulatory mechanism during bacterial infection. Two members of the Toll-like receptor (TLR) family, TLR2 and TLR4, recognize the specific pattern of bacterial cell wall components. TLR4 has been found to be responsible for LPS tolerance. However, the role of TLR2 in bacterial lipoprotein (BLP) tolerance and LPS tolerance is unclear. Pretreatment of human THP-1 monocytic cells with a synthetic bacterial lipopeptide induced tolerance to a second BLP challenge with diminished tumor necrosis factor-alpha and interleukin-6 production, termed BLP tolerance. Furthermore, BLP-tolerized THP-1 cells no longer responded to LPS stimulation, indicating a cross-tolerance to LPS. Induction of BLP tolerance was CD14-independent, as THP-1 cells that lack membrane-bound CD14 developed tolerance both in serum-free conditions and in the presence of a specific CD14 blocking monoclonal antibody (MEM-18). Pre-exposure of THP-1 cells to BLP suppressed mitogen-activated protein kinase phosphorylation and nuclear factor-kappaB activation in response to subsequent BLP and LPS stimulation, which is comparable with that found in LPS-tolerized cells, indicating that BLP tolerance and LPS tolerance may share similar intracellular pathways. However, BLP strongly enhanced TLR2 expression in non-tolerized THP-1 cells, whereas LPS stimulation had no effect. Furthermore, a specific TLR2 blocking monoclonal antibody (2392) attenuated BLP-induced, but not LPS-induced, tumor necrosis factor-alpha and interleukin-6 production, indicating BLP rather than LPS as a ligand for TLR2 engagement and activation. More importantly, pretreatment of THP-1 cells with BLP strongly inhibited TLR2 activation in response to subsequent BLP stimulation. In contrast, LPS tolerance did not prevent BLP-induced TLR2 overexpression. These results demonstrate that BLP tolerance develops through down-regulation of TLR2

  16. Poly-ß-hydroxybutyrate content and dose of the bacterial carrier for Artemia enrichment determine the performance of giant freshwater prawn larvae.

    Science.gov (United States)

    Thai, Truong Quoc; Wille, Mathieu; Garcia-Gonzalez, Linsey; Sorgeloos, Patrick; Bossier, Peter; De Schryver, Peter

    2014-06-01

    The beneficial effects of poly-β-hydroxybutyrate (PHB) for aquaculture animals have been shown in several studies. The strategy of applying PHB contained in a bacterial carrier has, however, hardly been considered. The effect of administering PHB-accumulated Alcaligenes eutrophus H16 containing 10 or 80 % PHB on dry weight, named A10 and A80, respectively, through the live feed Artemia was investigated on the culture performance of larvae of the giant freshwater prawn (Macrobrachium rosenbergii). Feeding larvae with Artemia nauplii enriched in a medium containing 100 and 1,000 mg L(-1) A80 significantly increased the survival with about 15 % and the development of the larvae with a larval stage index of about 1 as compared to feeding non-enriched Artemia. The survival of the larvae also significantly increased with about 35 % in case of a challenge with Vibrio harveyi. The efficiency of these treatments was equal to a control treatment of Artemia enriched in an 800 mg L(-1) PHB powder suspension, while Artemia enriched in 10 mg L(-1) A80, 100 mg L(-1) A10, and 1,000 mg L(-1) A10 did not bring similar effects. From our results, it can be concluded that PHB supplemented in a bacterial carrier (i.e., amorphous PHB) can increase the larviculture efficiency of giant freshwater prawn similar to supplementation of PHB in powdered form (i.e., crystalline PHB). When the level of PHB in the bacterial carrier is high, similar beneficial effects can be achieved as crystalline PHB, but at a lower live food enrichment concentration expressed on PHB basis.

  17. Foraging response and acclimation of ambush feeding and feeding-current feeding copepods to toxic dinoflagellates

    DEFF Research Database (Denmark)

    Xu, Jiayi; Nielsen, Lasse Tor; Kiørboe, Thomas

    2018-01-01

    reticulatum. We hypothesize (1) that ambush feeders are less affected by toxic algae than feeding-current feeders, (2) that copepods acclimate to the toxic algae, and (3) that phytoplankton cells previously exposed to copepod cues elicit stronger responses. Both copepod species consumed the toxic algae...... to examine the response and temporal acclimation (5 d) of two copepods with different foraging behaviors to toxic dinoflagellates. Feeding-current feeding Temora longicornis and ambush feeding Acartia tonsa were offered three strains of toxic Alexandrium tamarense and a nontoxic control Protoceratium...... at a reduced rate and there was no difference in their net-response, but the mechanisms differed. T. longicornis responded in strain-specific ways by reducing its feeding activity, by rejecting captured algae, or by regurgitating consumed cells. A. tonsa reduced its consumption rate, jump frequency, and jump...

  18. Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper

    Directory of Open Access Journals (Sweden)

    Beom Ryong Kang

    2018-03-01

    Full Text Available Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum. Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after treatments with pyraclostrobin alone. A combination of pyraclostrobin with streptomycin reduced disease by over 90% that of the control plants. The preventive control of the pyraclostrobin against bacterial spot was required application 1-3 days before pathogen inoculation. Our findings suggest that the fungicide pyraclostrobin can be used with a chemical pesticide to control bacterial leaf spot diseases in pepper.

  19. The feed-back regulation of erythropoietin production in healthy humans

    International Nuclear Information System (INIS)

    Klausen, T.

    1998-01-01

    The proposed oxygen-dependent feed-back loop regulation of EPO (erythropoietin) production is mainly supported by data from studies in animals and cell cultures. The feed-back loop and its dependence on oxygen was therefore challenged by studies in healthy humans: Exposure of humans to different levels of acute and continued altitude hypobaria provided evidence for an oxygen dependence of the EPO response. This response is consistent with the proposed feed-back loop regulation of EPO production; Exposure to continued altitude hypobaria demonstrated that the decline in human EPO production is initiated before an EPO-induced erythopoiesis is detectable, and that this decline is related to a concomitant decrease in the haemoglobin-oxygen affinity. Contrary to the feed-back loop, this time-relation indicate that the feed-back regulation of EPO production during continued hypobaric hypoxia is exerted primarily through a decrease in the haemoglobin-oxygen affinity, rather than by the effects of an EPO-stimulated erythropoiesis; Increased circulating levels of the proinflammatory cytokine IL-6 was found in healthy humans during four days of altitude exposure as compared with sea level. The other proinflammatory cytokines IL-1 beta, and TNF alpha remained unchanged, and the increased serum IL-6 did not induce production of c-reactive protein; Comparable circadian variations in human EPO production were shown in sedentary subjects, athletes, and healthy but hypoxaemic subjects. Human EPO production could not be triggered by one hour of high-intensity exercise, whereas longitudinal changes in exercise showed a trend of relation between human EPO production, serum concentration of free testosterone, and indices of body composition. These results have demonstrated and endogenous, probably hormonal, and oxygen-independent regulation of human EPO production, which is at variance with the oxygen dependent feed-back loop regulation of EPO production. Conclusively, the present

  20. Genetic variance components for residual feed intake and feed ...

    African Journals Online (AJOL)

    Feeding costs of animals is a major determinant of profitability in livestock production enterprises. Genetic selection to improve feed efficiency aims to reduce feeding cost in beef cattle and thereby improve profitability. This study estimated genetic (co)variances between weaning weight and other production, reproduction ...

  1. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    Science.gov (United States)

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  2. Bacterial treatment effectiveness of point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott

    2009-08-01

    Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.

  3. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction.

    Science.gov (United States)

    Zhao, Yang; Zhao, Liang; Zheng, Xiaonan; Fu, Tianjiao; Guo, Huiyuan; Ren, Fazheng

    2013-04-01

    In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.

  4. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways

    Science.gov (United States)

    Mulat, Daniel Girma; Jacobi, H. Fabian; Feilberg, Anders; Adamsen, Anders Peter S.; Richnow, Hans-Hermann

    2015-01-01

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. PMID:26497462

  5. Bacterial Polymertropism, the Response to Strain-Induced Alignment of Polymers

    Science.gov (United States)

    Lemon, David J.

    In nature, bacteria often live in surface-associated communities known as biofilms. Biofilm-forming bacteria deposit a layer of polysaccharide on the surfaces they inhabit; hence, polysaccharide is their immediate environment on any surface. In this study, we examined how the physical characteristics of polysaccharide substrates influence the behavior of the biofilm-forming bacterium Myxococcus xanthus. M. xanthus colonies, and indeed those of the majority of biofilm-forming species tested, respond to the compression-induced deformation of polysaccharide substrates by preferentially spreading across the surface perpendicular to the axis of compression. This response is conserved across multiple distantly related phyla and is found in species with an array of distinct motility apparatuses.The birefringence and small angle X-ray scattering patterns of compressed polysaccharide substrates indicate that the directed surface movements of these bacteria consistently match the orientation of the long axes of aligned and tightly packed polysaccharide fibers in compressed substrates. Therefore, we refer to this behavior as polymertropism to denote that the directed movements are a response to the physical arrangement of the change in packing and alignment of the polymers in the substrate. In addition to altering the colony morphology we find the behavior of groups of cells, called flares, is also affected in several species resulting in increased flare speed, duration, and displacement on compressed gel substrates.We suggest that polymertropism, which requires a downward-facing motility apparatus in M. xanthus, may be responsible for the observed tendency of bacterial cells to follow trails of extruded and presumably aligned polysaccharides, which their neighbors secrete and deposit on the substrate as they move across it. Polymertropism may also play a role in the organization of bacteria in a biofilm, as the iterative process of polysaccharide trail deposition and

  6. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.

    Science.gov (United States)

    Singh, Madhu; Singh, Dileep Kumar

    2014-01-30

    Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  8. Hard-Diet Feeding Recovers Neurogenesis in the Subventricular Zone and Olfactory Functions of Mice Impaired by Soft-Diet Feeding

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Sasajima, Hitoshi; Noguchi, Tomohiro; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-01-01

    The subventricular zone (SVZ) generates an immense number of neurons even during adulthood. These neurons migrate to the olfactory bulb (OB) and differentiate into granule cells and periglomerular cells. The information broadcast by general odorants is received by the olfactory sensory neurons and transmitted to the OB. Recent studies have shown that a reduction of mastication impairs both neurogenesis in the hippocampus and brain functions. To examine these effects, we first measured the difference in Fos-immunoreactivity (Fos-ir) at the principal sensory trigeminal nucleus (Pr5), which receives intraoral touch information via the trigeminal nerve, when female adult mice ingested a hard or soft diet to explore whether soft-diet feeding could mimic impaired mastication. Ingestion of a hard diet induced greater expression of Fos-ir cells at the Pr5 than did a soft diet or no diet. Bromodeoxyuridine-immunoreactive (BrdU-ir) structures in sagittal sections of the SVZ and in the OB of mice fed a soft or hard diet were studied to explore the effects of changes in mastication on newly generated neurons. After 1 month, the density of BrdU-ir cells in the SVZ and OB was lower in the soft-diet-fed mice than in the hard-diet-fed mice. The odor preferences of individual female mice to butyric acid were tested in a Y-maze apparatus. Avoidance of butyric acid was reduced by the soft-diet feeding. We then explored the effects of the hard-diet feeding on olfactory functions and neurogenesis in the SVZ of mice impaired by soft-diet feeding. At 3 months of hard-diet feeding, avoidance of butyric acid was reversed and responses to odors and neurogenesis were recovered in the SVZ. The present results suggest that feeding with a hard diet improves neurogenesis in the SVZ, which in turn enhances olfactory function at the OB. PMID:24817277

  9. Genetic reprogramming of host cells by bacterial pathogens.

    Science.gov (United States)

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  10. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations.

    Science.gov (United States)

    Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao

    2017-01-01

    Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).

  11. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies

    Directory of Open Access Journals (Sweden)

    Mario eCarrillo

    2015-05-01

    Full Text Available The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Bats with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.

  12. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies

    Science.gov (United States)

    Carrillo-Araujo, Mario; Taş, Neslihan; Alcántara-Hernández, Rocio J.; Gaona, Osiris; Schondube, Jorge E.; Medellín, Rodrigo A.; Jansson, Janet K.; Falcón, Luisa I.

    2015-01-01

    The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Bats with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae. PMID:26042099

  13. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells.

    Science.gov (United States)

    Martín, César; Etxaniz, Asier; Uribe, Kepa B; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M; Aréchaga, Juan; Ostolaza, Helena

    2015-09-08

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.

  14. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    Directory of Open Access Journals (Sweden)

    Ludmila Alekseeva

    Full Text Available Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  15. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  16. PRODUCTIVITY OF GROWING PONDS WHEN APPLYING THE BACTERIAL FERTILIZER «PHOSPHOBAKTERIN»

    Directory of Open Access Journals (Sweden)

    Т. Hryhorenko

    2017-09-01

    Full Text Available Purpose. To investigate the effect of the bacterial fertilizer "Phosphobacterin" on the formation of the hydrochemical regime, development of the natural food supply and fish productivity in the growing ponds. Methodology. The work was conducted according to generally accepted hydrochemical,, microbiological, hydrobiological and fish farming methods. Findings The article presents the results of a study of the productivity of growing ponds with different methods of the application of the bacterial fertilizer "Phosphobacterin". It was found that the hydrochemical regime of the experimental ponds was formed under the effect of the source of water supply and measures aimed at intensifying the development of the natural food supply and was favorable for the development of feed organisms and the cultivation of fish seeds. Application of the bacterial fertilizer at the beginning of the growing season along the water pond surface proved to be little effective for increasing the productivity of the pond ecosystem as a whole. A more effective method of increasing biological productivity, including fish productivity of growing ponds, was the application of "Phosphobacterin" during the growing season both on the bed and on the water surface in combination with the organic fertilizer - cattle humus. In the experimental pond under complex fertilization, the average phytoplankton biomass during the growing season was 1.5 times, bacterioplankton 1.1 times, zoobenthos 2.6 times higher, and the obtained total fish productivity was 1.2 times higher than in the control pond (when applying only cattle humus. Originality. The peculiarities of formation of hydrochemical and hydrobiological (phyto-, bacterio-, zooplankton, zoobenthos regimes of growing ponds and the fishery indices are studied, both for bacterial fertilizer "Phosphobacterin" independently and together with the traditional organic fertilizer - cattle humus. Practical value. Based on the obtained results

  17. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    Science.gov (United States)

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  18. Age, lighting treatment, feed allocation and feed form influence ...

    African Journals Online (AJOL)

    During a broiler breeder trial with 3200 Cobb 500 hens, the effects of lighting treatment after 20 weeks' feed allocation and of feed form on the length of time taken to consume the daily allocation of feed were measured. Pullets were reared on 8-hour photoperiods to 20 weeks, then transferred to one of four lighting ...

  19. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents.

    Science.gov (United States)

    Mul, Joram D; Spruijt, Berry M; Brakkee, Jan H; Adan, Roger A H

    2013-11-05

    Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Isolation and characterization of Bacillus subtilis CH16 strain from chicken gastrointestinal tracts for use as a feed supplement to promote weight gain in broilers.

    Science.gov (United States)

    Nguyen, A T V; Nguyen, D V; Tran, M T; Nguyen, L T; Nguyen, A H; Phan, T-N

    2015-06-01

    Spore-forming bacterial strains were isolated from chicken gastrointestinal tracts to develop a heat-stable feed supplement that promotes weight gain in broilers. Seven Bacillus strains having more than 90% sporulation were screened from the isolates and identified to be closely related with Bacillus subtilis and Bacillus licheniformis. Of the seven strains, B. subtilis CH16 was selected to develop a feed supplement for broilers, because it formed 100% heat-stable spores, grew rapidly at 42°C and quickly formed a biofilm. In large-scale trials in broilers (n ≥ 1150 per group), the group fed CH16 (3 × 10(6) CFU g(-1) pellet) showed higher average daily gain (ADG = 61·16) and lower food conversion ratio (FCR = 1·696) than did the group fed B. licheniformis CH22 (ADG = 57·10 and FCR = 1·792), the group fed B. subtilis HU58 (ADG = 51·90 and FCR = 1·868), BioPlus group (ADG = 59·32 and FCR = 1·807) and the control group (ADG = 56·02 and FCR = 1·880). In conclusion, CH16 spores significantly increased ADG by 9·17% and reduced FCR by 9·79% in broilers. The result supports the use of B. subtilis CH16 of chicken intestinal origin as a feed supplement that promote weight gain in broilers. Significance and impact of the study: This study reports screening of Bacillus strains isolated from chicken gastrointestinal tracts for development of a feed supplement that promote weight gain in broilers. Of the seven Bacillus isolates with high sporulation efficiency (≥90%), Bacillus subtilis CH16 strain showed the best growth and biofilm formation at body temperature of broilers (42°C). In large-scale trials in broilers (n ≥ 1150 per group), CH16 spores induced a 9·17% increase in daily weight gain (ADG) and a 9·79% reduction in FCR while the commercial BioPlus(®) YC induced only a 5·89% increase in ADG and a 3·88% reduction in FCR. © 2015 The Society for Applied Microbiology.

  1. Detection of Spiroplasma and Wolbachia in the bacterial gonad community of Chorthippus parallelus.

    Science.gov (United States)

    Martínez-Rodríguez, P; Hernández-Pérez, M; Bella, J L

    2013-07-01

    We have recently detected the endosymbiont Wolbachia in multiple individuals and populations of the grasshopper Chorthippus parallelus (Orthoptera: acrididae). This bacterium induces reproductive anomalies, including cytoplasmic incompatibility. Such incompatibilities may help explain the maintenance of two distinct subspecies of this grasshopper, C. parallelus parallelus and C. parallelus erythropus, which are involved in a Pyrenean hybrid zone that has been extensively studied for the past 20 years, becoming a model system for the study of genetic divergence and speciation. To evaluate whether Wolbachia is the sole bacterial infection that might induce reproductive anomalies, the gonadal bacterial community of individuals from 13 distinct populations of C. parallelus was determined by denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene fragments and sequencing. The study revealed low bacterial diversity in the gonads: a persistent bacterial trio consistent with Spiroplasma sp. and the two previously described supergroups of Wolbachia (B and F) dominated the gonad microbiota. A further evaluation of the composition of the gonad bacterial communities was carried out by whole cell hybridization. Our results confirm previous studies of the cytological distribution of Wolbachia in C. parallelus gonads and show a homogeneous infection by Spiroplasma. Spiroplasma and Wolbachia cooccurred in some individuals, but there was no significant association of Spiroplasma with a grasshopper's sex or with Wolbachia infection, although subtle trends might be detected with a larger sample size. This information, together with previous experimental crosses of this grasshopper, suggests that Spiroplasma is unlikely to contribute to sex-specific reproductive anomalies; instead, they implicate Wolbachia as the agent of the observed anomalies in C. parallelus.

  2. Lactobacillus rhamnosus RC007 intended for feed additive: immune-stimulatory properties and ameliorating effects on TNBS-induced colitis.

    Science.gov (United States)

    Dogi, C; García, G; De Moreno de LeBlanc, A; Greco, C; Cavaglieri, L

    2016-09-01

    Lactobacillus rhamnosus RC007 is a potential probiotic bacterium that can exert beneficial effects as supplement for animal feed, by improving the immune status in healthy host, and by providing therapeutic benefits to infected/inflamed animals. The aim of the present work was to evaluate in vivo the beneficial properties of L. rhamnosus RC007, intended for animal feed, when administered to healthy and trinitro-benzene-sulfonic-acid (TNBS) colitis induced BALB/c mice. The administration of L. rhamnosus RC007 to healthy mice during 10 days increased the phagocytic activity of peritoneal macrophages and the number of immunoglobulin A+ cells in the lamina proper of the small intestine. Significant increases of monocyte chemotactic protein 1, interleukin (IL)-10 and tumour necrosis factor alpha (TNF-α) concentrations, and in the ratio between anti- and pro-inflammatory cytokines (IL-10/TNF-α) were observed in intestinal fluids after administration of bacteria. In the inflammation model, less body weight loss, macroscopic and histological damages in the large intestine were accompanied by increased IL-10/TNF-α ratio in the intestinal fluids of mice from the L. rhamnosus-TNBS group when compared to the TNBS group. In a healthy host, the oral administration of L. rhamnosus RC007 kept the gut immune system stimulated allowing a faster response to noxious stimulus. Mice that received L. rhamnosus RC007 also decreased the severity of the intestinal inflammation.

  3. Feed safety in the feed supply chain

    Directory of Open Access Journals (Sweden)

    Pinotti, L.

    2011-01-01

    Full Text Available A number of issues have weakened the public's confidence in the quality and wholesomeness of foods of animal origin. As a result farmers, nutritionists, industry and governments have been forced to pay serious attention to animal feedstuff production processes, thereby acknowledging that animal feed safety is an essential prerequisite for human food safety. Concerns about these issues have produced a number of important effects including the ban on the use of processed animal proteins, the ban on the addition of most antimicrobials to farm animals diets for growth‐promotion purposes, and the implementation of feed contaminant regulations in the EU. In this context it is essential to integrate knowledge on feed safety and feed supply. Consequently, purchase of new and more economic sources of energy and protein in animal diets, which is expected to conform to adequate quality, traceability, environmental sustainability and safety standards, is an emerging issue in livestock production system.

  4. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    Science.gov (United States)

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Supplementary feeding in the care of the wasted HIV infected patient

    African Journals Online (AJOL)

    from anorexia or food insecurity associated with poverty, a catabolic state induced by ... common in sub-Saharan Africa,3,4,5 and an adequate diet is believed to be ... supplementary feeding of malnourished children with and without HIV14,15.

  6. Using a feed-grade zinc propionate to achieve molt induction in laying hens and retain postmolt egg production and quality.

    Science.gov (United States)

    Park, S Y; Kim, W K; Birkhold, S G; Kubena, L F; Nisbet, D J; Ricke, S C

    2004-11-01

    A commercial-feed-grade form of zinc propionate was examined as a potential feed amendment at a concentration of 1% zinc to induce molt in 90-wk-old hens. Dietary treatments consisted of 4 treatment groups of 28 birds each randomly assigned to either (1) molted conventionally by feed withdrawal, (2) 1% zinc as Zn acetate, (3) 1% zinc as Zn propionate, or (4) nonmolted control for 9 d. Ovary weights of hens fed Zn acetate or Zn propionate were not significantly different from each other, but hens fed Zn acetate or Zn propionate were significantly (phens. Zinc concentrations in the kidney and liver were significantly (phens when compared to either nonmolted control-fed hens or feed-withdrawal molted hens. Over the entire 3-mo postmolt period, there were no significant differences in interior or exterior egg qualities among the four treatments. Egg production of hens fed Zn acetate was significantly lower than feed-withdrawal hens, Zn propionate-fed hens, or nonmolted control hens (pfeeding a feed grade of Zn propionate (1% Zn)-supplemented diet can induce molt and retain postmolt egg quality and production comparable to hens molted by feed withdrawal.

  7. Multiple blood feeding and host-seeking behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Farjana, Thahsin; Tuno, Nobuko

    2013-07-01

    The body size of mosquitoes can influence a number of bionomic factors, such as their blood-feeding ability, host attack rate, and fecundity. All of these traits are important determinants of their potential to transmit diseases. Among abiotic and biotic factors, high temperature and low nutrition in the developing stages of mosquitoes generally result in small adults. We studied the relationship between body size and multiple feeding in a gonotrophic cycle and some fecundity attributes by using three strains of two competent vector species, Aedes aegypti (L.) and Aedes albopictus (Skuse). We raised small and large mosquitoes under low and high food conditions in the laboratory to measure parameters of fecundity and blood-feeding behavior. Fecundity was positively correlated with body size in both species, whereas the number of bloodmeals, the frequency of host-seeking behavior, and egg retention were negatively correlated with body size in the Ae. albopictus Nagasaki strain. We found that multiple feeding and host-seeking behavior were negatively correlated with body size, i.e., small mosquitoes tended to have more contact with hosts. We found that two mechanisms that inhibit engorged mosquitoes from seeking out hosts, distension-induced and oocyte-induced inhibition, were not strong enough to limit host-seeking behavior, and multiple feeding increased fecundity. Size-dependent multiple feeding and host-seeking behavior affect contact frequency with hosts and should be considered when predicting how changes in mosquito body size affect disease transmission.

  8. Changing Feeding Regimes To Demonstrate Flexible Biogas Production: Effects on Process Performance, Microbial Community Structure, and Methanogenesis Pathways.

    Science.gov (United States)

    Mulat, Daniel Girma; Jacobi, H Fabian; Feilberg, Anders; Adamsen, Anders Peter S; Richnow, Hans-Hermann; Nikolausz, Marcell

    2016-01-15

    Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review.

    Science.gov (United States)

    Melo, A D B; Silveira, H; Luciano, F B; Andrade, C; Costa, L B; Rostagno, M H

    2016-01-01

    The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

  10. Systematic analysis of feeding behaviors and their effects on feed efficiency in Pekin ducks

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2017-11-01

    Full Text Available Abstract Background Feeding behavior study is important for animal husbandry and production. However, few studies were conducted on the feeding behavior and their relationship with feeding efficiency in Pekin ducks. In order to investigate the feeding behavior and their relationship with feed efficiency and other economic traits in Pekin ducks, we selected 358 male Pekin ducks and recorded feeding information between 3 to 6 wk of age using automatic electronic feeders, and compared the feeding behavior under different residual feed intake (RFI levels. Results We observed that total feed time, daily feed intake and feed intake per meal had strong positive correlations with feed efficiency traits; moreover, strong correlation between feed intake per meal and body weight was found (R=0.32, 0.36. Daily feeding rate meal and meal duration had weak correlations with feed efficiency (R=0.14~0.15. The phenotypic correlation of between-meal pauses, with feed efficiency was not observed. When daily changes were analyzed, high RFI ducks had the highest feed consumption over all times, and obvious differences in daily visits were found among different RFI level animals during the middle period; these differences were magnified with age, but there was no difference in daily meal number. Moreover, our data indicate that high RFI birds mainly take their meals at the edge of the population enclosure, where they are more susceptible to environmental interference. Conclusions Overall, this study suggests that the general feeding behaviors can be accurately measured using automatic electronic feeders and certain feeding behaviors in Pekin ducks are associated with improved feed efficiency.

  11. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice.

    Science.gov (United States)

    Weitkunat, Karolin; Schumann, Sara; Petzke, Klaus Jürgen; Blaut, Michael; Loh, Gunnar; Klaus, Susanne

    2015-09-01

    In literature, contradictory effects of dietary fibers and their fermentation products, short-chain fatty acids (SCFA), are described: On one hand, they increase satiety, but on the other hand, they provide additional energy and promote obesity development. We aimed to answer this paradox by investigating the effects of fermentable and non-fermentable fibers on obesity induced by high-fat diet in gnotobiotic C3H/HeOuJ mice colonized with a simplified human microbiota. Mice were fed a high-fat diet supplemented either with 10% cellulose (non-fermentable) or inulin (fermentable) for 6 weeks. Feeding the inulin diet resulted in an increased diet digestibility and reduced feces energy, compared to the cellulose diet with no differences in food intake, suggesting an increased intestinal energy extraction from inulin. However, we observed no increase in body fat/weight. The additional energy provided by the inulin diet led to an increased bacterial proliferation in this group. Supplementation of inulin resulted further in significantly elevated concentrations of total SCFA in cecum and portal vein plasma, with a reduced cecal acetate:propionate ratio. Hepatic expression of genes involved in lipogenesis (Fasn, Gpam) and fatty acid elongation/desaturation (Scd1, Elovl3, Elovl6, Elovl5, Fads1 and Fads2) were decreased in inulin-fed animals. Accordingly, plasma and liver phospholipid composition were changed between the different feeding groups. Concentrations of omega-3 and odd-chain fatty acids were increased in inulin-fed mice, whereas omega-6 fatty acids were reduced. Taken together, these data indicate that, during this short-term feeding, inulin has mainly positive effects on the lipid metabolism, which could cause beneficial effects during obesity development in long-term studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Hindered bacterial mobility in porous media flow enhances dispersion

    Science.gov (United States)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2017-11-01

    Swimming bacteria live in porous environments characterized by dynamic fluid flows, where they play a crucial role in processes ranging from the bioremediation to the spread of infections. We study bacterial transport in a quasi-two-dimensional porous microfluidic device, which is complemented by Langevin simulations. The cell trajectories reveal filamentous patterns of high cell concentration, which result from the accumulation of bacteria in the high-shear regions of the flow and their subsequent advection. Moreover, the effective diffusion coefficient of the motile bacteria is severely hindered in the transverse direction to the flow due to decorrelation of the cells' persistent random walk by shear-induced rotation. The hindered lateral diffusion has the surprising consequence of strongly enhancing the longitudinal bacterial transport through a dispersion effect. These results demonstrate the significant role of the flow and geometry in bacterial transport through porous media with potential implications for understanding ecosystem dynamics and engineering bioreactors. NSF CBET-1511340, NSF CAREER-1554095.

  13. INFLUENCE OF FEEDING TIME ON FEED UTILIZATION BY SIAMESE CATFISH, Pangasius hypophthalmus JUVENILE

    Directory of Open Access Journals (Sweden)

    Nina Meilisza

    2010-06-01

    Full Text Available Siamese catfish (Pangasius hypophthalmus at juvenile stage is used as ornamental fish by fish hobbies because of their beautiful shape and movement. Feeding time is a part of feeding management to get the best and effective strategy on feed input. This study aimed to determine the growth of Siamese catfish juvenile by looking at the influence of feeding time on feed utilization. The average individual weight of juveniles used was ± 3.2 g stocked 15 fish per aquarium equipped with recirculation system. Two level factors in the factorial design consisted of 4 feeding times (at 8:00, at 12:00, at 16:00, and as control (8:00, 12:00, 16:00 and feeding level (45 g feed kg-1 fish, 90 g feed kg-1 fish. Interaction between feeding time and feeding level resulting eight types of treatments research, namely A (8/45, B (12/45, C (16/45, D (8:12:16/45, E (8:12:16/90, F (8/90, G (12/90, and H (16/90. The results showed that feeding time had significant effect on the specific growth rate, feed conversion, and protein efficiency ratio and were significantly different among the treatments (P<0.05. Besides feeding time control (treatments D and E, treatment C also showed the highest of specific growth rate (2.03%, protein efficiency ratio (1.46, and the lowest feed conversion ratio (1.85.

  14. Positive effects of acarbose in the diabetic rat are not altered by feeding schedule.

    Science.gov (United States)

    Wright, B E; Vasselli, J R; Katovich, M J

    1998-03-01

    We previously demonstrated that chronic dietary treatment with acarbose, an alpha-glucosidase inhibitor, improves glucose homeostasis in the streptozotocin (STZ)-induced diabetic rat. In this study we evaluated the effects of 4 weeks of acarbose treatment on glucose homeostasis in STZ-diabetic rats for both meal-fed (three times daily) and ad libitum feeding conditions. Sprague Dawley male rats (n = 58) were started on a daily meal-feeding paradigm consisting of three 2-h feeding periods: 0700 to 0900 hours, 1300 to 1500 hours, and 1900 to 2100 hours. Following 2 weeks of adaptation, half of the animals were switched to ad libitum feeding. The feeding paradigm itself (meal fed versus ad lib.) affected neither body weight nor daily food intake. Twenty animals from each feeding group then received STZ (60 mg/kg i.v.), whereas control animals received vehicle injections only. Two days later, the diet of 10 STZ-treated animals from each paradigm was supplemented with acarbose (40 mg of BAY G 5421/100-g diet), and the groups were treated for 4 weeks. Untreated diabetic rats had lower body weight than vehicle-injected control rats at all time points after STZ treatment. Acarbose treatment delayed this effect on body weight. STZ treatment induced hyperphagia regardless of feeding paradigm, which was significantly attenuated by acarbose only for the first week of treatment. Untreated diabetic rats had fasting blood glucose values 4 times those of vehicle-injected controls in both the meal-fed and ad libitum-fed conditions. Acarbose significantly lowered fasting blood glucose in the treated STZ groups. Blood glucose was also assessed 0, 90, and 180 min following the start of a meal. The postprandial rise in blood glucose was significantly reduced in acarbose-treated meal-fed diabetic rats, to values not significantly different from those of vehicle-injected control rats. During the fourth week of treatment glycated hemoglobin levels were significantly higher in untreated

  15. Animal Feeding Operations

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Animal Feeding Operations Recommend on Facebook Tweet Share Compartir ... of Concentrated Animal Feeding Operations (CAFOs) What are Animal Feeding Operations (AFOs)? According to the United States ...

  16. Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.

    Science.gov (United States)

    Ireton, Keith

    2013-07-17

    Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.

  17. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    Science.gov (United States)

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Feeding Your Baby

    Medline Plus

    Full Text Available ... care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your baby Family ... community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in ...

  19. Feeding Your Baby

    Medline Plus

    Full Text Available ... our online community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please ... been added to your dashboard . Time to eat! Feeding your baby helps her grow healthy and strong. ...

  20. Optimal feeding frequency of captive head-started green turtles (Chelonia mydas).

    Science.gov (United States)

    Kanghae, H; Thongprajukaew, K; Yeetam, P; Jarit-Ngam, T; Hwan-Air, W; Rueangjeen, S; Kittiwattanawong, K

    2017-08-01

    Optimal feeding frequency was investigated to improve head-started propagation programme of juvenile green turtles (Chelonia mydas). The 15-day-old turtles (25-26 g body weight) were fed for ad libitum intake at one (1MD), two (2MD), three (3MD) or four (4MD) meals daily over a 3-month trial. Responses in growth, feed utilization, faecal characteristics, haematological parameters and carapace elemental composition were used to compare treatment effects. At the end of the feeding trial, no treatment had induced mortality. Growth performance in terms of weight gain and specific growth rate was similar in turtles fed 2MD, 3MD or 4MD (p > 0.05), but 1MD differed from these (p Turtles fed 2MD had significantly lower feed intake than in 3MD and 4MD groups, but the feed conversion ratios were similar. Faecal digestive enzyme analysis indicated higher catabolism of lipid and protein in the deprivation group (1MD), when compared with turtles fed at least twice daily. The feeding frequency did not affect the specific activities of carbohydrate-digesting enzymes. The results on enzymes activities were corroborated by the transition enthalpy characteristics of faeces, indicating nutrients remaining after digestion. The 2MD treatment also improved the haematological characteristics and the carapace quality, relative to low or excess feeding. Overall, the findings indicate that feeding juvenile green turtles twice a day is the preferred option in their head-started propagation. This promotes growth, reduces feed consumption, and improves health and carapace quality. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  1. Selection and production of bacteria which detoxify mimosine: Leucaena leaves may be used as ruminant feed

    Energy Technology Data Exchange (ETDEWEB)

    Boehnel, H. [Institute of Tropical Animal Health, Georg-August-University Goettingen (Germany)], E-mail: hboehne@gwdg.de; Aung, A [Institute of Tropical Animal Health, Georg-August-University Goettingen (Germany); University of Veterinary Sciences, Yezin (Myanmar)

    2009-07-01

    Mimosaceae are shrubs or trees, which grow abundantly in tropical regions. Their leaves contain high value protein which cannot be used as feed due to the toxic substance mimosine and its metabolites in the digestive tract These alkaloids cause diseases in ruminants, mainly loss of hair/wool, and may lead to death in higher concentration. This is the reason why the nutritive value cannot be exploited reasonably in animal production. Experience has shown that there are some geographical regions where animals do not suffer by mimosine. It was found that they harbour ruminal bacteria, which degrade mimosine to non-toxic metabolites. In cooperation with other microbes in the digestive tract, the full dietetic value of Leucaena may be exploited. To date several bacteria were isolated and may be used as feed additive, e.g., S. jonesii. However, their production and storage is expensive and complicated. A practical method is to orally inoculate animals and use their rumen fluid directly as feed additive. This rumen culture or cultured anaerobic bacteria in the laboratory may suffer during transport and storage; hence, they need a cold chain until the target animal. Our institute has an outstanding experience to produce bacterial veterinary vaccines, probiotics, and biological fertilizers in tropical countries. Continuous culture in a bioreactor is the base for the success. It was the idea to use this technology for selection and production of mimosine degrading bacteria. The presentation will give a short theoretical background of - bacterial fermenter production - continuous culture - isolation of specific bacteria under selective environmental conditions - mass production in a bioreactor to be used in tropical areas - purification and concentration of the bacterial crop by rinsing and hollow fibre cross flow ultra filtration - stabilisation of the product in alginate beads - microbiota in the digestive tract. The practical work started with ruminal content of German

  2. Occurrence of ochratoxin A in poultry feeds and feed ingredients from Pakistan.

    Science.gov (United States)

    Sherazi, S T H; Shar, Z H; Sumbal, G A; Tan, Eddie T; Bhanger, M I; Kara, Huseyin; Nizamani, S M

    2015-02-01

    A study was conducted to evaluate the occurrence of ochratoxin A (OTA) in complete poultry feeds (n=80) and poultry feed ingredients (n=286) from Pakistan. All samples were first analyzed by indirect enzyme linked immunosorbent assay (ELISA), samples with OTA concentrations above the European Union maximum regulatory limit (MRL, 100 μg/kg) were further confirmed by HPLC-FLD. Contamination frequency and mean OTA levels were 31% and 51 μg/kg in feed ingredients, and the corresponding values for complete feeds were 38% and 75 μg/kg. Ten samples of complete poultry feed and 19 samples of feed ingredients contained OTA at levels higher than the MRL. The results of the present study indicate that there is a strong need for a more intense monitoring programs for OTA in poultry feed.

  3. Induced mutation for disease resistance in rice with special reference to blast, bacterial blight and tungro

    International Nuclear Information System (INIS)

    Mathur, S.C.

    1983-01-01

    Rice varieties Ratna, Pusa 2-21, Vijaya and Pankaj have been treated with gamma rays, EMS or sodium azide to improve their resistance against blast, bacterial leaf blight or tungro virus. For blast and tungro, mutants with improved resistance were selected. Variation in reaction to bacterial leaf blight has been used in crossbreeding to accumulate genes for resistance. (author)

  4. The Incidence of Co-occurrence of Chlamydial Cervicitis with Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Yusefi S

    2011-03-01

    Full Text Available Background and Objectives: Bacterial vaginosis is caused by an imbalance in normal vaginal bacterial flora mainly caused by the introduction of pathogenic bacteria. Failure to properly treat this condition can not only induce abortion but also increase the chance of acquiring other serious infections such as AIDS, gonorrhea and chlamydiosis. Chlamydia trchomatis is one of the causative agents of cervicitis of which 70% is totally asymptomatic. Untreated cases can lead to salpengititis, pelvic inflammatory diseases, infertility, pelvic area pains and other complications. The purpose of this study was to determine the co-occurrence of these two conditions.Methods: A total of 137 patients were examined for both Chlamydial cervicitis and for bacterial vaginosis. Gram stain was used to detect bacterial vaginosis and anti-chlamydial antibodies were titered by microimmunofluoresence (MIF assay. Results: According to the MIF results, 10 patients(7.3% had elevated anti-chlamydial IgG and 3 patients (2.2% showed high IgM titers. Gardnerella vaginalis was detected in 6 patients(4.7% as the causative agent of vaginosis. There were 3 cases of co-occurrence of chlamydial cervicitis and bacterial vaginosis (30%. Conclusion: Due to the fact that bacterial vaginosis can provide the pre-disposing conditions for cervicitis and its chronicity and the similarity of the cilinical singns of these two conditions, Infections with Chlamydia are often overlooked. It therefore seems necessary to check any patient with bacterial vaginosis for chlamydial co-infection.

  5. Parent-reported feeding and feeding problems in a sample of Dutch toddlers

    NARCIS (Netherlands)

    Moor, J.M.H. de; Didden, H.C.M.; Korzilius, H.P.L.M.

    2007-01-01

    Little is known about the feeding behaviors and problems with feeding in toddlers. In the present questionnaire study, data were collected on the feeding behaviors and feeding problems in a relatively large (n = 422) sample of Dutch healthy toddlers (i.e. 18-36 months old) who lived at home with

  6. Evaluation of PCDD/Fs characterization in animal feed and feed additives.

    Science.gov (United States)

    Kim, MeeKyung; Kim, Sooyeon; Yun, Seon Jong; Kwon, Jin-Wook; Son, Seong-Wan

    2007-09-01

    Safety control of feed and feed additives is necessary to have safe food of animal origin. Based on media reports, nine incidents regarding dioxins and/or PCBs contaminations occurred worldwide during the last decade. Korea is a country which imports feed and feed additives. In this study, various kinds of feed and feed additives were analyzed to monitor the contamination level of dioxins. The level of PCDD/Fs in fish oil was the highest with a concentration of 23.33ngkg(-1), which is equivalent to a toxicological concentration of 4.68ngWHO-TEQ/kg. Feed from animals origin such as chicken meal, animal fat, fish meal, fish oil, and shell powder showed relatively higher concentrations of PCDD/Fs. Feed from plants origin, minerals, and additives ranged from non-detects for bit pulp and ethoxyquin to 8.28ngkg(-1) for dl-methionine. From a toxicological point of view, the highest concentration in vitamins was 0.08ngWHO-TEQ/kg among the feed additives. 2,3,4,7,8-PeCDF was the dominant congener in samples of fish oil, fish meal, and shell powder. Animal fat showed that the pattern of PCDD/Fs depends on the sources of contamination. A sample of animal fat showed 1,2,3,4,7,8-HxCDF and the other sample showed 1,2,3,4,7,8-HxCDD as a primary congener. Generally, low levels of PCDDs were detected in feed additives. Patterns of PCDD/Fs in choline chloride were different with that in choline chloride from an incident in Europe in 2000.

  7. Role of the chronic bacterial infection in urinary bladder carcinogenesis

    International Nuclear Information System (INIS)

    Higgy, N.A.

    1985-01-01

    The purpose of this thesis was to determine whether or not bacterial infection of the urinary bladder had a role in urinary bladder carcinogenesis. To investigate this proposition, four separate studies were conducted. The first study developed an experimental animal model where bacterial infection of the urinary bladder could be introduced and maintained for a period in excess of one year. The method of infection, inoculation of bacteria (Escherichia coli type 04) subserosally into the vesical wall, successfully caused persistent infection in the majority of animals. In the second study the temporal effects of bacterial infection on the induction of urothelial ornithine decarboxylase (ODC) and 3 H-thymidine uptake and DNA synthesis were examined. Bacterial infection of the urinary bladder induced urothelial ODC with a peak in enzyme activity 6 hr after infection. 3 H-Thymidine uptake and DNA synthesis peaked 48 hr after infection and coincided with the urothelial hyperplasia that occurred in response to the infection. In the third study the specific bladder carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to rats concurrent with the urinary bacterial infection. In the fourth study rats were administered sodium nitrate and either dibutylamine or piperazine in the drinking water. The infected group developed bladder tumors while none were detected in the non-infected rats. From these studies it may be concluded that bacterial infection may have a significant role in the process of urinary bladder carcinogenesis

  8. Changes in the feed intake, pH and osmolality of rumen fluid, and the position of the abomasum of eight dairy cows during a diet-induced left displacement of the abomasum

    NARCIS (Netherlands)

    Winden, van S.C.L.; Brattinga, C.R.; Muller, K.E.; Schonewille, J.T.; Noordhuizen, J.P.T.M.; Beynen, A.C.

    2004-01-01

    During the last six weeks of the dry period, eight Holstein-Friesian cows were fed a restricted amount of grass silage; after calving, a mixture of maize silage and concentrates was offered in a feeding regimen designed to induce a displacement of the abomasum. In the first month after calving, the

  9. Changes in soil bacterial communities induced by the invasive plant Pennisetum setaceum in a semiarid environment

    Science.gov (United States)

    Rodriguez-Caballero, Gema; Caravaca, Fuensanta; del Mar Alguacil, María; Fernández-López, Manuel; José Fernández-González, Antonio; García-Orenes, Fuensanta; Roldán, Antonio

    2016-04-01

    Invasive alien species are considered as a global threat being among the main causes of biodiversity loss. Plant invasions have been extensively studied from different disciplines with the purpose of identifying predictor traits of invasiveness and finding solutions. However, less is known about the implication of the rhizosphere microbiota in these processes, even when it is well known the importance of the interaction between plant rhizosphere and microbial communities. The objective of this study was to determine whether native and invasive plants support different bacterial communities in their rhizospheres and whether there are bacterial indicator species that might be contributing to the invasion process of these ecosystems. We carried out a study in five independent locations under Mediterranean semiarid conditions, where the native Hyparrhenia hirta is being displaced by Pennisetum setaceum, an aggressive invasive Poaceae and soil bacterial communities were amplified and 454-pyrosequenced. Changes in the composition and structure of the bacterial communities, owing to the invasive status of the plant, were detected when the richness and alpha-diversity estimators were calculated as well as when we analyzed the PCoA axes scores. The Indicator Species Analysis results showed a higher number of indicators for invaded communities at all studied taxonomic levels. In conclusion, the effect of the invasiveness and its interaction with the soil location has promoted shifts in the rhizosphere bacterial communities which might be facilitating the invader success in these ecosystems.

  10. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  11. Organic Poultry Feeding

    Directory of Open Access Journals (Sweden)

    Arda Yıldırım

    2014-02-01

    Full Text Available Many people have led to the consumption of organic animal products in the event that the increase in sensitivity to a healthy diet in developed countries, and maintaining the safety of food of animal origin. Feeding and breeding in conventional production are emerged some of the negative effects and also it is more in organic production with new restrictions. Organic production is based on animal welfare. On the basis of behaviors such as feather-pecking and cannibalism known to be low in protein level of rations and unbalanced in terms of amino acids or minerals. As of 2015, organic poultry feed provided the appropriate conditions that will be 95% organic certified in Turkey and therefore, to create a balanced ration and feed hygiene in protecting brings serious challenges. Fodder supply of organic poultry feed raw materials that make up the quality, quantity and issue forms a significant effect on the health of the poultry additives permitted. The quality of the feed raw materials that constituent diets, quantity, feed supplying form and permitted feed additives significantly affects the health of poultry. Different physiological stages of the animal's nutritional requirements in order to ensure production of quality poultry products must be met from organically produced and very well-known with the contents of feedstuff digestibility. In this study, the problems encountered in feeding can be eliminated while performing economic production with considering animal welfare, following that balanced and adequate organic ration formulations and issues such as improving the production of feed raw materials are discussed.

  12. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2...... (period 1), 5 chickens (period 2), and one chicken (periods 3-5). After each balance period, one chicken in each cage was killed and the carcass weight was recorded. Chemical Analyses were performed on the carcasses from periods, 1, 3, and 5. Weight gain, feed intake, and feed conversion rate were found...... to be similar for all diets. Chickens on D0 retained 1.59 g N·kg-°75·d-¹, respectively. This was probably caused by the higher nitrogen content of D0. Neither the HE (p=0.92) nor the retention of energy (P=0.88) were affected by diet. Carcass composition was similar between diets, in line with the values...

  13. Experimental analysis of the liquid-feeding mechanism of the butterfly Pieris rapae.

    Science.gov (United States)

    Lee, Seung Chul; Kim, Bo Heum; Lee, Sang Joon

    2014-06-01

    The butterfly Pieirs rapae drinks liquid using a long proboscis. A high pressure gradient is induced in the proboscis when cibarial pump muscles contract. However, liquid feeding through the long proboscis poses a disadvantage of high flow resistance. Hence, butterflies may possess special features to compensate for this disadvantage and succeed in foraging. The main objective of this study is to analyze the liquid-feeding mechanism of butterflies. The systaltic motion of the cibarial pump organ was visualized using the synchrotron X-ray imaging technique. In addition, an ellipsoidal pump model was established based on synchrotron X-ray micro-computed tomography. To determine the relationship between the cyclic variation of the pump volume and the liquid-feeding flow, velocity fields of the intake flow at the tip of the proboscis were measured using micro-particle image velocimetry. Reynolds and Womersley numbers of liquid-feeding flow in the proboscis were ~1.40 and 0.129, respectively. The liquid-feeding flow could be characterized as a quasi-steady state laminar flow. Considering these results, we analyzed the dimensions of the feeding apparatus on the basis of minimum energy consumption during the liquid-feeding process. The relationship between the proboscis and the cibarial pump was determined when minimum energy consumption occurs. As a result, the volume of the cibarial pump is proportional to the cube of the radius of the proboscis. It seems that the liquid-feeding system of butterflies and other long-proboscid insects follow the cube relationship. The present results provide insights into the feeding strategies of liquid-feeding butterflies. © 2014. Published by The Company of Biologists Ltd.

  14. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    Science.gov (United States)

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. [Bacterial prostatitis and prostatic fibrosis: modern view on the treatment and prophylaxis].

    Science.gov (United States)

    Zaitsev, A V; Pushkar, D Yu; Khodyreva, L A; Dudareva, A A

    2016-08-01

    Treatments of chronic bacterial prostatitis (CP) remain difficult problem. Bacterial prostatitis is a disease entity diagnosed clinically and by evidence of inflammation and infection localized to the prostate. Risk factors for UTI in men include urological interventions, such as transrectal prostate biopsy. Ensuing infections after prostate biopsy, such as UTI and bacterial prostatitis, are increasing due to increasing rates of fluoroquinolone resistance. The increasing global antibiotic resistance also significantly affects management of UTI in men, and therefore calls for alternative strategies. Prostatic inflammation has been suggested to contribute to the etiology of lower urinary tract symptoms (LUTS) by inducing fibrosis. Several studies have shown that prostatic fibrosis is strongly associated with impaired urethral function and LUTS severity. Fibrosis resulting from excessive deposition of collagen is traditionally recognized as a progressive irreversible condition and an end stage of inflammatory diseases; however, there is compelling evidence in both animal and human studies to support that the development of fibrosis could potentially be a reversible process. Prostate inflammation may induce fibrotic changes in periurethral prostatic tissues, promote urethral stiffness and LUTS. Patients experiencing CP and prostate-related LUTS could benefit from anti-inflammatory therapies, especially used in combination with the currently prescribed enzyme treatment with Longidase. Treatment results showed that longidase is highly effective in bacterial and abacterial CP. Longidase addition to standard therapeutic methods significantly reduced the disease symptoms and regression of inflammatory-proliferative alterations in the prostate.

  16. Vagal activation by sham feeding improves gastric motility in functional dyspepsia.

    Science.gov (United States)

    Lunding, J A; Nordström, L M; Haukelid, A-O; Gilja, O H; Berstad, A; Hausken, T

    2008-06-01

    Antral hypomotility and impaired gastric accommodation in patients with functional dyspepsia have been ascribed to vagal dysfunction. We investigated whether vagal stimulation by sham feeding would improve meal-induced gastric motor function in these patients. Fourteen healthy volunteers and 14 functional dyspepsia patients underwent a drink test twice, once with and once without simultaneous sham feeding. After ingesting 500 mL clear meat soup (20 kcal, 37 degrees C) in 4 min, sham feeding was performed for 10 min by chewing a sugar-containing chewing gum while spitting out saliva. Using two- and three-dimensional ultrasound, antral motility index (contraction amplitude x frequency) and intragastric volumes were estimated. Without sham feeding, functional dyspepsia patients had lower motility index than healthy volunteers (area under curve 8.0 +/- 1.2 vs 4.4 +/- 1.0 min(-1), P = 0.04). In functional dyspepsia patients, but not in healthy volunteers, motility index increased and intragastric volume tended to increase by sham feeding (P = 0.04 and P = 0.06 respectively). The change in motility index was negatively correlated to the change in pain score (r = -0.59, P = 0.007). In functional dyspepsia patients, vagal stimulation by sham feeding improves antral motility in response to a soup meal. The result supports the view that impaired vagal stimulation is implicated in the pathogenesis of gastric motility disturbances in functional dyspepsia.

  17. Cerebral Metabolic Changes Related to Oxidative Metabolism in a Model of Bacterial Meningitis Induced by Lipopolysaccharide

    DEFF Research Database (Denmark)

    Munk, Michael; Rom Poulsen, Frantz; Larsen, Lykke

    2018-01-01

    BACKGROUND: Cerebral mitochondrial dysfunction is prominent in the pathophysiology of severe bacterial meningitis. In the present study, we hypothesize that the metabolic changes seen after intracisternal lipopolysaccharide (LPS) injection in a piglet model of meningitis is compatible...... with mitochondrial dysfunction and resembles the metabolic patterns seen in patients with bacterial meningitis. METHODS: Eight pigs received LPS injection in cisterna magna, and four pigs received NaCl in cisterna magna as a control. Biochemical variables related to energy metabolism were monitored by intracerebral...... dysfunction with increasing cerebral LPR due to increased lactate and normal pyruvate, PbtO2, and ICP. The metabolic pattern resembles the one observed in patients with bacterial meningitis. Metabolic monitoring in these patients is feasible to monitor for cerebral metabolic derangements otherwise missed...

  18. Factors associated with exclusive breast-feeding and breast-feeding in Norway

    OpenAIRE

    Kristiansen, Anne Lene; Lande, Britt; Øverby, Nina Cecilie; Andersen, Lene Frost

    2010-01-01

    Objective To identify factors associated with exclusive breast-feeding and breast-feeding during the first year of life among Norwegian infants. Design Data on breast-feeding practices were collected by a semi-quantitative FFQ. Setting In 2006?2007 about 3000 infants were invited to participate in a population-based prospective cohort study in Norway. Subjects A total of 1490 mothers/infants participated at both 6 and 12 months of age. Results Exclusive breast-feeding at 4 months was associat...

  19. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  20. Corn defense responses to nitrogen availability and subsequent performance and feeding preferences of beet armyworm (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Ren, Li-Li; Hardy, Giles; Liu, Zhu-Dong; Wei, Wei; Dai, Hua-Guo

    2013-06-01

    Many studies have reported the effect of nitrogen (N) fertilization on plant constitutive defense responses; however, little is known about their effects on plant induced defense patterns and its consequence for insect herbivores. In our experiments, the effects of N availability on growth, nutritional quality (N content, protein/carbohydrate [P:C] ratio, modified gross energy [MGE]), and constitutive phenolics of corn, Zea mays L. were quantified. Moreover, the indirect effects of N fertilization on the beet armyworm, Spodoptera exigua Hübner through larval performance and feeding preference were examined. N fertilization increased plant growth, and depressed defense traits by increasing N content and the P:C ratio, as well as decreasing the constitutive concentration of phenolics. Subsequently, beet armyworm showed higher performance and preferentially fed on high-N corn because of its low defense traits. After beet armyworm feeding, high-N corn significantly deterred larval feeding, and had negative effects on the performance of beet armyworm through decreasing P:C ratio and increasing induced phenolics. On the contrary, there were no significant changes in P:C ratio and phenolics in low-N corn after feeding damage. Larval performance and preference were also not affected by induced compounds in low-N corn, which suggested that the expression of induced defense was dependent on N availability. The result indicates that N availability can exert a variety of bottom-up effect on plant defense patterns to influence insect population dynamics, and thereby may represent a source of variation in plant-insect interactions.

  1. Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling.

    Directory of Open Access Journals (Sweden)

    Renee M Petri

    Full Text Available Subacute rumen acidotic (SARA conditions are a consequence of high grain feeding. Recent work has shown that the pattern of grain feeding can significantly impact the rumen epimural microbiota. In a continuation of these works, the objective of this study was to determine the role of grain feeding patterns on the colonization and associated changes in predicted functional properties of the fiber-adherent microbial community over a 48 h period. Eight rumen-cannulated Holstein cows were randomly assigned to interrupted or continuous 60%-grain challenge model (n = 4 per model to induce SARA conditions. Cows in the continuous model were challenged for 4 weeks, whereas cows of interrupted model had a 1-wk break in between challenges. To determine dynamics of rumen fiber-adherent microbial community we incubated the same hay from the diet samples for 24 and 48 h in situ during the baseline (no grain fed, week 1 and 4 of the continuous grain feeding model as well as during the week 1 following the break in the interrupted model. Microbial DNA was extracted and 16SrRNA amplicon (V3-V5 region sequencing was done with the Illumina MiSeq platform. A significant decrease (P 0.1% relative abundance in the rumen, 18 of which were significantly impacted by the feeding challenge model. Correlation analysis of the significant OTUs to rumen pH as an indicator of SARA showed genus Succiniclasticum had a positive correlation to SARA conditions regardless of treatment. Predictive analysis of functional microbial properties suggested that the glyoxylate/dicarboxylate pathway was increased in response to SARA conditions, decreased between 24h to 48h of incubation, negatively correlated with propanoate metabolism and positively correlated to members of the Veillonellaceae family including Succiniclasticum spp. This may indicate an adaptive response in bacterial metabolism under SARA conditions. This research clearly indicates that changes to the colonizing fiber

  2. Radiation disinfection of manure for animal feed supplement

    International Nuclear Information System (INIS)

    Harsojo; Andini, S.; Nazly, H.; Suwirma, S.; Danius, J.

    1989-01-01

    Radiation disinfection of manure for animal feed supplement. Radiation treatment for disinfection of manure have been investigated on manure collected during the dry and rainy seasons. Total bacterial counts of non-irradiated dewatered manure with water content of around 13.44% were found to be 1.0x10 6 up to 1.4x10 8 per g during the dry season, and 2.0x10 5 up to 1.7x10 7 per g during the rainy season, while coliforms, enterobecteriacease, staphylococcus, streptococcus, and pseudomonas were found to be 1.0x10 6 up to 1.4x10 8 per g, 1.0x10 4 up to 1.2x10 6 per g, 4.0x10 5 up to 2.2x10 7 per g, 1.8x10 3 per g, and 1.0x10 2 up to 5.4x10 3 per g, respectively. About 30% of the total coliforms were found to be escherichia coli. Irradiation dose of 4 kGy eliminated salmonella from all samples observed. No. Shigella Vibrio, and parasites were detected in the samples. Total nitrogen of the dewatered manure ranged between 1.87 and 2.33%, phosphorus between 1.25 and 4.38%, and potassium between 0.66 and 2.18%. Heavy metal elements were found only in very small amounts, hence the dewatered manure could be applied as animal feed or soil conditioner. A combination of irradiation at 4 kGy and storage for 3 months was synergistically effective to eliminate coliform, E. coli, and salmonella in the dewatered manure. From nutritional point of view, the manure is still acceptable for animal feed supplement. (author). 13 refs

  3. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder.

    Science.gov (United States)

    Denef, Vincent J; Carrick, Hunter J; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H; Vanderploeg, Henry A

    2017-01-01

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  4. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism

    DEFF Research Database (Denmark)

    Koul, A.; Vranckx, L.; Dhar, N.

    2014-01-01

    Bedaquiline (BDQ), an ATP synthase inhibitor, is the first drug to be approved for treatment of multidrug-resistant tuberculosis in decades. Though BDQ has shown excellent efficacy in clinical trials, its early bactericidal activity during the first week of chemotherapy is minimal. Here, using...... microfluidic devices and time-lapse microscopy of Mycobacterium tuberculosis, we confirm the absence of significant bacteriolytic activity during the first 3-4 days of exposure to BDQ. BDQ-induced inhibition of ATP synthesis leads to bacteriostasis within hours after drug addition. Transcriptional...... and proteomic analyses reveal that M. tuberculosis responds to BDQ by induction of the dormancy regulon and activation of ATP-generating pathways, thereby maintaining bacterial viability during initial drug exposure. BDQ-induced bacterial killing is significantly enhanced when the mycobacteria are grown on non...

  5. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  6. Prey perception in feeding-current feeding copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Goncalves, Rodrigo J.; Florian Couespel, Damien

    2016-01-01

    We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey concentrati......We reply to the comments of Paffenhöfer and Jiang () who argues that remote chemical prey perception is necessary for feeding-current feeding copepods to fulfill their nutritional requirements in a dilute ocean, that remote chemical prey detection may only be observed at very low prey...... cells have short intense leakage burst, only a very small fraction of prey cells would be available to the copepod at any instance in time and, thus would be inefficient at low prey concentration. Finally, we report a few new observations of prey capture in two species of copepods, Temora longicornis...... and Centropages hamatus, offered a 45-μm sized dinoflagellate at very low concentration. The observed short prey detection distances, up to a few prey cell radii, are consistent with mechanoreception and we argue briefly that near-field mechanoreception is the most likely and common prey perception mechanism...

  7. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans.

    Science.gov (United States)

    Wietz, Matthias; Wemheuer, Bernd; Simon, Heike; Giebel, Helge-Ansgar; Seibt, Maren A; Daniel, Rolf; Brinkhoff, Thorsten; Simon, Meinhard

    2015-10-01

    The bacterial degradation of polysaccharides is central to marine carbon cycling, but little is known about the bacterial taxa that degrade specific marine polysaccharides. Here, bacterial growth and community dynamics were studied during the degradation of the polysaccharides chitin, alginate and agarose in microcosm experiments at four contrasting locations in the Southern and Atlantic Oceans. At the Southern polar front, chitin-supplemented microcosms were characterized by higher fractions of actively growing cells and a community shift from Alphaproteobacteria to Gammaproteobacteria and Bacteroidetes. At the Antarctic ice shelf, chitin degradation was associated with growth of Bacteroidetes, with 24% higher cell numbers compared with the control. At the Patagonian continental shelf, alginate and agarose degradation covaried with growth of different Alteromonadaceae populations, each with specific temporal growth patterns. At the Mauritanian upwelling, only the alginate hydrolysis product guluronate was consumed, coincident with increasing abundances of Alteromonadaceae and possibly cross-feeding SAR11. 16S rRNA gene amplicon libraries indicated that growth of the Bacteroidetes-affiliated genus Reichenbachiella was stimulated by chitin at all cold and temperate water stations, suggesting comparable ecological roles over wide geographical scales. Overall, the predominance of location-specific patterns showed that bacterial communities from contrasting oceanic biomes have members with different potentials to hydrolyse polysaccharides. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Phenotypic and genetic relationships of feeding behavior with feed intake, growth performance, feed efficiency, and carcass merit traits in Angus and Charolais steers.

    Science.gov (United States)

    Chen, L; Mao, F; Crews, D H; Vinsky, M; Li, C

    2014-03-01

    Feeding behavior traits including daily feeding duration (FD), daily feeding head down time (HD), average feeding duration per feeding event (FD_AVE), average feeding head down time per feeding event (HD_AVE), feeding frequency (FF), and meal eating rate (ER) were analyzed to estimate their phenotypic and genetic correlations with feed intake, growth performance, residual feed intake (RFI), ultrasound, and carcass merit traits in Angus and Charolais finishing steers. Heritability estimates for FD, HD, FD_AVE, HD_AVE, FF, and ER were 0.27 ± 0.09 (SE), 0.25 ± 0.09, 0.19 ± 0.06, 0.11 ± 0.05, 0.24 ± 0.08, and 0.38 ± 0.10, respectively, in the Angus population and 0.49 ± 0.12, 0.38 ± 0.11, 0.31 ± 0.09, 0.29 ± 0.10, 0.43 ± 0.11, and 0.56 ± 0.13, respectively, in the Charolais population. In both the Angus and Charolais steer populations, FD and HD had relatively stronger phenotypic (0.17 ± 0.06 to 0.32 ± 0.04) and genetic (0.29 ± 0.17 to 0.54 ± 0.18) correlations with RFI in comparison to other feeding behavior traits investigated, suggesting the potential of FD and HD as indicators in assessing variation of RFI. In general, feeding behavior traits had weak phenotypic correlations with most of the ultrasound and carcass merit traits; however, estimated genetic correlations of the feeding behavior traits with some fat deposition related traits were moderate to moderately strong but differed in magnitude or sign between the Angus and Charolais steer populations, likely reflecting their different biological types. Genetic parameter estimation studies involving feeding behavior traits in beef cattle are lacking and more research is needed to better characterize the relationships between feeding behavior and feed intake, growth, feed utilization, and carcass merit traits, in particular with respect to different biological types of cattle.

  9. Double strand RNA oral delivery methods to induce RNA interference in phloem and plant-sap-feeding insects

    Science.gov (United States)

    Phloem and plant sap feeding insect pests invade the integrity of crops and fruits to retrieve nutrients in the process damaging food productivity. Hemipteran insects account for a number of economically substantial pests of plants that cause damage to crops by feeding on phloem sap. Halyomorpha hal...

  10. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction

    NARCIS (Netherlands)

    Leveau, J.H.J.; Preston, G.M.

    2008-01-01

    This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive

  11. A Limited Survey of Aflatoxins in Poultry Feed and Feed Ingredients in Guyana

    Directory of Open Access Journals (Sweden)

    Donna M. Morrison

    2017-11-01

    Full Text Available A study was conducted to determine the presence of aflatoxins in finished poultry feed from manufacturing companies, feed ingredients, and poultry feed at the point of sale. Two collections were made. In the first collection, samples of the finished feed and feed ingredients were analyzed by high-performance liquid chromatography (HPLC. For the second collection, all samples were analyzed by ELISA while a subset was analyzed by HPLC. Of the 27 samples of finished feed, five samples had aflatoxin concentrations greater than the United States Food and Drug Administration (USFDA and European Union Commission (EUC maximum tolerable limit of 20 µg/kg, while for the feed ingredients, three of the 30 samples of feed ingredients exceeded the limit. Of the 93 samples of finished feed purchased from retailers, five samples had aflatoxin concentrations greater than the maximum tolerable limit. This survey indicates that most of the samples were below the maximum regulatory limit and maintained quality up to the point of sale for 2015 and 2016. However, given that some samples were above the limit, there is a need to monitor the production and marketing chain to ensure that the quality of the finished feed is not compromised.

  12. Feeding ecology of mesopelagic zooplankton of the subtropical and subarctic North Pacific Ocean determined with fatty acid biomarkers

    Science.gov (United States)

    Wilson, S. E.; Steinberg, D. K.; Chu, F.-L. E.; Bishop, J. K. B.

    2010-10-01

    Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (>51 μm) composition in the mesopelagic zone (base of euphotic zone -1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at K2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100-300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments

  13. FEEDING DIFFICULTIES IN PRESCHOOL CHILDREN, PREVIOUS FEEDING PRACTICES, AND NUTRITIONAL STATUS.

    Science.gov (United States)

    Maranhão, Hélcio de Sousa; Aguiar, Renata Cunha de; Lira, Débora Teixeira Jales de; Sales, Mônica Úrsula Figuerêdo; Nóbrega, Nathalia Ávila do Nascimento

    2018-01-01

    To identify the prevalence of feeding difficulties in preschoolers, its association with epidemiological factors and previous eating habits, and repercussion on nutritional status. Cross-sectional study with a questionnaire given to the mothers of 301 children aged 2-6 years enrolled in public and private kindergartens in Natal, Northeast Brazil, conducted in 2014-2015. Feeding difficulty was assessed according to Kerzner's criteria, resulting in the profiles "highly selective intake", "active child with small appetite", "fear of feeding", and "child with psychological disorder or neglected". Association with the following independent variables was analyzed by logistic regression: breastfeeding time, age of cows' milk and complementary feeding introduction, age range, family income, type of school, mothers' profile (responsive or nonresponsive), and body mass index (BMI). Feeding difficulty was found in 37.2% of cases, with predominance of "highly selective intake" (25.4%). It was not associated with infancy feeding practices, family income or type of school. There were no differences between the BMI Z score means for the groups with and without feeding difficulty (1.0±1.5 SD and 1.1±1.4 SD, respectively). The five-to-six age range had more occurrences (OR 1.8; 95%CI 1.1-2.9). Children of responsive mothers were less likely to have feeding difficulties (OR 0.4; 95%CI 0.2-0.8). Feeding difficulties were very frequent. Nutritional status was not impacted by it, and infancy eating habits were not associated with it. Responsive mothers' profile is a protective factor against eating difficulties and reinforces the importance of behavioral factors and mother-child interaction.

  14. Laser-induced fluorescence imaging of bacteria

    Science.gov (United States)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  15. Study on mycoflora of poultry feed ingredients and finished feed in Iran.

    Science.gov (United States)

    Ghaemmaghami, Seyed Soheil; Modirsaneii, Mehrdad; Khosravi, Ali Reza; Razzaghi-Abyaneh, Mehdi

    2016-02-01

    Unhygienic poultry feedstuffs can lead to nutrient losses and detrimental effect on poultry production and public health. In the present study, mycobiota and colony-forming units per gram in ingredients and finish poultry feed was evaluated with special reference to potentially mycotoxigenic fungi. Eighty five samples of corn, soybean meal and poultry finished feed were collected from nine poultry feed factories located in three provinces i.e. Tehran, Alborz and Qom in Iran from October 2014 to January 2015. Samples were cultured on Sabouraud dextrose agar (SDA), Aspergillus flavus and parasiticus agar (AFPA) and dichloran rosebengal chloramphenicol agar (DRBC) and incubated at 28 °C for 7-10 days. Purified fungal colonies were identified by a combination of macro- and microscopic morphological criteria. For determining the rate of fungal contamination, samples were cultured on SDA and colony forming units (CFUs) were calculated. A total of 384 fungal isolates belonging to 7 genera of filamentous fungi and yeasts were obtained from corn (124 isolates), soybean meal (92 isolates), and feed before (72 isolates), and after pelleting (96 isolates). The most prominent fungal isolate in corn, soybean meal and feed before pelleting (feed as mash form) was Fusarium but in feed after pelleting was Aspergillus. Among 5 Aspergillus species isolated, potentially aflatoxigenic A. flavus isolates was predominant in corn (46.6%), soybean meal (72.7%) and poultry finished feed (75%). CFUs results indicated that 9/22 corn samples (40.9%), none of 22 soybean meal samples, 19/41 finished feed (46.3%) were contaminated higher than the standard limit. Our results indicated that corn, soybean meal and finished feed of poultry feed mill are contaminated with various fungal genera by different levels sometimes higher that the standard limits. Contamination with potentially mycotoxigenic fungi especially Aspergillus species may be considered as a human public health hazard.

  16. Bacterial community dynamics in a rumen fluid bioreactor during in-vitro cultivation.

    Science.gov (United States)

    Zapletalová, Martina; Kašparovská, Jitka; Křížová, Ludmila; Kašparovský, Tomáš; Šerý, Omar; Lochman, Jan

    2016-09-20

    To study the various processes in the rumen the in vitro techniques are widely used to realize more controlled and reproducible conditions compared to in vivo experiments. Mostly, only the parameters like pH changes, volatile fatty acids content or metabolite production are monitored. In this study we examine the bacterial community dynamics of rumen fluid in course of ten day cultivation realize under standard conditions described in the literature. Whereas the pH values, total VFA content and A/P ratio in bioreactor were consistent with natural conditions in the rumen, the mean redox-potential values of -251 and -243mV were much more negative. For culture-independent assessment of bacterial community composition, the Illumina MiSeq results indicated that the community contained 292 bacterial genera. In course of ten days cultivation a significant changes in the microbial community were measured when Bacteroidetes to Firmicutes ratio changed from 3.2 to 1.2 and phyla Proteobacteria and Actinobacteria represented by genus Bifidobacterium and Olsenella significantly increased. The main responsible factor of these changes seems to be very low redox potential in bioreactor together with accumulation of simple carbohydrates in milieu as a result of limited excretion of fermented feed and absence of nutrient absorbing mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. CULTIVATION OF CLADOCERAN (CLADOCERA FOR INCREASING PROVISION OF YOUNG-OF-THE-YEAR CARP (CYPRINUS CARPIO WITH NATURAL FEEDS (REVIEW

    Directory of Open Access Journals (Sweden)

    A. Tuchapska

    2014-06-01

    Full Text Available Purpose. Natural feeds are important in pond fish diet because they contain all nutrients necessary for fish growth and development. The share of natural feeds in fish diet has great effect on fish growth and immunity, assimilation of artificial feeds. The main way of assured procurement of natural feeds for fish feeding at different stages of their development is artificial cultivation of aquatic organisms. However, cultivation of natural feeds is not virtually performed in aquaculture enterprises of Ukraine, therefore an analysis of available data on zooplankton cultivation is important for looking for optimal and economically profitable methods of enrichment of pond fish diet with natural feeds. Methodology. Methods of cladoceran cultivation were the object of the study, material for the study – literature data on ways and methods of zooplankton cultivation. Findings. Cultivation of various species of zooplankton is performed for feeding of pond fish on different life stages. Main object of cultivation in aquaculture is Daphnia magna Straus, juvenile forms of which are consumed by fish larvae, while adult organisms are the most valuable for yearlings and older fish. The efficiency of hydrobiont cultivation highly depends on the selected object, containers, where cladocerans are cultivated, optimum conditions, peculiarities of water supply, species, and application of fertilizers and feeds. Originality. The highest production of zooplankton can be obtained when cultivating D. magna in tanks with continuous flow and in net cages installed in ponds under condition of ensuring requirements of the culture in bacterial and algae feeds (due to application of fertilizers and feeding with feeds and microalgae taking into account their presence in water, which is in the tank-cultivator. Practical value. Simplicity of the methods and high efficiency of zooplankton cultivation for preparation of pond fish juveniles is the basis of its wide use in

  18. Phytogenic Compounds as Alternatives to In-Feed Antibiotics: Potentials and Challenges in Application

    Directory of Open Access Journals (Sweden)

    Chengbo Yang

    2015-03-01

    Full Text Available This article summarizes current experimental knowledge on the efficacy, possible mechanisms and feasibility in the application of phytogenic products as feed additives for food-producing animals. Phytogenic compounds comprise a wide range of plant-derived natural bioactive compounds and essential oils are a major group. Numerous studies have demonstrated that phytogenic compounds have a variety of functions, including antimicrobial/antiviral, antioxidative and anti-inflammation effects and improvement in the palatability of feed and gut development/health. However, the mechanisms underlying their functions are still largely unclear. In the past, there has been a lack of consistency in the results from both laboratory and field studies, largely due to the varied composition of products, dosages, purities and growing conditions of animals used. The minimal inhibitory concentration (MIC of phytogenic compounds required for controlling enteric pathogens may not guarantee the best feed intake, balanced immunity of animals and cost-effectiveness in animal production. The lipophilic nature of photogenic compounds also presents a challenge in effective delivery to the animal gut and this can partially be resolved by microencapsulation and combination with other compounds (synergistic effect. Interestingly, the effects of photogenic compounds on anti-inflammation, gut chemosensing and possible disruption of bacterial quorum sensing could explain a certain number of studies with different animal species for the better production performance of animals that have received phytogenic feed additives. It is obvious that phytogenic compounds have good potential as an alternative to antibiotics in feed for food animal production and the combination of different phytogenic compounds appears to be an approach to improve the efficacy and safety of phytogenic compounds in the application. It is our expectation that the recent development of high-throughput and

  19. Determining suitable dimensions for dairy goat feeding places by evaluating body posture and feeding reach.

    Science.gov (United States)

    Keil, Nina M; Pommereau, Marc; Patt, Antonia; Wechsler, Beat; Gygax, Lorenz

    2017-02-01

    Confined goats spend a substantial part of the day feeding. A poorly designed feeding place increases the risk of feeding in nonphysiological body postures, and even injury. Scientifically validated information on suitable dimensions of feeding places for loose-housed goats is almost absent from the literature. The aim of the present study was, therefore, to determine feeding place dimensions that would allow goats to feed in a species-appropriate, relaxed body posture. A total of 27 goats with a height at the withers of 62 to 80 cm were included in the study. Goats were tested individually in an experimental feeding stall that allowed the height difference between the feed table, the standing area of the forelegs, and a feeding area step (difference in height between forelegs and hind legs) to be varied. The goats accessed the feed table via a palisade feeding barrier. The feed table was equipped with recesses at varying distances to the feeding barrier (5-55 cm in 5-cm steps) at angles of 30°, 60°, 90°, 120°, or 150° (feeding angle), which were filled with the goats' preferred food. In 18 trials, balanced for order across animals, each animal underwent all possible combinations of feeding area step (3 levels: 0, 10, and 20 cm) and of difference in height between feed table and standing area of forelegs (6 levels: 0, 5, 10, 15, 20, and 25 cm). The minimum and maximum reach at which the animals could reach feed on the table with a relaxed body posture was determined for each combination. Statistical analysis was performed using mixed-effects models. The animals were able to feed with a relaxed posture when the feed table was at least 10 cm higher than the standing height of the goats' forelegs. Larger goats achieved smaller minimum reaches and minimum reach increased if the goats' head and neck were angled. Maximum reach increased with increasing height at withers and height of the feed table. The presence of a feeding area step had no influence on minimum and

  20. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.; Ezzedine, Alaa H.; Abdallah, Abdallah; Sougrat, Rachid; Khashab, Niveen M.

    2016-01-01

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  1. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.

    2016-07-27

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  2. The benefits of authoritative feeding style: caregiver feeding styles and children's food consumption patterns.

    Science.gov (United States)

    Patrick, Heather; Nicklas, Theresa A; Hughes, Sheryl O; Morales, Miriam

    2005-04-01

    This research tested the associations between caregiver feeding styles and children's food consumption patterns among African-American (AA) and Hispanic (H) caregivers and their preschool children. Participants were 231 caregivers (101 AA; 130 H) with children enrolled in Head Start. Caregivers completed questionnaires on authoritarian and authoritative feeding styles (Caregiver's Feeding Styles Questionnaire; CFSQ) and various aspects of children's food consumption patterns (availability of, feeding attempts for, and child's consumption of dairy, fruit, and vegetables). Simultaneous multiple regression analyses tested the unique contribution of feeding styles in predicting food consumption patterns. Authoritative feeding was positively associated whereas authoritarian feeding was negatively associated with the availability of fruit and vegetables. Authoritative feeding was also positively associated with attempts to get the child to eat dairy, fruit, and vegetables, and reported child consumption of dairy and vegetables. Authoritarian feeding was negatively associated with child's vegetable consumption. All results remained significant after controlling for child's gender and body mass index (BMI), and caregiver's ethnicity, BMI, and level of education. Overall, results provide evidence for the benefits of authoritative feeding and suggest that interventions to increase children's consumption of dairy, fruit, and vegetables should be targeted toward increasing caregivers' authoritative feeding behaviors.

  3. Shifts in bacterial community composition in the rumen of lactating dairy cows under milk fat-depressing conditions.

    Science.gov (United States)

    Weimer, P J; Stevenson, D M; Mertens, D R

    2010-01-01

    Eighteen ruminally cannulated dairy cattle were fed a series of diets (in 28-d periods) designed to elicit different degrees of milk fat depression (MFD) for the purpose of relating MFD to ruminal bacterial populations. Cows were fed a TMR containing 25% starch (DM basis) supplied as corn silage, a slowly fermented starch (SFS treatment, period 1), then switched to a TMR containing 27% starch, much of it supplied as ground high-moisture corn, a rapidly fermented starch (RFS treatment, period 2). In period 3, the RFS diet was amended with 13.6 mg of monensin/kg of DM (RFS/Mon treatment), and in period 4, the cows were returned to the RFS diet without monensin (RFS/Post treatment). Effect of both starch source and monensin on milk fat percentage varied by cow, and cluster analysis identified 4 pairs of cows having distinct milk fat patterns. Archived ruminal liquors and solids from the 4 pairs were processed to isolate bacterial DNA, which was subjected to automated ribosomal intergenic spacer analysis followed by correspondence analysis to visualize bacterial community composition (BCC). One pair of cows (S-responsive) showed MFD on RFS feeding, but displayed no additional MFD upon monensin feeding and a fat rebound upon monensin withdrawal. The second pair of cows (M-responsive) showed no MFD upon switch from the SFS diet to the RFS diet, but displayed strong MFD upon monensin feeding and no recovery after monensin withdrawal. Both groups displayed major shifts in BCC upon dietary shifts, including dietary shifts that both did and did not change milk fat production. The third pair of cows (SM-responsive) displayed reduction of milk fat on both RFS and RFS/Mon diets, and fat returned to the levels on the RFS diet upon monensin withdrawal; these cows showed a more gradual shift in BCC in response to both starch source and monensin. The fourth pair of cows (nonresponsive) did not display changes in milk fat percentage with dietary treatment and showed only minor

  4. Effects of feeding level and access to rooting material on behaviour of growing pigs in situations with reduced feeding space and delayed feeding

    DEFF Research Database (Denmark)

    Jensen, Margit Bak; Pedersen, Lene Juul

    2010-01-01

    Seventy-two pigs, housed in groups of four, were allocated to either (1) ad libitum feeding with access to wood chip, (2) restrictive feeding with access to wood chip or (3) restrictive feeding without access to wood chip. The effects of feeding level (treatment 1 vs. 2) and access to wood chip......, but the level of manipulating floor in these pigs did not reach the level of manipulating wood chip among pigs on treatment 2. During normal days restrictively fed pigs spent less time feeding on a 24 h basis, but more time feeding during the first hour after feed allocation than ad libitum fed pigs. When...

  5. Pedigree and genomic analyses of feed consumption and residual feed intake in laying hens.

    Science.gov (United States)

    Wolc, Anna; Arango, Jesus; Jankowski, Tomasz; Settar, Petek; Fulton, Janet E; O'Sullivan, Neil P; Fernando, Rohan; Garrick, Dorian J; Dekkers, Jack C M

    2013-09-01

    Efficiency of production is increasingly important with the current escalation of feed costs and demands to minimize the environmental footprint. The objectives of this study were 1) to estimate heritabilities for daily feed consumption and residual feed intake and their genetic correlations with production and egg-quality traits; 2) to evaluate accuracies of estimated breeding values from pedigree- and marker-based prediction models; and 3) to localize genomic regions associated with feed efficiency in a brown egg layer line. Individual feed intake data collected over 2-wk trial periods were available for approximately 6,000 birds from 8 generations. Genetic parameters were estimated with a multitrait animal model; methods BayesB and BayesCπ were used to estimate marker effects and find genomic regions associated with feed efficiency. Using pedigree information, feed efficiency was found to be moderately heritable (h(2) = 0.46 for daily feed consumption and 0.47 for residual feed intake). Hens that consumed more feed and had greater residual feed intake (lower efficiency) had a genetic tendency to lay slightly more eggs with greater yolk weights and albumen heights. Regions on chromosomes 1, 2, 4, 7, 13, and Z were found to be associated with feed intake and efficiency. The accuracy from genomic prediction was higher and more persistent (better maintained across generations) than that from pedigree-based prediction. These results indicate that genomic selection can be used to improve feed efficiency in layers.

  6. Effects of feeding un-extruded floating feed to African giant catfish ...

    African Journals Online (AJOL)

    This study investigated the effects of feeding two types of un-extruded floating fish feeds (HM1 and HM2 –38% CP, produced manually using available feedstuffs) and a commercial imported fish feed (Coppens – 40% CP) on growth performance and body composition of Heterobranchus longifilis over 56 days. Commercial ...

  7. Breastfeeding is best feeding.

    Science.gov (United States)

    Cutting, W

    1995-02-01

    The traditional practice of breast feeding is the best means to make sure infants grow up healthy. It costs nothing. Breast milk contains antibodies and other substances which defend against disease, especially those linked to poor food hygiene and inadequate water and sanitation. In developing countries, breast fed infants are at least 14 times less likely to die from diarrhea than those who are not breast fed. Urbanization and promotion of infant formula undermine breast feeding. Even though infants up to age 4-6 months should receive only breast milk to remain as healthy as possible, infants aged less than 4-6 months often receive other milks or gruels. Attendance of health workers at delivery and their contact with mother-infant pairs after delivery are ideal opportunities to encourage mothers to breast feed. In fact, if health workers provide mothers skilled support with breast feeding, mothers are more likely to breast feed well and for a longer time. Health workers need counseling skills and firm knowledge of techniques on breast feeding and of how to master common difficulties to help mothers with breast feeding. Listening skills and confidence building skills are also needed. Good family and work place support allows women in paid employment outside the home to continue breast feeding. Breast feeding is very important in emergency situations where access to water, sanitation, food, and health care is limited (e.g., refugee camps). In these situations, health workers should especially be aware of women's ability to breast feed and to support their breast feeding. HIV can be transmitted to nursing infants from HIV infected mothers. Yet one must balance this small risk against the possibility of contracting other serious infections (e.g., diarrhea) through alternative infant feeding, particularly if there is no access to potable water and sanitation.

  8. High on food: the interaction between the neural circuits for feeding and for reward.

    Science.gov (United States)

    Liu, Jing-Jing; Mukherjee, Diptendu; Haritan, Doron; Ignatowska-Jankowska, Bogna; Liu, Ji; Citri, Ami; Pang, Zhiping P

    2015-04-01

    Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.

  9. Creep feeding nursing beef calves.

    Science.gov (United States)

    Lardy, Gregory P; Maddock, Travis D

    2007-03-01

    Creep feeding can be used to increase calf weaning weights. However, the gain efficiency of free-choice, energy-based creep feeds is relatively poor. Generally, limit-feeding, high-protein creep feeds are more efficient, and gains may be similar to those produced by creep feeds offered free choice. Creep feeding can increase total organic matter intake and improve the overall energy status of the animal. Creep-fed calves tend to acclimate to the feedlot more smoothly than unsupplemented calves. Furthermore, provision of a high-starch creep feed may have a positive influence on subsequent carcass quality traits. Creep feeding can be applied to numerous environmental situations to maximize calf performance; however, beef cattle producers should consider their individual situations carefully before making the decision to creep feed.

  10. Anti-Pseudomonas aeruginosa IgY Antibodies Induce Specific Bacterial Aggregation and Internalization in Human Polymorphonuclear Neutrophils

    DEFF Research Database (Denmark)

    Thomsen, K.; Christophersen, L.; Bjarnsholt, T.

    2015-01-01

    with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action...... is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness...

  11. Feeding proteins to livestock: Global land use and food vs. feed competition

    Directory of Open Access Journals (Sweden)

    Manceron Stéphane

    2014-07-01

    Full Text Available Competition between direct consumption of plant production and the feeding of livestock is key to global food availability. This is because livestock consume edible commodities that could be available for (food insecure populations but also because it diverts arable land from food production. The share of total plant production redirected towards feeding livestock is (roughly known but estimations of land surfaces virtually occupied by livestock production are scarce. In this study, following up on the Agrimonde Terra** project, we estimate areas devoted to the feeding livestock. First, we estimate the protein composition of an averaged feed basket at the global scale in 2005 and detail the evolution of the protein-source feed component during the period 1961–2009. We focus on protein-rich crops such as oil crops and show its proportion in the global livestock diets has tripled since 1960, though only accounting for about one fourth of total proteins. Then, we estimate land virtually occupied by crop feed at the global scale using a set of straightforward hypotheses. Our estimates suggest that, although livestock and feed production has continuously increased and despite uncertainties in available data, competition for land between feed and food uses has decreased over the last two decades. The share of areas cultivated for feed requirements decreased from about 50% in the 1970s to 37% nowadays. This trend is attributable to the increase of crop yields and to a decrease of the share of cereals in livestock diets to the benefit of oilseeds by-products. However, estimating the share of total areas used for feed is complicated by the significant role played by by-products.

  12. Methods of feed restriction for molt induction in commercial laying hens

    Directory of Open Access Journals (Sweden)

    Josenio Cerbaro

    2014-09-01

    Full Text Available An experiment was carried out to evaluate methods of quantitative or qualitative feed restriction for inducing molt on the performance of Hy - Line Brown layers in the second lay cycle. Two hundred and twenty - five birds with 88 wks-old Hy - Line Brown were used in a completely randomized design with five treatments: Quant100 – restriction of 100% of the daily amount recommended by lineage manual; Quant75 – restriction of 75% of the daily amount recommended; Quant50 – restriction of 50% of the daily amount recommended; Qual75 – supply of an ad libitum diet with 75% grinded rice hulls and 25% of basal diet; Qual50 – supply of an ad libitum diet with 50% of grinded rice hulls and 50% of basal diet. The feed conversion ratio per dozen eggs and egg mass was similar (P=0.0035 and P=0.0139 between Quant75 and Qual75 methods, in relation to Quant100. The eggs production was similar (P=0.0122 among the hens from Quant75, Quant50 and Qual75 methods, in relation to Quant100. The methods of feed restriction did not alter the eggs density (P=0.8971. Quant75 or Qual75 methods can substitute the conventional method for inducing molt in Hy-Line Brown layers, without modifying the performance in the second lay cycle.

  13. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  14. Article Commentary: The Influence of Early Infant-Feeding Practices on the Intestinal Microbiome and Body Composition in Infants

    Directory of Open Access Journals (Sweden)

    Aifric O'Sullivan

    2015-01-01

    Full Text Available Despite many years of widespread international recommendations to support exclusive breastfeeding for the first six months of life, common hospital feeding and birthing practices do not coincide with the necessary steps to support exclusive breastfeeding. These common hospital practices can lead to the infant receiving formula in the first weeks of life despite mothers’ dedication to exclusively breastfeed. Consequently, these practices play a role in the alarmingly high rate of formula-feeding worldwide. Formula-feeding has been shown to alter the infant gut microbiome in favor of proinflammatory taxa and increase gut permeability and bacterial load. Furthermore, several studies have found that formula-feeding increases the risk of obesity in later childhood. While research has demonstrated differences in the intestinal microbiome and body growth between exclusively breast versus formula-fed infants, very little is known about the effects of introducing formula to breastfed infants either briefly or long term on these outcomes. Understanding the relationships between mixed-feeding practices and infant health outcomes is complicated by the lack of clarity in the definition of mixed-feeding as well as the terminology used to describe this type of feeding in the literature. In this commentary, we highlight the need for hospitals to embrace the 10 steps of the Baby Friendly Hospital Initiative developed by UNICEF and the WHO for successful breastfeeding. We present a paucity of studies that have focused on the effects of introducing formula to breastfed infants on the gut microbiome, gut health, growth, and body composition. We make the case for the need to conduct well-designed studies on mixed-feeding before we can truly answer the question: how does brief or long-term use of formula influence the health benefits of exclusive breastfeeding?

  15. The relationship between different measures of feed efficiency and feeding behavior traits in Duroc pigs.

    Science.gov (United States)

    Lu, D; Jiao, S; Tiezzi, F; Knauer, M; Huang, Y; Gray, K A; Maltecca, C

    2017-08-01

    Utilization of feed in livestock species consists of a wide range of biological processes, and therefore, its efficiency can be expressed in various ways, including direct measurement, such as daily feed intake, as well as indicator measures, such as feeding behavior. Measuring feed efficiency is important to the swine industry, and its accuracy can be enhanced by using automated feeding systems, which record feed intake and associated feeding behavior of individual animals. Each automated feeder space is often shared among several pigs and therefore raises concerns about social interactions among pen mates with regard to feeding behavior. The study herein used a data set of 14,901 Duroc boars with individual records on feed intake, feeding behavior, and other off-test traits. These traits were modeled with and without the random spatial effect of Pen_Room, a concatenation of room and pen, or random social interaction among pen mates. The nonheritable spatial effect of common Pen-Room was observed for traits directly measuring feed intake and accounted for up to 13% of the total phenotypic variance in the average daily feeding rate. The social interaction effect explained larger proportions of phenotypic variation in all the traits studied, with the highest being 59% for ADFI in the group of feeding behaviors, 73% for residual feed intake (RFI; RFI4 and RFI6) in the feed efficiency traits, and 69% for intramuscular fat percentage in the off-test traits. After accounting for the social interaction effect, residual BW gain and RFI and BW gain (RIG) were found to have the heritability of 0.38 and 0.18, respectively, and had strong genetic correlations with growth and off-test traits. Feeding behavior traits were found to be moderately heritable, ranging from 0.14 (ADFI) to 0.52 (average daily occupation time), and some of them were strongly correlated with feed efficiency measures; for example, there was a genetic correlation of 0.88 between ADFI and RFI6. Our work

  16. Frequency of feeding, weight reduction and energy metabolism.

    Science.gov (United States)

    Verboeket-van de Venne, W P; Westerterp, K R

    1993-01-01

    A study was conducted to investigate the effect of feeding frequency on the rate and composition of weight loss and 24 h energy metabolism in moderately obese women on a 1000 kcal/day diet. During four consecutive weeks fourteen female adults (age 20-58 years, BMI 25.4-34.9 kg/m2) restricted their food intake to 1000 kcal/day. Seven subjects consumed the diet in two meals daily (gorging pattern), the others consumed the diet in three to five meals (nibbling pattern). Body mass and body composition, obtained by deuterium dilution, were measured at the start of the experiment and after two and four weeks of dieting. Sleeping metabolic rate (SMR) was measured at the same time intervals using a respiration chamber. At the end of the experiment 24 h energy expenditure (24 h EE) and diet-induced thermogenesis (DIT) were assessed by a 36 h stay in the respiration chamber. There was no significant effect of the feeding frequency on the rate of weight loss, fat mass loss or fat-free mass loss. Furthermore, fat mass and fat-free mass contributed equally to weight loss in subjects on both gorging and nibbling diet. Feeding frequency had no significant effect on SMR after two or four weeks of dieting. The decrease in SMR after four weeks was significantly greater in subjects on the nibbling diet. 24 h EE and DIT were not significantly different between the two feeding regimens.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Behavioral characterization of a model of differential susceptibility to obesity induced by standard and personalized cafeteria diet feeding.

    Science.gov (United States)

    Gac, L; Kanaly, V; Ramirez, V; Teske, J A; Pinto, M P; Perez-Leighton, C E

    2015-12-01

    Despite the increase in obesity prevalence over the last decades, humans show large inter-individual variability for susceptibility to diet-induced obesity. Understanding the biological basis of this susceptibility could identify new therapeutic alternatives against obesity. We characterized behavioral changes associated with propensity to obesity induced by cafeteria (CAF) diet consumption in mice. We show that Balb/c mice fed a CAF diet display a large inter-individual variability in susceptibility to diet-induced obesity, such that based on changes in adiposity we can classify mice as obesity prone (OP) or obesity resistant (OR). Both OP and OR were hyperphagic relative to control-fed mice but caloric intake was similar between OP and OR mice. In contrast, OR had a larger increase in locomotor activity following CAF diet compared to OP mice. Obesity resistant and prone mice showed similar intake of sweet snacks, but OR ate more savory snacks than OP mice. Two bottle sucrose preference tests showed that OP decreased their sucrose preference compared to OR mice after CAF diet feeding. Finally, to test the robustness of the OR phenotype in response to further increases in caloric intake, we fed OR mice with a personalized CAF (CAF-P) diet based on individual snack preferences. When fed a CAF-P diet, OR increased their calorie intake compared to OP mice fed the standard CAF diet, but did not reach adiposity levels observed in OP mice. Together, our data show the contribution of hedonic intake, individual snack preference and physical activity to individual susceptibility to obesity in Balb/c mice fed a standard and personalized cafeteria-style diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Harnessing CRISPR-Cas systems for bacterial genome editing.

    Science.gov (United States)

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Water-Soluble Chitosan Nanoparticles Inhibit Hypercholesterolemia Induced by Feeding a High-Fat Diet in Male Sprague-Dawley Rats

    International Nuclear Information System (INIS)

    Tao, Y.; Zhang, H.; Gao, B.; Guo, J.; Hu, Y.; Su, Z.

    2011-01-01

    Chitosan, a deacetylated product of chitin, has been demonstrated to lower cholesterol in humans and animals. However, chitosan is not fully soluble in water which would influence absorption in the human intestine. In addition, water-soluble chitosan (WSC) has higher reactivity compared to chitosan. The present study was designed to clarify the effects of WSC and water-soluble chitosan nanoparticles (WSC-NPs) on hypercholesterolemia induced by feeding a high-fat diet in male Sprague-Dawley rats. WSC-NPs were prepared by the ionic gelation method and the spray-drying technique. The nanoparticles were spherical in shape and had a smooth surface. The mean size of WSC-NPs was 650 nm variing from 500 to 800?nm. Results showed that WSC-NPs reduced the blood lipids and plasma viscosity significantly and increased the serum superoxide dismutase (SOD) activities significantly. This paper is the first report of the lipid-lowering effects of WSC-NPs suggesting that the WSC-NPs could be used for the treatment of hypercholesterolemia

  20. ESTIMATION OF AFLATOXIN B1 IN FEED INGREDIENTS AND COMPOUND POULTRY FEEDS

    Directory of Open Access Journals (Sweden)

    Bashir Mahmood Bhatti, Tanzeela Talat and Rozina Sardar

    2001-02-01

    Full Text Available A total of 3230 samples of feed ingredients of vegetable and animal origin and commercially available compound poultry feed received over a period of 5 years at Feed Testing Laboratory of the Institute were tested for Aflatoxin B1 contents (ppb . In all feed ingredients and compound feed stuffs, minimum level of aflatoxin B1 was 13 ppb and maximum level was found to be 78 ppb. No correlation of aflatoxin levels with month of collection of the year which are subject to variation in temperature and humidity could be detected. Mean values of aflatoxin concentration in feed stuffs such as rice, rice polish, wheat bran, wheat bread, maize, fish meal, blood meal, bone meal, guar meal, corn gluten 30%, corn gluten 60%, sun flower meal, soyabean meal and cotton seed meal were found to be higher than safe level of 20 ppb recommended by FDA.

  1. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum) and Its Bacterial Symbionts.

    Science.gov (United States)

    Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas

    2017-08-24

    Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids ( Acyrthosiphon pisum ) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  2. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum and Its Bacterial Symbionts

    Directory of Open Access Journals (Sweden)

    Karen Luna-Ramirez

    2017-08-01

    Full Text Available Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  3. Bioleaching of Arsenic-Rich Gold Concentrates by Bacterial Flora before and after Mutation

    Directory of Open Access Journals (Sweden)

    Xuehui Xie

    2013-01-01

    Full Text Available In order to improve the bioleaching efficiency of arsenic-rich gold concentrates, a mixed bacterial flora had been developed, and the mutation breeding method was adopted to conduct the research. The original mixed bacterial flora had been enrichedin acid mine drainage of Dexing copper mine, Jiangxi Province, China. It was induced by UV (ultraviolet, ultrasonic, and microwave, and their combination mutation. The most efficient bacterial flora after mutation was collected for further bioleaching of arsenic-rich gold concentrates. Results indicated that the bacterial flora after mutation by UV 60 s combined with ultrasonic 10 min had the best oxidation rate of ferrous, the biggest density of cells, and the most activity of total protein. During bioleaching of arsenic-rich gold concentrates, the density of the mutant bacterial cells reached to 1.13×108 cells/mL at 15 days, more than 10 times compared with that of the original culture. The extraction of iron reached to 95.7% after 15 days, increased by 9.9% compared with that of the original culture. The extraction of arsenic reached to 92.6% after 12 days, which was increased by 46.1%. These results suggested that optimum combined mutation could improve leaching ability of the bacterial flora more significantly.

  4. Bioleaching of Arsenic-Rich Gold Concentrates by Bacterial Flora before and after Mutation

    Science.gov (United States)

    Xie, Xuehui; Yuan, Xuewu; Liu, Na; Chen, Xiaoguang; Abdelgadir, Awad; Liu, Jianshe

    2013-01-01

    In order to improve the bioleaching efficiency of arsenic-rich gold concentrates, a mixed bacterial flora had been developed, and the mutation breeding method was adopted to conduct the research. The original mixed bacterial flora had been enrichedin acid mine drainage of Dexing copper mine, Jiangxi Province, China. It was induced by UV (ultraviolet), ultrasonic, and microwave, and their combination mutation. The most efficient bacterial flora after mutation was collected for further bioleaching of arsenic-rich gold concentrates. Results indicated that the bacterial flora after mutation by UV 60 s combined with ultrasonic 10 min had the best oxidation rate of ferrous, the biggest density of cells, and the most activity of total protein. During bioleaching of arsenic-rich gold concentrates, the density of the mutant bacterial cells reached to 1.13 × 108 cells/mL at 15 days, more than 10 times compared with that of the original culture. The extraction of iron reached to 95.7% after 15 days, increased by 9.9% compared with that of the original culture. The extraction of arsenic reached to 92.6% after 12 days, which was increased by 46.1%. These results suggested that optimum combined mutation could improve leaching ability of the bacterial flora more significantly. PMID:24381948

  5. Newborn First Feed and Prelacteal Feeds in Mansoura, Egypt

    Directory of Open Access Journals (Sweden)

    Abdel-Hady El-Gilany

    2014-01-01

    Full Text Available Background. Prelacteal feed (feeding any other substance before first breastfeeding appears to be common despite its harmful effects. By definition a child provided with prelacteal feed (PLF is not exclusively breastfed and PLF has many implications for the success and early initiation of breastfeeding. Objectives. To describe the prevalence of, nature of, and reasons for and factors associated with PLF. Methods. 647 mother-infant dyads were studied. Data was collected about the sociodemographic features of the family and baby, maternity care, the type of first feed before suckling, and causes of PLF. Maternal weight and height were measured and body mass index was calculated. Results. About 58% of newborns received prelacteal feeds. The commonest PLF was sugar/glucose water (39.6%. The most frequent reasons for giving PLF are tradition (61.0% and mother’s/mother in law’s advice (58.3%. The logistic regression revealed that the independent predictors of PLF are urban residence; maternal education; father’s education; low, middle, and high social class; maternal obesity; receiving antenatal care at private clinics and no antenatal care; Caesarean section; female babies; low birth weight; and admission to neonatal intensive care. Conclusion. Indiscriminate use of PLF should be discouraged in medical education and in antenatal maternal health education.

  6. 'The midwives aren't allowed to tell you': perceived infant feeding policy restrictions in a formula feeding culture - the Feeding Your Baby Study.

    Science.gov (United States)

    Lagan, Briege M; Symon, Andrew; Dalzell, Janet; Whitford, Heather

    2014-03-01

    to explore the expectations and experiences of postnatal mothers in relation to infant feeding, and to identify how care could be improved. this study used a qualitative, exploratory, descriptive design. Data were collected through one to one in-depth semi-structured interviews and focus groups. Tayside area of Eastern Scotland. seven focus group interviews (n=38 participants) and 40 semi-structured one-to-one interviews with mothers with a range of infant feeding experiences i.e. exclusively breast fed; started breast feeding but changed to formula milk before 16 weeks; exclusively formula fed; or who concurrently breast and formula fed their infant. a principal theme of 'Mixed and missing messages' emerged, incorporating 'Conflicting advice', 'Information gaps' and 'Pressure to breast feed' with a secondary theme of 'Emotional costs'. Several problems were identified with how women were given information, how infant feeding discussions were held, and the type of support available after the infant is born. there was a strong perception that some midwives are not 'allowed' to discuss or provide information on formula feeding, and the women reported feeling pressurised to breast feed. Current interpretation of guidance from the UNICEF UK Baby Friendly Initiative may be restricting antenatal discussions about infant feeding. The combination of this partial preparation antenatally and postnatal support that was often inconsistent seems to incur a counter-productive emotional cost. at strategic, policy and practice levels the infant feeding message needs to change to encourage a more woman-centred focus including discussions about the realities of all types of infant feeding. It is important that health providers continue to promote and support breast feeding; and that effective services are provided to women who wish to breast feed to help them to do so. However provision of information about all aspects of feeding is needed as well as support for women who do not

  7. Effect of feeding frequency and feeding rate on growth of ...

    African Journals Online (AJOL)

    Effect of feeding frequency and feeding rate on growth of Oreochromis mossambicus (Teleostei: Cichlidae) fry. ... Weight gain, specific growth rate and gross food conversion ratio were significantly affected by ... AJOL African Journals Online.

  8. Phytochemical-rich medicinal plant extracts suppress bacterial antigens-induced inflammation in human tonsil epithelial cells

    Directory of Open Access Journals (Sweden)

    Niluni M. Wijesundara

    2017-06-01

    Full Text Available Background Pharyngitis is an inflammatory condition of the pharynx and associated structures commonly caused by the Group A streptococci (GAS. There is a growing interest in discovering plant-based anti-inflammatory compounds as potential alternatives to conventional drugs. This study evaluated anti-inflammatory activity of phytochemical-rich extracts prepared from 12 herbal plants using human tonsil epithelial cells (HTonEpiC in vitro. Methods The HTonEpiC were induced by a mixture of lipoteichoic acid (LTA and peptidoglycan (PGN (10 µg/mL; bacterial antigens for 4 h and then exposed to ethanol extracts (EE or aqueous extracts (AE for 20 h. The secretion of four pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assays (ELISA. Total phenolic and total flavonoid contents of the extracts were determined using spectrophotometric methods. Results The herbal plant extracts (≤5 µg/mL were not cytotoxic to HTonEpiC. The extracts exhibited a broad range of reduction (1.2%–92.6% of secretion of interleukin-8 (IL-8, human beta defensin-2 (hBD-2, epithelial-derived neutrophil activating protein-78 (ENA-78, and granulocyte chemotactic protein-2 (GCP-2. Both EE and AE of clove, ginger, and echinacea flower and EE from danshen root significantly inhibited the pro-inflammatory cytokine production as induced by LTA and PGN in HTonEpiCs at the concentrations of 1 and 5 µg/mL. Discussion Our observations indicate that danshen root, clove, ginger, and echinacea flower extracts exhibit an anti-inflammatory effect in HTonEpiCs. The most efficacious extracts from danshen root, clove, ginger and echinacea flowers have potential to be used as natural sources for developing phytotherapeutic products in the management of painful inflammation due to streptococcal pharyngitis.

  9. Wideband feeds for the upgraded GMRT

    International Nuclear Information System (INIS)

    Bandari, Hanumanth Rao; Sankarasubramanian, G; Kumar, A Praveen

    2013-01-01

    This paper describes the existing feeds in use at the GMRT Observatory and details the ongoing development of next generation wideband feeds for the upgraded GMRT. The existing feeds include: feed with folded thick dipoles (for 150 MHz), dipole-disc feed (for 325 MHz), dual-band coaxial feed (for 233 MHZ and 610 MHz), and corrugated horn feed (for 1400–1450 MHz). The new broadband feeds covered in this paper are: cone-dipole feeds for 250–500 and 500–1000 MHz, wideband horn feed for 550–900 MHz, and dual ring feed for 130–260 MHz. Design techniques and performance results for these are described.

  10. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  11. Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (Bubalus bubalis) calves.

    Science.gov (United States)

    Malik, Raman; Bandla, Srinivas

    2010-08-01

    Probiotics of Lactobacillus acidophilus, Saccharomyces cerevisiae, and Aspergillus niger and three commercial exogenous fibrolytic enzymes (EFE) were tested in vitro to select best source and optimum dose followed by in vivo studies on male buffalo calves. Bacterial (P calves with concentrate supplement (CS). Calves were randomly divided into three groups either without probiotics and EFE (CG) or with probiotics (EG(1)) or probiotics combined with EFE (EG(2)) on wheat straw diet. Organic matter, neutral detergent fiber, and acid detergent fiber digestibility was improved significantly. Average daily weight gain (ADG) and feed efficiency were significantly higher (P feed efficiency was 2.6% or 1.6% more (P calves.

  12. Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities.

    Science.gov (United States)

    Ferreira, L M M; Hervás, G; Belenguer, A; Celaya, R; Rodrigues, M A M; García, U; Frutos, P; Osoro, K

    2017-10-01

    This study aimed to compare feed intake, digestion, rumen fermentation parameters and bacterial community of 5 beef cows, 12 crossed ewes and 12 goats grazing together in spring-early summer on heather-gorse vegetation communities with an adjacent area of improved pasture. Organic matter intake (OMI) and digestibility (OMD) were estimated using alkane markers. Ruminal fluid samples were collected for measuring fermentation parameters, and studying the bacterial community using terminal restriction fragment length polymorphism (T-RFLP). Spot samples of urine were taken to determine purine derivative (PD) and creatinine concentrations to estimate microbial protein synthesis in the rumen. Herbaceous species were the main dietary component in all animal species. Cattle had higher (p rumen bacterial structure. Differences among animal species were also observed in the relative frequency of several T-RFs. Certain T-RFs compatible with Lachnospiraceae, Proteobacteria and Clostridiales species were not found in goats, while these animals showed high relative frequencies of some fragments compatible with the Ruminococcaceae family that were not detected in sheep and cattle. Results suggest a close relationship between animals' grazing behaviour and rumen bacterial structure and its function. Goats seem to show a greater specialization of their microbial populations to deal with the greater fibrous and tannin content of their diet. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  13. The effect of a self-efficacy-based educational programme on maternal breast feeding self-efficacy, breast feeding duration and exclusive breast feeding rates: A longitudinal study.

    Science.gov (United States)

    Chan, Man Yi; Ip, Wan Yim; Choi, Kai Chow

    2016-05-01

    breast feeding has a number of well-documented benefits. Numerous studies have been conducted to investigate an effective approach to increase the breast feeding rate, duration and exclusive breast feeding rate, in which maternal breast feeding self-efficacy was determined as one of the major contributors. Although numerous breast feeding educational programmes have been developed to enhance maternal breastfeeding self-efficacy, results on the effectiveness of these programmes remain inconclusive. this study aims to investigate the effectiveness of a self-efficacy-based breast feeding educational programme (SEBEP) in enhancing breast feeding self-efficacy, breast feeding duration and exclusive breast feeding rates among mothers in Hong Kong. eligible pregnant women were randomized to attend a 2.5-hour breast feeding workshop at 28-38 weeks of gestation and receive 30-60minutes of telephone counselling at two weeks post partum, whereas both intervention and control groups received usual care. At two weeks postpartum, the Breast feeding Self-Efficacy Scale-Short Form (BSES-SF) and a self-developed post partum questionnaire were completed via telephone interviews. The breast feeding duration, pattern of breast feeding and exclusive breast feeding rates were recorded at two weeks, four weeks, eight weeks and six months post partum. results of analyses based on an intention-to-treat (ITT) assumption showed a significant difference (p<0.01) in the change in BSES-SF mean scores between the mothers who received SEBEP and those who did not receive SEBEP at two weeks post partum. The exclusive breast feeding rate was 11.4% for the intervention group and 5.6% for the control group at six months post partum. the findings of this study highlight the feasibility of a major trial to implement breast feeding education targeted at increasing breast feeding self-efficacy and exclusive breast feeding rates in Hong Kong. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Breastfeeding vs. Formula Feeding

    Science.gov (United States)

    ... for Educators Search English Español Breastfeeding vs. Formula Feeding KidsHealth / For Parents / Breastfeeding vs. Formula Feeding What's ... work with a lactation specialist. All About Formula Feeding Commercially prepared infant formulas are a nutritious alternative ...

  15. Structured attachment of bacterial molecular motors for defined microflow induction

    Directory of Open Access Journals (Sweden)

    Woerdemann Mike

    2014-01-01

    Full Text Available Bacterial rotational motor complexes that propel flagellated bacteria possess unique properties like their size of a few nanometres and the ability of selfreproduction that have led to various exciting applications including biohybrid nano-machines. One mandatory prerequisite to utilize bacterial nano motors in fluid applications is the ability to transfer force and torque to the fluid, which usually can be achieved by attachment of the bacterial cell to adequate surfaces. Additionally, for optimal transfer of force or torque, precise control of the position down to the single cell level is of utmost importance. Based on a PIV (particle image velocimetry evaluation of the induced flow of single bacteria,we propose and demonstrate attachment of arbitrary patterns of motile bacterial cells in a fast light-based two-step process for the first time to our knowledge. First, these cells are pre-structured by holographic optical tweezers and then attached to a homogeneous, polystyrene-coated surface. In contrast to the few approaches that have been implemented up to now and which rely on pre-structured surfaces, our scheme allows for precise control on a single bacterium level, is versatile, interactive and has low requirements with respect to the surface preparation.

  16. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    Directory of Open Access Journals (Sweden)

    Ivan Y. C. Lin

    2015-11-01

    Full Text Available Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.

  17. Bacterial production determined by [3H]thymidine incorporation in field rhizospheres as evaluated by comparison to rhizodeposition

    DEFF Research Database (Denmark)

    Christensen, Henrik; Rønn, Regin; Ekelund, Flemming

    1995-01-01

    In a sandy loam soil cropped to barley bacterial production in the rhizosphere was compared to the results of a parallel investigation on rhizodeposition. Bacterial production was stimulated in the rhizosphere as revealed by an increased biomass of bacteria (643–883 µg C g-1 soil) and protozoa (7.......2–15 × 104 cells g-1 soil) as well as elevated thymidine incorporation (9.7–12 pmol g-1 soil) in rhizosphere soil compared to bulk soil. Rhizodeposition, as determined by several pulse labellings with 14CO2, was estimated to be 412 µg C g-1 dry wt soil in the 0–15 cm layer. Bacterial production......, as determined by incorporation of 3H-labelled thymidine converted to bacterial C, revealed a plant-induced formation of 1348 µg bacterial C g-1 soil in the 0–15 cm layer. This is probably the first estimate for bacterial production based on thymidine incorporation which has been compared to an estimate of C...

  18. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on feed intake, serum chemistry, and hematology of horses, and the efficacy of a polymeric glucomannan mycotoxin adsorbent.

    Science.gov (United States)

    Raymond, S L; Smith, T K; Swamy, H V L N

    2003-09-01

    The feeding of Fusarium mycotoxin-contaminated grains adversely affects the performance of swine and poultry. Very little information is available, however, on adverse effects associated with feeding these mycotoxin-contaminated grains on the performance of horses. An experiment was conducted to investigate the effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on feed intake, serum immunoglobulin (Ig) concentrations, serum chemistry, and hematology of horses. A polymeric glucomannan mycotoxin adsorbent (GM polymer) was also tested for efficacy in preventing Fusarium mycotoxicoses. Nine mature, nonexercising, light, mixed-breed mares were assigned randomly to one of three dietary treatments for 21 d. The horses were randomly reassigned and the experiment was subsequently replicated in time following a 14-d washout interval. Feed consumed each day was a combination of up to 2.8 kg of concentrates and 5 kg of mixed timothy/alfalfa hay. The concentrates fed included the following: 1) control, 2) blend of contaminated grains (36% contaminated wheat and 53% contaminated corn), and 3) blend of contaminated grains + 0.2% GM polymer. Diets containing contaminated grains averaged 15.0 ppm of deoxynivalenol, 0.8 ppm of 15-acetyldeoxynivalenol, 9.7 ppm of fusaric acid, and 2.0 ppm of zearalenone. Feed intake by all horses fed contaminated grains was reduced (P mycotoxins caused a decrease in feed intake and altered serum gamma glutamyltransferase activities. The supplementation of GM polymer prevented these mycotoxin-induced adverse effects.

  19. The influence of elevated feed stalls on feeding behaviour of lactating dairy cows

    Directory of Open Access Journals (Sweden)

    Barbara Benz

    2014-10-01

    Full Text Available The performance level of high yielding cows can only be guaranteed by high quality forage and high feed intake. An about 15–20 cm elevated and 160 cm long feed stall with rubber flooring doesn’t only offer undisturbed meals but also a yielding and dry standing surface. In a pilot stable with 130 dairy cows (German Simmental the feeding alley was subsequently equipped with elevated feed stalls. The results show that animals frequented the feeding barn less often while the duration of single meals prolonged. The specific behavioural changes differed depending on milk yield and number of lactation.

  20. Endocytosis-inducer adhesins produced by enteropathogenic serogroups of Escherichia coli participate on bacterial attachment to infant enterocytes

    Directory of Open Access Journals (Sweden)

    João Ramos Costa Andrade

    1987-03-01

    Full Text Available Enteropathogenic E. coli (EPEC infection of Hep-2 cells preoceeds through bacterial attachment to cell surface and internalization of adhered bacteria. EPEC attachment is a prerequisite for cell infection and is mediated by adhesins that recognize carbohydrate-containing receptors on cell membrane. Such endocytosis-inducer adhesins (EIA also promote EPEC binding to infant enterocytes, suggesting that EIA may have an important role on EPEC gastroenteritis.A infecção de células Hep-2 por E. coli enteropatogênicas (ECEP implica na aderência bacteriana e posterior interiorização dos microrganismos aderidos por um mecanismo de endocitose. A aderência das ECEP é pré-requisito para a infecção e é mediada por adesinas que reconhecem receptores inibidos por certas oses na membrana celular. Tais "adesinas indutoras da endocitose" (AIE também promovem a ligação bacteriana a enterócitos obtidos do intestino delgado de lactente, sugerindo que as AIE possam desempenhar algum papel nas diarréias causadas por ECEP.

  1. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.

    Directory of Open Access Journals (Sweden)

    Dagne Duguma

    Full Text Available Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis, the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus, and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae, was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.

  2. A fat-derived metabolite regulates a peptidergic feeding circuit in Drosophila.

    Directory of Open Access Journals (Sweden)

    Do-Hyoung Kim

    2017-03-01

    Full Text Available Here, we show that the enzymatic cofactor tetrahydrobiopterin (BH4 inhibits feeding in Drosophila. BH4 biosynthesis requires the sequential action of the conserved enzymes Punch, Purple, and Sepiapterin Reductase (Sptr. Although we observe increased feeding upon loss of Punch and Purple in the adult fat body, loss of Sptr must occur in the brain. We found Sptr expression is required in four adult neurons that express neuropeptide F (NPF, the fly homologue of the vertebrate appetite regulator neuropeptide Y (NPY. As expected, feeding flies BH4 rescues the loss of Punch and Purple in the fat body and the loss of Sptr in NPF neurons. Mechanistically, we found BH4 deficiency reduces NPF staining, likely by promoting its release, while excess BH4 increases NPF accumulation without altering its expression. We thus show that, because of its physically distributed biosynthesis, BH4 acts as a fat-derived signal that induces satiety by inhibiting the activity of the NPF neurons.

  3. Relationships between residual feed intake, average daily gain, and feeding behavior in growing dairy heifers.

    Science.gov (United States)

    Green, T C; Jago, J G; Macdonald, K A; Waghorn, G C

    2013-05-01

    Residual feed intake (RFI) is a measure of an individual's efficiency in utilizing feed for maintenance and production during growth or lactation, and is defined as the difference between the actual and predicted feed intake of that individual. The objective of this study was to relate RFI to feeding behavior and to identify behavioral differences between animals with divergent RFI. The intakes and body weight (BW) of 1,049 growing dairy heifers (aged 5-9 mo; 195 ± 25.8 kg of BW) in 5 cohorts were measured for 42 to 49 d to ascertain individual RFI. Animals were housed in an outdoor feeding facility comprising 28 pens, each with 8 animals and 1 feeder per pen, and were fed a dried, cubed alfalfa diet. This forage diet was chosen because most dairy cows in New Zealand are grazed on ryegrass-dominant pastures, without grain or concentrates. An electronic feed monitoring system measured the intake and feeding behavior of individuals. Feeding behavior was summarized as daily intake, daily feeding duration, meal frequency, feeding rate, meal size, meal duration, and temporal feeding patterns. The RFI was moderately to strongly correlated with intake in all cohorts (r=0.54-0.74), indicating that efficient animals ate less than inefficient animals, but relationships with feeding behavior traits (meal frequency, feeding duration, and feeding rate) were weak (r=0.14-0.26), indicating that feeding behavior cannot reliably predict RFI in growing dairy heifers. Comparison of the extremes of RFI (10% most and 10% least efficient) demonstrated similar BW and average daily gain for both groups, but efficient animals ate less; had fewer, longer meals; shorter daily feeding duration; and ate more slowly than the least-efficient animals. These groups also differed in their feeding patterns over 24h, with the most efficient animals eating less and having fewer meals during daylight (0600 to 2100 h), especially during the afternoon (1200 to 1800 h), but ate for a longer time during

  4. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  5. Cannabinoid Receptor Signaling in Central Regulation of Feeding Behavior: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Marco Koch

    2017-05-01

    Full Text Available Cannabinoids are lipid messengers that modulate a variety of physiological processes and modify the generation of specific behaviors. In this regard, the cannabinoid receptor type 1 (CB1 represents the most relevant target molecule of cannabinoids so far. One main function of central CB1 signaling is to maintain whole body energy homeostasis. Thus, cannabinoids functionally interact with classical neurotransmitters in neural networks that control energy metabolism and feeding behavior. The promotion of CB1 signaling can increase appetite and stimulate feeding, while blockade of CB1 suppresses hunger and induces hypophagia. However, in order to treat overeating, pharmacological blockade of CB1 by the inverse agonist rimonabant not only suppressed feeding but also resulted in psychiatric side effects. Therefore, research within the last decade focused on deciphering the underlying cellular and molecular mechanisms of central cannabinoid signaling that control feeding and other behaviors, with the overall aim still being the identification of specific targets to develop safe pharmacological interventions for the treatment of obesity. Today, many studies unraveled the subcellular localization of CB1 and the function of cannabinoids in neurons and glial cells within circumscribed brain regions that represent integral parts of neural circuitries controlling feeding behavior. Here, these novel experimental findings will be summarized and recent advances in understanding the mechanisms of CB1-dependent cannabinoid signaling being relevant for central regulation of feeding behavior will be highlighted. Finally, presumed alternative pathways of cannabinoids that are not driven by CB1 activation but also contributing to control of feeding behavior will be introduced.

  6. Structure of a bacterial toxin-activating acyltransferase.

    Science.gov (United States)

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  7. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  8. Feeding on dispersed vs. aggregated particles: The effect of zooplankton feeding behavior on vertical flux

    DEFF Research Database (Denmark)

    Koski, Marja; Boutorh, Julia; De La Rocha, Christina L.

    2017-01-01

    Zooplankton feeding activity is hypothesized to attenuate the downward flux of elements in the ocean. We investigated whether the zooplankton community composition could influence the flux attenuation, due to the differences of feeding modes (feeding on dispersed vs. aggregated particles) and of ......Zooplankton feeding activity is hypothesized to attenuate the downward flux of elements in the ocean. We investigated whether the zooplankton community composition could influence the flux attenuation, due to the differences of feeding modes (feeding on dispersed vs. aggregated particles...

  9. Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification.

    Directory of Open Access Journals (Sweden)

    Charles Rocabert

    2017-03-01

    Full Text Available Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character

  10. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    Science.gov (United States)

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  11. Influence of limit-feeding and time of day of feed availability to growing calves on growth performance and feeding behavior in cold weather.

    Science.gov (United States)

    Prezotto, L D; Gilbery, T C; Bauer, M L; Islas, A; Swanson, K C

    2017-11-01

    Objective swere to determine the effects of limit-feeding and time of feed access in cold weather on growth performance and feeding behavior of growing calves fed a corn silage-based diet. Sixty-six steers (BW = 317 ± 5.3 kg) and 30 heifers (BW = 239 ± 7.6 kg) were assigned randomly to dietary treatment: 1) ad libitum feed intake (AL), 2) limit-fed to 80% of the average DMI of the AL group on a BW basis in the daytime (0601-1759 h; LF-D), 3) limit-fed to 80% of the average DMI of the AL group on a BW basis in the nighttime (1800-0559 h; LF-N), and 4) limit-fed to 80% of the average DMI of the AL group on a BW basis, split 1/2 in the daytime and 1/2 in the nighttime (LF-S). Feed intake and feeding behavior were monitored over 84 d using the Insentec feeding system. Average daily gain, DMI, and G:F were greater ( ≤ 0.002) in the AL group compared with others. Dry matter intake was not different ( = 0.17) when comparing the LF-D with the LF-N groups. Average daily gain and G:F were greater ( ≤ 0.05) when comparing the LF-N group to the LF-D group, and were not different ( ≥ 0.51) when comparing the LF-S group with the mean of the LF-D and LF-N groups. Number of visits and meals per d was greater ( ≤ 0.001) in the LF-N than the LF-D group. Feed intake per visit was not different ( = 0.55) when comparing the AL group and others, and tended to be greater ( = 0.06) in the LF-D than the LF-N group. Feed intake per meal was greater ( Feed intake per minute (eating rate) was not influenced by treatment. In conclusion, limit-feeding at 80% of ad libitum intake decreased ADG and G:F. Limit-feeding in the nighttime as compared to limit-feeding in the daytime improves growth performance and increases feeding activity (number of visits and meals per d) which could be because of increased heat production to help maintain body temperature and thus reduce maintenance energy requirements.

  12. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic.

    Science.gov (United States)

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R Craig

    2015-10-07

    Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. © 2015 The Authors.

  13. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Melanie Craven

    Full Text Available Understanding the interplay between genetic susceptibility, the microbiome, the environment and the immune system in Crohn's Disease (CD is essential for developing optimal therapeutic strategies. We sought to examine the dynamics of the relationship between inflammation, the ileal microbiome, and host genetics in murine models of ileitis.We induced ileal inflammation of graded severity in C57BL6 mice by gavage with Toxoplasma gondii, Giardia muris, low dose indomethacin (LDI; 0.1 mg/mouse, or high dose indomethacin (HDI; 1 mg/mouse. The composition and spatial distribution of the mucosal microbiome was evaluated by 16S rDNA pyrosequencing and fluorescence in situ hybridization. Mucosal E. coli were enumerated by quantitative PCR, and characterized by phylogroup, genotype and pathotype.Moderate to severe ileitis induced by T. gondii (day 8 and HDI caused a consistent shift from >95% gram + Firmicutes to >95% gram - Proteobacteria. This was accompanied by reduced microbial diversity and mucosal invasion by adherent and invasive E. coli, mirroring the dysbiosis of ileal CD. In contrast, dysbiosis and bacterial invasion did not develop in mice with mild ileitis induced by Giardia muris. Superimposition of genetic susceptibility and T. Gondii infection revealed greatest dysbiosis and bacterial invasion in the CD-susceptible genotype, NOD2(-/-, and reduced dysbiosis in ileitis-resistant CCR2(-/- mice. Abrogating inflammation with the CD therapeutic anti-TNF-α-mAb tempered dysbiosis and bacterial invasion.Acute ileitis induces dysbiosis and proliferation of mucosally invasive E. coli, irrespective of trigger and genotype. The identification of CCR2 as a target for therapeutic intervention, and discovery that host genotype and therapeutic blockade of inflammation impact the threshold and extent of ileal dysbiosis are of high relevance to developing effective therapies for CD.

  14. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn's disease.

    Science.gov (United States)

    Craven, Melanie; Egan, Charlotte E; Dowd, Scot E; McDonough, Sean P; Dogan, Belgin; Denkers, Eric Y; Bowman, Dwight; Scherl, Ellen J; Simpson, Kenneth W

    2012-01-01

    Understanding the interplay between genetic susceptibility, the microbiome, the environment and the immune system in Crohn's Disease (CD) is essential for developing optimal therapeutic strategies. We sought to examine the dynamics of the relationship between inflammation, the ileal microbiome, and host genetics in murine models of ileitis. We induced ileal inflammation of graded severity in C57BL6 mice by gavage with Toxoplasma gondii, Giardia muris, low dose indomethacin (LDI; 0.1 mg/mouse), or high dose indomethacin (HDI; 1 mg/mouse). The composition and spatial distribution of the mucosal microbiome was evaluated by 16S rDNA pyrosequencing and fluorescence in situ hybridization. Mucosal E. coli were enumerated by quantitative PCR, and characterized by phylogroup, genotype and pathotype. Moderate to severe ileitis induced by T. gondii (day 8) and HDI caused a consistent shift from >95% gram + Firmicutes to >95% gram - Proteobacteria. This was accompanied by reduced microbial diversity and mucosal invasion by adherent and invasive E. coli, mirroring the dysbiosis of ileal CD. In contrast, dysbiosis and bacterial invasion did not develop in mice with mild ileitis induced by Giardia muris. Superimposition of genetic susceptibility and T. Gondii infection revealed greatest dysbiosis and bacterial invasion in the CD-susceptible genotype, NOD2(-/-), and reduced dysbiosis in ileitis-resistant CCR2(-/-) mice. Abrogating inflammation with the CD therapeutic anti-TNF-α-mAb tempered dysbiosis and bacterial invasion. Acute ileitis induces dysbiosis and proliferation of mucosally invasive E. coli, irrespective of trigger and genotype. The identification of CCR2 as a target for therapeutic intervention, and discovery that host genotype and therapeutic blockade of inflammation impact the threshold and extent of ileal dysbiosis are of high relevance to developing effective therapies for CD.

  15. First report in Ghana of #Xanthomonas citri# pv. #mangiferaeindicae# causing mango bacterial canker on #Mangifera indica#

    OpenAIRE

    Pruvost, Olivier; Boyer, Claudine; Vital, Karine; Gagnevin, Lionel; De Bruno Austin, L.; Rey, Jean-Yves

    2011-01-01

    Bacterial canker of mango (or bacterial black spot), caused by Xanthomonas citri pv. mangiferaeindicae, is an economically important disease in tropical and subtropical producing areas (1). X. citri pv. mangiferaeindicae can cause severe infection in a wide range of mango cultivars and induces raised, angular, black leaf lesions, sometimes with a chlorotic halo. Several months after infection, leaf lesions dry and turn light brown or ash gray. Severe leaf infection may result in abscission. F...

  16. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice

    DEFF Research Database (Denmark)

    Xie, Kan; Neff, Frauke; Markert, Astrid

    2017-01-01

    that every-other-day feeding-induced longevity is sufficiently explained by delays in life-limiting neoplastic disorders and is not associated with a more general slowing of the aging process in mice.Dietary restriction can extend the life of various model organisms. Here, Xie et al. show that intermittent...... periods of fasting achieved through every-other-day feeding protect mice against neoplastic disease but do not broadly delay organismal aging in animals....

  17. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    Directory of Open Access Journals (Sweden)

    Amy Apprill

    Full Text Available Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae, and examine the potential for a core bacterial community and its variability with host (endogenous or geographic/environmental (exogenous specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding, suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp., as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could

  18. Optimizing Production of Two Potential Probiotic Lactobacilli Strains Isolated from Piglet Feces as Feed Additives for Weaned Piglets

    Directory of Open Access Journals (Sweden)

    Ming-Lun Chiang

    2015-08-01

    Full Text Available Two probiotic strains, Lactobacillus johnsonii x-1d-2 and Lactobacillus mucosae x-4w-1, originally isolated from piglet feces, have been demonstrated to possess antimicrobial activities, antibiotic resistances and interleukin-6 induction ability in RAW 267.4 macrophages in our previous study. These characteristics make L. johnsonii x-1d-2 and L. mucosae x-4w-1 good candidates for application in feed probiotics. In this study, soybeal meal, molasses and sodium acetate were selected to optimize the growth medium for cultivation of L. johnsonii x-1d-2 and L. mucosae x-4w-1. These two strains were then freeze-dried and mixed into the basal diet to feed the weaned piglets. The effects of L. johnsonii x-1d-2 and L. mucosae x-4w-1 on the growth performance and fecal microflora of weaned piglets were investigated. The results showed that the bacterial numbers of L. johnsonii x-1d-2 and L. mucosae x-4w-1 reached a maximum of 8.90 and 9.30 log CFU/mL, respectively, when growing in optimal medium consisting of 5.5% (wt/vol soybean meal, 1.0% (wt/vol molasses and 1.0% (wt/vol sodium acetate. The medium cost was 96% lower than the commercial de Man, Rogosa and Sharpe medium. In a further feeding study, the weaned piglets fed basal diet supplemented with freeze-dried probiotic cultures exhibited higher (p<0.05 body weight gain, feed intake, and gain/feed ratio than weaned piglets fed basal diet. Probiotic feeding also increased the numbers of lactobacilli and decreased the numbers of E. coli in the feces of weaned piglets. This study demonstrates that L. johnsonii x-1d-2 and L. mucosae x-4w-1 have high potential to be used as feed additives in the pig industry.

  19. Combination of Erythromycin and Curcumin Alleviates Staphylococcus aureus Induced Osteomyelitis in Rats

    Directory of Open Access Journals (Sweden)

    Zubin Zhou

    2017-08-01

    Full Text Available Osteomyelitis is commonly caused by Staphylococcus aureus. Both erythromycin and curcumin can suppress S. aureus growth, but their roles in osteomyelitis are barely studied. We aim to explore the activities of erythromycin and curcumin against chronical osteomyelitis induced by methicillin-resistant S. aureus (MRSA. Chronicle implant-induced osteomyelitis was established by MRSA infection in male Wistar rats. Four weeks after bacterial inoculation, rats received no treatment, erythromycin monotherapy, curcumin monotherapy, or erythromycin plus curcumin twice daily for 2 weeks. Bacterial levels, bone infection status, inflammatory signals and side effects were evaluated. Rats tolerated all treatments well, with no death or side effects such as, diarrhea and weight loss. Two days after treatment completion, erythromycin monotherapy did not suppress bacterial growth and had no effect in bone infection, although it reduced serum pro-inflammatory cytokines tumor necrosis factor (TNF-α and interleukin (IL-6. Curcumin monotherapy slightly suppressed bacterial growth, alleviated bone infection and reduced TNF-α and IL-6. Erythromycin and curcumin combined treatment markedly suppressed bacterial growth, substantially alleviated bone infection and reduced TNF-α and IL-6. Combination of erythromycin and curcumin lead a much stronger efficiency against MRSA induced osteomyelitis in rats than monotherapy. Our study suggests that erythromycin and curcumin could be a new combination for treating MRSA induced osteomyelitis.

  20. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance

    Directory of Open Access Journals (Sweden)

    Giang T. Nguyen

    2017-08-01

    Full Text Available Reactive oxygen species (ROS generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs, toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs. Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation