WorldWideScience

Sample records for bacterial effector binding

  1. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  2. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells.

    Science.gov (United States)

    Hayward, Richard D; Cain, Robert J; McGhie, Emma J; Phillips, Neil; Garner, Matthew J; Koronakis, Vassilis

    2005-05-01

    A ubiquitous early step in infection of man and animals by enteric bacterial pathogens like Salmonella, Shigella and enteropathogenic Escherichia coli (EPEC) is the translocation of virulence effector proteins into mammalian cells via specialized type III secretion systems (TTSSs). Translocated effectors subvert the host cytoskeleton and stimulate signalling to promote bacterial internalization or survival. Target cell plasma membrane cholesterol is central to pathogen-host cross-talk, but the precise nature of its critical contribution remains unknown. Using in vitro cholesterol-binding assays, we demonstrate that Salmonella (SipB) and Shigella (IpaB) TTSS translocon components bind cholesterol with high affinity. Direct visualization of cell-associated fluorescently labelled SipB and parallel immunogold transmission electron microscopy revealed that cholesterol levels limit both the amount and distribution of plasma membrane-integrated translocon. Correspondingly, cholesterol depletion blocked effector translocation into cultured mammalian cells by not only the related Salmonella and Shigella TTSSs, but also the more divergent EPEC system. The data reveal that cholesterol-dependent association of the bacterial TTSS translocon with the target cell plasma membrane is essential for translocon activation and effector delivery into mammalian cells.

  3. Identification of a Distinct Substrate-binding Domain in the Bacterial Cysteine Methyltransferase Effectors NleE and OspZ.

    Science.gov (United States)

    Zhang, Ying; Mühlen, Sabrina; Oates, Clare V; Pearson, Jaclyn S; Hartland, Elizabeth L

    2016-09-16

    The type III secretion system effector protein NleE from enteropathogenic Escherichia coli plays a key role in the inhibition of NF-κB activation during infection. NleE inactivates the ubiquitin chain binding activity of host proteins TAK1-binding proteins 2 and 3 (TAB2 and TAB3) by modifying the Npl4 zinc finger domain through S-adenosyl methionine-dependent cysteine methylation. Using yeast two-hybrid protein interaction studies, we found that a conserved region between amino acids 34 and 52 of NleE, in particular the motif (49)GITR(52), was critical for TAB2 and TAB3 binding. NleE mutants lacking (49)GITR(52) were unable to methylate TAB3, and wild type NleE but not NleE(49AAAA52) where each of GITR was replaced with alanine restored the ability of an nleE mutant to inhibit IL-8 production during infection. Another NleE target, ZRANB3, also associated with NleE through the (49)GITR(52) motif. Ectopic expression of an N-terminal fragment of NleE (NleE(34-52)) in HeLa cells showed competitive inhibition of wild type NleE in the suppression of IL-8 secretion during enteropathogenic E. coli infection. Similar results were observed for the NleE homologue OspZ from Shigella flexneri 6 that also bound TAB3 through the (49)GITR(52) motif and decreased IL-8 transcription through modification of TAB3. In summary, we have identified a unique substrate-binding motif in NleE and OspZ that is required for the ability to inhibit the host inflammatory response. PMID:27445336

  4. Lessons from Anaplasma phagocytophilum: Chromatin Remodeling by Bacterial Effectors

    OpenAIRE

    Rennoll-Bankert, Kristen E.; Dumler, J. Stephen

    2012-01-01

    Bacterial pathogens can alter global host gene expression via histone modifications and chromatin remodeling in order to subvert host responses, including those involved with innate immunity, allowing for bacterial survival. Shigella flexneri, Listeria monocytogenes, Chlamydia trachomatis, and Anaplasma phagocytophilum express effector proteins that modify host histones and chromatin structure. A. phagocytophilum modulates granulocyte respiratory burst in part by dampening transcription of se...

  5. The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases.

    Science.gov (United States)

    Pruneda, Jonathan N; Durkin, Charlotte H; Geurink, Paul P; Ovaa, Huib; Santhanam, Balaji; Holden, David W; Komander, David

    2016-07-21

    Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Escherichia, and Shigella, as well as ubiquitin/ubiquitin-like cross-reactive enzymes in Chlamydia, Rickettsia, and Xanthomonas. Five crystal structures, including ubiquitin/ubiquitin-like complexes, explain substrate specificities and redefine relationships across the CE clan. Importantly, this work identifies novel family members and provides key discoveries among previously reported effectors, such as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquitin binding region. Furthermore, accessory domains regulate properties such as subcellular localization, as exemplified by a ubiquitin-binding domain in Salmonella Typhimurium SseL. Our work both highlights and explains the functional adaptations observed among diverse CE clan proteins. PMID:27425412

  6. TAL Effector DNA-Binding Principles and Specificity.

    Science.gov (United States)

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use. PMID:26443210

  7. Behind the lines–actions of bacterial type III effector proteins in plant cells

    Science.gov (United States)

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  8. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins.

    Directory of Open Access Journals (Sweden)

    Eran Bosis

    Full Text Available Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.

  9. Structural and Functional Studies Indicate That the EPEC Effector, EspG, Directly Binds p21-Activated Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L.; Spiller, Benjamin W. (Vanderbilt)

    2011-09-20

    Bacterial pathogens secrete effectors into their hosts that subvert host defenses and redirect host processes. EspG is a type three secretion effector with a disputed function that is found in enteropathogenic Escherichia coli. Here we show that EspG is structurally similar to VirA, a Shigella virulence factor; EspG has a large, conserved pocket on its surface; EspG binds directly to the amino-terminal inhibitory domain of human p21-activated kinase (PAK); and mutations to conserved residues in the surface pocket disrupt the interaction with PAK.

  10. Bacterial effectors target BAK1-associated receptor complexes: One stone two birds

    OpenAIRE

    Lu, Dongping; He, Ping; Shan, Libo

    2010-01-01

    The long-standing association between hosts and microbes has generated some of most intricate relationships. The studies on molecular mechanisms of host-microbe interaction have been revealing many fascinating stories. Here we zoom in on a specific topic on the interplay between bacterial effectors and plant innate immune signaling. In particular, we will summarize our recent discovery that bacterial effector proteins, AvrPto and AvrPtoB, target plant immune signaling receptor complexes to in...

  11. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world.

    Science.gov (United States)

    Ensminger, Alexander W

    2016-02-01

    Many bacterial pathogens use dedicated translocation systems to deliver arsenals of effector proteins to their hosts. Once inside the host cytosol, these effectors modulate eukaryotic cell biology to acquire nutrients, block microbial degradation, subvert host defenses, and enable pathogen transmission to other hosts. Among all bacterial pathogens studied to date, the gram-negative pathogen, Legionella pneumophila, maintains the largest arsenal of effectors, with over 330 effector proteins translocated by the Dot/Icm type IVB translocation system. In this review, I will discuss some of the recent work on understanding the consequences of this large arsenal. I will also present several models that seek to explain how L. pneumophila has acquired and subsequently maintained so many more effectors than its peers. PMID:26709975

  12. The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation.

    Directory of Open Access Journals (Sweden)

    Vardis Ntoukakis

    2013-01-01

    Full Text Available The major virulence strategy of phytopathogenic bacteria is to secrete effector proteins into the host cell to target the immune machinery. AvrPto and AvrPtoB are two such effectors from Pseudomonas syringae, which disable an overlapping range of kinases in Arabidopsis and Tomato. Both effectors target surface-localized receptor-kinases to avoid bacterial recognition. In turn, tomato has evolved an intracellular effector-recognition complex composed of the NB-LRR protein Prf and the Pto kinase. Structural analyses have shown that the most important interaction surface for AvrPto and AvrPtoB is the Pto P+1 loop. AvrPto is an inhibitor of Pto kinase activity, but paradoxically, this kinase activity is a prerequisite for defense activation by AvrPto. Here using biochemical approaches we show that disruption of Pto P+1 loop stimulates phosphorylation in trans, which is possible because the Pto/Prf complex is oligomeric. Both P+1 loop disruption and transphosphorylation are necessary for signalling. Thus, effector perturbation of one kinase molecule in the complex activates another. Hence, the Pto/Prf complex is a sophisticated molecular trap for effectors that target protein kinases, an essential aspect of the pathogen's virulence strategy. The data presented here give a clear view of why bacterial virulence and host recognition mechanisms are so often related and how the slowly evolving host is able to keep pace with the faster-evolving pathogen.

  13. The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation.

    Science.gov (United States)

    Ntoukakis, Vardis; Balmuth, Alexi L; Mucyn, Tatiana S; Gutierrez, Jose R; Jones, Alexandra M E; Rathjen, John P

    2013-01-01

    The major virulence strategy of phytopathogenic bacteria is to secrete effector proteins into the host cell to target the immune machinery. AvrPto and AvrPtoB are two such effectors from Pseudomonas syringae, which disable an overlapping range of kinases in Arabidopsis and Tomato. Both effectors target surface-localized receptor-kinases to avoid bacterial recognition. In turn, tomato has evolved an intracellular effector-recognition complex composed of the NB-LRR protein Prf and the Pto kinase. Structural analyses have shown that the most important interaction surface for AvrPto and AvrPtoB is the Pto P+1 loop. AvrPto is an inhibitor of Pto kinase activity, but paradoxically, this kinase activity is a prerequisite for defense activation by AvrPto. Here using biochemical approaches we show that disruption of Pto P+1 loop stimulates phosphorylation in trans, which is possible because the Pto/Prf complex is oligomeric. Both P+1 loop disruption and transphosphorylation are necessary for signalling. Thus, effector perturbation of one kinase molecule in the complex activates another. Hence, the Pto/Prf complex is a sophisticated molecular trap for effectors that target protein kinases, an essential aspect of the pathogen's virulence strategy. The data presented here give a clear view of why bacterial virulence and host recognition mechanisms are so often related and how the slowly evolving host is able to keep pace with the faster-evolving pathogen.

  14. Repetitive N-WASP-binding elements of the enterohemorrhagic Escherichia coli effector EspF(U synergistically activate actin assembly.

    Directory of Open Access Journals (Sweden)

    Kenneth G Campellone

    2008-10-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC generate F-actin-rich adhesion pedestals by delivering effector proteins into mammalian cells. These effectors include the translocated receptor Tir, along with EspF(U, a protein that associates indirectly with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspF(U repeat region is capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspF(U are sufficient for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspF(U fusion proteins indicates that the central role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspF(U. Whereas clustering of a single EspF(U repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspF(U derivatives promote actin assembly more efficiently. Moreover, the EspF(U repeats activate a protein complex containing N-WASP and the actin-binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly via N-WASP-Arp2/3-mediated signaling pathways.

  15. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    John Stavrinides

    2006-10-01

    Full Text Available Many bacterial pathogens employ a type III secretion system to deliver type III secreted effectors (T3SEs into host cells, where they interact directly with host substrates to modulate defense pathways and promote disease. This interaction creates intense selective pressures on these secreted effectors, necessitating rapid evolution to overcome host surveillance systems and defenses. Using computational and evolutionary approaches, we have identified numerous mosaic and truncated T3SEs among animal and plant pathogens. We propose that these secreted virulence genes have evolved through a shuffling process we have called "terminal reassortment." In terminal reassortment, existing T3SE termini are mobilized within the genome, creating random genetic fusions that result in chimeric genes. Up to 32% of T3SE families in species with relatively large and well-characterized T3SE repertoires show evidence of terminal reassortment, as compared to only 7% of non-T3SE families. Terminal reassortment may permit the near instantaneous evolution of new T3SEs and appears responsible for major modifications to effector activity and function. Because this process plays a more significant role in the evolution of T3SEs than non-effectors, it provides insight into the evolutionary origins of T3SEs and may also help explain the rapid emergence of new infectious agents.

  16. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex.

    Science.gov (United States)

    Bondage, Devanand D; Lin, Jer-Sheng; Ma, Lay-Sun; Kuo, Chih-Horng; Lai, Erh-Min

    2016-07-01

    Type VI secretion system (T6SS) is a macromolecular machine used by many Gram-negative bacteria to inject effectors/toxins into eukaryotic hosts or prokaryotic competitors for survival and fitness. To date, our knowledge of the molecular determinants and mechanisms underlying the transport of these effectors remains limited. Here, we report that two T6SS encoded valine-glycine repeat protein G (VgrG) paralogs in Agrobacterium tumefaciens C58 specifically control the secretion and interbacterial competition activity of the type VI DNase toxins Tde1 and Tde2. Deletion and domain-swapping analysis identified that the C-terminal extension of VgrG1 specifically confers Tde1 secretion and Tde1-dependent interbacterial competition activity in planta, and the C-terminal variable region of VgrG2 governs this specificity for Tde2. Functional studies of VgrG1 and VgrG2 variants with stepwise deletion of the C terminus revealed that the C-terminal 31 aa (C31) of VgrG1 and 8 aa (C8) of VgrG2 are the molecular determinants specifically required for delivery of each cognate Tde toxin. Further in-depth studies on Tde toxin delivery mechanisms revealed that VgrG1 interacts with the adaptor/chaperone-effector complex (Tap-1-Tde1) in the absence of proline-alanine-alanine-arginine (PAAR) and the VgrG1-PAAR complex forms independent of Tap-1 and Tde1. Importantly, we identified the regions involved in these interactions. Although the entire C31 segment is required for binding with the Tap-1-Tde1 complex, only the first 15 aa of this region are necessary for PAAR binding. These results suggest that the VgrG1 C terminus interacts sequentially or simultaneously with the Tap-1-Tde1 complex and PAAR to govern Tde1 translocation across bacterial membranes and delivery into target cells for antibacterial activity. PMID:27313214

  17. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex

    Science.gov (United States)

    Bondage, Devanand D.; Lin, Jer-Sheng; Ma, Lay-Sun; Kuo, Chih-Horng; Lai, Erh-Min

    2016-01-01

    Type VI secretion system (T6SS) is a macromolecular machine used by many Gram-negative bacteria to inject effectors/toxins into eukaryotic hosts or prokaryotic competitors for survival and fitness. To date, our knowledge of the molecular determinants and mechanisms underlying the transport of these effectors remains limited. Here, we report that two T6SS encoded valine-glycine repeat protein G (VgrG) paralogs in Agrobacterium tumefaciens C58 specifically control the secretion and interbacterial competition activity of the type VI DNase toxins Tde1 and Tde2. Deletion and domain-swapping analysis identified that the C-terminal extension of VgrG1 specifically confers Tde1 secretion and Tde1-dependent interbacterial competition activity in planta, and the C-terminal variable region of VgrG2 governs this specificity for Tde2. Functional studies of VgrG1 and VgrG2 variants with stepwise deletion of the C terminus revealed that the C-terminal 31 aa (C31) of VgrG1 and 8 aa (C8) of VgrG2 are the molecular determinants specifically required for delivery of each cognate Tde toxin. Further in-depth studies on Tde toxin delivery mechanisms revealed that VgrG1 interacts with the adaptor/chaperone–effector complex (Tap-1–Tde1) in the absence of proline-alanine-alanine-arginine (PAAR) and the VgrG1–PAAR complex forms independent of Tap-1 and Tde1. Importantly, we identified the regions involved in these interactions. Although the entire C31 segment is required for binding with the Tap-1–Tde1 complex, only the first 15 aa of this region are necessary for PAAR binding. These results suggest that the VgrG1 C terminus interacts sequentially or simultaneously with the Tap-1–Tde1 complex and PAAR to govern Tde1 translocation across bacterial membranes and delivery into target cells for antibacterial activity. PMID:27313214

  18. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors

    KAUST Repository

    Li, Lixin

    2013-07-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. © 2013 The Author.

  19. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    OpenAIRE

    Lin Jin; Jong Hyun Ham; Rosemary Hage; Wanying Zhao; Jaricelis Soto-Hernández; Sang Yeol Lee; Seung-Mann Paek; Min Gab Kim; Charles Boone; Coplin, David L.; David Mackey

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, w...

  20. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo.

    Science.gov (United States)

    Wu, Huixia; Jones, Rheinallt M; Neish, Andrew S

    2012-01-01

    The enteric pathogen Salmonella typhimurium secretes the preformed AvrA effector protein into host cells. This acetyltransferase has been shown to modulate mammalian intestinal immune and survival responses by inhibition of JNK MAPK. To study the role of this effector in natural enteric infection, we used a mouse model to compare wild-type S. typhimurium to an isogenic AvrA null Salmonella mutant. Salmonella lacking AvrA induced increased intestinal inflammation, more intense systemic cytokine responses, and increased apoptosis in epithelial cells. Increased apoptosis was also observed in extra epithelial macrophages. AvrA null-infected mice consistently showed higher bacterial burden within mucosal lymphoid tissues, spleen and liver by 5 days post infection, which indicated a more severe clinical course. To study the molecular mechanisms involved, recombinant adenoviruses expressing AvrA or mutant AvrA proteins were constructed, which showed appropriate expression and mediated the expected inhibition of JNK signalling. Cultured epithelial cells and macrophages transduced with AvrA expressing adenovirus were protected from apoptosis induced by exogenous stimuli. In conclusion, the results demonstrated that Salmonella AvrA modulates survival of infected macrophages likely via JNK suppression, and prevents macrophage death and rapid bacterial dissemination. AvrA suppression of apoptosis in infected macrophages may allow for establishment of a stable intracellular niche typical of intracellular pathogens.

  1. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors.

    Science.gov (United States)

    Qiu, Jiazhang; Sheedlo, Michael J; Yu, Kaiwen; Tan, Yunhao; Nakayasu, Ernesto S; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2016-05-01

    Signalling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalysed by the E1, E2 and E3 three-enzyme cascade, which links the carboxy terminus of ubiquitin to the ε-amino group of, in most cases, a lysine of the substrate via an isopeptide bond. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents. For example, many bacterial pathogens exploit ubiquitin signalling using virulence factors that function as E3 ligases, deubiquitinases or as enzymes that directly attack ubiquitin. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a permissive niche for its replication in phagocytes. Here we demonstrate that members of the SidE effector family of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum. Moreover, we show that these proteins are capable of catalysing ubiquitination without the need for the E1 and E2 enzymes. A putative mono-ADP-ribosyltransferase motif critical for the ubiquitination activity is also essential for the role of the SidE family in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalysed by these enzymes is energized by nicotinamide adenine dinucleotide, which activates ubiquitin by the formation of ADP-ribosylated ubiquitin. These results establish that ubiquitination can be catalysed by a single enzyme, the activity of which does not require ATP.

  2. The HopQ1 effector's nucleoside hydrolase-like domain is required for bacterial virulence in arabidopsis and tomato, but not host recognition in tobacco.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Bacterial pathogens deliver multiple effector proteins into host cells to facilitate bacterial growth. HopQ1 is an effector from Pseudomonas syringae pv. tomato DC3000 that is conserved across multiple bacterial pathogens which infect plants. HopQ1's central region possesses some homology to nucleoside hydrolases, but possesses an alternative aspartate motif not found in characterized enzymes. A structural model was generated for HopQ1 based on the E. coli RihB nucleoside hydrolase and the role of HopQ1's potential catalytic residues for promoting bacterial virulence and recognition in Nicotiana tabacum was investigated. Transgenic Arabidopsis plants expressing HopQ1 exhibit enhanced disease susceptibility to DC3000. HopQ1 can also promote bacterial virulence on tomato when naturally delivered from DC3000. HopQ1's nucleoside hydrolase-like domain alone is sufficient to promote bacterial virulence, and putative catalytic residues are required for virulence promotion during bacterial infection of tomato and in transgenic Arabidopsis lines. HopQ1 is recognized and elicits cell death when transiently expressed in N. tabacum. Residues required to promote bacterial virulence were dispensable for HopQ1's cell death promoting activities in N. tabacum. Although HopQ1 has some homology to nucleoside hydrolases, we were unable to detect HopQ1 enzymatic activity or nucleoside binding capability using standard substrates. Thus, it is likely that HopQ1 promotes pathogen virulence by hydrolyzing alternative ribose-containing substrates in planta.

  3. Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean.

    Science.gov (United States)

    Wang, Jialin; Shine, M B; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra

    2014-05-28

    Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector.

  4. Type III effector activation via nucleotide binding, phosphorylation, and host target interaction.

    Directory of Open Access Journals (Sweden)

    Darrell Desveaux

    2007-03-01

    Full Text Available The Pseudomonas syringae type III effector protein avirulence protein B (AvrB is delivered into plant cells, where it targets the Arabidopsis RIN4 protein (resistance to Pseudomonas maculicula protein 1 [RPM1]-interacting protein. RIN4 is a regulator of basal host defense responses. Targeting of RIN4 by AvrB is recognized by the host RPM1 nucleotide-binding leucine-rich repeat disease resistance protein, leading to accelerated defense responses, cessation of pathogen growth, and hypersensitive host cell death at the infection site. We determined the structure of AvrB complexed with an AvrB-binding fragment of RIN4 at 2.3 A resolution. We also determined the structure of AvrB in complex with adenosine diphosphate bound in a binding pocket adjacent to the RIN4 binding domain. AvrB residues important for RIN4 interaction are required for full RPM1 activation. AvrB residues that contact adenosine diphosphate are also required for initiation of RPM1 function. Nucleotide-binding residues of AvrB are also required for its phosphorylation by an unknown Arabidopsis protein(s. We conclude that AvrB is activated inside the host cell by nucleotide binding and subsequent phosphorylation and, independently, interacts with RIN4. Our data suggest that activated AvrB, bound to RIN4, is indirectly recognized by RPM1 to initiate plant immune system function.

  5. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Selena Gimenez-Ibanez

    2014-02-01

    Full Text Available Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR, which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile. Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.

  6. The inflammasomes: Molecular effectors of host resistance against bacterial, viral, parasitic and fungal infections

    Directory of Open Access Journals (Sweden)

    Alexander eSkeldon

    2011-02-01

    Full Text Available The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns (MAMPs or host-derived danger signals (danger-associated molecular patterns or DAMPs by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1β (IL-1β and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of alarmins and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defence against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic and fungal infections and the beneficial or detrimental effects of inflammasome signalling in host resistance.

  7. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    Science.gov (United States)

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  8. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    DEFF Research Database (Denmark)

    Adari, H; Lowy, D R; Willumsen, B M;

    1988-01-01

    A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras...... as well as with N-ras proteins. To identify the region of ras p21 with which GAP interacts, 21 H-ras mutant proteins were purified and tested for their ability to undergo stimulation of GTPase activity by GAP. Mutations in nonessential regions of H-ras p21 as well as mutations in its carboxyl....... Transforming mutations at positions 12, 59, and 61 (the phosphoryl binding region) abolished GTPase stimulation by GAP. Point mutations in the putative effector region of ras p21 (amino acids 35, 36, and 38) were also insensitive to GAP. However, a point mutation at position 39, shown previously not to impair...

  9. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Science.gov (United States)

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L; Mackey, David

    2016-05-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  10. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin

    2016-05-01

    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  11. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  12. An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains.

    Directory of Open Access Journals (Sweden)

    Alvaro L Pérez-Quintero

    Full Text Available Transcription Activators-Like Effectors (TALEs belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs.

  13. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense.

    Science.gov (United States)

    Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K

    2014-07-29

    The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions.

  14. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor.

    Science.gov (United States)

    van Esse, H Peter; Bolton, Melvin D; Stergiopoulos, Ioannis; de Wit, Pierre J G M; Thomma, Bart P H J

    2007-09-01

    The biotrophic fungal pathogen Cladosporium fulvum (syn. Passalora fulva) is the causal agent of tomato leaf mold. The Avr4 protein belongs to a set of effectors that is secreted by C. fulvum during infection and is thought to play a role in pathogen virulence. Previous studies have shown that Avr4 binds to chitin present in fungal cell walls and that, through this binding, Avr4 can protect these cell walls against hydrolysis by plant chitinases. In this study, we demonstrate that Avr4 expression in Arabidopsis results in increased virulence of several fungal pathogens with exposed chitin in their cell walls, whereas the virulence of a bacterium and an oomycete remained unaltered. Heterologous expression of Avr4 in tomato increased the virulence of Fusarium oxysporum f. sp. lycopersici. Through tomato GeneChip analyses, we demonstrate that Avr4 expression in tomato results in the induced expression of only a few genes. Finally, we demonstrate that silencing of the Avr4 gene in C. fulvum decreases its virulence on tomato. This is the first report on the intrinsic function of a fungal avirulence protein that has a counter-defensive activity required for full virulence of the pathogen.

  15. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine

    2000-01-01

    saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...... varying Pi at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing Pi concentrations. Results from ADP inhibition of Pi activation suggest that these effectors compete for binding to a common regulatory site....

  16. v-Fos transformation effector binds with CD2 cytoplasmic tail

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We previously reported that v-Fos transformation effector (Fte-1) is a novel CD2 binding protein identified by yeast two hybrid system. In the present study, we further characterize the molecular properties and biological activity of the Fte-1. In vitro interaction analysis by an IAsys Resonant Mirror Biosensor further demonstrated that Fte-1 interacts with CD2 specifically, and the dissociation constant (Kd) of Fte-1-CD2 is 10(7 mol. The molecular section analysis showed that protein kinase C (PKC) phosphorylation site at Ser238 of Fte-1, as confirmed by in vitro phosphorylation, is essential for the specific interaction with CD2. Jurkat T cells transfected with expression vector encoding for EGFP-Fte-1 fusion protein showed that Fte-1 displays a clustering distribution in the cells. Upon stimulation by CD2 monoclonal antibody T11, Fte-1 lost the character of clustering distribution and translocation to the plasma membrane, which were disrupted by mutation of Fte-1 (Ser238Gly), suggesting that Fte-1 could be co-localized with CD2 on the membrane, and Fte-1 phosphorylation at Ser238 is a crucial factor in CD2-mediated interaction with Fte-1. Suppression of Fte-1 expression by small interference RNA (siRNA) diminished the susceptibility of Jurkat T cells to apoptosis triggered by phorbol 12-myristate 13-ace- tate (PMA) and ionomycin, indicating that the biological function of Fte-1 may be involved in the regulation of activation and apoptosis of T cells. These results provide further evidence that Fte-1 is a novel binding protein of CD2, and may function as a downstream molecule in the CD2-mediated events.

  17. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    Science.gov (United States)

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants. PMID:15210989

  18. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development.

    Science.gov (United States)

    Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-02-01

    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.

  19. Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems.

    Science.gov (United States)

    Cambronne, Eric D; Roy, Craig R

    2006-08-01

    The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport. PMID:16734660

  20. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    OpenAIRE

    Frick, I M; Wikström, M.; Forsén, S.; Drakenberg, T; Gomi, H.; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide,...

  1. Epidermal Fatty Acid Binding Protein (E-FABP) Is Not Required for the Generation or Maintenance of Effector and Memory T Cells following Infection with Listeria monocytogenes.

    Science.gov (United States)

    Li, Bing; Schmidt, Nathan W

    2016-01-01

    Following activation of naïve T cells there are dynamic changes in the metabolic pathways used by T cells to support both the energetic needs of the cell and the macromolecules required for growth and proliferation. Among other changes, lipid metabolism undergoes dynamic transitions between fatty acid oxidation and fatty acid synthesis as cells progress from naïve to effector and effector to memory T cells. The hydrophobic nature of lipids requires that they be bound to protein chaperones within a cell. Fatty acid binding proteins (FABPs) represent a large class of lipid chaperones, with epidermal FABP (E-FABP) expressed in T cells. The objective of this study was to determine the contribution of E-FABP in antigen-specific T cell responses. Following infection with Listeria monocytogenes, we observed similar clonal expansion, contraction and formation of memory CD8 T cells in WT and E-FABP-/- mice, which also exhibited similar phenotypic and functional characteristics. Analysis of Listeria-specific CD4 T cells also revealed no defect in the expansion, contraction, and formation of memory CD4 T cells in E-FABP-/- mice. These data demonstrate that E-FABP is dispensable for antigen-specific T cell responses following a bacterial infection. PMID:27588422

  2. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    Science.gov (United States)

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  3. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity.

    Science.gov (United States)

    Lozano-Durán, Rosa; Bourdais, Gildas; He, Sheng Yang; Robatzek, Silke

    2014-04-01

    Successful pathogens counter immunity at multiple levels, mostly through the action of effectors. Pseudomonas syringae secretes c. 30 effectors, some of which have been shown to inhibit plant immunity triggered upon perception of conserved pathogen-associated molecular patterns (PAMPs). One of these is HopM1, which impairs late immune responses through targeting the vesicle trafficking-related AtMIN7 for degradation. Here, we report that in planta expressed HopM1 suppresses two early PAMP-triggered responses, the oxidative burst and stomatal immunity, both of which seem to require proteasomal function but are independent of AtMIN7. Notably, a 14-3-3 protein, GRF8/AtMIN10, was found previously to be a target of HopM1 in vivo, and expression of HopM1 mimics the effect of chemically and genetically disrupting 14-3-3 function. Our data further show that the function of 14-3-3 proteins is required for PAMP-triggered oxidative burst and stomatal immunity, and chemical-mediated disruption of the 14-3-3 interactions with their client proteins restores virulence of a HopM1-deficient P. syringae mutant, providing a link between HopM1 and the involvement of 14-3-3 proteins in plant immunity. Taken together, these results unveil the impact of HopM1 on the PAMP-triggered oxidative burst and stomatal immunity in an AtMIN7-independent manner, most likely acting at the function of (a) 14-3-3 protein(s). PMID:24372399

  4. Protein Modification: Bacterial Effectors Rewrite the Rules of Ubiquitylation.

    Science.gov (United States)

    Berk, Jason M; Hochstrasser, Mark

    2016-07-11

    A family of virulence factors from the bacterial pathogen Legionella pneumophila has been discovered to modify human Rab GTPases with ubiquitin. Surprisingly, this modification occurs via a non-canonical mechanism that uses nicotinamide adenine dinucleotide as a cofactor. PMID:27404243

  5. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes.

    Science.gov (United States)

    Orlovskis, Zigmunds; Hogenhout, Saskia A

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  6. In silico engineering and optimization of Transcription Activator-Like Effectors and their derivatives for improved DNA binding predictions.

    KAUST Repository

    Piatek, Marek J.

    2015-12-01

    Transcription Activator-Like Effectors (TALEs) can be used as adaptable DNAbinding modules to create site-specific chimeric nucleases or synthetic transcriptional regulators. The central repeat domain mediates specific DNA binding via hypervariable repeat di-residues (RVDs). This DNA-Binding Domain can be engineered to bind preferentially to any user-selected DNA sequence if engineered appropriately. Therefore, TALEs and their derivatives have become indispensable molecular tools in site-specific manipulation of genes and genomes. This thesis revolves around two problems: in silico design and improved binding site prediction of TALEs. In the first part, a study is shown where TALEs are successfully designed in silico and validated in laboratory to yield the anticipated effects on selected genes. Software is developed to accompany the process of designing and prediction of binding sites. I expanded the functionality of the software to be used as a more generic set of tools for the design, target and offtarget searching. Part two contributes a method and associated toolkit developed to allow users to design in silico optimized synthetic TALEs with user-defined specificities for various experimental purposes. This method is based on a mutual relationship of three consecutive tandem repeats in the DNA-binding domain. This approach revealed positional and compositional bias behind the binding of TALEs to DNA. In conclusion, I developed methods, approaches, and software to enhance the functionality of synthetic TALEs, which should improve understanding of TALEs biology and will further advance genome-engineering applications in various organisms and cell types.

  7. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    International Nuclear Information System (INIS)

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5α with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain

  8. Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance

    Indian Academy of Sciences (India)

    Haiying Ren; Ganyu Gu; Juying Long; Qian Yin; Tingquan Wu; Tao Song; Shujian Zhang; Zhiyi Chen; Hansong Dong

    2006-12-01

    Expression of HpaGXoo, a bacterial type-III effector, in transgenic plants induces disease resistance. Resistance also can be elicited by biocontrol bacteria. In both cases, plant growth is often promoted. Here we address whether biocontrol bacteria and HpaGXoo can act together to provide better results in crop improvement. We studied effects of Pseudomonas cepacia on the rice variety R109 and the hpaGXoo-expressing rice line HER1. Compared to R109, HER1 showed increased growth, grain yield, and defense responses toward diseases and salinity stress. Colonization of roots by P. cepacia caused 20% and 13% increase, in contrast to controls, in root growth of R109 and HER1. Growth of leaves and stems also increased in R109 but that of HER1 was inhibited. When P. cepacia colonization was subsequent to plant inoculation with Rhizoctonia solani, a pathogen that causes sheath blight, the disease was less severe than controls in both R109 and HER1; HER1, nevertheless, was more resistant, suggesting that P. cepacia and HpaGXoo cooperate in inducing disease resistance. Several genes that critically regulate growth and defense behaved differentially in HER1 and R109 while responding to P. cepacia. In R109 leaves, the OsARF1 gene, which regulates plant growth, was expressed in consistence with growth promotion by P. cepacia. Inversely, OsARF1 expression was coincident with inhibition in growth of HER1 leaves. In both plants, the expression of OsEXP1, which encodes an expansin protein involved in plant growth, was concomitant with growth promotion in leaves instead of roots, in response to P. cepacia. We also studied OsMAPK, a gene that encodes a mitogen-activated protein kinase and controls defense responses toward salinity and infection by pathogens in rice. In response to P. cepacia, an early expression of OsMAPK was coincident with R109 resistance to the disease, while HER1 expressed the gene similarly whether P. cepacia was present or not. Evidently, P. cepacia and GXoo

  9. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  10. Molecular structure of the Brucella abortus metalloprotein RicA, a Rab2-binding virulence effector.

    Science.gov (United States)

    Herrou, Julien; Crosson, Sean

    2013-12-17

    The Gram-negative intracellular pathogen Brucella abortus is the causative agent of brucellosis, which is among the most common zoonoses globally. The B. abortus RicA protein binds the host-expressed guanosine nucleotide-binding protein, Rab2, and modulates B. abortus infection biology. We have solved the first X-ray crystal structure of RicA to 2.7 Å resolution and have quantified the affinity of RicA binding to human Rab2 in its GDP-bound and nucleotide-free forms. RicA adopts a classic γ-carbonic anhydrase (γ-CA) fold containing a left-handed β-helix followed by a C-terminal α-helix. Two homotrimers of RicA occupy the crystallographic asymmetric unit. Though no zinc was included in the purification or crystallization buffers, zinc is contained within the RicA crystals, as demonstrated by X-ray fluorescence spectroscopy. Electron density for a Zn(2+) ion coordinated by three histidine residues is evident in the putative active site of RicA. However, purified RicA preparations do not exhibit carbonic anhydrase activity, suggesting that Zn(2+) may not be the physiologically relevant metal cofactor or that RicA is not a bona fide carbonic anhydrase enzyme. Isothermal titration calorimetry (ITC) measurements of purified RicA binding to purified human Rab2 and GDP-Rab2 revealed similar equilibrium affinities (Kd ≈ 35 and 40 μM, respectively). This study thus defines RicA as a Zn(2+)-binding γ-carbonic anhydrase-like protein that binds the human membrane fusion/trafficking protein Rab2 with low micromolar affinity in vitro. These results support a model in which γ-CA family proteins may evolve unique cellular functions while retaining many of the structural hallmarks of archetypal γ-CA enzymes.

  11. Structure of Rab11-FIP3-Rabin8 reveals simultaneous binding of FIP3 and Rabin8 effectors to Rab11.

    Science.gov (United States)

    Vetter, Melanie; Stehle, Ralf; Basquin, Claire; Lorentzen, Esben

    2015-09-01

    The small GTPase Rab11 and its effectors FIP3 and Rabin8 are essential to membrane-trafficking pathways required for cytokinesis and ciliogenesis. Although effector binding is generally assumed to be sequential and mutually exclusive, we show that Rab11 can simultaneously bind FIP3 and Rabin8. We determined crystal structures of human Rab11-GMPPNP-Rabin8 and Rab11-GMPPNP-FIP3-Rabin8. The structures reveal that the C-terminal domain of Rabin8 adopts a previously undescribed fold that interacts with Rab11 at an unusual effector-binding site neighboring the canonical FIP3-binding site. We show that Rab11-GMPPNP-FIP3-Rabin8 is more stable than Rab11-GMPPNP-Rabin8, owing to direct interaction between Rabin8 and FIP3 within the dual effector-bound complex. The data allow us to propose a model for how membrane-targeting complexes assemble at the trans-Golgi network and recycling endosomes, through multiple weak interactions that create high-avidity complexes.

  12. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle

    OpenAIRE

    Yao, Qing; Cui, Jixin; Zhu, Yongqun; Wang, Guolun; Hu, Liyan; Long, Chengzu; Cao, Ran; Liu, Xinqi; Huang, Niu; Chen, She; Liu, LiPing; Shao, Feng

    2009-01-01

    Pathogenic bacteria deliver effector proteins into host cells through the type III secretion apparatus to modulate the host function. We identify a family of proteins, homologous to the type III effector Cif from enteropathogenic Escherichia coli, in pathogens including Yersinia, Photorhabdus, and Burkholderia that contain functional type III secretion systems. Like Cif, this family of proteins is capable of arresting the host cell cycle at G2/M. Structure of one of the family members, Cif ho...

  13. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  14. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response

    OpenAIRE

    Pereira, Andre LA; Carazzolle, Marcelo F.; Abe, Valeria Y; de Oliveira, Maria LP; Domingues, Mariane N; Silva, Jaqueline C; Cernadas, Raul A; Benedetti, Celso E.

    2014-01-01

    Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TA...

  15. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants

    OpenAIRE

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-01-01

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the ΔCEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effect...

  16. The T6SSs of Pseudomonas aeruginosa Strain PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting.

    Science.gov (United States)

    Sana, Thibault G; Berni, Benjamin; Bleves, Sophie

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases such as chronic lung colonization in cystic fibrosis patients and acute infections in hospitals. The capacity of P. aeruginosa to be pathogenic toward several hosts is notably due to different secretion systems. Amongst them, P. aeruginosa encodes three Type Six Secretion Systems (T6SS), named H1- to H3-T6SS, that act against either prokaryotes and/or eukaryotic cells. They are independent from each other and inject diverse toxins that interact with different components in the host cell. Here we summarize the roles of these T6SSs in the PAO1 strain, as well as the toxins injected and their targets. While H1-T6SS is only involved in antiprokaryotic activity through at least seven different toxins, H2-T6SS and H3-T6SS are also able to target prokaryotic as well as eukaryotic cells. Moreover, recent studies proposed that H2- and H3-T6SS have a role in epithelial cells invasion by injecting at least three different toxins. The diversity of T6SS effectors is astounding and other effectors still remain to be discovered. In this review, we present a table with other putative P. aeruginosa strain PAO1 T6SS-dependent effectors. Altogether, the T6SSs of P. aeruginosa are important systems that help fight other bacteria for their ecological niche, and are important in the pathogenicity process. PMID:27376031

  17. Unusual Heme Binding in the Bacterial Iron Response Regulator Protein (Irr): Spectral Characterization of Heme Binding to Heme Regulatory Motif

    OpenAIRE

    Ishikawa, Haruto; Nakagaki, Megumi; Bamba, Ai; Uchida, Takeshi; Hori, Hiroshi; O'Brian, Mark R.; Iwai, Kazuhiro; Ishimori, Koichiro

    2011-01-01

    We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single “heme-regulatory motif”, HRM, and plays a key role in the iron homeostasis of a nitrogen fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where 29Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside...

  18. STD NMR spectroscopy: a case study of fosfomycin binding interactions in living bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Milagre, Cintia D.F.; Cabeca, Luis Fernando; Martins, Lucas G.; Marsaioli, Anita J., E-mail: anita@iq [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2011-07-01

    A saturation transfer difference (STD) NMR experiment was successfully employed to observe the binding interactions of fosfomycin resistant and non-resistant bacterial strains using living cell suspensions, without the need for isotopic labelling of the ligand or receptor. (author)

  19. Binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1976-01-01

    Bacterial transformation in relation to DNA transport and competence in Streptococcus pneumoniae (also called Diplococcus pneumoniae) is discussed. This species will serve as a model with which to compare transformation in other bacterial species, particularly Bacillus subtilis and Haemophilus influenzae, with emphasis on the many similarities as well as differences.

  20. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    Directory of Open Access Journals (Sweden)

    Yanbo Shi

    2010-01-01

    Full Text Available Ferric ion binding proteins (Fbps transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.

  1. Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD

    OpenAIRE

    Andrade, Fábia K; Moreira, Susana Margarida Gomes; Domingues, Lucília; Gama, F. M.

    2010-01-01

    The attachment of cells to biomedical materials can be improved by using adhesion sequences, such as Arg-Gly-Asp (RGD), found in several extracellular matrix proteins. In this work, bifunctional recombinant proteins, with a Cellulose-Binding Module (CBM), from the cellulosome of Clostridium thermocellum and cell binding sequences - RGD, GRGDY - were cloned and expressed in E.coli. These RGD-containing cellulose binding proteins were purified and used to coat bacterial cellulose fibres. Its ef...

  2. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.

    2011-01-24

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  3. Pto kinase binds two domains of AvrPtoB and its proximity to the effector E3 ligase determines if it evades degradation and activates plant immunity.

    Directory of Open Access Journals (Sweden)

    Johannes Mathieu

    2014-07-01

    Full Text Available The tomato--Pseudomonas syringae pv. tomato (Pst--pathosystem is one of the best understood models for plant-pathogen interactions. Certain wild relatives of tomato express two closely related members of the same kinase family, Pto and Fen, which recognize the Pst virulence protein AvrPtoB and activate effector-triggered immunity (ETI. AvrPtoB, however, contains an E3 ubiquitin ligase domain in its carboxyl terminus which causes degradation of Fen and undermines its ability to activate ETI. In contrast, Pto evades AvrPtoB-mediated degradation and triggers ETI in response to the effector. It has been reported recently that Pto has higher kinase activity than Fen and that this difference allows Pto to inactivate the E3 ligase through phosphorylation of threonine-450 (T450 in AvrPtoB. Here we show that, in contrast to Fen which can only interact with a single domain proximal to the E3 ligase of AvrPtoB, Pto binds two distinct domains of the effector, the same site as Fen and another N-terminal domain. In the absence of E3 ligase activity Pto binds to either domain of AvrPtoB to activate ETI. However, the presence of an active E3 ligase domain causes ubiquitination of Pto that interacts with the domain proximal to the E3 ligase, identical to ubiquitination of Fen. Only when Pto binds its unique distal domain can it resist AvrPtoB-mediated degradation and activate ETI. We show that phosphorylation of T450 is not required for Pto-mediated resistance in vivo and that a kinase-inactive version of Pto is still capable of activating ETI in response to AvrPtoB. Our results demonstrate that the ability of Pto to interact with a second site distal to the E3 ligase domain in AvrPtoB, and not a higher kinase activity or T450 phosphorylation, allows Pto to evade ubiquitination and to confer immunity to Pst.

  4. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  5. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  6. The Bacterial Translocon SecYEG Opens upon Ribosome Binding*

    OpenAIRE

    Knyazev, Denis G.; Lents, Alexander; Krause, Eberhard; Ollinger, Nicole; Siligan, Christine; Papinski, Daniel; Winter, Lukas; Horner, Andreas; Pohl, Peter

    2013-01-01

    In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which ha...

  7. Effector Glycosyltransferases in Legionella

    OpenAIRE

    Belyi, Yury; Jank, Thomas; Aktories, Klaus

    2011-01-01

    Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating ...

  8. Effector glycosyltransferases in Legionella

    OpenAIRE

    Yury eBelyi; Thomas eJank; Klaus eAktories

    2011-01-01

    Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating ...

  9. The bacterial translocon SecYEG opens upon ribosome binding.

    Science.gov (United States)

    Knyazev, Denis G; Lents, Alexander; Krause, Eberhard; Ollinger, Nicole; Siligan, Christine; Papinski, Daniel; Winter, Lukas; Horner, Andreas; Pohl, Peter

    2013-06-21

    In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist. PMID:23645666

  10. The Bacterial Translocon SecYEG Opens upon Ribosome Binding*

    Science.gov (United States)

    Knyazev, Denis G.; Lents, Alexander; Krause, Eberhard; Ollinger, Nicole; Siligan, Christine; Papinski, Daniel; Winter, Lukas; Horner, Andreas; Pohl, Peter

    2013-01-01

    In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist. PMID:23645666

  11. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  12. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  13. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.

    Science.gov (United States)

    Singh, Satinder K; Yamashita, Atsuko; Gouaux, Eric

    2007-08-23

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of

  14. Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila.

    Science.gov (United States)

    Beyrakhova, Ksenia A; van Straaten, Karin; Li, Lei; Boniecki, Michal T; Anderson, Deborah H; Cygler, Miroslaw

    2016-07-22

    Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1. PMID:27226543

  15. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking.

    Science.gov (United States)

    Bugalhão, Joana N; Mota, Luís Jaime; Franco, Irina S

    2016-02-01

    The Legionella pneumophila effector protein VipA is an actin nucleator that co-localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2 -terminal (amino acid residues 1-133) and central coiled-coil (amino acid residues 133-206) regions, and suggested a role for the COOH-terminal (amino acid residues 206-339) region in association with actin filaments and for the NH2 -terminal in co-localization with early endosomes. Co-immunoprecipitation and in vitro assays showed that the COOH-terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH-terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2 -terminal region and its capacity to bind and polymerize actin through its COOH-terminal region. PMID:26626407

  16. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages.

    Science.gov (United States)

    Hensel, M; Shea, J E; Waterman, S R; Mundy, R; Nikolaus, T; Banks, G; Vazquez-Torres, A; Gleeson, C; Fang, F C; Holden, D W

    1998-10-01

    The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection of this pathogen in mice. Cloning and sequencing of a central region of SPI-2 revealed the presence of genes encoding putative chaperones and effector proteins of the secretion system. The predicted products of the sseB, sseC and sseD genes display weak but significant similarity to amino acid sequences of EspA, EspD and EspB, which are secreted by the type III secretion system encoded by the locus of enterocyte effacement of enteropathogenic Escherichia coli. The transcriptional activity of an sseA::luc fusion gene was shown to be dependent on ssrA, which is required for the expression of genes encoding components of the secretion system apparatus. Strains carrying nonpolar mutations in sseA, sseB or sseC were severely attenuated in virulence, strains carrying mutations in sseF or sseG were weakly attenuated, and a strain with a mutation in sseE had no detectable virulence defect. These phenotypes were reflected in the ability of mutant strains to grow within a variety of macrophage cell types: strains carrying mutations in sseA, sseB or sseC failed to accumulate, whereas the growth rates of strains carrying mutations in sseE, sseF or sseG were only modestly reduced. These data suggest that, in vivo, one of the functions of the SPI-2 secretion system is to enable intracellular bacterial proliferation.

  17. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin

    OpenAIRE

    Georgelis, Nikolaos; Yennawar, Neela H.; Cosgrove, Daniel J.

    2012-01-01

    Components of modular cellulases, type-A cellulose-binding modules (CBMs) bind to crystalline cellulose and enhance enzyme effectiveness, but structural details of the interaction are uncertain. We analyzed cellulose binding by EXLX1, a bacterial expansin with ability to loosen plant cell walls and whose domain D2 has type-A CBM characteristics. EXLX1 strongly binds to crystalline cellulose via D2, whereas its affinity for soluble cellooligosaccharides is weak. Calorimetry indicated cellulose...

  18. A method for in vivo identification of bacterial small RNA-binding proteins.

    Science.gov (United States)

    Osborne, Jonathan; Djapgne, Louise; Tran, Bao Quoc; Goo, Young Ah; Oglesby-Sherrouse, Amanda G

    2014-12-01

    Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the last decade for their roles in mediating posttranscriptional gene regulation of numerous physiological processes. Several proteins contribute to sRNA stability and regulation, most notably the Hfq RNA-binding protein. However, not all sRNAs rely on Hfq for their stability. It is therefore likely that other proteins contribute to the stability and function of certain bacterial sRNAs. Here, we describe a methodology for identifying in vivo-binding proteins of sRNAs, developed using the iron-responsive PrrF and PrrH sRNAs of Pseudomonas aeruginosa. RNA was isolated from iron-depleted cultures, which were irradiated to cross-link nucleoprotein complexes. Subsequently, PrrF- and PrrH-protein complexes were enriched using cDNA "bait", and enriched RNA-protein complexes were analyzed by tandem mass spectrometry to identify PrrF and PrrH associated proteins. This method identified Hfq as a potential PrrF- and PrrH-binding protein. Interestingly, Hfq was identified more often in samples probed with the PrrF cDNA "bait" as compared to the PrrH cDNA "bait", suggesting Hfq has a stronger binding affinity for the PrrF sRNAs in vivo. Hfq binding to the PrrF and PrrH sRNAs was validated by electrophoretic mobility shift assays with purified Hfq protein from P. aeruginosa. As such, this study demonstrates that in vivo cross-linking coupled with sequence-specific affinity chromatography and tandem mass spectrometry (SSAC-MS/MS) is an effective methodology for unbiased identification of bacterial sRNA-binding proteins.

  19. The DUF582 Proteins of Chlamydia trachomatis Bind to Components of the ESCRT Machinery, Which Is Dispensable for Bacterial Growth In vitro

    Science.gov (United States)

    Vromman, François; Perrinet, Stéphanie; Gehre, Lena; Subtil, Agathe

    2016-01-01

    Chlamydiae are Gram negative bacteria that develop exclusively inside eukaryotic host cells, within a membrane-bounded compartment. Members of the family Chlamydiaceae, such as Chlamydia trachomatis, are pathogenic species infecting vertebrates. They have a very reduced genome and exploit the capacities of their host for their own development, mainly through the secretion of proteins tailored to interfere with eukaryotic processes, called effector proteins. All Chlamydiaceae possess genes coding for four to five effectors that share a domain of unknown function (DUF582). Here we show that four of these effectors, which represent the conserved set in all Chlamydiaceae, accumulate in the infectious form of C. trachomatis, and are therefore likely involved in an early step of the developmental cycle. The fifth member of the family, CT621, is specific to C. trachomatis, and is secreted during the growth phase. Using a two-hybrid screen in yeast we identified an interaction between the host protein Hrs and the DUF582, which we confirmed by co-immunoprecipitations in co-transfected mammalian cells. Furthermore, we provide biochemical evidence that a second domain of one of the DUF582 proteins, CT619, binds the host protein Tsg101. Hrs and Tsg101 are both implicated in a well conserved machinery of the eukaryotic cell called the ESCRT machinery, which is involved in several cellular processes requiring membrane constriction. Using RNA interference targeting proteins implicated at different stages of ESCRT-driven processes, or inhibition by expression of a dominant negative mutant of VPS4, we demonstrated that this machinery was dispensable for bacterial entry, multiplication and differentiation into infectious progeny, and for uptake of glycogen into the parasitophorous vacuole. In light of these observations we discuss how the DUF582 proteins might target the ESCRT machinery during infection. PMID:27774439

  20. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    Science.gov (United States)

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  1. Proteolytic activation of human pancreatitis associated protein is required for peptidoglycan binding and bacterial aggregation

    OpenAIRE

    Medveczky, Péter; Szmola, Richárd; Sahin-Tóth, Miklós

    2009-01-01

    Pancreatitis associated protein (PAP) is a 16 kDa lectin-like protein, which becomes robustly upregulated in the pancreatic juice during acute pancreatitis. Trypsin cleaves the N terminus of PAP, which in turn forms insoluble fibrils. PAP and its paralog the pancreatic stone protein induce bacterial aggregation and, more recently, PAP was shown to bind to the peptidoglycan of Gram positive bacteria and exert a direct bactericidal effect. However, the role of N-terminal processing in the antib...

  2. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins.

    Science.gov (United States)

    Hengge, Regine

    2016-11-01

    The bacterial second messenger c-di-GMP controls bacterial biofilm formation, motility, cell cycle progression, development and virulence. It is synthesized by diguanylate cyclases (with GGDEF domains), degraded by specific phosphodiesterases (PDEs, with EAL of HD-GYP domains) and sensed by a wide variety of c-di-GMP-binding effectors that control diverse targets. c-di-GMP-binding effectors can be riboswitches as well as proteins with highly diverse structures and functions. The latter include 'degenerate' GGDEF/EAL domain proteins that are enzymatically inactive but still able to bind c-di-GMP. Surprisingly, two enzymatically active 'trigger PDEs', the Escherichia coli proteins PdeR and PdeL, have recently been added to this list of c-di-GMP-sensing effectors. Mechanistically, trigger PDEs are multifunctional. They directly and specifically interact with a macromolecular target (e.g. with a transcription factor or directly with a promoter region), whose activity they control by their binding and degradation of c-di-GMP-their PDE activity thus represents the c-di-GMP sensor or effector function. In this process, c-di-GMP serves as a regulatory ligand, but in contrast to classical allosteric control, this ligand is also degraded. The resulting kinetics and circuitry of control are ideally suited for trigger PDEs to serve as key components in regulatory switches.This article is part of the themed issue 'The new bacteriology'.

  3. Anchors for effectors: subversion of phosphoinositide lipids by Legionella

    Directory of Open Access Journals (Sweden)

    Hubert eHilbi

    2011-04-01

    Full Text Available The facultative intracellular pathogen Legionella pneumophila replicates in free-living amoebae and macrophages within a distinct compartment, the Legionella-containing vacuole (LCV. LCV formation involves phosphoinositide (PI glycerolipids, which are key factors controlling vesicle trafficking pathways and membrane dynamics of eukaryotic cells. To govern the interactions with host cells, L. pneumophila employs the Icm/Dot type IV secretion system and more than 250 translocated effector proteins that presumably subvert host signaling and vesicle trafficking pathways. Some of the effector proteins anchor through distinct PIs to the cytosolic face of LCVs and promote the interaction with host vesicles and organelles, catalyze guanine nucleotide exchange of small GTPases, or bind to PI-metabolizing enzymes, such as OCRL1. The PI 5-phosphatase OCRL1 and its Dictyostelium homologue Dd5P4 restrict intracellular growth of L. pneumophila. Moreover, OCRL1/Dd5P4, PI 3-kinases (PI3Ks and PI4KIIIβ regulate LCV formation and localization of the effector protein SidC, which selectively decorates the LCV membrane. SidC or its 20 kDa P4C fragment are robust and specific probes for phosphatidylinositol-4-phosphate, and SidC can be targeted to purify intact LCVs by immuno-magnetic separation. Taken together, bacterial PI-binding effectors as well as host PIs and PI-modulating enzymes play a pivotal role for intracellular replication of L. pneumophila, and the PI-binding effectors are valuable tools for the analysis of eukaryotic PI lipids.

  4. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

    Science.gov (United States)

    Unterweger, Daniel; Kostiuk, Benjamin; Ötjengerdes, Rina; Wilton, Ashley; Diaz-Satizabal, Laura; Pukatzki, Stefan

    2015-08-13

    Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.

  5. Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome

    Science.gov (United States)

    Luo, Xi; Wasilko, David J.; Liu, Yao; Sun, Jiayi; Wu, Xiaochun; Luo, Zhao-Qing; Mao, Yuxin

    2015-01-01

    The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires’ disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV). SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4)P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase) domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871). The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4)P binding of SidC) comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4)P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4)P from a closed form to an open active form. Mutations of key residues involved in PI(4)P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4)P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4)P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4)P probe in living cells. PMID

  6. Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome.

    Directory of Open Access Journals (Sweden)

    Xi Luo

    2015-06-01

    Full Text Available The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires' disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV. SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871. The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4P binding of SidC comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4P from a closed form to an open active form. Mutations of key residues involved in PI(4P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4P probe in living cells.

  7. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    Science.gov (United States)

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-12-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes.

  8. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI, was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control

  9. Human tandem-repeat-type galectins bind bacterial non-βGal polysaccharides

    DEFF Research Database (Denmark)

    Knirel, Yu A.; Gabius, H.-J.; Blixt, Klas Ola;

    2014-01-01

    ), prompted us to establish an array with bacterial polysaccharides. We addressed the question whether sugar determinants other than β-galactosides may be docking sites, using human galectins-4, -8, and -9. Positive controls with histo-blood group ABH-epitopes and the E. coli 086 polysaccharide ascertained...... the suitability of the set-up. Significant signal generation, depending on type of galectin and polysacchride, was obtained. Presence of cognate β-galactoside-related epitopes within a polysaccharide chain or its branch will not automatically establish binding properties, and structural constellations lacking...

  10. Pillar[5]arene-Based Glycoclusters: Synthesis and Multivalent Binding to Pathogenic Bacterial Lectins.

    Science.gov (United States)

    Buffet, Kevin; Nierengarten, Iwona; Galanos, Nicolas; Gillon, Emilie; Holler, Michel; Imberty, Anne; Matthews, Susan E; Vidal, Sébastien; Vincent, Stéphane P; Nierengarten, Jean-François

    2016-02-24

    The synthesis of pillar[5]arene-based glycoclusters has been readily achieved by CuAAC conjugations of azido- and alkyne-functionalized precursors. The lectin binding properties of the resulting glycosylated multivalent ligands have been studied by at least two complementary techniques to provide a good understanding. Three lectins were selected from bacterial pathogens based on their potential therapeutic applications as anti-adhesives, namely LecA and LecB from Pseudomonas aeruginosa and BambL from Burkholderia ambifaria. As a general trend, multivalency improved the binding to lectins and a higher affinity can be obtained by increasing to a certain limit the length of the spacer arm between the carbohydrate subunits and the central macrocyclic core.

  11. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  12. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    Science.gov (United States)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  13. The structure of the NasR transcription antiterminator reveals a one-component system with a NIT nitrate receptor coupled to an ANTAR RNA-binding effector.

    Science.gov (United States)

    Boudes, Marion; Lazar, Noureddine; Graille, Marc; Durand, Dominique; Gaidenko, Tatiana A; Stewart, Valley; van Tilbeurgh, Herman

    2012-08-01

    The nitrate- and nitrite-sensing NIT domain is present in diverse signal-transduction proteins across a wide range of bacterial species. NIT domain function was established through analysis of the Klebsiella oxytoca NasR protein, which controls expression of the nasF operon encoding enzymes for nitrite and nitrate assimilation. In the presence of nitrate or nitrite, the NasR protein inhibits transcription termination at the factor-independent terminator site in the nasF operon transcribed leader region. We present here the crystal structure of the intact NasR protein in the apo state. The dimeric all-helical protein contains a large amino-terminal NIT domain that associates two four-helix bundles, and a carboxyl-terminal ANTAR (AmiR and NasR transcription antitermination regulator) domain. The analysis reveals unexpectedly that the NIT domain is structurally similar to the periplasmic input domain of the NarX two-component sensor that regulates nitrate and nitrite respiration. This similarity suggests that the NIT domain binds nitrate and nitrite between two invariant arginyl residues located on adjacent alpha helices, and results from site-specific mutagenesis showed that these residues are critical for NasR function. The resulting structural movements in the NIT domain would provoke an active configuration of the ANTAR domains necessary for specific leader mRNA binding. PMID:22690729

  14. Ferredoxin Competes with Bacterial Frataxin in Binding to the Desulfurase IscS*

    Science.gov (United States)

    Yan, Robert; Konarev, Petr V.; Iannuzzi, Clara; Adinolfi, Salvatore; Roche, Béatrice; Kelly, Geoff; Simon, Léa; Martin, Stephen R.; Py, Béatrice; Barras, Frédéric; Svergun, Dmitri I.; Pastore, Annalisa

    2013-01-01

    The bacterial iron-sulfur cluster (isc) operon is an essential machine that is highly conserved from bacteria to primates and responsible for iron-sulfur cluster biogenesis. Among its components are the genes for the desulfurase IscS that provides sulfur for cluster formation, and a specialized ferredoxin (Fdx) whose role is still unknown. Preliminary evidence suggests that IscS and Fdx interact but nothing is known about the binding site and the role of the interaction. Here, we have characterized the interaction using a combination of biophysical tools and mutagenesis. By modeling the Fdx·IscS complex based on experimental restraints we show that Fdx competes for the binding site of CyaY, the bacterial ortholog of frataxin and sits in a cavity close to the enzyme active site. By in vivo mutagenesis in bacteria we prove the importance of the surface of interaction for cluster formation. Our data provide the first structural insights into the role of Fdx in cluster assembly. PMID:23839945

  15. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    Science.gov (United States)

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  16. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.

    Science.gov (United States)

    Bhattacharjee, Saikat; Halane, Morgan K; Kim, Sang Hee; Gassmann, Walter

    2011-12-01

    Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.

  17. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.

    Directory of Open Access Journals (Sweden)

    Shuaiqi Guo

    Full Text Available A novel role for antifreeze proteins (AFPs may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII and region IV (RIV, divide MpAFP into five distinct regions, all of which require mM Ca(2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca(2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2 server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice.

  18. Nε-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity.

    Directory of Open Access Journals (Sweden)

    Sandy Thao

    Full Text Available Evidence suggesting that eukaryotes and archaea use reversible N(ε-lysine (N(ε-Lys acetylation to modulate gene expression has been reported, but evidence for bacterial use of N(ε-Lys acetylation for this purpose is lacking. Here, we report data in support of the notion that bacteria can control gene expression by modulating the acetylation state of transcription factors (TFs. We screened the E. coli proteome for substrates of the bacterial Gcn5-like protein acetyltransferase (Pat. Pat acetylated four TFs, including the RcsB global regulatory protein, which controls cell division, and capsule and flagellum biosynthesis in many bacteria. Pat acetylated residue Lys180 of RcsB, and the NAD(+-dependent Sir2 (sirtuin-like protein deacetylase (CobB deacetylated acetylated RcsB (RcsB(Ac, demonstrating that N(ε-Lys acetylation of RcsB is reversible. Analysis of RcsB(Ac and variant RcsB proteins carrying substitutions at Lys180 provided biochemical and physiological evidence implicating Lys180 as a critical residue for RcsB DNA-binding activity. These findings further the likelihood that reversible N(ε-Lys acetylation of transcription factors is a mode of regulation of gene expression used by all cells.

  19. Microbial interactions chapter: binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1977-01-01

    Genetic transformation of bacteria by DNA released from cells of a related strain is discussed. The mechanism by which the giant information-bearing molecules of DNA are transported into the bacterial cell was investigated. It was concluded that the overall process of DNA uptake consists of two main steps, binding of donor DNA to the outside of the cell and entry of the bound DNA into the cell. Each step is discussed in detail. Inasmuch as these phenomena occur at the cell surface, they are related to structures and functions of the cell wall and membrane. In addition, the development of competence, that is the formation of cell surface structures allowing DNA uptake, is examined from both a physiological and evolutionary point of view. Genetic transfer mediated by free DNA is an obvious and important form of cellular interaction. The development of competence involves another, quite distinct system of interaction between bacterial cells. Streptococcus pneumoniae, Bacillus subtilis, and Hemophilus influenzae were used as the test organisms. 259 references.

  20. Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel.

    Science.gov (United States)

    Boiteux, Céline; Vorobyov, Igor; French, Robert J; French, Christopher; Yarov-Yarovoy, Vladimir; Allen, Toby W

    2014-09-01

    Voltage-gated sodium (Nav) channels are important targets in the treatment of a range of pathologies. Bacterial channels, for which crystal structures have been solved, exhibit modulation by local anesthetic and anti-epileptic agents, allowing molecular-level investigations into sodium channel-drug interactions. These structures reveal no basis for the "hinged lid"-based fast inactivation, seen in eukaryotic Nav channels. Thus, they enable examination of potential mechanisms of use- or state-dependent drug action based on activation gating, or slower pore-based inactivation processes. Multimicrosecond simulations of NavAb reveal high-affinity binding of benzocaine to F203 that is a surrogate for FS6, conserved in helix S6 of Domain IV of mammalian sodium channels, as well as low-affinity sites suggested to stabilize different states of the channel. Phenytoin exhibits a different binding distribution owing to preferential interactions at the membrane and water-protein interfaces. Two drug-access pathways into the pore are observed: via lateral fenestrations connecting to the membrane lipid phase, as well as via an aqueous pathway through the intracellular activation gate, despite being closed. These observations provide insight into drug modulation that will guide further developments of Nav inhibitors. PMID:25136136

  1. Nutritional and hormonal regulation of the TOR effector 4E-binding protein (4E-BP) in the mosquito Aedes aegypti

    OpenAIRE

    Roy, Saurabh G.; Raikhel, Alexander S.

    2012-01-01

    Mosquitoes require blood for egg development, and, as a consequence, they transmit pathogens of devastating diseases. Target of rapamycin (TOR) signaling is a key pathway linking blood feeding and egg development in the mosquito Aedes aegypti. We show that the regulation of the TOR effector translational repressor 4E-BP is finely tuned to the nutritional requirements of the female mosquito, and it occurs at transcriptional and post-translational levels. Immediately after blood feeding, 4E-BP ...

  2. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  3. Deleted in Malignant Brain Tumors 1 is up-regulated in bacterial endocarditis and binds to components of vegetations

    DEFF Research Database (Denmark)

    Müller, Hanna; Renner, Marcus; Helmke, Burkhard M;

    2009-01-01

    OBJECTIVE: Bacterial endocarditis is a frequent infectious cardiac disease, especially in patients with congenital or acquired heart defects. It is characterized by bacterial colonization of the heart valves and the appearance of vegetations consisting of fibrin, blood cells, and bacteria...... be linked to the development of vegetations. METHODS: Heart tissue of 19 patients with bacterial endocarditis and 10 controls without bacterial endocarditis was analyzed by immunohistochemistry. The effect of human recombinant Deleted in Malignant Brain Tumors 1 on erythrocyte aggregation was measured using...... an automated red blood cell aggregometer MA1. Binding of human recombinant Deleted in Malignant Brain Tumors 1 to erythrocyte membranes, platelets, fibrin, and fibrinogen was analyzed by Western blotting and enzyme-linked immunosorbent assay. RESULTS: Deleted in Malignant Brain Tumors 1 expression was up...

  4. Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava.

    Science.gov (United States)

    Cohn, Megan; Morbitzer, Robert; Lahaye, Thomas; Staskawicz, Brian J

    2016-08-01

    Xanthomonas axonopodis pv. manihotis (Xam) employs transcription activator-like (TAL) effectors to promote bacterial growth and symptom formation during infection of cassava. TAL effectors are secreted via the bacterial type III secretion system into plant cells, where they are directed to the nucleus, bind DNA in plant promoters and activate the expression of downstream genes. The DNA-binding activity of TAL effectors is carried out by a central domain which contains a series of repeat variable diresidues (RVDs) that dictate the sequence of bound nucleotides. TAL14Xam668 promotes virulence in Xam strain Xam668 and has been shown to activate multiple cassava genes. In this study, we used RNA sequencing to identify the full target repertoire of TAL14Xam668 in cassava, which includes over 50 genes. A subset of highly up-regulated genes was tested for activation by TAL14CIO151 from Xam strain CIO151. Although TAL14CIO151 and TAL14Xam668 differ by only a single RVD, they display differential activation of gene targets. TAL14CIO151 complements the TAL14Xam668 mutant defect, implying that shared target genes are important for TAL14Xam668 -mediated disease susceptibility. Complementation with closely related TAL effectors is a novel approach to the narrowing down of biologically relevant susceptibility genes of TAL effectors with multiple targets. This study provides an example of how TAL effector target activation by two strains within a single species of Xanthomonas can be dramatically affected by a small change in RVD-nucleotide affinity at a single site, and reflects the parameters of RVD-nucleotide interaction determined using designer TAL effectors in transient systems. PMID:26575863

  5. Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC.

    Science.gov (United States)

    Wasilko, David J; Mao, Yuxin

    2016-02-01

    Intracellular bacterial pathogens use secreted effector proteins to alter host cellular processes, with the goal of subverting host defenses and allowing the infection to progress. One such pathogen, Legionella pneumophila, secretes ~300 proteins into its host to alter a number of pathways including intracellular trafficking, phosphoinositide metabolism, and cell signaling. The Legionella effector SidC was previously found to bind to PI(4)P and was responsible for the enrichment of ER proteins and ubiquitinated species on the Legionella-containing vacuoles. Through our recent work, we have discovered that SidC contains a unique N-terminal E3 ubiquitin ligase domain and a C-terminal novel PI(4)P-binding domain. Our results demonstrate that SidC serves to link two distinct cellular pathways, ubiquitin and phosphoinositide. However, how the ubiquitin ligase activity regulates host membrane trafficking events remains to be investigated. PMID:26433729

  6. ICOS is required for the generation of both central and effector CD4+ memory T‐cell populations following acute bacterial infection

    Science.gov (United States)

    Marriott, Clare L.; Carlesso, Gianluca; Herbst, Ronald

    2015-01-01

    Interactions between ICOS and ICOS ligand (ICOSL) are essential for the development of T follicular helper (Tfh) cells and thus the formation and maintenance of GC reactions. Given the conflicting reports on the requirement of other CD4+ T‐cell populations for ICOS signals, we have employed a range of in vivo approaches to dissect requirements for ICOS signals in mice during an endogenous CD4+ T‐cell response and contrasted this with CD28 signals. Genetic absence of ICOSL only modestly reduced the total number of antigen‐specific CD4+ T cells at the peak of the primary response, but resulted in a severely diminished number of both T central memory and T effector memory cells. Treatment with blocking anti‐ICOS mAb during the primary response recapitulated these effects and caused a more substantial reduction than blocking CD28 signals with CTLA4Ig. During the memory phase of the response further signals through ICOS or CD28 were not required for survival. However, upon secondary challenge only Tfh cell expansion remained heavily ICOS‐dependent, while CD28 signals were required for optimal expansion of all subsets. These data demonstrate the importance of ICOS signals specifically for memory CD4+ T‐cell formation, while highlighting the potential of therapeutically targeting this pathway. PMID:25754933

  7. A common theme in interaction of bacterial immunoglobulin-binding proteins with immunoglobulins illustrated in the equine system.

    Science.gov (United States)

    Lewis, Melanie J; Meehan, Mary; Owen, Peter; Woof, Jenny M

    2008-06-20

    The M protein of Streptococcus equi subsp. equi known as fibrinogen-binding protein (FgBP) is a cell wall-associated protein with antiphagocytic activity that binds IgG. Recombinant versions of the seven equine IgG subclasses were used to investigate the subclass specificity of FgBP. FgBP bound predominantly to equine IgG4 and IgG7, with little or no binding to the other subclasses. Competitive binding experiments revealed that FgBP could inhibit the binding of staphylococcal protein A and streptococcal protein G to both IgG4 and IgG7, implicating the Fc interdomain region in binding to FgBP. To identify which of the two IgG Fc domains contributed to the interaction with FgBP, we tested two human IgG1/IgA1 domain swap mutants and found that both domains are required for full binding, with the CH3 domain playing a critical role. The binding site for FgBP was further localized using recombinant equine IgG7 antibodies with single or double point mutations to residues lying at the CH2-CH3 interface. We found that interaction of FgBP with equine IgG4 and IgG7 was able to disrupt C1q binding and antibody-mediated activation of the classical complement pathway, demonstrating an effective means by which S. equi may evade the immune response. The mode of interaction of FgBP with IgG fits a common theme for bacterial Ig-binding proteins. Remarkably, for those interactions studied in detail, it emerges that all the Ig-binding proteins target the CH2-CH3 domain interface, regardless of specificity for IgG or IgA, streptococcal or staphylococcal origin, or host species (equine or human). PMID:18411272

  8. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector.

    Directory of Open Access Journals (Sweden)

    Tomoko Kubori

    Full Text Available Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of "metaeffector," a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein.

  9. Effector functions of a monoclonal aglycosylated mouse IgG2a: binding and activation of complement component C1 and interaction with human monocyte Fc receptor.

    Science.gov (United States)

    Leatherbarrow, R J; Rademacher, T W; Dwek, R A; Woof, J M; Clark, A; Burton, D R; Richardson, N; Feinstein, A

    1985-04-01

    Aglycosylated monoclonal anti-DNP mouse IgG2a produced in the presence of tunicamycin was compared with the native monoclonal IgG2a with respect to its ability to interact with the first component of complement, C1, and to compete with human IgG for binding to human monocyte Fc receptors. The aglycosylated IgG2a was found to bind subcomponent C1q with an equivalent capacity to the native IgG2a, but the dissociation constant was found to be increased three-fold. When activation of C1 by the glycosylated and aglycosylated IgG2a was compared, the rate of C1 activation by the aglycosylated IgG2a was reduced approximately three-fold. In contrast aglycosylation was accompanied by a large decrease (greater than or equal to 50-fold) in the apparent binding constant of monomeric IgG2a to human monocytes. The data suggest that the aglycosylated IgG2a has a structure which differs in the CH2 domain from the native IgG2a, and that the heterogeneous N-linked oligosaccharides of this monoclonal IgG2a which occur at a conserved position in the CH2 domain play a role in maintaining the integrity of its monocyte-binding site. This lack of monocyte binding may result either from a localized conformational change occurring in a single CH2 domain or from an alteration in the CH2-CH2 cross-domain architecture which is normally structured by a pair of opposing and interacting oligosaccharides. The minimal changes in C1q binding and C1 activation suggest that the oligosaccharides are, at most, indirectly involved in these events. PMID:4033665

  10. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  11. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  12. Characterization of the hydrophobic substrate-binding site of the bacterial beta class glutathione transferase from Proteus mirabilis.

    Science.gov (United States)

    Federici, Luca; Masulli, Michele; Di Ilio, Carmine; Allocati, Nerino

    2010-09-01

    Since their discovery, bacterial glutathione (GSH)transferases have been characterized in terms of their ability to catalyse a variety of different reactions on a large set of toxic molecules of xenobiotic or endobiotic origin. Furthermore the contribution of different residues in the GSH-binding site to GSH activation has been extensively investigated. Little is known, however, about the contribution to catalysis and overall stability of single residues shaping the hydrophobic co-substrate binding site (H-site). Here we tackle this problem by site-directed mutagenesis of residues facing the H-site in the bacterial beta class GSH transferase from Proteus mirabilis. We investigate the behaviour of these mutants under a variety of conditions and analyse their activity against several co-substrates, representative of the different reactions catalyzed by bacterial GSH transferases. Our work shows that mutations at the H-site can be used to modulate activity at the level of the different catalytic mechanisms operating on the chosen substrates, each mutation showing a different fingerprint. This work paves the way for future studies aimed at improving the catalytic properties of beta class GSH transferases against selected substrates for bioremediation purposes.

  13. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  14. Synthesis of a selective inhibitor of a fucose binding bacterial lectin from Burkholderia ambifaria.

    Science.gov (United States)

    Richichi, Barbara; Imberty, Anne; Gillon, Emilie; Bosco, Rosa; Sutkeviciute, Ieva; Fieschi, Franck; Nativi, Cristina

    2013-06-28

    Burkholderia ambifaria is a bacterium member of the Burkholderia cepacia complex (BCC), a closely related group of Gram-negative bacteria responsible for "cepacia syndrome" in immunocompromised patients. B. ambifaria produces BambL, a fucose-binding lectin that displays fine specificity to human fucosylated epitopes. Here, we report the first example of a synthetic ligand able to selectively bind, in the micromolar range, the pathogen-lectin BambL. The synthetic routes for the preparation of the α conformationally constrained fucoside are described, focusing on a totally diastereoselective inverse electron demand [4 + 2] Diels-Alder reaction. Isothermal titration calorimetry (ITC) demonstrated that this compound binds to the pathogen-associated lectin BambL with an affinity comparable to that of natural fucose-containing oligosaccharides. No binding was observed by LecB, a fucose-binding lectin from Pseudomonas aeruginosa, and the differences in affinity between the two lectins could be rationalized by modeling. Furthermore, SPR analyses showed that this fucomimetic does not bind to the human fucose-binding lectin DC-SIGN, thus supporting the selective binding profile towards B. ambifaria lectin.

  15. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses.

    Science.gov (United States)

    Heidrich, Katharina; Wirthmueller, Lennart; Tasset, Céline; Pouzet, Cécile; Deslandes, Laurent; Parker, Jane E

    2011-12-01

    Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.

  16. End-effector microprocessor

    Science.gov (United States)

    Doggett, William R.

    1992-01-01

    The topics are presented in viewgraph form and include: automated structures assembly facility current control hierarchy; automated structures assembly facility purposed control hierarchy; end-effector software state transition diagram; block diagram for ideal install composite; and conclusions.

  17. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89.

    Science.gov (United States)

    Pleass, R J; Areschoug, T; Lindahl, G; Woof, J M

    2001-03-16

    Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function. PMID:11096107

  18. A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase

    OpenAIRE

    Bowman, William C.; Kranz, Robert G.

    1998-01-01

    A commonly accepted view of gene regulation in bacteria that has emerged over the last decade is that promoters are transcriptionally activated by one of two general mechanisms. The major type involves activator proteins that bind to DNA adjacent to where the RNA polymerase (RNAP) holoenzyme binds, usually assisting in recruitment of the RNAP to the promoter. This holoenzyme uses the housekeeping ς70 or a related factor, which directs the core RNAP to the promoter and assists in melting the D...

  19. MARTX toxins as effector delivery platforms.

    Science.gov (United States)

    Gavin, Hannah E; Satchell, Karla J F

    2015-12-01

    Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection.

  20. Legionella secreted effectors and innate immune responses

    OpenAIRE

    Luo, Zhao-Qing

    2011-01-01

    Legionella pneumophila is a facultative intracellular pathogen capable of replicating in a wide spectrum of cells. Successful infection by Legionella requires the Dot/Icm type IV secretion system, which translocates a large number of effector proteins into infected cells. By co-opting numerous host cellular processes, these proteins function to establish a specialized organelle that allows bacterial survival and proliferation. Even within the vacuole, L. pneumophila triggers robust immune res...

  1. A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase

    Science.gov (United States)

    Bowman, William C.; Kranz, Robert G.

    1998-01-01

    A commonly accepted view of gene regulation in bacteria that has emerged over the last decade is that promoters are transcriptionally activated by one of two general mechanisms. The major type involves activator proteins that bind to DNA adjacent to where the RNA polymerase (RNAP) holoenzyme binds, usually assisting in recruitment of the RNAP to the promoter. This holoenzyme uses the housekeeping ς70 or a related factor, which directs the core RNAP to the promoter and assists in melting the DNA near the RNA start site. A second type of mechanism involves the alternative sigma factor (called ς54 or ςN) that directs RNAP to highly conserved promoters. In these cases, an activator protein with an ATPase function oligomerizes at tandem sites far upstream from the promoter. The nitrogen regulatory protein (NtrC) from enteric bacteria has been the model for this family of activators. Activation of the RNAP/ς54 holoenzyme to form the open complex is mediated by the activator, which is tethered upstream. Hence, this class of protein is sometimes called the enhancer binding protein family or the NtrC class. We describe here a third system that has properties of each of these two types. The NtrC enhancer binding protein from the photosynthetic bacterium, Rhodobacter capsulatus, is shown in vitro to activate the housekeeping RNAP/ς70 holoenzyme. Transcriptional activation by this NtrC requires ATP binding but not hydrolysis. Oligomerization at distant tandem binding sites on a supercoiled template is also necessary. Mechanistic and evolutionary questions of these systems are discussed. PMID:9637689

  2. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain.

    OpenAIRE

    Tomme, P; Driver, D P; Amandoron, E A; Miller, R. C.; Antony, R.; Warren, J.; Kilburn, D G

    1995-01-01

    A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by affinity chromatography on cellulose. The relative association constants (Kr) for the binding of Cex,...

  3. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B;

    2006-01-01

    by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  4. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach.

    Directory of Open Access Journals (Sweden)

    David Burstein

    2009-07-01

    Full Text Available A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine

  5. Vibrio parahaemolyticus effector proteins suppress inflammasome activation by interfering with host autophagy signaling.

    Directory of Open Access Journals (Sweden)

    Naomi Higa

    2013-01-01

    Full Text Available Bacterial pathogens utilize pore-forming toxins or sophisticated secretion systems to establish infection in hosts. Recognition of these toxins or secretion system by nucleotide-binding oligomerization domain leucine-rich repeat proteins (NLRs triggers the assembly of inflammasomes, the multiprotein complexes necessary for caspase-1 activation and the maturation of inflammatory cytokines such as IL-1β or IL-18. Here we demonstrate that both the NLRP3 and NLRC4 inflammasomes are activated by thermostable direct hemolysins (TDHs and type III secretion system 1 (T3SS1 in response to V. parahaemolyticus infection. Furthermore, we identify T3SS1 secreted effector proteins, VopQ and VopS, which induce autophagy and the inactivation of Cdc42, respectively, to prevent mainly NLRC4 inflammasome activation. VopQ and VopS interfere with the assembly of specks in infected macrophages. These data suggest that bacterial effectors interfere with inflammasome activation and contribute to bacterial evasion from the host inflammatory responses.

  6. Bacterial-binding chitosan microspheres for gastric infection treatment and prevention.

    Science.gov (United States)

    Gonçalves, Inês C; Magalhães, Ana; Fernandes, Mariana; Rodrigues, Inês V; Reis, Celso A; Martins, M Cristina L

    2013-12-01

    Helicobacter pylori (H. pylori) colonizes the gastric mucosa of over 50% of the world population, causing several pathologies, such as gastric ulcers and gastric cancer. Since current antibiotic treatments are inefficient in 20% of cases alternative therapies are needed. This work reports the ability of chitosan microspheres to adhere to H. pylori and prevent/remove H. pylori colonization. Adhesion of H. pylori strains with different functional adhesins (BabA and/or SabA) to chitosan microspheres (diameter 167 ± 27 μm) occurs at both pH 2.6 and 6.0, but is higher at pH 6.0. Bacterial adhesion to a gastric cell line expressing sialylated carbohydrates (SabA receptors) was performed at the same pH values using H. pylori strains with and without SabA. At both pH values addition of microspheres to gastric cells before and after pre-incubation with H. pylori decreased bacterial adhesion to cells. Furthermore, the chitosan microspheres were non-cytotoxic. These findings reveal the potential of chitosan microspheres as an alternative or complementary treatment for H. pylori gastric eradication or prevention of H. pylori colonization.

  7. Pseudomonas syringae type III effector repertoires: last words in endless arguments.

    Science.gov (United States)

    Lindeberg, Magdalen; Cunnac, Sébastien; Collmer, Alan

    2012-04-01

    Many plant pathogens subvert host immunity by injecting compositionally diverse but functionally similar repertoires of cytoplasmic effector proteins. The bacterial pathogen Pseudomonas syringae is a model for exploring the functional structure of such repertoires. The pangenome of P. syringae encodes 57 families of effectors injected by the type III secretion system. Distribution of effector genes among phylogenetically diverse strains reveals a small set of core effectors targeting antimicrobial vesicle trafficking and a much larger set of variable effectors targeting kinase-based recognition processes. Complete disassembly of the 28-effector repertoire of a model strain and reassembly of a minimal functional repertoire reveals the importance of simultaneously attacking both processes. These observations, coupled with growing knowledge of effector targets in plants, support a model for coevolving molecular dialogs between effector repertoires and plant immune systems that emphasizes mutually-driven expansion of the components governing recognition. PMID:22341410

  8. Ambient UV-B exposure reduces the binding of ofloxacin with bacterial DNA gyrase and induces DNA damage mediated apoptosis.

    Science.gov (United States)

    Singh, Jyoti; Dwivedi, Ashish; Mujtaba, Syed Faiz; Singh, Krishna P; Pal, Manish Kumar; Chopra, Deepti; Goyal, Shruti; Srivastav, Ajeet K; Dubey, Divya; Gupta, Shailendra K; Haldar, Chandana; Ray, Ratan Singh

    2016-04-01

    Ofloxacin (OFLX) is a broad spectrum antibiotic, which generates photo-products under sunlight exposure. Previous studies have failed to explain the attenuated anti-bacterial activity of OFLX. The study was extended to explore the unknown molecular mechanism of photogenotoxicity on human skin cell line (HaCaT) under environmental UV-B irradiation. Photochemically OFLX generates ROS and caused 2'-dGuO photodegradation. We have addressed the binding affinity of OFLX and its photo-products against DNA gyrase. Significant free radical generation such as (1)O2, O2(•-) and (•)OH reduces antioxidants and demonstrated the ROS mediated OFLX phototoxicity. However, the formation of micronuclei and CPDs showed photogenotoxic potential of OFLX. OFLX induced cell cycle arrest in sub-G1 peak. OFLX triggers apoptosis via permeabilization of mitochondrial membrane with the downregulation of anti-apoptotic Bcl-2 and caspase-3 whereas, upregulation of pro-apoptotic Bax and Cyto-C proteins. Our study illustrated that binding affinity of OFLX photo-products with DNA gyrase was mainly responsible for the attenuated antimicrobial activity. It was proved through molecular docking study. Thus, study suggests that sunlight exposure should avoid by drug users especially during peak hours for their safety from photosensitivity. Clinicians may guide patients regarding the safer use of photosensitive drugs during treatment. PMID:26812543

  9. Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells1

    Science.gov (United States)

    Shpigel, Etai; Roiz, Levava; Goren, Raphael; Shoseyov, Oded

    1998-01-01

    Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control. PMID:9701575

  10. Zebrafish CD59 has both bacterial-binding and inhibiting activities.

    Science.gov (United States)

    Sun, Chen; Wu, Jie; Liu, Shousheng; Li, Hongyan; Zhang, Shicui

    2013-10-01

    CD59, known as protectin, usually plays roles as a regulatory inhibitor of complement, but it also exhibits activities independent of its function as a complement inhibitor. This study reported the identification and characterization of an ortholog of mammalian cd59 from zebrafish Danio rerio, which is similar to known cd59 in terms of both amino acid sequence and genomic structure as well as synteny conservation. We showed that zebrafish cd59 was maternally expressed in early embryos and expressed in a tissue-specific manner, with most abundant expression in the brain. We further showed that recombinant zebrafish CD59 was capable of binding to both the Gram-negative and Gram-positive bacteria as well as the microbial signature molecules LPS and LTA. In addition we demonstrated that recombinant zebrafish CD59 displayed slight antimicrobial activity capable of inhibiting the growth of E. coli and S. aureus. All these data indicate that zebrafish CD59 can not only binds to the bacteria and their signature molecules LPS and LTA but can also inhibit their growth, a novel role assigned to CD59.

  11. End effectors and grapple fixtures

    Science.gov (United States)

    Vandersluis, Ron; Quittner, Erik

    1992-01-01

    An end effector has been developed for use with a space station remote manipulator system where capture and release capabilities are required, and which will provide for the transfer of substantial loads together with electrical power and signals across the end effector grapple fixture interface. The end effector has a latching mechanism for the transfer of substantial loads across the end effector grapple fixture interface. The functions associated with known nonlatching end effectors, namely their snaring and rigidizing capabilities, are maintained and can be operated independently of the new latching mechanisms and umbilical connectors of the end effector. The end effector is capable of functioning equally as a wrist (manipulator) and shoulder (arm base) unit. Applications of the new end effector include space station assembly, payload handling, capture of free-flyers, payload servicing, and providing stable bases for extravehicular activity work stations or robotic devices.

  12. Bacterial cell-cell communication in the host via RRNPP peptide-binding regulators

    Directory of Open Access Journals (Sweden)

    David ePerez-Pascual

    2016-05-01

    Full Text Available Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.

  13. Novel receptors for bacterial protein toxins.

    Science.gov (United States)

    Schmidt, Gudula; Papatheodorou, Panagiotis; Aktories, Klaus

    2015-02-01

    While bacterial effectors are often directly introduced into eukaryotic target cells by various types of injection machines, toxins enter the cytosol of host cells from endosomal compartments or after retrograde transport via Golgi from the ER. A first crucial step of toxin-host interaction is receptor binding. Using optimized protocols and new methods novel toxin receptors have been identified, including metalloprotease ADAM 10 for Staphylococcus aureus α-toxin, laminin receptor Lu/BCAM for Escherichia coli cytotoxic necrotizing factor CNF1, lipolysis stimulated lipoprotein receptor (LSR) for Clostridium difficile transferase CDT and low-density lipoprotein receptor-related protein (LRP) 1 for Clostridium perfringens TpeL toxin.

  14. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  15. Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA

    Directory of Open Access Journals (Sweden)

    Bahia Khalfaoui-Hassani

    2016-01-01

    Full Text Available Uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS-type bacterial Cu importer required for biogenesis of cbb3-type cytochrome c oxidase (cbb3-Cox. Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.

  16. Identification of new secreted effectors in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Geddes, Kaoru; Worley, Micah; Niemann, George; Heffron, Fred

    2005-10-01

    A common theme in bacterial pathogenesis is the secretion of bacterial products that modify cellular functions to overcome host defenses. Gram-negative bacterial pathogens use type III secretion systems (TTSSs) to inject effector proteins into host cells. The genes encoding the structural components of the type III secretion apparatus are conserved among bacterial species and can be identified by sequence homology. In contrast, the sequences of secreted effector proteins are less conserved and are therefore difficult to identify. A strategy was developed to identify virulence factors secreted by Salmonella enterica serovar Typhimurium into the host cell cytoplasm. We constructed a transposon, which we refer to as mini-Tn5-cycler, to generate translational fusions between Salmonella chromosomal genes and a fragment of the calmodulin-dependent adenylate cyclase gene derived from Bordetella pertussis (cyaA'). In-frame fusions to bacterial proteins that are secreted into the eukaryotic cell cytoplasm were identified by high levels of cyclic AMP in infected cells. The assay was sufficiently sensitive that a single secreted fusion could be identified among several hundred that were not secreted. This approach identified three new effectors as well as seven that have been previously characterized. A deletion of one of the new effectors, steA (Salmonella translocated effector A), attenuated virulence. In addition, SteA localizes to the trans-Golgi network in both transfected and infected cells. This approach has identified new secreted effector proteins in Salmonella and will likely be useful for other organisms, even those in which genetic manipulation is more difficult.

  17. Efficacy of coating activated carbon with milk proteins to prevent binding of bacterial cells from foods for PCR detection.

    Science.gov (United States)

    Opet, Nathan J; Levin, Robert E

    2013-08-01

    Foods contaminated with pathogens are common sources of illness. Currently, the most common and sensitive rapid detection method involves the PCR. However, food matrices are complex and contain inhibitors that limit the sensitivity of the PCR. The use of coated activated carbon can effectively facilitate the removal of PCR inhibitors without binding targeted bacterial cells from food samples. With the use of activated carbon coated with milk proteins, a cell recovery at pH 7.0 of 95.7%±2.0% was obtained, compared to control uncoated activated carbon, which yielded a cell recovery of only 1.1%±0.8%. In addition, the milk protein coated activated carbon was able to absorb similar amounts of soluble compounds as uncoated activated carbon, with the exception of bovine hemoglobin. This suggests that the use of milk proteins to coat activated carbon may therefore serve as a suitable replacement for bentonite in the coating of activated carbon, which has previously been used for the removal of PCR inhibitors from food.

  18. Oxysterols and Their Cellular Effectors

    Directory of Open Access Journals (Sweden)

    Eija Nissilä

    2012-02-01

    Full Text Available Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR α and γ, and Epstein-Barr virus induced gene 2 (EBI2 have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.

  19. RNA Detection in Live Bacterial Cells Using Fluorescent Protein Complementation Triggered by Interaction of Two RNA Aptamers with Two RNA-Binding Peptides

    Directory of Open Access Journals (Sweden)

    Charles R. Cantor

    2011-03-01

    Full Text Available Many genetic and infectious diseases can be targeted at the RNA level as RNA is more accessible than DNA. We seek to develop new approaches for detection and tracking RNA in live cells, which is necessary for RNA-based diagnostics and therapy. We recently described a method for RNA visualization in live bacterial cells based on fluorescent protein complementation [1-3]. The RNA is tagged with an RNA aptamer that binds an RNA-binding protein with high affinity. This RNA-binding protein is expressed as two split fragments fused to the fragments of a split fluorescent protein. In the presence of RNA the fragments of the RNA-binding protein bind the aptamer and bring together the fragments of the fluorescent protein, which results in its re-assembly and fluorescence development [1-3]. Here we describe a new version of the RNA labeling method where fluorescent protein complementation is triggered by paired interactions of two different closely-positioned RNA aptamers with two different RNA-binding viral peptides. The new method, which has been developed in bacteria as a model system, uses a smaller ribonucleoprotein complementation complex, as compared with the method using split RNA-binding protein, and it can potentially be applied to a broad variety of RNA targets in both prokaryotic and eukaryotic cells. We also describe experiments exploring background fluorescence in these RNA detection systems and conditions that improve the signal-to-background ratio.

  20. Genetic and molecular requirements for function of the Pto/Prf effector recognition complex in tomato and Nicotiana benthamiana.

    Science.gov (United States)

    Balmuth, Alexi; Rathjen, John P

    2007-09-01

    The Pto gene of tomato (Solanum lycopersicum) confers specific recognition of the unrelated bacterial effector proteins AvrPto and AvrPtoB. Pto resides in a constitutive molecular complex with the nucleotide binding site-leucine rich repeats protein Prf. Prf is absolutely required for specific recognition of both effectors. Here, using stable transgenic lines, we show that expression of Pto from its genomic promoter in susceptible tomatoes was sufficient to complement recognition of Pseudomonas syringae pv. tomato (Pst) bacteria expressing either avrPto or avrPtoB. Pto kinase activity was absolutely required for specific immunity. Expression of the Pto N-myristoylation mutant, pto(G2A), conferred recognition of Pst (avrPtoB), but not Pst (avrPto), although bacterial growth in these lines was intermediate between resistant and susceptible lines. Overexpression of pto(G2A) complemented recognition of avrPto. Transgenic tomato plants overexpressing wild-type Pto exhibited constitutive growth phenotypes, but these were absent in lines overexpressing pto(G2A). Therefore, Pto myristoylation is a quantitative factor for effector recognition in tomato, but is absolutely required for overexpression phenotypes. Native expression of Pto in the heterologous species Nicotiana benthamiana did not confer resistance to P. syringae pv. tabaci (Pta) expressing avrPto or avrPtoB, but recognition of both effectors was complemented by Prf co-expression. Thus, specific resistance conferred solely by Pto in N. benthamiana is an artefact of overexpression. Finally, pto(G2A) did not confer recognition of either avrPto or avrPtoB in N. benthamiana, regardless of the presence of Prf. Thus, co-expression of Prf in N. benthamiana complements many but not all aspects of normal Pto function.

  1. Impact of bacterial vaginosis, as assessed by nugent criteria and hormonal status on glycosidases and lectin binding in cervicovaginal lavage samples.

    Directory of Open Access Journals (Sweden)

    Bernard J Moncla

    Full Text Available The objective of this study was to evaluate the impact of hormonal status and bacterial vaginosis (BV on the glycosidases present and glycosylation changes as assessed by lectin binding to cervicovaginal lavage constituents. Frozen cervicovaginal lavage samples from a completed study examining the impact of reproductive hormones on the physicochemical properties of vaginal fluid were utilized for the present study. In the parent study, 165 women were characterized as having BV, intermediate or normal microflora using the Nugent criteria. The presence of glycosidases in the samples was determined using quantitative 4-methyl-umbelliferone based assays, and glycosylation was assessed using enzyme linked lectin assays (ELLA. Women with BV had elevated sialidase, α-galactosidase, β-galactosidase and α-glucosidase activities compared to intermediate or normal women (P<0.001, 0.003, 0.006 and 0.042 respectively. The amount of sialic acid (Sambucus nigra, P = 0.003 and high mannose (griffithsin, P<0.001 were reduced, as evaluated by lectin binding, in women with BV. When the data were stratified according to hormonal status, α-glucosidase and griffithsin binding were decreased among postmenopausal women (P<0.02 when compared to premenopausal groups. These data suggest that both hormonal status and BV impact the glycosidases and lectin binding sites present in vaginal fluid. The sialidases present at increased levels in women with BV likely reduce the number of sialic acid binding sites. Other enzymes likely reduce griffithsin binding. The alterations in the glycosidase content, high mannose and sialic acid binding sites in the cervicovaginal fluid associated with bacterial vaginosis may impact susceptibility to viruses, such as HIV, that utilize glycans as a portal of entry.

  2. pH sensing by intracellular Salmonella induces effector translocation.

    Science.gov (United States)

    Yu, Xiu-Jun; McGourty, Kieran; Liu, Mei; Unsworth, Kate E; Holden, David W

    2010-05-21

    Salmonella enterica is an important intracellular bacterial pathogen of humans and animals. It replicates within host-cell vacuoles by delivering virulence (effector) proteins through a vacuolar membrane pore made by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS). T3SS assembly follows vacuole acidification, but when bacteria are grown at low pH, effector secretion is negligible. We found that effector secretion was activated at low pH from mutant strains lacking a complex of SPI-2-encoded proteins SsaM, SpiC, and SsaL. Exposure of wild-type bacteria to pH 7.2 after growth at pH 5.0 caused dissociation and degradation of SsaM/SpiC/SsaL complexes and effector secretion. In infected cells, loss of the pH 7.2 signal through acidification of host-cell cytosol prevented complex degradation and effector translocation. Thus, intravacuolar Salmonella senses host cytosolic pH, resulting in the degradation of regulatory complex proteins and effector translocation. PMID:20395475

  3. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    Science.gov (United States)

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic. PMID:26854666

  4. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    Science.gov (United States)

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.

  5. A novel human tectonin protein with multivalent beta-propeller folds interacts with ficolin and binds bacterial LPS.

    Directory of Open Access Journals (Sweden)

    Diana Hooi Ping Low

    Full Text Available BACKGROUND: Although the human genome database has been completed a decade ago, approximately 50% of the proteome remains hypothetical as their functions are unknown. The elucidation of the functions of these hypothetical proteins can lead to additional protein pathways and revelation of new cascades. However, many of these inferences are limited to proteins with substantial sequence similarity. Of particular interest here is the Tectonin domain-containing family of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have identified hTectonin, a hypothetical protein in the human genome database, as a distant ortholog of the limulus galactose binding protein (GBP. Phylogenetic analysis revealed strong evolutionary conservation of hTectonin homologues from parasite to human. By computational analysis, we showed that both the hTectonin and GBP form beta-propeller structures with multiple Tectonin domains, each containing beta-sheets of 4 strands per beta-sheet. hTectonin is present in the human leukocyte cDNA library and immune-related cell lines. It interacts with M-ficolin, a known human complement protein whose ancient homolog, carcinolectin (CL5, is the functional protein partner of GBP during infection. Yeast 2-hybrid assay showed that only the Tectonin domains of hTectonin recognize the fibrinogen-like domain of the M-ficolin. Surface plasmon resonance analysis showed real-time interaction between the Tectonin domains 6 & 11 and bacterial LPS, indicating that despite forming 2 beta-propellers with its different Tectonin domains, the hTectonin molecule could precisely employ domains 6 & 11 to recognise bacteria. CONCLUSIONS/SIGNIFICANCE: By virtue of a recent finding of another Tectonin protein, leukolectin, in the human leukocyte, and our structure-function analysis of the hypothetical hTectonin, we propose that Tectonin domains of proteins could play a vital role in innate immune defense, and that this function has been conserved over several

  6. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  7. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  8. Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: insight into RNA-binding properties of bacterial Hfq

    Science.gov (United States)

    Someya, Tatsuhiko; Baba, Seiki; Fujimoto, Mai; Kawai, Gota; Kumasaka, Takashi; Nakamura, Kouji

    2012-01-01

    Bacterial Hfq is a protein that plays an important role in the regulation of genes in cooperation with sRNAs. Escherichia coli Hfq (EcHfq) has two or more sites that bind RNA(s) including U-rich and/or the poly(A) tail of mRNA. However, functional and structural information about Bacillus subtilis Hfq (BsHfq) including the RNA sequences that specifically bind to it remain unknown. Here, we describe RNA aptamers including fragment (AG)3A that are recognized by BsHfq and crystal structures of the BsHfq–(AG)3A complex at 2.2 Å resolution. Mutational and structural studies revealed that the RNA fragment binds to the distal site, one of the two binding sites on Hfq, and identified amino acid residues that are critical for sequence-specific interactions between BsHfq and (AG)3A. In particular, R32 appears to interact with G bases in (AG)3A. Poly(A) also binds to the distal site of EcHfq, but the overall RNA structure and protein–RNA interaction patterns engaged in the R32 residues of BsHfq–(AG)3A differ from those of EcHfq–poly(A). These findings provide novel insight into how the Hfq homologue recognizes RNA. PMID:22053080

  9. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates.

    Science.gov (United States)

    Simpson, David J; Sacher, Jessica C; Szymanski, Christine M

    2015-10-01

    There is an unprecedented interest in glycobiology due to the increasing appreciation of its impact on all aspects of life. Likewise, bacteriophage biology is enjoying a new renaissance as the post-antibiotic era fuels the search for novel ways to control harmful bacteria. Phages have spent the last 3 billion years developing ways of recognizing and manipulating bacterial surface glycans. Therefore, phages comprise a massive reservoir of glycan-binding and -hydrolyzing proteins with the potential to be exploited for glycan analysis, bacterial diagnostics and therapeutics. We discuss phage tail proteins that recognize bacterial surface polysaccharides, endolysins that bind and cleave peptidoglycan, Ig-like proteins that attach to mucin glycans, and phage effector proteins that recognize both bacterial and eukaryotic oligosaccharides.

  10. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    Science.gov (United States)

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.

  11. TAL effectors specificity stems from negative discrimination.

    Directory of Open Access Journals (Sweden)

    Basile I M Wicky

    Full Text Available Transcription Activator-Like (TAL effectors are DNA-binding proteins secreted by phytopathogenic bacteria that interfere with native cellular functions by binding to plant DNA promoters. The key element of their architecture is a domain of tandem-repeats with almost identical sequences. Most of the polymorphism is located at two consecutive amino acids termed Repeat Variable Diresidue (RVD. The discovery of a direct link between the RVD composition and the targeted nucleotide allowed the design of TAL-derived DNA-binding tools with programmable specificities that revolutionized the field of genome engineering. Despite structural data, the molecular origins of this specificity as well as the recognition mechanism have remained unclear. Molecular simulations of the recent crystal structures suggest that most of the protein-DNA binding energy originates from non-specific interactions between the DNA backbone and non-variable residues, while RVDs contributions are negligible. Based on dynamical and energetic considerations we postulate that, while the first RVD residue promotes helix breaks--allowing folding of TAL as a DNA-wrapping super-helix--the second provides specificity through a negative discrimination of matches. Furthermore, we propose a simple pharmacophore-like model for the rationalization of RVD-DNA interactions and the interpretation of experimental findings concerning shared affinities and binding efficiencies. The explanatory paradigm presented herein provides a better comprehension of this elegant architecture and we hope will allow for improved designs of TAL-derived biotechnological tools.

  12. CCAAT/enhancer-binding protein δ facilitates bacterial dissemination during pneumococcal pneumonia in a platelet-activating factor receptor-dependent manner

    OpenAIRE

    Duitman, JanWillem; Schouten, Marcel; Groot, Angelique P.; Borensztajn, Keren S.; Daalhuisen, Joost B.; Florquin, Sandrine; van der Poll, Tom; Spek, C Arnold

    2012-01-01

    CCAAT/enhancer-binding protein δ (C/EBPδ) recently emerged as an essential player in the inflammatory response to bacterial infections. C/EBPδ levels increase rapidly after a proinflammatory stimulus, and increasing C/EBPδ levels seem to be indispensable for amplification of the inflammatory response. Here we aimed to elucidate the role of C/EBPδ in host defense in community-acquired pneumococcal pneumonia. We show that C/EBPδ−/− mice are relatively resistant to pneumococcal pneumonia, as ind...

  13. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor

    NARCIS (Netherlands)

    Milon, P.; Tischenko, E.V.; Tomsic, J.; Caserta, E.; Folkers, G.E.; La Teana, A.; Rodnina, M.V.; Pon, C.L.; Boelens, R.; Gualerzi, C.O.

    2006-01-01

    Translational initiation factor 2 (IF2) is a guanine nucleotide-binding protein that can bind guanosine 3′,5′-(bis) diphosphate (ppGpp), an alarmone involved in stringent response in bacteria. In cells growing under optimal conditions, the GTP concentration is very high, and that of ppGpp very low.

  14. Multiple Xanthomonas euvesicatoria Type III Effectors Inhibit flg22-Triggered Immunity.

    Science.gov (United States)

    Popov, Georgy; Fraiture, Malou; Brunner, Frederic; Sessa, Guido

    2016-08-01

    Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato. X. euvesicatoria bacteria interfere with plant cellular processes by injecting effector proteins into host cells through the type III secretion (T3S) system. About 35 T3S effectors have been identified in X. euvesicatoria 85-10, and a few of them were implicated in suppression of pattern-triggered immunity (PTI). We used an Arabidopsis thaliana pathogen-free protoplast-based assay to identify X. euvesicatoria 85-10 effectors that interfere with PTI signaling induced by the bacterial peptide flg22. Of 33 tested effectors, 17 inhibited activation of a PTI-inducible promoter. Among them, nine effectors also interfered with activation of an abscisic acid-inducible promoter. However, effectors that inhibited flg22-induced signaling did not affect phosphorylation of mitogen-activated protein (MAP) kinases acting downstream of flg22 perception. Further investigation of selected effectors revealed that XopAJ, XopE2, and XopF2 inhibited activation of a PTI-inducible promoter by the bacterial peptide elf18 in Arabidopsis protoplasts and by flg22 in tomato protoplasts. The effectors XopF2, XopE2, XopAP, XopAE, XopH, and XopAJ inhibited flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated Pseudomonas syringae bacteria. Finally, selected effectors were found to localize to various plant subcellular compartments. These results indicate that X. euvesicatoria bacteria utilize multiple T3S effectors to suppress flg22-induced signaling acting downstream or in parallel to MAP kinase cascades and suggest they act through different molecular mechanisms. PMID:27529660

  15. Type IV secretion system of Brucella spp. and its effectors.

    Science.gov (United States)

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.

  16. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA

    OpenAIRE

    Smith, Janet L.; Grossman, Alan D.

    2015-01-01

    DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep ...

  17. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    Science.gov (United States)

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  18. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    Directory of Open Access Journals (Sweden)

    Alvaro L Pérez-Quintero

    2015-08-01

    Full Text Available Transcription Activator-Like (TAL effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD. Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relations, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices obtained from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relations between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi.

  19. Identification of an unconventional E3 binding surface on the UbcH5 Ub conjugate recognized by a pathogenic bacterial E3 ligase.

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I.; Eakin, C.; Blanc, M. -P.; Klevit, R. E.; Miller, S. I.; Brzovic, P. S.

    2010-02-01

    Gram-negative bacteria deliver a cadre of virulence factors directly into the cytoplasm of eukaryotic host cells to promote pathogenesis and/or commensalism. Recently, families of virulence proteins have been recognized that function as E3 Ubiquitin-ligases. How these bacterial ligases integrate into the ubiquitin (Ub) signaling pathways of the host and how they differ functionally from endogenous eukaryotic E3s is not known. Here we show that the bacterial E3 SspH2 from S. typhimurium selectively binds the human UbcH5Ub conjugate recognizing regions of both UbcH5 and Ub subunits. The surface of the E2 UbcH5 involved in this interaction differs substantially from that defined for other E2/E3 complexes involving eukaryotic E3-ligases. In vitro, SspH2 directs the synthesis of K48-linked poly-Ub chains, suggesting that cellular protein targets of SspH2-catalyzed Ub transfer are destined for proteasomal destruction. Unexpectedly, we found that intermediates in SspH2-directed reactions are activated poly-Ub chains directly tethered to the UbcH5 active site (UbcH5Ubn). Rapid generation of UbcH5Ubn may allow for bacterially directed modification of eukaryotic target proteins with a completed poly-Ub chain, efficiently tagging host targets for destruction.

  20. Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase.

    Science.gov (United States)

    Levin, Itay; Eakin, Catherine; Blanc, Marie-Pierre; Klevit, Rachel E; Miller, Samuel I; Brzovic, Peter S

    2010-02-16

    Gram-negative bacteria deliver a cadre of virulence factors directly into the cytoplasm of eukaryotic host cells to promote pathogenesis and/or commensalism. Recently, families of virulence proteins have been recognized that function as E3 Ubiquitin-ligases. How these bacterial ligases integrate into the ubiquitin (Ub) signaling pathways of the host and how they differ functionally from endogenous eukaryotic E3s is not known. Here we show that the bacterial E3 SspH2 from S. typhimurium selectively binds the human UbcH5 ~ Ub conjugate recognizing regions of both UbcH5 and Ub subunits. The surface of the E2 UbcH5 involved in this interaction differs substantially from that defined for other E2/E3 complexes involving eukaryotic E3-ligases. In vitro, SspH2 directs the synthesis of K48-linked poly-Ub chains, suggesting that cellular protein targets of SspH2-catalyzed Ub transfer are destined for proteasomal destruction. Unexpectedly, we found that intermediates in SspH2-directed reactions are activated poly-Ub chains directly tethered to the UbcH5 active site (UbcH5 ~ Ub(n)). Rapid generation of UbcH5 ~ Ub(n) may allow for bacterially directed modification of eukaryotic target proteins with a completed poly-Ub chain, efficiently tagging host targets for destruction. PMID:20133640

  1. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition.

    Science.gov (United States)

    Unterweger, Daniel; Miyata, Sarah T; Bachmann, Verena; Brooks, Teresa M; Mullins, Travis; Kostiuk, Benjamin; Provenzano, Daniele; Pukatzki, Stefan

    2014-04-01

    Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species.

  2. G Proteins and Regulation of Effector Function

    Directory of Open Access Journals (Sweden)

    A.R. Dehpour

    1991-07-01

    Full Text Available Cell surface receptors use a variety of membrane signalling mechanisms to translate information encoded in neurotransmitters, hormones, and growth factors into cellular responses.Collectively these mechanisms are refered to as transmembrane signalling or signal transduction. In the simplest example,the process involves a receptor protein-encompassed ion channel whose conductance is regulated by receptor activation.A second type of transmembrane signalling system involves the coupling of at least three separate components, a receptor protein, a guanine nucleotide binding protein (G protein , and an effector mechanism. In some receptor" effector systems the signal transduction pathways is entirely confined to the membrane, in which no intracellular messenger is involved.Alternatively, the activity of an enzyme may be changed to generate a specific intracellular signal molecule or second messenger. Receptors in this latter category may regulate the activity of adenylyl cyclase in a positive manner through a stimulatory G protein( G or in a negative manner through an inhibitory G protein( G. thereby controlling the intracellular level of cAMP. Another membrane- associated enzyme, similar to adenylate cyclase, is phospholipase C which catalizes the hydrolysis of PIP2into IP3and DAG. Phospholipase C coupled receptors are physiologically very important because both products of the reaction act as a second messenger; diacylglycerol activates protein kinase C and IP3 stimulates calcium release from Intracellular stores.

  3. Capsular Sialic Acid of Streptococcus suis Serotype 2 Binds to Swine Influenza Virus and Enhances Bacterial Interactions with Virus-Infected Tracheal Epithelial Cells

    Science.gov (United States)

    Wang, Yingchao; Gagnon, Carl A.; Savard, Christian; Music, Nedzad; Srednik, Mariela; Segura, Mariela; Lachance, Claude; Bellehumeur, Christian

    2013-01-01

    Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease. Influenza virus produces a contagious infection in pigs which is frequently complicated by bacterial coinfections, leading to significant economic impacts. In this study, the effect of a preceding swine influenza H1N1 virus (swH1N1) infection of swine tracheal epithelial cells (NTPr) on the ability of S. suis serotype 2 to adhere to, invade, and activate these cells was evaluated. Cells preinfected with swH1N1 showed bacterial adhesion and invasion levels that were increased more than 100-fold compared to those of normal cells. Inhibition studies confirmed that the capsular sialic acid moiety is responsible for the binding to virus-infected cell surfaces. Also, preincubation of S. suis with swH1N1 significantly increased bacterial adhesion to/invasion of epithelial cells, suggesting that S. suis also uses swH1N1 as a vehicle to invade epithelial cells when the two infections occur simultaneously. Influenza virus infection may facilitate the transient passage of S. suis at the respiratory tract to reach the bloodstream and cause bacteremia and septicemia. S. suis may also increase the local inflammation at the respiratory tract during influenza infection, as suggested by an exacerbated expression of proinflammatory mediators in coinfected cells. These results give new insight into the complex interactions between influenza virus and S. suis in a coinfection model. PMID:24082069

  4. Effector proteins of rust fungi

    OpenAIRE

    Ben ePetre; Joly, David L.; Sébastien eDuplessis

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1 and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to...

  5. Effector proteins of rust fungi

    OpenAIRE

    Petre, Benjamin; Joly, David L.; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues t...

  6. Monoclonal antibodies against DNA-binding tips of DNABII proteins disrupt biofilms in vitro and induce bacterial clearance in vivo

    Directory of Open Access Journals (Sweden)

    Laura A. Novotny

    2016-08-01

    Full Text Available The vast majority of chronic and recurrent bacterial diseases are attributed to the presence of a recalcitrant biofilm that contributes significantly to pathogenesis. As such, these diseases will require an innovative therapeutic approach. We targeted DNABII proteins, an integral component of extracellular DNA (eDNA which is universally found as part of the pathogenic biofilm matrix to develop a biofilm disrupting therapeutic. We show that a cocktail of monoclonal antibodies directed against specific epitopes of a DNABII protein is highly effective to disrupt diverse biofilms in vitro as well as resolve experimental infection in vivo, in both a chinchilla and murine model. Combining this monoclonal antibody cocktail with a traditional antibiotic to kill bacteria newly released from the biofilm due to the action of the antibody cocktail was highly effective. Our results strongly support these monoclonal antibodies as attractive candidates for lead optimization as a therapeutic for resolution of bacterial biofilm diseases.

  7. bMERB domains are bivalent Rab8 family effectors evolved by gene duplication

    Science.gov (United States)

    Rai, Amrita; Oprisko, Anastasia; Campos, Jeremy; Fu, Yangxue; Friese, Timon; Itzen, Aymelt; Goody, Roger S; Gazdag, Emerich Mihai; Müller, Matthias P

    2016-01-01

    In their active GTP-bound form, Rab proteins interact with proteins termed effector molecules. In this study, we have thoroughly characterized a Rab effector domain that is present in proteins of the Mical and EHBP families, both known to act in endosomal trafficking. Within our study, we show that these effectors display a preference for Rab8 family proteins (Rab8, 10, 13 and 15) and that some of the effector domains can bind two Rab proteins via separate binding sites. Structural analysis allowed us to explain the specificity towards Rab8 family members and the presence of two similar Rab binding sites that must have evolved via gene duplication. This study is the first to thoroughly characterize a Rab effector protein that contains two separate Rab binding sites within a single domain, allowing Micals and EHBPs to bind two Rabs simultaneously, thus suggesting previously unknown functions of these effector molecules in endosomal trafficking. DOI: http://dx.doi.org/10.7554/eLife.18675.001 PMID:27552051

  8. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity.

    Directory of Open Access Journals (Sweden)

    Amit P Bhavsar

    Full Text Available To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.

  9. Oomycetes, effectors, and all that jazz.

    Science.gov (United States)

    Bozkurt, Tolga O; Schornack, Sebastian; Banfield, Mark J; Kamoun, Sophien

    2012-08-01

    Plant pathogenic oomycetes secrete a diverse repertoire of effector proteins that modulate host innate immunity and enable parasitic infection. Understanding how effectors evolve, translocate and traffic inside host cells, and perturb host processes are major themes in the study of oomycete-plant interactions. The last year has seen important progress in the study of oomycete effectors with, notably, the elucidation of the 3D structures of five RXLR effectors, and novel insights into how cytoplasmic effectors subvert host cells. In this review, we discuss these and other recent advances and highlight the most important open questions in oomycete effector biology.

  10. Active membrane cholesterol as a physiological effector.

    Science.gov (United States)

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily. PMID:26874289

  11. Effector proteins of rust fungi

    Directory of Open Access Journals (Sweden)

    Ben ePetre

    2014-08-01

    Full Text Available Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1 and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs. The rust community now needs high-throughput approaches (effectoromics to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  12. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  13. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  14. Pili Binding to Asialo-GM1 on Epithelial Cells Can Mediate Cytotoxicity or Bacterial Internalization by Pseudomonas aeruginosa

    OpenAIRE

    Comolli, James C; Waite, Leslie L.; Keith E Mostov; Joanne N. Engel

    1999-01-01

    The interaction of Pseudomonas aeruginosa type IV pili and the glycosphingolipid asialo-GM1 (aGM1) can mediate bacterial adherence to epithelial cells, but the steps subsequent to this adherence have not been elucidated. To investigate the result of the interaction of pili and aGM1, we used polarized epithelial monolayers of Madin-Darby canine kidney (MDCK) cells in culture, which contained little detectable aGM1 on their apical surface but were able to incorporate exogenous aGM1. Compared to...

  15. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  16. Crystal Structure of a Bacterial Topoisomerase IB in Complex with DNA Reveals a Secondary DNA Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Asmita; Yakovleva, Lyudmila; Shuman, Stewart; Mondragón, Alfonso (NWU); (SKI)

    2010-10-22

    Type IB DNA topoisomerases (TopIB) are monomeric enzymes that relax supercoils by cleaving and resealing one strand of duplex DNA within a protein clamp that embraces a {approx}21 DNA segment. A longstanding conundrum concerns the capacity of TopIB enzymes to stabilize intramolecular duplex DNA crossovers and form protein-DNA synaptic filaments. Here we report a structure of Deinococcus radiodurans TopIB in complex with a 12 bp duplex DNA that demonstrates a secondary DNA binding site located on the surface of the C-terminal domain. It comprises a distinctive interface with one strand of the DNA duplex and is conserved in all TopIB enzymes. Modeling of a TopIB with both DNA sites suggests that the secondary site could account for DNA crossover binding, nucleation of DNA synapsis, and generation of a filamentous plectoneme. Mutations of the secondary site eliminate synaptic plectoneme formation without affecting DNA cleavage or supercoil relaxation.

  17. Enhancement of Immune Effector Functions by Modulating IgG’s Intrinsic Affinity for Target Antigen

    Science.gov (United States)

    Mazor, Yariv; Yang, Chunning; Borrok, M. Jack; Ayriss, Joanne; Aherne, Karen; Wu, Herren; Dall’Acqua, William F.

    2016-01-01

    Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics. PMID:27322177

  18. The versatile Legionella effector protein DrrA

    OpenAIRE

    Goody, Roger S.; Müller, Matthias P.; Schoebel, Stefan; Oesterlin, Lena K; Blümer, Julia; Peters, Heide; Blankenfeldt, Wulf; Itzen, Aymelt

    2011-01-01

    The human pathogen Legionella pneumophila is a bacterium that infects human cells and interferes with intracellular signaling. The Legionella protein DrrA is one of the numerous effectors that the bacterium translocates into the host cytosol. DrrA binds to the Legionella containing vacuole (LCV), an organelle in which Legionella survives and replicates, and recruits and activates the vesicular trafficking regulator Rab1 to redirect vesicular trafficking between the endoplasmatic reticulum and...

  19. Structure of NS1A effector domain from the influenza A/Udorn/72 virus

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shuangluo; Monzingo, Arthur F.; Robertus, Jon D., E-mail: jrobertus@mail.utexas.edu [Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas, 1 University Station A5300, Austin, TX 78712 (United States)

    2009-01-01

    The structure of the effector domain of the influenza protein NS1, a validated antiviral drug target, has been solved in two space groups. The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented.

  20. Structure of NS1A effector domain from the influenza A/Udorn/72 virus

    International Nuclear Information System (INIS)

    The structure of the effector domain of the influenza protein NS1, a validated antiviral drug target, has been solved in two space groups. The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented

  1. Complex Binding of the FabR Repressor of Bacterial Unsaturated Fatty Acid Biosynthesis to its Cognate Promoters

    OpenAIRE

    Feng, Youjun; Cronan, John E.

    2011-01-01

    Two transcriptional regulators, the FadR activator and the FabR repressor control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was bloc...

  2. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors.

    Directory of Open Access Journals (Sweden)

    Brian H Kvitko

    2009-04-01

    Full Text Available The gamma-proteobacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the type III secretion system to inject ca. 28 Avr/Hop effector proteins into plants, which enables the bacterium to grow from low inoculum levels to produce bacterial speck symptoms in tomato, Arabidopsis thaliana, and (when lacking hopQ1-1 Nicotiana benthamiana. The effectors are collectively essential but individually dispensable for the ability of the bacteria to defeat defenses, grow, and produce symptoms in plants. Eighteen of the effector genes are clustered in six genomic islands/islets. Combinatorial deletions involving these clusters and two of the remaining effector genes revealed a redundancy-based structure in the effector repertoire, such that some deletions diminished growth in N. benthamiana only in combination with other deletions. Much of the ability of DC3000 to grow in N. benthamiana was found to be due to five effectors in two redundant-effector groups (REGs, which appear to separately target two high-level processes in plant defense: perception of external pathogen signals (AvrPto and AvrPtoB and deployment of antimicrobial factors (AvrE, HopM1, HopR1. Further support for the membership of HopR1 in the same REG as AvrE was gained through bioinformatic analysis, revealing the existence of an AvrE/DspA/E/HopR effector superfamily, which has representatives in virtually all groups of proteobacterial plant pathogens that deploy type III effectors.

  3. High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2

    Science.gov (United States)

    Swain, Monalisa; Slomiany, Mark G.; Rosenzweig, Steven A.; Atreya, Hanudatta S.

    2010-01-01

    The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-IR). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1–6; 22–31 kDa) that via high affinity binding to the IGFs (KD ~ 300–700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in E. coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP. PMID:20541521

  4. Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    International Nuclear Information System (INIS)

    Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR-C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacterium glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni2+ ions but that it is able to bind Zn2+ with Kd < 70 nM. It is concluded that Zn2+ is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors

  5. Crystal structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Meiying; Cooper, David; Grossoehmerb, Nickolas; Yu, Minmin; Hung, Li-Wei; Cieslik, Murcin; Derewendaro, Urszula; Lesley, Scott; Wilson, Ian; Giedrocb, David; Derewenda, Zygmunt

    2009-06-06

    The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged helix (WH) DNA-binding domains and diverse C-terminal, regulatory domains, which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all a-helical regulatory domains classified into two related Pfam families: FadR{_}C and FCD. Only two crystal structures of the FadR family members, i.e. the E. coli FadR protein and the LldR from C. glutamicum, have been described to date in literature. Here we describe the crystal structure of TM0439, a GntR regulator with an FCD domain, found in the Thermotoga maritima genome. The FCD domain is similar to that of the LldR regulator, and contains a buried metal binding site. Using atomic absorption spectroscopy and Trp fluorescence, we show that the recombinant protein contains bound Ni{sup 2+} ions, but it is able to bind Zn{sup 2+} with K{sub D} < 70 nM . We conclude that Zn{sup 2+} is the likely physiological metal, where it may perform either or both structural and regulatory roles. Finally, we compare the TM0439 structure to two other FadR family structures recently deposited by Structural Genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors.

  6. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif.

    Science.gov (United States)

    Geissler, Brett; Ahrens, Sebastian; Satchell, Karla J F

    2012-02-01

    Plasma membrane targeting is essential for the proper function of many bacterial toxins. A conserved fourhelical bundle membrane localization domain (4HBM) was recently identified within three diverse families of toxins: clostridial glucosylating toxins, MARTX toxins and Pasteurella multocida-like toxins. When expressed in tissue culture cells or in yeast, GFP fusions to at least one 4HBM from each toxin family show significant peripheral membrane localization but with differing profiles. Both in vivo expression and in vitro binding studies reveal that the ability of these domains to localize to the plasma membrane and bind negatively charged phospholipids requires a basic-hydrophobic motif formed by the L1 and L3 loops. The different binding capacity of each 4HBM is defined by the hydrophobicity of an exposed residue within the motif. This study establishes that bacterial effectors utilize a normal host cell mechanism to locate the plasma membrane where they can then access their intracellular targets.

  7. Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp

    Science.gov (United States)

    Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (Pcanal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases. PMID:27442266

  8. Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins.

    Science.gov (United States)

    Rismondo, Jeanine; Cleverley, Robert M; Lane, Harriet V; Großhennig, Stephanie; Steglich, Anne; Möller, Lars; Mannala, Gopala Krishna; Hain, Torsten; Lewis, Richard J; Halbedel, Sven

    2016-03-01

    Each bacterium has to co-ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram-positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi-functional penicillin-binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food-borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials. PMID:26575090

  9. Characterisation of the Putative Effector Interaction Site of the Regulatory HbpR Protein from Pseudomonas azelaica by Site-Directed Mutagenesis

    OpenAIRE

    Christelle Vogne; Hansi Bisht; Sagrario Arias; Sofia Fraile; Rup Lal; Jan Roelof van der Meer

    2011-01-01

    Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54)-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiph...

  10. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  11. Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins.

    Science.gov (United States)

    Noy, Dror; Dutton, P Leslie

    2006-02-21

    We introduce LH1beta24, a minimal 24 amino acid polypeptide that binds and assembles bacteriochlorophylls (BChls) in micelles of octyl beta-glucoside (OG) into complexes with spectral properties that resemble those of B820, a universal intermediate in the assembly of native purple bacterial light-harvesting complexes (LHs). LH1beta24 was designed by a survey of sequences and crystal structures of bacterial LH proteins from different organisms combined with currently available information from in vitro reconstitution studies and genetically modified LHs in vivo. We took as a template for the design sphbeta31, a truncated 31 amino acid analogue of the native beta-apoprotein from the core LH complex of Rhodobacter sphaeroides. This peptide self-assembles with BChls to form B820 and, upon cooling and lowering OG concentration, forms red-shifted B850 spectral species that are considered analogous to native LH complexes. We find that LH1beta24 self-assembles with BChl in OG to form homodimeric B820-type subunits comprising two LH1beta24 and two BChl molecules per subunit. We demonstrate, by modeling the structure using the highly homologous structure of LH2 from Rhodospirillum molischianum, that it has the minimal size for BChl binding. Additionally, we have compared the self-assembly of sphbeta31 and LH1beta24 with BChls and discovered that the association enthalpies and entropies of both species are similar to those measured for native LH1 from Rhodospirillum rubrum. However, sphbeta31 readily aggregates into intermediate higher oligomeric species and further to form B850 species; moreover, the assembly process of these oligomers is not reversible, and they are apparently large nonspecific BChl-peptide coaggregates rather than well-defined nativelike LH complexes. Similar aggregates were observed during LH1beta24 assembly, but these were formed less readily and required lower temperatures than sphbeta31. In view of these results, we reevaluate previous in vitro

  12. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein.

    Directory of Open Access Journals (Sweden)

    Laura A Novotny

    Full Text Available Cystic fibrosis (CF is the most common lethal inherited genetic disorder affection Caucasians. Even with medical advances, CF is life-shortening with patients typically surviving only to age 38. Infection of the CF lung by Burkholderia cenocepacia presents exceptional challenges to medical management of these patients as clinically this microbe is resistant to virtually all antibiotics, is highly transmissible and infection of CF patients with this microbe renders them ineligible for lung transplant, often the last lifesaving option. Here we have targeted two abundant components of the B. cenocepacia biofilm for immune intervention: extracellular DNA and DNABII proteins, the latter of which are bacterial nucleic acid binding proteins. Treatment of B. cenocepacia biofilms with antiserum directed at one of these DNABII proteins (integration host factor or IHF resulted in significant disruption of the biofilm. Moreover, when anti-IHF mediated destabilization of a B. cenocepacia biofilm was combined with exposure to traditional antibiotics, B. cenocepacia resident within the biofilm and thereby typically highly resistant to the action of antibiotics, were now rendered susceptible to killing. Pre-incubation of B. cenocepacia with anti-IHF serum prior to exposure to murine CF macrophages, which are normally unable to effectively degrade ingested B. cenocepacia, resulted in a statistically significant increase in killing of phagocytized B. cenocepacia. Collectively, these findings support further development of strategies that target DNABII proteins as a novel approach for treatment of CF patients, particularly those whose lungs are infected with B. cenocepacia.

  13. The Salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria.

    Science.gov (United States)

    Ruan, Haihua; Zhang, Zhen; Tian, Li; Wang, Suying; Hu, Shuangyan; Qiao, Jian-Jun

    2016-09-16

    Microbial pathogens enter host cells by injecting effector proteins of the Type III secretion system (T3SS), which facilitate pathogen translocation across the host cell membrane. These effector proteins exert their effects by modulating a variety of host innate immune responses, thereby facilitating bacterial replication and systemic infection. Salmonella enterica serovar typhimurium (S.typhimurium) is a clinically important pathogen that causes food poisoning and gastroenteritis. The SopB effector protein of S. typhimurium, encoded by Salmonella pathogenicity islands (SPI)-1 T3SS, protects host epithelial cells from infection-induced apoptosis. However, how SopB influences apoptosis induction remains unclear. Here, we investigated the mechanism of SopB action in host cells. We found that SopB inhibits infection-induced apoptosis by attenuating the production of reactive oxygen species (ROS) in mitochondria, the crucial organelles for apoptosis initiation. Further investigation revealed that SopB binds to cytosolic tumor necrosis factor receptor associated factor 6 (TRAF6) and forms a trap preventing the mitochondrial recruitment of TRAF6, an essential event for ROS generation within mitochondria. By studying the response of Traf6(+/+) and Traf6(-/-)mouse embryonic fibroblasts to S. typhimurium infection, we found that TRAF6 promoted apoptosis by increasing ROS accumulation, which led to increased Bax/Bcl-2 ratio, Bax recruitment to mitochondrial membrane, and release of Cyt c into the cytoplasm. These findings show that SopB suppresses host cell apoptosis by binding to TRAF6 and preventing mitochondrial ROS generation. PMID:27473656

  14. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation.

    Science.gov (United States)

    Russo, Brian C; Stamm, Luisa M; Raaben, Matthijs; Kim, Caleb M; Kahoud, Emily; Robinson, Lindsey R; Bose, Sayantan; Queiroz, Ana L; Herrera, Bobby Brooke; Baxt, Leigh A; Mor-Vaknin, Nirit; Fu, Yang; Molina, Gabriel; Markovitz, David M; Whelan, Sean P; Goldberg, Marcia B

    2016-01-01

    Type 3 secretion systems (T3SSs) of bacterial pathogens translocate bacterial effector proteins that mediate disease into the eukaryotic cytosol. Effectors traverse the plasma membrane through a translocon pore formed by T3SS proteins. In a genome-wide selection, we identified the intermediate filament vimentin as required for infection by the T3SS-dependent pathogen S. flexneri. We found that vimentin is required for efficient T3SS translocation of effectors by S. flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pseudotuberculosis. Vimentin and the intestinal epithelial intermediate filament keratin 18 interact with the C-terminus of the Shigella translocon pore protein IpaC. Vimentin and its interaction with IpaC are dispensable for pore formation, but are required for stable docking of S. flexneri to cells; moreover, stable docking triggers effector secretion. These findings establish that stable docking of the bacterium specifically requires intermediate filaments, is a process distinct from pore formation, and is a prerequisite for effector secretion. PMID:27572444

  15. Both piston-like and rotational motions are present in bacterial chemoreceptor signaling.

    Science.gov (United States)

    Yu, Daqi; Ma, Xiaomin; Tu, Yuhai; Lai, Luhua

    2015-01-01

    Bacterial chemotaxis signaling is triggered by binding of chemo-effectors to the membrane-bound chemoreceptor dimers. Though much is known about the structure of the chemoreceptors, details of the receptor dynamics and their effects on signaling are still unclear. Here, by using molecular dynamics simulations and principle component analysis, we study the dynamics of the periplasmic domain of aspartate chemoreceptor Tar dimer and its conformational changes when binding to different ligands (attractant, antagonist, and two attractant molecules). We found two dominant components (modes) in the receptor dynamics: a relative rotation of the two Tar monomers and a piston-like up-and-down sliding movement of the α4 helix. These two modes are highly correlated. Binding of one attractant molecule to the Tar dimer induced both significant piston-like downward movements of the α4 helix and strong relative rotations of the two Tar monomers, while binding of an antagonist or the symmetric binding of two attractant molecules to a Tar dimer suppresses both modes. The anti-symmetric effects of the relative rotation mode also explained the negative cooperativity between the two binding pockets. Our results suggest a mechanism of coupled rotation and piston-like motion for bacterial chemoreceptor signaling.

  16. A Salmonella type three secretion effector/chaperone complex adopts a hexameric ring-like structure.

    Science.gov (United States)

    Roblin, Pierre; Dewitte, Frédérique; Villeret, Vincent; Biondi, Emanuele G; Bompard, Coralie

    2015-02-15

    Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.

  17. Biodistribution of a 67Ga-labeled anti-TNF VHH single-domain antibody containing a bacterial albumin-binding domain (Zag)

    International Nuclear Information System (INIS)

    Introduction: Small domain antibodies (sdAbs) present high potential for both molecular in vivo imaging and therapy. Owing to the low molecular weight they are rapidly cleared from blood circulation, and new strategies to extend their half-lifes are needed for therapeutic applications. We have selected a bacterial albumin-binding domain (ABD) from protein Zag to be fused to an anti-tumor necrosis factor (TNF) single variable-domain heavy-chain region antibody (VHH) to delay blood clearance, and evaluated the biodistribution profile of the fusion protein. Methods: The anti-TNF VHH and the fusion protein VHH-Zag were conjugated to S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA). The anti-TNF and albumin-binding properties of the conjugates NOTA-VHH and NOTA-VHH-Zag were assessed by enzyme-linked immunosorbent assay (ELISA). The radioconjugates 67Ga-NOTA-VHH and 67Ga-NOTA-VHH-Zag were obtained by reaction of 67GaCl3 with the corresponding conjugates at room temperature. Biodistribution studies were performed in healthy female CD-1 mice. Results: The immunoreactivity of the VHH-based proteins is preserved upon conjugation to NOTA as well as after radiometallation. The radiochemical purity of the radioconjugates was higher than 95% as determined by ITLC-SG after purification by gel filtration. The biodistribution studies showed that the Zag domain affected the pharmacokinetic properties of VHH, with impressive differences in blood clearance (0.028 ± 0.004 vs 1.7 ± 0.8 % I.A./g) and total excretion (97.8 ± 0.6 vs 25.5 ± 2.1 % I.A.) for 67Ga-NOTA-VHH and 67Ga-NOTA-VHH-Zag, respectively, at 24 h p.i. Conclusion: The Zag domain prolonged the circulation time of VHH by reducing the blood clearance of the labeled fusion protein 67Ga-NOTA-VHH-Zag. In this way, the anti-TNF VHH in fusion with the Zag ABD presents a higher therapeutic potential than the unmodified VHH

  18. A Salmonella typhimurium-translocated Glycerophospholipid:Cholesterol Acyltransferase Promotes Virulence by Binding to the RhoA Protein Switch Regions

    Energy Technology Data Exchange (ETDEWEB)

    LaRock, Doris L.; Brzovic, Peter S.; Levin, Itay; Blanc, Marie-Pierre; Miller, Samuel I.

    2012-08-24

    Salmonella enterica serovar typhimurium translocates a glycerophospholipid: cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activation of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.

  19. ROBOTIC TANK INSPECTION END EFFECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original

  20. Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor

    OpenAIRE

    Chu, Ming; Ding, Ran; Chu, Zheng-yun; Zhang, Ming-bo; Liu, Xiao-Yan; Xie, Shao-Hua; Zhai, Yan-jun; Wang, Yue-dan

    2014-01-01

    Background Berberine is an isoquinoline alkaloid mainly extracted from Rhizoma Coptidis and has been shown to possess a potent inhibitory activity against bacterial. However, the role of berberine in anti-bacterial action has not been extensively studied. Methods The animal model was established to investigate the effects of berberine on bacterial and LPS infection. Docking analysis, Molecular dynamics simulations and Real-time RT-PCR analysis was adopted to investigate the molecular mechanis...

  1. Identification of cognate host targets and specific ubiquitylation sites on the Salmonella SPI-1 effector SopB/SigD

    DEFF Research Database (Denmark)

    Rogers, Lindsay D; Kristensen, Anders R; Boyle, Erin C;

    2008-01-01

    Salmonella enterica is a bacterial pathogen responsible for enteritis and typhoid fever. Virulence is linked to two Salmonella pathogenicity islands (SPI-1 and SPI-2) on the bacterial chromosome, each of which encodes a type III secretion system. While both the SPI-1 and SPI-2 systems secrete...... an array of effectors into the host, relatively few host proteins have been identified as targets for their effects. Here we use stable isotope labeling with amino acids in cell culture (SILAC) and quantitative mass spectrometry-based proteomics to identify the host targets of the SPI-1 effector, Sop...

  2. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria

    Science.gov (United States)

    Beck, Christina M.; Willett, Julia L. E.; Kim, Jeff J.; Low, David A.; Hayes, Christopher S.

    2016-01-01

    Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. PMID:27723824

  3. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.

    Science.gov (United States)

    Futaki, S; Ueno, H; Martinez del Pozo, A; Pospischil, M A; Manning, J M; Ringe, D; Stoddard, B; Tanizawa, K; Yoshimura, T; Soda, K

    1990-12-25

    In bacterial D-amino acid transaminase, Lys-145, which binds the coenzyme pyridoxal 5'-phosphate in Schiff base linkage, was changed to Gln-145 by site-directed mutagenesis (K145Q). The mutant enzyme had 0.015% the activity of the wild-type enzyme and was capable of forming a Schiff base with D-alanine; this external aldimine was formed over a period of minutes depending upon the D-alanine concentration. The transformation of the pyridoxal-5'-phosphate form of the enzyme to the pyridoxamine-5'-phosphate form (i.e. the half-reaction of transamination) occurred over a period of hours with this mutant enzyme. Thus, information on these two steps in the reaction and on the factors that influence them can readily be obtained with this mutant enzyme. In contrast, these reactions with the wild-type enzyme occur at much faster rates and are not easily studied separately. The mutant enzyme shows distinct preference for D- over L-alanine as substrates but it does so about 50-fold less effectively than the wild-type enzyme. Thus, Lys-145 probably acts in concert with the coenzyme and other functional side chain(s) to lead to efficient and stereochemically precise transamination in the wild-type enzyme. The addition of exogenous amines, ethanolamine or methyl amine, increased the rate of external aldimine formation with D-alanine and the mutant enzyme but the subsequent transformation to the pyridoxamine-5'-phosphate form of the enzyme was unaffected by exogenous amines. The wild-type enzyme displayed a large negative trough in the circular dichroic spectrum at 420 nm, which was practically absent in the mutant enzyme. However, addition of D-alanine to the mutant enzyme generated this negative Cotton effect (due to formation of the external aldimine with D-alanine). This circular dichroism band gradually collapsed in parallel with the transformation to the pyridoxamine-5'-phosphate enzyme. Further studies on this mutant enzyme, which displays the characteristics of the wild

  4. Jet Engine Exhaust Nozzle Flow Effector

    Science.gov (United States)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  5. Mechanism and structure of the bacterial type IV secretion systems.

    Science.gov (United States)

    Christie, Peter J; Whitaker, Neal; González-Rivera, Christian

    2014-08-01

    The bacterial type IV secretion systems (T4SSs) translocate DNA and protein substrates to bacterial or eukaryotic target cells generally by a mechanism dependent on direct cell-to-cell contact. The T4SSs encompass two large subfamilies, the conjugation systems and the effector translocators. The conjugation systems mediate interbacterial DNA transfer and are responsible for the rapid dissemination of antibiotic resistance genes and virulence determinants in clinical settings. The effector translocators are used by many Gram-negative bacterial pathogens for delivery of potentially hundreds of virulence proteins to eukaryotic cells for modulation of different physiological processes during infection. Recently, there has been considerable progress in defining the structures of T4SS machine subunits and large machine subassemblies. Additionally, the nature of substrate translocation sequences and the contributions of accessory proteins to substrate docking with the translocation channel have been elucidated. A DNA translocation route through the Agrobacterium tumefaciens VirB/VirD4 system was defined, and both intracellular (DNA ligand, ATP energy) and extracellular (phage binding) signals were shown to activate type IV-dependent translocation. Finally, phylogenetic studies have shed light on the evolution and distribution of T4SSs, and complementary structure-function studies of diverse systems have identified adaptations tailored for novel functions in pathogenic settings. This review summarizes the recent progress in our understanding of the architecture and mechanism of action of these fascinating machines, with emphasis on the 'archetypal' A. tumefaciens VirB/VirD4 T4SS and related conjugation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. PMID:24389247

  6. The capping domain in RalF regulates effector functions.

    Directory of Open Access Journals (Sweden)

    Eric Alix

    Full Text Available The Legionella pneumophila effector protein RalF functions as a guanine nucleotide exchange factor (GEF that activates the host small GTPase protein ADP-ribosylation factor (Arf, and recruits this host protein to the vacuoles in which this pathogen resides. GEF activity is conferred by the Sec7 domain located in the N-terminal region of RalF. Structural studies indicate that the C-terminal region of RalF makes contacts with residues in the Sec7 domain important for Arf interactions. Theoretically, the C-terminal region of RalF could prevent nucleotide exchange activity by blocking the ability of Arf to interact with the Sec7 domain. For this reason, the C-terminal region of RalF has been termed a capping domain. Here, the role of the RalF capping domain was investigated by comparing biochemical and effector activities mediated by this domain in both the Legionella RalF protein (LpRalF and in a RalF ortholog isolated from the unrelated intracellular pathogen Rickettsia prowazekii (RpRalF. These data indicate that both RalF proteins contain a functional Sec7 domain and that the capping domain regulates RalF GEF activity. The capping domain has intrinsic determinants that mediate localization of the RalF protein inside of host cells and confer distinct effector activities. Localization mediated by the capping domain of LpRalF enables the GEF to modulate membrane transport in the secretory pathway, whereas, the capping domain of RpRalF enables this bacterial GEF to modulate actin dynamics occurring near the plasma membrane. Thus, these data reveal that divergence in the function of the C-terminal capping domain alters the in vivo functions of the RalF proteins.

  7. Quantitative proteomic analysis of Burkholderia pseudomallei Bsa type III secretion system effectors using hypersecreting mutants.

    Science.gov (United States)

    Vander Broek, Charles W; Chalmers, Kevin J; Stevens, Mark P; Stevens, Joanne M

    2015-04-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS "gatekeeper" family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei.

  8. Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling.

    Directory of Open Access Journals (Sweden)

    Eva M Campodonico

    Full Text Available Legionella pneumophila is a Gram-negative bacterium that can colonize both freshwater protozoa and human alveolar macrophages, the latter infection resulting in Legionnaires' disease. The intracellular lifecycle of L. pneumophila requires extensive manipulation of its host cell, which is carried out by effector proteins that are translocated into the host cell through the Dot/Icm type IV secretion system. This study focuses on a pair of highly similar type IV substrates called YlfA/LegC7 and YlfB/LegC2 that were initially identified in a screen for proteins that cause growth inhibition in yeast. Analysis of truncation mutants revealed that the hydrophobic residues in the Ylf amino termini were required for localization of each protein to the membranes of host cells. Central and carboxy terminal coiled coil domains were found to mediate binding of YlfA and YlfB to themselves and to each other. In vivo, a ΔylfA ΔylfB double mutant strain of L. pneumophila was shown to be defective in establishing a vacuole that supports bacterial replication. This phenotype was subsequently correlated with a decrease in the association of endoplasmic reticulum (ER-derived vesicles with vacuoles containing ΔylfA ΔylfB mutant bacteria. These data suggest that the Ylf proteins are membrane-associated effectors that enhance remodeling of the L. pneumophila -containing vacuole by promoting association and possibly fusion of ER-derived membrane vesicles with the bacterial compartment.

  9. Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling

    Science.gov (United States)

    Campodonico, Eva M.; Roy, Craig R.; Ninio, Shira

    2016-01-01

    Legionella pneumophila is a Gram-negative bacterium that can colonize both freshwater protozoa and human alveolar macrophages, the latter infection resulting in Legionnaires’ disease. The intracellular lifecycle of L. pneumophila requires extensive manipulation of its host cell, which is carried out by effector proteins that are translocated into the host cell through the Dot/Icm type IV secretion system. This study focuses on a pair of highly similar type IV substrates called YlfA/LegC7 and YlfB/LegC2 that were initially identified in a screen for proteins that cause growth inhibition in yeast. Analysis of truncation mutants revealed that the hydrophobic residues in the Ylf amino termini were required for localization of each protein to the membranes of host cells. Central and carboxy terminal coiled coil domains were found to mediate binding of YlfA and YlfB to themselves and to each other. In vivo, a ΔylfA ΔylfB double mutant strain of L. pneumophila was shown to be defective in establishing a vacuole that supports bacterial replication. This phenotype was subsequently correlated with a decrease in the association of endoplasmic reticulum (ER)-derived vesicles with vacuoles containing ΔylfA ΔylfB mutant bacteria. These data suggest that the Ylf proteins are membrane-associated effectors that enhance remodeling of the L. pneumophila -containing vacuole by promoting association and possibly fusion of ER-derived membrane vesicles with the bacterial compartment. PMID:27459495

  10. Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling.

    Science.gov (United States)

    Campodonico, Eva M; Roy, Craig R; Ninio, Shira

    2016-01-01

    Legionella pneumophila is a Gram-negative bacterium that can colonize both freshwater protozoa and human alveolar macrophages, the latter infection resulting in Legionnaires' disease. The intracellular lifecycle of L. pneumophila requires extensive manipulation of its host cell, which is carried out by effector proteins that are translocated into the host cell through the Dot/Icm type IV secretion system. This study focuses on a pair of highly similar type IV substrates called YlfA/LegC7 and YlfB/LegC2 that were initially identified in a screen for proteins that cause growth inhibition in yeast. Analysis of truncation mutants revealed that the hydrophobic residues in the Ylf amino termini were required for localization of each protein to the membranes of host cells. Central and carboxy terminal coiled coil domains were found to mediate binding of YlfA and YlfB to themselves and to each other. In vivo, a ΔylfA ΔylfB double mutant strain of L. pneumophila was shown to be defective in establishing a vacuole that supports bacterial replication. This phenotype was subsequently correlated with a decrease in the association of endoplasmic reticulum (ER)-derived vesicles with vacuoles containing ΔylfA ΔylfB mutant bacteria. These data suggest that the Ylf proteins are membrane-associated effectors that enhance remodeling of the L. pneumophila -containing vacuole by promoting association and possibly fusion of ER-derived membrane vesicles with the bacterial compartment. PMID:27459495

  11. HydroCalc Proteome: a tool to identify distinct characteristics of effector proteins.

    Science.gov (United States)

    da Silva, G J; da Silva, R G T M; Silva, V A; C Caritá, E; Fachin, A L; Marins, M

    2016-01-01

    Bacterial pathogenicity is associated with secretion of effector proteins into intra- and extracellular spaces. These proteins interfere with cellular processes such as inhibition of phagosome-lysosome fusion, induction of apoptosis and autophagy, activation and suppression of kinases, regulation of receptor activity, and modulation of transcription factors. Knowledge regarding the characteristics of these proteins would assist in pathogenicity studies, and help to identify possible and novel targets for antibacterial drugs. Amino acid hydropathy is a property that can affect behavior patterns in effector proteins. The HydroCalc Proteome tool analyzes total hydropathy, average hydropathy, C-terminal hydropathy, C-terminal load, and basic polar amino acids at the C-terminus. These five properties could contribute to the identification of proteins with an effector potential. HydroCalc Proteome is a web tool that provides a simple interface for the analysis of hydropathy properties in proteins. This tool permits the analysis of a single protein or even the complete proteome, which cannot be achieved by using other hydropathy tools. The tool displays the result of five properties related to effector proteins in a single table. The HydroCalc Proteome (www.gmb.bio.br/hydrocalc) is a powerful tool for protein analysis, and can contribute to the study of effector proteins. PMID:27525880

  12. Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system.

    Directory of Open Access Journals (Sweden)

    Brit Winnen

    Full Text Available BACKGROUND: Type III secretion systems (TTSS are employed by numerous pathogenic and symbiotic bacteria to inject a cocktail of different "effector proteins" into host cells. These effectors subvert host cell signaling to establish symbiosis or disease. METHODOLOGY/PRINCIPAL FINDINGS: We have studied the injection of SipA and SptP, two effector proteins of the invasion-associated Salmonella type III secretion system (TTSS-1. SipA and SptP trigger different host cell responses. SipA contributes to triggering actin rearrangements and invasion while SptP reverses the actin rearrangements after the invasion has been completed. Nevertheless, SipA and SptP were both pre-formed and stored in the bacterial cytosol before host cell encounter. By time lapse microscopy, we observed that SipA was injected earlier than SptP. Computer modeling revealed that two assumptions were sufficient to explain this injection hierarchy: a large number of SipA and SptP molecules compete for transport via a limiting number of TTSS; and the TTSS recognize SipA more efficiently than SptP. CONCLUSIONS/SIGNIFICANCE: This novel mechanism of hierarchical effector protein injection may serve to avoid functional interference between SipA and SptP. An injection hierarchy of this type may be of general importance, allowing bacteria to precisely time the host cell manipulation by type III effectors.

  13. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    KAUST Repository

    Neumann, Christina

    2014-10-17

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  14. Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana.

    Science.gov (United States)

    Pitino, Marco; Armstrong, Cheryl M; Cano, Liliana M; Duan, Yongping

    2016-01-01

    Candidatus Liberibacter asiaticus "Las" is a phloem-limited bacterial plant pathogen, and the most prevalent species of Liberibacter associated with citrus huanglongbing (HLB), a devastating disease of citrus worldwide. Although, the complete sequence of the Las genome provides the basis for studying functional genomics of Las and molecular mechanisms of Las-plant interactions, the functional characterization of Las effectors remains a slow process since remains to be cultured. Like other plant pathogens, Las may deliver effector proteins into host cells and modulate a variety of host cellular functions for their infection progression. In this study, we identified 16 putative Las effectors via bioinformatics, and transiently expressed them in Nicotiana benthamiana. Diverse subcellular localization with different shapes and aggregation patterns of the effector candidates were revealed by UV- microscopy after transient expression in leaf tissue. Intriguingly, one of the 16 candidates, Las5315mp (mature protein), was localized in the chloroplast and induced cell death at 3 days post inoculation (dpi) in N. benthamiana. Moreover, Las5315mp induced strong callose deposition in plant cells. This study provides new insights into the localizations and potential roles of these Las effectors in planta. PMID:27458468

  15. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins.

    Directory of Open Access Journals (Sweden)

    Andree Hubber

    2014-07-01

    Full Text Available The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P-binding domain first described in the effector DrrA (SidM. This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV, and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM and the endoplasmic reticulum (ER modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.

  16. Impact on bacterial community in midguts of the Asian corn borer larvae by transgenic Trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain.

    Science.gov (United States)

    Li, Yingying; Fu, Kehe; Gao, Shigang; Wu, Qiong; Fan, Lili; Li, Yaqian; Chen, Jie

    2013-01-01

    This paper is the first report of the impact on the bacterial community in the midgut of the Asian corn borer (Ostrinia furnacalis) by the chitinase from the transgenic Trichoderma strain. In this study, we detected a change of the bacterial community in the midgut of the fourth instar larvae by using a culture-independent method. Results suggested that Proteobacteria and Firmicutes were the most highly represented phyla, being present in all the midgut bacterial communities. The observed species richness was simple, ranging from four to five of all the 16S rRNA clone libraries. When using Trichoderma fermentation liquids as additives, the percentages of the dominant flora in the total bacterial community in larval midgut changed significantly. The community of the genus Ochrobactrum in the midgut decreased significantly when the larvae were fed with the fermentation liquids of the transgenic Trichoderma strain Mc4. However, the Enterococcus community increased and then occupied the vacated niche of the Ochrobactrum members. Furthermore, the Shannon-Wiener (H) and the Simpson (1-D) indexes of the larval midgut bacterial library treated by feeding fermentation liquids of the transgenic Trichoderma strain Mc4 was the lowest compared with the culture medium, fermentation liquids of the wild type strain T30, and the sterile artificial diet. The Enterococcus sp. strain was isolated and characterized from the healthy larvae midgut of the Asian corn borer. An infection study of the Asian corn borer larvae using Enterococcus sp. ACB-1 revealed that a correlation existed between the increased Enterococcus community in the larval midgut and larval mortality. These results demonstrated that the transgenic Trichoderma strain could affect the composition of the midgut bacterial community. The change of the midgut bacterial community might be viewed as one of the factors resulting in the increased mortality of the Asian corn borer larvae.

  17. Impact on bacterial community in midguts of the Asian corn borer larvae by transgenic Trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain.

    Directory of Open Access Journals (Sweden)

    Yingying Li

    Full Text Available This paper is the first report of the impact on the bacterial community in the midgut of the Asian corn borer (Ostrinia furnacalis by the chitinase from the transgenic Trichoderma strain. In this study, we detected a change of the bacterial community in the midgut of the fourth instar larvae by using a culture-independent method. Results suggested that Proteobacteria and Firmicutes were the most highly represented phyla, being present in all the midgut bacterial communities. The observed species richness was simple, ranging from four to five of all the 16S rRNA clone libraries. When using Trichoderma fermentation liquids as additives, the percentages of the dominant flora in the total bacterial community in larval midgut changed significantly. The community of the genus Ochrobactrum in the midgut decreased significantly when the larvae were fed with the fermentation liquids of the transgenic Trichoderma strain Mc4. However, the Enterococcus community increased and then occupied the vacated niche of the Ochrobactrum members. Furthermore, the Shannon-Wiener (H and the Simpson (1-D indexes of the larval midgut bacterial library treated by feeding fermentation liquids of the transgenic Trichoderma strain Mc4 was the lowest compared with the culture medium, fermentation liquids of the wild type strain T30, and the sterile artificial diet. The Enterococcus sp. strain was isolated and characterized from the healthy larvae midgut of the Asian corn borer. An infection study of the Asian corn borer larvae using Enterococcus sp. ACB-1 revealed that a correlation existed between the increased Enterococcus community in the larval midgut and larval mortality. These results demonstrated that the transgenic Trichoderma strain could affect the composition of the midgut bacterial community. The change of the midgut bacterial community might be viewed as one of the factors resulting in the increased mortality of the Asian corn borer larvae.

  18. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  19. Chronic effects of a Salmonella type III secretion effector protein AvrA in vivo.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available BACKGROUND: Salmonella infection is a common public health problem that can become chronic and increase the risk of inflammatory bowel diseases and cancer. AvrA is a Salmonella bacterial type III secretion effector protein. Increasing evidence demonstrates that AvrA is a multi-functional enzyme with critical roles in inhibiting inflammation, regulating apoptosis, and enhancing proliferation. However, the chronic effects of Salmonella and effector AvrA in vivo are still unknown. Moreover, alive, mutated, non-invasive Salmonella is used as a vector to specifically target cancer cells. However, studies are lacking on chronic infection with non-pathogenic or mutated Salmonella in the host. METHODS/PRINCIPAL FINDINGS: We infected mice with Salmonella Typhimurium for 27 weeks and investigated the physiological effects as well as the role of AvrA in intestinal inflammation. We found altered body weight, intestinal pathology, and bacterial translocation in spleen, liver, and gallbladder in chronically Salmonella-infected mice. Moreover, AvrA suppressed intestinal inflammation and inhibited the secretion of cytokines IL-12, IFN-gamma, and TNF-alpha. AvrA expression in Salmonella enhanced its invasion ability. Liver abscess and Salmonella translocation in the gallbladder were observed and may be associated with AvrA expression in Salmonella. CONCLUSION/SIGNIFICANCE: We created a mouse model with persistent Salmonella infection in vivo. Our study further emphasizes the importance of the Salmonella effector protein AvrA in intestinal inflammation, bacterial translocation, and chronic infection in vivo.

  20. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors.

    Science.gov (United States)

    Morbitzer, Robert; Römer, Patrick; Boch, Jens; Lahaye, Thomas

    2010-12-14

    Proteins that can be tailored to bind desired DNA sequences are key tools for molecular biology. Previous studies suggested that DNA-binding specificity of transcription activator-like effectors (TALEs) from the bacterial genus Xanthomonas is defined by repeat-variable diresidues (RVDs) of tandem-arranged 34/35-amino acid repeat units. We have studied chimeras of two TALEs differing in RVDs and non-RVDs and found that, in contrast to the critical contributions by RVDs, non-RVDs had no major effect on the DNA-binding specificity of the chimeras. This finding suggests that one needs only to modify the RVDs to generate designer TALEs (dTALEs) to activate transcription of user-defined target genes. We used the scaffold of the TALE AvrBs3 and changed its RVDs to match either the tomato Bs4, the Arabidopsis EGL3, or the Arabidopsis KNAT1 promoter. All three dTALEs transcriptionally activated the desired promoters in a sequence-specific manner as mutations within the targeted DNA sequences abolished promoter activation. This study is unique in showing that chromosomal loci can be targeted specifically by dTALEs. We also engineered two AvrBs3 derivatives with four additional repeat units activating specifically either the pepper Bs3 or UPA20 promoter. Because AvrBs3 activates both promoters, our data show that addition of repeat units facilitates TALE-specificity fine-tuning. Finally, we demonstrate that the RVD NK mediates specific interaction with G nucleotides that thus far could not be targeted specifically by any known RVD type. In summary, our data demonstrate that the TALE scaffold can be tailored to target user-defined DNA sequences in whole genomes.

  1. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.

    Science.gov (United States)

    Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide

    2015-01-01

    Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.

  2. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    Science.gov (United States)

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  3. STAR: a simple TAL effector assembly reaction using isothermal assembly

    Science.gov (United States)

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M.

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly (‘Gibson assembly’) that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  4. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    Science.gov (United States)

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-09-12

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology.

  5. First Analysis of a Bacterial Collagen-Binding Protein with Collagen Toolkits: Promiscuous Binding of YadA to Collagens May Explain How YadA Interferes with Host Processes▿ †

    OpenAIRE

    Jack C. Leo; Elovaara, Heli; Bihan, Dominique; Pugh, Nicholas; Kilpinen, Sami K.; Raynal, Nicolas; Skurnik, Mikael; Farndale, Richard W.; Goldman, Adrian

    2010-01-01

    The Yersinia adhesin YadA mediates the adhesion of the human enteropathogen Yersinia enterocolitica to collagens and other components of the extracellular matrix. Though YadA has been proposed to bind to a specific site in collagens, the exact binding determinants for YadA in native collagen have not previously been elucidated. We investigated the binding of YadA to collagen Toolkits, which are libraries of triple-helical peptides spanning the sequences of type II and III human collagens. Yad...

  6. Shigella manipulates host immune responses by delivering effector proteins with specific roles

    Directory of Open Access Journals (Sweden)

    Hiroshi eAshida

    2015-05-01

    Full Text Available The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and adaptive immune system, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors via the type III secretion system (T3SS that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.

  7. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs.

    Directory of Open Access Journals (Sweden)

    Finola E Moore

    Full Text Available Zinc Finger Nucleases (ZFNs made by Context-Dependent Assembly (CoDA and Transcription Activator-Like Effector Nucleases (TALENs provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%-76.8% compared to 1.1%-3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish.

  8. Applying Fluorescence Resonance Energy Transfer (FRET) to Examine Effector Translocation Efficiency by Coxiella burnetii during siRNA Silencing.

    Science.gov (United States)

    Newton, Patrice; Latomanski, Eleanor A; Newton, Hayley J

    2016-07-06

    Coxiella burnetii, the causative agent of Q fever, is an intracellular pathogen that relies on a Type IV Dot/Icm Secretion System to establish a replicative niche. A cohort of effectors are translocated through this system into the host cell to manipulate host processes and allow the establishment of a unique lysosome-derived vacuole for replication. The method presented here involves the combination of two well-established techniques: specific gene silencing using siRNA and measurement of effector translocation using a FRET-based substrate that relies on β-lactamase activity. Applying these two approaches, we can begin to understand the role of host factors in bacterial secretion system function and effector translocation. In this study we examined the role of Rab5A and Rab7A, both important regulators of the endocytic trafficking pathway. We demonstrate that silencing the expression of either protein results in a decrease in effector translocation efficiency. These methods can be easily modified to examine other intracellular and extracellular pathogens that also utilize secretion systems. In this way, a global picture of host factors involved in bacterial effector translocation may be revealed.

  9. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    Science.gov (United States)

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  10. Crystal Structures of the Staphylococcal Toxin SSL5 in Complex With Sialyl-Lewis X Reveal a Conserved Binding Site That Shares Common Features With Viral And Bacterial Sialic Acid-Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N.

    2009-06-02

    Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

  11. Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle.

    Science.gov (United States)

    Heuveling, Johanna; Frochaux, Violette; Ziomkowska, Joanna; Wawrzinek, Robert; Wessig, Pablo; Herrmann, Andreas; Schneider, Erwin

    2014-01-01

    Prokaryotic solute binding protein-dependent ATP-binding cassette import systems are divided into type I and type II and mechanistic differences in the transport process going along with this classification are under intensive investigation. Little is known about the conformational dynamics during the catalytic cycle especially concerning the transmembrane domains. The type I transporter for positively charged amino acids from Salmonella enterica serovar Typhimurium (LAO-HisQMP2) was studied by limited proteolysis in detergent solution in the absence and presence of co-factors including ATP, ADP, LAO/arginine, and Mg(2+) ions. Stable peptide fragments could be obtained and differentially susceptible cleavage sites were determined by mass spectrometry as Lys-258 in the nucleotide-binding subunit, HisP, and Arg-217/Arg-218 in the transmembrane subunit, HisQ. In contrast, transmembrane subunit HisM was gradually degraded but no stable fragment could be detected. HisP and HisQ were equally resistant under pre- and post-hydrolysis conditions in the presence of arginine-loaded solute-binding protein LAO and ATP/ADP. Some protection was also observed with LAO/arginine alone, thus reflecting binding to the transporter in the apo-state and transmembrane signaling. Comparable digestion patterns were obtained with the transporter reconstituted into proteoliposomes and nanodiscs. Fluorescence lifetime spectroscopy confirmed the change of HisQ(R218) to a more apolar microenvironment upon ATP binding and hydrolysis. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. Together, our data suggest similar conformational changes during the transport cycle as described for the maltose ABC transporter of Escherichia coli, despite distinct structural differences between both systems.

  12. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it. PMID:27092296

  13. Characterisation of the putative effector interaction site of the regulatory HbpR protein from Pseudomonas azelaica by site-directed mutagenesis.

    Directory of Open Access Journals (Sweden)

    Christelle Vogne

    Full Text Available Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiphenyl. We use protein structure modeling to predict folding of the effector recognition domain of HbpR and molecular docking to identify the region where 2-hydroxybiphenyl may interact with HbpR. A large number of site-directed HbpR mutants of residues in- and outside the predicted interaction area was created and their potential to induce reporter gene expression in Escherichia coli from the cognate P(C promoter upon activation with 2-hydroxybiphenyl was studied. Mutant proteins were purified to study their conformation. Critical residues for effector stimulation indeed grouped near the predicted area, some of which are conserved among XylR/DmpR subfamily members in spite of displaying different effector specificities. This suggests that they are important for the process of effector activation, but not necessarily for effector specificity recognition.

  14. Targeting an antimicrobial effector function in insect immunity as a pest control strategy

    OpenAIRE

    Bulmer, Mark S.; Bachelet, Ido; Raman, Rahul; Rosengaus, Rebeca B.; Sasisekharan, Ram

    2009-01-01

    Insect pests such as termites cause damages to crops and man-made structures estimated at over $30 billion per year, imposing a global challenge for the human economy. Here, we report a strategy for compromising insect immunity that might lead to the development of nontoxic, sustainable pest control methods. Gram-negative bacteria binding proteins (GNBPs) are critical for sensing pathogenic infection and triggering effector responses. We report that termite GNBP-2 (tGNBP-2) shows β(1,3)-gluca...

  15. Cytokine signaling in the differentiation of innate effector cells

    OpenAIRE

    Huang, Hua; Li, Yapeng; Qi, Xiaopeng

    2013-01-01

    Innate effector cells, including innate effector cells of myeloid and lymphoid lineages, are crucial components of various types of immune responses. Bone marrow progenitors differentiate into many subsets of innate effector cells after receiving instructional signals often provided by cytokines. Signal transducer and activator of transcription (STATs) have been shown to be essential in the differentiation of various types of innate effector cells. In this review, we focus specifically on the...

  16. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  17. OppA of Listeria monocytogenes, an Oligopeptide-Binding Protein Required for Bacterial Growth at Low Temperature and Involved in Intracellular Survival

    OpenAIRE

    Borezee, Elise; Pellegrini, Elisabeth; Berche, Patrick

    2000-01-01

    We identified a new oligopeptide permease operon in the pathogen Listeria monocytogenes. This opp operon consists of five genes (oppA, oppB, oppC, oppD, and oppF) and displays the same genetic organization as those of several bacterial species. The first gene of this operon, oppA, encodes a 62-kDa protein sharing 33% identity with OppA of Bacillus subtilis and is expressed predominantly during exponential growth. The function of oppA was studied by constructing an oppA deletion mutant. The ph...

  18. Probing the Role of Divalent Metal Ions in a Bacterial Psychrophilic Metalloprotease: Binding Studies of an Enzyme in the Crystalline State by X-Ray Crystallography

    OpenAIRE

    Ravaud, Stephanie; Gouet, Patrice; Haser, Richard; Aghajari, Nushin

    2003-01-01

    The psychrophilic alkaline metalloprotease (PAP) produced by a Pseudomonas bacterium isolated in Antarctica belongs to the clan of metzincins, for which a zinc ion is essential for catalytic activity. Binding studies in the crystalline state have been performed by X-ray crystallography in order to improve the understanding of the role of the zinc and calcium ions bound to this protease. Cocrystallization and soaking experiments with EDTA in a concentration range from 1 to 85 mM have resulted ...

  19. Impact of end effector technology on telemanipulation performance

    Science.gov (United States)

    Bejczy, A. K.; Szakaly, Z.; Ohm, T.

    1990-01-01

    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.

  20. Kinetics of H+ ion binding by the P+QA-state of bacterial photosynthetic reaction centers: rate limitation within the protein.

    Science.gov (United States)

    Maróti, P; Wraight, C A

    1997-01-01

    The kinetics of flash-induced H+ ion binding by isolated reaction centers (RCs) of Rhodobacter sphaeroides, strain R-26, were measured, using pH indicators and conductimetry, in the presence of terbutryn to block electron transfer between the primary and secondary quinones (QA and QB), and in the absence of exogenous electron donors to the oxidized primary donor, P+, i.e., the P+QA-state. Under these conditions, proton binding by RCs is to the protein rather than to any of the cofactors. After light activation to form P+QA-, the kinetics of proton binding were monoexponential at all pH values studied. At neutral pH, the apparent bimolecular rate constant was close to the diffusional limit for proton transfer in aqueous solution (approximately 10(11) M-1 s-1), but increased significantly in the alkaline pH range (e.g., 2 x 10(13) M-1 s-1 at pH 10). The average slope of the pH dependence was -0.4 instead of -1.0, as might be expected for a H+ diffusion-controlled process. High activation energy (0.54 eV at pH 8.0) and weak viscosity dependence showed that H+ ion uptake by RCs is not limited by diffusion. The salt dependence of the H+ ion binding rate and the pK values of the protonatable amino acid residues of the reaction center implicated surface charge influences, and Gouy-Chapman theory provided a workable description of the ionic effects as arising from modulation of the pH at the surface of the RC. Incubation in D2O caused small increases in the pKs of the protonatable groups and a small, pH (pD)-dependent slowing of the binding rate. The salt, pH, temperature, viscosity, and D2O dependences of the proton uptake by RCs in the P+QA- state were accounted for by three considerations: 1) parallel pathways of H+ delivery to the RC, contributing to the observed (net) H+ disappearance; 2) rate limitation of the protonation of target groups within the protein by conformational dynamics; and 3) electrostatic influences of charged groups in the protein, via the surface p

  1. Kinetics of H+ ion binding by the P+QA-state of bacterial photosynthetic reaction centers: rate limitation within the protein.

    Science.gov (United States)

    Maróti, P; Wraight, C A

    1997-07-01

    The kinetics of flash-induced H+ ion binding by isolated reaction centers (RCs) of Rhodobacter sphaeroides, strain R-26, were measured, using pH indicators and conductimetry, in the presence of terbutryn to block electron transfer between the primary and secondary quinones (QA and QB), and in the absence of exogenous electron donors to the oxidized primary donor, P+, i.e., the P+QA-state. Under these conditions, proton binding by RCs is to the protein rather than to any of the cofactors. After light activation to form P+QA-, the kinetics of proton binding were monoexponential at all pH values studied. At neutral pH, the apparent bimolecular rate constant was close to the diffusional limit for proton transfer in aqueous solution (approximately 10(11) M-1 s-1), but increased significantly in the alkaline pH range (e.g., 2 x 10(13) M-1 s-1 at pH 10). The average slope of the pH dependence was -0.4 instead of -1.0, as might be expected for a H+ diffusion-controlled process. High activation energy (0.54 eV at pH 8.0) and weak viscosity dependence showed that H+ ion uptake by RCs is not limited by diffusion. The salt dependence of the H+ ion binding rate and the pK values of the protonatable amino acid residues of the reaction center implicated surface charge influences, and Gouy-Chapman theory provided a workable description of the ionic effects as arising from modulation of the pH at the surface of the RC. Incubation in D2O caused small increases in the pKs of the protonatable groups and a small, pH (pD)-dependent slowing of the binding rate. The salt, pH, temperature, viscosity, and D2O dependences of the proton uptake by RCs in the P+QA- state were accounted for by three considerations: 1) parallel pathways of H+ delivery to the RC, contributing to the observed (net) H+ disappearance; 2) rate limitation of the protonation of target groups within the protein by conformational dynamics; and 3) electrostatic influences of charged groups in the protein, via the surface pH.

  2. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions.

    Science.gov (United States)

    Salcedo, Suzana P; Marchesini, María I; Degos, Clara; Terwagne, Matthieu; Von Bargen, Kristine; Lepidi, Hubert; Herrmann, Claudia K; Santos Lacerda, Thais L; Imbert, Paul R C; Pierre, Philippe; Alexopoulou, Lena; Letesson, Jean-Jacques; Comerci, Diego J; Gorvel, Jean-Pierre

    2013-01-01

    Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection.

  3. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Meghan E Pennini

    Full Text Available Sequence analysis of the genome of the strict intracellular pathogen Chlamydia trachomatis revealed the presence of a SET domain containing protein, proteins that primarily function as histone methyltransferases. In these studies, we demonstrated secretion of this protein via a type III secretion mechanism. During infection, the protein is translocated to the host cell nucleus and associates with chromatin. We therefore named the protein nuclear effector (NUE. Expression of NUE in mammalian cells by transfection reconstituted nuclear targeting and chromatin association. In vitro methylation assays confirmed NUE is a histone methyltransferase that targets histones H2B, H3 and H4 and itself (automethylation. Mutants deficient in automethylation demonstrated diminished activity towards histones suggesting automethylation functions to enhance enzymatic activity. Thus, NUE is secreted by Chlamydia, translocates to the host cell nucleus and has enzymatic activity towards eukaryotic substrates. This work is the first description of a bacterial effector that directly targets mammalian histones.

  4. A multifunctional region of the Shigella type 3 effector IpgB1 is important for secretion from bacteria and membrane targeting in eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Sonia C P Costa

    Full Text Available Type 3 secretion systems are complex nanomachines used by many Gram-negative bacteria to deliver tens of proteins (effectors directly into host cells. Once delivered into host cells, effectors often target to specific cellular loci where they usurp host cell processes to their advantage. Here, using the yeast model system, we identify the membrane localization domain (MLD of IpgB1, a stretch of 20 amino acids enriched for hydrophobic residues essential for the targeting of this effector to the plasma membrane. Embedded within these residues are ten that define the IpgB1 chaperone-binding domain for Spa15. As observed with dedicated class IA chaperones that mask hydrophobic MLDs, Spa15, a class IB chaperone, promotes IpgB1 stability by binding this hydrophobic region. However, despite being stable, an IpgB1 allele that lacks the MLD is not recognized as a secreted substrate. Similarly, deletion of the chaperone binding domains of IpgB1 and three additional Spa15-dependent effectors result in alleles that are no longer recognized as secreted substrates despite the presence of intact N-terminal secretion signal sequences. This is in contrast with MLD-containing effectors that bind class IA dedicated chaperones, as deletion of the MLD of these effectors alleviates the chaperone requirement for secretion. These observations indicate that at least for substrates of class IB chaperones, the chaperone-effector complex plays a major role in defining type 3 secreted proteins and highlight how a single region of an effector can play important roles both within prokaryotic and eukaryotic cells.

  5. Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait.

    Science.gov (United States)

    Iakovidis, Michail; Teixeira, Paulo J P L; Exposito-Alonso, Moises; Cowper, Matthew G; Law, Theresa F; Liu, Qingli; Vu, Minh Chau; Dang, Troy Minh; Corwin, Jason A; Weigel, Detlef; Dangl, Jeffery L; Grant, Sarah R

    2016-09-01

    We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.

  6. Yeast as a Heterologous Model System to Uncover Type III Effector Function

    Science.gov (United States)

    Popa, Crina; Coll, Núria S.; Valls, Marc; Sessa, Guido

    2016-01-01

    Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. “Favourite” targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure–function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S

  7. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation.

    Science.gov (United States)

    Dinos, George P; Connell, Sean R; Nierhaus, Knud H; Kalpaxis, Dimitrios L

    2003-03-01

    In a cell-free system derived from Escherichia coli, it is shown that clarithromycin and roxithromycin, like their parent compound erythromycin, do not inhibit the puromycin reaction (i.e., the peptide bond formation between puromycin and AcPhe-tRNA bound at the P-site of 70S ribosomes programmed with heteropolymeric mRNA). Nevertheless, all three antibiotics compete for binding on the ribosome with tylosin, a 16-membered ring macrolide that behaves as a slow-binding, slowly reversible inhibitor of peptidyltransferase. The mutually exclusive binding of these macrolides to ribosomes is also corroborated by the fact that they protect overlapping sites in domain V of 23S rRNA from chemical modification by dimethyl sulfate. From this competition effect, detailed kinetic analysis revealed that roxithromycin or clarithromycin (A), like erythromycin, reacts rapidly with AcPhe-tRNA.MF-mRNA x 70S ribosomal complex (C) to form the encounter complex CA which is then slowly isomerized to a more tight complex, termed C*A. The value of the overall dissociation constant, K, encompassing both steps of macrolide interaction with complex C, is 36 nM for erythromycin, 20 nM for roxithromycin, and 8 nM for clarithromycin. Because the off-rate constant of C*A complex does not significantly differ among the three macrolides, the superiority of clarithromycin as an inhibitor of translation in E. coli cells and many Gram-positive bacteria may be correlated with its greater rate of association with ribosomes. PMID:12606769

  8. Bovine immunoglobulin/protein isolate binds pro-inflammatory bacterial compounds and prevents immune activation in an intestinal co-culture model.

    Science.gov (United States)

    Detzel, Christopher J; Horgan, Alan; Henderson, Abigail L; Petschow, Bryon W; Warner, Christopher D; Maas, Kenneth J; Weaver, Eric M

    2015-01-01

    Intestinal barrier dysfunction is associated with chronic gastrointestinal tract inflammation and diseases such as IBD and IBS. Serum-derived bovine immunoglobulin/protein isolate (SBI) is a specially formulated protein preparation (>90%) for oral administration. The composition of SBI is greater than 60% immunoglobulin including contributions from IgG, IgA, and IgM. Immunoglobulin within the lumen of the gut has been recognized to have anti-inflammatory properties and is involved in maintaining gut homeostasis. The binding of common intestinal antigens (LPS and Lipid A) and the ligand Pam3CSK4, by IgG, IgA, and IgM in SBI was shown using a modified ELISA technique. Each of these antigens stimulated IL-8 and TNF-α cytokine production by THP-1 monocytes. Immune exclusion occurred as SBI (≤50 mg/mL) bound free antigen in a dose dependent manner that inhibited cytokine production by THP-1 monocytes in response to 10 ng/mL LPS or 200 ng/mL Lipid A. Conversely, Pam3CSK4 stimulation of THP-1 monocytes was unaffected by SBI/antigen binding. A co-culture model of the intestinal epithelium consisted of a C2BBe1 monolayer separating an apical compartment from a basal compartment containing THP-1 monocytes. The C2BBe1 monolayer was permeabilized with dimethyl palmitoyl ammonio propanesulfonate (PPS) to simulate a damaged epithelial barrier. Results indicate that Pam3CSK4 was able to translocate across the PPS-damaged C2BBe1 monolayer. However, binding of Pam3CSK4 by immunoglobulins in SBI prevented Pam3CSK4 translocation across the damaged C2BBe1 barrier. These results demonstrated steric exclusion of antigen by SBI which prevented apical to basal translocation of antigen due to changes in the physical properties of Pam3CSK4, most likely as a result of immunoglobulin binding. This study demonstrates that immunoglobulins in SBI can reduce antigen-associated inflammation through immune and steric exclusion mechanisms and furthers the mechanistic understanding of how SBI

  9. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    Science.gov (United States)

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein.

  10. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    Science.gov (United States)

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein. PMID:27231351

  11. Molecular Binding Mechanism of TtgR Repressor to Antibiotics and Antimicrobials.

    Directory of Open Access Journals (Sweden)

    Ana Maria Fernandez-Escamilla

    Full Text Available A disturbing phenomenon in contemporary medicine is the prevalence of multidrug-resistant pathogenic bacteria. Efflux pumps contribute strongly to this antimicrobial drug resistance, which leads to the subsequent failure of clinical treatments. The TtgR protein of Pseudomonas putida is a HTH-type transcriptional repressor that controls expression of the TtgABC efflux pump, which is the main contributor to resistance against several antimicrobials and toxic compounds in this microbe. One of the main strategies to modulate the bacterial resistance is the rational modification of the ligand binding target site. We report the design and characterization of four mutants-TtgRS77A, TtgRE78A, TtgRN110A and TtgRH114A - at the active ligand binding site. The biophysical characterization of the mutants, in the presence and in the absence of different antimicrobials, revealed that TtgRN110A is the variant with highest thermal stability, under any of the experimental conditions tested. EMSA experiments also showed a different dissociation pattern from the operator for TtgRN110A, in the presence of several antimicrobials, making it a key residue in the TtgR protein repression mechanism of the TtgABC efflux pump. We found that TtgRE78A stability is the most affected upon effector binding. We also probe that one mutation at the C-terminal half of helix-α4, TtgRS77A, provokes a severe protein structure distortion, demonstrating the important role of this residue in the overall protein structure and on the ligand binding site. The data provide new information and deepen the understanding of the TtgR-effector binding mechanism and consequently the TtgABC efflux pump regulation mechanism in Pseudomonas putida.

  12. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase.

    Directory of Open Access Journals (Sweden)

    Aleksandra Usenik

    Full Text Available As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1 level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.

  13. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  14. Crystal structure of the effector protein HopA1 from Pseudomonas syringae.

    Science.gov (United States)

    Park, Yangshin; Shin, Inchul; Rhee, Sangkee

    2015-03-01

    Plants have evolved to protect themselves against pathogen attack; in these competitions, many Gram-negative bacteria translocate pathogen-originated proteins known as effectors directly into plant cells to interfere with cellular processes. Effector-triggered immunity (ETI) is a plant defense mechanism in which plant resistance proteins recognize the presence of effectors and initiate immune responses. Enhanced disease susceptibility 1 (EDS1) in Arabidopsis thaliana serves as a central node protein for basal immune resistance and ETI by interacting dynamically with other immune regulatory or resistance proteins. Recently, the effector HopA1 from Pseudomonas syringae was shown to affect these EDS1 complexes by binding EDS1 directly and activating the immune response signaling pathway. Here, we report the crystal structure of the effector HopA1 from P. syringae pv. syringae strain 61 and tomato strain DC3000. HopA1, a sequence-unrelated protein to EDS1, has an α+β fold in which the central antiparallel β-sheet is flanked by helices. A similar structural domain, an α/β fold, is one of the two domains in both EDS1 and the EDS1-interacting protein SAG101, and plays a crucial role in forming the EDS1 complex. Further analyses suggest structural similarity and differences between HopA1 and the α/β fold of SAG101, as well as between two HopA1s from different pathovars. Our structural analysis provides a foundation for understanding the molecular basis of the effect of HopA1 on plant immunity.

  15. The activity of enzymes can be modified by homeopathic dilutions of their effectors

    Directory of Open Access Journals (Sweden)

    Elzbieta Malarczyk

    2012-09-01

    Full Text Available Introduction: The fungal and bacterial materials are very useful for testing the influence of low and very low doses of low molecular phenolic effectors on enzymatic system of phenoloxidases when they are incubated together in the reaction space. Aim: Searching for the model useful biological systems to study the action of diluted low molecular substances on living organisms, which is based on common physical and biochemical analytical procedures. Methods: The fungal and actinomycetal bacterial materials from laboratory cultures as a source of common phenoloxidases, laccase, peroxidase and O-demethylase as well as the pure plant peroxidase were used in experiments described earlier [1-5]. Subsequent dilutions of low molecular phenolic metabolites, appropriate for studied enzymatic systems, prepared in 75% ethanol in the proportion of 1:100 (centesimal and dynamized by shaking in accordance with homeopathic procedures were prepared in our laboratory. During experiments with bacterial and fungal materials and a pure plant peroxidase, which were incubated together with subsequent dilutions of proper phenolic effector, different analytic methods were used including a gel (PAGE [4] and capillary (MEKCE electrophoresis [5], spectral and colorimetric methods [1,2,3] as well as the electron microscopy [5]. Results: In the light of presented data [1-5], the incubation of biological material with diluted phenolic effectors induces various effects on tested enzyme activity. It changed in sinusoidal manner with an gradual growth of dilution rate of tested effectors, which was distinctly visible on the diagram when the number of dilutions was localized on abscissa and biological activity on the ordinate. Exemplary results of the chosen experiments will be presented. For tested enzymes: laccase, peroxidase and O-demethylase, the distance between maximal points of enzymatic activity, shown on a sine curve, repeats more often every 10 subsequent centesimal

  16. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    Science.gov (United States)

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between

  17. TALE-like Effectors are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity

    Directory of Open Access Journals (Sweden)

    Niklas Schandry

    2016-08-01

    Full Text Available Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains.Previous studies showed that transcription activator-like (TAL effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE. RipTALs target DNA via their central repeat domain, where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code.In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24 and 1/5 strains contained a RipTAL, respectively.RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98% in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes.Using the number and order of repeats found in the central repeat domain, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other’s EBEs.Investigation of

  18. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity

    Science.gov (United States)

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47–91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other’s EBEs. Investigation of sequence divergence

  19. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    Science.gov (United States)

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between

  20. CD11b expression as a marker to distinguish between recently activated effector CD8(+) T cells and memory cells

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Ørding Andreasen, Susanne; Christensen, Jan Pravsgaard;

    2001-01-01

    subset. Polyclonal virus-specific effector and memory CD8(+) T cells from lymphocytic choriomeningitis- and vesicular stomatitis virus-infected mice were visualized through staining for intracellular IFN-gamma or binding of MHC-peptide tetramers, and Mac-1 expression was evaluated. Naive T cells and most......CD8(+) T cells in different activation states have been difficult to identify phenotypically. In this study we have investigated whether Mac-1 (CD11b) expression can be used as a criterion to distinguish between recently activated effector cells and memory cells belonging to the CD8(+) T cell...... virus-specific memory CD8(+) T cells express little or no Mac-1 independent of the virus model employed. In contrast, the majority of CD8(+) T cells present during acute infection express a significant level of Mac-1 and, similarly, Mac-1 expression is found on secondary effectors generated in response...

  1. Initial fungal effector production is mediated by early endosome motility

    OpenAIRE

    Higuchi, Yujiro

    2015-01-01

    Fungal plant pathogenicity is facilitated by effector proteins that are specifically expressed during infection and are responsible for suppressing plant defense mechanisms. Recent studies have elucidated the detailed molecular mechanisms of effector action throughout fungal infection. However, little is known about the trafficking and secretion of effectors in fungal hyphae during the initial stage of infection. Using state-of-the-art microscopy we have demonstrated that early endosome (EE) ...

  2. Fibre optic sensor on robot end effector for flexible assembly

    International Nuclear Information System (INIS)

    A fibre optic sensor system was constructed for use on robot end effectors for flexible assembly. The sensor detected the deviations between robot end effector and the workpiece. The signal was fed back to robot controller to shift the end effector until the centre of end effector and the centre of workpiece were aligned at the correct orientation. Then workpiece can be grasped symmetrically. Sensor fusion concept was used to guard against sensor system failure. Fuzzy linguistic variable and control rule concept were introduced in the sensor integration. The experimental setup for the sensor integrated system was shown. The accuracy was also discussed

  3. Genome-wide assessment of differential effector gene use in embryogenesis.

    Science.gov (United States)

    Barsi, Julius C; Tu, Qiang; Calestani, Cristina; Davidson, Eric H

    2015-11-15

    Six different populations of cells were isolated by fluorescence-activated cell sorting from disaggregated late blastula- and gastrula-stage sea urchin embryos according to the regulatory states expressed in these cells, as reported by recombineered bacterial artificial chromosomes producing fluorochromes. Transcriptomes recovered from these embryonic cell populations revealed striking, early differential expression of large cohorts of effector genes. The six cell populations were presumptive pigment cells, presumptive neurogenic cells, presumptive skeletogenic cells, cells from the stomodeal region of the oral ectoderm, ciliated band cells and cells from the endoderm/ectoderm boundary that will give rise both to hindgut and to border ectoderm. Transcriptome analysis revealed that each of these domains specifically expressed several hundred effector genes at significant levels. Annotation indicated the qualitative individuality of the functional nature of each cell population, even though they were isolated from embryos only 1-2 days old. In no case was more than a tiny fraction of the transcripts enriched in one population also enriched in any other of the six populations studied. As was particularly clear in the cases of the presumptive pigment, neurogenic and skeletogenic cells, all three of which represent precociously differentiating cell types of this embryo, most specifically expressed genes of given cell types are not significantly expressed at all in the other cell types. Thus, at the effector gene level, a dramatic, cell type-specific pattern of differential gene regulation is established well before any significant embryonic morphogenesis has occurred.

  4. Lysine11-Linked Polyubiquitination of the AnkB F-Box Effector of Legionella pneumophila

    Science.gov (United States)

    Bruckert, William M.

    2015-01-01

    The fate of the polyubiquitinated protein is determined by the lysine linkages involved in the polymerization of the ubiquitin monomers, which has seven lysine residues (K6, K11, K27, K29, K33, K48, and K63). The translocated AnkB effector of the intravacuolar pathogen Legionella pneumophila is a bona fide F-box protein, which is localized to the cytosolic side of the Legionella-containing vacuole (LCV) and is essential for intravacuolar proliferation within macrophages and amoebae. The F-box domain of AnkB interacts with the host SCF1 E3 ubiquitin ligase that triggers the decoration of the LCV with K48-linked polyubiquitinated proteins that are targeted for proteasomal degradation. Here we report that AnkB becomes rapidly polyubiquitinated within the host cell, and this modification is independent of the F-box domain of AnkB, indicating host-mediated polyubiquitination. We show that the AnkB effector interacts specifically with the host E3 ubiquitin ligase Trim21. Mass spectrometry analyses have shown that AnkB is modified by K11-linked polyubiquitination, which has no effect on its stability. This work shows the first example of K11-linked polyubiquitination of a bacterial effector and its interaction with the host Trim21 ubiquitin ligase. PMID:26483404

  5. The Salmonella effector protein SifA plays a dual role in virulence.

    Science.gov (United States)

    Zhao, Weidong; Moest, Thomas; Zhao, Yaya; Guilhon, Aude-Agnès; Buffat, Christophe; Gorvel, Jean-Pierre; Méresse, Stéphane

    2015-08-13

    The virulence of Salmonella relies on the expression of effector proteins that the bacterium injects inside infected cells. Salmonella enters eukaryotic cells and resides in a vacuolar compartment on which a number of effector proteins such as SifA are found. SifA plays an essential role in Salmonella virulence. It is made of two distinct domains. The N-terminal domain of SifA interacts with the host protein SKIP. This interaction regulates vacuolar membrane dynamics. The C-terminal has a fold similar to other bacterial effector domains having a guanine nucleotide exchange factor activity. Although SifA interacts with RhoA, it does not stimulate the dissociation of GDP and the activation of this GTPase. Hence it remains unknown whether the C-terminal domain contributes to the function of SifA in virulence. We used a model of SKIP knockout mice to show that this protein mediates the host susceptibility to salmonellosis and to establish that SifA also contributes to Salmonella virulence independently of its interaction with SKIP. We establish that the C-terminal domain of SifA mediates this SKIP-independent contribution. Moreover, we show that the two domains of SifA are functionally linked and participate to the same signalling cascade that supports Salmonella virulence.

  6. Hijacking mitochondria: bacterial toxins that modulate mitochondrial function.

    Science.gov (United States)

    Jiang, Jhih-Hang; Tong, Janette; Gabriel, Kipros

    2012-05-01

    Bacterial infection has enormous global social and economic impacts stemming from effects on human health and agriculture. Although there are still many unanswered questions, decades of research has uncovered many of the pathogenic mechanisms at play. It is now clear that bacterial pathogens produce a plethora of proteins known as "toxins" and "effectors" that target a variety of physiological host processes during the course of infection. One of the targets of host targeted bacterial toxins and effectors are the mitochondria. The mitochondrial organelles are major players in many biological functions, including energy conversion to ATP and cell death pathways, which inherently makes them targets for bacterial proteins. We present a summary of the toxins targeted to mitochondria and for those that have been studied in finer detail, we also summarize what we know about the mechanisms of targeting and finally their action at the organelle.

  7. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage.

    Directory of Open Access Journals (Sweden)

    Peter D Newell

    Full Text Available In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit--from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger.

  8. Recent developments in sequence selective minor groove DNA effectors.

    Science.gov (United States)

    Reddy, B S; Sharma, S K; Lown, J W

    2001-04-01

    DNA is a well characterized intracellular target but its large size and sequential nature make it an elusive target for selective drug action. Binding of low molecular weight ligands to DNA causes a wide variety of potential biological responses. In this respect the main consideration is given to recent developments in DNA sequence selective binding agents bearing conjugated effectors because of their potential application in diagnosis and treatment of cancers as well as in molecular biology. Recent progress in the development of cross linked lexitropsin oligopeptides and hairpins, which bind selectively to the minor groove of duplex DNA, is discussed. Bis-distamycins and related lexitropsins show inhibitory activity against HIV-1 and HIV-2 integrases at low nanomolar concentrations. Benzoyl nitrogen mustard analogs of lexitropsins are active against a variety of tumor models. Certain of the bis-benzimidazoles show altered DNA sequence preference and bind to DNA at 5'CG and TG sequences rather than at the preferred AT sites of the parent drug. A comparison of bifunctional bizelesin with monoalkylating adozelesin shows that it appears to have an increased sequence selectivity such that monoalkylating compounds react at more than one site but bizelesin reacts only at sites where there are two suitably positioned alkylation sites. Adozelesin, bizelesin and carzelesin are far more potent as cytotoxic agents than cisplatin or doxorubicin. A new class of 1,2,9,9a-tetrahydrocyclo-propa[c]benz[e]indole-4-one (CBI) analogs i.e., CBI-lexitropsin conjugates arising from the latter leads are also discussed.A number of cyclopropylpyrroloindole (CPI) and CBI-lexitropsin conjugates related to CC-1065 alkylate at the N3 position of adenine in the minor groove of DNA in a sequence specific manner, and also show cytotoxicities in the femtomolar range. The cross linking efficiency of PBD dimers is much greater than that of other cross linkers including cisplatin, and melphalan. A new

  9. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species.

    Science.gov (United States)

    Bolton, Melvin D; van Esse, H Peter; Vossen, Jack H; de Jonge, Ronnie; Stergiopoulos, Ioannis; Stulemeijer, Iris J E; van den Berg, Grardy C M; Borrás-Hidalgo, Orlando; Dekker, Henk L; de Koster, Chris G; de Wit, Pierre J G M; Joosten, Matthieu H A J; Thomma, Bart P H J

    2008-07-01

    During tomato leaf colonization, the biotrophic fungus Cladosporium fulvum secretes several effector proteins into the apoplast. Eight effectors have previously been characterized and show no significant homology to each other or to other fungal genes. To discover novel C. fulvum effectors that might play a role in virulence, we utilized two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to visualize proteins secreted during C. fulvum-tomato interactions. Three novel C. fulvum proteins were identified: CfPhiA, Ecp6 and Ecp7. CfPhiA shows homology to proteins found on fungal sporogenous cells called phialides. Ecp6 contains lysin motifs (LysM domains) that are recognized as carbohydrate-binding modules. Ecp7 encodes a small, cysteine-rich protein with no homology to known proteins. Heterologous expression of Ecp6 significantly increased the virulence of the vascular pathogen Fusarium oxysporum on tomato. Furthermore, by RNA interference (RNAi)-mediated gene silencing we demonstrate that Ecp6 is instrumental for C. fulvum virulence on tomato. Hardly any allelic variation was observed in the Ecp6 coding region of a worldwide collection of C. fulvum strains. Although none of the C. fulvum effectors identified so far have obvious orthologues in other organisms, conserved Ecp6 orthologues were identified in various fungal species. Homology-based modelling suggests that the LysM domains of C. fulvum Ecp6 may be involved in chitin binding.

  10. Acquisition of effector-specific and effector-independent components of sequencing skill.

    Science.gov (United States)

    Berner, Michael P; Hoffman, Joachim

    2009-01-01

    In a serial reaction time task, participants practiced a repeating sequence with 1 hand. In interleaved blocks, they responded to random sequences with the other hand. Experiment 1 was composed of 5 sessions, each consisting of 30 blocks. Intermanual transfer, reflecting a hand-independent component of sequence knowledge, increased across session. A smaller but significant, nontransferable, and hand-specific component was evident in each session and did not increase with practice. Experiment 2 comprised only 1 session. Uninterrupted practice (no interleaved random blocks) improved hand-independent sequence learning in comparison with interrupted practice (as implemented in Experiment 1), whereas hand-specific sequence learning was unaffected by this between-subjects manipulation. These findings suggest separate mechanisms for effector-independent sequence learning and effector-specific acquisition of optimized response coarticulation. PMID:19073469

  11. Nematode effector proteins: an emerging paradigm of parasitism

    Science.gov (United States)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  12. IgE epitope proximity determines immune complex shape and effector cell activation capacity

    Science.gov (United States)

    Gieras, Anna; Linhart, Birgit; Roux, Kenneth H.; Dutta, Moumita; Khodoun, Marat; Zafred, Domen; Cabauatan, Clarissa R.; Lupinek, Christian; Weber, Milena; Focke-Tejkl, Margarete; Keller, Walter; Finkelman, Fred D.; Valenta, Rudolf

    2016-01-01

    Background IgE-allergen complexes induce mast cell and basophil activation and thus immediate allergic inflammation. They are also important for IgE-facilitated allergen presentation to T cells by antigen-presenting cells. Objective To investigate whether the proximity of IgE binding sites on an allergen affects immune complex shape and subsequent effector cell activation in vitro and in vivo. Methods We constructed artificial allergens by grafting IgE epitopes in different numbers and proximity onto a scaffold protein. The shape of immune complexes formed between artificial allergens and the corresponding IgE was studied by negative-stain electron microscopy. Allergenic activity was determined using basophil activation assays. Mice were primed with IgE, followed by injection of artificial allergens to evaluate their in vivo allergenic activity. Severity of systemic anaphylaxis was measured by changes in body temperature. Results We could demonstrate simultaneous binding of 4 IgE antibodies in close vicinity to each other. The proximity of IgE binding sites on allergens influenced the shape of the resulting immune complexes and the magnitude of effector cell activation and in vivo inflammation. Conclusions Our results demonstrate that the proximity of IgE epitopes on an allergen affects its allergenic activity. We thus identified a novel mechanism by which IgE-allergen complexes regulate allergic inflammation. This mechanism should be important for allergy and other immune complex–mediated diseases. PMID:26684291

  13. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  14. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis.

    Science.gov (United States)

    Nomura, Kinya; Mecey, Christy; Lee, Young-Nam; Imboden, Lori Alice; Chang, Jeff H; He, Sheng Yang

    2011-06-28

    Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.

  15. Targeting an antimicrobial effector function in insect immunity as a pest control strategy

    Science.gov (United States)

    Bulmer, Mark S.; Bachelet, Ido; Raman, Rahul; Rosengaus, Rebeca B.; Sasisekharan, Ram

    2009-01-01

    Insect pests such as termites cause damages to crops and man-made structures estimated at over $30 billion per year, imposing a global challenge for the human economy. Here, we report a strategy for compromising insect immunity that might lead to the development of nontoxic, sustainable pest control methods. Gram-negative bacteria binding proteins (GNBPs) are critical for sensing pathogenic infection and triggering effector responses. We report that termite GNBP-2 (tGNBP-2) shows β(1,3)-glucanase effector activity previously unknown in animal immunity and is a pleiotropic pattern recognition receptor and an antimicrobial effector protein. Termites incorporate this protein into the nest building material, where it functions as a nest-embedded sensor that cleaves and releases pathogenic components, priming termites for improved antimicrobial defense. By means of rational design, we present an inexpensive, nontoxic small molecule glycomimetic that blocks tGNBP-2, thus exposing termites in vivo to accelerated infection and death from specific and opportunistic pathogens. Such a molecule, introduced into building materials and agricultural methods, could protect valuable assets from insect pests. PMID:19506247

  16. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    Directory of Open Access Journals (Sweden)

    Tianqiao Song

    2015-12-01

    Full Text Available Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.

  17. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    Science.gov (United States)

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-12-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.

  18. MARTX effector cross kingdom activation by Golgi-associated ADP-ribosylation factors.

    Science.gov (United States)

    Kim, Byoung Sik; Satchell, Karla J F

    2016-08-01

    Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin consisting of conserved repeats-containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv ). A structure-based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino-terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild-type, but not catalytically inactive, DmXVv . DmXVv was found to localize to Golgi and to directly interact with Golgi-associated ADP-ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv . These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin. PMID:26780191

  19. The deubiquitinase activity of the Salmonella pathogenicity island 2 effector, SseL, prevents accumulation of cellular lipid droplets.

    Science.gov (United States)

    Arena, Ellen T; Auweter, Sigrid D; Antunes, L Caetano M; Vogl, A Wayne; Han, Jun; Guttman, Julian A; Croxen, Matthew A; Menendez, Alfredo; Covey, Scott D; Borchers, Christoph H; Finlay, B Brett

    2011-11-01

    To cause disease, Salmonella enterica serovar Typhimurium requires two type III secretion systems that are encoded by Salmonella pathogenicity islands 1 and 2 (SPI-1 and -2). These secretion systems serve to deliver specialized proteins (effectors) into the host cell cytosol. While the importance of these effectors to promote colonization and replication within the host has been established, the specific roles of individual secreted effectors in the disease process are not well understood. In this study, we used an in vivo gallbladder epithelial cell infection model to study the function of the SPI-2-encoded type III effector, SseL. The deletion of the sseL gene resulted in bacterial filamentation and elongation and the unusual localization of Salmonella within infected epithelial cells. Infection with the ΔsseL strain also caused dramatic changes in host cell lipid metabolism and led to the massive accumulation of lipid droplets in infected cells. This phenotype was directly attributable to the deubiquitinase activity of SseL, as a Salmonella strain carrying a single point mutation in the catalytic cysteine also resulted in extensive lipid droplet accumulation. The excessive buildup of lipids due to the absence of a functional sseL gene also was observed in murine livers during S. Typhimurium infection. These results suggest that SseL alters host lipid metabolism in infected epithelial cells by modifying the ubiquitination patterns of cellular targets.

  20. Transcription Activator-Like Effectors (TALEs) Hybrid Nucleases for Genome Engineering Application

    KAUST Repository

    Wibowo, Anjar

    2011-06-06

    Gene targeting is a powerful genome engineering tool that can be used for a variety of biotechnological applications. Genomic double-strand DNA breaks generated by engineered site-specific nucleases can stimulate gene targeting. Hybrid nucleases are composed of DNA binding module and DNA cleavage module. Zinc Finger Nucleases were used to generate double-strand DNA breaks but it suffers from failures and lack of reproducibility. The transcription activator–like effectors (TALEs) from plant pathogenic Xanthomonas contain a unique type of DNA-binding domain that bind specific DNA targets. The purpose of this study is to generate novel sequence specific nucleases by fusing a de novo engineered Hax3 TALE-based DNA binding domain to a FokI cleavage domain. Our data show that the de novo engineered TALE nuclease can bind to its target sequence and create double-strand DNA breaks in vitro. We also show that the de novo engineered TALE nuclease is capable of generating double-strand DNA breaks in its target sequence in vivo, when transiently expressed in Nicotiana benthamiana leaves. In conclusion, our data demonstrate that TALE-based hybrid nucleases can be tailored to bind a user-selected DNA sequence and generate site-specific genomic double-strand DNA breaks. TALE-based hybrid nucleases hold much promise as powerful molecular tools for gene targeting applications.

  1. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  2. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  3. System for exchanging tools and end effectors on a robot

    Science.gov (United States)

    Burry, David B.; Williams, Paul M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.

  4. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  5. Uncovering the Legionella genus effector repertoire - strength in diversity and numbers

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-01-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ~300 virulence proteins, termed effectors, which manipulate host-cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species, and predicted their effector repertoire using a previously validated machine-learning approach. This analysis revealed a treasure trove of 5,885 predicted effectors. The effector repertoire of different Legionella species was found to be largely non-overlapping, and only seven core-effectors were shared among all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from their natural protozoan hosts. Furthermore, we detected numerous novel conserved effector domains, and discovered new domain combinations, which allowed inferring yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. PMID:26752266

  6. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem.

    Science.gov (United States)

    Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine

    2015-01-01

    The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery.

  7. An intelligent end-effector for a rehabilitation robot.

    Science.gov (United States)

    Gosine, R G; Harwin, W S; Furby, L J; Jackson, R D

    1989-01-01

    A UMI RTX robot, modified with limited end-effector sensors and a restricted but effective vision system, is currently used in a developmental education setting for severely physically disabled children. The low physical and cognitive abilities of the children involved in the project require a semi-autonomous robot with environmental sensing capability to operate in a task oriented mode. A variety of low-cost sensors including proximity, distance, force and slip sensors, have been investigated for integration in end-effectors for the RTX robot. The sensors employed on a modified end-effector are detailed and experimental results are presented. A design for an end-effector with integrated sensors is discussed. The integration of the sensor information into a high-level, task-oriented programming language is detailed and examples of high-level control sequences using sensor inputs are presented. Finally, the development of intelligent gripping strategies based on sensor information is discussed. PMID:2733012

  8. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins

    OpenAIRE

    Goody, Philip R; Heller, Katharina; Oesterlin, Lena K; Müller, Matthias P.; Itzen, Aymelt; Goody, Roger S.

    2012-01-01

    Intracellular bacteria often interfere with the host cell vesicular transport system. Legionella protein AnkX inactivates Rab GTPases by phosphocholination, causing their stable membrane attachment and preventing their interaction with GEFs and cellular effectors.

  9. An intelligent end-effector for a rehabilitation robot.

    Science.gov (United States)

    Gosine, R G; Harwin, W S; Furby, L J; Jackson, R D

    1989-01-01

    A UMI RTX robot, modified with limited end-effector sensors and a restricted but effective vision system, is currently used in a developmental education setting for severely physically disabled children. The low physical and cognitive abilities of the children involved in the project require a semi-autonomous robot with environmental sensing capability to operate in a task oriented mode. A variety of low-cost sensors including proximity, distance, force and slip sensors, have been investigated for integration in end-effectors for the RTX robot. The sensors employed on a modified end-effector are detailed and experimental results are presented. A design for an end-effector with integrated sensors is discussed. The integration of the sensor information into a high-level, task-oriented programming language is detailed and examples of high-level control sequences using sensor inputs are presented. Finally, the development of intelligent gripping strategies based on sensor information is discussed.

  10. Gunite Scarifying End Effector. Innovative Technology Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-09-01

    The Gunite Scarifying End Effector (GSEE) is designed to remove a layer of the gunite tank walls, which are contaminated with radioactivity. Removing this radioactivity is necessary to close the tank.

  11. Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition.

    Science.gov (United States)

    Gutierrez, Jose R; Balmuth, Alexi L; Ntoukakis, Vardis; Mucyn, Tatiana S; Gimenez-Ibanez, Selena; Jones, Alexandra M E; Rathjen, John P

    2010-02-01

    Cytoplasmic recognition of pathogen virulence effectors by plant NB-LRR proteins leads to strong induction of defence responses termed effector triggered immunity (ETI). In tomato, a protein complex containing the NB-LRR protein Prf and the protein kinase Pto confers recognition of the Pseudomonas syringae effectors AvrPto and AvrPtoB. Although structurally unrelated, AvrPto and AvrPtoB interact with similar residues in the Pto catalytic cleft to activate ETI via an unknown mechanism. Here we show that the Prf complex is oligomeric, containing at least two molecules of Prf. Within the complex, Prf can associate with Pto or one of several Pto family members including Fen, Pth2, Pth3, or Pth5. The dimerization surface for Prf is the novel N-terminal domain, which also coordinates an intramolecular interaction with the remainder of the molecule, and binds Pto kinase or a family member. Thus, association of two Prf N-terminal domains brings the associated kinases into close promixity. Tomato lines containing Prf complexed with Pth proteins but not Pto possessed greater immunity against P. syringae than tomatoes lacking Prf. This demonstrates that incorporation of non-Pto kinases into the Prf complex extends the number of effector proteins that can be recognized.

  12. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes

    OpenAIRE

    Rövenich, H.; Boshoven, J.C.; Thomma, B.

    2014-01-01

    Microorganisms play essential roles in almost every environment on earth. For instance, microbes decompose organic material, or establish symbiotic relationships that range from pathogenic to mutualistic. Symbiotic relationships have been particularly well studied for microbial plant pathogens and have emphasized the role of effectors; secreted molecules that support host colonization. Most effectors characterized thus far play roles in deregulation of host immunity. Arguably, however, pathog...

  13. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption. PMID:27606286

  14. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  15. Locked and proteolysis-based transcription activator-like effector (TALE) regulation.

    Science.gov (United States)

    Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman

    2016-02-18

    Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. PMID:26748097

  16. Locked and proteolysis-based transcription activator-like effector (TALE) regulation.

    Science.gov (United States)

    Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman

    2016-02-18

    Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE.

  17. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  18. Characterization of the largest effector gene cluster of Ustilago maydis.

    Science.gov (United States)

    Brefort, Thomas; Tanaka, Shigeyuki; Neidig, Nina; Doehlemann, Gunther; Vincon, Volker; Kahmann, Regine

    2014-07-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  19. Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor

    Science.gov (United States)

    Aurass, Philipp; Oates, Clare V.; Tate, Edward W.; Hartland, Elizabeth L.; Flieger, Antje

    2015-01-01

    Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo. PMID:26216420

  20. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3′-terminal segment of guide RNA

    OpenAIRE

    Mekler, Vladimir; Minakhin, Leonid; Semenova, Ekaterina; Kuznedelov, Konstantin; Severinov, Konstantin

    2016-01-01

    CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR–Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly...

  1. The enteropathogenic E. coli effector EspF targets and disrupts the nucleolus by a process regulated by mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Paul Dean

    Full Text Available The nucleolus is a multifunctional structure within the nucleus of eukaryotic cells and is the primary site of ribosome biogenesis. Almost all viruses target and disrupt the nucleolus--a feature exclusive to this pathogen group. Here, using a combination of bio-imaging, genetic and biochemical analyses, we demonstrate that the enteropathogenic E. coli (EPEC effector protein EspF specifically targets the nucleolus and disrupts a subset of nucleolar factors. Driven by a defined N-terminal nucleolar targeting domain, EspF causes the complete loss from the nucleolus of nucleolin, the most abundant nucleolar protein. We also show that other bacterial species disrupt the nucleolus, dependent on their ability to deliver effector proteins into the host cell. Moreover, we uncover a novel regulatory mechanism whereby nucleolar targeting by EspF is strictly controlled by EPEC's manipulation of host mitochondria. Collectively, this work reveals that the nucleolus may be a common feature of bacterial pathogenesis and demonstrates that a bacterial pathogen has evolved a highly sophisticated mechanism to enable spatio-temporal control over its virulence proteins.

  2. Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs.

    Science.gov (United States)

    Ham, Jong Hyun; Majerczak, Doris R; Nomura, Kinya; Mecey, Christy; Uribe, Francisco; He, Sheng-Yang; Mackey, David; Coplin, David L

    2009-06-01

    The broadly conserved AvrE-family of type III effectors from gram-negative plant-pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato or Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and subcellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well. PMID:19445595

  3. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2009-08-01

    Full Text Available Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP kinase and NF-kappaB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.

  4. The human IgA-Fc alpha receptor interaction and its blockade by streptococcal IgA-binding proteins.

    Science.gov (United States)

    Woof, J M

    2002-08-01

    IgA plays a key role in immune defence of the mucosal surfaces. IgA can trigger elimination mechanisms against pathogens through the interaction of its Fc region with Fc alpha Rs (receptors specific for the Fc region of IgA) present on neutrophils, macrophages, monocytes and eosinophils. The human Fc alpha R (CD89) shares homology with receptors specific for the Fc region of IgG (Fc gamma Rs) and IgE (Fc epsilon RIs), but is a more distantly related member of the receptor family. CD89 interacts with residues lying at the interface of the two domains of IgA Fc, a site quite distinct from the homologous regions at the top of IgG and IgE Fc recognized by Fc gamma R and Fc epsilon RI respectively. Certain pathogenic bacteria express surface proteins that bind to human IgA Fc. Experiments with domain-swap antibodies and mutant IgAs indicate that binding of three such proteins (Sir22 and Arp4 of Streptococcus pyogenes and beta protein of group B streptococci) depend on sites in the Fc interdomain region of IgA, the binding region also used by CD89. Further, we have found that the streptococcal proteins can inhibit interaction of IgA with CD89, and have thereby identified a mechanism by which a bacterial IgA-binding protein may modulate IgA effector function. PMID:12196121

  5. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation.

    Science.gov (United States)

    Aubert, Daniel F; Xu, Hao; Yang, Jieling; Shi, Xuyan; Gao, Wenqing; Li, Lin; Bisaro, Fabiana; Chen, She; Valvano, Miguel A; Shao, Feng

    2016-05-11

    Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs bear a cysteine protease-like catalytic triad, which inactivates Rho GTPases by deamidating a conserved asparagine in the GTPase switch-I region. RhoA deamidation induces caspase-1 inflammasome activation, which is mediated by the familial Mediterranean fever disease protein Pyrin. In mouse infection, the deamidase activity of TecA is necessary and sufficient for B. cenocepacia-triggered lung inflammation and also protects mice from lethal B. cenocepacia infection. Therefore, Burkholderia TecA is a T6SS effector that modifies a eukaryotic target through an asparagine deamidase activity, which in turn elicits host cell death and inflammation through activation of the Pyrin inflammasome. PMID:27133449

  6. E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pruneda, Jonathan N. [Department of Biochemistry, University of Washington, Seattle WA USA; Smith, F. Donelson [Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle WA USA; Daurie, Angela [Department of Microbiology and Immunology, Dalhousie University, Halifax NS Canada; Swaney, Danielle L. [Department of Genome Sciences, University of Washington, Seattle WA USA; Villén, Judit [Department of Genome Sciences, University of Washington, Seattle WA USA; Scott, John D. [Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle WA USA; Stadnyk, Andrew W. [Department of Pediatrics, Dalhousie University, Halifax NS Canada; Le Trong, Isolde [Department of Biological Structure, University of Washington, Seattle WA USA; Stenkamp, Ronald E. [Department of Biochemistry, University of Washington, Seattle WA USA; Department of Biological Structure, University of Washington, Seattle WA USA; Klevit, Rachel E. [Department of Biochemistry, University of Washington, Seattle WA USA; Rohde, John R. [Department of Microbiology and Immunology, Dalhousie University, Halifax NS Canada; Brzovic, Peter S. [Department of Biochemistry, University of Washington, Seattle WA USA

    2014-01-20

    Pathogenic bacteria introduce effector proteins directly into the cytosol of eukaryotic cells to promote invasion and colonization. OspG, a Shigella spp. effector kinase, plays a role in this process by helping to suppress the host inflammatory response. OspG has been reported to bind host E2 ubiquitin-conjugating enzymes activated with ubiquitin (E2~Ub), a key enzyme complex in ubiquitin transfer pathways. A cocrystal structure of the OspG/UbcH5c~Ub complex reveals that complex formation has important ramifications for the activity of both OspG and the UbcH5c~Ub conjugate. OspG is a minimal kinase domain containing only essential elements required for catalysis. UbcH5c~Ub binding stabilizes an active conformation of the kinase, greatly enhancing OspG kinase activity. In contrast, interaction with OspG stabilizes an extended, less reactive form of UbcH5c~Ub. Recognizing conserved E2 features, OspG can interact with at least ten distinct human E2s~Ub. Mouse oral infection studies indicate that E2~Ub conjugates act as novel regulators of OspG effector kinase function in eukaryotic host cells.

  7. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  8. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  9. 水稻黄单胞菌三型分泌系统效应物的研究进展%Current progresses in study on T3SS effectors of Xanthomonas oryzae

    Institute of Scientific and Technical Information of China (English)

    赵帅; 张子宇; 冯家勋

    2011-01-01

    The type Ⅲ secretion system (T3SS) effector is considered as one of the key virulence factors in Xanthomonas oryzae. X. Oryzae pv. Oryzae and X. Oryzae pv. Oryzicola cause bacterial leaf blight and bacterial leaf streak in rice, which are important bacterial diseases of rice. Based on bioinformatic analysis of the bacterial genome and other recent reports,X. Oryzae contains at least 28 classes of T3SS effectors, divided into two groups: TAL (transcription activator-like) effectors and non-TAL (non transcription activator-like) effectors. This paper reviews the number, classes, structure and host targets of T3SS effectors in X. Oryzae, which may provide a new insight into the mechanism of rice-X. Oryzae interaction, regulatory network and molecular breeding of rice.%水稻黄单胞菌(X.oryzae)三-型分泌系统(Type Ⅲ secretion system,T3SS)效应物(Effector)一直被认为是水稻黄单胞菌最重要的致病因子之一.水稻黄单胞菌水稻致病变种(Xanthomonas oryzae pv.oryzae)和水稻黄单胞菌栖稻致病变种(Xanthomonas oryzae pv.oryzicola)分别引起水稻两大细菌病害水稻白叶枯病(Bacterial leaf blight)和水稻细菌性条斑病(Bacterial leaf streak).基因组分析揭示,水稻黄单胞菌中至少存在28个类型的T3SS效应物,分为TAL(Transcription activator-like effectors)效应物和non-TAL效应物(Non transcription activator-like effectors)两大类.通过对水稻黄单胞菌中T3SS效应物的数量、种类、结构、宿主靶标等方面进行综述,为全面了解水稻-水稻黄单胞菌互作的分子机理,调控网络以及水稻分子育种提供一种新洞察力.

  10. Effector Roles of Putidaredoxin on Cytochrome P450cam Conformational States.

    Science.gov (United States)

    Liou, Shu-Hao; Mahomed, Mavish; Lee, Young-Tae; Goodin, David B

    2016-08-17

    In this study, the effector role of Pdx (putidaredoxin) on cytochrome P450cam conformation is refined by attaching two different spin labels, MTSL or BSL (bifunctional spin-label) onto the F or G helices and using DEER (double electron-electron resonance) to measure the distance between labels. Recent EPR and crystallographic studies have observed that oxidized Pdx induces substrate-bound P450cam to change from the closed to the open state. However, this change was not observed by DEER in the reduced Pdx complex with carbon-monoxide-bound P450cam (Fe(2+)CO). In addition, recent NMR studies have failed to observe a change in P450cam conformation upon binding Pdx. Hence, resolving these issues is important for a full understanding the effector role of Pdx. Here we show that oxidized Pdx induces camphor-bound P450cam to shift from the closed to the open conformation when labeled on either the F or G helices with MTSL. BSL at these sites can either narrow the distance distribution widths dramatically or alter the extent of the conformational change. In addition, we report DEER spectra on a mixed oxidation state containing oxidized Pdx and ferrous CO-bound P450cam, showing that P450cam remains closed. This indicates that CO binding to the heme prevents P450cam from opening, overriding the influence exerted by Pdx binding. Finally, we report the open form P450cam crystal structure with substrate bound, which suggests that crystal packing effects may prevent conformational conversion. Using multiple labeling approaches, DEER provides a unique perspective to resolve how the conformation of P450cam depends on Pdx and ligand states. PMID:27452076

  11. Genetic Variation in TLR1 is associated with Pam3CSK4-induced effector T cell resistance to regulatory T cell suppression

    OpenAIRE

    Mikacenic, Carmen; Schneider, Anya; Radella, Frank; Buckner, Jane H.; Mark M Wurfel

    2014-01-01

    Toll-like receptors (TLRs) play essential roles in the initiation and modulation of immune responses. TLR1/TLR2 heterodimers recognize tri-acylated bacterial lipopeptides, including the synthetic TLR1/2 lipopeptide, Pam3CSK4. Genetic variation in TLR1 is associated with outcomes in diseases in which regulatory T cells (Treg) play a role, including asthma and allergy. To determine whether genetic polymorphisms in TLR1 are associated with alterations in Treg suppression of effector T cells (Tef...

  12. Target selection biases from recent experience transfer across effectors.

    Science.gov (United States)

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions. PMID:26563393

  13. Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC

    Directory of Open Access Journals (Sweden)

    Akito Natsume

    2008-12-01

    Full Text Available Akito Natsume, Rinpei Niwa, Mitsuo SatohAntibody Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd.,/Machida-shi, Tokyo, JapanAbstract: As platforms for therapeutic agents, monoclonal antibodies (MAbs have already been approved, and several MAbs have demonstrated clinical effectiveness in a variety of malignancies. However, several issues have also been emerging in antibody therapy, such as high cost and insufficient drug action. Recently, to improve MAb activity in humans, effector functions have been subjects of focus, especially antibody-dependent cell-mediated cytotoxicity (ADCC and complement-dependent cytotoxicity (CDC. Extensive efforts have been made to enhance these effector functions of MAbs, and successful approaches have been reported by us and others, wherein the binding activity of MAbs to FcγRIIIa or C1q is increased by introducing amino acid mutations into heavy chain constant regions or through glyco-modification of Fc-linked oligosaccharides. In addition, one of the next approaches to optimizing therapeutic antibodies would be to combine multiple enhancing modifications into a single antibody platform to overcome the diverse mechanisms of clinical resistance of tumor cells. For this aim, we have recently developed a successful combination composed of ADCC-enhancing modification by the fucose depletion from Fc-linked oligosaccharides and CDC-enhancing modification by IgG1 and IgG3 isotype shuffling in heavy chains, which could be of great value for the development of third-generation antibody therapeutics.Keywords: ADCC, CDC, effector functions, Fc oligosaccharides, IgG isotypes, nonfucosylated IgG

  14. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  15. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  16. The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid.

    Science.gov (United States)

    Üstün, Suayib; Bartetzko, Verena; Börnke, Frederik

    2015-01-01

    XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) - dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) -like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana.

  17. The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid

    Directory of Open Access Journals (Sweden)

    Suayib eÜstün

    2015-08-01

    Full Text Available XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA – dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR –like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana.

  18. Lineage relationship of effector and memory T cells

    Science.gov (United States)

    Restifo, Nicholas P.; Gattinoni, Luca

    2013-01-01

    Adaptive immunity is characterized by the ability to form long-lived immunological memory. Upon re-exposure to antigen, memory T cells respond more rapidly and robustly than naïve T cells, providing better clearance of pathogens. Recent reviews have reinforced the text-book view that memory T cells arise from effector cells. Although this notion is teleologically appealing, emerging data is more consistent with a model where naïve cells directly develop into memory cells without transitioning through an effector stage. A clear understanding of the lineage relationships between memory and effector cells has profound implications for the design of vaccines and for the development of effective T cell-based therapies. PMID:24148236

  19. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available BACKGROUND: Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now. RESULTS: By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system. CONCLUSIONS: The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  20. Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC.

    Science.gov (United States)

    Natsume, Akito; Niwa, Rinpei; Satoh, Mitsuo

    2009-09-21

    As platforms for therapeutic agents, monoclonal antibodies (MAbs) have already been approved, and several MAbs have demonstrated clinical effectiveness in a variety of malignancies. However, several issues have also been emerging in antibody therapy, such as high cost and insufficient drug action. Recently, to improve MAb activity in humans, effector functions have been subjects of focus, especially antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Extensive efforts have been made to enhance these effector functions of MAbs, and successful approaches have been reported by us and others, wherein the binding activity of MAbs to FcgammaRIIIa or C1q is increased by introducing amino acid mutations into heavy chain constant regions or through glyco-modification of Fc-linked oligosaccharides. In addition, one of the next approaches to optimizing therapeutic antibodies would be to combine multiple enhancing modifications into a single antibody platform to overcome the diverse mechanisms of clinical resistance of tumor cells. For this aim, we have recently developed a successful combination composed of ADCC-enhancing modification by the fucose depletion from Fc-linked oligosaccharides and CDC-enhancing modification by IgG1 and IgG3 isotype shuffling in heavy chains, which could be of great value for the development of third-generation antibody therapeutics.

  1. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector.

    Science.gov (United States)

    Goritschnig, Sandra; Steinbrenner, Adam D; Grunwald, Derrick J; Staskawicz, Brian J

    2016-05-01

    Nucleotide-binding leucine-rich repeat (NB-LRR, or NLR) receptors mediate pathogen recognition. The Arabidopsis thaliana NLR RPP1 recognizes the tandem WY-domain effector ATR1 from the oomycete Hyaloperonospora arabidopsidis through direct association with C-terminal LRRs. We isolated and characterized homologous NLR genes RPP1-EstA and RPP1-ZdrA from two Arabidopsis ecotypes, Estland (Est-1) and Zdarec (Zdr-1), responsible for recognizing a novel spectrum of ATR1 alleles. RPP1-EstA and -ZdrA encode nearly identical NLRs that are phylogenetically distinct from known immunity-activating RPP1 homologs and possess greatly expanded LRR domains. Site-directed mutagenesis and truncation analysis of ATR1 suggests that these homologs recognize a novel surface of the 2(nd) WY domain of ATR1, partially specified by a C-terminal region of the LRR domain. Synteny comparison with RPP1 loci involved in hybrid incompatibility suggests that these functions evolved independently. Closely related RPP1 homologs have diversified their recognition spectra through LRR expansion and sequence variation, allowing them to detect multiple surfaces of the same pathogen effector. Engineering NLR receptor specificity may require a similar combination of repeat expansion and tailored amino acid variation. PMID:26725254

  2. ULtiMATE system for rapid assembly of customized TAL effectors.

    Directory of Open Access Journals (Sweden)

    Junjiao Yang

    Full Text Available Engineered TAL-effector nucleases (TALENs and TALE-based constructs have become powerful tools for eukaryotic genome editing. Although many methods have been reported, it remains a challenge for the assembly of designer-based TALE repeats in a fast, precise and cost-effective manner. We present an ULtiMATE (USER-based Ligation Mediated Assembly of TAL Effector system for speedy and accurate assembly of customized TALE constructs. This method takes advantage of uracil-specific excision reagent (USER to create multiple distinct sticky ends between any neighboring DNA fragments for specific ligation. With pre-assembled templates, multiple TALE DNA-binding domains could be efficiently assembled in order within hours with minimal manual operation. This system has been demonstrated to produce both functional TALENs for effective gene knockout and TALE-mediated gene-specific transcription activation (TALE-TA. The feature of both ease-of-operation and high efficiency of ULtiMATE system makes it not only an ideal method for biologic labs, but also an approach well suited for large-scale assembly of TALENs and any other TALE-based constructions.

  3. Interplay between Rab27a effectors in pancreatic β-cells

    Institute of Scientific and Technical Information of China (English)

    Mami Yamaoka; Toshimasa Ishizaki; Toshihide Kimura

    2015-01-01

    The small GTPase Rab27a is a member of the Rab familythat is involved in membrane trafficking in various kindsof cells. Rab27a has GTP- and GDP-bound forms, andtheir interconversion regulates intracellular signalingpathways. Typically, only a GTP-bound GTPase binds itsspecific effectors with the resulting downstream signalscontrolling specific cellular functions. We previouslyidentified novel Rab27a-interacting proteins. Surprisingly,some of these proteins interacted with GDP-boundRab27a. The present study reviews recent progressin our understanding of the roles of Rab27a and itseffectors in the secretory process. In pancreatic β-cells,GTP-bound Rab27a regulates insulin secretion at the preexocytoticstages via its GTP-specific effectors such asExophilin8/Slac2-c/MyRIP and Slp4/Granuphilin. Glucosestimulation causes insulin exocytosis. Glucose stimulationalso converts Rab27a from its GTP- to its GDP-boundform. GDP-bound Rab27a interacts with GDP-specificeffectors and controls endocytosis of the secretorymembrane. Thus, Rab27a cycling between GTP- andGDP-bound forms synchronizes with the recycling ofsecretory membrane to re-use the membrane and keepthe β-cell volume constant.

  4. A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths.

    Science.gov (United States)

    Boudinot, Pierre; Zou, Jun; Ota, Tatsuya; Buonocore, Francesco; Scapigliati, Giuseppe; Canapa, Adriana; Cannon, John; Litman, Gary; Hansen, John D

    2014-09-01

    The recent availability of both robust transcriptome and genome resources for coelacanth (Latimeria chalumnae) has led to unique discoveries for coelacanth immunity such as the lack of IgM, a central component of adaptive immunity. This study was designed to more precisely address the origins and evolution of gene families involved in the initial recognition and response to microbial pathogens, which effect innate immunity. Several multigene families involved in innate immunity are addressed, including: Toll-like receptors (TLRs), retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs), diverse immunoglobulin domain-containing proteins (DICP) and modular domain immune-type receptors (MDIRs). Our analyses also include the tripartite motif-containing proteins (TRIM), which are involved in pathogen recognition as well as the positive regulation of antiviral immunity. Finally, this study addressed some of the downstream effectors of the antimicrobial response including IL-1 family members, type I and II interferons (IFN) and IFN-stimulated effectors (ISGs). Collectively, the genes and gene families in coelacanth that effect innate immune functions share characteristics both in content, structure and arrangement with those found in tetrapods but not in teleosts. The findings support the sister group relationship of coelacanth fish with tetrapods.

  5. A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths

    Science.gov (United States)

    Boudinot, Pierre; Zou, Jun; Ota, Tatsuya; Buonocore, Francesco; Scapigliati, Giuseppe; Canapa, Adriana; Cannon, John; Litman, Gary; Hansen, John D.

    2014-01-01

    The recent availability of both robust transcriptome and genome resources for coelacanth (Latimeria chalumnae) has led to unique discoveries for coelacanth immunity such as the lack of IgM, a central component of adaptive immunity. This study was designed to more precisely address the origins and evolution of gene families involved in the initial recognition and response to microbial pathogens, which effect innate immunity. Several multigene families involved in innate immunity are addressed, including: Toll-like receptors (TLRs), retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs), diverse immunoglobulin domain-containing proteins (DICP) and modular domain immune-type receptors (MDIRs). Our analyses also include the tripartite motif-containing proteins (TRIM), which are involved in pathogen recognition as well as the positive regulation of antiviral immunity. Finally, this study addressed some of the downstream effectors of the antimicrobial response including IL-1 family members, type I and II interferons (IFN) and IFN-stimulated effectors (ISGs). Collectively, the genes and gene families in coelacanth that effect innate immune functions share characteristics both in content, structure and arrangement with those found in tetrapods but not in teleosts. The findings support the sister group relationship of coelacanth fish with tetrapods.

  6. Visual End-Effector Position Error Compensation for Planetary Robotics

    Science.gov (United States)

    Bajracharya, Max; DiCicco, Matthew; Backes, Paul; Nickels, Kevin

    2007-01-01

    This paper describes a vision-guided manipulation algorithm that improves arm end-effector positioning to subpixel accuracy and meets the highly restrictive imaging and computational constraints of a planetary robotic flight system. Analytical, simulation-based, and experimental analyses of the algorithm's effectiveness and sensitivity to camera and arm model error is presented along with results on several prototype research systems and 'ground-in-the-loop' technology experiments on the Mars Exploration Rover (MER) vehicles. A computationally efficient and robust subpixel end-effector fiducial detector that is instrumental to the algorithm's ability to achieve high accuracy is also described along with its validation results on MER data.

  7. EDS1 mediates pathogen resistance and virulence function of a bacterial effector in soybean

    Science.gov (United States)

    Enhanced disease susceptibility 1 (EDS1) and phytoalexin deficient 4 (PAD4) are well known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1- (GmEDS1a/b) and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean. Consist...

  8. AvrRxo1 Is a Bifunctional Type III Secreted Effector and Toxin-Antitoxin System Component with Homologs in Diverse Environmental Contexts.

    Science.gov (United States)

    Triplett, Lindsay R; Shidore, Teja; Long, John; Miao, Jiamin; Wu, Shuchi; Han, Qian; Zhou, Changhe; Ishihara, Hiromichi; Li, Jianyong; Zhao, Bingyu; Leach, Jan E

    2016-01-01

    Toxin-antitoxin (TA) systems are ubiquitous bacterial systems that may function in genome maintenance and metabolic stress management, but are also thought to play a role in virulence by helping pathogens survive stress. We previously demonstrated that the Xanthomonas oryzae pv. oryzicola protein AvrRxo1 is a type III-secreted virulence factor that has structural similarities to the zeta family of TA toxins, and is toxic to plants and bacteria in the absence of its predicted chaperone Arc1. In this work, we confirm that AvrRxo1 and its binding partner Arc1 function as a TA system when expressed in Escherichia coli. Sequences of avrRxo1 homologs were culled from published and newly generated phytopathogen genomes, revealing that avrRxo1:arc1 modules are rare or frequently inactivated in some species and highly conserved in others. Cloning and functional analysis of avrRxo1 from Acidovorax avenae, A. citrulli, Burkholderia andropogonis, Xanthomonas translucens, and Xanthomonas euvesicatoria showed that some AvrRxo1 homologs share the bacteriostatic and Rxo1-mediated cell death triggering activities of AvrRxo1 from X. oryzae. Additional distant putative homologs of avrRxo1 and arc1 were identified in genomic or metagenomic sequence of environmental bacteria with no known pathogenic role. One of these distant homologs was cloned from the filamentous soil bacterium Cystobacter fuscus. avrRxo1 from C. fuscus caused watersoaking and triggered Rxo1-dependent cell collapse in Nicotiana benthamiana, but no growth suppression in E. coli was observed. This work confirms that a type III effector can function as a TA system toxin, and illustrates the potential of microbiome data to reveal new environmental origins or reservoirs of pathogen virulence factors. PMID:27391081

  9. AvrRxo1 Is a Bifunctional Type III Secreted Effector and Toxin-Antitoxin System Component with Homologs in Diverse Environmental Contexts

    Science.gov (United States)

    Triplett, Lindsay R.; Shidore, Teja; Long, John; Miao, Jiamin; Wu, Shuchi; Han, Qian; Zhou, Changhe; Ishihara, Hiromichi; Li, Jianyong; Zhao, Bingyu; Leach, Jan E.

    2016-01-01

    Toxin-antitoxin (TA) systems are ubiquitous bacterial systems that may function in genome maintenance and metabolic stress management, but are also thought to play a role in virulence by helping pathogens survive stress. We previously demonstrated that the Xanthomonas oryzae pv. oryzicola protein AvrRxo1 is a type III-secreted virulence factor that has structural similarities to the zeta family of TA toxins, and is toxic to plants and bacteria in the absence of its predicted chaperone Arc1. In this work, we confirm that AvrRxo1 and its binding partner Arc1 function as a TA system when expressed in Escherichia coli. Sequences of avrRxo1 homologs were culled from published and newly generated phytopathogen genomes, revealing that avrRxo1:arc1 modules are rare or frequently inactivated in some species and highly conserved in others. Cloning and functional analysis of avrRxo1 from Acidovorax avenae, A. citrulli, Burkholderia andropogonis, Xanthomonas translucens, and Xanthomonas euvesicatoria showed that some AvrRxo1 homologs share the bacteriostatic and Rxo1-mediated cell death triggering activities of AvrRxo1 from X. oryzae. Additional distant putative homologs of avrRxo1 and arc1 were identified in genomic or metagenomic sequence of environmental bacteria with no known pathogenic role. One of these distant homologs was cloned from the filamentous soil bacterium Cystobacter fuscus. avrRxo1 from C. fuscus caused watersoaking and triggered Rxo1-dependent cell collapse in Nicotiana benthamiana, but no growth suppression in E. coli was observed. This work confirms that a type III effector can function as a TA system toxin, and illustrates the potential of microbiome data to reveal new environmental origins or reservoirs of pathogen virulence factors. PMID:27391081

  10. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Zhang, Lingling; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2010-10-05

    Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. In this study, we present the 3.3 {angstrom} crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC{sup 1-151}). Specifically, we observe a rotationally-symmetric 'head-to-head' dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC{sup 1-151}. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may

  11. The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action

    Science.gov (United States)

    Abbondanza, Ciro; Medici, Nicola; Nigro, Vincenzo; Rossi, Valentina; Gallo, Luigi; Piluso, Giulio; Belsito, Angela; Roscigno, Annarita; Bontempo, Paola; Puca, Annibale A.; Molinari, Anna Maria; Moncharmont, Bruno; Puca, Giovanni A.

    2000-01-01

    Co-immunoprecipitation experiments in cell extract from cultured cells or target tissues indicated that estrogen receptor was complexed with the retinoblastoma binding protein RIZ in a ligand-dependent manner. Mapping of interaction sites indicated that in both proteins the same regions and motifs responsible for the interaction of transcriptional co-activator and nuclear receptors were involved. In cultured cells, estradiol induced a redistribution of RIZ protein within the nucleus and in the cytoplasm. A similar effect was produced in vivo, in prepuberal rat endometrium, by administration of a physiological dose of estradiol. Therefore, RIZ protein could be a specific effector of estrogen action downstream of the hormone-receptor interaction, presumably involved in proliferation control. PMID:10706618

  12. The different effector function capabilities of the seven equine IgG subclasses have implications for vaccine strategies.

    Science.gov (United States)

    Lewis, Melanie J; Wagner, Bettina; Woof, Jenny M

    2008-02-01

    Recombinant versions of the seven equine IgG subclasses were expressed in CHO cells. All assembled into intact immunoglobulins stabilised by disulphide bridges, although, reminiscent of human IgG4, a small proportion of equine IgG4 and IgG7 were held together by non-covalent bonds alone. All seven IgGs were N-glycosylated. In addition IgG3 appeared to be O-glycosylated and could bind the lectin jacalin. Staphylococcal protein A displayed weak binding for the equine IgGs in the order: IgG1>IgG3>IgG4>IgG7>IgG2=IgG5>IgG6. Streptococcal protein G bound strongly to IgG1, IgG4 and IgG7, moderately to IgG3, weakly to IgG2 and IgG6, and not at all to IgG5. Analysis of antibody effector functions revealed that IgG1, IgG3, IgG4, IgG5 and IgG7, but not IgG2 and IgG6, were able to elicit a strong respiratory burst from equine peripheral blood leukocytes, predicting that the former five IgG subclasses are able to interact with Fc receptors on effector cells. IgG1, IgG3, IgG4 and IgG7, but not IgG2, IgG5 and IgG6, were able to bind complement C1q and activate complement via the classical pathway. The differential effector function capabilities of the subclasses suggest that, for maximum efficacy, equine vaccine strategies should seek to elicit antibody responses of the IgG1, IgG3, IgG4, and IgG7 subclasses. PMID:17669496

  13. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation

    NARCIS (Netherlands)

    Jensen, K.D.C.; Wang, Y.; Tait Wonjo, E.D.; Shastri, A.J.; Hu, K.; Cornel, L.; Boedec, E.; Ong, Y.C.; Chien, Y.H.; Hunter, C.A.; Boothroyd, J.C.; Saeij, J.P.J.

    2011-01-01

    European and North American strains of the parasite Toxoplasma gondii belong to three distinct clonal lineages, type I, type II, and type III, which differ in virulence. Understanding the basis of Toxoplasma strain differences and how secreted effectors work to achieve chronic infection is a major g

  14. Structure and evolution of barley powdery mildew effector candidates

    DEFF Research Database (Denmark)

    Pedersen, Carsten; Themaat, Emiel Ver Loren van; McGuffin, Liam J.;

    2012-01-01

    Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute...... requirement to suppress or avoid host immunity if it is to survive and cause disease....

  15. Hand to Mouth: Automatic Imitation across Effector Systems

    Science.gov (United States)

    Leighton, Jane; Heyes, Cecilia

    2010-01-01

    The effector dependence of automatic imitation was investigated using a stimulus-response compatibility (SRC) procedure during which participants were required to make an open or closed response with their hand or their mouth. The correct response for each trial was indicated by a pair of letters in Experiments 1 and 2 and by a colored square in…

  16. Identification and characterization of novel effectors of Cladosporium fulvum

    NARCIS (Netherlands)

    Ökmen, B.

    2013-01-01

    In order to establish disease, plant pathogenic fungi deliver effectors in the apoplastic space surrounding host cells as well as into host cells themselves to manipulate host physiology in favour of their own growth. Cladosporium fulvum is a non-obligate biotrophic fungus causing leaf mould disease

  17. Required allosteric effector site for N-acetylglutamate on carbamoyl-phosphate synthetase I.

    Science.gov (United States)

    McCudden, C R; Powers-Lee, S G

    1996-07-26

    Carbamoyl-phosphate synthetase I (CPSase I) catalyzes the entry and rate-limiting step in the urea cycle, the pathway by which mammals detoxify ammonia. One facet of CPSase I regulation is a requirement for N-acetylglutamate (AGA), which induces an active enzyme conformation and does not participate directly in the chemical reaction. We have utilized labeling with carbodiimide-activated [14C]AGA to identify peptides 120-127, 234-237, 625-630, and 1351-1356 as potentially being near the binding site for AGA. Identification of peptide 1351-1356 confirms the previous demonstration (Rodriquez-Aparicio, L. B., Guadalajara, A. M., and Rubio, V.(1989) Biochemistry 28, 3070-3074) that the C-terminal region is involved in binding AGA. Identification of peptides 120-127 and 234-237 constitutes the first evidence that the N-terminal region of the synthetase is involved in ligand binding. Since peptides 631-638 and 1327-1348 have been identified near the ATP site of CPSase I (Potter, M. D., and Powers-Lee, S. G.(1992) J. Biol. Chem. 267, 2023-2031), the present finding of involvement of peptides 625-630 and 1351-1356 at an "allosteric" activator site was unexpected. The idea that portions of the AGA effector site might be derived from an ancestral glutamine substrate site via a gene duplication and diversification event was considered. PMID:8663466

  18. Direct observation of transcription activator-like effector (TALE) protein dynamics

    Science.gov (United States)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2014-03-01

    In this work, we describe a single molecule assay to probe the site-search dynamics of transcription activator-like effector (TALE) proteins along DNA. In modern genetics, the ability to selectively edit the human genome is an unprecedented development, driven by recent advances in targeted nuclease proteins. Specific gene editing can be accomplished using TALE proteins, which are programmable DNA-binding proteins that can be fused to a nuclease domain. In this way, TALENs are a leading technology that has shown great success in the genomic editing of pluripotent stem cells. A major hurdle facing clinical implementation, however, is the potential for deleterious off-target binding events. For these reasons, a molecular-level understanding of TALE binding and target sequence search on DNA is essential. To this end, we developed a single-molecule fluorescence imaging assay that provides a first-of-its-kind view of the 1-D diffusion of TALE proteins along stretched DNA. Taken together with co-crystal structures of DNA-bound TALEs, our results suggest a rotationally-coupled, major groove tracking model for diffusion. We further report diffusion constants for TALE proteins as a function of salt concentration, consistent with previously described models of 1-D protein diffusion.

  19. Active Flow Effectors for Noise and Separation Control

    Science.gov (United States)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  20. Capture compound mass spectrometry--a powerful tool to identify novel c-di-GMP effector proteins.

    Science.gov (United States)

    Laventie, Benoît-Joseph; Nesper, Jutta; Ahrné, Erik; Glatter, Timo; Schmidt, Alexander; Jenal, Urs

    2015-01-01

    Considerable progress has been made during the last decade towards the identification and characterization of enzymes involved in the synthesis (diguanylate cyclases) and degradation (phosphodiesterases) of the second messenger c-di-GMP. In contrast, little information is available regarding the molecular mechanisms and cellular components through which this signaling molecule regulates a diverse range of cellular processes. Most of the known effector proteins belong to the PilZ family or are degenerated diguanylate cyclases or phosphodiesterases that have given up on catalysis and have adopted effector function. Thus, to better define the cellular c-di-GMP network in a wide range of bacteria experimental methods are required to identify and validate novel effectors for which reliable in silico predictions fail. We have recently developed a novel Capture Compound Mass Spectrometry (CCMS) based technology as a powerful tool to biochemically identify and characterize c-di-GMP binding proteins. This technique has previously been reported to be applicable to a wide range of organisms(1). Here we give a detailed description of the protocol that we utilize to probe such signaling components. As an example, we use Pseudomonas aeruginosa, an opportunistic pathogen in which c-di-GMP plays a critical role in virulence and biofilm control. CCMS identified 74% (38/51) of the known or predicted components of the c-di-GMP network. This study explains the CCMS procedure in detail, and establishes it as a powerful and versatile tool to identify novel components involved in small molecule signaling.

  1. Rho-modifying bacterial protein toxins.

    Science.gov (United States)

    Aktories, Klaus

    2015-12-01

    Rho proteins are targets of numerous bacterial protein toxins, which manipulate the GTP-binding proteins by covalent modifications, including ADP ribosylation, glycosylation, adenylylation, proteolytic cleavage and deamidation. Bacterial toxins are important virulence factors but are also potent and efficient pharmacological tools to study the physiological functions of their eukaryotic targets. Recent studies indicate that amazing variations exist in the molecular mechanisms by which toxins attack Rho proteins, which are discussed here.

  2. Operation and maintenance manual for the common video end effector system (CVEE) system 6260

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, A.F., Westinghouse Hanford

    1996-07-24

    This document defines the requirements for the operation,maintenance, and storage of the Common Video End Effector System (CVEE) used with the video end effectors as part of the Light Duty Utility Arm (LDUA) system.

  3. Bacterial Hydrodynamics

    Science.gov (United States)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  4. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  5. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis.

    Science.gov (United States)

    Sun, Hui; Kamanova, Jana; Lara-Tejero, Maria; Galán, Jorge E

    2016-03-01

    Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen's virulence.

  6. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis.

    Directory of Open Access Journals (Sweden)

    Hui Sun

    2016-03-01

    Full Text Available Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65 and RelB transcription factors but do not target p100 (NF-κB2 or p105 (NF-κB1. A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen's virulence.

  7. Genome-Enabled Phylogeographic Investigation of the Quarantine Pathogen Ralstonia solanacearum Race 3 Biovar 2 and Screening for Sources of Resistance Against Its Core Effectors.

    Science.gov (United States)

    Clarke, Christopher R; Studholme, David J; Hayes, Byron; Runde, Brendan; Weisberg, Alexandra; Cai, Rongman; Wroblewski, Tadeusz; Daunay, Marie-Christine; Wicker, Emmanuel; Castillo, Jose A; Vinatzer, Boris A

    2015-05-01

    Phylogeographic studies inform about routes of pathogen dissemination and are instrumental for improving import/export controls. Genomes of 17 isolates of the bacterial wilt and potato brown rot pathogen Ralstonia solanacearum race 3 biovar 2 (R3bv2), a Select Agent in the United States, were thus analyzed to get insight into the phylogeography of this pathogen. Thirteen of fourteen isolates from Europe, Africa, and Asia were found to belong to a single clonal lineage while isolates from South America were genetically diverse and tended to carry ancestral alleles at the analyzed genomic loci consistent with a South American origin of R3bv2. The R3bv2 isolates share a core repertoire of 31 type III-secreted effector genes representing excellent candidates to be targeted with resistance genes in breeding programs to develop durable disease resistance. Toward this goal, 27 R3bv2 effectors were tested in eggplant, tomato, pepper, tobacco, and lettuce for induction of a hypersensitive-like response indicative of recognition by cognate resistance receptors. Fifteen effectors, eight of them core effectors, triggered a response in one or more plant species. These genotypes may harbor resistance genes that could be identified and mapped, cloned, and expressed in tomato or potato, for which sources of genetic resistance to R3bv2 are extremely limited. PMID:25710204

  8. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis.

    Science.gov (United States)

    Sun, Hui; Kamanova, Jana; Lara-Tejero, Maria; Galán, Jorge E

    2016-03-01

    Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen's virulence. PMID:26933955

  9. A bacterial pathogen uses distinct type III secretion systems to alternate between host kingdoms

    Science.gov (United States)

    Plant and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (Pnss), the causative agent of Stewart’s bacterial wilt and...

  10. A constitutive effector region on the C-terminal side of switch I of the Ras protein.

    Science.gov (United States)

    Fujita-Yoshigaki, J; Shirouzu, M; Ito, Y; Hattori, S; Furuyama, S; Nishimura, S; Yokoyama, S

    1995-03-01

    The "switch I" region (Asp30-Asp38) of the Ras protein takes remarkably different conformations between the GDP- and GTP-bound forms and coincides with the so-called "effector region." As for a region on the C-terminal side of switch I, the V45E and G48C mutants of Ras failed to promote neurite outgrowth of PC12 cells (Fujita-Yoshigaki, J., Shirouzu, M., Koide, H., Nishimura, S., and Yokoyama, S. (1991) FEBS Lett. 294, 187-190). In the present study, we performed alanine-scanning mutagenesis within the region Lys42-Ile55 of Ras and found that the K42A, I46A, G48A, E49A, and L53A mutations significantly reduced the neurite-inducing activity. This is an effector region by definition, but its conformation is known to be unaffected by GDP-->GTP exchange. So, this region is referred to as a "constitutive" effector (Ec) region, distinguished from switch I, a "switch" effector (Es) region. The Ec region mutants exhibiting no neurite-inducing activity were found to be correlatably unable to activate mitogen-activated protein (MAP) kinase in PC12 cells. Therefore, the Ec region is essential for the MAP kinase activation in PC12 cells, whereas mutations in this region only negligibly affect the binding of Ras to Raf-1 (Shirouzu, M., Koide, H., Fujita-Yoshigaki, J., Oshio, H., Toyama, Y., Yamasaki, K., Fuhrman, S. A., Villafranca, E., Kaziro, Y., and Yokoyama, S. (1994) Oncogene 9, 2153-2157).

  11. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  12. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking.

    Directory of Open Access Journals (Sweden)

    Alka Mehra

    2013-10-01

    Full Text Available Mycobacterium tuberculosis (Mtb disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs, a component of the endosomal sorting complex required for transport (ESCRT. ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs of multivesicular bodies (MVBs, ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.

  13. Genetic diversity of Candidatus Liberibacter asiaticus based on two hypervariable effector genes in Thailand.

    Directory of Open Access Journals (Sweden)

    Thamrongjet Puttamuk

    Full Text Available Huanglongbing (HLB, also known as citrus greening, is one of the most destructive diseases of citrus worldwide. HLB is associated with three species of 'Candidatus Liberibacter' with 'Ca. L. asiaticus' (Las being the most widely distributed around the world, and the only species detected in Thailand. To understand the genetic diversity of Las bacteria in Thailand, we evaluated two closely-related effector genes, lasAI and lasAII, found within the Las prophages from 239 infected citrus and 55 infected psyllid samples collected from different provinces in Thailand. The results indicated that most of the Las-infected samples collected from Thailand contained at least one prophage sequence with 48.29% containing prophage 1 (FP1, 63.26% containing prophage 2 (FP2, and 19.38% containing both prophages. Interestingly, FP2 was found to be the predominant population in Las-infected citrus samples while Las-infected psyllids contained primarily FP1. The multiple banding patterns that resulted from amplification of lasAI imply extensive variation exists within the full and partial repeat sequence while the single band from lasAII indicates a low amount of variation within the repeat sequence. Phylogenetic analysis of Las-infected samples from 22 provinces in Thailand suggested that the bacterial pathogen may have been introduced to Thailand from China and the Philippines. This is the first report evaluating the genetic variation of a large population of Ca. L. asiaticus infected samples in Thailand using the two effector genes from Las prophage regions.

  14. [Sodium ions as the effector of catalytic action of alpha-thrombin].

    Science.gov (United States)

    Kolodzeĭskaia, M V; Volkov, G L

    2007-01-01

    A process of thrombin interaction with synthetic and natural substrates in the presence of Na+ ions has been analyzed in the survey. Molecular bases of this interaction have been presented, interrelation between the structure and function of thrombin has been noted; the nature of the unique site of its active centre which determines high thrombin affinity for the substrates and increase of its catalytic activity defined by the term of "specificity to univalent cations" have been considered in detail. Na+ ions play the role of allosteric effector in realization of two informational states of thrombin which penform, respectively, two fundamental and competing functions in the process of hemostasis. The molecular basis of the process of Na+ binding with thrombin is rather simple and depends only on the single site which importance for the enzyme function is marked by numerous investigations of a number of authors, and it is shown that Na(+)-binding site is distributed in the other zone of thrombin molecule as compared to exosites I and II, which do not take part in Na(+)-binding and allosteric transduction. Considerable attention was given to conformational conversions of a thrombin molecule caused by Na+ ions binding. It was shown that the transition slow fast of the enzyme forms leads to formation of the ion pair Arg-187: Asp-222, optimal orientation of Asp-189 and Ser-195 for binding of substrates and considerable shift of the lateral chain Glu-192 determined by the disturbance of the lattice of water molecules which connects Na(+)-binding site with aminoacid Ser-195 of the active centre of the enzyme. New data have been presented which indicate that the changes in the lattice of water molecules and allosteric nucleus of Na(+)-binding site of the enzyme are the basic link of raising the affinity between the thrombin and substrate and mechanism of the enzyme activation by Na(+)-ions. The survey touches some problems of creation of allosteric inhibitors of thrombin

  15. Novel Vinculin Binding Site of the IpaA Invasin of Shigella

    Energy Technology Data Exchange (ETDEWEB)

    Park, HaJeung; Valencia-Gallardo, Cesar; Sharff, Andrew; Van Nhieu, Guy Tran; Izard, Tina (Globel Phasing); (Scripps); (CF)

    2012-10-25

    Internalization of Shigella into host epithelial cells, where the bacteria replicates and spreads to neighboring cells, requires a type 3 secretion system (T3SS) effector coined IpaA. IpaA binds directly to and activates the cytoskeletal protein vinculin after injection in the host cell cytosol, and this was previously thought to be directed by two amphipathic {alpha}-helical vinculin-binding sites (VBS) found in the C-terminal tail domain of IpaA. Here, we report a third VBS, IpaA-VBS3, that is located N-terminal to the other two VBSs of IpaA and show that one IpaA molecule can bind up to three vinculin molecules. Biochemical in vitro Shigella invasion assays and the 1.6 {angstrom} crystal structure of the vinculin {center_dot} IpaA-VBS3 complex showed that IpaA-VBS3 is functionally redundant with the other two IpaA-VBSs in cell invasion and in activating the latent F-actin binding functions of vinculin. Multiple VBSs in IpaA are reminiscent of talin, which harbors 11 VBSs. However, most of the talin VBSs have low affinity and are buried in helix bundles, whereas all three of the VBSs of IpaA are high affinity, readily available, and in close proximity to each other in the IpaA structure. Although deletion of IpaA-VBS3 has no detectable effects on Shigella invasion of epithelial cells, deletion of all three VBSs impaired bacterial invasion to levels found in an ipaA null mutant strain. Thus, IpaA-directed mimicry of talin in activating vinculin occurs through three high affinity VBSs that are essential for Shigella pathogenesis.

  16. Structure and evolution of barley powdery mildew effector candidates

    Directory of Open Access Journals (Sweden)

    Pedersen Carsten

    2012-12-01

    Full Text Available Abstract Background Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease. Results Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100–150 amino acids, with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300–400 amino acids, with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons. Conclusions We employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f

  17. The Anti-sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation.

    Science.gov (United States)

    Hastie, Jessica L; Williams, Kyle B; Bohr, Lindsey L; Houtman, Jon C; Gakhar, Lokesh; Ellermeier, Craig D

    2016-09-01

    σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme. PMID:27602573

  18. Identification of Novel Type III Effectors Using Latent Dirichlet Allocation

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2012-01-01

    Full Text Available Among the six secretion systems identified in Gram-negative bacteria, the type III secretion system (T3SS plays important roles in the disease development of pathogens. T3SS has attracted a great deal of research interests. However, the secretion mechanism has not been fully understood yet. Especially, the identification of effectors (secreted proteins is an important and challenging task. This paper adopts machine learning methods to identify type III secreted effectors (T3SEs. We extract features from amino acid sequences and conduct feature reduction based on latent semantic information by using latent Dirichlet allocation model. The experimental results on Pseudomonas syringae data set demonstrate the good performance of the new methods.

  19. Anchors for Effectors: Subversion of Phosphoinositide Lipids by Legionella

    OpenAIRE

    Hilbi, Hubert; Weber, Stephen; Finsel, Ivo

    2011-01-01

    The facultative intracellular pathogen Legionella pneumophila replicates in free-living amoebae and macrophages within a distinct compartment, the “Legionella-containing vacuole” (LCV). LCV formation involves phosphoinositide (PI) glycerolipids, which are key factors controlling vesicle trafficking pathways and membrane dynamics of eukaryotic cells. To govern the interactions with host cells, L. pneumophila employs the Icm/Dot type IV secretion system and more than 250 translocated “effector ...

  20. Characterisation of the Legionella pneumophila effector RidL

    OpenAIRE

    Finsel, Ivo

    2014-01-01

    The Gram-negative bacterium Legionella pneumophila naturally parasitises environmental amoebae, but is also able to infect human alveolar macrophages in a mechanistically similar manner. This can result in the mild "Pontiac fever", a flu-like illness, or a potentially lethal pneumonia termed Legionnaires' disease". Crucial for establishing an intracellular replication niche is the Icm/Dot type IV secretion system (T4SS), which translocates approximately 300 different "effector" proteins into ...

  1. Anchors for effectors: subversion of phosphoinositide lipids by Legionella

    OpenAIRE

    Hubert eHilbi; Stephen eWeber; Ivo eFinsel

    2011-01-01

    The facultative intracellular pathogen Legionella pneumophila replicates in free-living amoebae and macrophages within a distinct compartment, the Legionella-containing vacuole (LCV). LCV formation involves phosphoinositide (PI) glycerolipids, which are key factors controlling vesicle trafficking pathways and membrane dynamics of eukaryotic cells. To govern the interactions with host cells, L. pneumophila employs the Icm/Dot type IV secretion system and more than 250 translocated effector pro...

  2. Cell-Autonomous Effector Mechanisms against Mycobacterium tuberculosis

    OpenAIRE

    MacMicking, John D.

    2014-01-01

    Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe2+, Mn2+, Cu2+, and Zn2+, as well as...

  3. Macrophages are critical effectors of antibody therapies for cancer

    OpenAIRE

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macropha...

  4. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting celluloytic complexes

    NARCIS (Netherlands)

    Mingardon, F.; Chanal, A.; Lopez Contreras, A.M.; Dray, C.; Bayer, E.A.; Fierobe, H.P.

    2007-01-01

    Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostrid

  5. Mouse and human FcR effector functions.

    Science.gov (United States)

    Bruhns, Pierre; Jönsson, Friederike

    2015-11-01

    Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs. PMID:26497511

  6. Bacterial invasion reconstructed molecule by molecule

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James H [Los Alamos National Laboratory

    2009-01-01

    We propose to visualize the initial stages of bacterial infection of a human host cell with unmatched spatial and temporal resolution. This work will develop a new capability for the laboratory (super-resolution optical imaging), will test unresolved scientific hypotheses regarding host-pathogen interaction dynamics, and leverages state of the art 3D molecular tracking instrumentation developed recently by our group. There is much to be gained by applying new single molecule tools to the important and familiar problem of pathogen entry into a host cell. For example, conventional fluorescence microscopy has identified key host receptors, such as CD44 and {alpha}5{beta}1 integrin, that aggregate near the site of Salmonella typhimurium infection of human cells. However, due to the small size of the bacteria ({approx} 2 {micro}m) and the diffraction of the emitted light, one just sees a fluorescent 'blob' of host receptors that aggregate at the site of attachment, making it difficult to determine the exact number of receptors present or whether there is any particular spatial arrangement of the receptors that facilitates bacterial adhesion/entry. Using newly developed single molecule based super-resolution imaging methods, we will visualize how host receptors are directed to the site of pathogen adhesion and whether host receptors adopt a specific spatial arrangement for successful infection. Furthermore, we will employ our 3D molecular tracking methods to follow the injection of virulence proteins, or effectors, into the host cell by the pathogen Type III secretion system (TTSS). We expect these studies to provide mechanistic insights into the early events of pathogen infection that have here-to-fore been technically beyond our reach. Our Research Goals are: Goal 1--Construct a super-resolution fluorescence microscope and use this new capability to image the spatial distribution of different host receptors (e.g. CD44, as {alpha}5{beta}1 integrin) at the

  7. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3'-terminal segment of guide RNA.

    Science.gov (United States)

    Mekler, Vladimir; Minakhin, Leonid; Semenova, Ekaterina; Kuznedelov, Konstantin; Severinov, Konstantin

    2016-04-01

    CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR-Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3'-terminal segments. This result implies that the 3'-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3'-terminal stem loops leads to reduced activity during genomic editing.

  8. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread.

    Science.gov (United States)

    Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit

    2016-04-01

    Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. PMID:26848538

  9. Binding Procurement

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  10. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta.

    Science.gov (United States)

    He, Yan; Cao, Xiaolong; Li, Kai; Hu, Yingxia; Chen, Yun-ru; Blissard, Gary; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner. PMID:25662101

  11. Implications of Spatiotemporal Regulation of Shigella flexneri Type three Secretion Activity on Effector Functions: think globally, act locally

    Directory of Open Access Journals (Sweden)

    F-X eCampbell-Valois

    2016-03-01

    Full Text Available Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA, which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed.

  12. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease.

    Science.gov (United States)

    Hu, Yang; Zhang, Junli; Jia, Hongge; Sosso, Davide; Li, Ting; Frommer, Wolf B; Yang, Bing; White, Frank F; Wang, Nian; Jones, Jeffrey B

    2014-01-28

    Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccA(w), induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations.

  13. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease.

    Science.gov (United States)

    Hu, Yang; Zhang, Junli; Jia, Hongge; Sosso, Davide; Li, Ting; Frommer, Wolf B; Yang, Bing; White, Frank F; Wang, Nian; Jones, Jeffrey B

    2014-01-28

    Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccA(w), induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations. PMID:24474801

  14. Cdc42 Effector Protein 2 (XCEP2 is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Nelson Richard W

    2004-10-01

    Full Text Available Abstract Background Rho GTPases and their downstream effector proteins regulate a diverse array of cellular processes during embryonic development, including reorganization of cytoskeletal architecture, cell adhesion, and transcription. Changes in the activation state of Rho GTPases are converted into changes in cellular behavior by a diversity of effector proteins, which are activated in response to changes in the GTP binding state of Rho GTPases. In this study we characterize the expression and function of one such effector, XCEP2, that is present during gastrulation stages in Xenopus laevis. Results In a search for genes whose expression is regulated during early stages of embryonic development in Xenopus laevis, a gene encoding a Rho GTPase effector protein (Xenopus Cdc42 effector protein 2, or XCEP2 was isolated, and found to be highly homologous, but not identical, to a Xenopus sequence previously submitted to the Genbank database. These two gene sequences are likely pseudoalleles. XCEP2 mRNA is expressed at constant levels until mid- to late- gastrula stages, and then strongly down-regulated at late gastrula/early neurula stages. Injection of antisense morpholino oligonucleotides directed at one or both pseudoalleles resulted in a significant delay in blastopore closure and interfered with normal embryonic elongation, suggesting a role for XCEP2 in regulating gastrulation movements. The morpholino antisense effect could be rescued by co-injection with a morpholino-insensitive version of the XCEP2 mRNA. Antisense morpholino oligonucleotides were found to have no effect on mesodermal induction, suggesting that the observed effects were due to changes in the behavior of involuting cells, rather than alterations in their identity. XCEP2 antisense morpholino oligonucleotides were also observed to cause complete disaggregation of cells composing animal cap explants, suggesting a specific role of XCEP2 in maintenance or regulation of cell

  15. Bacterial chromosome organization and segregation.

    Science.gov (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation. PMID:26566111

  16. Diverse roles of endoplasmic reticulum stress sensors in bacterial infection.

    Science.gov (United States)

    Pillich, Helena; Loose, Maria; Zimmer, Klaus-Peter; Chakraborty, Trinad

    2016-12-01

    Bacterial infection often leads to cellular damage, primarily marked by loss of cellular integrity and cell death. However, in recent years, it is being increasingly recognized that, in individual cells, there are graded responses collectively termed cell-autonomous defense mechanisms that induce cellular processes designed to limit cell damage, enable repair, and eliminate bacteria. Many of these responses are triggered not by detection of a particular bacterial effector or ligand but rather by their effects on key cellular processes and changes in homeostasis induced by microbial effectors when recognized. These in turn lead to a decrease in essential cellular functions such as protein translation or mitochondrial respiration and the induction of innate immune responses that may be specific to the cellular deficit induced. These processes are often associated with specific cell compartments, e.g., the endoplasmic reticulum (ER). Under non-infection conditions, these systems are generally involved in sensing cellular stress and in inducing and orchestrating the subsequent cellular response. Thus, perturbations of ER homeostasis result in accumulation of unfolded proteins which are detected by ER stress sensors in order to restore the normal condition. The ER is also important during bacterial infection, and bacterial effectors that activate the ER stress sensors have been discovered. Increasing evidence now indicate that bacteria have evolved strategies to differentially activate different arms of ER stress sensors resulting in specific host cell response. In this review, we will describe the mechanisms used by bacteria to activate the ER stress sensors and discuss their role during infection. PMID:26883353

  17. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway.

    Science.gov (United States)

    Popa, Crina; Li, Liang; Gil, Sergio; Tatjer, Laura; Hashii, Keisuke; Tabuchi, Mitsuaki; Coll, Núria S; Ariño, Joaquín; Valls, Marc

    2016-06-03

    Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.

  18. A transient homotypic interaction model for the influenza A virus NS1 protein effector domain.

    Directory of Open Access Journals (Sweden)

    Philip S Kerry

    Full Text Available Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD, a short linker, an effector domain (ED, and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand. Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open' in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins.

  19. Structural Analysis of Pseudomonas syringae AvrPtoB Bound to Host BAK1 Reveals Two Similar Kinase-Interacting Domains in a Type III Effector

    Science.gov (United States)

    Cheng, Wei; Munkvold, Kathy R.; Gao, Haishan; Mathieu, Johannes; Schwizer, Simon; Wang, Sha; Yan, Yong-bin; Wang, Jinjing; Martin, Gregory B.; Chai, Jijie

    2013-01-01

    SUMMARY To infect plants, Pseudomonas syringae pv. tomato delivers ~30 type III effector proteins into host cells, many of which interfere with PAMP-triggered immunity (PTI). One effector, AvrPtoB, suppresses PTI using a central domain to bind host BAK1, a kinase that acts with several pattern recognition receptors to activate defense signaling. A second AvrPtoB domain binds and suppresses the PTI-associated kinase Bti9 but is conversely recognized by the protein kinase Pto to activate effector-triggered immunity. We report the crystal structure of the AvrPtoB-BAK1 complex, which revealed structural similarity between these two AvrPtoB domains, suggesting that they arose by intragenic duplication. The BAK1 kinase domain is structurally similar to Pto, and a conserved region within both BAK1 and Pto interacts with AvrPtoB. BAK1 kinase activity is inhibited by AvrPtoB, and mutations at the interaction interface disrupt AvrPtoB virulence activity. These results shed light on a structural mechanism underlying host-pathogen coevolution. PMID:22169508

  20. Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jennifer D Lewis

    Full Text Available Pseudomonas syringae employs a type III secretion system to inject 20-30 different type III effector (T3SE proteins into plant host cells. A major role of T3SEs is to suppress plant immune responses and promote bacterial infection. The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant and animal pathogenic bacteria. In P. syringae, this superfamily includes the evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE transgenic lines of Arabidopsis for HopZ family members and characterized them for immune suppression phenotypes. We show that all of the HopZ family members can actively suppress various facets of Arabidopsis immunity in a catalytic residue-dependent manner. HopZ family members can differentially suppress the activation of mitogen-activated protein (MAP kinase cascades or the production of reactive oxygen species, whereas all members can promote the growth of non-virulent P. syringae. Localization studies show that four of the HopZ family members containing predicted myristoylation sites are localized to the vicinity of the plasma membrane while HopZ3 which lacks the myristoylation site is at least partially nuclear localized, suggesting diversification of immunosuppressive mechanisms. Overall, we demonstrate that despite significant evolutionary diversification, all HopZ family members can suppress immunity in Arabidopsis.

  1. Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314.

    Science.gov (United States)

    Weber, Mary M; Faris, Robert; McLachlan, Juanita; Tellez, Andres; Wright, William U; Galvan, Gloria; Luo, Zhao-Qing; Samuel, James E

    2016-05-01

    Coxiella burnetii is a Gram-negative, obligate intracellular pathogen that directs the formation of a parasitophorous vacuole derived from the host lysosomal network. Biogenesis and maintenance of this replicative compartment is dependent on bacterial protein synthesis and results in differential expression of specific host genes. However, the mechanisms by which the pathogen induces changes in the host transcriptome is poorly understood. In the current study we identified a Dot/Icm secreted effector, Cbu1314, which encodes two nuclear localization signals that are required for nuclear localization and association with host chromatin. Chromatin immunoprecipitation (ChIP) and deep sequencing revealed that Cbu1314 associated with host genes involved in transcription, cell signaling, and the immune response. RNA sequencing of cells overexpressing Cbu1314 demonstrated that Cbu1314 modulates the host transcriptome and these transcriptional changes required a functional nuclear localization signal. Of the differentially expressed genes, sixteen were also identified as Cbu1314 targets using ChIP sequencing. Collectively these results suggest that Cbu1314 associates with host chromatin and plays a role in modulating the host transcriptome. PMID:26827929

  2. Mast cells: multitalented facilitators of protection against bacterial pathogens

    Science.gov (United States)

    Trivedi, Nikita H; Guentzel, M Neal; Rodriguez, Annette R; Yu, Jieh-Juen; Forsthuber, Thomas G; Arulanandam, Bernard P

    2014-01-01

    Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host–environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease. PMID:23390944

  3. Telepresence Master Glove Controller For Dexterous Robotic End-Effectors

    Science.gov (United States)

    Fowler, A. M.; Joyce, R. R.; Britt, J. P.

    1987-03-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computerin real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  4. Exact positioning of the robotic arm end effector

    Science.gov (United States)

    Korepanov, Valery; Dudkin, Fedir

    2016-07-01

    Orbital service becomes a new challenge of space exploration. The necessity to introduce it is connected first of all with an attractive opportunity to prolong the exploitation terms of expensive commercial satellites by, e.g., refilling of fuel or changing batteries. Other application area is a fight with permanently increasing amount of space litter - defunct satellites, burnt-out rocket stages, discarded trash and other debris. Now more than few tens of thousands orbiting objects larger than 5-10 cm (or about 1 million junks larger than 1 cm) are a huge problem for crucial and costly satellites and manned vehicles. For example, in 2014 the International Space Station had to change three times its orbit to avoid collision with space debris. So the development of the concepts and actions related to removal of space debris or non-operational satellites with use of robotic arm of a servicing satellite is very actual. Such a technology is also applicable for unmanned exploratory missions in solar system, for example for collecting a variety of samples from a celestial body surface. Naturally, the robotic arm movements should be controlled with great accuracy at influence of its non-rigidity, thermal and other factors. In these circumstances often the position of the arm end effector has to be controlled with high accuracy. The possibility of coordinate determination for the robotic arm end effector with use of a low frequency active electromagnetic system has been considered in the presented report. The proposed design of such a system consists of a small magnetic dipole source, which is mounted inside of the arm end effector and two or three 3-component magnetic field sensors mounted on a servicing satellite body. The data from this set of 3-component magnetic field sensors, which are fixed relatively to the satellite body, allows use of the mathematical approach for determination of position and orientation of the magnetic dipole source. The theoretical

  5. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  6. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy.

    Science.gov (United States)

    Lina, Taslima T; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  7. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy.

    Science.gov (United States)

    Lina, Taslima T; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657

  8. Lineage relationship of effector and memory T cells

    OpenAIRE

    Restifo, Nicholas P; Gattinoni, Luca

    2013-01-01

    Adaptive immunity is characterized by the ability to form long-lived immunological memory. Upon re-exposure to antigen, memory T cells respond more rapidly and robustly than naïve T cells, providing better clearance of pathogens. Recent reviews have reinforced the text-book view that memory T cells arise from effector cells. Although this notion is teleologically appealing, emerging data is more consistent with a model where naïve cells directly develop into memory cells without transitioning...

  9. TALE proteins bind to both active and inactive chromatin.

    Science.gov (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  10. Bacterial ice crystal controlling proteins.

    Science.gov (United States)

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  11. Perturbation of maize phenylpropanoid metabolism by an AvrE family type III effector from Pantoea stewartii.

    Science.gov (United States)

    Asselin, Jo Ann E; Lin, Jinshan; Perez-Quintero, Alvaro L; Gentzel, Irene; Majerczak, Doris; Opiyo, Stephen O; Zhao, Wanying; Paek, Seung-Mann; Kim, Min Gab; Coplin, David L; Blakeslee, Joshua J; Mackey, David

    2015-03-01

    AvrE family type III effector proteins share the ability to suppress host defenses, induce disease-associated cell death, and promote bacterial growth. However, despite widespread contributions to numerous bacterial diseases in agriculturally important plants, the mode of action of these effectors remains largely unknown. WtsE is an AvrE family member required for the ability of Pantoea stewartii ssp. stewartii (Pnss) to proliferate efficiently and cause wilt and leaf blight symptoms in maize (Zea mays) plants. Notably, when WtsE is delivered by a heterologous system into the leaf cells of susceptible maize seedlings, it alone produces water-soaked disease symptoms reminiscent of those produced by Pnss. Thus, WtsE is a pathogenicity and virulence factor in maize, and an Escherichia coli heterologous delivery system can be used to study the activity of WtsE in isolation from other factors produced by Pnss. Transcriptional profiling of maize revealed the effects of WtsE, including induction of genes involved in secondary metabolism and suppression of genes involved in photosynthesis. Targeted metabolite quantification revealed that WtsE perturbs maize metabolism, including the induction of coumaroyl tyramine. The ability of mutant WtsE derivatives to elicit transcriptional and metabolic changes in susceptible maize seedlings correlated with their ability to promote disease. Furthermore, chemical inhibitors that block metabolic flux into the phenylpropanoid pathways targeted by WtsE also disrupted the pathogenicity and virulence activity of WtsE. While numerous metabolites produced downstream of the shikimate pathway are known to promote plant defense, our results indicate that misregulated induction of phenylpropanoid metabolism also can be used to promote pathogen virulence. PMID:25635112

  12. Perturbation of Maize Phenylpropanoid Metabolism by an AvrE Family Type III Effector from Pantoea stewartii1[OPEN

    Science.gov (United States)

    Asselin, Jo Ann E.; Lin, Jinshan; Perez-Quintero, Alvaro L.; Gentzel, Irene; Majerczak, Doris; Opiyo, Stephen O.; Zhao, Wanying; Paek, Seung-Mann; Kim, Min Gab; Coplin, David L.; Blakeslee, Joshua J.; Mackey, David

    2015-01-01

    AvrE family type III effector proteins share the ability to suppress host defenses, induce disease-associated cell death, and promote bacterial growth. However, despite widespread contributions to numerous bacterial diseases in agriculturally important plants, the mode of action of these effectors remains largely unknown. WtsE is an AvrE family member required for the ability of Pantoea stewartii ssp. stewartii (Pnss) to proliferate efficiently and cause wilt and leaf blight symptoms in maize (Zea mays) plants. Notably, when WtsE is delivered by a heterologous system into the leaf cells of susceptible maize seedlings, it alone produces water-soaked disease symptoms reminiscent of those produced by Pnss. Thus, WtsE is a pathogenicity and virulence factor in maize, and an Escherichia coli heterologous delivery system can be used to study the activity of WtsE in isolation from other factors produced by Pnss. Transcriptional profiling of maize revealed the effects of WtsE, including induction of genes involved in secondary metabolism and suppression of genes involved in photosynthesis. Targeted metabolite quantification revealed that WtsE perturbs maize metabolism, including the induction of coumaroyl tyramine. The ability of mutant WtsE derivatives to elicit transcriptional and metabolic changes in susceptible maize seedlings correlated with their ability to promote disease. Furthermore, chemical inhibitors that block metabolic flux into the phenylpropanoid pathways targeted by WtsE also disrupted the pathogenicity and virulence activity of WtsE. While numerous metabolites produced downstream of the shikimate pathway are known to promote plant defense, our results indicate that misregulated induction of phenylpropanoid metabolism also can be used to promote pathogen virulence. PMID:25635112

  13. Salmonella enterica Serovar Typhimurium-Dependent Regulation of Inducible Nitric Oxide Synthase Expression in Macrophages by Invasins SipB, SipC, and SipD and Effector SopE2

    OpenAIRE

    Cherayil, Bobby J.; McCormick, Beth A.; Bosley, Jacob

    2000-01-01

    When Salmonella enterica invades mammalian cells, it activates signals leading to increased expression of inflammatory mediators. One such mediator is nitric oxide (NO), which is produced under control of the enzyme inducible NO synthase (iNOS). Induction of iNOS in response to Salmonella infection has been demonstrated, but the bacterial effector molecules that regulate expression of the enzyme have not been identified. In the study reported here, an analysis of Salmonella-dependent iNOS exp...

  14. Structure-Function Analyses of the Interactions between Rab11 and Rab14 Small GTPases with Their Shared Effector Rab Coupling Protein (RCP).

    Science.gov (United States)

    Lall, Patrick; Lindsay, Andrew J; Hanscom, Sara; Kecman, Tea; Taglauer, Elizabeth S; McVeigh, Una M; Franklin, Edward; McCaffrey, Mary W; Khan, Amir R

    2015-07-24

    Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.

  15. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections.

    NARCIS (Netherlands)

    Nehme, N.T.; Quintin, J.; Cho, J.H.; Lee, J.; Lafarge, M.C.; Kocks, C.; Ferrandon, D.

    2011-01-01

    BACKGROUND: Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial pepti

  16. Integration of microsensor for microsurgery robot's end-effector

    Institute of Scientific and Technical Information of China (English)

    HU Yida; LI Dazhai; YANG Yang; SUN Xuguang

    2007-01-01

    To enhance the effect of robotic microsurgery,the microsensors are integrated on the robot's end-effector.On the basis of the requirements presented for the integration design,measuring mechanism for the robotic end trephine's force and cutting depth are studied.Force microsensor and position microsensor are used to measure surgical information of the force and depth.Measuring mechanism was achieved by means of linear sliding bearing and differential measuring structure.The sensor data board was developed.With the power spectral estimation of sensor data,two digital filtering methods are proposed,to help eliminate the interference to the original microsensor signal.They are the filtering method of lowpass-bandstop serial structure suitable for a PC,and a shift average filtering algorithm suitable for the sensor data board,respectively.The experimental results show that the integration of microsensors for microsurgery robot's end-effector can satisfy the design requirements,and the robotic end trephine can accurately fulfill the surgical task of corneal cutting.

  17. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients. PMID:25667985

  18. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2015-12-01

    Full Text Available The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen’s advantage. Proteinaceous effectors are synthesised intracellularly and must be externalised to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localisation predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes.

  19. Perturbation of host ubiquitin systems by plant pathogen/pest effector proteins

    OpenAIRE

    Banfield, Mark J.

    2014-01-01

    Microbial pathogens and pests of animals and plants secrete effector proteins into host cells, altering cellular physiology to the benefit of the invading parasite. Research in the past decade has delivered significant new insights into the molecular mechanisms of how these effector proteins function, with a particular focus on modulation of host immunity-related pathways. One host system that has emerged as a common target of effectors is the ubiquitination system in which substrate proteins...

  20. Candidate Effector Proteins of the Rust Pathogen Melampsora larici-populina Target Diverse Plant Cell Compartments.

    Science.gov (United States)

    Petre, Benjamin; Saunders, Diane G O; Sklenar, Jan; Lorrain, Cécile; Win, Joe; Duplessis, Sébastien; Kamoun, Sophien

    2015-06-01

    Rust fungi are devastating crop pathogens that deliver effector proteins into infected tissues to modulate plant functions and promote parasitic growth. The genome of the poplar leaf rust fungus Melampsora larici-populina revealed a large catalog of secreted proteins, some of which have been considered candidate effectors. Unraveling how these proteins function in host cells is a key to understanding pathogenicity mechanisms and developing resistant plants. In this study, we used an effectoromics pipeline to select, clone, and express 20 candidate effectors in Nicotiana benthamiana leaf cells to determine their subcellular localization and identify the plant proteins they interact with. Confocal microscopy revealed that six candidate effectors target the nucleus, nucleoli, chloroplasts, mitochondria, and discrete cellular bodies. We also used coimmunoprecipitation (coIP) and mass spectrometry to identify 606 N. benthamiana proteins that associate with the candidate effectors. Five candidate effectors specifically associated with a small set of plant proteins that may represent biologically relevant interactors. We confirmed the interaction between the candidate effector MLP124017 and TOPLESS-related protein 4 from poplar by in planta coIP. Altogether, our data enable us to validate effector proteins from M. larici-populina and reveal that these proteins may target multiple compartments and processes in plant cells. It also shows that N. benthamiana can be a powerful heterologous system to study effectors of obligate biotrophic pathogens.

  1. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity.

    Science.gov (United States)

    Schulze, Sebastian; Kay, Sabine; Büttner, Daniela; Egler, Monique; Eschen-Lippold, Lennart; Hause, Gerd; Krüger, Antje; Lee, Justin; Müller, Oliver; Scheel, Dierk; Szczesny, Robert; Thieme, Frank; Bonas, Ulla

    2012-09-01

    The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated. PMID:22738163

  2. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  3. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Science.gov (United States)

    Milano, Teresa

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  4. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  5. Structural and functional similarity between the bacterial type III secretion system needle protein PrgI and the eukaryotic apoptosis Bcl-2 proteins.

    Directory of Open Access Journals (Sweden)

    Matthew D Shortridge

    Full Text Available BACKGROUND: Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function. METHODOLOGY/PRINCIPAL FINDINGS: The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS. A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI. CONCLUSIONS/SIGNIFICANCE: A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in

  6. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  7. NMR studies of the allosteric effectors of the lac operon

    NARCIS (Netherlands)

    Romanuka, J.

    2009-01-01

    The aim of this thesis is to characterize the regulatory mechanism of the Lac repressor which is the molecular switch of the lac operon. Lac repressor binds to its cognate DNA operator and inhibits transcription. When an inducer binds to the protein, it triggers a conformational change that releases

  8. Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD.

    Directory of Open Access Journals (Sweden)

    Yang Chen

    Full Text Available The covalent attachment of adenosine monophosphate (AMP to proteins, a process called AMPylation (adenylylation, has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen Legionella pneumophila. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide in vivo and in vitro evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses.

  9. Bacterial tactic responses.

    Science.gov (United States)

    Armitage, J P

    1999-01-01

    Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a

  10. Penicillin-Binding Protein Imaging Probes

    OpenAIRE

    Kocaoglu, Ozden; Carlson, Erin E.

    2013-01-01

    Penicillin-binding proteins (PBPs) are membrane-associated proteins involved in the biosynthesis of peptidoglycan (PG), the main component of bacterial cell walls. These proteins were discovered and named for their affinity to bind the β-lactam antibiotic penicillin. The importance of the PBPs has long been appreciated; however, the apparent functional redundancy of the ~5–15 proteins that most bacteria possess makes determination of their individual roles difficult. Existing techniques to st...

  11. Legionella pneumophila exploits PI(4P to anchor secreted effector proteins to the replicative vacuole.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available The causative agent of Legionnaires' disease, Legionella pneumophila, employs the intracellular multiplication (Icm/defective organelle trafficking (Dot type IV secretion system (T4SS to upregulate phagocytosis and to establish a replicative vacuole in amoebae and macrophages. Legionella-containing vacuoles (LCVs do not fuse with endosomes but recruit early secretory vesicles. Here we analyze the role of host cell phosphoinositide (PI metabolism during uptake and intracellular replication of L. pneumophila. Genetic and pharmacological evidence suggests that class I phosphatidylinositol(3 kinases (PI3Ks are dispensable for phagocytosis of wild-type L. pneumophila but inhibit intracellular replication of the bacteria and participate in the modulation of the LCV. Uptake and degradation of an icmT mutant strain lacking a functional Icm/Dot transporter was promoted by PI3Ks. We identified Icm/Dot-secreted proteins which specifically bind to phosphatidylinositol(4 phosphate (PI(4P in vitro and preferentially localize to LCVs in the absence of functional PI3Ks. PI(4P was found to be present on LCVs using as a probe either an antibody against PI(4P or the PH domain of the PI(4P-binding protein FAPP1 (phosphatidylinositol(4 phosphate adaptor protein-1. Moreover, the presence of PI(4P on LCVs required a functional Icm/Dot T4SS. Our results indicate that L. pneumophila modulates host cell PI metabolism and exploits the Golgi lipid second messenger PI(4P to anchor secreted effector proteins to the LCV.

  12. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions

    Science.gov (United States)

    Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.

    2016-01-01

    The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691

  13. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    the historical context of studies of cell volume regulation, focusing on the lineage started by Krogh, Bodil Schmidt-Nielsen, Hans-Henrik Ussing, and their students. The early work was focused on understanding the functional behaviour, kinetics and thermodynamics of the volume-regulatory ion transport......Cell volume homeostasis and its fine-tuning to the specific physiological context at any given moment are processes fundamental to normal cell function. The understanding of cell volume regulation owes much to August Krogh, yet has advanced greatly over the last decades. In this review, we outline...... mechanisms. Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  14. End effectors and attachments for buried waste excavation equipment

    International Nuclear Information System (INIS)

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER ampersand WM) Department's needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications

  15. End effectors and attachments for buried waste excavation equipment

    Energy Technology Data Exchange (ETDEWEB)

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER&WM) Department`s needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications.

  16. Cell-autonomous effector mechanisms against mycobacterium tuberculosis.

    Science.gov (United States)

    MacMicking, John D

    2014-10-01

    Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe²⁺, Mn²⁺, Cu²⁺, and Zn²⁺, as well as by metabolic privation in the form of carbon needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubiquinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autophagic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that sterilization is rarely complete, although sufficient to ensure most people infected with this airborne bacterium remain disease-free. PMID:25081628

  17. Characterization of DalS, an ATP-binding cassette transporter for D-alanine, and its role in pathogenesis in Salmonella enterica.

    Science.gov (United States)

    Osborne, Suzanne E; Tuinema, Brian R; Mok, Mac C Y; Lau, Pui Sai; Bui, Nhat Khai; Tomljenovic-Berube, Ana M; Vollmer, Waldemar; Zhang, Kun; Junop, Murray; Coombes, Brian K

    2012-05-01

    Expansion into new host niches requires bacterial pathogens to adapt to changes in nutrient availability and to evade an arsenal of host defenses. Horizontal acquisition of Salmonella Pathogenicity Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intracellular environment of host cells by allowing it to deliver bacterial effector proteins across the phagosome membrane. This is facilitated by the SsrA-SsrB two-component regulatory system and a type III secretion system encoded within SPI-2. SPI-2 acquisition was followed by evolution of existing regulatory DNA, creating an expanded SsrB regulon involved in intracellular fitness and host infection. Here, we identified an SsrB-regulated operon comprising an ABC transporter in Salmonella. Biochemical and structural studies determined that the periplasmic solute-binding component, STM1633/DalS, transports D-alanine and that DalS is required for intracellular survival of the bacteria and for fitness in an animal host. This work exemplifies the role of nutrient exchange at the host-pathogen interface as a critical determinant of disease outcome. PMID:22418438

  18. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  19. Protection after stroke: cellular effectors of neurovascular unit integrity

    Directory of Open Access Journals (Sweden)

    Rafael Andres Posada-Duque

    2014-08-01

    Full Text Available Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs, which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.

  20. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  1. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants

    Science.gov (United States)

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain very large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) ...

  2. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.

    Science.gov (United States)

    Westfall, Corey S; Xu, Ang; Jez, Joseph M

    2014-10-10

    Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1-3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme.

  3. The WxxxE effector EspT triggers expression of immune mediators in an Erk/JNK and NF-κB-dependent manner

    Science.gov (United States)

    Raymond, Benoit; Crepin, Valerie F.; Collins, James W.; Frankel, Gad

    2016-01-01

    Summary Enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Citrobacter rodentium colonize their respective hosts while forming attaching and effacing lesions. Their infection strategy relies on translocation of a battery of type III secretion system effectors, including Map, EspM and EspT, which belong to the WxxxE/SopE family of guanine nucleotide exchange factors. Using the C. rodentium mouse model we found that EspT triggers expression of KC and TNFα in vivo. Indeed, a growing body of evidence suggests that, in addition to subversion of actin dynamics, the SopE and the WxxxE effectors activate signalling pathways involved in immune responses. In this study we found that EspT induces expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2) an enzyme involved in production of prostaglandin E(2) (PGE2), interleukin (Il)-8 and Il-1β in U937 human macrophages by activating the nuclear factor kappa-B (NF-κB), the extracellular signal-regulated kinases 1 and 2 (Erk1/2) and c-Jun N-terminal kinase (JNK) pathways. Since EspT modulates the activation of Cdc42 and Rac1, which mediates bacterial invasion into epithelial cells, we investigated the involvement of these Rho GTPases and bacterial invasion on pro-inflammatory responses and found that (i) Rac1, but not Cdc42, is involved in EspT-induced Il-8 and Il-1β secretion and (ii) cytochalasin D inhibits EspT-induced EPEC invasion into U937 but not Il-8 or Il-1β secretion. These results suggest that while EPEC translocates a number of effectors (i.e. NleC, NleD, NleE, NleH) that inhibit inflammation, a subset of strains, which encode EspT, employ an infection strategy that also involves upregulation of immune mediators. PMID:21848814

  4. Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole

    Directory of Open Access Journals (Sweden)

    Lara J. Kohler

    2016-07-01

    Full Text Available Coxiella burnetii replicates in an acidified lysosome-derived vacuole. Biogenesis of the Coxiella-containing vacuole (CCV requires bacterial effector proteins delivered into host cells by the Dot/Icm secretion system. Genetic and cell biological analysis revealed that an effector protein called Cig2 promotes constitutive fusion of autophagosomes with the CCV to maintain this compartment in an autolysosomal stage of maturation. This distinguishes the CCV from other pathogen-containing vacuoles that are targeted by the host autophagy pathway, which typically confers host resistance to infection by delivering the pathogen to a toxic lysosomal environment. By maintaining the CCV in an autolysosomal stage of maturation, Cig2 enabled CCV homotypic fusion and enhanced bacterial virulence in the Galleria mellonella (wax moth model of infection by a mechanism that decreases host tolerance. Thus, C. burnetii residence in an autolysosomal organelle alters host tolerance of infection, which indicates that Cig2-dependent manipulation of a lysosome-derived vacuole influences the host response to infection.

  5. Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction

    Science.gov (United States)

    Washington, Erica J.; Mukhtar, M. Shahid; Finkel, Omri M.; Wan, Li; Kieber, Joseph J.; Dangl, Jeffery L.

    2016-01-01

    HopAF1 is a type III effector protein of unknown function encoded in the genomes of several strains of Pseudomonas syringae and other plant pathogens. Structural modeling predicted that HopAF1 is closely related to deamidase proteins. Deamidation is the irreversible substitution of an amide group with a carboxylate group. Several bacterial virulence factors are deamidases that manipulate the activity of specific host protein substrates. We identified Arabidopsis methylthioadenosine nucleosidase proteins MTN1 and MTN2 as putative targets of HopAF1 deamidation. MTNs are enzymes in the Yang cycle, which is essential for the high levels of ethylene biosynthesis in Arabidopsis. We hypothesized that HopAF1 inhibits the host defense response by manipulating MTN activity and consequently ethylene levels. We determined that bacterially delivered HopAF1 inhibits ethylene biosynthesis induced by pathogen-associated molecular patterns and that Arabidopsis mtn1 mtn2 mutant plants phenocopy the effect of HopAF1. Furthermore, we identified two conserved asparagines in MTN1 and MTN2 from Arabidopsis that confer loss of function phenotypes when deamidated via site-specific mutation. These residues are potential targets of HopAF1 deamidation. HopAF1-mediated manipulation of Yang cycle MTN proteins is likely an evolutionarily conserved mechanism whereby HopAF1 orthologs from multiple plant pathogens contribute to disease in a large variety of plant hosts. PMID:27274076

  6. How Diverse-CD4 Effector T Cells and their Functions

    Institute of Scientific and Technical Information of China (English)

    Yisong Y. Wan; Richard A. Flavell

    2009-01-01

    CD4 effector T cells, also called helper T (Th) cells, are the functional cells for executing immune functions. Balanced immune responses can only be achieved by proper regulation of the differentiation and function of Th cells. Dysregulated Th cell function of ten leads to inefficient clearance of pathogens and causes inflammatory diseases and autoimmunity. Since the establishment of the Th1–Th2 dogma in the 1980s, different lineages of effector T cells have been identified that not only promote but also suppress immune responses. Through years of collective efforts, much information was gained on the function and regulation of different subsets of Th cells. In this review, we attempt to sample the essence of what has been learnt in this field over the past two decades. We will discuss the classification and immunological functions of effector T cells, the determinants for effector T cell differentiation,as well as the relationship between different lineages of effector T cells.

  7. Control allocation and management of redundant control effectors based on bases sequenced optimal method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For an advanced aircraft, the amount of its effectors is much more than that for a traditional one, the functions of effectors are more complex and the coupling between each other is more severe. Based on the current control allocation research, this paper puts forward the concept and framework of the control allocation and management system for aircrafts with redundancy con-trol effectors. A new optimal control allocation method, bases sequenced optimal (BSO) method, is then presented. By analyz-ing the physical meaning of the allocation process of BSO method, four types of management strategies are adopted by the system, which act on the control allocation process under different flight conditions, mission requirements and effectors work-ing conditions. Simulation results show that functions of the control allocation system are extended and the system adaptability to flight status, mission requirements and effector failure conditions is improved.

  8. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Tanner M Johanns

    Full Text Available The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3-4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3(GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3(+ Treg suppressive potency. In complementary experiments using Foxp3(DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.

  9. Platelets: versatile effector cells in pneumonia and sepsis

    NARCIS (Netherlands)

    S.F. de Stoppelaar

    2015-01-01

    The role of platelets in infection and immunity is an exciting new theme, which is rapidly evolving. In this thesis we studied the involvement of platelets in the host response to pneumonia and sepsis. We made use of well established mouse models in which mice were infected with a bacterial inoculum

  10. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    Energy Technology Data Exchange (ETDEWEB)

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  11. The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Directory of Open Access Journals (Sweden)

    Adnane eNemri

    2014-03-01

    Full Text Available Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp. Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimise parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analysed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote

  12. Microbial starch-binding domains as a tool for modifying starch biosynthesis

    NARCIS (Netherlands)

    Ji, Q.

    2004-01-01

    Modification of the starch biosynthesis pathway holds an enormous potential for tailoring novel starches in planta . In this thesis, we have explored the possibility of anchoring effector proteins in potato starch granules during starch biosynthesis by using starch-binding domains (SBDs) of starch d

  13. Skin-Derived C-Terminal Filaggrin-2 Fragments Are Pseudomonas aeruginosa-Directed Antimicrobials Targeting Bacterial Replication.

    Directory of Open Access Journals (Sweden)

    Britta Hansmann

    2015-09-01

    Full Text Available Soil- and waterborne bacteria such as Pseudomonas aeruginosa are constantly challenging body surfaces. Since infections of healthy skin are unexpectedly rare, we hypothesized that the outermost epidermis, the stratum corneum, and sweat glands directly control the growth of P. aeruginosa by surface-provided antimicrobials. Due to its high abundance in the upper epidermis and eccrine sweat glands, filaggrin-2 (FLG2, a water-insoluble 248 kDa S100 fused-type protein, might possess these innate effector functions. Indeed, recombinant FLG2 C-terminal protein fragments display potent antimicrobial activity against P. aeruginosa and other Pseudomonads. Moreover, upon cultivation on stratum corneum, P. aeruginosa release FLG2 C-terminus-containing FLG2 fragments from insoluble material, indicating liberation of antimicrobially active FLG2 fragments by the bacteria themselves. Analyses of the underlying antimicrobial mechanism reveal that FLG2 C-terminal fragments do not induce pore formation, as known for many other antimicrobial peptides, but membrane blebbing, suggesting an alternative mode of action. The association of the FLG2 fragment with the inner membrane of treated bacteria and its DNA-binding implicated an interference with the bacterial replication that was confirmed by in vitro and in vivo replication assays. Probably through in situ-activation by soil- and waterborne bacteria such as Pseudomonads, FLG2 interferes with the bacterial replication, terminates their growth on skin surface and thus may contributes to the skin's antimicrobial defense shield. The apparent absence of FLG2 at certain body surfaces, as in the lung or of burned skin, would explain their higher susceptibility towards Pseudomonas infections and make FLG2 C-terminal fragments and their derivatives candidates for new Pseudomonas-targeting antimicrobials.

  14. Novel Tools to Analyze the Function of Salmonella Effectors Show That SvpB Ectopic Expression Induces Cell Cycle Arrest in Tumor Cells

    Science.gov (United States)

    Mesa-Pereira, Beatriz; Medina, Carlos; Camacho, Eva María; Flores, Amando; Santero, Eduardo

    2013-01-01

    In order to further characterize its role in pathogenesis and to establish whether its overproduction can lead to eukaryotic tumor cell death, Salmonella strains able to express its virulence factor SpvB (an ADP-ribosyl transferase enzyme) in a salicylate-inducible way have been constructed and analyzed in different eukaryotic tumor cell lines. To do so, the bacterial strains bearing the expression system have been constructed in a ∆purD background, which allows control of bacterial proliferation inside the eukaryotic cell. In the absence of bacterial proliferation, salicylate-induced SpvB production resulted in activation of caspases 3 and 7 and apoptotic cell death. The results clearly indicated that controlled SpvB production leads to F-actin depolimerization and either G1/S or G2/M phase arrest in all cell lines tested, thus shedding light on the function of SpvB in Salmonella pathogenesis. In the first place, the combined control of protein production by salicylate regulated vectors and bacterial growth by adenine concentration offers the possibility to study the role of Salmonella effectors during eukaryotic cells infection. In the second place, the salicylate-controlled expression of SpvB by the bacterium provides a way to evaluate the potential of other homologous or heterologous proteins as antitumor agents, and, eventually to construct novel potential tools for cancer therapy, given that Salmonella preferentially proliferates in tumors. PMID:24205236

  15. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on diots and monocots

    NARCIS (Netherlands)

    Stergiopoulos, I.; Burg, van den H.A.; Ökmen, B.; Beenen, H.G.; Liere, van S.; Kema, G.H.J.; Wit, de P.J.G.M.

    2010-01-01

    Most fungal effectors characterized so far are species-specific and facilitate virulence on a particular host plant. During infection of its host tomato, Cladosporium fulvum secretes effectors that function as virulence factors in the absence of cognate Cf resistance proteins and induce effector-tri

  16. Effector-mining in the poplar rust fungus Melampsora larici populina secretome

    Directory of Open Access Journals (Sweden)

    Cecile eLorrain

    2015-12-01

    Full Text Available The poplar leaf rust fungus, Melampsora larici-populina has been established as a tree-microbe interaction model. Understanding the molecular mechanisms controlling infection by pathogens appears essential for durable management of tree plantations. In biotrophic plant parasites, effectors are known to condition host cell colonization. Thus, investigation of candidate secreted effector proteins is a major goal in the poplar-poplar rust interaction. Unlike oomycetes, fungal effectors do not share conserved motifs and candidate prediction relies on a set of a priori criteria established from reported bona fide effectors. Secretome prediction, genome-wide analysis of gene families and transcriptomics of M. larici-populina have led to catalogues of more than a thousand secreted proteins. Automatized effector mining pipelines hold great promise for rapid and systematic identification and prioritization of candidate secreted effector proteins for functional characterization. In this review, we report on and discuss the current status of the poplar rust fungus secretome and prediction of candidate effectors in this species.

  17. Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors.

    Directory of Open Access Journals (Sweden)

    Adriana Cabral

    Full Text Available Biotrophic plant pathogens secrete effector proteins that are important for infection of the host. The aim of this study was to identify effectors of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa that are expressed during infection of its natural host Arabidopsis thaliana. Infection-related transcripts were identified from Expressed Sequence Tags (ESTs derived from leaves of the susceptible Arabidopsis Ws eds1-1 mutant inoculated with the highly virulent Hpa isolate Waco9. Assembly of 6364 ESTs yielded 3729 unigenes, of which 2164 were Hpa-derived. From the translated Hpa unigenes, 198 predicted secreted proteins were identified. Of these, 75 were found to be Hpa-specific and six isolate Waco9-specific. Among 42 putative effectors identified there were three Elicitin-like proteins, 16 Cysteine-rich proteins and 18 host-translocated RXLR effectors. Sequencing of alleles in different Hpa isolates revealed that five RXLR genes show signatures of diversifying selection. Thus, EST analysis of Hpa-infected Arabidopsis is proving to be a powerful method for identifying pathogen effector candidates expressed during infection. Delivery of the Waco9-specific protein RXLR29 in planta revealed that this effector can suppress PAMP-triggered immunity and enhance disease susceptibility. We propose that differences in host colonization can be conditioned by isolate-specific effectors.

  18. Exosomes: novel effectors of human platelet lysate activity

    Directory of Open Access Journals (Sweden)

    E Torreggiani

    2014-09-01

    Full Text Available Despite the popularity of platelet-rich plasma (PRP and platelet lysate (PL in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF, vascular endothelial growth factor (VEGF, platelet-derived growth factor (PDGF-BB and transforming growth factor beta 1 (TGF-β1 as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies.

  19. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  20. Exosomes: novel effectors of human platelet lysate activity.

    Science.gov (United States)

    Torreggiani, E; Perut, F; Roncuzzi, L; Zini, N; Baglìo, S R; Baldini, N

    2014-01-01

    Despite the popularity of platelet-rich plasma (PRP) and platelet lysate (PL) in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF) released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC) treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg) showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies. PMID:25241964

  1. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  2. Origin of CD8+ Effector and Memory T Cell Subsets

    Institute of Scientific and Technical Information of China (English)

    Christian Stemberger; Michael Neuenhahn; Veit R.Buchholz; Dirk H.Busch

    2007-01-01

    It is well accepted that CD8+ T cells play a pivotal role in providing protection against infection with intracellular pathogens and some tumors. In many cases protective immunity is maintained for long periods of time (immunological memory). Over the past years, it has become evident that in order to fulfill these multiple tasks,distinct subsets of effector and memory T cells have to be generated. Until today, however, little is known about the underlying mechanisms of subset differentiation and the timing of lineage fate decisions. In this context, it is of special importance to determine at which level of clonal expansion functional and phenotypical heterogeneity is achieved. Different models for T cell subset diversification have been proposed; these differ mainly in the time point during priming and clonal expansion (prior, during, or beyond the first cell division) when differentiation programs are induced. Recently developed single-cell adoptive transfer technology has allowed us to demonstrate that individual precursor cell still bears the full plasticity to develop into a plethora different T cell subsets. This observation targets the shaping of T cell subset differentiation towards factors that are still operative beyond the first cell division. These findings have important implications for vaccine development, as the modulation of differentiation patterns towards distinct subsets could become a powerful strategy to enhance the efficacy and quality of vaccines.

  3. Receptor-coupled effector systems and their interactions

    International Nuclear Information System (INIS)

    We investigated the modulation of intracellular signal generation by receptor-coupled effector systems in B lymphocytes, and whether these alterations are consistent with the effects of prostaglandins. TPA (12-O-tetradecanoyl phorbol-13-acetate) and sn-1,2,-dioctanoylglycerol (diC8) substitute for lipid derived signals which activate protein kinase C. Pretreating splenocytes from athymic nude mice with 100nM TPA or 5 μM diC8 potentiated the forskolin-induced increased in cAMP (measured by radioimmunoassay) 2.5 and 3.0 times (respectively), but they decreased the PGE1-induced cAMP rise 48% and 35% (respectively). Goat anti-mouse IgM, which activates diacylglycerol production, potentiated the forskolin-induced cAMP increase by 76%, but reduced that of PGE1 by 30%. Rabbit anti-mouse IgG, its F(ab')2 fragment, or goat anti-mouse IGM induced increases in the cytosolic free [Ca2+], [Ca2+]i, which TPA inhibited. In contrast, TPA potential antibody-induced 3H-thymidine (85x) and 3H-uridine (30x) uptake in B lymphocytes

  4. Motor resonance in left- and right-handers: evidence for effector-independent motor representations

    Directory of Open Access Journals (Sweden)

    Luisa eSartori

    2013-02-01

    Full Text Available The idea of motor resonance was born at the time that it was demonstrated that cortical and spinal pathways of the motor system are specifically activated during both action-observation and execution. What is not known is if the human action observation-execution matching system simulates actions through motor representations specifically attuned to the laterality of the observed effectors (i.e., effector-dependent representations or through abstract motor representations unconnected to the observed effector (i.e., effector-independent representations.To answer that question we need to know how the information necessary for motor resonance is represented or integrated within the representation of an effector. Transcranial magnetic stimulation (TMS-induced motor evoked potentials (MEPs were thus recorded from the dominant and non-dominant hands of left- and right-handed participants while they observed a left- or a right-handed model grasping an object. The anatomical correspondence between the effector being observed and the observer’s effector classically reported in the literature was confirmed by the MEP response in the dominant hand of participants observing models with their same hand preference. This effect was found in both left- as well as in right-handers. When a broader spectrum of options, such as actions performed by a model with a different hand preference, was instead considered, that correspondence disappeared. Motor resonance was noted in the observer’s dominant effector regardless of the laterality of the hand being observed. This would indicate that there is a more sophisticated mechanism which works to convert someone else’s pattern of movement into the observer’s optimal motor commands and that effector-independent representations specifically modulate motor resonance.

  5. Binding, tuning and mechanical function of the 4-hydroxy-cinnamic acid chromophore in photoactive yellow protein

    NARCIS (Netherlands)

    Horst, M.A. van der; Arents, J.C.; Kort, R.; Hellingwerf, K.J.

    2007-01-01

    The bacterial photoreceptor protein photoactive yellow protein (PYP) covalently binds the chromophore 4-hydroxy coumaric acid, tuning (spectral) characteristics of this cofactor. Here, we study this binding and tuning using a combination of pointmutations and chromophore analogs. In all photosensor

  6. Cooperative Model of Bacterial Sensing

    CERN Document Server

    Shi, Y; Shi, Yu; Duke, Thomas

    1998-01-01

    Bacterial chemotaxis is controlled by the signalling of a cluster of receptors. A cooperative model is presented, in which coupling between neighbouring receptor dimers enhances the sensitivity with which stimuli can be detected, without diminishing the range of chemoeffector concentration over which chemotaxis can operate. Individual receptor dimers have two stable conformational states: one active, one inactive. Noise gives rise to a distribution between these states, with the probability influenced by ligand binding, and also by the conformational states of adjacent receptor dimers. The two-state model is solved, based on an equivalence with the Ising model in a randomly distributed magnetic field. The model has only two effective parameters, and unifies a number of experimental findings. According to the value of the parameter comparing coupling and noise, the signal can be arbitrarily sensitive to changes in the fraction of receptor dimers to which ligand is bound. The counteracting effect of a change of...

  7. Unexpected versatility in bacterial riboswitches.

    Science.gov (United States)

    Mellin, J R; Cossart, Pascale

    2015-03-01

    Bacterial riboswitches are elements present in the 5'-untranslated regions (UTRs) of mRNA molecules that bind to ligands and regulate the expression of downstream genes. Riboswitches typically regulate the expression of protein-coding genes. However, mechanisms of riboswitch-mediated regulation have recently been shown to be more diverse than originally thought, with reports showing that riboswitches can regulate the expression of noncoding RNAs and control the access of proteins, such as transcription termination factor Rho and RNase E, to a nascent RNA. Riboswitches are also increasingly used in biotechnology, with advances in the engineering of synthetic riboswitches and the development of riboswitch-based sensors. In this review we address the emerging roles and mechanisms of riboswitch-mediated regulation in natura and recent progress in the development of riboswitch-based technology. PMID:25708284

  8. Mechanism of bacterial signal transduction revealed by molecular dynamics of Tsr dimers and trimers of dimers in lipid vesicles.

    Directory of Open Access Journals (Sweden)

    Benjamin A Hall

    Full Text Available Bacterial chemoreceptors provide an important model for understanding signalling processes. In the serine receptor Tsr from E. coli, a binding event in the periplasmic domain of the receptor dimer causes a shift in a single transmembrane helix of roughly 0.15 nm towards the cytoplasm. This small change is propagated through the ≈ 22 nm length of the receptor, causing downstream inhibition of the kinase CheA. This requires interactions within a trimer of receptor dimers. Additionally, the signal is amplified across a 53,000 nm(2 array of chemoreceptor proteins, including ≈ 5,200 receptor trimers-of-dimers, at the cell pole. Despite a wealth of experimental data on the system, including high resolution structures of individual domains and extensive mutagenesis data, it remains uncertain how information is communicated across the receptor from the binding event to the downstream effectors. We present a molecular model of the entire Tsr dimer, and examine its behaviour using coarse-grained molecular dynamics and elastic network modelling. We observe a large bending in dimer models between the linker domain HAMP and coiled-coil domains, which is supported by experimental data. Models of the trimer of dimers, built from the dimer models, are more constrained and likely represent the signalling state. Simulations of the models in a 70 nm diameter vesicle with a biologically realistic lipid mixture reveal specific lipid interactions and oligomerisation of the trimer of dimers. The results indicate a mechanism whereby small motions of a single helix can be amplified through HAMP domain packing, to initiate large changes in the whole receptor structure.

  9. Multiple Redundant Effector Mechanisms of CD8+ T Cells Protect against Influenza Infection

    OpenAIRE

    Hamada, Hiromasa; Bassity, Elizabeth; Flies, Amanda; Strutt, Tara M.; Garcia-Hernandez, Maria de Luz; McKinstry, K. Kai; Zou, Tie; Swain, Susan L.; Dutton, Richard W.

    2012-01-01

    We have previously shown that mice challenged with a lethal dose of PR8-OVAI are protected by injection of 4 to 8 × 106 in vitro - generated Tc1 or Tc17 CD8+ effectors. Viral load, lung damage and loss of lung function are all reduced following transfer. Weight loss is reduced and survival increased. We sought here to define the mechanism of this protection. CD8+ effectors exhibit multiple effector activities, perforin-, FasL- and TRAIL- mediated cytotoxicity, secretion of multiple cytokin...

  10. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.

    Science.gov (United States)

    Brokaw, Elizabeth B; Lum, Peter S; Cooper, Rory A; Brewer, Bambi R

    2013-06-01

    Abnormal kinematics and the use of compensation strategies during training limit functional improvement from therapy. The Kinect is a low cost ($100) sensor that does not require any markers to be placed on the user. Integration of this sensor into currently used therapy systems can provide feedback about the user's movement quality, and the use of compensatory strategies to complete tasks. This paper presents a novel technique of adding the Kinect to an end effector robot to limit compensation strategies and to train normal joint coordination during movements with an end effector robot. This methodology has wider implications for other robotic and passively actuated end effector rehabilitation devices. PMID:24187203

  11. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.

    Science.gov (United States)

    Brokaw, Elizabeth B; Lum, Peter S; Cooper, Rory A; Brewer, Bambi R

    2013-06-01

    Abnormal kinematics and the use of compensation strategies during training limit functional improvement from therapy. The Kinect is a low cost ($100) sensor that does not require any markers to be placed on the user. Integration of this sensor into currently used therapy systems can provide feedback about the user's movement quality, and the use of compensatory strategies to complete tasks. This paper presents a novel technique of adding the Kinect to an end effector robot to limit compensation strategies and to train normal joint coordination during movements with an end effector robot. This methodology has wider implications for other robotic and passively actuated end effector rehabilitation devices.

  12. Binding of collagen to Staphylococcus aureus Cowan 1.

    OpenAIRE

    Speziale, P; Raucci, G; Visai, L.; Switalski, L M; Timpl, R; Höök, M

    1986-01-01

    Collagen binds to a receptor protein present on the surfaces of Staphylococcus aureus cells. Binding of 125I-labeled type II collagen to its bacterial receptor is reversible, and Scatchard plot analysis indicates the presence of one class of receptor that occurs on an average of 3 X 10(4) copies per cell and binds type II collagen with a Kd of 10(-7) M. Studies on the specificity of collagen cell binding indicate that the receptor does not recognize noncollagenous proteins but binds all of th...

  13. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  14. NADPH Oxidase-Derived Superoxide Provides a Third Signal for CD4 T Cell Effector Responses.

    Science.gov (United States)

    Padgett, Lindsey E; Tse, Hubert M

    2016-09-01

    Originally recognized for their direct induced toxicity as a component of the innate immune response, reactive oxygen species (ROS) can profoundly modulate T cell adaptive immune responses. Efficient T cell activation requires: signal 1, consisting of an antigenic peptide-MHC complex binding with the TCR; signal 2, the interaction of costimulatory molecules on T cells and APCs; and signal 3, the generation of innate immune-derived ROS and proinflammatory cytokines. This third signal, in particular, has proven essential in generating productive and long-lasting immune responses. Our laboratory previously demonstrated profound Ag-specific hyporesponsiveness in the absence of NADPH oxidase-derived superoxide. To further examine the consequences of ROS deficiency on Ag-specific T cell responses, our laboratory generated the OT-II.Ncf1(m1J) mouse, possessing superoxide-deficient T cells recognizing the nominal Ag OVA323-339 In this study, we demonstrate that OT-II.Ncf1(m1J) CD4 T cells displayed a severe reduction in Th1 T cell responses, in addition to blunted IL-12R expression and severely attenuated proinflammatory chemokine ligands. Conversely, IFN-γ synthesis and IL-12R synthesis were rescued by the addition of exogenous superoxide via the paramagnetic superoxide donor potassium dioxide or superoxide-sufficient dendritic cells. Ultimately, these data highlight the importance of NADPH oxidase-derived ROS in providing a third signal for adaptive immune maturation by modulating the IL-12/IL-12R pathway and the novelty of the OT-II.Ncf1(m1J) mouse model to determine the role of redox-dependent signaling on effector responses. Thus, targeting ROS represents a promising therapeutic strategy in dampening Ag-specific T cell responses and T cell-mediated autoimmune diseases, such as type 1 diabetes. PMID:27474077

  15. A library of synthetic transcription activator-like effector-activated promoters for coordinated orthogonal gene expression in plants.

    Science.gov (United States)

    Brückner, Kathleen; Schäfer, Petra; Weber, Ernst; Grützner, Ramona; Marillonnet, Sylvestre; Tissier, Alain

    2015-05-01

    A library of synthetic promoters containing the binding site of a single designer transcription activator-like effector (dTALE) was constructed. The promoters contain a constant sequence, consisting of an 18-base long dTALE-binding site and a TATA box, flanked by degenerate sequences of 49 bases downstream and 19 bases upstream. Forty-three of these promoters were sequenced and tested in transient assays in Nicotiana benthamiana using a GUS reporter gene. The strength of expression of the promoters ranged from around 5% to almost 100% of the viral 35S promoter activity. We then demonstrated the utility of these promoters for metabolic engineering by transiently expressing three genes for the production of a plant diterpenoid in N. benthamiana. The simplicity of the promoter structure shows great promise for the development of genetic circuits, with wide potential applications in plant synthetic biology and metabolic engineering.

  16. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.

    Science.gov (United States)

    Abudayyeh, Omar O; Gootenberg, Jonathan S; Konermann, Silvana; Joung, Julia; Slaymaker, Ian M; Cox, David B T; Shmakov, Sergey; Makarova, Kira S; Semenova, Ekaterina; Minakhin, Leonid; Severinov, Konstantin; Regev, Aviv; Lander, Eric S; Koonin, Eugene V; Zhang, Feng

    2016-08-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools.

  17. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.

    Science.gov (United States)

    Abudayyeh, Omar O; Gootenberg, Jonathan S; Konermann, Silvana; Joung, Julia; Slaymaker, Ian M; Cox, David B T; Shmakov, Sergey; Makarova, Kira S; Semenova, Ekaterina; Minakhin, Leonid; Severinov, Konstantin; Regev, Aviv; Lander, Eric S; Koonin, Eugene V; Zhang, Feng

    2016-08-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools. PMID:27256883

  18. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens.

    Science.gov (United States)

    Vleeshouwers, Vivianne G A A; Oliver, Richard P

    2014-03-01

    One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.

  19. Normal coordinate structural decomposition of the heme distortions of hemoglobin in various quaternary states and bound to allosteric effectors.

    Science.gov (United States)

    Laberge, Monique; Yonetani, Takashi; Fidy, Judit

    2003-01-01

    The distortions of the alpha1, alpha2, beta1, and beta2 hemes of human hemoglobin (HbA) in various quaternary states and as affected by the presence of allosteric effectors was investigated by subjecting CHARMM energy-minimized models to normal coordinate structural decomposition (NSD) analysis. NSD was applied to the individual hemes extracted from the R, T, and R2-state models of HbA and to HbA bound to DPG and to IHP. Overall, NSD results are indicative of characteristic distortions, not only for the hemes of the different HbA quaternary states, but also for the hemes of the HbA models bound to allosteric effectors. Comparing the distortions of the inequivalent alpha and beta hemes in T-state HbA, we show good correlation between NSD and the experimentally observed low-frequency nu52 (Eg) and gamma7 (A2u) modes reported in the literature for alpha and beta HbA hemes while noting substantial differences between these types for B2u and B1u distortions. For the R2 hemes, NSD yields heme distortions that are more comparable to those of the R-state, especially in magnitude. However, the R2 hemes do not exhibit inequivalence of alpha and beta heme distortions, a result that may contribute to an understanding of the functional importance of this state. Relative to T-state heme distortions, NSD results on the effector-bound hemes show that tertiary changes induced in T-state HbA as a result of binding DPG and IHP drastically affect heme distortions. In the alpha hemes extracted from the HbA-DPG model, most noteworthy are the increased wav(x) and wav(y) distortions and enhancement of ruf and dom deformations. In the beta hemes, the wav(y) is the most affected distortion with increase in sad. The NSD results are also different for the hemes of the HbA-IHP model, in that the beta sad and ruf deformations are more enhanced with increase of doming in the alpha hemes. Our results describe the effect of the subtle protein-induced changes on the nonplanarity of the HbA hemes

  20. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    Science.gov (United States)

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  1. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages

    OpenAIRE

    1989-01-01

    Lipopolysaccharide binding protein (LBP) is an acute-phase reactant that binds bacterial LPS. We show that LBP binds to the surface of live Salmonella and to LPS coated erythrocytes (ELPS), and strongly enhances the attachment of these particles to macrophages. LBP bridges LPS- coated particles to macrophages (MO) by first binding to the LPS, then binding to MO. Pretreatment of ELPS with LBP enabled binding to MO, but pretreatment of MO had no effect. Moreover, MO did not recognize erythrocyt...

  2. Human yeast-specific CD8 T lymphocytes show a nonclassical effector molecule profile.

    Science.gov (United States)

    Breinig, Tanja; Scheller, Nicoletta; Glombitza, Birgit; Breinig, Frank; Meyerhans, Andreas

    2012-05-01

    Pathogenic yeast and fungi represent a major group of human pathogens. The consequences of infections are diverse and range from local, clinically uncomplicated mycosis of the skin to systemic, life-threatening sepsis. Despite extensive MHC class I-restricted frequencies of yeast-specific CD8 T lymphocytes in healthy individuals and the essential role of the cell-mediated immunity in controlling infections, the characteristics and defense mechanisms of antifungal effector cells are still unclear. Here, we describe the direct analysis of yeast-specific CD8 T lymphocytes in whole blood from healthy individuals. They show a unique, nonclassical phenotype expressing granulysin and granzyme K in lytic granules instead of the major effector molecules perforin and granzyme B. After stimulation in whole blood, yeast-specific CD8 T cells degranulated and, upon cultivation in the presence of IL-2, their granula were refilled with granulysin rather than with perforin and granzyme B. Moreover, yeast-specific stimulation through dendritic cells but not by yeast cells alone led to degranulation of the effector cells. As granulysin is the only effector molecule in lytic granules known to have antifungal properties, our data suggest yeast-specific CD8 T cells to be a nonclassical effector population whose antimicrobial effector machinery seems to be tailor-made for the efficient elimination of fungi as pathogens.

  3. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology

    Directory of Open Access Journals (Sweden)

    Francesca Grasso

    2015-08-01

    Full Text Available Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.

  4. Assembly of the bacterial type III secretion machinery.

    Science.gov (United States)

    Diepold, Andreas; Wagner, Samuel

    2014-07-01

    Many bacteria that live in contact with eukaryotic hosts, whether as symbionts or as pathogens, have evolved mechanisms that manipulate host cell behaviour to their benefit. One such mechanism, the type III secretion system, is employed by Gram-negative bacterial species to inject effector proteins into host cells. This function is reflected by the overall shape of the machinery, which resembles a molecular syringe. Despite the simplicity of the concept, the type III secretion system is one of the most complex known bacterial nanomachines, incorporating one to more than hundred copies of up to twenty different proteins into a multi-MDa transmembrane complex. The structural core of the system is the so-called needle complex that spans the bacterial cell envelope as a tripartite ring system and culminates in a needle protruding from the bacterial cell surface. Substrate targeting and translocation are accomplished by an export machinery consisting of various inner membrane embedded and cytoplasmic components. The formation of such a multimembrane-spanning machinery is an intricate task that requires precise orchestration. This review gives an overview of recent findings on the assembly of type III secretion machines, discusses quality control and recycling of the system and proposes an integrated assembly model.

  5. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  6. Dimerization of VirD2 binding protein is essential for Agrobacterium induced tumor formation in plants.

    Science.gov (United States)

    Padavannil, Abhilash; Jobichen, Chacko; Qinghua, Yang; Seetharaman, Jayaraman; Velazquez-Campoy, Adrian; Yang, Liu; Pan, Shen Q; Sivaraman, J

    2014-03-01

    The Type IV Secretion System (T4SS) is the only bacterial secretion system known to translocate both DNA and protein substrates. The VirB/D4 system from Agrobacterium tumefaciens is a typical T4SS. It facilitates the bacteria to translocate the VirD2-T-DNA complex to the host cell cytoplasm. In addition to protein-DNA complexes, the VirB/D4 system is also involved in the translocation of several effector proteins, including VirE2, VirE3 and VirF into the host cell cytoplasm. These effector proteins aid in the proper integration of the translocated DNA into the host genome. The VirD2-binding protein (VBP) is a key cytoplasmic protein that recruits the VirD2-T-DNA complex to the VirD4-coupling protein (VirD4 CP) of the VirB/D4 T4SS apparatus. Here, we report the crystal structure and associated functional studies of the C-terminal domain of VBP. This domain mainly consists of α-helices, and the two monomers of the asymmetric unit form a tight dimer. The structural analysis of this domain confirms the presence of a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) fold. Biophysical studies show that VBP is a dimer in solution and that the HEPN domain is the dimerization domain. Based on structural and mutagenesis analyses, we show that substitution of key residues at the interface disrupts the dimerization of both the HEPN domain and full-length VBP. In addition, pull-down analyses show that only dimeric VBP can interact with VirD2 and VirD4 CP. Finally, we show that only Agrobacterium harboring dimeric full-length VBP can induce tumors in plants. This study sheds light on the structural basis of the substrate recruiting function of VBP in the T4SS pathway of A. tumefaciens and in other pathogenic bacteria employing similar systems. PMID:24626239

  7. Dimerization of VirD2 binding protein is essential for Agrobacterium induced tumor formation in plants.

    Directory of Open Access Journals (Sweden)

    Abhilash Padavannil

    2014-03-01

    Full Text Available The Type IV Secretion System (T4SS is the only bacterial secretion system known to translocate both DNA and protein substrates. The VirB/D4 system from Agrobacterium tumefaciens is a typical T4SS. It facilitates the bacteria to translocate the VirD2-T-DNA complex to the host cell cytoplasm. In addition to protein-DNA complexes, the VirB/D4 system is also involved in the translocation of several effector proteins, including VirE2, VirE3 and VirF into the host cell cytoplasm. These effector proteins aid in the proper integration of the translocated DNA into the host genome. The VirD2-binding protein (VBP is a key cytoplasmic protein that recruits the VirD2-T-DNA complex to the VirD4-coupling protein (VirD4 CP of the VirB/D4 T4SS apparatus. Here, we report the crystal structure and associated functional studies of the C-terminal domain of VBP. This domain mainly consists of α-helices, and the two monomers of the asymmetric unit form a tight dimer. The structural analysis of this domain confirms the presence of a HEPN (higher eukaryotes and prokaryotes nucleotide-binding fold. Biophysical studies show that VBP is a dimer in solution and that the HEPN domain is the dimerization domain. Based on structural and mutagenesis analyses, we show that substitution of key residues at the interface disrupts the dimerization of both the HEPN domain and full-length VBP. In addition, pull-down analyses show that only dimeric VBP can interact with VirD2 and VirD4 CP. Finally, we show that only Agrobacterium harboring dimeric full-length VBP can induce tumors in plants. This study sheds light on the structural basis of the substrate recruiting function of VBP in the T4SS pathway of A. tumefaciens and in other pathogenic bacteria employing similar systems.

  8. Bacterial extracellular polymeric substances (EPS): A carrier of heavy metals in the marine food-chain

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    The ecological implications of metal binding properties of bacterial EPS and its possible role in the bioaccumulation of pollutants in the marine food-chain was investigated using a partially purified and chemically characterized microbial EPS...

  9. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    Full Text Available Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS, and thereby translocated Bartonella effector proteins (Beps, evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial

  10. BTLA interaction with HVEM expressed on CD8(+ T cells promotes survival and memory generation in response to a bacterial infection.

    Directory of Open Access Journals (Sweden)

    Marcos W Steinberg

    Full Text Available The B and T lymphocyte attenuator (BTLA is an Ig super family member that binds to the herpes virus entry mediator (HVEM, a TNF receptor super family (TNFRSF member. Engagement of BTLA by HVEM triggers inhibitory signals, although recent evidence indicates that BTLA also may act as an activating ligand for HVEM. In this study, we reveal a novel role for the BTLA-HVEM pathway in promoting the survival of activated CD8(+ T cells in the response to an oral microbial infection. Our data show that both BTLA- and HVEM-deficient mice infected with Listeria monocytogenes had significantly reduced numbers of primary effector and memory CD8(+ T cells, despite normal proliferation and expansion compared to controls. In addition, blockade of the BTLA-HVEM interaction early in the response led to significantly reduced numbers of antigen-specific CD8(+ T cells. HVEM expression on the CD8(+ T cells as well as BTLA expression on a cell type other than CD8(+ T lymphocytes, was required. Collectively, our data demonstrate that the function of the BTLA-HVEM pathway is not limited to inhibitory signaling in T lymphocytes, and instead, that BTLA can provide crucial, HVEM-dependent signals that promote survival of antigen activated CD8(+ T cell during bacterial infection.

  11. NOD1 and NOD2 receptors in mrigal (Cirrhinus mrigala): Inductive expression and downstream signalling in ligand stimulation and bacterial infections

    Indian Academy of Sciences (India)

    Banikalyan Swain; Madhubanti Basu; Mrinal Samanta

    2013-09-01

    Nucleotide binding and oligomerization domain (NOD)1 and NOD2 are important cytoplasmic pattern recognition receptors (PRRs) and key members of the NOD-like receptor (NLR) family. They sense a wide range of bacteria or their products and play a key role in inducing innate immunity. This report describes the role of NOD1 and NOD2 receptors signalling in innate immunity in the Indian major carp, mrigal (Cirrhinus mrigala). Tissue-specific expression analysis of NOD1 and NOD2 genes by quantitative real-time PCR (qRT-PCR) revealed their wide distribution in various organs/tissues. In the untreated fish, the highest expression of NOD1 and NOD2 was detected in liver and blood, respectively. Stimulation with NOD1- and NOD2-specific ligands, i.e. iE-DAP and MDP, activated NOD1 and NOD2 receptor signalling in vivo and in vitro resulting in significant ( < 0.05) induction of downstream signalling molecule RICK, and the effector molecules IL-1, IL-8 and IFN- in the treated group as compared to their controls. In response to both Gram-positive and Gram-negative bacterial infections, NOD1 and NOD2 receptors signalling were activated and IL-1, IL-8 and IFN- were induced. These findings highlight the important role of NOD receptors in eliciting innate immune response during the pathogenic invasion to the fish.

  12. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  13. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  14. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  15. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  16. The Invertebrate Lysozyme Effector ILYS-3 Is Systemically Activated in Response to Danger Signals and Confers Antimicrobial Protection in C. elegans

    Science.gov (United States)

    Gravato-Nobre, Maria João; Vaz, Filipa; Filipe, Sergio; Chalmers, Ronald; Hodgkin, Jonathan

    2016-01-01

    Little is known about the relative contributions and importance of antibacterial effectors in the nematode C. elegans, despite extensive work on the innate immune responses in this organism. We report an investigation of the expression, function and regulation of the six ilys (invertebrate-type lysozyme) genes of C. elegans. These genes exhibited a surprising variety of tissue-specific expression patterns and responses to starvation or bacterial infection. The most strongly expressed, ilys-3, was investigated in detail. ILYS-3 protein was expressed constitutively in the pharynx and coelomocytes, and dynamically in the intestine. Analysis of mutants showed that ILYS-3 was required for pharyngeal grinding (disruption of bacterial cells) during normal growth and consequently it contributes to longevity, as well as being protective against bacterial pathogens. Both starvation and challenge with Gram-positive pathogens resulted in ERK-MAPK-dependent up-regulation of ilys-3 in the intestine. The intestinal induction by pathogens, but not starvation, was found to be dependent on MPK-1 activity in the pharynx rather than in the intestine, demonstrating unexpected communication between these two tissues. The coelomocyte expression appeared to contribute little to normal growth or immunity. Recombinant ILYS-3 protein was found to exhibit appropriate lytic activity against Gram-positive cell wall material. PMID:27525822

  17. Synthesis of Multifunctional Cellulose Nanocrystals for Lectin Recognition and Bacterial Imaging

    OpenAIRE

    Zhou, Juan; Butchosa, Núria; Jayawardena, H. Surangi N.; Park, JaeHyeung; Zhou, Qi; Yan, Mingdi; Ramström, Olof

    2015-01-01

    Multifunctional cellulose nanocrystals have been synthesized and applied as a new type of glyconanomaterial in lectin binding and bacterial imaging. The cellulose nanocrystals were prepared by TEMPO-mediated oxidation and acidic hydrolysis, followed by functionalization with a quinolone fluorophore and carbohydrate ligands. The cellulose nanocrystals were subsequently applied in interaction studies with carbohydrate-binding proteins and in bacterial imaging. The results show that the function...

  18. The Pseudomonas syringae Type III Effector AvrRpt2 Promotes Pathogen Virulence via Stimulating Arabidopsis Auxin/Indole Acetic Acid Protein Turnover1[C][W][OA

    Science.gov (United States)

    Cui, Fuhao; Wu, Shujing; Sun, Wenxian; Coaker, Gitta; Kunkel, Barbara; He, Ping; Shan, Libo

    2013-01-01

    To accomplish successful infection, pathogens deploy complex strategies to interfere with host defense systems and subvert host physiology to favor pathogen survival and multiplication. Modulation of plant auxin physiology and signaling is emerging as a common virulence strategy for phytobacteria to cause diseases. However, the underlying mechanisms remain largely elusive. We have previously shown that the Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis (Arabidopsis thaliana) auxin physiology. Here, we report that AvrRpt2 promotes auxin response by stimulating the turnover of auxin/indole acetic acid (Aux/IAA) proteins, the key negative regulators in auxin signaling. AvrRpt2 acts additively with auxin to stimulate Aux/IAA turnover, suggesting distinct, yet proteasome-dependent, mechanisms operated by AvrRpt2 and auxin to control Aux/IAA stability. Cysteine protease activity is required for AvrRpt2-stimulated auxin signaling and Aux/IAA degradation. Importantly, transgenic plants expressing the dominant axr2-1 mutation recalcitrant to AvrRpt2-mediated degradation ameliorated the virulence functions of AvrRpt2 but did not alter the avirulent function mediated by the corresponding RPS2 resistance protein. Thus, promoting auxin response via modulating the stability of the key transcription repressors Aux/IAA is a mechanism used by the bacterial type III effector AvrRpt2 to promote pathogenicity. PMID:23632856

  19. Unexpected positive control of NFκB and miR-155 by DGKα and ζ ensures effector and memory CD8+ T cell differentiation

    Science.gov (United States)

    Yang, Jialong; Zhang, Ping; Krishna, Sruti; Wang, Jinli; Lin, Xingguang; Huang, Hongxiang; Xie, Danli; Gorentla, Balachandra; Huang, Rick; Gao, Jimin; Li, Qi-Jing; Zhong, Xiao-Ping

    2016-01-01

    Signals from the T-cell receptor (TCR) and γ-chain cytokine receptors play crucial roles in initiating activation and effector/memory differentiation of CD8 T-cells. We report here that simultaneous deletion of both diacylglycerol kinase (DGK) α and ζ (DKO) severely impaired expansion of CD8 effector T cells and formation of memory CD8 T-cells after Listeria monocytogenes infection. Moreover, ablation of both DGKα and ζ in preformed memory CD8 T-cells triggered death and impaired homeostatic proliferation of these cells. DKO CD8 T-cells were impaired in priming due to decreased expression of chemokine receptors and migration to the draining lymph nodes. Moreover, DKO CD8 T-cells were unexpectedly defective in NFκB-mediated miR-155 transcript, leading to excessive SOCS1 expression and impaired γ-chain cytokine signaling. Our data identified a DGK-NFκB-miR-155-SOCS1 axis that bridges TCR and γ-chain cytokine signaling for robust CD8 T-cell primary and memory responses to bacterial infection. PMID:27014906

  20. Inhibition of Nuclear Transport of NF-ĸB p65 by the Salmonella Type III Secretion System Effector SpvD.

    Science.gov (United States)

    Rolhion, Nathalie; Furniss, R Christopher D; Grabe, Grzegorz; Ryan, Aindrias; Liu, Mei; Matthews, Sophie A; Holden, David W

    2016-05-01

    Salmonella enterica replicates in macrophages through the action of effector proteins translocated across the vacuolar membrane by a type III secretion system (T3SS). Here we show that the SPI-2 T3SS effector SpvD suppresses proinflammatory immune responses. SpvD prevented activation of an NF-ĸB-dependent promoter and caused nuclear accumulation of importin-α, which is required for nuclear import of p65. SpvD interacted specifically with the exportin Xpo2, which mediates nuclear-cytoplasmic recycling of importins. We propose that interaction between SpvD and Xpo2 disrupts the normal recycling of importin-α from the nucleus, leading to a defect in nuclear translocation of p65 and inhibition of activation of NF-ĸB regulated promoters. SpvD down-regulated pro-inflammatory responses and contributed to systemic growth of bacteria in mice. This work shows that a bacterial pathogen can manipulate host cell immune responses by interfering with the nuclear transport machinery.

  1. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2014-03-01

    Full Text Available Mechanisms that maintain transcriptional memory through cell division are important to maintain cell identity, and sequence-specific transcription factors that remain associated with mitotic chromatin are emerging as key players in transcriptional memory propagation. Here, we show that the major transcriptional effector of Notch signaling, RBPJ, is retained on mitotic chromatin, and that this mitotic chromatin association is mediated through the direct association of RBPJ with DNA. We further demonstrate that RBPJ binds directly to nucleosomal DNA in vitro, with a preference for sites close to the entry/exit position of the nucleosomal DNA. Genome-wide analysis in the murine embryonal-carcinoma cell line F9 revealed that roughly 60% of the sites occupied by RBPJ in asynchronous cells were also occupied in mitotic cells. Among them, we found that a fraction of RBPJ occupancy sites shifted between interphase and mitosis, suggesting that RBPJ can be retained on mitotic chromatin by sliding on DNA rather than disengaging from chromatin during mitotic chromatin condensation. We propose that RBPJ can function as a mitotic bookmark, marking genes for efficient transcriptional activation or repression upon mitotic exit. Strikingly, we found that sites of RBPJ occupancy were enriched for CTCF-binding motifs in addition to RBPJ-binding motifs, and that RBPJ and CTCF interact. Given that CTCF regulates transcription and bridges long-range chromatin interactions, our results raise the intriguing hypothesis that by collaborating with CTCF, RBPJ may participate in establishing chromatin domains and/or long-range chromatin interactions that could be propagated through cell division to maintain gene expression programs.

  2. Analyzing binding data.

    Science.gov (United States)

    Motulsky, Harvey J; Neubig, Richard R

    2010-07-01

    Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their affinity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments.

  3. Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections

    OpenAIRE

    Liu, Zhuoming; Petersen, Robert; Devireddy, L.

    2013-01-01

    Lipocalin 24p3 (24p3) is a neutrophil secondary granule protein. 24p3 is also a siderocalin, which binds several bacterial siderophores. It was therefore proposed that synthesis and secretion of 24p3 by stimulated macrophages or release of 24p3 upon neutrophil degranulation sequesters iron-laden siderophores to attenuate bacterial growth. Accordingly, 24p3-deficient mice are susceptible to bacterial pathogens whose siderophores would normally be chelated by 24p3. Specific granule deficiency (...

  4. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  5. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus.

    Science.gov (United States)

    Mesquita, D; Cruvinel, W M; Araujo, J A P; Salmazi, K C; Kallas, E G; Andrade, L E C

    2014-08-01

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25+/high CD127 Ø/low FoxP3+, and effector T cells were defined as CD25+CD127+FoxP3 Ø. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4+TREG and CD28+TREG cells and an increased frequency of CD40L+TREG cells. There was a decrease in the TREG/effector-T ratio for GITR+, HLA-DR+, OX40+, and CD45RO+ cells, and an increased ratio of TREG/effector-T CD40L+ cells in patients with SLE. In addition, CD40L+TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease. PMID:25098715

  6. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    D. Mesquita Júnior

    2014-08-01

    Full Text Available Regulatory T (TREG cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE. TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25+/highCD127Ø/lowFoxP3+, and effector T cells were defined as CD25+CD127+FoxP3Ø. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4+TREG and CD28+TREG cells and an increased frequency of CD40L+TREG cells. There was a decrease in the TREG/effector-T ratio for GITR+, HLA-DR+, OX40+, and CD45RO+ cells, and an increased ratio of TREG/effector-T CD40L+ cells in patients with SLE. In addition, CD40L+TREG cell frequency correlated with the SLE disease activity index (P=0.0163. In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  7. Bacterial ice nucleation: significance and molecular basis.

    Science.gov (United States)

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation.

  8. Bacterial ice nucleation: significance and molecular basis.

    Science.gov (United States)

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation. PMID:8224607

  9. Structure of a bacterial type III secretion system in contact with a host membrane in situ

    Science.gov (United States)

    Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R.; Hayward, Richard D.

    2015-12-01

    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking `pump-action' conformational changes that underpin effector injection.

  10. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  11. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    International Nuclear Information System (INIS)

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  12. Structure and operation of bacterial tripartite pumps.

    Science.gov (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition. PMID:23808339

  13. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA

    OpenAIRE

    Lebreton, Alice; Job, Viviana; Ragon, Marie; Le Monnier, Alban; Cossart, Pascale

    2014-01-01

    The nucleus has emerged as a key target for nucleomodulins, a family of effectors produced by bacterial pathogens to control host transcription or other nuclear processes. The virulence factor LntA from Listeria monocytogenes stimulates interferon responses during infection by inhibiting BAHD1, a nuclear protein involved in gene silencing by promoting heterochromatin formation. So far, whether the interaction between LntA and BAHD1 is direct and sufficient for inhibiting BAHD1 activity is unk...

  14. Interleukin-10 Regulates the Tissue Factor Activity of Monocytes in an In Vitro Model of Bacterial Endocarditis

    OpenAIRE

    Veltrop, Marcel H. A. M.; Langermans, Jan A. M.; Thompson, Jan; Bancsi, Maurice J. L. M. F.

    2001-01-01

    Monocytes are important effector cells in the pathogenesis of bacterial endocarditis since they provide the tissue factor that activates the coagulation system and maintains established vegetations. Monocytes secrete cytokines that can modulate monocyte tissue factor activity (TFA), thereby affecting the formation and maintenance of vegetations. In this study, we show that monocytes cultured for 4 h on a Streptococcus sanguis-infected fibrin matrix mimicking the in vivo vegetational surface e...

  15. Effect of Long-Term Voluntary Exercise Wheel Running on Susceptibility to Bacterial Pulmonary Infections in a Mouse Model

    OpenAIRE

    Pauline B van de Weert-van Leeuwen; de Vrankrijker, Angélica M. M.; Joachim Fentz; Oana Ciofu; Wojtaszewski, Jørgen F. P.; Arets, Hubertus G. M.; Hulzebos, Hendrikus J.; Cornelis K van der Ent; Jeffrey M Beekman; Johansen, Helle K.

    2013-01-01

    Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune f...

  16. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C;

    2009-01-01

    Effector T cells are a crucial component of the adaptive immune response to respiratory virus infections. Although it was previously reported that the chemokine receptors CCR5 and CXCR3 affect trafficking of respiratory virus-specific CD8(+) T cells, it is unclear whether these receptors govern...... effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype...

  17. Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel.

    Science.gov (United States)

    Joseph, Thomas T; Mincer, Joshua S

    2016-01-01

    General anesthetics bind reversibly to ion channels, modifying their global conformational distributions, but the underlying atomic mechanisms are not completely known. We examine this issue by way of the model protein Gloeobacter violaceous ligand-gated ion channel (GLIC) using computational molecular dynamics, with a coarse-grained model to enhance sampling. We find that in flooding simulations, both propofol and a generic particle localize to the crystallographic transmembrane anesthetic binding region, and that propofol also localizes to an extracellular region shared with the crystallographic ketamine binding site. Subsequent simulations to probe these binding modes in greater detail demonstrate that ligand binding induces structural asymmetry in GLIC. Consequently, we employ residue interaction correlation analysis to describe the internal allosteric network underlying the coupling of ligand and distant effector sites necessary for conformational change. Overall, the results suggest that the same allosteric network may underlie the actions of various anesthetics, regardless of binding site. PMID:27403526

  18. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    Science.gov (United States)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  19. Binding of Actinobacillus pleuropneumoniae to Phosphatidylethanolamine

    OpenAIRE

    Jeannotte, Marie-Eve; Abul-Milh, Maan; Dubreuil, J. Daniel; Jacques, Mario

    2003-01-01

    The gram-negative bacterium Actinobacillus pleuropneumoniae is the causative agent of porcine fibrinohemorrhagic necrotizing pleuropneumonia, a disease that causes important economic losses to the swine industry worldwide. In general, the initial step of bacterial colonization is attachment to host cells. The purpose of the present study was to evaluate the binding of A. pleuropneumoniae serotype 1 to phospholipids, which are the major constituents of biological membranes. Phospholipids serve...

  20. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.