WorldWideScience

Sample records for bacterial defensin resistance

  1. Recombinant production of rhesus θ-defensin-1 (RTD-1) using a bacterial expression system

    OpenAIRE

    Gould, Andrew; Li, Yilong; Majumder, Subhabrata; Garcia, Angie E.; Carlsson, Patrick; Shekhtman, Alexander; Camarero, Julio A.

    2012-01-01

    Defensins are antimicrobial peptides that are important in the innate immune defense of mammals. In contrast to mammalian α- and β-defensins, rhesus theta defensin-1 (RTD-1) comprises only 18 amino acids stabilized by three disulfide bonds and an unusual backbone cyclic topology. In this work we report for the first time the recombinant expression of the fully folded θ-defensin RTD-1 using a bacterial expression system. This was accomplished using an intramolecular native chemical ligation in...

  2. A Hybrid Cationic Peptide Composed of Human β-Defensin-1 and Humanized θ-Defensin Sequences Exhibits Salt-Resistant Antimicrobial Activity

    Science.gov (United States)

    Nagaraj, Ramakrishnan; Motukupally, Swapna R.

    2014-01-01

    We have designed a hybrid peptide by combining sequences of human β-defensin-1 (HBD-1) and θ-defensin, in an attempt to generate a molecule that combines the diversity in structure and biological activity of two different peptides to yield a promising therapeutic candidate. HBD-1 was chosen as it is a natural defensin of humans that is constitutively expressed, but its antibacterial activity is considerably impaired by elevated ionic strength. θ-Defensins are expressed in human bone marrow as a pseudogene and are homologous to rhesus monkey circular minidefensins. Retrocyclins are synthetic human θ-defensins. The cyclic nature of the θ-defensin peptides makes them salt resistant, nonhemolytic, and virtually noncytotoxic in vitro. However, a nonhuman circular molecule developed for clinical use would be less viable than a linear molecule. In this study, we have fused the C-terminal region of HBD-1 to the nonapeptide sequence of a synthetic retrocyclin. Cyclization was achieved by joining the terminal ends of the hybrid peptide by a disulfide bridge. The hybrid peptide with or without the disulfide bridge exhibited enhanced antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as against fungi, including clinical bacterial isolates from eye infections. The peptide retained activity in the presence of NaCl and serum and was nonhemolytic in vitro. Thus, the hybrid peptide generated holds potential as a new class of antibiotics. PMID:25348533

  3. A hybrid cationic peptide composed of human β-defensin-1 and humanized θ-defensin sequences exhibits salt-resistant antimicrobial activity.

    Science.gov (United States)

    Olli, Sudar; Nagaraj, Ramakrishnan; Motukupally, Swapna R

    2015-01-01

    We have designed a hybrid peptide by combining sequences of human β-defensin-1 (HBD-1) and θ-defensin, in an attempt to generate a molecule that combines the diversity in structure and biological activity of two different peptides to yield a promising therapeutic candidate. HBD-1 was chosen as it is a natural defensin of humans that is constitutively expressed, but its antibacterial activity is considerably impaired by elevated ionic strength. θ-Defensins are expressed in human bone marrow as a pseudogene and are homologous to rhesus monkey circular minidefensins. Retrocyclins are synthetic human θ-defensins. The cyclic nature of the θ-defensin peptides makes them salt resistant, nonhemolytic, and virtually noncytotoxic in vitro. However, a nonhuman circular molecule developed for clinical use would be less viable than a linear molecule. In this study, we have fused the C-terminal region of HBD-1 to the nonapeptide sequence of a synthetic retrocyclin. Cyclization was achieved by joining the terminal ends of the hybrid peptide by a disulfide bridge. The hybrid peptide with or without the disulfide bridge exhibited enhanced antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as against fungi, including clinical bacterial isolates from eye infections. The peptide retained activity in the presence of NaCl and serum and was nonhemolytic in vitro. Thus, the hybrid peptide generated holds potential as a new class of antibiotics. PMID:25348533

  4. A Defensin from the Model Beetle Tribolium castaneum Acts Synergistically with Telavancin and Daptomycin against Multidrug Resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available The red flour beetle Tribolium castaneum is a common insect pest and has been established as a model beetle to study insect development and immunity. This study demonstrates that defensin 1 from T. castaneum displays in vitro and in vivo antimicrobial activity against drug resistant Staphylococcus aureus strains. The minimum inhibitory concentration (MIC of defensin 1 against 11 reference and clinical staphylococcal isolates was between 16-64 μg/ml. The putative mode of action of the defensin peptide is disruption of the bacterial cell membrane. The antibacterial activity of defensin 1 was attenuated by salt concentrations of 1.56 mM and 25 mM for NaCl and CaCl2 respectively. Treatment of defensin 1 with the reducing agent dithiothreitol (DTT at concentrations 1.56 to 3.13 mM abolished the antimicrobial activity of the peptide. In the presence of subinhibitory concentrations of antibiotics that also target the bacterial cell envelope such as telavancin and daptomycin, the MIC of the peptide was as low as 1 μg/ml. Moreover, when tested against an S. aureus strain that was defective in D-alanylation of the cell wall, the MIC of the peptide was 0.5 μg/ml. Defensin 1 exhibited no toxicity against human erythrocytes even at 400 μg/ml. The in vivo activity of the peptide was validated in a Caenorhabditis elegans-MRSA liquid infection assay. These results suggest that defensin 1 behaves similarly to other cationic AMPs in its mode of action against S. aureus and that the activity of the peptide can be enhanced in combination with other antibiotics with similar modes of action or with compounds that have the ability to decrease D-alanylation of the bacterial cell wall.

  5. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine

    NARCIS (Netherlands)

    Peschel, A.; Jack, R.W.; Otto, M.; Collins, L.V.; Staubitz, P.; Nicholson, G.; Kalbacher, H.; Nieuwenhuizen, W.F.; Jung, G.; Tarkowski, A.; Kessel, K.P.M. van; Strijp, J.A.G. van

    2001-01-01

    Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance mechanism

  6. Phosphoethanolamine Transferase LptA in Haemophilus ducreyi Modifies Lipid A and Contributes to Human Defensin Resistance In Vitro.

    Directory of Open Access Journals (Sweden)

    Michael P Trombley

    Full Text Available Haemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides (APs, including α-defensins, β-defensins, and the cathelicidin LL-37. Resistance to LL-37, mediated by the sensitive to antimicrobial peptide (Sap transporter, is required for H. ducreyi virulence in humans. Cationic APs are attracted to the negatively charged bacterial cell surface. In other gram-negative bacteria, modification of lipopolysaccharide or lipooligosaccharide (LOS by the addition of positively charged moieties, such as phosphoethanolamine (PEA, confers AP resistance by means of electrostatic repulsion. H. ducreyi LOS has PEA modifications at two sites, and we identified three genes (lptA, ptdA, and ptdB in H. ducreyi with homology to a family of bacterial PEA transferases. We generated non-polar, unmarked mutants with deletions in one, two, or all three putative PEA transferase genes. The triple mutant was significantly more susceptible to both α- and β-defensins; complementation of all three genes restored parental levels of AP resistance. Deletion of all three PEA transferase genes also resulted in a significant increase in the negativity of the mutant cell surface. Mass spectrometric analysis revealed that LptA was required for PEA modification of lipid A; PtdA and PtdB did not affect PEA modification of LOS. In human inoculation experiments, the triple mutant was as virulent as its parent strain. While this is the first identified mechanism of resistance to α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin LL-37 may be more important than defensin resistance to H. ducreyi pathogenesis.

  7. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard;

    2010-01-01

    plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  8. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  9. Overexpression of a Defensin Enhances Resistance to a Fruit-Specific Anthracnose Fungus in Pepper

    OpenAIRE

    Seo, Hyo-Hyoun; Park, Sangkyu; Park, Soomin; Oh, Byung-Jun; Back, Kyoungwhan; Han, Oksoo; Kim, Jeong-Il; Kim, Young Soon

    2014-01-01

    Functional characterization of a defensin, J1-1, was conducted to evaluate its biotechnological potentiality in transgenic pepper plants against the causal agent of anthracnose disease, Colletotrichum gloeosporioides. To determine antifungal activity, J1-1 recombinant protein was generated and tested for the activity against C. gloeosporioides, resulting in 50% inhibition of fungal growth at a protein concentration of 0.1 mg·mL−1. To develop transgenic pepper plants resistant to anthracnose d...

  10. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.

    Science.gov (United States)

    Sasaki, Kentaro; Kuwabara, Chikako; Umeki, Natsuki; Fujioka, Mari; Saburi, Wataru; Matsui, Hirokazu; Abe, Fumitaka; Imai, Ryozo

    2016-06-20

    TAD1 (Triticum aestivum defensin 1) is induced during cold acclimation in winter wheat and encodes a plant defensin with antimicrobial activity. In this study, we demonstrated that recombinant TAD1 protein inhibits hyphal growth of the snow mold fungus, Typhula ishikariensis in vitro. Transgenic wheat plants overexpressing TAD1 were created and tested for resistance against T. ishikariensis. Leaf inoculation assays revealed that overexpression of TAD1 confers resistance against the snow mold. In addition, the TAD1-overexpressors showed resistance against Fusarium graminearum, which causes Fusarium head blight, a devastating disease in wheat and barley. These results indicate that TAD1 is a candidate gene to improve resistance against multiple fungal diseases in cereal crops. PMID:27080445

  11. The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity.

    Science.gov (United States)

    Bailleul, Geoffrey; Kravtzoff, Amanda; Joulin-Giet, Alix; Lecaille, Fabien; Labas, Valérie; Meudal, Hervé; Loth, Karine; Teixeira-Gomes, Ana-Paula; Gilbert, Florence B; Coquet, Laurent; Jouenne, Thierry; Brömme, Dieter; Schouler, Catherine; Landon, Céline; Lalmanach, Gilles; Lalmanach, Anne-Christine

    2016-01-01

    Defensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut. Cathepsin B was found by immunoblotting in jejunum, ileum, caecum, and caecal tonsils, while cathepsins K, L, and S were merely identified in caecal tonsils. Hydrolysis product of AvBD2 and AvBD7 incubated with a panel of proteases was analysed by RP-HPLC, mass spectrometry and antimicrobial assays. AvBD2 and AvBD7 were resistant to serine proteases and to cathepsins D and H. Conversely cysteine cathepsins B, K, L, and S degraded AvBD2 and abolished its antibacterial activity. Only cathepsin K cleaved AvBD7 and released Ile4-AvBD7, a N-terminal truncated natural peptidoform of AvBD7 that displayed antibacterial activity. Besides the 3-stranded antiparallel beta-sheet typical of beta-defensins, structural analysis of AvBD7 by two-dimensional NMR spectroscopy highlighted the restricted accessibility of the C-terminus embedded by the N-terminal region and gave a formal evidence of a salt bridge (Asp9-Arg12) that could account for proteolysis resistance. The differential susceptibility of avian defensins to proteolysis opens intriguing questions about a distinctive role in the mucosal immunity against pathogen invasion. PMID:27561012

  12. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper.

    Directory of Open Access Journals (Sweden)

    Hyo-Hyoun Seo

    Full Text Available Functional characterization of a defensin, J1-1, was conducted to evaluate its biotechnological potentiality in transgenic pepper plants against the causal agent of anthracnose disease, Colletotrichum gloeosporioides. To determine antifungal activity, J1-1 recombinant protein was generated and tested for the activity against C. gloeosporioides, resulting in 50% inhibition of fungal growth at a protein concentration of 0.1 mg·mL-1. To develop transgenic pepper plants resistant to anthracnose disease, J1-1 cDNA under the control of 35S promoter was introduced into pepper via Agrobacterium-mediated genetic transformation method. Southern and Northern blot analyses confirmed that a single copy of the transgene in selected transgenic plants was normally expressed and also stably transmitted to subsequent generations. The insertion of T-DNA was further analyzed in three independent homozygous lines using inverse PCR, and confirmed the integration of transgene in non-coding region of genomic DNA. Immunoblot results showed that the level of J1-1 proteins, which was not normally accumulated in unripe fruits, accumulated high in transgenic plants but appeared to differ among transgenic lines. Moreover, the expression of jasmonic acid-biosynthetic genes and pathogenesis-related genes were up-regulated in the transgenic lines, which is co-related with the resistance of J1-1 transgenic plants to anthracnose disease. Consequently, the constitutive expression of J1-1 in transgenic pepper plants provided strong resistance to the anthracnose fungus that was associated with highly reduced lesion formation and fungal colonization. These results implied the significance of the antifungal protein, J1-1, as a useful agronomic trait to control fungal disease.

  13. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper.

    Science.gov (United States)

    Seo, Hyo-Hyoun; Park, Sangkyu; Park, Soomin; Oh, Byung-Jun; Back, Kyoungwhan; Han, Oksoo; Kim, Jeong-Il; Kim, Young Soon

    2014-01-01

    Functional characterization of a defensin, J1-1, was conducted to evaluate its biotechnological potentiality in transgenic pepper plants against the causal agent of anthracnose disease, Colletotrichum gloeosporioides. To determine antifungal activity, J1-1 recombinant protein was generated and tested for the activity against C. gloeosporioides, resulting in 50% inhibition of fungal growth at a protein concentration of 0.1 mg·mL-1. To develop transgenic pepper plants resistant to anthracnose disease, J1-1 cDNA under the control of 35S promoter was introduced into pepper via Agrobacterium-mediated genetic transformation method. Southern and Northern blot analyses confirmed that a single copy of the transgene in selected transgenic plants was normally expressed and also stably transmitted to subsequent generations. The insertion of T-DNA was further analyzed in three independent homozygous lines using inverse PCR, and confirmed the integration of transgene in non-coding region of genomic DNA. Immunoblot results showed that the level of J1-1 proteins, which was not normally accumulated in unripe fruits, accumulated high in transgenic plants but appeared to differ among transgenic lines. Moreover, the expression of jasmonic acid-biosynthetic genes and pathogenesis-related genes were up-regulated in the transgenic lines, which is co-related with the resistance of J1-1 transgenic plants to anthracnose disease. Consequently, the constitutive expression of J1-1 in transgenic pepper plants provided strong resistance to the anthracnose fungus that was associated with highly reduced lesion formation and fungal colonization. These results implied the significance of the antifungal protein, J1-1, as a useful agronomic trait to control fungal disease. PMID:24848280

  14. Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora.

    Science.gov (United States)

    Kaushal, Akanksha; Gupta, Kajal; van Hoek, Monique L

    2016-02-19

    Antimicrobial peptides are components of both vertebrate and invertebrate innate immune systems that are expressed in response to exposure to bacterial antigens. Naturally occurring antimicrobial peptides from evolutionarily ancient species have been extensively studied and are being developed as potential therapeutics against antibiotic resistant microorganisms. In this study, a putative Cimex lectularius (bedbug, CL) defensin is characterized for its effectiveness against human skin flora including Gram-negative and Gram-positive bacteria. The bedbug defensin (CL-defensin), belonging to family of insect defensins, is predicted to have a characteristic N-terminal loop, an α-helix, and an antiparallel β-sheet, which was supported by circular dichroism spectroscopy. The defensin was shown to be antimicrobial against Gram-positive bacteria commonly found on human skin (Micrococcus luteus, Corynebacterium renale, Staphylococcus aureus and Staphylococcus epidermidis); however, it was ineffective against common skin Gram-negative bacteria (Pseudomonas aeruginosa and Acinetobacter baumannii) under low-salt conditions. CL-defensin was also effective against M. luteus and C. renale in high-salt (MIC) conditions. Our studies indicate that CL-defensin functions by depolarization and pore-formation in the bacterial cytoplasmic membrane. PMID:26802465

  15. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.

    Science.gov (United States)

    Li, Zhao; Zhou, Miaoping; Zhang, Zengyan; Ren, Lijuan; Du, Lipu; Zhang, Boqiao; Xu, Huijun; Xin, Zhiyong

    2011-03-01

    Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1-RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat. PMID:21279533

  16. Bacterial resistance to uncouplers.

    Science.gov (United States)

    Lewis, K; Naroditskaya, V; Ferrante, A; Fokina, I

    1994-12-01

    Uncoupler resistance presents a potential challenge to the conventional chemiosmotic coupling mechanism. In E. coli, an adaptive response to uncouplers was found in cell growing under conditions requiring oxidative phosphorylation. It is suggested that uncoupler-resistant mutants described in the earlier literature might represent a constitutive state of expression of this "low energy shock" adaptive response. In the environment, bacteria are confronted by nonclassical uncoupling factors such as organic solvents, heat, and extremes of pH. It is suggested that the low energy shock response will aid the cell in coping with the effects of natural uncoupling factors. The genetic analysis of uncoupler resistance has only recently began, and is yielding interesting and largely unexpected results. In Bacillus subtilis, a mutation in fatty acid desaturase causes an increased content of saturated fatty acids in the membrane and increased uncoupler resistance. The protonophoric efficiency of uncouplers remains unchanged in the mutants, inviting nonorthodox interpretations of the mechanism of resistance. In E. coli, two loci conferring resistance to CCCP and TSA were cloned and were found to encode multidrug resistance pumps. Resistance to one of the uncouplers, TTFB, remained unchanged in strains mutated for the MDRs, suggesting a resistance mechanism different from uncoupler extrusion. PMID:7721726

  17. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...... to the survival of biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy. A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. DNase and alginate lyase) as well as quorum...

  18. Retransformation of marker-free potato for enhanced resistance against fungal pathogens by pyramiding chitinase and wasabi defensin genes.

    Science.gov (United States)

    Khan, Raham Sher; Darwish, Nader Ahmed; Khattak, Bushra; Ntui, Valentine Otang; Kong, Kynet; Shimomae, Kazuki; Nakamura, Ikuo; Mii, Masahiro

    2014-09-01

    Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations. PMID:24802621

  19. Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi

    Czech Academy of Sciences Publication Activity Database

    Tonk, Miray; Cabezas-Cruz, A.; Valdés, James J.; Rego, Ryan O. M.; Chrudimská, Tereza; Strnad, Martin; Šíma, Radek; Bell-Sakyi, L.; Franta, Z.; Vilcinskas, A.; Grubhoffer, Libor; Rahnamaeian, M.

    2014-01-01

    Roč. 7, DEC 3 2015 (2014), s. 554. ISSN 1756-3305 R&D Projects: GA ČR(CZ) GAP302/11/1901; GA MŠk(CZ) EE2.3.30.0032; GA ČR GP13-12816P Institutional support: RVO:60077344 Keywords : Antimicrobial peptide * Defensin * Listeria grayi * Fusarium spp * Ixodes scapularis * Tick cell line Subject RIV: EE - Microbiology, Virology Impact factor: 3.430, year: 2014

  20. Modelling study of dimerization in mammalian defensins

    Directory of Open Access Journals (Sweden)

    Verma Chandra

    2006-12-01

    Full Text Available Abstract Background Defensins are antimicrobial peptides of innate immunity functioning by non-specific binding to anionic phospholipids in bacterial membranes. Their cationicity, amphipathicity and ability to oligomerize are considered key factors for their action. Based on structural information on human β-defensin 2, we examine homologous defensins from various mammalian species for conserved functional physico-chemical characteristics. Results Based on homology greater than 40%, structural models of 8 homologs of HBD-2 were constructed. A conserved pattern of electrostatics and dynamics was observed across 6 of the examined defensins; models backed by energetics suggest that the defensins in these 6 organisms are characterized by dimerization-linked enhanced functional potentials. In contrast, dimerization is not energetically favoured in the sheep, goat and mouse defensins, suggesting that they function efficiently as monomers. Conclusion β-defensin 2 from some mammals may work as monomers while those in others, including humans, work as oligomers. This could potentially be used to design human defensins that may be effective at lower concentrations and hence have therapeutic benefits.

  1. Antifungal defensins and their role in plant defense

    Directory of Open Access Journals (Sweden)

    Ariane eLacerda

    2014-04-01

    Full Text Available Since the beginning of the 90’s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP have been studied. However, Broekaert only coined the term plant defensin in 1995, after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity towards microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM. Its low effective concentration towards fungi, ranging from 0.1 to 10 µM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90’s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i the most studied plant defensins and their fungal targets; (ii the molecular features of plant defensins and their relation with antifungal activity; (iii the possibility of using plant defensin(s genes to generate fungi resistant GM crops and biofungicides; and (iv a brief discussion about the absence of products in the market containing plant antifungal defensins.

  2. Antifungal defensins and their role in plant defense.

    Science.gov (United States)

    Lacerda, Ariane F; Vasconcelos, Erico A R; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term "plant defensin," after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins. PMID:24765086

  3. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160595

  4. Whole blood defensin mRNA expression is a predictive biomarker of docetaxel response in castration-resistant prostate cancer

    Directory of Open Access Journals (Sweden)

    Kohli M

    2015-07-01

    Full Text Available Manish Kohli,1 Charles YF Young,2 Donald J Tindall,2 Debashis Nandy,1 Kyle M McKenzie,3 Graham H Bevan,4 Krishna Vanaja Donkena5 1Department of Oncology, 2Department of Urology, 3Department of Geriatric Medicine, Mayo Clinic, Rochester, MN, 4University of Rochester Medical Center, Rochester, NY, 5Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA Abstract: This study tested the potential of circulating RNA-based signals as predictive biomarkers for docetaxel response in patients with metastatic castration-resistant prostate cancer (CRPC. RNA was analyzed in blood from six CRPC patients by whole-transcriptome sequencing (total RNA-sequencing before and after docetaxel treatment using the Illumina’s HiSeq platform. Targeted RNA capture and sequencing was performed in an independent cohort of ten patients with CRPC matching the discovery cohort to confirm differential expression of the genes. Response to docetaxel was defined on the basis of prostate-specific antigen levels and imaging criteria. Two-way analysis of variance was used to compare differential gene expression in patients classified as responders versus nonresponders before and after docetaxel treatment. Thirty-four genes with two-fold differentially expressed transcripts in responders versus nonresponders were selected from total RNA-sequencing for further validation. Targeted RNA capture and sequencing showed that 13/34 genes were differentially expressed in responders. Alpha defensin genes DEFA1, DEFA1B, and DEFA3 exhibited significantly higher expression in responder patients compared with nonresponder patients before administration of chemotherapy (fold change >2.5. In addition, post-docetaxel treatment significantly increased transcript levels of these defensin genes in responders (fold change >2.8. Our results reveal that patients with higher defensin RNA transcripts in blood respond well to docetaxel therapy. We suggest that monitoring DEFA1, DEFA1B, and DEFA3

  5. Defensins in periodontal health

    Directory of Open Access Journals (Sweden)

    Taran Bedi

    2015-01-01

    Full Text Available Defensins are abundant and widely distributed peptides in human and animal tissues that are involved in host defence. Defensins not only have the ability to strengthen the innate immune system but can also enhance the adaptive immune system by chemotaxis of monocytes, T-lymphocytes, dendritic cells and mast cells to the infection site. Defensins also improves the capacity of macrophage phagocytosis. A greater understanding of how these peptides act in the healthy, gingivitis and periodontitis conditions would definitely open new opportunities for identification, prevention and treatment of periodontal diseases. This discussion focuses on recent studies about biological function of defensins in human diseases and animal models.

  6. Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis

    OpenAIRE

    Seufi AlaaEddeen M; Hafez Elsayed E; Galal Fatma H

    2011-01-01

    Abstract Background Defensins are a well known family of cationic antibacterial peptides (AMPs) isolated from fungi, plants, insects, mussels, birds, and various mammals. They are predominantly active against gram (+) bacteria, and a few of them are also active against gram (-) bacteria and fungi. All insect defensins belonging to the invertebrate class have a consensus motif, C-X5-16-C-X3-C-X9-10-C-X4-7-CX1-C. Only seven AMPs have already been found in different lepidopteran species. No repo...

  7. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  8. Bacterial resistance to antimicrobial peptides: an evolving phenomenon.

    Science.gov (United States)

    Fleitas, Osmel; Agbale, Caleb M; Franco, Octavio L

    2016-01-01

    Bacterial resistance to conventional antibiotics is currently a real problem all over the world, making novel antimicrobial compounds a real research priority. Some of the most promising compounds found to date are antimicrobial peptides (AMPs). The benefits of these drugs include their broad spectrum of activity that affects several microbial processes, making the emergence of resistance less likely. However, bacterial resistance to AMPs is an evolving phenomenon that compromises the therapeutic potential of these compounds. Therefore, it is mandatory to understand bacterial mechanisms of resistance to AMPs in depth, in order to develop more powerful AMPs that overcome the bacterial resistance response. PMID:27100488

  9. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Bjoern F Kraemer

    2011-11-01

    Full Text Available Human β-defensins (hBD are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus, forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of β-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET formation by target polymorphonuclear leukocytes (PMNs, which is a novel antimicrobial function of β-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria.

  10. [The role of defensins in the pathogenesis of chronic-inflammatory bowel disease].

    Science.gov (United States)

    Schmid, M; Fellermann, K; Wehkamp, J; Herrlinger, K; Stange, E F

    2004-04-01

    Defensins are endogenous antimicrobial peptides with a broad activity spectrum. Even at micromolar concentrations gramnegative and grampositive bacteria, but also mycobacteria, as well as fungi (candida), viruses (herpes) and protozoa (giardia lamblia) are destroyed. As part of the innate immune system defensins are expressed by the intestinal epithelium and contribute to the maintenance of the mucosal barrier. This barrier appears to be defective in inflammatory bowel diseases since on one hand, the immune response is directed against the "normal" luminal bacterial flora and on the other hand, mucosal adherent and invasive bacteria have been observed in these diseases. A defective defensin expression may well explain these phenomena. Indeed, Crohn's disease of the terminal ileum, especially if associated with a NOD2 mutation, is characterised by a diminished alpha-defensin (human defensin 5 and 6) expression, and in inflamed Crohn's colitis, in contrast to ulcerative colitis, the beta-defensin (human beta-defensins 2 and 3) response is reduced. Through a deficient chemical mucosal barrier this defect could lead to increased bacterial invasion into the intestinal mucosa and might well explain an adequate inflammatory response. Although the final proof that this deficient defensin response leads to a reduced antibacterial activity of the intestinal mucosa is still lacking, the most plausible concept of pathogenesis of Crohn's disease is a defensin deficiency syndrome. PMID:15095125

  11. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  12. Bacterial and archaeal resistance to ionizing radiation

    Science.gov (United States)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  13. Bacterial and archaeal resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  14. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    OpenAIRE

    Paula Blanco; Sara Hernando-Amado; Jose Antonio Reales-Calderon; Fernando Corona; Felipe Lira; Manuel Alcalde-Rico; Alejandra Bernardini; Maria Blanca Sanchez; Jose Luis Martinez

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of ant...

  15. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    OpenAIRE

    Heloisa Helena Karnas Hoefel; Liana Lautert

    2006-01-01

    The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and M...

  16. BLOOD CONTENTS OF DEFENSINS IN PATIENTS WITH PNEUMONIAS CAUSED BY INFLUENZA А/H1N1

    Directory of Open Access Journals (Sweden)

    E. N. Romanova

    2012-01-01

    Full Text Available Abstract. Defensin amounts in severe forms of influenza-associated pneumonia and acute respiratory distresssyndrome is increased to a lesser degree than in pneumonias with milder clinical course. This difference may be determined by selective accumulation of defensins in areas of infectious lesions. Mean content of α-defensins in non-severe pneumonias with influenza А/H1N1 accompanied by normocytosis or leukopenia, is higher than in bacterial pneumonias with leukocytosis. High levels of defensins, along with substantially increased neutrophil counts, associated with normocytosis or leukopenia, reflect a pronounced systemic inflammatory response caused by influenza А/H1N1.

  17. Mutation breeding of rice for bacterial leaf-blight resistance

    International Nuclear Information System (INIS)

    Seedlings of controls and of M2 generation originating from the irradiation treatment of seeds of four rice varieties with thermal neutrons, 60Co gamme-ray, ethylene-imine (EI), were inoculated with some isolates of Xanthomonas oryzae. The variability of the disease reaction in the populations arising from irradiation and chemical treatment increased both resistance and susceptibility compared with the control average, irrespective of chlorophyll mutations in M2. The increased variability was assumed to be due to polygenic mutations giving both germ types more resistance and more susceptibility to bacterial leaf blight. The value of the induced polygenic mutations in resistance breeding for bacterial leaf blight is briefly discussed. (author)

  18. Assessment of Bacterial Antibiotic Resistance Transfer in the Gut

    OpenAIRE

    Susanne Schjørring; Krogfelt, Karen A.

    2011-01-01

    We assessed horizontal gene transfer between bacteria in the gastrointestinal (GI) tract. During the last decades, the emergence of antibiotic resistant strains and treatment failures of bacterial infections have increased the public awareness of antibiotic usage. The use of broad spectrum antibiotics creates a selective pressure on the bacterial flora, thus increasing the emergence of multiresistant bacteria, which results in a vicious circle of treatments and emergence of new antibiotic res...

  19. Nonlinear Stochastic Modelling of Antimicrobial resistance in Bacterial Populations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber

    This thesis applies mathematical modelling and statistical methods to investigate the dynamics and mechanisms of bacterial evolution. More specifically it is concerned with the evolution of antibiotic resistance in bacteria populations, which is an increasing problem for the treatment of infections...... in humans and animals. To prevent the evolution and spread of resistance, there is a need for further understanding of its dynamics. A grey-box modelling approach based on stochastic differential equations is the main and innovative method applied to study bacterial systems in this thesis. Through...... for bacterial growth in an environment with multiple substrates. Models based on stochastic differential equations are also used in studies of mutation and conjugation. Mutation and conjugation are important mechanisms for the development of resistance. Earlier models for conjugation have described...

  20. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    Directory of Open Access Journals (Sweden)

    Heloisa Helena Karnas Hoefel

    2006-12-01

    Full Text Available The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and Medline searching for the word nursing and bacterial resistance, antibiotics control, hospital infections, administration drugs, errors and adverse events. There were chose 58 papers about nursing and/or were basics for international and Brazilian studies. Results: It was described international classifications errors and consequences analyzing their possible influences on antibiotics effects. Based on these knowledge, interventions are recommended to implement safety practice and care.

  1. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Directory of Open Access Journals (Sweden)

    Paula Blanco

    2016-02-01

    Full Text Available Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  2. Bacterial Gibberellins Induce Systemic Resistance of Plants

    OpenAIRE

    I. N. FEKLISTOVA; I. A. GRINEVA; T. L. SKAKUN; L. E. SADOVSKAYA

    2014-01-01

    It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus) is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and ...

  3. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.

    Science.gov (United States)

    Andersson, D I; Hughes, D; Kubicek-Sutherland, J Z

    2016-05-01

    Cationic antimicrobial peptides (AMPs) are an intrinsic part of the human innate immune system. Over 100 different human AMPs are known to exhibit broad-spectrum antibacterial activity. Because of the increased frequency of resistance to conventional antibiotics there is an interest in developing AMPs as an alternative antibacterial therapy. Several cationic peptides that are derivatives of AMPs from the human innate immune system are currently in clinical development. There are also ongoing clinical studies aimed at modulating the expression of AMPs to boost the human innate immune response. In this review we discuss the potential problems associated with these therapeutic approaches. There is considerable experimental data describing mechanisms by which bacteria can develop resistance to AMPs. As for any type of drug resistance, the rate by which AMP resistance would emerge and spread in a population of bacteria in a natural setting will be determined by a complex interplay of several different factors, including the mutation supply rate, the fitness of the resistant mutant at different AMP concentrations, and the strength of the selective pressure. Several studies have already shown that AMP-resistant bacterial mutants display broad cross-resistance to a variety of AMPs with different structures and modes of action. Therefore, routine clinical administration of AMPs to treat bacterial infections may select for resistant bacterial pathogens capable of better evading the innate immune system. The ramifications of therapeutic levels of exposure on the development of AMP resistance and bacterial pathogenesis are not yet understood. This is something that needs to be carefully studied and monitored if AMPs are used in clinical settings. PMID:27180309

  4. Alternatives to overcoming bacterial resistances: State-of-the-art.

    Science.gov (United States)

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  5. Important aspects of nosocomial bacterial resistance and its management.

    Science.gov (United States)

    Kandelaki, G; Tsertsvadze, T; Macharashvili, N; Esugbaia, M; Gogichaishvili, Sh

    2008-12-01

    The article reviews management of nosocomial bacterial resistance aspects. Nosocomial infections are associated with substantial morbidity, mortality and cost. During the last several decades multi-drug resistant organisms increased in number considerably. Methicillin-resistant staphylococcus aureus, Vancomycin-intermediately resistant staphylococcus aureus and fully vancomycin-resistant staphylococcus aureus evolved as a consequence of methicillin and vancomycin use. The introduction of third generation cephalosporins were followed by emergence of extended spectrum and AMP-C -lactamases among gram negative bacteria, and carbapenems were targeted by carbapenemases. The poor diagnostic yield of current microbiologic methods in identifying certain resistant organisms, combined with decreasing numbers of newly developed antibiotics pose a significant challenge to physicians. We reviewed some of the approaches which can be followed to maximize the positive clinical outcome in patients with resistant nosocomial infections, using currently available antibiotics. More sensitive microbiological methods and new types of antibiotics are needed to adequately address the problem in the future. PMID:19124917

  6. Antibiotic resistance of Gardnerella vaginalis in recurrent bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Nagaraja P

    2008-01-01

    Full Text Available Fifty strains of Gardnerella vaginalis isolated from 321 high vaginal swabs over a period of five months were tested for their antibiotic sensitivity. Sixty eight per cent of all isolates were resistant to metronidazole while 76% were sensitive to clindamycin. All the strains isolated from cases with recurrence of infection were resistant to metronidazole. Clindamycin therapy has a better clinical efficacy than metronidazole in cases of recurrent bacterial vaginosis.

  7. Persistence and resistance as complementary bacterial adaptations to antibiotics.

    Science.gov (United States)

    Vogwill, T; Comfort, A C; Furió, V; MacLean, R C

    2016-06-01

    Bacterial persistence represents a simple of phenotypic heterogeneity, whereby a proportion of cells in an isogenic bacterial population can survive exposure to lethal stresses such as antibiotics. In contrast, genetically based antibiotic resistance allows for continued growth in the presence of antibiotics. It is unclear, however, whether resistance and persistence are complementary or alternative evolutionary adaptations to antibiotics. Here, we investigate the co-evolution of resistance and persistence across the genus Pseudomonas using comparative methods that correct for phylogenetic nonindependence. We find that strains of Pseudomonas vary extensively in both their intrinsic resistance to antibiotics (ciprofloxacin and rifampicin) and persistence following exposure to these antibiotics. Crucially, we find that persistence correlates positively to antibiotic resistance across strains. However, we find that different genes control resistance and persistence implying that they are independent traits. Specifically, we find that the number of type II toxin-antitoxin systems (TAs) in the genome of a strain is correlated to persistence, but not resistance. Our study shows that persistence and antibiotic resistance are complementary, but independent, evolutionary adaptations to stress and it highlights the key role played by TAs in the evolution of persistence. PMID:26999656

  8. Test for bacterial resistance build-up against plasma treatment

    International Nuclear Information System (INIS)

    It is well known that the evolution of resistance of microorganisms to a range of different antibiotics presents a major problem in the control of infectious diseases. Accordingly, new bactericidal ‘agents’ are in great demand. Using a cold atmospheric pressure (CAP) plasma dispenser operated with ambient air, a more than five orders of magnitude inactivation or reduction of Methicillin-resistant Staphylococcus aureus (MRSA; resistant against a large number of the tested antibiotics) was obtained in less than 10 s. This makes CAP the most promising candidate for combating nosocomial (hospital-induced) infections. To test for the occurrence and development of bacterial resistance against such plasmas, experiments with Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Enterococcus mundtii) were performed. The aim was to determine quantitative limits for primary (naturally) or secondary (acquired) resistance against the plasma treatment. Our results show that E. coli and E. mundtii possess no primary resistance against the plasma treatment. By generating four generations of bacteria for every strain, where the survivors of the plasma treatment were used for the production of the next generation, a lower limit to secondary resistance was obtained. Our results indicate that CAP technology could contribute to the control of infections in hospitals, in outpatient care and in disaster situations, providing a new, fast and efficient broad-band disinfection technology that is not constrained by bacterial resistance mechanisms. (paper)

  9. Major QTL Conferring Resistance to Rice Bacterial Leaf Streak

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacterial leaf streak (BLS) is one of the important limiting factors to rice production in southern China and other tropical and sub-tropical areas in Asia. Resistance to BLS was found to be a quantitative trait and no major resistant gene was located in rice until date. In the present study, a new major quantitative trait locus (QTL) conferring resistance to BLS was identified from a highly resistant variety Dular by the employment of Dular/Balilla (DB) and Dular/IR24 (DI) segregation populations and was designated qBLSR-11-1. This QTL was located between the simple sequence repeat (SSR) markers RM120 and RM441 on chromosome 11 and could account for 18.1-21.7% and 36.3% of the variance in DB and DI populations, respectively. The genetic pattern of rice resistance to BLS was discussed.

  10. Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily

    OpenAIRE

    Sanath Kumar; Mun Mun Mukherjee; Varela, Manuel F.

    2013-01-01

    Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is on...

  11. 75 FR 33317 - Antibacterial Resistance and Diagnostic Device and Drug Development Research for Bacterial...

    Science.gov (United States)

    2010-06-11

    ... resistance, rapid diagnostic device development for bacterial diseases, and antibacterial drug development... antibacterial drug resistance and product development for bacterial diseases. Topics for discussion include the following: (1) An overview and discussion of the scale of the current bacterial resistance problem,...

  12. Development of bacterially resistant polyurethane for coating medical devices

    International Nuclear Information System (INIS)

    Polyurethanes have been widely used in medicine for coating and packaging implantable and other medical devices. Polyether-urethanes, in particular, have superior mechanical properties and are biocompatible, but in common with other medical materials they are susceptible to microbial film formation. In this study, polyether-urethane was end-capped with silver lactate and silver sulfadiazine functional groups to produce a bacterially resistant polymer without sacrificing the useful mechanical properties of the polyether-polyurethane. The silver ions were covalently incorporated into the polymer during chain extension of the prepolymer. The functionalized polymers were structurally characterized by light scattering, electron microscopy, NMR, FTIR and Raman spectroscopy. Mechanical properties, hydrophilicity, in vitro stability and antibacterial action of polymers were also investigated. Results indicate that both silver salts were successfully incorporated into the polymer structure without significant effect on mechanical properties, whilst conferring acceptable bacterial resistance.

  13. Marine bacterial communities are resistant to elevated carbon dioxide levels.

    Science.gov (United States)

    Oliver, Anna E; Newbold, Lindsay K; Whiteley, Andrew S; van der Gast, Christopher J

    2014-12-01

    It is well established that the release of anthropogenic-derived CO2 into the atmosphere will be mainly absorbed by the oceans, with a concomitant drop in pH, a process termed ocean acidification. As such, there is considerable interest in how changes in increased CO2 and lower pH will affect marine biota, such as bacteria, which play central roles in oceanic biogeochemical processes. Set within an ecological framework, we investigated the direct effects of elevated CO2, contrasted with ambient conditions on the resistance and resilience of marine bacterial communities in a replicated temporal seawater mesocosm experiment. The results of the study strongly indicate that marine bacterial communities are highly resistant to the elevated CO2 and lower pH conditions imposed, as demonstrated from measures of turnover using taxa–time relationships and distance–decay relationships. In addition, no significant differences in community abundance, structure or composition were observed. Our results suggest that there are no direct effects on marine bacterial communities and that the bacterial fraction of microbial plankton holds enough flexibility and evolutionary capacity to withstand predicted future changes from elevated CO2 and subsequent ocean acidification. PMID:25756110

  14. Newer systems for bacterial resistances to toxic heavy metals.

    OpenAIRE

    Silver, S; Ji, G.

    1994-01-01

    Bacterial plasmids contain specific genes for resistances to toxic heavy metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, and Zn2+. Recent progress with plasmid copper-resistance systems in Escherichia coli and Pseudomonas syringae show a system of four gene products, an inner membrane protein (PcoD), an outer membrane protein (PcoB), and two periplasmic Cu(2+)-binding proteins (PcoA and PcoC). Synthesis of this system is governed by two regulator...

  15. Screening Rice Cultivars for Resistance to Bacterial Leaf Blight.

    Science.gov (United States)

    Fred, Agaba Kayihura; Kiswara, Gilang; Yi, Gihwan; Kim, Kyung-Min

    2016-05-28

    Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious threats to rice production. In this study, screening of rice for resistance to BLB was carried out at two different times and locations; that is, in a greenhouse during winter and in an open field during summer. The pathogenicity of Xoo race K1 was tested on 32 Korean rice cultivars. Inoculation was conducted at the maximum tillering stage, and the lesion length was measured after 14 days of inoculation. Five cultivars, Hanareum, Namcheon, Samgdeok, Samgang, and Yangjo, were found to be resistant in both the greenhouse and open-field screenings. Expression of the plant defense-related genes JAmyb, OsNPR1, OsPR1a, OsWRKY45, and OsPR10b was observed in resistant and susceptible cultivars by qRT-PCR. Among the five genes tested, only OsPR10b showed coherent expression with the phenotypes. Screening of resistance to Xoo in rice was more accurate when conducted in open fields in the summer cultivation period than in greenhouses in winter. The expression of plant defenserelated genes after bacterial inoculation could give another perspective in elucidating defense mechanisms by using both resistant and susceptible individuals. PMID:26869604

  16. Absence of bacterial resistance following repeat exposure to photodynamic therapy

    Science.gov (United States)

    Pedigo, Lisa A.; Gibbs, Aaron J.; Scott, Robert J.; Street, Cale N.

    2009-06-01

    The prevalence of antibiotic resistant bacteria necessitates exploration of alternative approaches to treat hospital and community acquired infections. The aim of this study was to determine whether bacterial pathogens develop resistance to antimicrobial photodynamic therapy (aPDT) during repeated sub-lethal challenge. Antibiotic sensitive and resistant strains of S. aureus and antibiotic sensitive E. coli were subjected to repeat PDT treatments using a methylene blue photosensitizer formulation and 670 nm illumination from a non-thermal diode laser. Parameters were adjusted such that kills were Oxacillin resistance was induced in S. aureus using a disc diffusion method. For each experiment, "virgin" and "repeat" cultures were exposed to methylene blue at 0.01% w/v and illuminated with an energy dose of 20.6 J/cm2. No significant difference in killing of E. coli (repeat vs. virgin culture) was observed through 11 repeat exposures. Similar results were seen using MSSA and MRSA, wherein kill rate did not significantly differ from control over 25 repeat exposures. In contrast, complete oxacillin resistance could be generated in S. aureus over a limited number of exposures. PDT is effective in the eradication of pathogens including antibiotic resistance strains. Furthermore, repeated sub-lethal exposure does not induce resistance to subsequent PDT treatments. The absence of resistance formation represents a significant advantage of PDT over traditional antibiotics.

  17. Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WU Chao; LIU Mei; LIU Xu-ri; Hu Guo-cheng; SI Hua-min; SUN Zong-xiu; LIU Wen-zhen; Fu Ya-ping

    2011-01-01

    Antimierobial peptide is a polypeptide with antimicrobial activity.Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L.subsp.japonica cv.Aichi ashahi by Agrobacterium mediated transformation system.PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in T0 generation,respectively.RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation,and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants.Four Np3 and Np5 transgenic lines in T1 generation were inoculated with ×anthomonas oryzae pv.oryzae strain CR4,and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4.The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2,Zhe 173 and OS-225.It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.

  18. Resistance pattern of bacterial agents causing ophtalmia neonatorum

    Directory of Open Access Journals (Sweden)

    Peymaneh Alizadeh Taheri

    2013-08-01

    Full Text Available Background: One of the most common infections in neonatal period is ophthalmia neo-natorum. In this study, the bacterial agents, drug resistance and susceptibility of bacteri-al agents were studied.Methods: In this study a total of 72 newborns with ophthalmia neonatorum admitted in Bahrami Hospital in Tehran during the years 2008-2011 were continuously enrolled in a case series, descriptive study. Demographic data, including age, sex, cause of admis-sion and culture of discharge from the eyes and its antibiogram, as well as experimental treatments and treatment outcomes were collected.Results: Forty four infants (61.1% were males and 28 (38.9% were females and the mean age on admission was 11.6±7.7 days. In 51 patients (70.8% the onset of ophthal-mia neonatorum was prior to admission. More than 56% of cases with ophthalmia neonatorum were associated with sepsis. On the other hand, positive blood culture was detected in 15.3% of cases. Among 72 neonates with ophthalmia neonatorum, 26 (36.1% had a positive culture of the eye discharge. The most common causes of bacterial agents were Staphylococcus aureus (46.1% (12 of 26 cases. Other causes included streptococcus species (23%, Pseudomonas (15.3%, E-coli (11.5% and Haemophilus influenza (3.8%. The most frequent causes of drug resistance were Ampicillin, Penici-llin, Cefixime, and Ceftazidime (100% resistance. The most sensiti-ve antibiotics were vancomycin and imipenem (100% sensitivity. Based on the conventional treatment, clinical response to local gentamicin was approximately 60%. Sulfacetamide was associated with no clinical response in 40% of cases.Conclusion: The antibiogram and clinical response to empiric treatment showed that resistance to ampicillin and some third generation of cephalosporine was 100%. Aminoglycosides’ sensitivity was more than 50% locally and systemically. Our recommendation is performing eye discharge culture before antibiotic treatment. More studies with numerous

  19. Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition.

    Directory of Open Access Journals (Sweden)

    Victoria R Tenge

    2014-09-01

    Full Text Available Human α-defensins are potent anti-microbial peptides with the ability to neutralize bacterial and viral targets. Single alanine mutagenesis has been used to identify determinants of anti-bacterial activity and binding to bacterial proteins such as anthrax lethal factor. Similar analyses of α-defensin interactions with non-enveloped viruses are limited. We used a comprehensive set of human α-defensin 5 (HD5 and human neutrophil peptide 1 (HNP1 alanine scan mutants in a combination of binding and neutralization assays with human adenovirus (AdV and human papillomavirus (HPV. We have identified a core of critical hydrophobic residues that are common determinants for all of the virus-defensin interactions that were analyzed, while specificity in viral recognition is conferred by specific surface-exposed charged residues. The hydrophobic residues serve multiple roles in maintaining the tertiary and quaternary structure of the defensins as well as forming an interface for virus binding. Many of the important solvent-exposed residues of HD5 group together to form a critical surface. However, a single discrete binding face was not identified for HNP1. In lieu of whole AdV, we used a recombinant capsid subunit comprised of penton base and fiber in quantitative binding studies and determined that the anti-viral potency of HD5 was a function of stoichiometry rather than affinity. Our studies support a mechanism in which α-defensins depend on hydrophobic and charge-charge interactions to bind at high copy number to these non-enveloped viruses to neutralize infection and provide insight into properties that guide α-defensin anti-viral activity.

  20. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA.

    Science.gov (United States)

    Richman, A M; Bulet, P; Hetru, C; Barillas-Mury, C; Hoffmann, J A; Kafalos, F C

    1996-08-01

    Larvae of the mosquito vector of human malaria, Anopheles gambiae, were inoculated with bacteria and extracts were biochemically fractionated by reverse-phase HPLC. Multiple induced polypeptides and antibacterial activities were observed following bacterial infection, including a member of the insect defensin family of antibacterial proteins. A cDNA encoding An. gambiae preprodefensin was isolated using PCR primers based on phylogenetically conserved sequences. The mature peptide is highly conserved, but the signal and propeptide segments are not, relative to corresponding defensin sequences of other insects. Defensin expression is induced in response to bacterial infection, in both adult and larval stages. In contrast, pupae express defensin mRNA constitutively. Defensin expression may prove a valuable molecular marker to monitor the An. gambiae host response to infection by parasitic protozoa of medical importance. PMID:8799739

  1. Construction of a Mammary-specific Expression Vector of Human α- defensin- 1 ( HNP- 1) Gene

    Institute of Scientific and Technical Information of China (English)

    Yue YANG; Jing-Ping OU YANG; Bao-Hua WANG

    2005-01-01

    @@ 1 Introduction Defensins, also called human neutrophil peptides(HNP), are small cationic peptides with broad antimicrobial activity[1]. Human defensins are highly abundant in the cytoplasmic granules of polymorphonuclear neutrophils. Alpha-defensin-1 is an important mediator in either innate immunity or anti-infection. It can be developed to be an ideal new type antibiotic and may provide a better solution for the present situation of extensive antibiotics-resistence. It is difficult to achieve amount of antimicrobial peptides from nature sources. Transgenic mammary gland bioreactors offer a safe and cost effective source to produce important proteins. The purpose of this study was to construct a mammary-specific expression plasmid containing beta-lactoglobulin (BLG) gene promoter and human α-defensin-1 (HNP-1) gene.

  2. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    Science.gov (United States)

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs. PMID:27178300

  3. Biocidal activity of chicken defensin-9 against microbial pathogens.

    Science.gov (United States)

    Yacoub, Haitham A; El-Hamidy, Salem M; Mahmoud, Maged M; Baeshen, Mohamed Nabih; Almehdar, Hussein A; Uversky, Vladimir N; Redwan, Elrashdy M; Al-Maghrabi, Omar A; Elazzazy, Ahmed M

    2016-04-01

    In this study we identified the expression patterns of β-defensin-9 in chickens from Saudi Arabia, evaluated the antimicrobial activities of synthetic chicken β-defensin-9 (sAvBD-9) against pathogenic bacteria and fungi, and investigated the mode of action of sAvBD-9 on bacterial cells. The AvBD-9 gene of Saudi chickens encodes a polypeptide of 67 amino acids, which is highly similar to the polypeptide in duck, quail, and goose (97%, 86%, and 87%, respectively) and shares a low sequence similarity with the mammalian defensins. AvBD-9 is expressed in various organs and tissues of Saudi chickens and inhibits the growth of both Gram-negative and Gram-positive bacteria, as well as showing activity against unicellular and multicellular fungi (Aspergillus flavus, A. niger, and Candida albicans). sAvBD-9 completely inhibited the growth of both Gram-positive and Gram-negative bacterial strains as well as Candida albicans. The haemolytic effects of sAvBD-9 were limited. Morphological analysis by TEM revealed that sAvBD-9 induces shortening and swelling of Staphylococcus aureus and Shigella sonni cells, opens holes and deep craters in their envelopes, and leads to the release of their cytoplasmic content. Our data shed light on the potential applications of sAvBD-9 in the pharmaceutical industry. PMID:26914652

  4. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA

    OpenAIRE

    Belcourt, Michael F.; Penketh, Philip G.; Hodnick, William F.; Johnson, David A.; David H Sherman; Rockwell, Sara; Sartorelli, Alan C.

    1999-01-01

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduc...

  5. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  6. STUDY OF BACTERIAL RESISTANCE TO ORGANOPHOSPHOROUS PESTICIDES IN IRAN

    Directory of Open Access Journals (Sweden)

    A. Nazarian and M. Mousawi

    2005-07-01

    Full Text Available The broadness application of organophosphorus compounds has abounded the number of its polluted areas. Bioremediation has widely focused on insitu bacterial degradation of organophosphorus residues in the world. Therefore, in this research six numbers of samples from two different sources, soil and water randomly were isolated using different organophosphorus pesticides containing mineral solution without supplementation. More than 100 isolated strains were selected according to their simultaneous optimal growth on mineral medium with organophosphorus and Mac Conkey,s agar. More than 50 percent of them were lost above resistance. The resistant strains were identified by two methods, the biochemical convention and API 20E procedure with positive agreement. The identified strains belonged to Pseudomonas and Flavobacterium species. The maximum tolerant concentrations of different organophosphorus pesticides by these resistant strains were 2.5, 4 and 8 g/L of guthion, methyl parathion and Dimethoate, respectively. The resistance to these pesticides due to organ phosphorous degrading plasmids had the ability to express hydrolytic enzymes. Resistant bacteria lost these plasmids by acridin orange and could translocate to sensitive strains. Thus, certain environmental bacteria could be used as protection tools against antinerve agents.

  7. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    Science.gov (United States)

    Blair, Jessica M. A.

    2016-01-01

    ABSTRACT Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  8. Induced mutation for bacterial blight resistance in mulberry

    International Nuclear Information System (INIS)

    Buds of mulberry varieties Phai, Noi and SK2502 were irradiated by gamma radiation and then cultured on the Murashige and Skoog medium containing 1.0 mg/l of BA and Casein hydrolysate 1g/l. After proliferation of shoots, they were transferred to the rooting medium (MS + NAA 0.2 mg/l + IBA 0.2 mg/l). Plantlets of mulberry var. Noi were transplanted to soil in greenhouse for screening for bacterial blight disease resistance. All plants showed symptoms of disease. In vitro inoculation of the pathogen, Pseudomonas syringae p.v. mori, on plantlets of the mulberry var. Noi and Phai was conducted. All plants showed symptoms of the disease and died. In vitro screening will be continued with much larger populations in order to select the resistance traits. (author). 4 refs, 4 tabs

  9. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps.

    Science.gov (United States)

    Blair, Jessica M A; Piddock, Laura J V

    2016-01-01

    Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  10. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    OpenAIRE

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC mutant strain which proved to be hypersensitive to cadmium. Both the human and bacterial MDR genes conferred cadmium resistance to E. coli up to 0.4 mM concentration. Protection was abolished by 10...

  11. Induced mutation for disease resistance in rice with special reference to blast, bacterial blight and tungro

    International Nuclear Information System (INIS)

    Rice varieties Ratna, Pusa 2-21, Vijaya and Pankaj have been treated with gamma rays, EMS or sodium azide to improve their resistance against blast, bacterial leaf blight or tungro virus. For blast and tungro, mutants with improved resistance were selected. Variation in reaction to bacterial leaf blight has been used in crossbreeding to accumulate genes for resistance. (author)

  12. Antimicrobial activity of peach and grapevine defensins

    OpenAIRE

    Nanni, Valentina

    2012-01-01

    Antimicrobial peptides (AMPs) are an important component of the innate immune system of the plants. Plant defensins are a large family of antimicrobial peptides with several interesting features, such as small dimension, high stability and broad spectrum of action. The discovery of new molecules and the study of their mechanism of action allow to consider them attractive for biotechnological applications. In this PhD thesis a defensin from Prunus persica (PpDFN1) and four novel DEFensin Li...

  13. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  14. Bacterial metal resistance genes and metal bioavailability in contaminated sediments

    International Nuclear Information System (INIS)

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. - Highlights: • Metal resistance genes were used to estimate metal bioavailability in sediments. • Gene levels were correlated to metals using 5 different metal extraction protocols. • CzcA gene levels determined by quantitative PCR is a promising tool for Cd/Zn/Co. - Capsule Bacterial czcA is a potential biomarker of Cd, Zn and Co bioavailability in aquatic sediments as shown by quantitative PCR and sequential metal extraction

  15. Evaluation of bacterial wilt resistance in tomato lines nearly isogenic for the Mi gene for resistance to root-knot

    OpenAIRE

    Deberdt, P.; Olivier, J; Thoquet, P; Quénéhervé, Patrick; Prior, P

    1999-01-01

    Resistance to bacterial wilt, caused by #Ralstonia solancearum$, in tomato lines CRA 66 and Caraïbo is reported to be decreased by root-knot nematode galling and by introduction of the #Mi$ gene for nematode resistance. The #Mi$ gene is located on tomato chromosome 6, which also carries a major quantitative trait locus (QTL) for resistance to bacterial wilt. Bacterial wilt resistance was evaluated in F3-progenies derived from two crosses between near-isogenic lines Caraïbo x Carmido and CRA 6...

  16. Performance of resistance gene pyramids to races of rice bacterial blight in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    ZHENGKangle; ZHUANGJieyun; WANGHanrong

    1998-01-01

    The effect of gene pyramiding on resistance to bacterial blight (BB) in rice was evahlated among the IR24-based near isogenic lines conraining single resistance gene and gene pyramids containing two, three or lour resistancegenes (see table).

  17. An approach to identifying drug resistance associated mutations in bacterial strains

    OpenAIRE

    2012-01-01

    Background Drug resistance in bacterial pathogens is an increasing problem, which stimulates research. However, our understanding of drug resistance mechanisms remains incomplete. Fortunately, the fast-growing number of fully sequenced bacterial strains now enables us to develop new methods to identify mutations associated with drug resistance. Results We present a new comparative approach to identify genes and mutations that are likely to be associated with drug resistance mechanisms. In ord...

  18. Discovery of Novel Materials with Broad Resistance to Bacterial Attachment Using Combinatorial Polymer Microarrays

    OpenAIRE

    Hook, Andrew L; Chang, Chien-Yi; YANG Jing; Atkinson, Steve; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C; Williams, Paul; Alexander, Morgan R.

    2012-01-01

    A new class of bacteria-attachment-resistant materials is discovered using a multi-generation polymer microarray methodology that reduces bacterial attachment by up to 99.3% compared with a leading commercially available silver hydrogel anti-bacterial material. The coverage of three bacterial species, Pseudomonas aeruginosa, Staphylococcus aureus, and uropathogenic Escherichia coli is assessed.

  19. Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays

    OpenAIRE

    Hook, Andrew L; Chang, Chien-Yi; YANG Jing; Atkinson, Steve; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C; Williams, Paul; Alexander, Morgan R.

    2013-01-01

    A new class of bacteria-attachment-resistant materials is discovered using a multi-generation polymer microarray methodology that reduces bacterial attachment by up to 99.3% compared with a leading commercially available silver hydrogel anti-bacterial material. The coverage of three bacterial species, Pseudomonas aeruginosa, Staphylococcus aureus, and uropathogenic Escherichia coli is assessed.

  20. Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin.

    Science.gov (United States)

    Meng, Lanxia; Xie, Zili; Zhang, Qian; Li, Yang; Yang, Fan; Chen, Zongyun; Li, Wenxin; Cao, Zhijian; Wu, Yingliang

    2016-03-25

    The structural similarity between defensins and scorpion neurotoxins suggests that they might have evolved from a common ancestor. However, there is no direct experimental evidence demonstrating a functional link between scorpion neurotoxins and defensins. The scorpion defensin BmKDfsin4 fromMesobuthus martensiiKarsch contains 37 amino acid residues and a conserved cystine-stabilized α/β structural fold. The recombinant BmKDfsin4, a classical defensin, has been found to have inhibitory activity against Gram-positive bacteria such asStaphylococcus aureus, Bacillus subtilis, andMicrococcus luteusas well as methicillin-resistantStaphylococcus aureus Interestingly, electrophysiological experiments showed that BmKDfsin4,like scorpion potassium channel neurotoxins, could effectively inhibit Kv1.1, Kv1.2, and Kv1.3 channel currents, and its IC50value for the Kv1.3 channel was 510.2 nm Similar to the structure-function relationships of classical scorpion potassium channel-blocking toxins, basic residues (Lys-13 and Arg-19) of BmKDfsin4 play critical roles in peptide-Kv1.3 channel interactions. Furthermore, mutagenesis and electrophysiological experiments demonstrated that the channel extracellular pore region is the binding site of BmKDfsin4, indicating that BmKDfsin4adopts the same mechanism for blocking potassium channel currents as classical scorpion toxins. Taken together, our work identifies scorpion BmKDfsin4 as the first invertebrate defensin to block potassium channels. These findings not only demonstrate that defensins from invertebrate animals are a novel type of potassium channel blockers but also provide evidence of a functional link between defensins and neurotoxins. PMID:26817841

  1. Trends in bacterial resistance in a tertiary university hospital over one decade

    OpenAIRE

    Fernando Góngora Rubio; Viviane Decicera Colombo Oliveira; Regina Mara Custódio Rangel; Mara Corrêa Lelles Nogueira; Margarete Teresa Gottardo Almeida

    2013-01-01

    The objective of this study was to investigate bacterial resistance trends, infection sites and the relationship between resistance and admittance to the intensive care unit (ICU). A total of 53,316 bacteria identified between 1999 and 2008 were evaluated. Multidrug resistance was characterized when gram-negative bacilli (GNB) presented resistance to two or more classes of antibiotics. Gram-positive cocci (CPC) were assessed for resistance to penicillin, oxacillin and vancomycin. GNB were the...

  2. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa.

    Science.gov (United States)

    Salzman, Nita H; Underwood, Mark A; Bevins, Charles L

    2007-04-01

    Mucosal surfaces are colonized by a diverse and dynamic microbiota. Much investigation has focused on bacterial colonization of the intestine, home to the vast majority of this microbiota. Experimental evidence has highlighted that these colonizing microbes are essential to host development and homeostasis, but less is known about host factors that may regulate the composition of this ecosystem. While evidence shows that IgA has a role in shaping this microbiota, it is likely that effector molecules of the innate immune system are also involved. One hypothesis is that gene-encoded antimicrobial peptides, key elements of innate immunity throughout nature, have an essential role in this regulation. These effector molecules characteristically have activity against a broad spectrum of bacteria and other microbes. At mucosal surfaces, antimicrobial peptides may affect the numbers and/or composition of the colonizing microbiota. In humans and other mammals, defensins are a predominant class of antimicrobial peptides. In the small intestine, Paneth cells (specialized secretory epithelial cells) produce high quantities of defensins and several other antibiotic peptides and proteins. Data from murine models indicate that Paneth cell defensins play a pivotal role in defense from food and water-borne pathogens in the intestinal lumen. Recent studies in humans provide evidence that reduced Paneth cell defensin expression may be a key pathogenic factor in ileal Crohn's disease, a subgroup of inflammatory bowel disease (IBD), and changes in the colonizing microbiota may mediate this pathogenic mechanism. It is also possible that low levels of Paneth cell defensins, characteristic of normal intestinal development, may predispose premature neonates to necrotizing enterocolitis (NEC) through similar close links with the composition of the intestinal microbiota. Future studies to further define mechanisms by which defensins and other host factors regulate the composition of the

  3. Tagging RAPD markers to a bacterial blight resistance gene in rice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The somaclonal mutant HX_3 has shown a broad spectrum resistance to bacterial blight. To study the inheritance of the bacterial blight resistance in HX_3, a cross was made between HX_3 and a susceptible cultivar Longtefu A. The F2 population of 418 plants was inoculated with Chinese bacterial blight strain Zhe 173 (pathotype Ⅳ ). Results showed that the F2 progenies segregated in a ratio of 3R∶ 1S (324 resistant plants and 94 susceptible plants). From the plants tested, 114 individuals (86 resistant and 28 susceptible) were chosen randomly for RAPD analysis. Twelve highly resistant and 12 highly susceptible plants were selected to form a resistant pool and a susceptible pool, respectively.

  4. Induction of Human β-Defensin 2 by the Probiotic Escherichia coli Nissle 1917 Is Mediated through Flagellin▿

    OpenAIRE

    Schlee, Miriam; Wehkamp, Jan; Altenhoefer, Artur; Oelschlaeger, Tobias A; Stange, Eduard F; Fellermann, Klaus

    2007-01-01

    Human β-defensin 2 (hBD-2) is an inducible antimicrobial peptide synthesized by the epithelium to counteract bacterial adherence and invasion. Proinflammatory cytokines, as well as certain bacterial strains, have been identified as potent endogenous inducers. Recently, we have found that hBD-2 induction by probiotic Escherichia coli Nissle 1917 was mediated through NF-κB- and AP-1-dependent pathways. The aim of the present study was to identify the responsible bacterial factor. E. coli Nissle...

  5. Development of bacterial resistance to biocides and antimicrobial agents as a consequence of biocide usage

    DEFF Research Database (Denmark)

    Seier-Petersen, Maria Amalie

    bacterial isolates become less susceptible to biocides used in their environment and if this can lead to spread of antimicrobial resistant clones due to co-selection. Furthermore, the objective was to examine if exposure to subinhibitory concentrations of biocides induce development of resistance to...... prone to adapt to humans. Residues or inaccurate use of biocides may lead to bacterial exposure to sub-inhibitory concentrations. The bacterial response to such exposure is however unclear. It has been suggested that the SOS response contribute to antimicrobial resistance development in bacteria by...... action, especially at sub-inhibitory concentrations, and the bacterial response to such exposure, is relatively limited. The increasing use of biocides has within recent years lead to concerns about development and emergence of biocide resistant microorganisms that might make the task of eradication of...

  6. Phenotypic resistance and the dynamics of bacterial escape from phage control

    DEFF Research Database (Denmark)

    Bull, James J.; Vegge, Christina Skovgaard; Schmerer, Matthew;

    2014-01-01

    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages...

  7. Application of hordothionins and cecropin B for engineering bacterial disease resistance into plants.

    OpenAIRE

    Florack, D.

    1994-01-01

    Bacterial diseases can cause a drastic decrease of yield in certain crops. Breeding for bacterial disease resistance therefore is of utmost necessity. Up to now, traditional plant breeding was the only method to reach this goal. Recent developments in genetic engineering technology however provide novel ways for the production of disease resistant plants. This thesis describes the results of two research projects that have been undertaken to investigate the potential of such a novel way, name...

  8. The First Global Forum on Bacterial Infections calls for urgent action to contain antibiotic resistance.

    Science.gov (United States)

    Vlieghe, Erika

    2012-02-01

    The 1st Global Forum on Bacterial Infections: Balancing Treatment Access and Antibiotic Resistance was organized by the Center for Disease Dynamics, Economics and Policy and the Public Health Foundation of India for researchers, policymakers, clinicians and public health program managers dealing with the problems of bacterial infection and antibiotic resistance in low- and middle-income countries. This meeting was the first gathering of its kind to be held in a developing country. PMID:22339188

  9. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    OpenAIRE

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2011-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains wi...

  10. Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides: A Worrying Phenomenon

    OpenAIRE

    Fleitas, Osmel; Franco, Octávio L.

    2016-01-01

    Bacterial resistance to conventional antibiotics has reached alarming levels, threatening to return to the pre-antibiotic era. Therefore, the search for new antimicrobial compounds that overcome the resistance phenomenon has become a priority. Antimicrobial peptides (AMPs) appear as one of the most promising antibiotic medicines. However, in recent years several AMP-resistance mechanisms have been described. Moreover, the AMP-resistance phenomenon has become more complex due to its associatio...

  11. Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms

    OpenAIRE

    Zhang, Quan-Guo; Buckling, Angus

    2012-01-01

    The evolution of multi-antibiotic resistance in bacterial pathogens, often resulting from de novo mutations, is creating a public health crisis. Phages show promise for combating antibiotic-resistant bacteria, the efficacy of which, however, may also be limited by resistance evolution. Here, we suggest that phages may be used as supplements to antibiotics in treating initially sensitive bacteria to prevent resistance evolution, as phages are unaffected by most antibiotics and there should be ...

  12. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.

    Science.gov (United States)

    Belcourt, M F; Penketh, P G; Hodnick, W F; Johnson, D A; Sherman, D H; Rockwell, S; Sartorelli, A C

    1999-08-31

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  13. Effect of Vibration on Bacterial Growth and Antibiotic Resistance

    Science.gov (United States)

    Juergensmeyer, Elizabeth A.; Juergensmeyer, Margaret A.

    2004-01-01

    The purpose of this research grant was to provide a fundamental, systematic investigation of the effects of oscillatory acceleration on bacterial proliferation and their responses to antibiotics in a liquid medium.

  14. ß-defensin-2 in breast milk displays a broad antimicrobial activity against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Joanna Baricelli

    2015-02-01

    Full Text Available OBJECTIVE: To describe the antimicrobial activity of ß-defensin-2 produced in the mammary gland and secreted in human breast milk. METHODS: The peptide production was performed by DNA cloning. ß-defensin-2 levels were quantified in 61 colostrum samples and 39 mature milk samples from healthy donors, by an indirect enzyme-linked immunosorbent assay (ELISA. Using halo inhibition assay, this study assessed activity against seven clinical isolates from diarrheal feces of children between 0 and 2 years of age. The activity of ß-defensin-2 against three opportunistic pathogens that can cause nosocomial infections was determined by microdilution test. RESULTS: The peptide levels were higher in colostrum (n = 61 than in mature milk samples (n = 39, as follows: median and range, 8.52 (2.6-16.3 µg/ml versus 0.97 (0.22-3.78, p < 0.0001; Mann-Whitney test. The recombinant peptide obtained showed high antimicrobial activity against a broad range of pathogenic bacteria. Its antibacterial activity was demonstrated in a disk containing between 1-4 µg, which produced inhibition zones ranging from 18 to 30 mm against three isolates of Salmonella spp. and four of E. coli. ß-defensin-2 showed minimum inhibitory concentrations (MICs of 0.25 µg/mL and 0.5 µg/mL for S. marcescen and P. aeruginosa, respectively, while a higher MIC (4 µg/mL was obtained against an isolated of multidrug-resistant strain of A. baumannii. CONCLUSIONS: To the authors' knowledge, this study is the first to report ß-defensin-2 levels in Latin American women. The production and the activity of ß-defensin-2 in breast milk prove its importance as a defense molecule for intestinal health in pediatric patients.

  15. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts

    International Nuclear Information System (INIS)

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water. - Highlights: • The halogenated N-DBPs could induce bacterial antibiotic resistance. • Both individual and multiple resistances could be induced. • Efflux mechanism played an important role in the induced antibiotic resistance. • The halogenated N-DBPs induced bacterial antibiotic resistance via mutagenesis. • Effects of N-DBPs on antibiotic resistance may be universal to waterborne pathogens. - Halogenated N-DBPs could increase antibiotic resistance, even multidrug resistance via mutagenesis, contributing to the enrichment of antibiotic resistant bacteria in drinking water

  16. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  17. Response to selection for bacterial cold water disease resistance in rainbow trout

    Science.gov (United States)

    Previous studies indicate that resistance to experimental bacterial cold water disease (BCWD) challenge is heritable and thus may be improved through selective breeding. Our objective was to estimate response after one generation of genetic selection for resistance to BCWD in a pedigreed population ...

  18. Towards allele mining of bacterial wilt disease resistance gene in tomato

    International Nuclear Information System (INIS)

    Tomato (Lycopersicon esculentum Mill.) is the most important vegetable commodity of the Philippines. Bacterial wilt caused by Ralstonia solanacearum is one serious constraint in tomato production particularly during off-season planting. A major locus derived from H7996 that confers resistance to bacterial wilt has been mapped in the tomato genome. To validate the biological function of the resistance locus and generate multiple allele -mimics-, targeted mutation was induced in tomato using gamma ray and ethyl methane sulfonate (EMS) mutagens. Suitable mutagen treatment was established by evaluating a wide range of mutagen doses/concentrations for a) percent seed germination, b) reduction in plant height, and c) loss of resistance. Six hundred Gy and 1.0% EMS were identified to generate large M1 families of H7996. From 10,000 initial seeds treated with either gamma ray or EMS, a total of 3,663 M1 plants were generated. M2 seeds were harvested from all surviving M1 plants. Several DNA markers have been resourced and are being developed specific to the bacterial wilt resistant gene. In the large M2 population, of H7996, both the phenotypic manifestation of bacterial wilt susceptibility and nucleotide changes in the resistance locus will be evaluated. Large M3 families for the different allele series of the bacterial wilt resistance gene will be established for future high throughput TILLING (Targeting Induced Local Lesions in Genomes) analysis in the gene region

  19. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine;

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of...... studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild...

  20. Use of radioisotopes in studying factors responsible for alfalfa resistance to bacterial wiltxng

    International Nuclear Information System (INIS)

    Studies are summarized dealing with possible causes of vascular dysfunction and resistance of alfalfa to bacterial wilting caused by Corynebacterium insidiosum (McCull.) H.L. Jens from the physiological and biochemical points of view. Using 32P, 35S, 54Mn, 45Ca, 65Zn, and 86Rb the uptake, distribution, translocation, and metabolism of these elements in plants with a different resistance against diseases were investigated. The possible use is discussed of 86Rb as a tracer of potassium. The results suggest that the resistance of alfalfa to bacterial wilting is probably determined by several factors. (author)

  1. Different Lipopolysaccharide Branched-Chain Amino Acids Modulate Porcine Intestinal Endogenous β-Defensin Expression through the Sirt1/ERK/90RSK Pathway.

    Science.gov (United States)

    Ren, Man; Zhang, Shihai; Liu, Xutong; Li, Shenghe; Mao, Xiangbing; Zeng, Xiangfang; Qiao, Shiyan

    2016-05-01

    Nutritional induction of endogenous antimicrobial peptide expression is considered a promising approach to inhibit the outgrowth and infection of pathogenic microbes in mammals. The present study investigated possible regulation of porcine epithelial β-defensins in response to branched-chain amino acids (BCAA) in vivo and in vitro. BCAA treatment increased relative mRNA expression of jejunal and ileal β-defensins in weaned piglets. In IPEC-J2 cells, isoleucine, leucine, and valine could stimulate β-defensin expression, possibly associated with stimulation of ERK1/2 phosphorylation. Inhibition of Sirt1 and ERK completely blocked the activation of ERK and 90RSK protein by isoleucine, simultaneously decreasing defensin expression. BCAA stimulate expression of porcine intestinal epithelial β-defensins with isoleucine the most, potent possibly through activation of the Sirt1/ERK/90RSK signaling pathway. The β-defensins regulation of lipopolysaccharide was related with an ERK-independent pathway. BCAA modulation of endogenous defensin might be a promising approach to enhance disease resistance and intestinal health in young animals and children. PMID:27083206

  2. An analogy between the evolution of drug resistance in bacterial communities and malignant tissues

    OpenAIRE

    Lambert, Guillaume; Estévez-Salmeron, Luis; Oh, Steve; Liao, David; Emerson, Beverly M.; Tlsty, Thea D.; Austin, Robert H.

    2011-01-01

    Cancer cells rapidly evolve drug resistance through somatic evolution and, in order to continue growth in the metastatic phase, violate the organism-wide consensus of regulated growth and beneficial communal interactions. We suggest that there is a fundamental mechanistic connection between the rapid evolution of resistance to chemotherapy in cellular communities within malignant tissues and the rapid evolution of antibiotic resistance in bacterial communities. We propose that this evolution ...

  3. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections

    OpenAIRE

    Labby, Kristin J.; Garneau-Tsodikova, Sylvie

    2013-01-01

    Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new...

  4. Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response

    OpenAIRE

    Daşbaşı, Bahatdin; Öztürk, İlhan

    2016-01-01

    Resistance of developed bacteria to antibiotic treatment is a very important issue, because introduction of any new antibiotic is after a little while followed by the formation of resistant bacterial isolates in the clinic. The significant increase in clinical resistance to antibiotics is a troubling situation especially in nosocomial infections, where already defenseless patients can be unsuccessful to respond to treatment, causing even greater health issue. Nosocomial infections can be iden...

  5. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance

    OpenAIRE

    Speer, B S; Shoemaker, N. B.; Salyers, A A

    1992-01-01

    Tetracycline has been a widely used antibiotic because of its low toxicity and broad spectrum of activity. However, its clinical usefulness has been declining because of the appearance of an increasing number of tetracycline-resistant isolates of clinically important bacteria. Two types of resistance mechanisms predominate: tetracycline efflux and ribosomal protection. A third mechanism of resistance, tetracycline modification, has been identified, but its clinical relevance is still unclear....

  6. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment

    OpenAIRE

    Leilei Qu; Qiuhui Pan; Xubin Gao; Mingfeng He

    2016-01-01

    During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospit...

  7. Diversity of Dominant Bacterial Taxa in Activated Sludge Promotes Functional Resistance following Toxic Shock Loading

    KAUST Repository

    Saikaly, Pascal

    2010-12-14

    Examining the relationship between biodiversity and functional stability (resistance and resilience) of activated sludge bacterial communities following disturbance is an important first step towards developing strategies for the design of robust biological wastewater treatment systems. This study investigates the relationship between functional resistance and biodiversity of dominant bacterial taxa by subjecting activated sludge samples, with different levels of biodiversity, to toxic shock loading with cupric sulfate (Cu[II]), 3,5-dichlorophenol (3,5-DCP), or 4-nitrophenol (4-NP). Respirometric batch experiments were performed to determine the functional resistance of activated sludge bacterial community to the three toxicants. Functional resistance was estimated as the 30 min IC50 or the concentration of toxicant that results in a 50% reduction in oxygen utilization rate compared to a referential state represented by a control receiving no toxicant. Biodiversity of dominant bacterial taxa was assessed using polymerase chain reaction-terminal restriction fragment length polymorphism (PCR-T-RFLP) targeting the 16S ribosomal RNA (16S rRNA) gene. Statistical analysis of 30 min IC50 values and PCR-T-RFLP data showed a significant positive correlation (P<0.05) between functional resistance and microbial diversity for each of the three toxicants tested. To our knowledge, this is the first study showing a positive correlation between biodiversity of dominant bacterial taxa in activated sludge and functional resistance. In this system, activated sludge bacterial communities with higher biodiversity are functionally more resistant to disturbance caused by toxic shock loading. © 2010 Springer Science+Business Media, LLC.

  8. Production of bacterial leaf blight resistant mulberry through tissue culture and induced mutation

    International Nuclear Information System (INIS)

    Mon Noi multiple shoots obtained from axillary buds in vitro cultures were induced mutation by irradiating with gamma rays at the optimum dose (LD 50) of 40 Gy. In vitro inoculation technique for bacterial blight disease of mulberry caused by Pseudomonas syringae p v. mori was done by leaf-rub method, using bacterial suspension at 107 cells per milliliter which was the lowest concentration to cause highest disease severity. A total of 8357 Mon Noi gamma irradiated plantlets in 7-11 generations were screened for bacterial blight disease resistance. Eighteen plants survived and free from bacterial contamination. These surviving plants were in vitro rapid multiplication then screened for disease resistance in greenhouse. At present, only 4 lines from 18 plants are selected

  9. [Influence of chronic lead exposure on resistence to bacterial infection (author's transl)].

    Science.gov (United States)

    Ewers, U; Weisser, L; Wegner, A

    1980-01-01

    Suppression by lead of resistance to bacterial or viral infections has been reported by several authors. We have studied, if a decrease of resistance to bacterial infection could be evaluated at blood lead concentrations (PbB), which correspond to the upper levels of environmental or occupational lead exposure regarded as tolerable (PbB = 35 resp. 60 microgram/100 ml). NMRI mice were chronically exposed to lead by feeding with lead acetate containing diets and given a challenge with Salmonella typhimurium. No increase of susceptibility to bacterial infection could be demonstrated at PbB 100 microgram/100 g, however, an increase of lethality and a decrease of 50% survival times could be observed after bacterial infection. PMID:6999813

  10. Identification, Characterization and Antibiotic Resistance of Bacterial Isolates Obtained from Waterpipe Device Hoses

    Directory of Open Access Journals (Sweden)

    Majed M. Masadeh

    2015-05-01

    Full Text Available The general lack of knowledge about the health effects of waterpipe smoking is among the reasons for its global spread. In this study, bacterial contamination of waterpipe hoses was investigated. Twenty hoses were collected from waterpipe cafés and screened for bacterial pathogens using standard culture and isolation techniques. Additionally, resistance of isolated bacteria to common antibiotics was determined by identifying the minimum inhibitory concentration (MIC of each isolate. Forty eight bacterial isolates were detected. Isolates included both Gram-positive and Gram-negative pathogens from species that included Micrococcus (12, Corynebacterium (13 and Bacillus (9. In addition, some of the detected pathogens were found to be resistant to aztreonam (79%, cefixime (79%, norfloxacin, amoxicillin (47%, clarithromycin (46% and enrofloxacin (38%. In conclusion, the hose of the waterpipe device is a good environment for the growth of bacterial pathogens, which can then be transmitted to users.

  11. Identification, characterization and antibiotic resistance of bacterial isolates obtained from waterpipe device hoses.

    Science.gov (United States)

    Masadeh, Majed M; Hussein, Emad I; Alzoubi, Karem H; Khabour, Omar; Shakhatreh, Muhamad Ali K; Gharaibeh, Mahmoud

    2015-05-01

    The general lack of knowledge about the health effects of waterpipe smoking is among the reasons for its global spread. In this study, bacterial contamination of waterpipe hoses was investigated. Twenty hoses were collected from waterpipe cafés and screened for bacterial pathogens using standard culture and isolation techniques. Additionally, resistance of isolated bacteria to common antibiotics was determined by identifying the minimum inhibitory concentration (MIC) of each isolate. Forty eight bacterial isolates were detected. Isolates included both Gram-positive and Gram-negative pathogens from species that included Micrococcus (12), Corynebacterium (13) and Bacillus (9). In addition, some of the detected pathogens were found to be resistant to aztreonam (79%), cefixime (79%), norfloxacin, amoxicillin (47%), clarithromycin (46%) and enrofloxacin (38%). In conclusion, the hose of the waterpipe device is a good environment for the growth of bacterial pathogens, which can then be transmitted to users. PMID:25985311

  12. Phenotypic Resistance and the Dynamics of Bacterial Escape from Phage Control

    OpenAIRE

    Bull, James J; Vegge, Christina Skovgaard; Schmerer, Matthew; Chaudhry, Waqas Nasir; Levin, Bruce R.

    2014-01-01

    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages but still attain high densities in their presence – because bacteria enter a transient state of reduced adsorption. Importantly, these mechanisms may be cryptic and inapparent prior to the addition of ...

  13. Antagonistic Activities of Purple Non-sulfur Bacterial Extracts Against Antibiotic Resistant Vibrio sp.

    OpenAIRE

    Chandrasekaran, R.; Ashok Kumar, G. V.

    2011-01-01

    Solvent extracts of native purple non-sulfur bacterial (PNSB) isolates from the effluents of brackish shrimp culture ponds, near Nagapattinam coast (South India) were evaluated for antibacterial activity by the disc diffusion method. Best results were shown by the chloroform extracts against oxytetracycline resistant Vibrio harveyi and Vibrio fischerii. Among the purple non-sulfur bacterial isolates, Rhodobacter sphaeroides, showed maximum antagonistic activity. The findings suggest that the...

  14. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate

    OpenAIRE

    Chen, Lan; Walker, Deborah; Sun, Binyuan; Hu, Yanan; Walker, Suzanne; Kahne, Daniel

    2003-01-01

    Bacterial transglycosylases are enzymes that couple the disaccharide subunits of peptidoglycan to form long carbohydrate chains. These enzymes are the target of the pentasaccharide antibiotic moenomycin as well as the proposed target of certain glycopeptides that overcome vancomycin resistance. Because bacterial transglycosylases are difficult enzymes to study, it has not previously been possible to evaluate how moenomycin inhibits them or to determine whether glycopeptide analogues directly ...

  15. STUDY OF BACTERIAL RESISTANCE TO ORGANOPHOSPHOROUS PESTICIDES IN IRAN

    OpenAIRE

    A. Nazarian and M. Mousawi

    2005-01-01

    The broadness application of organophosphorus compounds has abounded the number of its polluted areas. Bioremediation has widely focused on insitu bacterial degradation of organophosphorus residues in the world. Therefore, in this research six numbers of samples from two different sources, soil and water randomly were isolated using different organophosphorus pesticides containing mineral solution without supplementation. More than 100 isolated strains were selected according to their simulta...

  16. Absence of bacterial resistance to medical-grade manuka honey

    OpenAIRE

    Cooper, R A; Jenkins, L.; Henriques, A. F. M.; Duggan, R. S.; Burton, N. F.

    2010-01-01

    Abstract Clinical use of honey in the topical treatment of wounds has increased in Europe and North America since licensed wound care products became available in 2004 and 2007, respectively. Honey-resistant bacteria have not been isolated from wounds, but there is a need to investigate whether honey has the potential to select for honey resistance. Two cultures of bacteria from reference collections (Staphylococcus aureus NCTC 10017 and Pseudomonas aeruginosa ATCC 27853) and four ...

  17. Molecular mechanisms involved in bacterial speck disease resistance of tomato

    OpenAIRE

    Gu, Y.-Q.

    1998-01-01

    An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or nematodes. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. The future challenge is to understand how R gene products specifically perceive defence-eliciting signals from the pathogen and transduce those signals to pathways that l...

  18. Wear and corrosion resistance of anti-bacterial Ti-Cu-N coatings on titanium implants

    Science.gov (United States)

    Wu, Haibo; Zhang, Xiangyu; He, Xiaojing; Li, Meng; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2014-10-01

    Anti-bacterial coatings with excellent wear and corrosion resistance play a vital role in ensuring the durability of implant materials in constant use. To this end, a novel anti-bacterial surface modification by combining magnetron sputtering with plasma nitriding was adopted in this paper to fabricate Cu-bearing Ti-based nitrides coatings (Ti-Cu-N) on titanium surface. The anti-bacterial properties of Ti-Cu-N coatings were evaluated. The microstructures and composition of the coatings were investigated by using FESEM, EDS, GDOES, XRD. The wear and corrosion resistance of the coatings were investigated. The results confirmed that an anti-bacterial Ti-Cu-N coating with a thickness of 6 μm and good adhesive strength to substrate was successfully achieved on titanium surface. As implied by XRD, the coatings were consisted of TiN, Ti2N, TiN0.3 phases. The surface micro-hardness and wear resistance of Ti-Cu-N coatings were significantly enhanced after plasma nitriding treatment. The analysis of potentiodynamic polarization curves and Nyquist plots obtained in 0.9 wt.% NaCl solution suggested that the Ti-Cu-N coatings also exhibited an excellent corrosion resistance. As mentioned above, it can be concluded that the duplex-treatment reported here was a versatile approach to develop anti-bacterial Ti-Cu-N coatings with excellent comprehensive properties on titanium implants.

  19. Trends in bacterial resistance in a tertiary university hospital over one decade

    Directory of Open Access Journals (Sweden)

    Fernando Góngora Rubio

    2013-08-01

    Full Text Available The objective of this study was to investigate bacterial resistance trends, infection sites and the relationship between resistance and admittance to the intensive care unit (ICU. A total of 53,316 bacteria identified between 1999 and 2008 were evaluated. Multidrug resistance was characterized when gram-negative bacilli (GNB presented resistance to two or more classes of antibiotics. Gram-positive cocci (CPC were assessed for resistance to penicillin, oxacillin and vancomycin. GNB were the most common (66.1% isolate. There was a 3.7-fold overall increase in multidrug resistant GNB over the study period; Acinetobacter baumanii and Staphylococcus aureus were the most prevalent. Highest increases were recorded for Kleb siella pneumoniae (14.6-fold and enterococci (73-fold. The resistance rates for GNB and GPC were 36% and 51.7%, respectively. Most multidrug resistant GNB and GPC were recovered from ICU patients (p-value < 0.001. vancomycin-resistant enterococci were isolated during this decade with an increase of 18.7% by 2008. these data confirm the worldwide trend in multidrug bacterial resistance.

  20. Trends in bacterial resistance in a tertiary university hospital over one decade.

    Science.gov (United States)

    Rubio, Fernando Góngora; Oliveira, Viviane Decicera Colombo; Rangel, Regina Mara Custódio; Nogueira, Mara Corrêa Lelles; Almeida, Margarete Teresa Gottardo

    2013-01-01

    The objective of this study was to investigate bacterial resistance trends, infection sites and the relationship between resistance and admittance to the intensive care unit (ICU). A total of 53,316 bacteria identified between 1999 and 2008 were evaluated. Multidrug resistance was characterized when gram-negative bacilli (GNB) presented resistance to two or more classes of antibiotics. Gram-positive cocci (CPC) were assessed for resistance to penicillin, oxacillin and vancomycin. GNB were the most common (66.1%) isolate. There was a 3.7-fold overall increase in multidrug resistant GNB over the study period; Acinetobacter baumanii and Staphylococcus aureus were the most prevalent. Highest increases were recorded for Klebsiella pneumoniae (14.6-fold) and enterococci (73-fold). The resistance rates for GNB and GPC were 36% and 51.7%, respectively. Most multidrug resistant GNB and GPC were recovered from ICU patients (p-value<0.001). Vancomycin-resistant enterococci were isolated during this decade with an increase of 18.7% by 2008. These data confirm the worldwide trend in multidrug bacterial resistance. PMID:23797009

  1. Antibiotic-resistant gram-negative bacterial infections in patients with cancer.

    Science.gov (United States)

    Perez, Federico; Adachi, Javier; Bonomo, Robert A

    2014-11-15

    Patients with cancer are at high risk for infections caused by antibiotic resistant gram-negative bacteria. In this review, we summarize trends among the major pathogens and clinical syndromes associated with antibiotic resistant gram-negative bacterial infection in patients with malignancy, with special attention to carbapenem and expanded-spectrum β-lactam resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia--all major threats to our cancer patients. Optimal therapy for these antibiotic-resistant pathogens still remains to be determined. PMID:25352627

  2. PREVALENCE OF BACTERIAL RESISTANCE IN HOSPITALIZED CIRRHOTIC PATIENTS IN SOUTHERN BRAZIL: A NEW CHALLENGE

    Science.gov (United States)

    COSTABEBER, Ane Micheli; de MATTOS, Angelo Alves; SUKIENNIK, Teresa Cristina Teixeira

    2016-01-01

    Background & Aims: An increased frequency of infections by multiresistant bacteria has been described in hospitalized patients. The aim of this study was to evaluate the bacterial resistance profile in cirrhotic patients. Methods: This is a retrospective observational study. We assessed the antimicrobial susceptibility of 5,839 bacterial isolates from patients with and without cirrhosis. Regarding the multidrug resistance, we evaluated 4,505 bacterial isolates from 2,180 patients. Results: Two hundred and fifty-one patients had cirrhosis (mean age 57.6 ± 11 years; 61.8% were male, 47.8% of cases associated with hepatitis C virus). Of the isolates of patients with and without cirrhosis, 174/464 (37.5%) and 1,783/4,041 (44.1%) were multiresistant, respectively (p = 0.007). E. coli was the most common multiresistant bacteria in both groups. Approximately 20% of E. coli and Klebsiella sp. isolates were ESBL-producers and 44% of S. aureus isolates were methicillin-resistant in cirrhotic patients. In cirrhotic patients admitted to the emergency department, hospital ward, and intensive care unit, 28.3%, 50% and 40% had multiresistant isolates, respectively. In patients with and without cirrhosis, 36.2% and 33.5% of isolates were resistant to third-generation cephalosporins, respectively. Conclusions: The empirical treatment of infections in hospitalized patients using broad-spectrum antibiotics should consider the observed pattern of bacterial resistance. PMID:27253738

  3. Interferon in resistance to bacterial and protozoan infections

    Science.gov (United States)

    Sonnenfeld, Gerald; Gould, Cheryl L.; Kierszenbaum, Felipe; Degee, Antonie L. W.; Mansfield, John M.

    1986-01-01

    The effects of genetic differences in mouse strains on the modulation of protozoan infections by interferon (IFN) were investigated. In one set of experiments, three different strains of mice were injected with T. cruzi, and their sera were assayed at five time intervals for IFN titer. A greater quantity of IFN was produced by mouse strains that were susceptible to T. cruzi infection than by the more resistant strain. In another set of experiments, spleen cell cultures from inbred strains of mice were challenged with an antigen made from T.b. rhodesiense. The cells from mice resistant to infection, produced greater amounts of IFN-gamma than did cells from the susceptible mice. In a third set of experiments, it was found that mice injected with T.b. rhodesiense before being infected with a diabetogenic virus (EMC-D) were resistant to the effects of the virus and did not produce virus-specific antibody.

  4. Towards an understanding of the genetics of bacterial metal resistance.

    Science.gov (United States)

    Mergeay, M

    1991-01-01

    Many bacteria show great promise for use in metal recovery. However, the genetics of metal-leaching, accumulation-resistance, and oxidation/reduction mechanisms of these bacteria is still an area of research in its infancy. The introduction of such genes into bacteria of economic importance would have application in biomining and environmental bioremediation. PMID:1366923

  5. The Impact of Resource Availability on Bacterial Resistance to Phages in Soil

    OpenAIRE

    Pedro Gómez; Jonathan Bennie; Gaston, Kevin J; Angus Buckling

    2015-01-01

    Resource availability can affect the coevolutionary dynamics between host and parasites, shaping communities and hence ecosystem function. A key finding from theoretical and in vitro studies is that host resistance evolves to greater levels with increased resources, but the relevance to natural communities is less clear. We took two complementary approaches to investigate the effect of resource availability on the evolution of bacterial resistance to phages in soil. First, we measured the res...

  6. Inducible Resistance of Fish Bacterial Pathogens to the Antimicrobial Peptide Cecropin B▿

    OpenAIRE

    Sallum, Ulysses W.; Chen, Thomas T

    2008-01-01

    Cecropin B is a cationic antimicrobial peptide originally isolated from the diapausing pupae of the giant silk moth, Hylphora cecropia. Cecropin B elicits its antimicrobial effects through disruption of the anionic cell membranes of gram-negative bacteria. Previous work by our laboratory demonstrated that a constitutively expressed cecropin B transgene conferred enhanced resistance to bacterial infection in medaka. The development of antibiotic resistance by pathogenic bacteria is a growing p...

  7. Insights into the amplification of bacterial resistance to erythromycin in activated sludge.

    Science.gov (United States)

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2015-10-01

    Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention. PMID:25957255

  8. Who Possesses Drug Resistance Genes in the Aquatic Environment? : Sulfamethoxazole (SMX) Resistance Genes among the Bacterial Community in Water Environment of Metro-Manila, Philippines

    OpenAIRE

    Satoru eSuzuki; Mitsuko eOgo; Miller, Todd W.; Akiko eShimizu; Hideshige eTakada; Maria Auxilia eSiringan

    2013-01-01

    Recent evidence has shown that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in natural environments, including sites considered pristine. To understand the origin of ARGs and their dynamics, we must first define their actual presence in the natural bacterial assemblage. Here we found varying distribution profiles of sul genes in “colony forming bacterial assemblages” and “natural bacterial assemblages.” Our monitoring for antibiotic contamination r...

  9. Resistance of Aerosolized Bacterial Viruses to Relative Humidity and Temperature.

    Science.gov (United States)

    Verreault, Daniel; Marcoux-Voiselle, Mélissa; Turgeon, Nathalie; Moineau, Sylvain; Duchaine, Caroline

    2015-10-01

    The use of aerosolized bacteriophages as surrogates for hazardous viruses might simplify and accelerate the discovery of links between viral components and their persistence in the airborne state under diverse environmental conditions. In this study, four structurally distinct lytic phages, MS2 (single-stranded RNA [ssRNA]), ϕ6 (double-stranded RNA [dsRNA]), ϕX174 (single-stranded DNA [ssDNA]), and PR772 (double-stranded DNA [dsDNA]), were nebulized into a rotating chamber and exposed to various levels of relative humidity (RH) and temperature as well as to germicidal UV radiation. The aerosolized viral particles were allowed to remain airborne for up to 14 h before being sampled for analysis by plaque assays and quantitative PCRs. Phages ϕ6 and MS2 were the most resistant at low levels of relative humidity, while ϕX174 was more resistant at 80% RH. Phage ϕ6 lost its infectivity immediately after exposure to 30°C and 80% RH. The infectivity of all tested phages rapidly declined as a function of the exposure time to UVC radiation, phage MS2 being the most resistant. Taken altogether, our data indicate that these aerosolized phages behave differently under various environmental conditions and highlight the necessity of carefully selecting viral simulants in bioaerosol studies. PMID:26253683

  10. Antibiotic exposure can induce various bacterial virulence phenotypes in multidrug-resistant Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Salmonella is one of the most prevalent bacterial foodborne diseases in the United States and causes an estimated 1 million human cases every year. Multidrug-resistant (MDR) Salmonella has emerged as a public health issue as it has been associated with increased morbidity in humans and mortality in...

  11. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural a

  12. Multidrug-Resistant Bacterial Donor-Derived Infections in Solid Organ Transplantation.

    Science.gov (United States)

    Lewis, Jessica D; Sifri, Costi D

    2016-06-01

    Although rare, donor-derived infections (DDIs) caused by multidrug-resistant (MDR) bacteria can have devastating consequences for organ transplant recipients. Recognition of MDR bacterial DDIs can be challenging, as MDR bacteria are prevalent in most hospitals and distinguishing their transmission through transplantation from other, more typical routes of acquisition are difficult. New technologies such as whole genome sequencing have recently proven to be a powerful advance in the investigation of MDR bacterial DDIs. Once recognized, the optimal treatment of MDR bacterial DDIs is not clear. Herein, we review the clinical manifestations, outcomes, and management of MDR bacterial DDIs, and identify areas of uncertainty toward which the transplant community should direct further research efforts. PMID:27115701

  13. Epidemiology and antibiotic resistance of bacterial meningitis in Dapaong, northern Togo

    Institute of Scientific and Technical Information of China (English)

    Simplice D Karou; Abago Balaka; Mitiname Bamok; Damhan Tchelougou; Malki Assih; Kokou Anani; Kodjo Agbonoko; Jacques Simpore; Comlan de Souza

    2012-01-01

    Objective:To assess the seasonality of the bacterial meningitis and the antibiotic resistance of incriminated bacteria over the last three years in the northern Togo. Methods: From January 2007 to January 2010, 533 cerebrospinal fluids (CSF) samples were collected from patients suspected of meningitis in the Regional Hospital of Dapaong (northern Togo). After microscopic examination, samples were cultured for bacterial identification and antibiotic susceptibility. Results:The study included 533 patients (306 male and 227 female) aged from 1 day to 55 years [average age (13.00±2.07) years]. Bacterial isolation and identification were attempted for 254/533 (47.65%) samples. The bacterial species identified were:Neisseria meningitidis A (N. meningitidis A) (58.27%), Neisseria meningitidis W135 (N. meningitidis W135) (7.09%), Streptococcus pneumoniae (S. pneumoniae) (26.77%), Haemophilus influenza B (H. influenza B) (6.30%) and Enterobacteriaceae (1.57%). The results indicated that bacterial meningitis occur from November to May with a peak in February for H. influenzae and S. pneumoniae and March for Neisseriaceae. The distribution of positive CSF with regards to the age showed that subjects between 6 and 12 years followed by subjects of 0 to 5 years were most affected with respective frequencies of 67.82% and 56.52% (P20%for both bacterial strains), macrolides (resistance rate> 30%for H. influenzae) quinolones (resistance rate>15%for H. influenzae and N. meningitidis W135). Over three years, the prevalence of S. pneumoniae significantly increased from 8.48%to 73.33%(P<0.001), while the changes in the prevalence of H. influenzae B were not statistically significant: 4.24%, vs. 8.89%, (P= 0.233). Conclusions:Our results indicate that data in African countries differ depending on geographical location in relation to the African meningitis belt. This underlines the importance of epidemiological surveillance of bacterial meningitis.

  14. Epidemiology of emerging/re-emerging antimicrobial-resistant bacterial pathogens.

    Science.gov (United States)

    McCormick, J B

    1998-02-01

    The rapid global expansion of bacteria resistant to antimicrobials is the most important development over the past year in emerging bacterial diseases. The critical events are the emergence of Staphylococcus aureus with decreased sensitivity to vancomycin, worldwide resistance to penicillin in Streptococcus pneumoniae, and the remorseless progression of multiply-resistant Mycobacterium tuberculosis. Most startling was the isolation from a human in Madagascar of a plague bacillus possessing a plasmid readily transferable to Escherichia coli, which confers multiple antibiotic resistance. The hospital environment continues to see the transmission of resistant organisms, notably vancomycin-resistant enterococci. Finally, as food markets become more open around the world, food-borne outbreaks of E. coli O157 and cholera demonstrate how difficult it can be to establish effective health and safety barriers. PMID:10066471

  15. The Capsule Sensitizes Streptococcus pneumoniae to α-Defensins Human Neutrophil Proteins 1 to 3▿

    OpenAIRE

    Beiter, Katharina; Wartha, Florian; Hurwitz, Robert; Normark, Staffan; Zychlinsky, Arturo; Henriques-Normark, Birgitta

    2008-01-01

    Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Its polysaccharide capsule causes resistance to phagocytosis and interferes with the innate immune system's ability to clear infections at an early stage. Nevertheless, we found that encapsulated pneumococci are sensitive to killing by a human neutrophil granule extract. We fractionated the extract by high-performance liquid chromatography and identified α-defensins by mass spectrometry as the proteins responsible...

  16. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Makoka Mwai H

    2012-03-01

    Full Text Available Abstract Background Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Methods Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Results Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. Conclusions There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  17. Defensins promote fusion and lysis of negatively charged membranes.

    OpenAIRE

    Fujii, G; Selsted, M E; Eisenberg, D.

    1993-01-01

    Defensins, a family of cationic peptides isolated from mammalian granulocytes and believed to permeabilize membranes, were tested for their ability to cause fusion and lysis of liposomes. Unlike alpha-helical peptides whose lytic effects have been extensively studied, the defensins consist primarily of beta-sheet. Defensins fuse and lyse negatively charged liposomes but display reduced activity with neutral liposomes. These and other experiments suggest that fusion and lysis is mediated prima...

  18. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    International Nuclear Information System (INIS)

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08–5.30 mg cadmium, 1.1–32.0 mg chrome, 22.4–3387.6 mg copper, <2.0–26.7 mg lead, <0.01–0.11 mg mercury, 3.1–97.3 mg nickel and 93.0–8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  19. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  20. Antagonistic rhizobacteria and jasmonic acid induce resistance against tomato bacterial spot

    Directory of Open Access Journals (Sweden)

    Hélvio Gledson Maciel Ferraz

    2015-12-01

    Full Text Available AbstractTomato bacterial spot on tomato may be caused by four species of Xanthomonas and among them X. gardneri(Xg is the most destructive one, especially in areas irrigated using a center pivot system in Minas Gerais state and the midwest region of Brazil. Due to the ineffectiveness of chemical control and the lack of cultivars with high levels of genetic resistance, this study investigated the potential of three antagonists (Streptomyces setonii (UFV618, Bacillus cereus (UFV592 and Serratia marcescens (UFV252, and the hormone jasmonic acid (JA as a positive control, to reduce bacterial spot symptoms and to potentiate defense enzymes in the leaves of tomato plants infected by Xg. Tomato seeds were microbiolized with each antagonist, and the soil was drenched with these bacteria. The plants were sprayed with JA 48 h before Xginoculation. The final average severity on the tomato plants was reduced by 29.44, 59.26 and 61.33% in the UFV592, UFV618 and JA treatments, respectively. The UFV618 antagonist was as effective as JA in reducing bacterial spot symptoms on tomatoes, which can be explained by the greater activities of defense enzymes that are commonly involved in host resistance against bacterial diseases. These results suggest that JA and the UFV618 antagonist can be used in the integrated management of bacterial spot on tomatoes.

  1. Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment☆

    Science.gov (United States)

    Magennis, E.P.; Hook, A.L.; Davies, M.C.; Alexander, C.; Williams, P.; Alexander, M.R.

    2016-01-01

    Controlling the colonisation of materials by microorganisms is important in a wide range of industries and clinical settings. To date, the underlying mechanisms that govern the interactions of bacteria with material surfaces remain poorly understood, limiting the ab initio design and engineering of biomaterials to control bacterial attachment. Combinatorial approaches involving high-throughput screening have emerged as key tools for identifying materials to control bacterial attachment. The hundreds of different materials assessed using these methods can be carried out with the aid of computational modelling. This approach can develop an understanding of the rules used to predict bacterial attachment to surfaces of non-toxic synthetic materials. Here we outline our view on the state of this field and the challenges and opportunities in this area for the coming years. Statement of significance This opinion article on high throughput screening methods reflects one aspect of how the field of biomaterials research has developed and progressed. The piece takes the reader through key developments in biomaterials discovery, particularly focusing on need to reduce bacterial colonisation of surfaces. Such bacterial resistant surfaces are increasingly required in this age of antibiotic resistance. The influence and origin of high-throughput methods are discussed with insights into the future of biomaterials development where computational methods may drive materials development into new fertile areas of discovery. New biomaterials will exhibit responsiveness to adapt to the biological environment and promote better integration and reduced rejection or infection. PMID:26577984

  2. Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus: a new reservoir of antimicrobial resistance?

    Directory of Open Access Journals (Sweden)

    Hongwen Su

    Full Text Available The northern bobwhite (Colinus virginianus is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57% followed by Actinobacteria (24%, Proteobacteria (17% and Bacteroidetes (0.02%. Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations.

  3. Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins.

    Science.gov (United States)

    Seo, Ean-jeong; Weibel, Stephanie; Wehkamp, Jan; Oelschlaeger, Tobias A

    2012-11-01

    The probiotic Escherichia coli strain Nissle 1917 (EcN) is one of the few probiotics licensed as a medication in several countries. Best documented is its effectiveness in keeping patients suffering from ulcerative colitis (UC) in remission. This might be due to its ability to induce the production of human β-defensin 2 (HBD2) in a flagellin-dependent way in intestinal epithelial cells. In contrast to ulcerative colitis, for Crohn's disease (CD) convincing evidence is lacking that EcN might be clinically effective, most likely due to the genetically based inability of sufficient defensin production in CD patients. As a first step in the development of an alternative approach for the treatment of CD patients, EcN strains were constructed which were able to produce human α-defensin 5 (HD5) or β-defensin 2 (HBD2). For that purpose, codon-optimized defensin genes encoding either the proform with the signal sequence of human α-defensin 5 (HD5) or the gene encoding HBD2 with or without the signal sequence were cloned in an expression vector plasmid under the control of the T7 promoter. Synthesis of the encoded defensins was shown by Western blots after induction of expression and lysis of the recombinant EcN strains. Recombinant mature HBD2 with an N-terminal His-tag could be purified by Ni-column chromatography and showed antimicrobial activity against E. coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes. In a second approach, that part of the HBD2 gene which encodes mature HBD2 was fused with the yebF gene. The resulting fusion protein YebFMHBD2 was secreted from the encoding EcN mutant strain after induction of expression. Presence of YebFMHBD2 in the medium was not the result of leakage from the bacterial cells, as demonstrated in the spent culture supernatant by Western blots specific for β-galactosidase and maltose-binding protein. The dialyzed and concentrated culture supernatant inhibited the growth of E. coli, S. enterica serovar

  4. Flavonoids from Praxelis clematidea R.M. King and Robinson Modulate Bacterial Drug Resistance

    OpenAIRE

    José Maria Barbosa-Filho; Marcelo Sobral da Silva; Luis Cezar Rodrigues; José Pinto Siqueira-Júnior; Josean Fechine Tavares; João Xavier de Araújo-Júnior; Pedro Gregório Vieira Aquino; Vivyanne dos Santos Falcão-Silva; Gabriela Lemos de Azevedo Maia

    2011-01-01

    Chemical studies of Praxelis clematidea R.M. King & Robinson resulted in the isolation of six flavones: Apigenine, genkwanine, 7,4’-dimethylapigenin, trimethylapigenin,cirsimaritin and tetramethylscutellarein, which were tested for their toxicity against Staphylococcus aureus SA-1199B, a strain possessing the NorA efflux pump. Efflux pumps are integral proteins of the bacterial membrane and are recognized as one of the main causes of bacterial drug resistance, since they expel antibiotics...

  5. Antagonistic Activities of Purple Non-sulfur Bacterial Extracts Against Antibiotic Resistant Vibrio sp.

    Directory of Open Access Journals (Sweden)

    Chandrasekaran, R.

    2011-01-01

    Full Text Available Solvent extracts of native purple non-sulfur bacterial (PNSB isolates from the effluents of brackish shrimp culture ponds, near Nagapattinam coast (South India were evaluated for antibacterial activity by the disc diffusion method. Best results were shown by the chloroform extracts against oxytetracycline resistant Vibrio harveyi and Vibrio fischerii. Among the purple non-sulfur bacterial isolates, Rhodobacter sphaeroides, showed maximum antagonistic activity. The findings suggest that the antagonistic extracts from Rba. sphaeroides could be used as an effective antibiotic in controlling Vibrio spp., in aquaculture systems.

  6. Sulfonamide and tetracycline resistance genes in total- and culturable-bacterial assemblages in South African aquatic environments

    OpenAIRE

    Satoru eSuzuki; Mitsuko eOgo; Tatsuya eKoike; Hideshige eTakada; Brent eNewman

    2015-01-01

    Antibiotic resistant bacteria (ARB) are ubiquitous in the natural environment. The introduction of effluent derived antibiotic resistance genes (ARGs) into aquatic environments is of concern in the spreading of genetic risk. This study showed the prevalence of sulfonamide and tetracycline resistance genes, sul1, sul2, sul3 and tet(M), in the total bacterial assemblage and colony forming bacterial assemblage in river and estuarine water and sewage treatment plants (STP) in South Africa. There ...

  7. Sulfonamide and tetracycline resistance genes in total- and culturable-bacterial assemblages in South African aquatic environments

    OpenAIRE

    Suzuki, Satoru; Ogo, Mitsuko; Koike, Tatsuya; Takada, Hideshige; Newman, Brent

    2015-01-01

    Antibiotic resistant bacteria are ubiquitous in the natural environment. The introduction of effluent derived antibiotic resistance genes (ARGs) into aquatic environments is of concern in the spreading of genetic risk. This study showed the prevalence of sulfonamide and tetracycline resistance genes, sul1, sul2, sul3, and tet(M), in the total bacterial assemblage and colony forming bacterial assemblage in river and estuarine water and sewage treatment plants (STP) in South Africa. There was no ...

  8. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data

    DEFF Research Database (Denmark)

    Clausen, Philip T. L. C.; Zankari, Ea; Aarestrup, Frank Møller;

    2016-01-01

    two different methods in current use for identification of antibiotic resistance genes in bacterial WGS data. A novel method, KmerResistance, which examines the co-occurrence of k-mers between the WGS data and a database of resistance genes, was developed. The performance of this method was compared...... with two previously described methods; ResFinder and SRST2, which use an assembly/BLAST method and BWA, respectively, using two datasets with a total of 339 isolates, covering five species, originating from the Oxford University Hospitals NHS Trust and Danish pig farms. The predicted resistance was...... compared with the observed phenotypes for all isolates. To challenge further the sensitivity of the in silico methods, the datasets were also down-sampled to 1% of the reads and reanalysed. The best results were obtained by identification of resistance genes by mapping directly against the raw reads. This...

  9. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them.

    Science.gov (United States)

    Khameneh, Bahman; Diab, Roudayna; Ghazvini, Kiarash; Fazly Bazzaz, Bibi Sedigheh

    2016-06-01

    Multidrug-resistant (MDR) bacteria have increased at an alarming rate over recent decades and cause serious problems. The emergence of resistant infections caused by these bacteria has led to mortality and morbidity; consequently there is an urgent need to find solution for combating bacterial resistance. In the present paper, first, some mechanisms of antibiotic resistance such as changing the antibacterial agent's uptake and biofilm formation are discussed. Following, for removing the antibacterial resistance, a wide range of approaches like developing new generations of antibiotics, combination therapy, natural antibacterial substances and applying nanoparticulate systems have been explained. Among them, antibiotic delivery via nanoparticles, has been attracted more attention recently, so discussed in present review, separately. PMID:26911646

  10. Steroidal regulation of uterine resistance to bacterial infection in livestock

    Directory of Open Access Journals (Sweden)

    Lewis Gregory S

    2003-11-01

    Full Text Available Abstract Postpartum uterine infections reduce reproductive efficiency and have significant animal welfare and economic consequences. Postpartum uterine infections are classified as nonspecific, but Arcanobacterium pyogenes and Escherichia coli are usually associated with them in cattle and sheep. Pyometra is the most common type of uterine infection in dairy cattle, and it is detected almost exclusively in cows with active corpora lutea. Luteal progesterone typically down-regulates uterine immune functions and prevents the uterus from resisting infections. Progesterone also can down-regulate uterine eicosanoid synthesis. This seems to be a critical event in the onset of uterine infections, because eicosanoids can up-regulate immune cell functions in vitro. In addition, exogenous prostaglandin F2 alpha stimulates uterine secretion of prostaglandin F2 alpha and enhances immune functions in vivo. Thus, one may hypothesize that eicosanoids can override the negative effects of progesterone and that the up-regulatory effects of exogenous prostaglandin F2 alpha allow the uterus to resolve an infection, regardless of progesterone concentrations. Based on the results of studies to test that hypothesis, cows, sheep, and pigs in various physiological statuses are resistant to intrauterine infusions of Arcanobacterium pyogenes and Escherichia coli, unless progesterone concentrations are increased. In sheep and pigs, exogenous prostaglandin F2 alpha stimulates uterine production of prostaglandin F2 alpha and allows the uterus to resolve Arcanobacterium pyogenes-Escherichia coli-induced infections, even when progesterone is maintained at luteal phase concentrations before and after treatment. Prostaglandin F2 alpha is a proinflammatory molecule that stimulates the production of various proinflammatory cytokines, and it may enhance uterine production of leukotriene B4. Proinflammatory cytokines and leukotriene B4 enhance phagocytosis and lymphocyte functions

  11. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections.

    Science.gov (United States)

    Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W

    2015-05-01

    Host defense (antimicrobial) peptides, produced by all complex organisms, typically contain an abundance of positively charged and hydrophobic amino acid residues. A small synthetic peptide termed innate defense regulator (IDR-)1018 was derived by substantial modification of the bovine neutrophil host defense peptide bactenecin. Here, we review its intriguing properties that include anti-infective, anti-inflammatory, wound healing, and anti-biofilm activities. It was initially developed as an immune modulator with an ability to selectively enhance chemokine production and polarize cellular differentiation while suppressing/balancing the pro-inflammatory response. In this regard, it has demonstrated in vivo activity in murine models including enhancement of wound healing and an ability to protect against Staphylococcus aureus, multidrug resistant Mycobacterium tuberculosis, herpes virus, and inflammatory disorders, including cerebral malaria and neuronal damage in a pre-term birth model. More recently, IDR-1018 was shown, in a broad-spectrum fashion, to selectively target bacterial biofilms, which are adaptively resistant to many antibiotics and represent the most common growth state of bacteria in human infections. Furthermore, IDR-1018 demonstrated synergy with conventional antibiotics to both prevent biofilm formation and treat pre-existing biofilms. These data are consistent with a strong potential as an adjunctive therapy against antibiotic-resistant infections. PMID:25358509

  12. No role for bacterially produced salicylic Acid in rhizobacterial induction of systemic resistance in Arabidopsis.

    Science.gov (United States)

    Ran, L X; van Loon, L C; Bakker, P A H M

    2005-11-01

    ABSTRACT The role of bacterially produced salicylic acid (SA) in the induction of systemic resistance in plants by rhizobacteria is far from clear. The strong SA producer Pseudomonas fluorescens WCS374r induces resistance in radish but not in Arabidopsis thaliana, whereas application of SA leads to induction of resistance in both plant species. In this study, we compared P. fluorescens WCS374r with three other SA-producing fluorescent Pseudomonas strains, P. fluorescens WCS417r and CHA0r, and P. aeruginosa 7NSK2 for their abilities to produce SA under different growth conditions and to induce systemic resistance in A. thaliana against bacterial speck, caused by P. syringae pv. tomato. All strains produced SA in vitro, varying from 5 fg cell(-1) for WCS417r to >25 fg cell(-1) for WCS374r. Addition of 200 muM FeCl(3) to standard succinate medium abolished SA production in all strains. Whereas the incubation temperature did not affect SA production by WCS417r and 7NSK2, strains WCS374r and CHA0r produced more SA when grown at 33 instead of 28 degrees C. WCS417r, CHA0r, and 7NSK2 induced systemic resistance apparently associated with their ability to produce SA, but WCS374r did not. Conversely, a mutant of 7NSK2 unable to produce SA still triggered induced systemic resistance (ISR). The possible involvement of SA in the induction of resistance was evaluated using SA-nonaccumulating transgenic NahG plants. Strains WCS417r, CHA0r, and 7NSK2 induced resistance in NahG Arabidopsis. Also, WCS374r, when grown at 33 or 36 degrees C, triggered ISR in these plants, but not in ethylene-insensitive ein2 or in non-plant pathogenesis- related protein-expressing npr1 mutant plants, irrespective of the growth temperature of the bacteria. These results demonstrate that, whereas WCS374r can be manipulated to trigger ISR in Arabidopsis, SA is not the primary determinant for the induction of systemic resistance against bacterial speck disease by this bacterium. Also, for the other

  13. A network-based approach for resistance transmission in bacterial populations.

    Science.gov (United States)

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-01

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations. PMID:19747924

  14. Correlation models between environmental factors and bacterial resistance to antimony and copper.

    Directory of Open Access Journals (Sweden)

    Zunji Shi

    Full Text Available Antimony (Sb and copper (Cu are toxic heavy metals that are associated with a wide variety of minerals. Sb(III-oxidizing bacteria that convert the toxic Sb(III to the less toxic Sb(V are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III/Cu(II-resistant bacteria from 11 different types of mining soils were isolated. Four strains identified as Arthrobacter, Acinetobacter and Janibacter exhibited notably high minimum inhibitory concentrations (MICs for Sb(III (>10 mM,making them the most highly Sb(III-resistant bacteria to date. Thirty-six strains were able to oxidize Sb(III, including Pseudomonas-, Comamonas-, Acinetobacter-, Sphingopyxis-, Paracoccus- Aminobacter-, Arthrobacter-, Bacillus-, Janibacter- and Variovorax-like isolates. Canonical correspondence analysis (CCA revealed that the soil concentrations of Sb and Cu were the most obvious environmental factors affecting the culturable bacterial population structures. Stepwise linear regression was used to create two predictive models for the correlation between soil characteristics and the bacterial Sb(III or Cu(II resistance. The concentrations of Sb and Cu in the soil was the significant factors affecting the bacterial Sb(III resistance, whereas the concentrations of S and P in the soil greatly affected the bacterial Cu(II resistance. The two stepwise linear regression models that we derived are as follows: MIC(Sb(III=606.605+0.14533 x C(Sb+0.4128 x C(Cu and MIC((Cu(II=58.3844+0.02119 x C(S+0.00199 x CP [where the MIC(Sb(III and MIC(Cu(II represent the average bacterial MIC for the metal of each soil (μM, and the C(Sb, C(Cu, C(S and C(P represent concentrations for Sb, Cu, S and P (mg/kg in soil, respectively, p<0.01]. The stepwise linear regression models we developed suggest that metals as well as other soil physicochemical parameters can contribute to bacterial resistance to metals.

  15. Ixodes ricinus defensins attack distantly-related pathogens.

    Science.gov (United States)

    Tonk, Miray; Cabezas-Cruz, Alejandro; Valdés, James J; Rego, Ryan O M; Grubhoffer, Libor; Estrada-Peña, Agustín; Vilcinskas, Andreas; Kotsyfakis, Michalis; Rahnamaeian, Mohammad

    2015-12-01

    Antimicrobial peptides are ubiquitous components of eukaryotic innate immunity. Defensins are a well-known family of antimicrobial peptides, widely distributed in ticks, insects, plants and mammals, showing activity against bacteria, viruses, fungi, yeast and protozoan parasites. Ixodes ricinus is the most common tick species in Europe and is a vector of pathogens affecting human and animal health. Recently, six defensins (including two isoforms) were identified in I. ricinus. We investigated the evolution of the antimicrobial activity of I. ricinus defensins. Among the five unique defensins, only DefMT3, DefMT5 and DefMT6 showed in vitro antimicrobial activity. Each defensin was active against rather distantly-related bacteria (P < 0.05), significantly among Gram-negative species (P < 0.0001). These three defensins represent different clades within the family of tick defensins, suggesting that the last common ancestor of tick defensins may have had comparable antimicrobial activity. Differences in electrostatic potential, and amino acid substitutions in the β-hairpin and the loop bridging the α-helix and β-sheet may affect the antimicrobial activity in DefMT2 and DefMT7, which needs to be addressed. Additionally, the antimicrobial activity of the γ-core motif of selected defensins (DefMT3, DefMT6, and DefMT7) was also tested. Interestingly, compared to full length peptides, the γ-core motifs of these defensins were effective against less species of bacteria. However, the antifungal activity of the γ-core was higher than full peptides. Our results broaden the scope of research in the field of antimicrobial peptides highlighting the overlooked ability of arthropod defensins to act against distantly-related microorganisms. PMID:26255244

  16. Plant defensins and their potential use as pest control in agriculture

    International Nuclear Information System (INIS)

    Plants, as all organisms in nature, have elaborate systems of defense against pathogens; which can be physical or chemical and produced in a constitutive and induced way. Among the induced chemical barriers, there is a group of low molecular weight proteins, known as antimicrobial peptides (AMPs). These peptides include defensins, which are peptides with a molecular weight about 5 to 7 KDa, isoelectric point of 9, and length of about 45 to 55 amino acids. Likewise, they have the ability to avoid the growth of phytopathogenic microorganisms, mainly funguses. Moreover, these peptides create resistance to abiotic conditions of stress in plants. This manuscript seeks to make a clear and current description about the recent characteristics and researches related to plant defensins and their most significant uses in pathogens management in crops of economical relevance. It also intends to go deep into the study of such proteins in order to use them as a control strategy, such as production of transgenic plants and microorganisms.

  17. Resistance patterns of bacterial isolates to antimicrobials from 3 hospitals in the United Arab Emirates

    International Nuclear Information System (INIS)

    To compare the resistance pattern of common bacterial pathogens to commonly used drugs. Information and statistics of antimicrobial resistance for 1994 and 2005 were collected from the 3 hospital microbiology laboratories in the United Arab Emirates. The resistance patterns of Staphylococcus aureus, Escherichia coli, Klebsiella spp, and Pseudomonas aeruginosa to several front-line drugs were estimated. All laboratories used automatic machines (Vitek 2), which identifies and determines minimum inhibitory concentrations simultaneously. Increased resistance was observed for Staphylococcus aureus, (n=315, 2005) to erythromycin (approximately 6 fold, Al-Ain Hospital only), cloxacillin (Al-Ain Hospital), and gentamicin (more than 3-10 folds in all hospitals). Increased penicillin resistance was not observed. For the common Gram-negative organisms, there was a high resistance to ampicillin, gentamicin, ceftriaxone, ciprofloxacin, and imipenem, which seemed to increase for Escherichia coli, (by 4.2-200%, n=305, 2005); however, there was very little resistance to imipenem (0.4%) in Tawam Hospital. Variable resistance patterns were obtained for Pseudomonas aeruginosa (n=316, 2005) and Klebsiella spp,(n=316, 2005) against aminoglycosides, cephalosporins, ciprofloxacin, and norfloxacin. Overall, there was an obvious increase in resistance of bacteria and the prevalence rate to a number of drugs from 1-120 folds during the 11-year period. (author)

  18. Genetic analysis of the induced mutants of rice resistant to bacterial leaf blight

    International Nuclear Information System (INIS)

    Full text: Seeds of the rice cultivar 'Harebare', which is susceptible to bacterial leaf blight (BLB), were treated with thermal neutrons, gamma-rays, ethyleneimine and ethylmethane-sulfonate. In the M2, plants with better resistance to BLB were identified through inoculation at the seedling and the flag leaf stages with an isolate (T7174) of the Japanese differential race I. Several mutant lines resistant to BLB were selected through tests of the M3 or M4 lines derived from selected resistant M2 plants. The frequency of resistant mutants was significantly higher after the thermal neutron treatment than after treatments with other mutagens. Two mutants, which originated from the neutron treatment, showing a highly quantitative resistance to multiple BLB races were analysed for gene(s) for resistance. The resistance of one of them (M41) to the Japanese races I, II, III, IV, and V was found to be conditioned by a single recessive gene. Three other recessive genes for resistance are known, but their reaction to differential races is different. Therefore, this gene was thought to be new and was tentatively designated as xa-nm(t). The resistance of another mutant (M57) was found to be polygenically inherited. (author)

  19. COMPARATIVE RESISTANCE OF BACTERIAL FOODBORNE PATHOGENS TO NON-THERMAL TECHNOLOGIES FOR FOOD PRESERVATION

    Directory of Open Access Journals (Sweden)

    Guillermo eCebrián

    2016-05-01

    Full Text Available In this paper the resistance of bacterial foodborne pathogens to manosonication (MS, pulsed electric fields (PEF, high hydrostatic pressure (HHP and UV-light (UV is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could

  20. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation.

    Science.gov (United States)

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  1. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation

    Science.gov (United States)

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  2. Epidemiology of urinary tract infections, bacterial species and resistances in primary care in France.

    Science.gov (United States)

    Malmartel, A; Ghasarossian, C

    2016-03-01

    General practitioners often have to manage urinary tract infections (UTI) with probabilistic treatments, although bacterial resistances are increasing. Therefore, the French Society of Infectious Diseases published new guidelines in 2014. The aim of this study was to investigate the bacterial epidemiology of UTI in the general population in primary care and analyse risk factors for Escherichia coli resistance to antibiotics. A cross-sectional study was conducted in 12 ambulatory laboratories. Patients over 18 years of age coming for urinalysis were included. Risk factors for UTI were collected using a questionnaire and the laboratory records. Bacteria meeting criteria for UTI were analysed. A positive urinalysis was found in 1119 patients, corresponding to 1125 bacterial isolates. The bacterial species were: E. coli (73 %), Enterococcus spp. (7 %), Klebsiella spp. (6 %), Proteus spp. (4 %), Staphylococcus spp. (3 %) and Pseudomonas spp. (2 %). Regardless of the bacteria, the most common resistance was that to co-trimoxazole: 27 % (95 % confidence interval [CI] = [0.24; 0.30]), followed by ofloxacin resistance: 16 % [0.14; 0.18]. Escherichia coli resistances to co-trimoxazole, ofloxacin, cefixime, nitrofurantoin and fosfomycin were, respectively, 25.5 % [0.23; 0.28], 17 % [0.14; 0.20], 5.6 % [0.04; 0.07], 2.2 % [0.01; 0.03] and 1.2 % [0.005; 0.02]. Independent risk factors for E. coli resistance to ofloxacin were age over 85 years (odds ratio [OR] = 3.08; [1.61; 5.87]) and a history of UTI in the last 6 months (OR = 2.34; [1.54; 3.52]). Our findings support the guidelines recommending fluoroquinolone sparing. The scarcity of E. coli resistance to fosfomycin justifies its use as a first-line treatment in acute cystitis. These results should be reassessed in a few years to identify changes in the bacterial epidemiology of UTI. PMID:26740324

  3. Evaluation of radiation resistance of the bacterial contaminants from femoral heads processed for allogeneic transplantation

    International Nuclear Information System (INIS)

    Femoral heads excised during surgery were obtained from patients who had a fractured neck of the femur and were processed as bone allograft. The bacterial contaminants were isolated from femoral heads at different stages of processing and identified based on morphological characteristics and biochemical tests. Bacterial contaminants on bone were mainly Gram-positive bacilli and cocci (58.3%). Twenty-four isolates from bone samples were screened for resistance to radiation. The D10 values for Gram-negative bacteria isolated from femoral heads ranged from 0.17 to 0.65 kGy. Higher D10 values 0.56-1.04 kGy were observed for Gram-positive bacterial isolates.

  4. Defensin γ-thionin from Capsicum chinense has immunomodulatory effects on bovine mammary epithelial cells during Staphylococcus aureus internalization.

    Science.gov (United States)

    Díaz-Murillo, Violeta; Medina-Estrada, Ivan; López-Meza, Joel E; Ochoa-Zarzosa, Alejandra

    2016-04-01

    β-Defensins are members of the antimicrobial peptide superfamily that are produced in various species from different kingdoms, including plants. Plant defensins exhibit primarily antifungal activities, unlike those from animals that exhibit a broad-spectrum antimicrobial action. Recently, immunomodulatory roles of mammal β-defensins have been observed to regulate inflammation and activate the immune system. Similar roles for plant β-defensins remain unknown. In addition, the regulation of the immune system by mammalian β-defensins has been studied in humans and mice models, particularly in immune cells, but few studies have investigated these peptides in epithelial cells, which are in intimate contact with pathogens. The aim of this work was to evaluate the effect of the chemically synthesized β-defensin γ-thionin from Capsicum chinense on the innate immune response of bovine mammary epithelial cells (bMECs) infected with Staphylococcus aureus, the primary pathogen responsible for bovine mastitis, which is capable of living within bMECs. Our results indicate that γ-thionin at 0.1 μg/ml was able to reduce the internalization of S. aureus into bMECs (∼50%), and it also modulates the innate immune response of these cells by inducing the mRNA expression (∼5-fold) and membrane abundance (∼3-fold) of Toll-like receptor 2 (TLR2), as well as by inducing genes coding for the pro-inflammatory cytokines TNF-α and IL-1β (∼14 and 8-fold, respectively) before and after the bacterial infection. γ-Thionin also induces the expression of the mRNA of anti-inflammatory cytokine IL-10 (∼12-fold). Interestingly, the reduction in bacterial internalization coincides with the production of other antimicrobial products by bMECs, such as NO before infection, and the secretion into the medium of the endogenous antimicrobial peptide DEFB1 after infection. The results from this work support the potential use of β-defensins from plants as immunomodulators of the mammalian

  5. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island.

    Science.gov (United States)

    Ashton, Philip M; Nair, Satheesh; Dallman, Tim; Rubino, Salvatore; Rabsch, Wolfgang; Mwaigwisya, Solomon; Wain, John; O'Grady, Justin

    2015-03-01

    Short-read, high-throughput sequencing technology cannot identify the chromosomal position of repetitive insertion sequences that typically flank horizontally acquired genes such as bacterial virulence genes and antibiotic resistance genes. The MinION nanopore sequencer can produce long sequencing reads on a device similar in size to a USB memory stick. Here we apply a MinION sequencer to resolve the structure and chromosomal insertion site of a composite antibiotic resistance island in Salmonella Typhi Haplotype 58. Nanopore sequencing data from a single 18-h run was used to create a scaffold for an assembly generated from short-read Illumina data. Our results demonstrate the potential of the MinION device in clinical laboratories to fully characterize the epidemic spread of bacterial pathogens. PMID:25485618

  6. Bottlenecks in the transmission of antibiotic resistance from natural ecosystems to human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jose L Martinez

    2012-01-01

    Full Text Available It is generally accepted that resistance genes acquired by human pathogens trough horizontal gene transfer have been originated in environmental, non pathogenic bacteria. As the consequence, there exists an increasing concern on the role that natural, non-clinical ecosystems, may play on the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance upon their expression in a heterologous host is much larger than what is actually found in human pathogens. Along the review, the role that different processes as founder effect, ecological connectivity, fitness costs or second-order selection may have on the establishment of a specific resistance determinant in the population of bacterial pathogens is analysed.

  7. Bacterial Contamination and Antibiotic Resistance of Staphylococcus Aureus Isolated from Automated Teller Machine

    OpenAIRE

    Moshtaghi, H. (PhD; Parsa, M. (MSc

    2015-01-01

    Background and Objective: Automated Teller Machine (ATMs) is likely to be contaminated with various microorganisms specially pathogen germs. This may be due to their exposure to dust and their vast dermal contact with multiple users. This study investigated the bacterial contamination on the keyboard of ATMs and drug resistance of the bacteria isolated from them. Material and Methods: the keyboards of 50 ATMs in Shahrekord city, Iran, were examined from October 2012 to February 2013. The ster...

  8. Aerobic bacterial profile and antibiotic resistance in patients with diabetic foot infections

    OpenAIRE

    Michele Cezimbra Perim; Joelma da Costa Borges; Stela Regina Costa Celeste; Ederson de Freitas Orsolin; Rafael Rocha Mendes; Gabriella Oliveira Mendes; Roumayne Lopes Ferreira; Solange Cristina Carreiro; Maria Cristina da Silva Pranchevicius

    2015-01-01

    ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC)].RESUL...

  9. High Prevalence of Antimicrobial Resistance Among Common Bacterial Isolates in a Tertiary Healthcare Facility in Rwanda

    OpenAIRE

    Ntirenganya, Cyprien; Manzi, Olivier; Muvunyi, Claude Mambo; Ogbuagu, Onyema

    2015-01-01

    Antimicrobial resistance (AMR) is a serious public health threat in both developed and developing countries. Many developing countries, including Rwanda, lack adequate surveillance systems, and therefore, the prevalence of AMR is not well-known. We conducted a prospective observational study to assess the prevalence of AMR among common bacterial isolates from clinical specimens obtained from patients on the medical wards of Kigali University Teaching Hospital (KUTH). We evaluated the antibiot...

  10. Direct correlation between delayed footpad reaction and resistance to local bacterial infection.

    OpenAIRE

    Mitsuyama, M; Nomoto, K; Takeya, K.

    1982-01-01

    The resistance to bacteria was studied at the site of delayed footpad reaction in mice immunized with Listeria monocytogenes. When a challenge injection of listeria was given into the footpad of immune mice, no enhancement of bacterial elimination was observed before the generation of delayed footpad reactivity. After the generation of delayed reactivity, an enhanced elimination of listeria or Salmonella typhimurium was observed only at the site of strongly positive delayed footpad reaction e...

  11. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes

    OpenAIRE

    Wang, Hang; Li, Hongyi; Gilbert, Jack A.; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian

    2015-01-01

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days o...

  12. The Defensins Consist of Two Independent, Convergent Protein Superfamilies.

    Science.gov (United States)

    Shafee, Thomas M A; Lay, Fung T; Hulett, Mark D; Anderson, Marilyn A

    2016-09-01

    The defensin and defensin-like proteins are an extensive group of small, cationic, disulfide-rich proteins found in animals, plants, and fungi and mostly perform roles in host defense. The term defensin was originally used for small mammalian proteins found in neutrophils and was subsequently applied to insect proteins and plant γ-thionins based on their perceived sequence and structural similarity. Defensins are often described as ancient innate immunity molecules and classified as a single superfamily and both sequence alignments and phylogenies have been constructed. Here, we present evidence that the defensins have not all evolved from a single ancestor. Instead, they consist of two analogous superfamilies, and extensive convergent evolution is the source of their similarities. Evidence of common origin necessarily gets weaker for distantly related genes, as is the case for defensins, which are both divergent and small. We show that similarities that have been used as evidence for common origin are all expected by chance in short, constrained, disulfide-rich proteins. Differences in tertiary structure, secondary structure order, and disulfide bond connectivity indicate convergence as the likely source of the similarity. We refer to the two evolutionarily independent groups as the cis-defensins and trans-defensins based on the orientation of the most conserved pair of disulfides. PMID:27297472

  13. Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum.

    Directory of Open Access Journals (Sweden)

    Christelle Langevin

    Full Text Available Flavobacterium psychrophilum is a bacterial species that represents one of the most important pathogens for aquaculture worldwide, especially for salmonids. To gain insights into the genetic basis of the natural resistance to F. psychrophilum, we selected homozygous clones of rainbow trout with contrasted susceptibility to the infection. We compared the transcriptional response to the bacteria in the pronephros of a susceptible and a resistant line by micro-array analysis five days after infection. While the basal transcriptome of healthy fish was significantly different in the resistant and susceptible lines, the transcriptome modifications induced by the bacteria involved essentially the same genes and pathways. The response to F. psychrophilum involved antimicrobial peptides, complement, and a number of enzymes and chemokines. The matrix metalloproteases mmp9 and mmp13 were among the most highly induced genes in both genetic backgrounds. Key genes of both pro- and anti-inflammatory response such as IL1 and IL10, were up-regulated with a greater magnitude in susceptible animals where the bacterial load was also much higher. While higher resistance to F. psychrophilum does not seem to be based on extensive differences in the orientation of the immune response, several genes including complement C3 showed stronger induction in the resistant fish. They may be important for the variation of susceptibility to the infection.

  14. Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Anahit Penesyan

    2015-03-01

    Full Text Available Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.

  15. Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment

    Science.gov (United States)

    Tavares, Anabela; Carvalho, Carla M. B.; Faustino, Maria A.; Neves, Maria G. P. M. S.; Tomé, João P. C.; Tomé, Augusto C.; Cavaleiro, José A. S.; Cunha, Ângela; Gomes, Newton C. M.; Alves, Eliana; Almeida, Adelaide

    2010-01-01

    Antimicrobial photodynamic therapy (aPDT) has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-Py+-Me-PF) was used as photosensitizer. Vibrio fischeri and recombinant Escherichia coli were the studied bacteria. To determine the bacterial recovery after treatment, Tri-Py+-Me-PF (5.0 μM) was added to bacterial suspensions and the samples were irradiated with white light (40 W m−2) for 270 minutes. Then, the samples were protected from light, aliquots collected at different intervals and the bioluminescence measured. To assess the development of resistance after treatment, bacterial suspensions were exposed to white light (25 minutes), in presence of 5.0 μM of Tri-Py+-Me-PF (99.99% of inactivation) and plated. After the first irradiation period, surviving colonies were collected from the plate and resuspended in PBS. Then, an identical protocol was used and repeated ten times for each bacterium. The results suggest that aPDT using Tri-Py+-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process. PMID:20161973

  16. ANTIMICROBIAL RESISTANCE OF BACTERIAL AGENTS OF THE UPPER RESPIRATORY TRACT IN SOUTH INDIAN POPULATION

    Directory of Open Access Journals (Sweden)

    K. Kousalya

    2010-06-01

    Full Text Available The study was aimed at determining bacterial agents of the upper respiratory tract and the susceptibility patterns of isolates to antibiotics. The throat swab samples from 250 patients suspected of upper respiratory tract infection (URTI were obtained from the General Medicine outpatient department of a Rural Health Centre of Rajah Muthiah Medical College and Hospital (RMMC and H, Annamalai University, Chidambaram, Tamilnadu, India and inoculated in the culture medium. The bacterial infection was confirmed only in 228 patients. The organisms isolated on medium were identified by their cultural, morphological and biochemical characteristics. Staphylococcus aureus was identified as the most prevalent bacterial isolate (45.61% followed by β hemolytic streptococci (22.81%. Thirty four strains (14.91% were identified as Klebsiella penumoniae, 19 (8.33% as Pseudomonas aeruginosa and the rest belonged to α hemolytic streptococci, Escherichia coli and Haemophilus influenzae. All Staphylococcus spp. were resistant to penicillin, ampicillin and co-trimoxazole. All the isolates were resistant to at least one antibiotic. The overall resistance rates were generally low for gentamicin, cefixime and ceftazidime respectively.

  17. Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment

    Directory of Open Access Journals (Sweden)

    Eliana Alves

    2010-01-01

    Full Text Available Antimicrobial photodynamic therapy (aPDT has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl-20-(pentafluorophenyl-porphyrin triiodide (Tri-Py+-Me-PF was used as photosensitizer. Vibrio fischeri and recombinant Escherichia coli were the studied bacteria. To determine the bacterial recovery after treatment, Tri-Py+-Me-PF (5.0 µM was added to bacterial suspensions and the samples were irradiated with white light (40 W m-2 for 270 minutes. Then, the samples were protected from light, aliquots collected at different intervals and the bioluminescence measured. To assess the development of resistance after treatment, bacterial suspensions were exposed to white light (25 minutes, in presence of 5.0 μM of Tri-Py+-Me-PF (99.99% of inactivation and plated. After the first irradiation period, surviving colonies were collected from the plate and resuspended in PBS. Then, an identical protocol was used and repeated ten times for each bacterium. The results suggest that aPDT using Tri-Py+-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process.

  18. Antimicrobial sensitivity and frequency of DRUG resistance among bacterial strains isolated from cancer patients

    International Nuclear Information System (INIS)

    Blood stream infections (bacteremia) is potentially life threatening. Concomitant with a change in the incidence and epidemiology of infecting organisms, there has been an increase in resistance to many antibiotic compounds. The widespread emergence of resistance among bacterial pathogens has an impact on our ability to treat patients effectively. The changing spectrum of microbial pathogens and widespread emergence of microbial resistance to antibiotic drugs has emphasized the need to monitor the prevalence of resistance in these strains. In the present study frequency of isolation of clinically significant bacteria and their susceptibility and resistance pattern against a wide range of antimicrobial drugs from positive blood cultures collected during 2001-2003 was studied. A total of 102 consecutive isolates were found with 63% gram positive and 44% gram negative strains. The dominating pathogens were Staphylococcus aureus (51%), Streptococci (31%), Pseudomonas (40%), Proteus (13%), Klebsiella (13%). The isolated strains were tested against a wide range of antibiotics belonging to cephalosporins, aminoglycosides and quinolone derivative group by disk diffusion method. It has been observed that isolated strains among gram positive and negative strains showed different level of resistance against aminoglycosides and cephalosporin group of antibiotics with gram positives showing highest number and frequency of resistance against aminoglycosides (40-50%) and cephalosporins.(35-45%) whereas cephalosporins were found to be more effective against gram negatives with low frequency of resistant strains. Cabapenem and quinolone derivative drugs were found to be most effective among other groups in both gram positive and negative strains with 23-41% strains found sensitive to these two drugs. The frequency of sensitive strains against aminoglycoside and cephalosporin in gram negative and gram positive strains were found to be decreasing yearwise with a trend towards an

  19. Localization of b-defensin genes in non human primates

    Directory of Open Access Journals (Sweden)

    M Ventura

    2009-06-01

    Full Text Available Defensins are a family of host defence peptides that play an important role in the innate immunity of mammalian and avian species. In humans, four b-defensins have been isolated so far, corresponding to the products of the genes DEFB1 (h-BD1, GenBank accession number NM_005218; DEFB4 (h-Bd2, NM_004942.2, DEFB103 (h-BD3, NM_018661; and DEFB104 (hBD4, NM_080389 mapping on chromosome 8p23.22. We have localized b- defensin genes on metaphasic chromosomes of great apes and several non-human primate species to determine their physical mapping. Using fluorescent in situ hybridization and BAC probes containing the four b-defensin genes, we have mapped the homologous regions to the b-defensin genes on chromosome 8p23-p.22 in non-human primates, while no signals were detected on prosimians chromosomes.

  20. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  1. Cloning of a big defensin gene and its response to Vibrio parahaemolyticus challenge in the noble scallop Chlamys nobilis (Bivalve: Pectinidae).

    Science.gov (United States)

    Yang, Jianqing; Luo, Jiafu; Zheng, Huaiping; Lu, Yeqing; Zhang, Hongkuan

    2016-09-01

    The noble scallop Chlamys nobilis has been an important marine cultured bivalve in the Southern Sea of China for decades. However, large-scale mortality events often occurred during the scallop' cultivation. As one of AMPs (antimicrobial peptides), big defensin is an important component of the innate immunity against pathogenic microorganisms in invertebrates. In order to investigate whether the big defensin can play a role in the immune defense against pathogenic microorganisms in noble scallop, a big defensin gene from the hemocytes of Chlamys nobilis (CnBD) was cloned, and the mRNA level was measured after an acute Vibrio parahaemolyticus challenge of 36 h. The CnBD cDNA contains an open reading frame (ORF) of 381 bp encoding a peptide of 126 amino acids residues. The deduce amino acid sequence of CnBD shows a high similarity with that from Argopecten irradians and displays common features of big defensin, indicating that CnBD is a new member of the big defensin family. Compared with the control group, the relative mRNA level of CnBD was significantly up-regulated at 3, 24 and 36 h. The present result indicated that CnBD played an immune role against bacterial infection in noble scallop. PMID:27474446

  2. Appraising Contemporary Strategies to Combat Multidrug Resistant Gram-Negative Bacterial Infections–Proceedings and Data From the Gram-Negative Resistance Summit

    OpenAIRE

    Kollef, Marin H; Golan, Yoav; Micek, Scott T.; Shorr, Andrew F.; Marcos I. Restrepo

    2011-01-01

    The emerging problem of antibiotic resistance, especially among Gram-negative bacteria (GNB), has become a serious threat to global public health. Very few new antibacterial classes with activity against antibiotic-resistant GNB have been brought to market. Renewed and growing attention to the development of novel compounds targeting antibiotic-resistant GNB, as well as a better understanding of strategies aimed at preventing the spread of resistant bacterial strains and preserving the effica...

  3. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  4. Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water.

    Science.gov (United States)

    Narciso-da-Rocha, Carlos; Manaia, Célia M

    2016-09-01

    The environment is the original and most ancient source of the antibiotic resistance determinants that threat the human health nowadays. In the environment, water is a privileged habitat and mode of dissemination of bacteria of different origins. Freshwater bodies that cross urban areas are supposed to hold a complex mixture of both human/animal origin and strictly environmental bacteria. In this study, we were interested in unveiling the bacterial diversity in urban river transects and, simultaneously, investigate the occurrence of antibiotic resistant bacteria, in particular the multidrug resistant (MDR). With this aim, water and sediments of two rivers were sampled from an urban transect and the bacterial diversity was assessed based on 16S rRNA gene-based community analysis and, simultaneously, total heterotrophic bacteria were isolated in the presence and in the absence of antibiotics. The three predominant phyla were Proteobacteria, Bacteroidetes and Actinobacteria, in water, or Acidobacteria, in sediments. MDR bacteria were observed to belong to the predominant phyla observed in water, mostly of the classes Gamma- and Betaproteobacteria (Proteobacteria) and Sphingobacteriia and Flavobacteriia (Bacteroidetes) and belonged to genera of ubiquitous (Pseudomonas, Acinetobacter, Stenotrophomonas) or mainly environmental (Chitinophaga, Chryseobacterium) bacteria. The observation that MDR bacteria are widespread in the environment and over distinct phylogenetic lineages has two relevant implications: i) the potential of environmental bacteria as source or facilitators for antibiotic resistance acquisition; ii) the need to complement culture-independent methods with culture-based approaches in order to identify major sources of MDR profiles. PMID:27131885

  5. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake.

    Science.gov (United States)

    Di Cesare, Andrea; Eckert, Ester M; Teruggi, Alessia; Fontaneto, Diego; Bertoni, Roberto; Callieri, Cristiana; Corno, Gianluca

    2015-08-01

    The fate of antibiotic resistance genes (ARGs) in environmental microbial communities is of primary concern as prodromal of a potential transfer to pathogenic bacteria. Although of diverse origin, the persistence of ARGs in aquatic environments is highly influenced by anthropic activities, allowing potential control actions in well-studied environments. However, knowledge of abundance and space-time distribution of ARGs in ecosystems is still scarce. Using quantitative real-time PCR, we investigated the presence and the abundance of twelve ARGs (against tetracyclines, β-lactams, aminoglycosides, quinolones and sulphonamides) at different sampling sites, depths and seasons, in Lake Maggiore, a large subalpine lake, and in the area of its watershed. We then evaluated the correlation between each ARG and a number of ecological parameters in the water column in the deepest part of the lake. Our results suggest the constitutive presence of at least four ARGs within the bacterial community with a high proportion of bacteria potentially resistant to tetracyclines and sulphonamides. The presence of these ARGs was independent of the total bacterial density and temperature. The dynamics of tet(A) and sulII genes were, however, positively correlated with dissolved oxygen and negatively to chlorophyll a, suggesting that the resistant microbes inhabit specific niches. These observations indicate that the lake is a reservoir of antibiotic resistances, highlighting the need of a deeper understanding of the sources of ARGs and the factors allowing their persistence in waters. PMID:26118321

  6. Development of the variety for resistance against bacterial leaf-blight in rice with thermal neutrons

    International Nuclear Information System (INIS)

    In search for the development of genes for resistance against bacterial leaf-blight in rice, thermal neutrons generated from the Research Reactor at the Kyoto University have been applied to the breeding. In this paper, the developmental outcome is described, and a potential application of thermal neutrons for breeding the variety of resistance against bacterial leaf-blight in rice is reviewed. When thermal neutrons were delivered to the rice, the ratio of absorbed doses by B-10, which is contained in a small quantity in the plant, was found to be larger than expected. This implies characteristic effects of thermal neutrons on the plant. When boric acid was incorporated into the plant before irradiation, the effect of thermal neutrons per irradiation time was considered to become great. The frequency of mutations for resistance was significantly higher by thermal neutron, as compared with that induced by other mutagens, such as gamma radiation, ethylene-imine, ethyl-methane-sulfonate, and nitroso-methyl-urea. Genetic analysis of mutants for resistance revealed recessive genes and polygenes. Finally, the application of thermal neutrons and other radiations would contribute greatly to a resolution of serious pollution problems in global food and environment. (N.K.)

  7. Increased expression and levels of human β defensins (hBD2 and hBD4 in adults with dental caries

    Directory of Open Access Journals (Sweden)

    Girolamo Jose Barrera

    2013-09-01

    Full Text Available Introduction: Defensins are small anti-microbial peptides produced by epithelial cells. These peptides have a broad range of actions against microorganisms, including Gram-positive and Gram-negative bacteria.Human defensins are classifi ed into two subfamilies, the α-, and β- defensins, which differ in their distribution of disulphide bonds between the six conserved cysteine residues. Defensins are found in salivaand others compartments of the body. Human β defensins 2 (hBD2, beta defensins 4 (hBD4 and alpha defensins 4 (hNP4 in saliva may contributes to vulnerability or resistance to caries. This study aimed to determine a possible correlation between caries and levels of defensins measuring the expression in gingival tissue and concentrations in saliva samples.Methods: Oral examinations were performed on 100 adults of both genders (18-30 years old, and unstimulated whole saliva was collected for immunoassays of the three peptides and for the salivary pH, buffercapacity, protein, and peroxidase activity. mRNA levels of defensins in gingival sample were assessed by semi-quantitative RT-PCR technique.Results: The median salivary levels of hBD2 and hBD4 were 1.88 μg/ml and 0.86 μg/ml respectively for the caries-free group (n=44 and 7.26 μ/ml (hBD2 and 4.25 μg/ml (hBD4 for all subjects with evidenceof caries (n=56. There was no difference in the levels of hNP4, salivary pH, and proteins between groups, however the peroxidase activity and buffer capacity (interval 6.0-5.0 were reduced in caries group. Transcriptional levels of hBD2 and hBD4 did correlate with caries experience, the mRNA expression of hBD2 and hBD4 were signifi cantly higher in patients with caries than in patients with no-caries (p Conclusion: We conclude that high salivary levels and expression of beta defensins, low peroxidase activity and buffer capacity may represent a biological response of oral tissue to caries. Our observation couldlead to new ways to prevent caries

  8. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance.

    Science.gov (United States)

    Hein, John W; Wolfe, Gordon V; Blee, Kristopher A

    2008-02-01

    Systemic acquired resistance (SAR) is an inducible systemic plant defense against a broad spectrum of plant pathogens, with the potential to secrete antimicrobial compounds into the soil. However, its impact on rhizosphere bacteria is not known. In this study, we examined fingerprints of bacterial communities in the rhizosphere of the model plant Arabidopsis thaliana to determine the effect of SAR on bacterial community structure and diversity. We compared Arabidopsis mutants that are constitutive and non-inducible for SAR and verified SAR activation by measuring pathogenesis-related protein activity via a beta-glucoronidase (GUS) reporter construct driven by the beta-1-3 glucanase promoter. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of MspI- and HaeIII-digested 16S rDNA to estimate bacterial rhizosphere community diversity, with Lactobacillus sp. added as internal controls. T-RFLP analysis showed a clear rhizosphere effect on community structure, and diversity analysis of both rhizosphere and bulk soil operational taxonomic units (as defined by terminal restriction fragments) using richness, Shannon-Weiner, and Simpson's diversity indices and evenness confirmed that the presence of Arabidopsis roots significantly altered bacterial communities. This effect of altered soil microbial community structure by plants was also seen upon multivariate cluster analysis of the terminal restriction fragments. We also found visible differences in the rhizosphere community fingerprints of different Arabidopsis SAR mutants; however, there was no clear decrease of rhizosphere diversity because of constitutive SAR expression. Our study suggests that SAR can alter rhizosphere bacterial communities, opening the door to further understanding and application of inducible plant defense as a driving force in structuring soil bacterial assemblages. PMID:17619212

  9. High prevalence of multidrug resistance in bacterial uropathogens from Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    Baral Pankaj

    2012-01-01

    Full Text Available Abstract Background Urinary Tract Infection (UTI is one of the most common infectious diseases and people of all age-groups and geographical locations are affected. The impact of disease is even worst in low-resource developing countries due to unaware of the UTIs caused by multidrug-resistant (MDR pathogens and the possibility of transfer of MDR traits between them. The present study aimed to determine the prevalence of MDR bacterial isolates from UTI patients, the antibiotic resistance pattern and the conjugational transfer of multidrug resistance phenotypes in Escherichia coli (E. coli. Results Two hundred and nineteen bacterial isolates were recovered from 710 urine samples at Kathmandu Model hospital during the study period. All samples and isolates were investigated by standard laboratory procedures. Among the significant bacterial growth (30.8%, 219 isolates, 41.1% isolates were MDR. The most prevailing organism, E. coli (81.3%, 178 isolates was 38.2% MDR, whereas second most common organism, Citrobacter spp. (5%, 11 isolates was found 72.7% MDR. Extended-spectrum β-lactamase (ESBL production was detected in 55.2% of a subset of MDR E. coli isolates. Among the 29 MDR E. coli isolates, plasmids of size ranging 2-51 kb were obtained with different 15 profiles. The most common plasmid of size 32 kb was detected in all of the plasmid-harbored E. coli strains. The majority of E. coli isolates investigated for the multidrug resistance transfer were able to transfer plasmid-mediated MDR phenotypes along with ESBL pattern with a frequency ranging from 0.3 × 10-7 to 1.5 × 10-7 to an E. coli HB101 recipient strain by conjugation. Most of the donor and recipient strain showed high levels of minimum inhibitory concentration (MIC values for commonly-used antibiotics. Conclusions The high prevalence of multidrug resistance in bacterial uropathogens was observed. Particularly, resistance patterns were alarmingly higher for amoxycillin, co

  10. Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy

    Directory of Open Access Journals (Sweden)

    Václav Čeřovský

    2014-02-01

    Full Text Available Defensins are the most widespread antimicrobial peptides characterised in insects. These cyclic peptides, 4–6 kDa in size, are folded into α-helical/β-sheet mixed structures and have a common conserved motif of three intramolecular disulfide bridges with a Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 connectivity. They have the ability to kill especially Gram-positive bacteria and some fungi, but Gram-negative bacteria are more resistant against them. Among them are the medicinally important compounds lucifensin and lucifensin II, which have recently been identified in the medicinal larvae of the blowflies Lucilia sericata and Lucilia cuprina, respectively. These defensins contribute to wound healing during a procedure known as maggot debridement therapy (MDT which is routinely used at hospitals worldwide. Here we discuss the decades-long story of the effort to isolate and characterise these two defensins from the bodies of medicinal larvae or from their secretions/excretions. Furthermore, our previous studies showed that the free-range larvae of L. sericata acutely eliminated most of the Gram-positive strains of bacteria and some Gram-negative strains in patients with infected diabetic foot ulcers, but MDT was ineffective during the healing of wounds infected with Pseudomonas sp. and Acinetobacter sp. The bactericidal role of lucifensins secreted into the infected wound by larvae during MDT and its ability to enhance host immunity by functioning as immunomodulator is also discussed.

  11. Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy.

    Science.gov (United States)

    Ceřovský, Václav; Bém, Robert

    2014-01-01

    Defensins are the most widespread antimicrobial peptides characterised in insects. These cyclic peptides, 4-6 kDa in size, are folded into α-helical/β-sheet mixed structures and have a common conserved motif of three intramolecular disulfide bridges with a Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 connectivity. They have the ability to kill especially Gram-positive bacteria and some fungi, but Gram-negative bacteria are more resistant against them. Among them are the medicinally important compounds lucifensin and lucifensin II, which have recently been identified in the medicinal larvae of the blowflies Lucilia sericata and Lucilia cuprina, respectively. These defensins contribute to wound healing during a procedure known as maggot debridement therapy (MDT) which is routinely used at hospitals worldwide. Here we discuss the decades-long story of the effort to isolate and characterise these two defensins from the bodies of medicinal larvae or from their secretions/excretions. Furthermore, our previous studies showed that the free-range larvae of L. sericata acutely eliminated most of the Gram-positive strains of bacteria and some Gram-negative strains in patients with infected diabetic foot ulcers, but MDT was ineffective during the healing of wounds infected with Pseudomonas sp. and Acinetobacter sp. The bactericidal role of lucifensins secreted into the infected wound by larvae during MDT and its ability to enhance host immunity by functioning as immunomodulator is also discussed. PMID:24583934

  12. Practical value of induced mutants of rice resistant to bacterial leaf blight

    International Nuclear Information System (INIS)

    The thermal neutron induced mutants of rice resistance to bacterial leaf blight (BLB), designated M41 and M57, in which resistance is conditioned by a single gene and polygenes, respectively, were evaluated for their practical value for breeding rice varieties resistant to BLB. Three experiments were carried out. (1) The nature of the resistance of the mutants was examined from various aspects. The two mutants were resistant to the Japanese and Philippines BLB differential races. The resistance of M41 was found to vary to some extent with the planting year, the amount of nitrogen fertilizer applied and the plant age compared with M57, although the resistance level of M41 was higher than that of M57. (2) BLB resistant F3 or F4 lines derived from crosses of the mutants x original variety Harebare were analysed for some agronomic traits. One of the M57 x Harebare lines that had a good shape and a higher yielding capacity was not released as a commercial variety because of the poor taste of the rice. All the M41 x Harebare lines carried some negative traits inherited from M41, e.g. a lower yielding capacity, an inadequate mature husk colour, etc. (3) The F3 lines from crosses of the leading Japanese varieties Koshihikari and Akitakomachi x M41 were also analysed for their resistance and some other agronomic traits. Some of the resistant lines were found to exhibit favourable traits, e.g. good taste of the rice, which may lead to the development of new commercial varieties in the near future. (author). 14 refs, 9 figs 2 tabs

  13. Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients

    OpenAIRE

    Zhang, Quan-Guo

    2014-01-01

    The use of phages for treating bacterial pathogens has recently been advocated as an alternative to antibiotic therapy. Here, we test a hypothesis that bacteria treated with phages may show more limited evolution of antibiotic resistance as the fitness costs of resistance to phages may add to those of antibiotic resistance, further reducing the growth performance of antibiotic-resistant bacteria. We did this by studying the evolution of phage-exposed and phage-free Pseudomonas fluorescens cul...

  14. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro.

    Science.gov (United States)

    Zeng, Zhengyang; Zhang, Qian; Hong, Wei; Xie, Yingqiu; Liu, Yun; Li, Wenxin; Wu, Yingliang; Cao, Zhijian

    2016-01-01

    Hepatitis B virus (HBV) infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC). Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses. Here, we screened the anti-HBV activity of 25 scorpion-derived peptides most recently characterized by our group. Through evaluating anti-HBV activity and cytotoxicity, we found that BmKDfsin4, a scorpion defensin with antibacterial and Kv1.3-blocking activities, has a comparable high inhibitory rate of both HBeAg and HBsAg in HepG2.2.15 culture medium and low cytotoxicity to HepG2.2.15. Then, our experimental results further showed that BmKDfsin4 can dose-dependently decrease the production of HBV DNA and HBV viral proteins in both culture medium and cell lysate. Interestingly, BmKDfsin4 exerted high serum stability. Together, this study indicates that the scorpion defensin BmKDfsin4 also has inhibitory activity against HBV replication along with its antibacterial and potassium ion channel Kv1.3-blocking activities, which shows that BmKDfsin4 is a uniquely multifunctional defensin molecule. Our work also provides a good molecule material which will be used to investigate the link or relationship of its antiviral, antibacterial and ion channel-modulating activities in the future. PMID:27128943

  15. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts.

    Science.gov (United States)

    Lv, Lu; Yu, Xin; Xu, Qian; Ye, Chengsong

    2015-10-01

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water. PMID:26114900

  16. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian;

    2016-01-01

    and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS......Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...... of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli We use experimental evolution, mathematical modelling...

  17. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian;

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...... of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli We use experimental evolution, mathematical modelling and population...... sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions...

  18. Conjunctival bacterial flora and antibiotic resistance pattern in patients undergoing cataract surgery

    Directory of Open Access Journals (Sweden)

    Arantes Tiago Eugênio Faria e

    2006-01-01

    Full Text Available PURPOSE: To evaluate the conjunctival bacterial flora and its antibiotic resistance pattern in eyes of patients undergoing cataract surgery. METHODS: From August to October 2004, 50 patients undergoing cataract surgery in the "Fundação Altino Ventura", Recife, Brazil, were prospectively evaluated. Conjunctival material was obtained on the day of surgery, before the application of topical anesthetic, antibiotic or povidone-iodine. The collected material was inoculated and bacterioscopic analysis was carried out. In the cases where there was bacterial growth, antibiotic susceptibility tests and cultures, for isolation and identification of the bacteria, were performed. RESULTS: Of the 50 eyes, 43 (86.0% had positive cultures. The coagulase-negative Staphylococcus (CNS, found in 27 (54.0% eyes, was the most frequent organism. More than 90% of the isolates of this bacterium were susceptible to cephalotin, vancomycin, chloramphenicol, ofloxacin and gatifloxacin; 70 to 90% were susceptible to gentamicin, cefotaxime, oxacillin and ciprofloxacin; and less than 70% were sensible to neomycin. Four (10.5% of the bacterial isolates were resistant to four or more antibiotics, two of them were CNS. CONCLUSION: The most frequent bacterium in the conjunctival flora is the coagulase-negative Staphylococcus. The isolates of this organism showed low susceptibility rate to neomycin, and high susceptibility rates to cephalotin, vancomycin, chloramphenicol, ofloxacin and gatifloxacin.

  19. Isolation and Characterization of Nickel Uptake by Nickel Resistant Bacterial Isolate (NiRBI)

    Institute of Scientific and Technical Information of China (English)

    JAGDISH S PATEL; PRERNA C PATEL; KIRAN KALIA

    2006-01-01

    Bioremediation technology has gained importance because microbes could be the convenient source of bio-absorption/bioaccumulation of metals from effluent streams. Methods The nickel-resistant bacterial isolates (NiRBI)were selected from various bacterial isolates from industrial effluent and grown in nutrient broth containing different concentrations of nickel sulfate (0.3-3.0 mmol/L) and their capability of accumulating metal from the medium. Results Well-defined growth of NiRBI was observed in the medium containing up to 2.5 mmol/L of nickel. The isolate was identified using 16S rRNA and closely related to Pseudomonas fragi. Maximum accumulation of nickel (0.59 mg/g dry weight of bacterial cells) was observed when NiRBI was grown in media containing 2 mmol/L of nickel. The protein profile of the NiRBI cellular extract by SDS-PAGE showed two metal stress-induced proteins of molecular weight 48 KD and 18 KD with a simultaneous down regulation of four proteins of 46.7 KD, 42.2 KD, 19.7 KD, and 4.0 KD. Conclusion 48 KD and 18 KD proteins play a role in metal resistance mechanism by NiRBI.

  20. Aerobic bacterial profile and antibiotic resistance in patients with diabetic foot infections

    Directory of Open Access Journals (Sweden)

    Michele Cezimbra Perim

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC].RESULTS: The most common location of ulceration was the toe (54%, followed by the plantar surface (27% and dorsal portion (19%. A total of 89 bacterial isolates were obtained from 30 patients. The infections were predominantly due to Gram-positive bacteria and polymicrobial bacteremia. The most commonly isolated Gram-positive bacteria were Staphylococcus aureus, followed by Staphylococcus saprophyticus, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus pneumoniae. The most commonly isolated Gram-negative bacteria were Proteus spp. and Enterobacterspp., followed by Escherichia coli, Pseudomonasspp., and Citrobacterspp. Nine cases of methicillin-resistant Staphylococcus aureus (MRSA had cefoxitin resistance, and among these MRSA isolates, 3 were resistant to vancomycin with the MIC technique. The antibiotic imipenem was the most effective against both Gram-positive and Gram-negative bacteria, and gentamicin was effective against Gram-negative bacteria.CONCLUSIONS: The present study confirmed the high prevalence of multidrug-resistant pathogens in diabetic foot ulcers. It is necessary to evaluate the different microorganisms infecting the wound and to know the antibiotic susceptibility patterns of the isolates from the infected wound. This knowledge is crucial for planning treatment with the appropriate antibiotics, reducing resistance patterns, and minimizing healthcare costs.

  1. Impact on Bacterial Resistance of Therapeutically Nonequivalent Generics: The Case of Piperacillin-Tazobactam

    Science.gov (United States)

    Rodriguez, Carlos A.; Agudelo, Maria; Aguilar, Yudy A.; Zuluaga, Andres F.

    2016-01-01

    Previous studies have demonstrated that pharmaceutical equivalence and pharmacokinetic equivalence of generic antibiotics are necessary but not sufficient conditions to guarantee therapeutic equivalence (better called pharmacodynamic equivalence). In addition, there is scientific evidence suggesting a direct link between pharmacodynamic nonequivalence of generic vancomycin and promotion of resistance in Staphylococcus aureus. To find out if even subtle deviations from the expected pharmacodynamic behavior with respect to the innovator could favor resistance, we studied a generic product of piperacillin-tazobactam characterized by pharmaceutical and pharmacokinetic equivalence but a faulty fit of Hill’s Emax sigmoid model that could be interpreted as pharmacodynamic nonequivalence. We determined the impact in vivo of this generic product on the resistance of a mixed Escherichia coli population composed of ∼99% susceptible cells (ATCC 35218 strain) and a ∼1% isogenic resistant subpopulation that overproduces TEM-1 β-lactamase. After only 24 hours of treatment in the neutropenic murine thigh infection model, the generic amplified the resistant subpopulation up to 20-times compared with the innovator, following an inverted-U dose-response relationship. These findings highlight the critical role of therapeutic nonequivalence of generic antibiotics as a key factor contributing to the global problem of bacterial resistance. PMID:27191163

  2. Hidden Selection of Bacterial Resistance to Fluoroquinolones In Vivo: The Case of Legionella pneumophila and Humans

    Science.gov (United States)

    Shadoud, Lubana; Almahmoud, Iyad; Jarraud, Sophie; Etienne, Jérôme; Larrat, Sylvie; Schwebel, Carole; Timsit, Jean-François; Schneider, Dominique; Maurin, Max

    2015-01-01

    Background Infectious diseases are the leading cause of human morbidity and mortality worldwide. One dramatic issue is the emergence of microbial resistance to antibiotics which is a major public health concern. Surprisingly however, such in vivo adaptive ability has not been reported yet for many intracellular human bacterial pathogens such as Legionella pneumophila. Methods We examined 82 unrelated patients with Legionnaire's disease from which 139 respiratory specimens were sampled during hospitalization and antibiotic therapy. We both developed a real time PCR assay and used deep-sequencing approaches to detect antibiotic resistance mutations in L. pneumophila and follow their selection and fate in these samples. Findings We identified the in vivo selection of fluoroquinolone resistance mutations in L. pneumophila in two infected patients treated with these antibiotics. By investigating the mutational dynamics in patients, we showed that antibiotic resistance occurred during hospitalization most likely after fluoroquinolone treatment. Interpretation In vivo selection of antibiotic resistances in L. pneumophila may be associated with treatment failures and poor prognosis. This hidden resistance must be carefully considered in the therapeutic management of legionellosis patients and in the control of the gradual loss of effectiveness of antibiotics. PMID:26501115

  3. Proteomics as a tool for studying bacterial virulence and antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    Francisco José Pérez -Llarena

    2016-03-01

    Full Text Available Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of MALDI-TOF mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.

  4. Comparative Resistance of AH26 and a New Sealer Prototype to a Bacterial Challenge

    Directory of Open Access Journals (Sweden)

    Derek Duggan

    2012-01-01

    Full Text Available Objective. This study compared the leakage resistance of a New Sealer Prototype (NSP with a traditional sealer (AH 26 in Resilon-filled roots subjected to a bacterial challenge. Study Design. 41 roots were instrumented to ISO size 50 apically. Group 1 (=20 contained Resilon and AH 26 sealer and roots in group 2 (=21 contained Resilon and NSP. Roots were embedded in a dual-chamber model with the upper chamber containing Streptococcus mutans inoculum. Evidence of bacterial penetration was observed for 1 month. Fisher's Test was used to analyze the data. Results. 8 of 20 roots (40% in the AH 26 group demonstrated leakage whereas 3 of 21 roots (14% in the NSP group leaked. The difference in leakage rates was not statistically significant (=0.053. Conclusion. The traditional sealer (AH 26 demonstrated increased leakage rates compared to the New Sealer Prototype (NSP, but the difference did not reach statistical significance in this study.

  5. Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Rafael D Rosa

    Full Text Available BACKGROUND: Big defensin is an antimicrobial peptide composed of a highly hydrophobic N-terminal region and a cationic C-terminal region containing six cysteine residues involved in three internal disulfide bridges. While big defensin sequences have been reported in various mollusk species, few studies have been devoted to their sequence diversity, gene organization and their expression in response to microbial infections. FINDINGS: Using the high-throughput Digital Gene Expression approach, we have identified in Crassostrea gigas oysters several sequences coding for big defensins induced in response to a Vibrio infection. We showed that the oyster big defensin family is composed of three members (named Cg-BigDef1, Cg-BigDef2 and Cg-BigDef3 that are encoded by distinct genomic sequences. All Cg-BigDefs contain a hydrophobic N-terminal domain and a cationic C-terminal domain that resembles vertebrate β-defensins. Both domains are encoded by separate exons. We found that big defensins form a group predominantly present in mollusks and closer to vertebrate defensins than to invertebrate and fungi CSαβ-containing defensins. Moreover, we showed that Cg-BigDefs are expressed in oyster hemocytes only and follow different patterns of gene expression. While Cg-BigDef3 is non-regulated, both Cg-BigDef1 and Cg-BigDef2 transcripts are strongly induced in response to bacterial challenge. Induction was dependent on pathogen associated molecular patterns but not damage-dependent. The inducibility of Cg-BigDef1 was confirmed by HPLC and mass spectrometry, since ions with a molecular mass compatible with mature Cg-BigDef1 (10.7 kDa were present in immune-challenged oysters only. From our biochemical data, native Cg-BigDef1 would result from the elimination of a prepropeptide sequence and the cyclization of the resulting N-terminal glutamine residue into a pyroglutamic acid. CONCLUSIONS: We provide here the first report showing that big defensins form a family

  6. New insights in the bacterial spore resistance to extreme terrestrial and extraterrestrial factors

    Science.gov (United States)

    Moeller, Ralf; Horneck, Gerda; Reitz, Guenther

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. The extremely high resistance of bacterial endospores to environmental stress factors has intrigued researchers since long time and many characteristic spore features, especially those involved in the protection of spore DNA, have already been uncovered. The disclosure of the complete genomic sequence of Bacillus subtilis 168, one of the often used astrobiological model system, and the rapid development of tran-scriptional microarray techniques have opened new opportunities of gaining further insights in the enigma of spore resistance. Spores of B. subtilis were exposed to various extreme ter-restrial and extraterrestrial stressors to reach a better understanding of the DNA protection and repair strategies, which them to cope with the induced DNA damage. Following physical stress factors of environmental importance -either on Earth or in space -were selected for this thesis: (i) mono-and polychromatic UV radiation, (ii) ionizing radiation, (iii) exposure to ultrahigh vacuum; and (iv) high shock pressures simulating meteorite impacts. To reach a most comprehensive understanding of spore resistance to those harsh terrestrial or simulated extraterrestrial conditions, a standardized experimental protocol of the preparation and ana-lyzing methods was established including the determination of the following spore responses: (i) survival, (ii) induced mutations, (iii) DNA damage, (iv) role of different repair pathways by use of a set of repair deficient mutants, and (v) transcriptional responses during spore germi-nation by use of genome-wide transcriptome analyses and confirmation by RT-PCR. From this comprehensive set of data on spore resistance to a variety of environmental stress parameters a model of a "built-in" transcriptional program of bacterial spores in response to DNA damaging treatments to ensure DNA restoration

  7. Broad-spectrum antimicrobial activity of human intestinal defensin 5.

    OpenAIRE

    Porter, E M; van Dam, E; Valore, E V; Ganz, T

    1997-01-01

    Defensins are antibiotic peptides expressed in human and animal myeloid and epithelial cells. Due to the limited availability of natural peptides, the properties of human epithelial defensins have not been studied. We assayed the microbicidal activity of recombinant human intestinal defensin 5 (rHD-5) in the presence of salt (O to 150 mM NaCl) with varied pH (pH 5.5 to pH 8.5) and trypsin (25 and 250 microg/ml). rHD-5 exhibits microbicidal activity against Listeria monocytogenes, Escherichia ...

  8. Molecular processes as basis for plasmid-mediated bacterial UV-light resistance and mutagenesis

    International Nuclear Information System (INIS)

    The increase of UV-resistance and UV-induced mutagenesis by lambda 1 pint intmid as well as molecular-genetic mechanisms of plasmid participation in reparation and DNA replication and its degradation after UV-irradiation in plasmid cells on pKM101 plasmid model have been investigated. Data testifying to the necessity of intmid integration in chromosome as obligatory stage of intmid participation in increasing UV-resistance of bacterial cells are obtained. It has been found that intmid raises UV-resistance of cells and increases respectively the UV-induced reverants efficiency. On the basis of the experiment data the conclusion is drawn that the intmid capacity to raise UV-resistance and, possibly, mutagenesis is bound not only with its integration into chromosome but also with pol A+ chromosome replication by dependendent imtmid replication complex. It is shown that pKM101 plasmid ensures functioning in E coli cells of inducible, chloroamphenicol-resistant DNA replication, highly resistant to UV-light harmful effect and that the volume of excision reparation in E. coli cells carrying pKM101 plasmid is increased as compared with the volume of reparation in plasmid legs cells. The combination of the data obtained gives grounds to the authors to assume that inducible replication, inducible reparation of DNA and inducible decrease of DNA degradation determined by pKM101 plasmid may serve as recA+lexA+ basis dependent increase of UV-resistance and mutagenesis and that these processes provide the possibility of functioning of integrative replication mechanism of plasmid participation in ensuring UV-resistance and mutagenesis of plants

  9. Evidence of major genes affecting bacterial cold water disease resistance in rainbow trout using Bayesian methods of complex segregation analysis

    Science.gov (United States)

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation for BCWD resistance in our rainbow trout population, and a family-based selection program to improve resistance was initiated at the NCCCWA in 2005. The main objec...

  10. Evidence of major genes affecting resistance to bacterial cold water disease in rainbow trout using Bayesian methods of segregation analysis

    Science.gov (United States)

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation for BCWD resistance in our rainbow trout population, and a family-based selection program to improve resistance was initiated at the National Center for Cool and Col...

  11. Widespread Transfer of Resistance Genes between Bacterial Species in an Intensive Care Unit: Implications for Hospital Epidemiology

    OpenAIRE

    Naiemi, N.A.; Duim, B.; Savelkoul, P. H. M.; Spanjaard, L.; de Jonge,; Bart, A.; Vandenbroucke-Grauls, C. M. J. E.; Jong, de, M.C.M.

    2005-01-01

    A transferable plasmid encoding SHV-12 extended-spectrum β-lactamase, TEM-116, and aminoglycoside resistance was responsible for two sequential clonal outbreaks of Enterobacter cloacae and Acinetobacter baumannii bacteria. A similar plasmid was present among isolates of four different bacterial species. Recognition of plasmid transfer is crucial for control of outbreaks of multidrug-resistant nosocomial pathogens.

  12. Identification of Diverse Antimicrobial Resistance Determinants Carried on Bacterial, Plasmid, or Viral Metagenomes from an Activated Sludge Microbial Assemblage▿

    OpenAIRE

    Parsley, Larissa C.; Consuegra, Erin J.; Kakirde, Kavita S.; Land, Andrew M.; Harper, Willie F.; Liles, Mark R.

    2010-01-01

    Using both sequence- and function-based metagenomic approaches, multiple antibiotic resistance determinants were identified within metagenomic libraries constructed from DNA extracted from bacterial chromosomes, plasmids, or viruses within an activated sludge microbial assemblage. Metagenomic clones and a plasmid that in Escherichia coli expressed resistance to chloramphenicol, ampicillin, or kanamycin were isolated, with many cloned DNA sequences lacking any significant homology to known ant...

  13. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    OpenAIRE

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Celso V Nakamura; de Oliveira, Admilton G.; Andrade, Célia G.T. de J.; Duran, Nelson; Nakazato, Gerson; Renata K. T. Kobayashi

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistanc...

  14. Bacterial Flora from Healthy Clarias gariepinus and their Antimicrobial Resistance Pattern

    Directory of Open Access Journals (Sweden)

    M.O. Efuntoye

    2012-06-01

    Full Text Available The antibiotic resistance of bacteria isolated from Clarias gariepinus from 3 farms in Ago-Iwoye, Nigeria was investigated. Morphological and biochemical characteristics of isolates revealed that majority of the bacteria belonged to the family Enterobacteriaceae. Staphylococcus aureus and Pseudomonas aeruginosa were also recovered. E. coli strains were highly resistant to ampicillin, chloramphenicol and oxytetracycline (82.4%. Majority of the Pseudomonas aeruginosa were resistant to ampicillin (63.6%, amoxycillin (54.5%, nalidixic acid (63.6% and oxytetracycline (72.7%, whereas most of the Salmonella spp. were resistant to erythromycin (85.7%, gentamycin (71.4%, amoxicillin (57.1%, chloramphenicol (57.1% and sulphamethoxazole (57.1%. All isolates were highly sensitive to ciprofloxacin, novobiocin and ofloxacin. While the presence of potentially pathogenic bacterial species as observed in the study may not present a serious human health hazard because of heat treatment accorded fish before consumption, the presence of antibiotic resistant strains should not be ignored because of the potential for horizontal gene transfer in the food chain.

  15. Effect of the osmotic conditions during sporulation on the subsequent resistance of bacterial spores.

    Science.gov (United States)

    Nguyen Thi Minh, Hue; Guyot, Stéphane; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2008-08-01

    The causes of Bacillus spore resistance remain unclear. Many structures including a highly compact envelope, low hydration of the protoplast, high concentrations of Ca-chelated dipicolinic acid, and the presence of small acid-soluble spore proteins seem to contribute to resistance. To evaluate the role of internal protoplast composition and hydration, spores of Bacillus subtilis were produced at different osmotic pressures corresponding to water activities of 0.993 (standard), 0.970, and 0.950, using the two depressors (glycerol or NaCl). Sporulation of Bacillus subtilis was slower and reduced in quantity when the water activity was low, taking 4, 10, and 17 days for 0.993, 0.970, and 0.950 water activity, respectively. The spores produced at lower water activity were smaller and could germinate on agar medium at lower water activity than on standard spores. They were also more sensitive to heat (97 degrees C for 5-60 min) than the standard spores but their resistance to high hydrostatic pressure (350 MPa at 40 degrees C for 20 min to 4 h) was not altered. Our results showed that the water activity of the sporulation medium significantly affects spore properties including size, germination capacity, and resistance to heat but has no role in bacterial spore resistance to high hydrostatic pressure. PMID:18506440

  16. Antimicrobial activity of human α-defensin 6 analogs: insights into the physico-chemical reasons behind weak bactericidal activity of HD6 in vitro.

    Science.gov (United States)

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-11-01

    Human α-defensin 6 (HD6), unlike other mammalian defensins, does not exhibit bactericidal activity, particularly against aerobic bacteria. Monomeric HD6 has a tertiary structure similar to other α-defensins in the crystalline state. However, the physico-chemical reasons behind the lack of antibacterial activity of HD6 are yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD6 analogs. A linear analog of HD6, in which the distribution of arginine residues was similar to active α-defensins, shows broad-spectrum antimicrobial activity, indicating that atypical distribution of arginine residues contributes to the inactivity of HD6. Peptides spanning the N-terminal cationic segment were active against a wide range of organisms. Antimicrobial potency of these shorter analogs was further enhanced when myristic acid was conjugated at the N-terminus. Cytoplasmic localization of the analogs without fatty acylation was observed to be necessary for bacterial killing, while they exhibited fungicidal activity by permeabilizing Candida albicans membranes. Myristoylated analogs and the linear full-length arginine analog exhibited activity by permeabilizing bacterial and fungal membranes. Our study provides insights into the lack of bactericidal activity of HD6 against aerobic bacteria. PMID:26400692

  17. Prevalence of antibacterial resistant bacterial contaminants from mobile phones of hospital inpatients

    Directory of Open Access Journals (Sweden)

    B. Vinod Kumar

    2014-10-01

    Full Text Available Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9% out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0% coagulase-negative Staphylococcus, 12 (11.3% Staphylococcus aureus, 7 (6.6% Enterobacter cloacae, 3 (2.83% Pseudomonas stutzeri, 3 (2.83% Sphingomonas paucimobilis, 2 (1.8% Enterococcus faecalis and 10 (9.4% aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised.

  18. Antibiotic Resistance Pattern Of Bacterial Pathogens Isolated From Poultry Manure Used To Fertilize Fish Ponds In New Bussa, Nigeria

    Directory of Open Access Journals (Sweden)

    Funso Omojowo

    2013-02-01

    Full Text Available This study was carried out to isolate and identify antibiotic resistant bacteria from poultry manure usually used for pond fertilization. Poultry manure from 120 Chickens in National Institute for Freshwater Fisheries Research (NIFFR integrated fish farms, New-Bussa, Nigeria was collected. Five bacterial pathogens; Salmonella typhi, Escherichia coli, Shigella dysenteriae, Staphylococcus aureus and Aeromonas hydrophila were isolated. Antibiotic susceptibility testing carried out using the disk diffusion technique. Antibiotics used were; ofloxacin, amoxicillin, tetracycline, ampicillin, erythromycin, gentamicin, nalidixic acid and chloramphenicol. All the isolated organisms were 100% sensitive to ofloxacin. The multiple resistance pattern revealed that 100% were resistant to tetracycline, 84.34% resistant to ampicillin, 76.68% resistant to amoxicillin, 66% resistant to chloramphenicol, 66% resistant to gentamicin, 29% resistant to erythromycin, 28.34% resistant to nalidixic acid. The risk posed by untreated poultry manure used in fish pond fertilization and the public health implications of these results were discussed.

  19. Prevalence of plasmid mediated pesticide resistant bacterial assemblages in crop fields.

    Science.gov (United States)

    Umamaheswari, S; Murali, M

    2010-11-01

    Three crop fields namely paddy sugarcane and tomato exposed to bavistin [Methyl (1H-benzimidazol-2-yl) carbomate], monocrotophos[Dimethyl(E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] and kinado plus [(EZ)-2-chloro-3-dimethoxyphosphinoyloxy-X1, X1-diethylbut-2-enamide], respectively were chosen for the present investigation to know the bacterial population and degradation of pesticides. The chemical nature of the soil and water samples from the pesticide contaminated fields was analysed along with counting of the total heterotrophic bacteria (THB), Staphylococci and Enterococcci population. Mean calcium, phosphate and biological oxygen demand were maximum in tomato field water Field water recorded maximum phophate and silicate content, whereas, sugarcane field water elicited maximum dissolved oxygen content. On the other hand, available phosphate and exchangeable potassium were maximum is sugarcane field soil. Significant variations in the bacterial population were evident between the treatments in sugarcane field soil and tomato field water exposed to monocrotophos and kinado plus, respectively In addition, significant variations between THB, Staphlyococci and Enterococci population were also evinced in both the sugarcane andtomato fields. The dominant pesticide resistant bacteria, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeuroginosa harboured plasmids and the resistant trait observed were found to be plasmid borne. PMID:21506482

  20. Reduced Paneth cell α-defensins in ileal Crohn's disease

    OpenAIRE

    Wehkamp, Jan; Salzman, Nita H.; Porter, Edith; Nuding, Sabine; Weichenthal, Michael; Petras, Robert E; Shen, Bo; Schaeffeler, Elke; Schwab, Matthias; Linzmeier, Rose; Feathers, Ryan W.; Chu, Hiutung; Lima, Heriberto; Fellermann, Klaus; Ganz, Tomas

    2005-01-01

    The pathogenesis of Crohn′s disease (CD), an idiopathic inflammatory bowel disease, is attributed, in part, to intestinal bacteria that may initiate and perpetuate mucosal inflammation in genetically susceptible individuals. Paneth cells (PC) are the major source of antimicrobial peptides in the small intestine, including human α-defensins HD5 and HD6. We tested the hypothesis that reduced expression of PC α-defensins compromises mucosal host defenses and predisposes patients to CD of the ile...

  1. Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy

    OpenAIRE

    Václav Čeřovský; Robert Bém

    2014-01-01

    Defensins are the most widespread antimicrobial peptides characterised in insects. These cyclic peptides, 4–6 kDa in size, are folded into α-helical/β-sheet mixed structures and have a common conserved motif of three intramolecular disulfide bridges with a Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 connectivity. They have the ability to kill especially Gram-positive bacteria and some fungi, but Gram-negative bacteria are more resistant against them. Among them are the medicinally important compounds ...

  2. Resistance Induction and Enhanced Tuber Production by Pre-inoculation with Bacterial Strains in Potato Plants against Phytophthora infestans

    OpenAIRE

    Kim, Hyo-Jeong; Jeun, Yong-Chull

    2006-01-01

    Efficacy of resistance induction by the bacterial isolates Pseudomonas putida (TRL2-3), Micrococcus luteus (TRK2-2) and Flexibacteraceae bacterium (MRL412), which were isolated from the rhizosphere of plants growing in Jeju Mountain, were tested in a greenhouse. The disease severity caused by Phytophthora infestans was effectively reduced in the potato plants pre-inoculated with bacterial isolates compared with those of the untreated control plants growing in a greenhouse. In order to estimat...

  3. Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

    OpenAIRE

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated incre...

  4. Early-onset sepsis in a neonatal intensive care unit in Beni Suef, Egypt: bacterial isolates and antibiotic resistance pattern

    OpenAIRE

    Fahmey, Sameh Samir

    2013-01-01

    Purpose To identify the frequency of bacterial isolates in early-onset neonatal sepsis (EONS) and their antimicrobial resistance pattern. Methods A retrospective study of EONS was conducted at the Beni Suef University Hospital from September 2008 to September 2012. A case of EONS was defined as an infant who had clinical signs of infection or who was born to a mother with risk factors for infection, and in whom blood culture obtained within 72 hours of life grew a bacterial pathogen. Results ...

  5. Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blight

    OpenAIRE

    Luiz Filipe Pereira; Goodwin, Paul H.; Larry Erickson

    2003-01-01

    Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis, is considered one of the most important bacterial diseases of cassava (Manihot esculenta Crantz). In order to characterize the cassava genes involved in resistance to this disease, a genomic clone of a cationic peroxidase gene, MEPX1, was isolated by PCR from cassava cultivar MCOL 22. The DNA sequence of MEPX1 showed high homology with other plant peroxidase genes and contained a large intron typical of peroxidase...

  6. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides

    DEFF Research Database (Denmark)

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon;

    2015-01-01

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces...... activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken...... together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism....

  7. Screening foods for processing-resistant bacterial spores and characterization of a pressure- and heat-resistant Bacillus licheniformis isolate.

    Science.gov (United States)

    Ahn, Juhee; Balasubramaniam, V M

    2014-06-01

    This study was carried out to isolate pressure- and heat-resistant indicator spores from selected food matrices (black pepper, red pepper, garlic, and potato peel). Food samples were processed under various thermal (90 to 105°C) and pressure (700 MPa) combination conditions, and surviving microorganisms were isolated. An isolate from red pepper powder, Bacillus licheniformis, was highly resistant to pressure-thermal treatments. Spores of the isolate in deionized water were subjected to the combination treatments of pressure (0.1 to 700 MPa) and heat (90 to 121°C). Compared with the thermal treatment, the combined pressure-thermal treatments considerably reduced the numbers of B. licheniformis spores to less than 1.0 log CFU/g at 700 MPa plus 105°C and at 300 to 700 MPa plus 121°C. The inactivation kinetic parameters of the isolated B. licheniformis spores were estimated using linear and nonlinear models. Within the range of the experimental conditions tested, the pressure sensitivity (zP) of the spores decreased with increasing temperature (up to 121°C), and the temperature sensitivity (zT) was maximum at atmospheric pressure (0.1 MPa). These results will be useful for developing a combined pressure-thermal inactivation kinetics database for various bacterial spores. PMID:24853517

  8. Mechanism of bacterial membrane poration by Antimicrobial Peptides

    Science.gov (United States)

    Arora, Ankita; Mishra, Abhijit

    2015-03-01

    Bacterial resistance to conventional antibiotics is a major health concern. Antimicrobial peptides (AMPs), an important component of mammalian immune system, are thought to utilize non-specific interactions to target common features on the outer membranes of pathogens; hence development of resistance to such AMPs may be less pronounced. Most AMPs are amphiphilic and cationic in nature. Most AMPs form pores in the bacterial membranes causing them to lyse, however, the exact mechanism is unknown. Here, we study the AMP CHRG01 (KSSTRGRKSSRRKK), derived from human β defensin 3 (hBD3) with all Cysteine residues substituted with Serine. Circular Dichorism studies indicate that CHRG01 shows helicity and there is change in helicity as it interacts with the lipid membrane. The AMP was effective against different species of bacteria. Leakage of cellular components from bacterial cells observed by SEM and AFM indicates AMP action by pore formation. Confocal microscopy studies on giant vesicles incubated with AMP confirm poration. The effect of this AMP on model bacterial membranes is characterized using Small Angle X-ray scattering and Fluorescence spectroscopy to elucidate the mechanism behind antimicrobial activity.

  9. Combining ability of Phaseolus vulgaris L. for resistance to common bacterial blight

    Directory of Open Access Journals (Sweden)

    Rosana Rodrigues

    1999-12-01

    Full Text Available Many diseases limit dry bean and snap bean yields. Common bacterial blight (CBB, caused by Xanthomonas axonopodis pv. phaseoli, is one of the most serious bacterial diseases in dry bean and snap bean that cause crop losses. Since there is no satisfactory chemical control, the use of resistant cultivars is an important control measure. Genetic studies of resistance are important for choosing appropriate breeding methods. Combining ability was determined for disease resistance in three snap bean genotypes (Alessa, Hab 52 and Hab 198 and two dry bean genotypes (Bac-6 and A-794. Plants were inoculated with highly pathogenic isolate CNF 15, using a razor blade procedure in leaves and needle punctures in pods. They were evaluated 7 days after inoculation. Leaves were evaluated on a 1 to 5 scale and pods by lesion diameter. Diallel analysis was conducted using Griffing's model. General combining ability (GCA was significant for both leaf and pod infection, whereas specific combining ability (SCA was significant for disease reaction in pods. Bac-6 and A-794 were considered superior genotypes for leaf resistance. Nonadditive effects were predominant in pod reactions, and Alessa x Bac-6, Alessa x A-794 and Hab 52 x Bac-6 were the best combinations.Entre as várias doenças que causam problemas às culturas do feijão-de-vagem e do feijão comum, uma das mais importantes é o crestamento bacteriano comum (CBB, causado pela bactéria Xanthomonas axonopodis pv. phaseoli, que pode ocasionar grandes perdas na produção. O controle químico não é eficiente, e entre as medidas de controle recomendadas, destaca-se a resistência genética. Estudos genéticos da resistência são básicos para a definição dos métodos de melhoramento a serem adotados para cada caso. Avaliou-se a capacidade de combinação de três genótipos de feijão-de-vagem (Alessa, Hab 52, Hab 198 e dois de feijão comum (Bac-6 e A-794 quanto à resistência ao CBB, em folhas e vagens. A

  10. Calprotectin S100A9 Calcium-binding Loops I and II Are Essential for Keratinocyte Resistance to Bacterial Invasion*

    OpenAIRE

    Champaiboon, Chantrakorn; Sappington, Kaia J.; Guenther, Brian D.; Ross, Karen F.; Herzberg, Mark C.

    2009-01-01

    Epithelial cells expressing calprotectin, a heterodimer of S100A8 and S100A9 proteins, are more resistant to bacterial invasion. To determine structural motifs that affect resistance to bacterial invasion, mutations were constructed in S100A9 targeting the calcium-binding loops I and II (E36Q, E78Q, E36Q,E78Q) and the C terminus (S100A91–99 and S100A91–112), which contains putative antimicrobial zinc-binding and phosphorylation sites. The S100A8 and mutated S100A9 enco...

  11. In vitro inhibitory potentials of crude plant extracts on multidrug resistant bacterial species from infected human wounds

    Directory of Open Access Journals (Sweden)

    Yetunde A Ekanola

    2013-01-01

    Full Text Available Background: Scientific data on usage of plants to promote wound healing is exclusively scare in Nigeria. AIM: The aim of this study was to determine in vitro inhibitory potentials of crude extracts of garlic (Allium sativum and ginger (Zingiber officinale on multiple antibiotic resistant bacteria isolated from deep and superficial human wounds. Materials and Methods: Using agar disc- and modified agar well-diffusion methods, 87 wound-borne bacterial strains, Staphylococcus aureus, Proteus mirabilis and Pseudomonas aeruginosa were screened for in vitro susceptibility to 15 commonly-available antibiotic discs, 18 antibiotic drugs and three plant extracts. Results: Staph. aureus strains exhibited 52.5-97.4% resistance to antibiotic (discs, with multiple antibiotic resistance (MAR of 25.0 -100%. Between 39.1 and 95.7% of Proteus mirabilis strains resisted the antibiotics (discs, while MAR was 37.5-100%. Resistance rates displayed by Ps. aeruginosa strains were 61.5-100% with MAR of 50.0-100%. Overall antibiotic resistance patterns of respective bacterial species recorded for the antibiotic drugs were Staph. aureus (11.1-83.3%, Pr. mirabilis (16.7-77.8% and Ps. aeruginosa (16.7-50.0% and the most-resisted antibiotic drugs were axacef (55.3-82.6%, septrin (84.2-92.3%, primpex (78.3-84.6%, mediphenicol (63.2-73.1% and augmentin 1 (43.2-76.9%. All the multidrug resistant wound-borne bacterial strains exhibited minimal to moderate susceptibility towards crude extracts of garlic (17.4-34.6% and ginger (57.7-60.8%. Conclusion: Human wound-borne bacterial strains, which were multi-resistant to commonly available antibiotics (discs/drugs were minimally or moderately susceptible to crude extracts of garlic (Allium sativum and ginger (Zingiber officinale, which can be of clinical importance as herbal therapy in wound dressings or other forms of wound treatments.

  12. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile

    Directory of Open Access Journals (Sweden)

    Altimira Fabiola

    2012-09-01

    Full Text Available Abstract Background Copper mining has led to Cu pollution in agricultural soils. In this report, the effects of Cu pollution on bacterial communities of agricultural soils from Valparaiso region, central Chile, were studied. Denaturing gradient gel electrophoresis (DGGE of the 16S rRNA genes was used for the characterization of bacterial communities from Cu-polluted and non-polluted soils. Cu-resistant bacterial strains were isolated from Cu-polluted soils and characterized. Results DGGE showed a similar high number of bands and banding pattern of the bacterial communities from Cu-polluted and non-polluted soils. The presence of copA genes encoding the multi-copper oxidase that confers Cu-resistance in bacteria was detected by PCR in metagenomic DNA from the three Cu-polluted soils, but not in the non-polluted soil. The number of Cu-tolerant heterotrophic cultivable bacteria was significantly higher in Cu-polluted soils than in the non-polluted soil. Ninety two Cu-resistant bacterial strains were isolated from three Cu-polluted agricultural soils. Five isolated strains showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM and also resistance to other heavy metals. 16S rRNA gene sequence analyses indicate that these isolates belong to the genera Sphingomonas, Stenotrophomonas and Arthrobacter. The Sphingomonas sp. strains O12, A32 and A55 and Stenotrophomonas sp. C21 possess plasmids containing the Cu-resistance copA genes. Arthrobacter sp. O4 possesses the copA gene, but plasmids were not detected in this strain. The amino acid sequences of CopA from Sphingomonas isolates (O12, A32 and A55, Stenotrophomonas strain (C21 and Arthrobacter strain (O4 are closely related to CopA from Sphingomonas, Stenotrophomonas and Arthrobacter strains, respectively. Conclusions This study suggests that bacterial communities of agricultural soils from central Chile exposed to long-term Cu-pollution have been adapted by acquiring Cu genetic determinants

  13. Aminomethyl spectinomycins as therapeutics for drug-resistant respiratory tract and sexually transmitted bacterial infections.

    Science.gov (United States)

    Bruhn, David F; Waidyarachchi, Samanthi L; Madhura, Dora B; Shcherbakov, Dimitri; Zheng, Zhong; Liu, Jiuyu; Abdelrahman, Yasser M; Singh, Aman P; Duscha, Stefan; Rathi, Chetan; Lee, Robin B; Belland, Robert J; Meibohm, Bernd; Rosch, Jason W; Böttger, Erik C; Lee, Richard E

    2015-05-20

    The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A series of N-benzyl-substituted 3'-(R)-3'-aminomethyl-3'-hydroxy spectinomycins was developed on the basis of a computational analysis of the aminomethyl spectinomycin binding site and structure-guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against the common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis, as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non-ribosome-binding 3'-(S) isomers of the lead compounds demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target against the ribosome. Compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series exhibited excellent chemical stability superior to spectinomycin; no interaction with a panel of human receptors and drug metabolism enzymes, suggesting low potential for adverse reactions or drug-drug interactions in vivo; activity in vitro against a panel of penicillin-, macrolide-, and cephalosporin-resistant S. pneumoniae clinical isolates; and the ability to cure mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate that N-benzyl aminomethyl spectinomycins are suitable for further development to treat drug-resistant respiratory tract and sexually transmitted bacterial infections. PMID:25995221

  14. Microarray Analysis of the Transcriptome for Bacterial Wilt Resistance in Pepper (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Jihyun HWANG

    2011-11-01

    Full Text Available Ralstonia solanacearum causes one of the most common soil-borne vascular diseases of diverse plant species, including many solanaceous crops such as tomato and pepper. The resulting disease, bacterial wilt (BW, is devastating and difficult to control using conventional approaches. The aim of this study was to investigate the differentially expressed genes in pepper root systems in response to infection by R. solanacearum. DNA microarray (Capsicum annuum 135K Microarray v3.0 Gene Expression platform analyses were performed using a susceptible genotype, ‘Chilbok’, and a resistant genotype, ‘KC350’, at 3 time points (1, 3, and 6 days post inoculation. It has been identified 115 resistance-specific genes (R-response genes and 109 susceptibility-specific genes (S-response gene, which were up-regulated in 1 genotype, but down-regulated in the other genotype. Gene Ontology (GO analysis for functional categorization indicated that many R-response genes were related to genes that function in xyloglucan biosynthesis and cell wall organization, while S-response genes were involved in the response to stress and cell death. The expression of genes encoding xyloglucan endotransglycosylase/hydrolase (XTH and β-galactosidase were verified by real-time RT-PCR at an early time point of R. solanacearum infection. The results supported the idea that rapidly induced XTH expression in ‘KC350’ may play an important role in the restructuring and reinforcement of the cell wall and restrict bacterial movement in xylem vessels. In addition, induced expression of β-galactosidase in R. solanacearum-infected ‘Chilbok’ implied that degradation of the cell wall structure in vascular tissues by β-galactosidase might be an important factor facilitating R. solanacearum invasion of and movement in susceptible host plants.

  15. Resistance of a novel root canal sealer to bacterial ingress in vitro.

    Science.gov (United States)

    Padachey, N; Patel, V; Santerre, P; Cvitkovitch, D; Lawrence, H P; Friedman, S

    2000-11-01

    A dentin-bonding root canal sealer (ZUT) has been developed, consisting of an experimental glass ionomer cement (KT-308) and an antimicrobial silver-containing zeolite (0.2% by weight). This in vitro study evaluated the ability of ZUT used with or without gutta-percha, to resist bacterial ingress of Enterococcus faecalis over a period of 90 days. Canals of 80 single-rooted teeth were prepared with apical patency and filled as follows (n = 10): KT-308 alone; KT-308 with a single gutta-percha cone (SCGP); ZUT alone; ZUT with SCGP; AH26 alone; AH26 with SCGP; positive control-no root canal filling; and negative control-no root canal filling, with the apices of this group sealed with C&B Metabond cement. Teeth were coated with nail polish except for the apical 2 mm, and each tooth was sealed in a 4-ml glass vial, with an 18-gauge needle inserted through the vial cover and bonded into the pulp chamber with C&B Metabond cement. After sterilization with 2.5 Mrad gamma-radiation, Brain Heart Infusion broth with phenol red was injected into each vial. An inoculum of E. faecalis was pipetted through the needle into the pulp chamber every 5 days, and the broth was monitored daily for color change and turbidity. When change occurred, the broth was cultured for growth of E. faecalis. Kaplan-Meier survival analysis and the log-rank test revealed no significant differences among the three sealers used. The presence of gutta-percha, however, significantly improved resistance to bacterial ingress through obturated root canals (X, p < 0.05). Under the conditions of this study, the hypothesized advantage of ZUT (0.2% zeolite) was not demonstrated. PMID:11469295

  16. Influence of the Diversity of Bacterial Isolates from Drinking Water on Resistance of Biofilms to Disinfection ▿

    OpenAIRE

    Simões, Lúcia C; Simões, M; Vieira, M. J.

    2010-01-01

    Single- and multispecies biofilms formed by six drinking water-isolated bacterial species were used to assess their susceptibilities to sodium hypochlorite (SHC). In general, multispecies biofilms were more resistant to inactivation and removal than single biofilms. Total biofilm inactivation was achieved only for Acinetobacter calcoaceticus single-species biofilms and for those multispecies biofilms without A. calcoaceticus. Biofilms with all bacteria had the highest resistance t...

  17. Gamma radiation-induced mutant of NSIC RC144 with broad-spectrum resistance to bacterial blight

    International Nuclear Information System (INIS)

    Mutant lines derived from gamma radiation-treated commercial variety NSIC RC144 were produced and screened for novel resistance to bacterial blight, one of the most serious diseases of rice. Preliminary screening of a bulk M2 population through induced method using race 3 of the pathogen Xanthomonas oryzae pv. oryzae (Xoo) resulted in the selection of 89 resistant plants. Subsequent repeated bacterial blight screenings and generation advance for five seasons resulted in the selection of two highly resistant M7 sister lines whose origin can be traced to a single M2 plant. DNA fingerprinting using 63 genome-wide simple sequence repeat (SSR) markers revealed an identical pattern in these lines. Using the same set of markers, they also exhibited 98% similarity to wild type NSIC RC144 indicating that the resistance is due to mutation and not due to genetic admixture or seed impurity. Two seasons of bacterial blight screening using 14 local isolates representing ten races of Xoo revealed an identical reaction pattern in these lines. The reaction pattern was observed to be unique compared to known patterns in four IRBB isolines (IRBB 4, 5, 7 and 21) with strong resistant reaction to bacterial blight suggesting possible novel resistance. The susceptible reaction in F1 testcrosses using Xoo race 6 and the segregation patterns in two F2 populations that fit with the expected 3 susceptible: 1 resistant ratio (P = 0.4, ns) suggest a single-gene recessive mutation in these lines. These mutants are now being used as resistance donor in the breeding program while further molecular characterization to map and characterize the mutated gene is being pursued

  18. Appraising contemporary strategies to combat multidrug resistant gram-negative bacterial infections--proceedings and data from the Gram-Negative Resistance Summit.

    Science.gov (United States)

    Kollef, Marin H; Golan, Yoav; Micek, Scott T; Shorr, Andrew F; Restrepo, Marcos I

    2011-09-01

    The emerging problem of antibiotic resistance, especially among Gram-negative bacteria (GNB), has become a serious threat to global public health. Very few new antibacterial classes with activity against antibiotic-resistant GNB have been brought to market. Renewed and growing attention to the development of novel compounds targeting antibiotic-resistant GNB, as well as a better understanding of strategies aimed at preventing the spread of resistant bacterial strains and preserving the efficacy of existing antibiotic agents, has occurred. The Gram-Negative Resistance Summit convened national opinion leaders for the purpose of analyzing current literature, epidemiologic trends, clinical trial data, therapeutic options, and treatment guidelines related to the management of antibiotic-resistant GNB infections. After an in-depth analysis, the Summit investigators were surveyed with regard to 4 clinical practice statements. The results then were compared with the same survey completed by 138 infectious disease and critical care physicians and are the basis of this article. PMID:21868447

  19. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. PMID:26897411

  20. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.;

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated......-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less...

  1. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tseng, I-Sheng; Møller, Per;

    2010-01-01

    techniques. The microstructure of these 316 stainless steels was examined, and the influences of silver additions to 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance were investigated. This study suggested that silver-bearing 316 stainless steels could be used in...

  2. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Science.gov (United States)

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. PMID:25565273

  3. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  4. Antibacterial action of doped CoFe2O4 nanocrystals on multidrug resistant bacterial strains

    International Nuclear Information System (INIS)

    The bactericidal effect of pristine and doped cobalt ferrite nanoparticles has been evaluated against multiple drug resistant clinical strains by assessing the number of colony-forming units (CFU). Monophasic polycrystalline ferrites have been prepared by the malate–glycolate sol–gel autocombustion method as confirmed by the X-ray diffraction study. Various changes occurring during the preparative stages have been demonstrated using TG–DTA analysis which is well complemented by the FTIR spectroscopy. The antibacterial studies carried out demonstrate a bactericidal effect of the nanoparticles wherein the number of CFU has been found to decrease with doping. Cellular distortions have been revealed through SEM. Variation in the number of CFU with dopant type has also been reported herein. - Graphical abstract: Antibacterial action of doped cobalt ferrites resulting in the lyses of multi-drug resistant bacterial strains. - Highlights: • The paper reports an antibacterial study of rare earth doped cobalt ferrite nanoparticles. • Monophasic compounds have been prepared by the sol–gel autocombustion method. • Bactericidal property has been evaluated based on the number of colony forming units. • Variation in bactericidal action with respect to the dopant type has been observed. • Cellular distortions resulting in cell lysis are confirmed from the SEM images

  5. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice.

    Directory of Open Access Journals (Sweden)

    Waikhom Bimolata

    Full Text Available Nucleotide sequence polymorphisms among R gene alleles influence the process of co-evolutionary interaction between host and pathogen by shaping the response of host plants towards invading pathogens. Here, we present the DNA sequence polymorphisms and diversities present among natural alleles of three rice bacterial blight resistance genes, Xa21, Xa26 and xa5. The diversity was examined across different wild relatives and cultivars of Oryza species. Functional significance of selected alleles was evaluated through semi-quantitative reverse transcription polymerase chain reaction and real time PCR. The greatest nucleotide diversity and singleton variable sites (SVS were present in Xa26 (π = 0.01958; SVS = 182 followed by xa5 and Xa21 alleles. The highest frequency of single nucleotide polymorphisms were observed in Xa21 alleles and least in xa5. Transition bias was observed in all the genes and 'G' to 'A' transitions were more favored than other form of transitions. Neutrality tests failed to show the presence of selection at these loci, though negative Tajima's D values indicate the presence of a rare form of polymorphisms. At the interspecies level, O. nivara exhibited more diversity than O. sativa. We have also identified two nearly identical resistant alleles of xa5 and two sequentially identical alleles of Xa21. The alleles of xa5 showed basal levels of expression while Xa21 alleles were functionally not expressed.

  6. Caenorhabditis elegans bacterial pathogen resistant bus-4 mutants produce altered mucins.

    Directory of Open Access Journals (Sweden)

    Lisa M Parsons

    Full Text Available Caenorabditis elegans bus-4 glycosyltransferase mutants are resistant to infection by Microbacterium nematophilum, Yersinia pestis and Yersinia pseudotuberculosis and have altered susceptibility to two Leucobacter species Verde1 and Verde2. Our objective in this study was to define the glycosylation changes leading to this phenotype to better understand how these changes lead to pathogen resistance. We performed MALDI-TOF MS, tandem MS and GC/MS experiments to reveal fine structural detail for the bus-4 N- and O-glycan pools. We observed dramatic changes in O-glycans and moderate ones in N-glycan pools compared to the parent strain. Ce core-I glycans, the nematode's mucin glycan equivalent, were doubled in abundance, halved in charge and bore shifts in terminal substitutions. The fucosyl O-glycans, Ce core-II and neutral fucosyl forms, were also increased in abundance as were fucosyl N-glycans. Quantitative expression analysis revealed that two mucins, let-653 and osm-8, were upregulated nearly 40 fold and also revealed was a dramatic increase in GDP-Man 4,6 dehydratease expression. We performed detailed lectin binding studies that showed changes in glycoconjugates in the surface coat, cuticle surface and intestine. The combined changes in cell surface glycoconjugate distribution, increased abundance and altered properties of mucin provide an environment where likely the above pathogens are not exposed to normal glycoconjugate dependent cues leading to barriers to these bacterial infections.

  7. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes.

    Science.gov (United States)

    Wang, Hang; Li, Hongyi; Gilbert, Jack A; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian

    2015-11-01

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. PMID:26296728

  8. EXPRESSION OF BACTERIAL PROTEIN-A IN TOBACCO LEADS TO ENHANCED RESISTANCE TO STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Chaitali Roy

    2014-08-01

    Full Text Available Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms because it can be easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. As bacterial enzymes can be synthesized in tobacco, here we explore the possibility of in planta expression of staphylococcal protein-A(PA which is an antibody, an important group among biopharmaceuticals. In our study we have shown that the tobacco plants harboring PA gene could combat the crown gall infection and also effective in resisting abiotic stress conditions. Transgenic plants when subjected to interact with wild variety of Agrobacterium shows its enhanced capability to resist the gall formation. And when transgenic tobacco plants were grown in presence of 200mM NaCl and/or MG(Methylglyoxal solution, shows their increased tolerance towards salinity stress and high MG stress. So far transgenic tobacco plants are concerned, improvements in the expression of recombinant proteins and their recovery from tobacco may also enhance production and commercial use of this protein.

  9. Bacterial Contamination and Antibiotic Resistance of Staphylococcus Aureus Isolated from Automated Teller Machine

    Directory of Open Access Journals (Sweden)

    Moshtaghi, H. (PhD

    2015-05-01

    Full Text Available Background and Objective: Automated Teller Machine (ATMs is likely to be contaminated with various microorganisms specially pathogen germs. This may be due to their exposure to dust and their vast dermal contact with multiple users. This study investigated the bacterial contamination on the keyboard of ATMs and drug resistance of the bacteria isolated from them. Material and Methods: the keyboards of 50 ATMs in Shahrekord city, Iran, were examined from October 2012 to February 2013. The sterile swab sticks moistened with Triptose soy broth were used for sampling. The bacteriological tests used were culture, biochemical test and agar disk diffusion method for antibiogram. Results: All the samples were found to be contaminated with Coagulase negative staphylococci (57.54%, Bacillus species (21.92%, Staphylococcus aureus (19.18% and coliform bacteria (1.36%. The resistance of Staphylococcus aureus was 92.8% to penicillin, 85.7% to amoxicilin، 71.4% to ampicillin, 57.1% to nytrofuran, 50% to tetracycline, 42.8% to erythromycin, 42.8% to gentamycin, 14.2 % to ciprofloxacin, 7.1% to trimethoprim and sulfamtuksazul. All species were susceptible to, ofloxacine, chloramphenicol, clindamycin, tobramycin, vancomycin and cefotaxime. Conclusion: given the presence of pathogens on ATMs and their role in transferring the contamination, we recommend considering personal hygiene and periodically disinfecting the keyboards to reduce contamination

  10. Assessment of Relationship Between Bacterial Stripe Resistance And Leaf Protein Bands In Rice (Oryza sativa L.) Varieties.

    Science.gov (United States)

    Talei, D.; Fotokian, M. H.

    2008-01-01

    Bacterial stripe as a new rice disease in Iran is more frequent nowadays. The objective of this study was to assessment of resistance in rice varieties together with evaluating of zymogram bands resulted from SDS PAGE electrophoresis of leaf proteins. For this purpose, 30 lines were tested in a randomized complete block design with three replications. The analysis of variance showed that there was significant difference between genotypes for resistance. Mean compare based on field results revealed that Domsiyah had the lowest resistance while Nemat and 7162 demonstrated the highest resistance. Laboratory results showed that there were significant difference between protein bands resulted from sensitive and resistance verities. Twenty bands were observed through SDS PAGE electrophoresis of leaf proteins. The 9th and 12th bands were found in sensitive varieties while were not in resistance genotypes. According to the results of this study, 7162 variety can be considered as the sources of resistance in breeding programs. Meanwhile attending to existence of 9th and 12th bands in sensitive varieties, resistance against bacterial stripe of rice maybe influenced by absence of these proteins.

  11. Antibacterial Activity of Salvadora persica L. (Miswak) Extracts against Multidrug Resistant Bacterial Clinical Isolates

    Science.gov (United States)

    Al-Ayed, Mohamed Saeed Zayed; Asaad, Ahmed Morad; Qureshi, Mohamed Ansar; Attia, Hany Goda; AlMarrani, Abduljabbar Hadi

    2016-01-01

    Much effort has focused on examining the inhibitory effect of Salvadora persica (miswak) on oral microorganisms, but information concerning its antibacterial activity against other human pathogens, particularly multidrug resistant (MDR) isolates, is scarce. Therefore, this study aimed to assess the in vitro antibacterial activities of Salvadora persica L. extracts against 10 MDR bacterial clinical isolates other than oral pathogens. The antibacterial activity of aqueous and methanol miswak extracts was assessed using the agar dilution and minimum inhibitory concentration (MIC) methods. Overall, the 400 mg/mL of miswak extract was the most effective on all strains. The methanol extract exhibited a stronger antibacterial activity against Gram-negative (3.3–13.6 mm) than Gram-positive (1.8–8.3 mm) bacteria. The lowest MIC value was seen for E. coli (0.39, 1.56 µg/mL), followed by Streptococcus pyogenes (1.56 µg/mL). The highest MIC value (6.25, 12.5 µg/mL) was recorded for methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii, and Stenotrophomonas maltophilia. This study demonstrates, for the first time, the moderate to strong antibacterial activity of miswak extracts against all tested MDR-pathogens. Methanol extract appears to be a potent antimicrobial agent that could be considered as complementary and alternative medicine against resistant pathogens. Further studies on a large number of MDR organisms are necessary to investigate and standardize the inhibitory effect of miswak extracts against these emerging pathogens. PMID:26904146

  12. Sulfonamide and tetracycline resistance genes in total- and culturable-bacterial assemblages in South African aquatic environments

    Science.gov (United States)

    Suzuki, Satoru; Ogo, Mitsuko; Koike, Tatsuya; Takada, Hideshige; Newman, Brent

    2015-01-01

    Antibiotic resistant bacteria are ubiquitous in the natural environment. The introduction of effluent derived antibiotic resistance genes (ARGs) into aquatic environments is of concern in the spreading of genetic risk. This study showed the prevalence of sulfonamide and tetracycline resistance genes, sul1, sul2, sul3, and tet(M), in the total bacterial assemblage and colony forming bacterial assemblage in river and estuarine water and sewage treatment plants (STP) in South Africa. There was no correlation between antibiotic concentrations and ARGs, suggesting the targeted ARGs are spread in a wide area without connection to selection pressure. Among sul genes, sul1 and sul2 were major genes in the total (over 10-2 copies/16S) and colony forming bacteria assemblages (∼10-1 copies/16S). In urban waters, the sul3 gene was mostly not detectable in total and culturable assemblages, suggesting sul3 is not abundant. tet(M) was found in natural assemblages with 10-3 copies/16S level in STP, but was not detected in colony forming bacteria, suggesting the non-culturable (yet-to-be cultured) bacterial community in urban surface waters and STP effluent possess the tet(M) gene. Sulfamethoxazole (SMX) resistant (SMXr) and oxytetracycline (OTC) resistant (OTCr) bacterial communities in urban waters possessed not only sul1 and sul2 but also sul3 and tet(M) genes. These genes are widely distributed in SMXr and OTCr bacteria. In conclusion, urban river and estuarine water and STP effluent in the Durban area were highly contaminated with ARGs, and the yet-to-be cultured bacterial community may act as a non-visible ARG reservoir in certain situations. PMID:26300864

  13. The resistance of bacterial isolates from spacecraft assembly cleanrooms against physical and chemical treatments

    Science.gov (United States)

    Rettberg, Petra; Kloss, Maria; Barczyk, Simon; Reitz, Guenther

    The COSPAR planetary protection guidelines define bioburden limits for spacecraft to protect solar system bodies from contamination by terrestrial life, and to protect Earth from possible life forms that may be returned from other solar system bodies. The cleaning and sterilisation methods to be selected for space hardware have to be as efficient as necessary to reach the maximal allowed bioburden limit. To be able to asses the suitability of different methods it is mandatory to investigate the physiological potential of the microbial isolates from cleanrooms. In the ESA project BioDiv the bioburden and biodiversity was determined in cleanrooms where the satellite Herschel was integrated and tested. From all bacterial isolates obtained in sev-eral measurement campaigns 30 strains were selected. Their resistance as vegetative cells was tested against different physical and chemical treatments: drying under ambient conditions, desiccation under defined relative humidity, vacuum exposure, UVC radiation exposure, freeze-thaw cycles under martian atmosphere and pressure, exposure to high and low pH values, and exposure to alcohols. The results of these tests can be summarised as follows: i) Most of the tested microorganisms from cleanrooms exhibit a certain resistance against one or more of the tested conditions. This is in contrast to strains which have already been cultured for long-periods in time under optimal laboratory conditions. They tend to loose their original resistance against different environmental parameters. ii) Different isolates from the same species can exhibit significantly different resistances. Therefore, the sole identification of microorgnisms by 16S rDNA sequencing does not give insights into their physiological potential. iii) The first hours of drying have a substantial inactiviation effect, longer periods of drying or even vacuum exposure reduce the surviving fraction only slightly more. iv) The sensitivity against UVC radiation varies

  14. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins.

    Science.gov (United States)

    Cociancich, S; Goyffon, M; Bontems, F; Bulet, P; Bouet, F; Menez, A; Hoffmann, J

    1993-07-15

    Insect defensins are a group of inducible small-sized antibacterial peptides with three intramolecular disulfide bridges. NMR studies have recently shown that they share striking structural similarities with scorpion toxins. We have investigated in a scorpion species, Leiurus quinquestriatus, the potential presence of antibacterial molecules and report the isolation and structural characterization of a novel insect defensin homologue, which we refer to as scorpion defensin. This peptide shows a remarkably high degree of sequence homology with a defensin recently characterized in a species belonging to the ancient insect order of the Odonata with which it defines a novel ancient subclass of defensins. The scorpion defensin has in common with the scorpion toxins a consensus sequence Cys-[...]-Cys-Xaa-Xaa-Xaa-Cys-[...]-Gly-Xaa-Cys-[...]-Cys-Xaa-Cys present in all scorpion toxins characterized so far. PMID:8333834

  15. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    Science.gov (United States)

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses. PMID:27136163

  16. Defensins couple dysbiosis to primary immunodeficiency in Crohn's disease

    Institute of Scientific and Technical Information of China (English)

    Mathias Chamaillard; Rodrigue Dessein

    2011-01-01

    Antimicrobial peptides, including defensins, are essential effectors in host defence and in the maintenance of immune homeostasis. Clinical studies have linked the defective expression of both α- and β-defensin to the reduced killing of certain microorganisms by the intestinal mucosa of patients suffering from ileal and colonic Crohn's disease (CD), respectively. Only recently have the events leading to defective expression of defensins in CD been further elucidated, and are discussed herein.These events may account for CD-associated alterations in the microbiome and may subsequently precipitate the development of granulomatous inflammatory lesions in genetically-predisposed patients. We also address how these discoveries may pave the way for the development of a molecular medicine aimed at restoring gut barrier function in CD.

  17. Genetic parameters and selection for resistance to bacterial spot in recombinant F6 lines of Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Messias Gonzaga Pereira

    2009-01-01

    Full Text Available This study aimed to advance generations and select superior sweet pepper genotypes with resistance tobacterial spot, using the breeding method Single Seed Descent (SSD based on the segregating population derived from thecross between Capsicum annuum L. UENF 1421 (susceptible, non-pungent and UENF 1381 (resistant, pungent. Thesegregating F3 generation was grown in pots in a greenhouse until the F5 generation. The F6 generation was grown in fieldconditions. The reaction to bacterial spot was evaluated by inoculation with isolate ENA 4135 of Xanthomonas campestris pv.vesicatoria, based on a score scale and by calculating the area under the disease progress curve (AUDPC. The presence orabsence of capsaicin was also assessed. Eighteen F6 lines were bacterial leaf spot-resistant. Since no capsaicin was detectedin the F6 lines 032, 316, 399, 434, and 517, these will be used in the next steps of the sweet pepper breeding program.

  18. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool

    Directory of Open Access Journals (Sweden)

    Scudiero O

    2015-10-01

    suggest that this novel peptide may be added to the arsenal of tools available to combat antibiotic-resistant infectious diseases, particularly because of its potential for encapsulation in a nanomedicine vector. Keywords: antimicrobial activity, cyclic mini-peptide, human beta-defensin

  19. Frequency of Bacterial Contamination and Antibiotic Resistance Patterns in Devices and in Personnel of Endoscopy and Colonoscopy Units

    Directory of Open Access Journals (Sweden)

    Torabi, P. (BSc

    2014-06-01

    Full Text Available Background and Objective: This study was aimed to determine the extent of bacterial contamination and drug resistance patterns of isolates colonized in colonoscope and endoscope and in relevant personnel. Material and Methods: A total of 107 samples were obtained from staff of endoscopy and colonoscopy units (SEU and SCU and gastroenterological imaging equipment. For isolation and identification of the bacteria, swab culture method and biochemical identification test were used, respectively. Antimicrobial resistance profiles, multi-drug resistance (MDR patterns and phenetic relatedness of these isolates were also analyzed according to standard methods. Results: Most frequent pathogenic bacteria among the SEU and gastroenterological imaging related equipments were included S. aureus (20.8 % and 0 %; Enterococcus spp. (0 % and 5.4%; Pseudomonas spp. (0% and 13.5 %, and Clostridium difficile (0% and 12.5%. Analysis of resistance phenotypes showed a high frequency of MDR phenotypes among the SEU (82.1%, and also in endoscopes, colonoscopes, and other equipments (20%, 50% and 100%, respectively. Phylotyping of S. epidermidis isolates showed the role of staff in transmission of resistance strains to medical equipments and also circulation of strains with identical resistance phenotype among the studied samples. Conclusion: High frequency of pathogenic bacteria in colonoscopes, endoscopes and in the staff of endoscopy & colonoscopy units, and also contamination of these instruments with MDR pathogens emphasize the need for proper disinfection of endoscopes and colonoscopes and also instruction of staff in these units. Key words: Bacterial Contamination; Endoscope; Colonoscope; Antimicrobial Resistance; Gastrointestinal Disease.

  20. Enteric bacterial pathogens in children with diarrhea in Niger: diversity and antimicrobial resistance.

    Directory of Open Access Journals (Sweden)

    Céline Langendorf

    Full Text Available Although rotavirus is the leading cause of severe diarrhea among children in sub-Saharan Africa, better knowledge of circulating enteric pathogenic bacteria and their antimicrobial resistance is crucial for prevention and treatment strategies.As a part of rotavirus gastroenteritis surveillance in Maradi, Niger, we performed stool culture on a sub-population of children under 5 with moderate-to-severe diarrhea between April 2010 and March 2012. Campylobacter, Shigella and Salmonella were sought with conventional culture and biochemical methods. Shigella and Salmonella were serotyped by slide agglutination. Enteropathogenic Escherichia coli (EPEC were screened by slide agglutination with EPEC O-typing antisera and confirmed by detection of virulence genes. Antimicrobial susceptibility was determined by disk diffusion. We enrolled 4020 children, including 230 with bloody diarrhea. At least one pathogenic bacterium was found in 28.0% of children with watery diarrhea and 42.2% with bloody diarrhea. Mixed infections were found in 10.3% of children. EPEC, Salmonella and Campylobacter spp. were similarly frequent in children with watery diarrhea (11.1%, 9.2% and 11.4% respectively and Shigella spp. were the most frequent among children with bloody diarrhea (22.1%. The most frequent Shigella serogroup was S. flexneri (69/122, 56.5%. The most frequent Salmonella serotypes were Typhimurimum (71/355, 20.0%, Enteritidis (56/355, 15.8% and Corvallis (46/355, 13.0%. The majority of putative EPEC isolates was confirmed to be EPEC (90/111, 81.1%. More than half of all Enterobacteriaceae were resistant to amoxicillin and co-trimoxazole. Around 13% (46/360 Salmonella exhibited an extended-spectrum beta-lactamase phenotype.This study provides updated information on enteric bacteria diversity and antibiotic resistance in the Sahel region, where such data are scarce. Whether they are or not the causative agent of diarrhea, bacterial infections and their antibiotic

  1. PREVALENCE AND ANTIBIOTIC RESISTANCE OF FOOD BORNE BACTERIAL CONTAMINATION IN SOME EGYPTIAN FOOD food

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-09-01

    Full Text Available This study was undertaken to investigate the prevalence and antibiotic resistance of food borne bacterial contamination in some Egyptian food. Total viable bacteria and total coliform bacteriawere isolated from different sources of food; carbohydrates (bread, flour and basbousa, vegetables (outer and inner tissues of potato and outer and inner tissues of cucumber and proteins (mincedmeat, cheese and milk. The study resulted in maximum value of total viable bacteria found in outer tissue of potato 68X104±1.0, while the minimum value found in inner tissues of potato andcucumber. The study resulted in total coliform was maximum value in minced meat 6.4X103±0.3. Basbousa and inner tissue of potato and cucumber were free from coliforms. The ability of isolatesto producing proteolytic enzymes was tested, we found that 326 isolate (63.92% from all isolates had this ability, thus we selected most 2 potent proteolytic isolates. The two isolates were identifiedas Bacillus cereus and Escherichia coli. The identification confirmed by microlog 34.20 system and 16SrRNA for two isolates and the same result was founded. Sensitivity tested for the most potentproteolytic species to 12 of the most commonly used antibiotics in the Egyptian pharmacy. The results showed that all species were sensitive to most of antibiotics, except B. cereus which was strongly susceptible to azteronam and ceftazidim. The data showed that raw meat, cooked food products, and raw milk were most commonly contaminated with foodborne pathogens and many pathogens were resistant to different antibiotics. The study provided useful information for assessment of the possible risk posed to consumers, which has significant public health impact.

  2. Bacterial resistance to antibiotics in acne vulgaris: An in vitro study

    Directory of Open Access Journals (Sweden)

    Hassanzadeh Parvin

    2008-01-01

    Full Text Available Background: Acne vulgaris is one of the most common skin disorders in youth especially during the puberty. Objective: This in vitro study was performed to determine the antibiotic resistance and sensitivity in acne vulgaris. Materials and Methods: Samples were collected from normal skin and nodulocystic and pustular skin lesions of one hundred youngsters (64 girls, 36 boys among college students in the age range of 18-24 years old. The specimens were cultured individually on blood agar and Muller-Hinton media. The cultures were then incubated under both aerobic and anaerobic conditions for 2 to 7 days. Bacteria were identified and their resistance to common antibiotics was evaluated according to the standard procedures. Results: In aerobic culture of pustular and nodulocystic skin lesions, Staphylococcus aureus was present in 41% of subjects, Staphylococcus epidermidis in 53% and Micrococcus spp in 45% of subjucts. In anaerobic bacterial culture of pustular and nodulocystic skin lesions, Staphylococcus aureus was present in 39%, Propionibacterium acne in 33% and Staphylococcus epidermidis in 21% of subjects. The results of present study revealed that clindamycin and erythromycin were the least effective antibiotics for Propionibacterium acne while tetracycline was the least effective for Staphylococcus aureus in vitro . A synergic effect of benzoyl peroxide, erythromycin or clindamycin was noticed. Rifampin was the most effective antibiotic in vitro . Conclusion: Our results showed that rifampin was the most sensitive antibiotic in vitro for acne vulgaris. To achieve a better treatment, a combination of rifampin with other antibiotics may be more efficient. We suggest in vivo studies for better evaluation and treatment of acne patients with rifampin.

  3. Overexpression of the Eggplant (Solanum melongena) NAC Family Transcription Factor SmNAC Suppresses Resistance to Bacterial Wilt.

    Science.gov (United States)

    Na, Chen; Shuanghua, Wu; Jinglong, Fu; Bihao, Cao; Jianjun, Lei; Changming, Chen; Jin, Jiang

    2016-01-01

    Bacterial wilt (BW) is a serious disease that affects eggplant (Solanum melongena) production. Although resistance to this disease has been reported, the underlying mechanism is unknown. In this study, we identified a NAC family transcription factor (SmNAC) from eggplant and characterized its expression, its localization at the tissue and subcellular levels, and its role in BW resistance. To this end, transgenic eggplant lines were generated in which the expression of SmNAC was constitutively up regulated or suppressed using RNAi. The results indicated that overexpression of SmNAC decreases resistance to BW. Moreover, SmNAC overexpression resulted in the reduced accumulation of the plant immune signaling molecule salicylic acid (SA) and reduced expression of ICS1 (a gene that encode isochorismate synthase 1, which is involved in SA biosynthesis). We propose that reduced SA content results in increased bacterial wilt susceptibility in the transgenic lines. Our results provide important new insights into the regulatory mechanisms of bacterial wilt resistance in eggplant. PMID:27528282

  4. Antimicrobial potential of Halophilic actinomycetes against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens.

    Science.gov (United States)

    Aslam, Sana; Sajid, Imran

    2016-03-01

    A collection of forty halophilic actinomycetes isolated from water and mud samples of the saline lake at Kalar Kahar, salt range, Pakistan, was screened to investigate their antimicrobial potential against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens. The isolates exhibited significant tolerance to alkaline conditions and grew well at pH 9-11. The taxonomic status of the isolated strains was determined by morphological, biochemical and physiological characterization and by 16s rRNA gene sequencing. The results revealed that majority of the isolates (90%) belong to the genus Streptomyces. Most of the isolates exhibited remarkable antimicrobial activity up to 20mm zone of inhibition against MDR ventilator associated pneumonia causing bacteria including Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Enterobacter and Acinetobacter spp. Additionally the isolates showed moderate to high cytotoxicity in the range of 40 to 80% larval mortality against Artemia salina in a micro well cytotoxicity assay. The chemical screening or the so called metabolic fingerprinting of the methanolic extracts of each isolate, by thin layer chromatography (TLC) using various staining reagents and by high performance liquid chromatography (HPLC-UV), indicated an impressive diversity of the compounds produced by these strains. The study reveals that these halophilic actinomycetes are a promising source of bioactive compounds. The preparative scale fermentation, isolation, purification and structure elucidation of the compounds produced by them may yield novel antimicrobial or chemotherapeutic agents. PMID:27087086

  5. Bacterial Profile of Blood Stream Infection and Antibiotic Resistance Pattern of Isolates.

    Directory of Open Access Journals (Sweden)

    Usha Arora, Pushpa Devi

    2007-10-01

    Full Text Available Blood samples from 2542 clinically diagnosed cases of septicemia were processed. Out of these 946(76.55% were from Pediatric Department and rest from other Departments. Growth was obtained in509(20.02% cases . Candida spp were isolated from 23 (4.57 cases Out of 486 bacterial isolates 52.67% were gram positive bacteria whereas 47.33% were gram negative bacilli . Staph aureus 133 (27.37%wasthe predominant organisms followed by CONS 98 (20.1%. Amongst gram negative organismsEnterobacter 69 (14.19 % was the most predominant followed by Esch coli 45 (9.27 % Pseudomonas 37(7.62 % and Acinetobacter spp 34 (6.69 %. Amongst gram positive organisms maximum resistancewas seen with ampicillin (74.61% and erythromycin (69.67 %. Most of the gram negative bacilli wereMDR (71%. Maximum resistance was observed with ampicillin (86.1% cephalexin (68.07% andpiperacillin (57.71%. Most successful drugs were amikacin,gentamicin and cefotaxime. 34.35% of theisolates were ESBL producers.

  6. Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice

    Institute of Scientific and Technical Information of China (English)

    Jiao Wu; Haichuan Yu; Haofu Dai; Wenli Mei; Xin Huang; Shuifang Zhu; Ming Peng

    2012-01-01

    The metabolic changes of bacterial blight-resistant line C418/Xa23 generated by molecular marker-assisted selection (n =12),transgenic variety C418-Xa21 generated by using the Agrobacterium-mediated system (n =12),and progenitor cultivar C418 (n =12) were monitored using gas chromatography/mass spectrometry.The validation,discrimination,and establishment of correlative relationships between metabolite signals were performed by cluster analysis,principal component analysis,and partial least squares-discriminant analysis.Significant and unintended changes were observed in 154 components in C418/Xa23 and 48 components in C418-Xa21 compared with C418 (P < 0.05,Fold change > 2.0).The most significant decreases detected (P< 0.001) in both C418/Xa23 and C418-Xa21 were in three amino acids: glycine,tyrosine,and alanine,and four identified metabolites: malic acid,ferulic acid,succinic acid,and glycerol.Linoleic acid was increased specifically in C418/Xa23 which was derived from traditional breeding.This line,possessing a distinctive metabolite profile as a positive control,shows more differences vs.the parental than the transgenic line.Only succinic acid that falls outside the boundaries of natural variability between the two non-transgenic varieties C418 and C418/Xa23 should be further investigated with respect to safety or nutritional impact.

  7. Cell resistant zwitterionic polyelectrolyte coating promotes bacterial attachment: an adhesion contradiction.

    Science.gov (United States)

    Martinez, Jessica S; Kelly, Kristopher D; Ghoussoub, Yara E; Delgado, Jose D; Keller Iii, Thomas C S; Schlenoff, Joseph B

    2016-04-22

    Polymers of various architectures with zwitterionic functionality have recently been shown to effectively suppress nonspecific fouling of surfaces by proteins and prokaryotic (bacteria) or eukaryotic (mammalian) cells as well as other microorganisms and environmental contaminants. In this work, zwitterionic copolymers were used to make thin coatings on substrates with the layer-by-layer method. Polyelectrolyte multilayers, PEMUs, were built with [poly(allylamine hydrochloride)], PAH, and copolymers of acrylic acid and either the AEDAPS zwitterionic group 3-[2-(acrylamido)-ethyldimethyl ammonio] propane sulfonate (PAA-co-AEDAPS), or benzophenone (PAABp). Benzophenone allowed the PEMU to be toughened by photocrosslinking post-deposition. The attachment of two mammalian cell lines, rat aortic smooth muscle (A7r5) and mouse fibroblasts (3T3), and the biofilm-forming Gram-negative bacteria Escherichia coli was studied on PEMUs terminated with PAA-co-AEDAPS. Consistent with earlier studies, it is shown that PAH/PAA-co-AEDAPS PEMUs resist the adhesion of mammalian cells, but, contrary to our initial hypothesis, are bacterial adhesive and significantly so after maximizing the surface presentation of PAA-co-AEDAPS. This unexpected contrast in the adhesive behavior of prokaryotic and eukaryotic cells is explained by differences in adhesion mechanisms as well as different responses to the topology and morphology of the multilayer surface. PMID:26872345

  8. Cowpea mutation breeding for resistance to bacterial blight Xanthomonas vignicola (Burk.)

    International Nuclear Information System (INIS)

    In 1986, seeds of the variety ''Red Cowpea 6-1 US'' were treated with gamma rays (20, 40, 60 and 80 kR). In M3, the treated material segregated into erect and semi-spreading plant types, light green and green pod colours, and red, brown and creamy seed coats. There was further segregation in M4 for a larger pod size and better tolerance to diseases. In M5, some of the lines segregated into early and late maturity and it was found that resistance to diseases was, to some degree, associated with late maturity. Only slight changes in these characters were found in M6. Sixty mutant lines with desirable characteristics were established. Most of the mutant lines flowered synchronously, and had a long peduncle and all the pods above the plant canopy. Moreover, they were superior in plant type, pod size, seed size and tolerance to bacterial blight and other diseases. In 1989, they were tested for yield; most had a 20-46% higher yield than the blight susceptible parent. (author). 2 tabs

  9. Thermal resistance of naturally occurring airborne bacterial spores. [Viking spacecraft dry heat decontamination simulation

    Science.gov (United States)

    Puleo, J. R.; Bergstrom, S. L.; Peeler, J. T.; Oxborrow, G. S.

    1978-01-01

    Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 C. The 30-h cycle differs from the 5- and 15-h cycles at 125 C. Thus, the heating cycle can be reduced if a small fraction (about 0.001 to 0.0001) of very resistant spores can be tolerated.

  10. Conjunctival bacterial flora and antibiotic resistance pattern in patients undergoing cataract surgery

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the conjunctival bacterial flora and its antibiotic susceptibility pattern in eyes of patients undergoing cataract surgery. Conjunctival soap was obtained on the day of surgery before the application of topical anesthetic, antibiotic or povidone-iodine. Culture and antibiotic susceptibility tests were performed. The data was analysed with X/sup 2/ and T tests. Of the 170 patients 89 cases (52.4%) had positive cultures in the eyes. In 79 eyes (88.8%) found coagulase-negative Staphylococcus (CoNS). Eighty two cases (95.3%) of isolated Staphylococcus were susceptible to Amikacin, 86 (100%) sensitive to Ciprofloxacin and 42 (48.8%) sensitive to Ceftazidime. Average susceptibility and resistancy to antibiotics was 2.6 (+-1.8) antibiotics in women and 1.6(+-1.4) in men (P= 0.009). This study showed that the bacterium most frequently found in the conjunctival flora of the patients undergoing cataract surgery was CoNS. Isolates of this bacterium had low CoNS susceptibility rates to Caftazidime and Vancomycin and high susceptibility to Ciprofloxacin and Amikacin. (author)

  11. Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria

    Directory of Open Access Journals (Sweden)

    Clark Edward A

    2010-07-01

    Full Text Available Abstract Background Epithelial cells and dendritic cells (DCs both initiate and contribute to innate immune responses to bacteria. However, much less is known about the coordinated regulation of innate immune responses between GECs and immune cells, particularly DCs in the oral cavity. The present study was conducted to investigate whether their responses are coordinated and are bacteria-specific in the oral cavity. Results The β-defensin antimicrobial peptides hBD1, hBD2 and hBD3 were expressed by immature DCs as well as gingival epithelial cells (GECs. HBD1, hBD2 and hBD3 are upregulated in DCs while hBD2 and hBD3 are upregulated in GECs in response to bacterial stimulation. Responses of both cell types were bacteria-specific, as demonstrated by distinctive profiles of hBDs mRNA expression and secreted cytokines and chemokines in response to cell wall preparations of various bacteria of different pathogenicity: Fusobacterium nucleatum, Actinomyces naeslundii and Porphyromonas gingivalis. The regulation of expression of hBD2, IL-8, CXCL2/GROβ and CCL-20/MIP3α by GECs was greatly enhanced by conditioned medium from bacterially activated DCs. This enhancement was primarily mediated via IL-1β, since induction was largely attenuated by IL-1 receptor antagonist. In addition, the defensins influence DCs by eliciting differential cytokine and chemokine secretion. HBD2 significantly induced IL-6, while hBD3 induced MCP-1 to approximately the same extent as LPS, suggesting a unique role in immune responses. Conclusions The results suggest that cytokines, chemokines and β-defensins are involved in interaction of these two cell types, and the responses are bacteria-specific. Differential and coordinated regulation between GECs and DCs may be important in regulation of innate immune homeostasis and response to pathogens in the oral cavity.

  12. Who possesses drug resistance genes in the aquatic environment?: sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines

    Science.gov (United States)

    Suzuki, Satoru; Ogo, Mitsuko; Miller, Todd W.; Shimizu, Akiko; Takada, Hideshige; Siringan, Maria Auxilia T.

    2013-01-01

    Recent evidence has shown that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in natural environments, including sites considered pristine. To understand the origin of ARGs and their dynamics, we must first define their actual presence in the natural bacterial assemblage. Here we found varying distribution profiles of sul genes in “colony forming bacterial assemblages” and “natural bacterial assemblages.” Our monitoring for antibiotic contamination revealed that sulfamethoxazole (SMX) is a major contaminant in aquatic environments of Metro-Manila, which would have been derived from human and animal use, and subsequently decreased through the process of outflow from source to the sea. The SMX-resistant bacterial rate evaluated by the colony forming unit showed 10 to 86% of the total colony numbers showed higher rates from freshwater sites compared to marine sites. When sul genes were quantified by qPCR, colony-forming bacteria conveyed sul1 and sul2 genes in freshwater and seawater (10−5–10−2 copy/16S) but not sul3. Among the natural bacterial assemblage, all sul1, sul2, and sul3 were detected (10−5–10−3 copy/16S), whereas all sul genes were at an almost non-detectable level in the freshwater assemblage. This study suggests that sul1 and sul2 are main sul genes in culturable bacteria, whereas sul3 is conveyed by non-culturable bacteria in the sea. As a result marine bacteria possess sul1, sul2 and sul3 genes in the marine environment. PMID:23641240

  13. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    Directory of Open Access Journals (Sweden)

    Stärk Katharina

    2008-07-01

    Full Text Available Abstract Background The project "Antibiotic resistance in bacteria of animal origin – II" (ARBAO-II was funded by the European Union (FAIR5-QLK2-2002-01146 for the period 2003–2005, with the aim to establish a continuous monitoring of antimicrobial susceptibility among veterinary laboratories in European countries based on validated and harmonised methodologies. Available summary data of the susceptibility testing of the bacterial pathogens from the different laboratories were collected. Method Antimicrobial susceptibility data for several bovine pathogens were obtained over a three year period (2002–2004. Each year the participating laboratories were requested to fill in excel-file templates with national summary data on the occurrence of antimicrobial resistance from different bacterial species. A proficiency test (EQAS – external quality assurance system for antimicrobial susceptibility testing was conducted each year to test the accuracy of antimicrobial susceptibility testing in the participating laboratories. The data from this testing demonstrated that for the species included in the EQAS the results are comparable between countries. Results Data from 25,241 isolates were collected from 13 European countries. For Staphylococcus aureus from bovine mastitis major differences were apparent in the occurrence of resistance between countries and between the different antimicrobial agents tested. The highest frequency of resistance was observed for penicillin. For Mannheimia haemolytica resistance to ampicillin, tetracycline and trimethoprim/sulphonamide were observed in France, the Netherlands and Portugal. All isolates of Pasteurella multocida isolated in Finland and most of those from Denmark, England (and Wales, Italy and Sweden were susceptible to the majority of the antimicrobials. Streptococcus dysgalactiae and Streptococcus uberis isolates from Sweden were fully susceptible. For the other countries some resistance was observed to

  14. Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blight

    Directory of Open Access Journals (Sweden)

    Pereira Luiz Filipe

    2003-01-01

    Full Text Available Cassava bacterial blight (CBB, caused by Xanthomonas axonopodis pv. manihotis, is considered one of the most important bacterial diseases of cassava (Manihot esculenta Crantz. In order to characterize the cassava genes involved in resistance to this disease, a genomic clone of a cationic peroxidase gene, MEPX1, was isolated by PCR from cassava cultivar MCOL 22. The DNA sequence of MEPX1 showed high homology with other plant peroxidase genes and contained a large intron typical of peroxidase genes. The predicted translation product showed a heme-ligand motif, also a characteristic of peroxidases, as well as phosphorylation, myristoylation and glycosylation sites. The amino acid sequence had 75 % homology with two Arabidopsis thaliana peroxidases. A Southern blot of 17 cassava cultivars, probed with MEPX1, showed multiple hybridization bands. Polymorphisms between cultivars generally reflected geographic origin, but there was also an association with resistance to CBB, indicating that MEPX1 could be a potentially useful marker for this trait.

  15. Induction of bacterial blight resistance in elite Indian rice cultivars using gamma-rays and ethyl methanesulfonate

    International Nuclear Information System (INIS)

    Rice is the most important cereal crop in the world feeding more than 50 percent of the human population. During the last 30 years, induced mutation breeding has played a significant role in rice breeding programmes. Rice mutants with higher yield, greater tolerance to diseases and pests and other agronomic qualities have been released for commercial cultivation in many countries. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae is the second important disease in Southeast Asia. In the Basmati field sometime the yield loss is up to 100%. Moreover, there is no resistance source available. In Basmati rice, which is known for its quality and aroma. Induction of bacterial blight resistance in Basmati will help in developing high yielding Basmati type cultivars without compromising the quality

  16. Transfer of bacterial blight resistance from Oryza meyeriana to O.Sativa L.by asymmetric somatic hybridization

    Institute of Scientific and Technical Information of China (English)

    ZHU Yongsheng; CHEN Baotang; YU Shunwu; ZHANG Duanpin; ZHANG Xueqin; YAN Qiusheng

    2004-01-01

    Asymmetric somatic hybrid plants were produced between cultivated rice (Oryza sativa L.) and wild species [O. Meyeriana (Zoll. etMor, exSteud.)] with high resistance to rice bacterial blight. X-ray-irradiated protoplasts of the wild species were used as donor and chemically fused with iodoacetamide-inactivated protoplasts of rice cv. 02428to produce hybrids. Seventy-two plants were regenerated from 623 calli based on metabolic complementation. The morphological characters of the plants closely resembled that of the rice. Simple sequence repeats were employed to identify their hybridity. Cytological analysis of root-tips revealed that their chromosome number varied in the range of 27-38. The somatic hybrids were inoculated with strains of Xanthamonas oryzae pv. Oryzae at adult growth stage and demonstrated the resistance to bacterial blight introgression from the O. Meyeriana.

  17. Role of acute-phase proteins in interleukin-1-induced nonspecific resistance to bacterial infections in mice.

    OpenAIRE

    Vogels, M.T.E.; L. Cantoni; Carelli, M.; Sironi, M; Ghezzi, P; van der Meer, J. W M

    1993-01-01

    Treatment with a single low dose (80 to 800 ng) of interleukin-1 (IL-1) 24 h before a lethal bacterial challenge of granulocytopenic and normal mice enhances nonspecific resistance. Since IL-1 induces secretion of acute-phase proteins, liver proteins which possess several detoxifying effects, we investigated the role of these proteins in the IL-1-induced protection. Inhibition of liver protein synthesis with D-galactosamine (GALN) completely inhibited the IL-1-induced synthesis of acute-phase...

  18. Comparative analysis of bacterial community and antibiotic-resistant strains in different developmental stages of the housefly (Musca domestica).

    Science.gov (United States)

    Wei, Ting; Hu, Jun; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-02-01

    The housefly (Musca domestica) is an important host for a variety of bacteria, including some pathogenic and antibiotic-resistant strains. To further investigate the relationship between the housefly and the bacteria it harbors, it is necessary to understand the fate of microorganisms during the larval metamorphosis. The major bacterial communities in three developmental stages of the housefly (maggot, pupa, and adult fly) were investigated by a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S rRNA genes. The bacteria that were identified using DGGE analysis spanned phyla Proteobacteria, Firmicutes, and Bacteroidetes. Changes in the predominant genera were observed during the housefly development. Bacteroides, Koukoulia, and Schineria were detected in maggots, Neisseria in pupae, and Macrococcus, Lactococcus, and Kurthia in adult flies. Antibiotic-resistant bacteria were screened using a selective medium and tested for antibiotic susceptibility. Most resistant isolates from maggots and pupae were classified as Proteus spp., while those from adult flies were much more diverse and spanned 12 genera. Among 20 tested strains across the three stages, 18 were resistant to at least two antibiotics. Overall, we demonstrated that there are changes in the major bacterial communities and antibiotic-resistant strains as the housefly develops. PMID:22526786

  19. Risk Factors and Scoring System for Predicting Bacterial Resistance to Cefepime as Used Empirically in Haematology Wards

    Directory of Open Access Journals (Sweden)

    Hicham El Maaroufi

    2015-01-01

    Full Text Available Objectives. Bacterial resistance is of growing concern in haematology wards. As the inappropriate administration of empirical antibacterial may alter survival, we studied risk factors for resistance to our usual empirical first-line antibacterial therapy, cefepime. Methods. We retrospectively studied 103 first episodes of bacteraemia recorded in our haematology department over 2.5 years. Risk factors for cefepime-resistance were identified by multivariate logistic regression with backward selection (P<0.05. A scoring system for predicting cefepime-resistance was built on independent factor, with an internal validation by the bootstrap resampling technique. Results. 38 (37% episodes were due to Gram-negative bacteria. Fifty (49% were due to bacteria resistant to cefepime. Cefepime resistance was significantly associated with a decreased survival at day 30 (P<0.05. Three risk factors were independently associated with cefepime-resistance: acute lymphoblastic leukaemia; ≥18 days since hospital admission; and receipt of any β-lactam in the last month. Patients with ≥2 of these risk factors had a probability of 86% (CI 95%, 25 to 100% to carry a cefepime-resistant strain. Conclusion. Using our scoring system should reduce the indication of very broad antibacterial regimens in the empirical, first-line treatment of febrile hematology patients in more than 80% of the cases.

  20. Occurrence of Antibiotic resistance in some bacterial strains due to gamma radiation, heavy metals or food preservatives

    International Nuclear Information System (INIS)

    The susceptibility of bacterial strains (B. cereus, Staph. aureus, Escherichia coli and Salmonella) against 10 different antibiotics that are commonly used against food borne pathogens was studied. All the tested strains were observed to tolerate up to 100 mg/l copper sulphate or lead acetate, and there was a positive correlations between the tolerance to high levels of Cu or Pb and multiple antibiotic resistance was investigated. When the food preservatives (potassium sorbate or sodium benzoate) were added to the growth medium at different concentrations, the bacterial strains were able to tolerate up to 1000 ppm potassium sorbate or sodium benzoate (MIC). The antibiotic resistance of these strains was increased when grown on media supplemented with the MIC of sodium sorbate or potassium benzoate. When these bacterial strains were irradiated at dose levels of 1 or 3 or 5 KGy and examined for antibiotic sensitivity, a correlation was observed between the increases of radiation dose up to 5 KGy and the antibiotic resistance in all the studied strains

  1. Exploring the Medicinal Potential of the Fruit Bodies of Oyster Mushroom, Pleurotus ostreatus (Agaricomycetes), against Multidrug-Resistant Bacterial Isolates.

    Science.gov (United States)

    Skariyachan, Sinosh; Prasanna, Apoorva; Manjunath, Sirisha P; Karanth, Soujanya S; Nazre, Ambika

    2016-01-01

    Bacterial resistance to present-generation antibiotics is increasing drastically, which has become a major public health concern. The present study focuses on demonstrating the antimicrobial potential of fruit bodies of the culinary/medicinal oyster mushroom Pleurotus ostreatus against clinical pathogens. Five bacterial isolates were collected from Sagar Hospital in Bangalore, India. The collected strains were grown on selective and differential media and antibiotic susceptibility testing was applied using 48 antibiotics by disc diffusion assay. The antibacterial efficiency of the mushroom extract against clinical pathogens, which were found to be multidrug resistant (MDR) to most of the tested antibiotics, was studied. The yield of cultivated mushrooms was evident at moist, cooler, and humid conditions. The clinical isolates of Staphylococcus aureus, Salmonella typhi, Acinetobacter sp., Proteus mirabilis, and Proteus spp. were found to be MDR to β-lactam, fluoroquinolones, sulfonamides, third- and fourth-generation cephalosporins, aminoglycosides, macrolides, tetracyclines, and carbapenems. The methanolic extracts of mushroom fruit bodies were found to be more effective than present-generation antibiotics against methicillin- and vancomycin- resistant S. aureus, S. typhi, Acinetobacter sp., and P. mirabilis at a concentration ranging from 50 to 100 µg/disc or 50 to 100 µL/well. The current study suggests that the methanolic extract of P. ostreatus can be used as a promising antibacterial agent against MDR bacterial pathogens. PMID:27481158

  2. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat. PMID:23918959

  3. Close linkage of a blast resistance gene, Pias(t), with a bacterial leaf blight resistance gene, Xa1-as(t), in a rice cultivar ‘Asominori’

    OpenAIRE

    Endo, Takashi; Yamaguchi, Masayuki; Kaji, Ryota; Nakagomi, Koji; Kataoka, Tomomori; Yokogami, Narifumi; Nakamura, Toshiki; Ishikawa, Goro; Yonemaru, Jun-ichi; Nishio, Takeshi

    2012-01-01

    It has long been known that a bacterial leaf blight-resistant line in rice obtained from a crossing using ‘Asominori’ as a resistant parent also has resistance to blast, but a blast resistance gene in ‘Asominori’ has not been investigated in detail. In the present study, a blast resistance gene in ‘Asominori’, tentatively named Pias(t), was revealed to be located within 162-kb region between DNA markers YX4-3 and NX4-1 on chromosome 4 and to be linked with an ‘Asominori’ allele of the bacteri...

  4. Experimental Sugar Beet Cultivars Evaluated for Resistance Bacterial Root Rot in Idaho, 2008

    Science.gov (United States)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, a study was conducted to identify resistan...

  5. Bacterial profile and patterns of antimicrobial drug resistance in intra-abdominal infections: Current experience in a teaching hospital

    Directory of Open Access Journals (Sweden)

    Neetu Shree

    2013-01-01

    Full Text Available Context: Bacterial isolates from intra-abdominal infections, in particular, peritonitis and their unpredictable antimicrobial resistance patterns, continue to be a matter of concern not only globally but regionally too. Aim: An attempt in the present study was made to study the patterns of drug resistance in bacterial isolates, especially gram negative bacilli in intra-abdominal infections (IAI in our hospital. Materials and Methods: From 100 cases of peritonitis, identification of isolates was done as per recommended methods. Antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL testing were performed following the CLSI guidelines. Results: A total of 133 clinical isolates were obtained, of which 108 were aerobes and 22 anaerobes. Fungal isolates were recovered in only three cases. Escherichia coli (47/108 emerged as the most predominant pathogen followed by Klebsiella spp. (27/108, while Bacteroides fragilis emerged as the predominant anaerobe (12/22. Among coliforms, 61.7% E. coli and 74.1% Klebsiella spp. were ESBL positive. A high level of resistance was observed for beta lactams, ciprofloxacin, amikacin, and ertapenem. Ertapenem resistance (30-41% seen in coliforms, appears as an important issue. Imipenem, tigecycline, and colistin were the most consistently active agents tested against ESBL producers. Conclusion: Drug resistance continues to be a major concern in isolates from intra-abdominal infections. Treatment with appropriate antibiotics preceded by antimicrobial resistance testing aided by early diagnosis, adequate surgical management, and knowledge of antibiotic - resistant organisms appears effective in reducing morbidity and mortality in IAI cases.

  6. Bacterial flora and antibiotic resistance from eggs of green turtles Chelonia mydas: An indication of polluted effluents

    International Nuclear Information System (INIS)

    Sea turtles migrate to various habitats where they can be exposed to different pollutants. Bacteria were collected from turtle eggs and their resistance to antibiotics was used as pollutant bio-indicators of contaminated effluents. Eggs were collected randomly from turtles when they were laying their eggs. A total of 90 eggs were collected and placed into sterile plastic bags (3 eggs/turtle) during June-December of 2003. The bacteria located in the eggshell, albumen and yolk were examined, and 42% of the eggs were contaminated with 10 genera of bacteria. Pseudomonas spp. were the most frequent isolates. The albumen was found to be the part of the egg to be the least contaminated by bacterial infection. Bacterial isolates tested with 14 antibiotics showed variations in resistance. Resistance to ampicillin was the highest. The presence of antibiotic resistant bacteria in eggs indicates that the green turtle populations were subjected to polluted effluents during some of their migratory routes and feeding habitats. Scanning electron microscopy revealed that Salmonella typhimurium penetrated all eggshell layers.

  7. Enrichment of bacteria samples by centrifugation improves the diagnosis of orthopaedics-related infections via real-time PCR amplification of the bacterial methicillin-resistance gene

    OpenAIRE

    Tsuru, Arisa; SETOGUCHI, TAKAO; Kawabata, Naoya; Hirotsu, Masataka; Yamamoto, Takuya; NAGANO, Satoshi; Yokouchi, Masahiro; Kakoi, Hironori; Kawamura, Hideki; ISHIDOU, YASUHIRO; Tanimoto, Akihide; Komiya, Setsuro

    2015-01-01

    Background To effectively treat orthopaedic infections by methicillin-resistant strains, an early diagnosis is necessary. Bacterial cultures and real-time polymerase chain reaction (PCR) have been used to define methicillin-resistant staphylococci. However, even when patients display clinical signs of infections, bacterial culture and real-time PCR often cannot confirm infection. The aim of this study was to prospectively compare the utility of real-time PCR for the mecA gene detection follow...

  8. Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract.

    Directory of Open Access Journals (Sweden)

    Brian Becknell

    Full Text Available Beta defensins (BDs are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1 expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1(-/- mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1(-/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract.

  9. Identification and molecular characterization of defensin gene from the ant Formica aquilonia.

    Science.gov (United States)

    Viljakainen, L; Pamilo, P

    2005-08-01

    The effectors of the insect immune system are antimicrobial peptides. With the aim of studying the evolution of immune system genes, we identified a gene encoding the antimicrobial peptide defensin from a social insect, the wood ant Formica aquilonia. In this article we report the identification and characterization of this gene. We also compare the ant defensin gene structure to that previously obtained from two other hymenopteran species, the honeybee, Apis mellifera, and the bumblebee, Bombus ignitus. The ant defensin gene structure differs from both of these bee defensins with respect to the number and length of introns and exons. PMID:16033427

  10. Molecular and Functional Analysis of Human β-Defensin 3 Action at Melanocortin Receptors

    OpenAIRE

    Nix, Matthew A.; Kaelin, Christopher B.; Ta, Tina; Weis, Allison; Morton, Gregory J.; Barsh, Gregory S.; Millhauser, Glenn L.

    2013-01-01

    The β-defensins are a class of small, cationic proteins first recognized as antimicrobial components of the innate and adaptive immune system. More recently, one of the major β-defensins produced in skin, β-defensin 3, has been discovered to function as a melanocortin receptor ligand in vivo and in vitro, but its biophysical and pharmacological basis of action has been enigmatic. Here we report functional and biochemical studies focused on human β-defensin 3 (HBD3) and melanocortin receptors ...

  11. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  12. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    Science.gov (United States)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  13. Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters.

    Directory of Open Access Journals (Sweden)

    Naresh Devarajan

    Full Text Available The occurrence of emerging biological contaminants including antibiotic resistance genes (ARGs and Faecal Indicator Bacteria (FIB is still little investigated in developing countries under tropical conditions. In this study, the total bacterial load, the abundance of FIB (E. coli and Enterococcus spp. (ENT, Pseudomonas spp. and ARGs (blaTEM, blaCTX-M, blaSHV, blaNDM and aadA were quantified using quantitative PCR in the total DNA extracted from the sediments recovered from hospital outlet pipes (HOP and the Cauvery River Basin (CRB, Tiruchirappalli, Tamil Nadu, India. The abundance of bacterial marker genes were 120, 104 and 89 fold higher for the E. coli, Enterococcus spp. and Pseudomonas spp., respectively at HOP when compared with CRB. The ARGs aadA and blaTEM were most frequently detected in higher concentration than other ARGs at all the sampling sites. The ARGs blaSHV and blaNDM were identified in CRB sediments contaminated by hospital and urban wastewaters. The ARGs abundance strongly correlated (r ≥ 0.36, p < 0.05, n = 45 with total bacterial load and E. coli in the sediments, indicating a common origin and extant source of contamination. Tropical aquatic ecosystems receiving wastewaters can act as reservoir of ARGs, which could potentially be transferred to susceptible bacterial pathogens at these sites.

  14. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure.

    Science.gov (United States)

    Qian, Xun; Sun, Wei; Gu, Jie; Wang, Xiao-Juan; Sun, Jia-Jun; Yin, Ya-Nan; Duan, Man-Li

    2016-09-01

    Livestock manure is often subjected to aerobic composting but little is known about the variation in antibiotic resistance genes (ARGs) during the composting process under different concentrations of antibiotics. This study compared the effects of three concentrations of oxytetracycline (OTC; 10, 60, and 200mg/kg) on ARGs and the succession of the bacterial community during composting. Very similar trends were observed in the relative abundances (RAs) of each ARG among the OTC treatments and the control during composting. After composting, the RAs of tetC, tetX, sul1, sul2, and intI1 increased 2-43 times, whereas those of tetQ, tetM, and tetW declined by 44-99%. OTC addition significantly increased the absolute abundances and RAs of tetC and intI1, while 200mg/kg OTC also enhanced those of tetM, tetQ, and drfA7. The bacterial community could be grouped according to the composting time under different treatments. The highest concentration of OTC had a more persistent effect on the bacterial community. In the present study, the succession of the bacterial community appeared to have a greater influence on the variation of ARGs during composting than the presence of antibiotics. Aerobic composting was not effective in reducing most of the ARGs, and thus the compost product should be considered as an important reservoir for ARGs. PMID:27179201

  15. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  16. Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens.

    Science.gov (United States)

    Nagaraj, Satish; Senthil-Kumar, Muthappa; Ramu, Vemanna S; Wang, Keri; Mysore, Kirankumar S

    2015-01-01

    Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens. PMID:26779226

  17. Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens

    Science.gov (United States)

    Nagaraj, Satish; Senthil-Kumar, Muthappa; Ramu, Vemanna S.; Wang, Keri; Mysore, Kirankumar S.

    2016-01-01

    Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens. PMID:26779226

  18. A new gene, developed through mutagenesis with thermal neutrons, for resistance of rice to bacterial leaf blight

    International Nuclear Information System (INIS)

    Dry seed lots of a rice variety, Harebare, susceptible to bacterial leaf blight (BLB), were treated with thermal neutrons with and without pre-treatment of the seeds by boron-enrichment, gamma-rays and nitroso-methyl-urea (NMU). The selections were made on M2-M3 materials by inoculation of Japanese BLB race III, with the result that several BLB resistant mutants to race III and the other differential races could be obtained. Mutagenic efficiency of thermal neutrons to the seeds without boron-enrichment for induction of BLB resistant mutants was found to be significantly higher than that of the other mutagens. Four mutant lines of all the selected ones were analyzed for genes for BLB resistance through cross tests between the mutants and the original variety. Harebare, indicating that the resistance in the mutants was conditioned by single recessive gene(s). The mutant designated 86M95 was especially noted for its gene conferring complete (or durable) resistance to multiple BLB races. The 86M95 mutant or the gene may be of practical value for breeding of rice for BLB resistance. (author)

  19. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field

    DEFF Research Database (Denmark)

    Berg, J.; Tom-Petersen, A.; Nybroe, O.

    2005-01-01

    Aims: The objective of this study was to determine whether Cu-amendment of field plots affects the frequency of Cu resistance, and antibiotic resistance patterns in indigenous soil bacteria. Methods and Results: Soil bacteria were isolated from untreated and Cu-amended field plots. Cu......-amendment significantly increased the frequency of Cu-resistant isolates. A panel of isolates were characterized by Gram-reaction, amplified ribosomal DNA restriction analysis and resistance profiling against seven antibiotics. More than 95% of the Cu-resistant isolates were Gram-negative. Cu-resistant Gram......-negative isolates had significantly higher incidence of resistance to ampicillin, sulphanilamide and multiple (greater than or equal to3) antibiotics than Cu-sensitive Gram-negative isolates. Furthermore, Cu-resistant Gram-negative isolates from Cu-contaminated plots had significantly higher incidence of resistance...

  20. Triclosan Resistance in a Bacterial Fish Pathogen, Aeromonas salmonicida subsp. salmonicida, is Mediated by an Enoyl Reductase, FabV.

    Science.gov (United States)

    Khan, Raees; Lee, Myung Hwan; Joo, Hae-Jin; Jung, Yong-Hoon; Ahmad, Shabir; Choi, Jin-Hee; Lee, Seon-Woo

    2015-04-01

    Triclosan, the widely used biocide, specifically targets enoyl-acyl carrier protein reductase (ENR) in the bacterial fatty acid synthesis system. Although the fish pathogen Aeromonas salmonicida subsp. salmonicida exhibits triclosan resistance, the nature of this resistance has not been elucidated. Here, we aimed to characterize the triclosan resistance of A. salmonicida subsp. salmonicida causing furunculosis. The fosmid library of triclosan-resistant A. salmonicida subsp. salmonicida was constructed to select a fosmid clone showing triclosan resistance. With the fosmid clone showing triclosan resistance, a subsequent secondary library search resulted in the selection of subclone pTSR-1. DNA sequence analysis of pTSR-1 revealed the presence of a chromosomal-borne fabV-encoding ENR homolog. The ENR of A. salmonicida (FabVas) exhibited significant homology with previously known FabV, including the catalytic domain YX(8)K. fabVas introduction into E. coli dramatically increased its resistance to triclosan. Heterologous expression of FabVas might functionally replace the triclosan-sensitive FabI in vivo to confer E. coli with triclosan resistance. A genome-wide search for fabVas homologs revealed the presence of an additional fabV gene (fabVas2) paralog in A. salmonicida strains and the fabVas orthologs from other gram-negative fish pathogens. Both of the potential FabV ENRs expressed similarly with or without triclosan supplement. This is the first report about the presence of two potential FabV ENRs in a single pathogenic bacterium. Our result suggests that triclosan-resistant ENRs are widely distributed in various bacteria in nature, and the wide use of this biocide can spread these triclosan-tolerant ENRs among fish pathogens and other pathogenic bacteria. PMID:25370725

  1. INDUCTION OF SYSTEMIC RESISTANCE BY BIOCONTROL AGENTS AGAINST BACTERIAL BLIGHT OF COTTON CAUSED BY XANTHOMONAS CAMPESTRIS PV. MALVACEARUM

    Directory of Open Access Journals (Sweden)

    Niranjana S. Ramachandrappa

    2013-04-01

    Full Text Available Bioagents such as Trichoderma harzianum, Pseudomonas fluorescens and Bacillus subtilis were isolated from cotton rhizosphere soil and tested individually for their effectiveness in controlling bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum (Xcm. Talc based formulations were prepared and used for seed treatment at different concentrations for assessing their ability to stimulate plant growth and to control bacterial blight disease. Among bioagents, P. fluorescens and T. harzianum proved to be effective in controlling disease under field conditions.  Other than direct action, these bioagents triggered the defense related enzymes involved in synthesis of phenols. Higher activity of peroxidase, phenylalanine ammonia-lyase, polyphenol oxidase and b-1,3-glucanase was observed in P. fluorescens and T. harzianum treated cotton plants after challenge inoculation with Xcm. Seed treatment with these bioagents enhanced the seed germination and growth parameters against blight disease and they also induced systemic resistance in plant for defense mechanisms. 

  2. Ciprofloxacin Affects Host Cells by Suppressing Expression of the Endogenous Antimicrobial Peptides Cathelicidins and Beta-Defensin-3 in Colon Epithelia

    Directory of Open Access Journals (Sweden)

    Protim Sarker

    2014-07-01

    Full Text Available Antibiotics exert several effects on host cells including regulation of immune components. Antimicrobial peptides (AMPs, e.g., cathelicidins and defensins display multiple functions in innate immunity. In colonic mucosa, cathelicidins are induced by butyrate, a bacterial fermentation product. Here, we investigated the effect of antibiotics on butyrate-induced expression of cathelicidins and beta-defensins in colon epithelial cells. Real-time PCR analysis revealed that ciprofloxacin and clindamycin reduce butyrate-induced transcription of the human cathelicidin LL-37 in the colonic epithelial cell line HT-29. Suppression of LL-37 peptide/protein by ciprofloxacin was confirmed by Western blot analysis. Immunohistochemical analysis demonstrated that ciprofloxacin suppresses the rabbit cathelicidin CAP-18 in rectal epithelia of healthy and butyrate-treated Shigella-infected rabbits. Ciprofloxacin also down-regulated butyrate-induced transcription of the human beta-defensin-3 in HT-29 cells. Microarray analysis of HT-29 cells revealed upregulation by butyrate with subsequent down-regulation by ciprofloxacin of additional genes encoding immune factors. Dephosphorylation of histone H3, an epigenetic event provided a possible mechanism of the suppressive effect of ciprofloxacin. Furthermore, LL-37 peptide inhibited Clostridium difficile growth in vitro. In conclusion, ciprofloxacin and clindamycin exert immunomodulatory function by down-regulating AMPs and other immune components in colonic epithelial cells. Suppression of AMPs may contribute to the overgrowth of C. difficile, causing antibiotic-associated diarrhea.

  3. Ixodes ricinus defensins attack distantly-related pathogens

    Czech Academy of Sciences Publication Activity Database

    Tonk, M.; Cabezas-Cruz, A.; Valdés, James J.; Rego, Ryan O. M.; Grubhoffer, Libor; Estrada--Pena, A.; Vilcinskas, A.; Kotsyfakis, Michalis; Rahnamaeian, M.

    2015-01-01

    Roč. 53, č. 2 (2015), s. 358-365. ISSN 0145-305X R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GAP502/12/2409 EU Projects: European Commission(XE) 278976 Institutional support: RVO:60077344 Keywords : Antimicrobial peptide * Defensin * Ixodes ricinus * Listeria monocytogenes * Staphylococcus aureus * Staphylococcus epidermidis * Escherichia coli * Pseudomonas aeruginosa * Fusarium spp Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.815, year: 2014

  4. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Science.gov (United States)

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in

  5. Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial resistance to sulfonamides.

    OpenAIRE

    Swedberg, G; Sköld, O

    1980-01-01

    Plasmid-borne resistance to sulfonamides was studied in both newly isolated and earlier characterized R plasmids. Two different classes of drug-resistant dihydropteroate synthases were found to be responsible for most cases of plasmid-mediated sulfonamide resistance. The plasmid-coded enzymes could be completely separated from their chromosomal counterpart and also showed differences in heat stability and molecular size. The resistant and chromosomal enzymes could bind the normal substrate, p...

  6. Inducible expression of p50 from TMV for increased resistance to bacterial crown gall disease in tobacco.

    Science.gov (United States)

    Niemeyer, Julia; Ruhe, Jonas; Machens, Fabian; Stahl, Dietmar J; Hehl, Reinhard

    2014-01-01

    The dominant tobacco mosaic virus (TMV) resistance gene N induces a hypersensitive response upon TMV infection and protects tobacco against systemic spread of the virus. It has been proposed to change disease resistance specificity by reprogramming the expression of resistance genes or their corresponding avirulence genes. To reprogramme the resistance response of N towards bacterial pathogens, the helicase domain (p50) of the TMV replicase, the avirulence gene of N, was linked to synthetic promoters 4D and 2S2D harbouring elicitor-responsive cis-elements. These promoter::p50 constructs induce local necrotic lesions on NN tobacco plants in an Agrobacterium tumefaciens infiltration assay. A tobacco genotype void of N (nn) was transformed with the promoter::p50 constructs and subsequently crossed to NN plants. Nn F1 offspring selected for the T-DNA develop normally under sterile conditions. After transfer to soil, some of the F1 plants expressing the 2S2D::p50 constructs develop spontaneous necrosis. Transgenic Nn F1 plants with 4D::p50 and 2S2D::p50 expressing constructs upregulate p50 transcription and induce local necrotic lesions in an A. tumefaciens infiltration assay. When leaves and stems of Nn F1 offspring harbouring promoter::p50 constructs are infected with oncogenic A. tumefaciens C58, transgenic lines harbouring the 2S2D::p50 construct induce necrosis and completely lack tumor development. These results demonstrate a successful reprogramming of the viral N gene response against bacterial crown gall disease and highlight the importance of achieving tight regulation of avirulence gene expression and the control of necrosis in the presence of the corresponding resistance gene. PMID:23955710

  7. Selection on an antimicrobial peptide defensin in ants.

    Science.gov (United States)

    Viljakainen, Lumi; Pamilo, Pekka

    2008-12-01

    Ants live in crowded nests with interacting individuals, which makes them particularly prone to infectious diseases. The question is, how do ants cope with the increased risk of pathogen transmission due to sociality? We have studied the molecular evolution of defensin, a gene encoding an antimicrobial protein, in ants. Defensin sequences from several ant species were analyzed with maximum likelihood models of codon substitution to infer selection. Positive selection was detected in the mature region of defensin, whereas the signal and pro regions seem to be evolving neutrally. We also found a significantly higher rate of nonsynonymous substitutions in some phylogenetic lineages, as well as dN/dS >1, suggesting varying selection pressures in different lineages. Earlier studies on the molecular evolution of insect antimicrobial peptide genes have focused on termites and dipteran species, and detected positive selection only in duplicated termicin genes in termites. These findings, together with our present results, provide an indication that the immune systems of social insects (ants and termites) and dipteran insects may have responded differently to the selection pressure caused by microbial pathogens. PMID:18956133

  8. Interactions Between QTL SAP6 and SU91 on Resistance to Common Bacterial Blight in Red Kidney Bean and Pinto Bean Populations

    Science.gov (United States)

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. We examined the interaction between two independent QTL, SAP6 and SU91, which condition resistance to CBB.The QTL were studied in a pinto bean F2 population a cross between Othello (sap6 sap6 //...

  9. Construction of the recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability.

    Science.gov (United States)

    Drewniak, Lukasz; Ciezkowska, Martyna; Radlinska, Monika; Sklodowska, Aleksandra

    2015-02-20

    The plasmid pSinA of Sinorhizobium sp. M14 was used as a source of functional phenotypic modules, encoding proteins involved in arsenite oxidation and arsenic resistance, to obtain recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidative ability. An arsenite oxidation module was cloned into pBBR1MCS-2 vector yielding plasmid vector pAIO1, while an arsenic resistance module was cloned into pCM62 vector yielding plasmid pARS1. Both plasmid constructs were introduced (separately and together) into the cells of phylogenetically distant (representing Alpha-, Beta-, and Gammaproteobacteria) and physiologically diversified (unable to oxidize arsenite and susceptible/resistant to arsenite and arsenate) bacteria. Functional analysis of the modified strains showed that: (i) the plasmid pARS1 can be used for the construction of strains with an increased resistance to arsenite [up to 20mM of As(III), (ii) the presence of the plasmid pAIO1 in bacteria previously unable to oxidize As(III) to As(V), contributes to the acquisition of arsenite oxidation abilities by these cells, (iii) the highest arsenite utilization rate are observed in the culture of strains harbouring both the plasmids pAIO1 and pARS1, (iv) the strains harbouring the plasmid pAIO1 were able to grow on arsenic-contaminated mine waters (∼ 3.0 mg As L(-1)) without any supplementation. PMID:25617684

  10. Use of recombinant porcine β-defensin 2 as a medicated feed additive for weaned piglets.

    Science.gov (United States)

    Peng, Zixin; Wang, Anru; Xie, Linqi; Song, Weiping; Wang, Jie; Yin, Zhe; Zhou, Dongsheng; Li, Fengqin

    2016-01-01

    Post-weaning diarrhoea (PWD) in piglets is associated with colonization of the intestine with bacterial pathogens. In this study, we evaluated the use of recombinant porcine β-defensin 2 (rpBD2) as a medicated feed additive for weaned piglets. The crude extract from the culture supernatant of rpBD2-expressing Pichia pastoris was used as a medicated feed additive for weaned piglets. Dietary treatments included a positive control (basal diet + antibiotics, designated PC) and three different rpBD2 treatments without antibiotics (basal diet supplemented with 1, 5, or 15 g of crude rpBD2/kg basal diet, designated 1PD, 5PD, and 15PD, respectively). Of all the treatments, 5PD had the greatest impact on the weaned piglets. It increased their body weight, average daily weight gain, average daily feed intake, and intestinal villus height in the duodenum and jejunum, and reduced the incidence of PWD. The diversity of the cecal digesta and mucosa microflora was compared between the weaned piglets in the PC and 5PD groups. Piglets treated with 5PD had lower diversity indices and fewer bacterial pathogens in their cecal digesta and mucosa than the PC group. Our results demonstrate that crude rpBD2 could provide an alternative to the traditional antibiotic feed additives given to weaned piglets. PMID:27225034

  11. Defensin pattern in chronic gastritis: HBD-2 is differentially expressed with respect to Helicobacter pylori status

    OpenAIRE

    Wehkamp, J.; Schmidt, K; Herrlinger, K R; Baxmann, S; Behling, S; Wohlschläger, C; Feller, A. C.; Stange, E F; Fellermann, K

    2003-01-01

    Background/Aims: Recent reports have suggested that Helicobacter pylori infection induces the mucosal antibiotic peptide human β defensin 2 (HBD-2). Therefore, the present study investigated mRNA and peptide expression of four different defensins in the upper gastrointestinal tract in patients with H pylori positive and negative chronic gastritis.

  12. Evaluation of beta defensin 2 production by chicken heterophils using direct MALDI mass spectrometry

    Science.gov (United States)

    Beta defensins (BD) are cysteine rich, cationic antimicrobial peptides (AMP) produced mainly by epithelial and myeloid cells such as neutrophils. In birds, the equivalent of neutrophils, heterophils produce avian beta defensins (AvBD) of which AvBD2 is the major isoform. Heterophils recognize patho...

  13. Alpha-defensin DEFA1A3 gene copy number elevation in Danish Crohn's disease patients

    DEFF Research Database (Denmark)

    Jespersgaard, Cathrine; Fode, Peder; Dybdahl, Marianne;

    2011-01-01

    BACKGROUND AND PURPOSE OF STUDY: Extensive copy number variation is observed for the DEFA1A3 gene encoding alpha-defensins 1-3. The objective of this study was to determine the involvement of alpha-defensins in colonic tissue from Crohn's disease (CD) patients and the possible genetic association...

  14. Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems.

    Science.gov (United States)

    Böckelmann, Uta; Dörries, Hans-Henno; Ayuso-Gabella, M Neus; Salgot de Marçay, Miquel; Tandoi, Valter; Levantesi, Caterina; Masciopinto, Costantino; Van Houtte, Emmanuel; Szewzyk, Ulrich; Wintgens, Thomas; Grohmann, Elisabeth

    2009-01-01

    Aquifer recharge presents advantages for integrated water management in the anthropic cycle, namely, advanced treatment of reclaimed water and additional dilution of pollutants due to mixing with natural groundwater. Nevertheless, this practice represents a health and environmental hazard because of the presence of pathogenic microorganisms and chemical contaminants. To assess the quality of water extracted from recharged aquifers, the groundwater recharge systems in Torreele, Belgium, Sabadell, Spain, and Nardò, Italy, were investigated for fecal-contamination indicators, bacterial pathogens, and antibiotic resistance genes over the period of 1 year. Real-time quantitative PCR assays for Helicobacter pylori, Yersinia enterocolitica, and Mycobacterium avium subsp. paratuberculosis, human pathogens with long-time survival capacity in water, and for the resistance genes ermB, mecA, blaSHV-5, ampC, tetO, and vanA were adapted or developed for water samples differing in pollutant content. The resistance genes and pathogen concentrations were determined at five or six sampling points for each recharge system. In drinking and irrigation water, none of the pathogens were detected. tetO and ermB were found frequently in reclaimed water from Sabadell and Nardò. mecA was detected only once in reclaimed water from Sabadell. The three aquifer recharge systems demonstrated different capacities for removal of fecal contaminators and antibiotic resistance genes. Ultrafiltration and reverse osmosis in the Torreele plant proved to be very efficient barriers for the elimination of both contaminant types, whereas aquifer passage followed by UV treatment and chlorination at Sabadell and the fractured and permeable aquifer at Nardò posed only partial barriers for bacterial contaminants. PMID:19011075

  15. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    Science.gov (United States)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-04-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  16. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice

    Science.gov (United States)

    Song, Alin; Xue, Gaofeng; Cui, Peiyuan; Fan, Fenliang; Liu, Hongfang; Yin, Chang; Sun, Wanchun; Liang, Yongchao

    2016-01-01

    Here we report for the first time that bacterial blight of rice can be alleviated by silicon (Si) added. In both inoculated and uninoculated plants, shoot dry weight was significantly higher in the +Si plants than in the −Si plants. A soil-cultured trial showed that disease severity was 24.3% lower in the Si-amended plants than in the non-Si-amended plants. Plants that were switched from −Si to +Si nutrient solution and simultaneously inoculated with Xoo also exhibited the same high resistance to bacterial blight as the plants that were treated continuously with Si, with control efficiencies of 52.8 and 62.9%, respectively. Moreover, total concentrations of soluble phenolics and lignin in rice leaves were significantly higher in the +Si plants than in the −Si plants. Polyphenoloxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities in rice leaves were observed to be higher in the +Si plants than in the −Si plants. The expression levels of Os03g0109600, Prla, Rcht2 and Lox2osPil, were also higher in +Si plants than in −Si plants post-inoculation during the experimental time. Addition of Si resulted in increased Pal transcription, and inhibited CatA and Os03g0126000 expression in the earlier and later stages of bacterial inoculation, respectively. PMID:27091552

  17. Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters

    Science.gov (United States)

    Devarajan, Naresh; Laffite, Amandine; Mulaji, Crispin Kyela; Otamonga, Jean-Paul; Mpiana, Pius Tshimankinda; Mubedi, Josué Ilunga; Prabakar, Kandasamy; Ibelings, Bastiaan Willem; Poté, John

    2016-01-01

    The occurrence of emerging biological contaminants including antibiotic resistance genes (ARGs) and Faecal Indicator Bacteria (FIB) is still little investigated in developing countries under tropical conditions. In this study, the total bacterial load, the abundance of FIB (E. coli and Enterococcus spp. (ENT)), Pseudomonas spp. and ARGs (blaTEM, blaCTX-M, blaSHV, blaNDM and aadA) were quantified using quantitative PCR in the total DNA extracted from the sediments recovered from hospital outlet pipes (HOP) and the Cauvery River Basin (CRB), Tiruchirappalli, Tamil Nadu, India. The abundance of bacterial marker genes were 120, 104 and 89 fold higher for the E. coli, Enterococcus spp. and Pseudomonas spp., respectively at HOP when compared with CRB. The ARGs aadA and blaTEM were most frequently detected in higher concentration than other ARGs at all the sampling sites. The ARGs blaSHV and blaNDM were identified in CRB sediments contaminated by hospital and urban wastewaters. The ARGs abundance strongly correlated (r ≥ 0.36, p wastewaters can act as reservoir of ARGs, which could potentially be transferred to susceptible bacterial pathogens at these sites. PMID:26910062

  18. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice.

    Science.gov (United States)

    Song, Alin; Xue, Gaofeng; Cui, Peiyuan; Fan, Fenliang; Liu, Hongfang; Yin, Chang; Sun, Wanchun; Liang, Yongchao

    2016-01-01

    Here we report for the first time that bacterial blight of rice can be alleviated by silicon (Si) added. In both inoculated and uninoculated plants, shoot dry weight was significantly higher in the +Si plants than in the -Si plants. A soil-cultured trial showed that disease severity was 24.3% lower in the Si-amended plants than in the non-Si-amended plants. Plants that were switched from -Si to +Si nutrient solution and simultaneously inoculated with Xoo also exhibited the same high resistance to bacterial blight as the plants that were treated continuously with Si, with control efficiencies of 52.8 and 62.9%, respectively. Moreover, total concentrations of soluble phenolics and lignin in rice leaves were significantly higher in the +Si plants than in the -Si plants. Polyphenoloxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities in rice leaves were observed to be higher in the +Si plants than in the -Si plants. The expression levels of Os03g0109600, Prla, Rcht2 and Lox2osPil, were also higher in +Si plants than in -Si plants post-inoculation during the experimental time. Addition of Si resulted in increased Pal transcription, and inhibited CatA and Os03g0126000 expression in the earlier and later stages of bacterial inoculation, respectively. PMID:27091552

  19. Bottlenecks in the Transferability of Antibiotic Resistance from Natural Ecosystems to Human Bacterial Pathogens

    OpenAIRE

    Martínez, José L.

    2012-01-01

    It is generally accepted that resistance genes acquired by human pathogens through horizontal gene transfer originated in environmental, non-pathogenic bacteria. As a consequence, there is increasing concern on the roles that natural, non-clinical ecosystems, may play in the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance on their expression in a heterologous host is much larger than what is actually found in human...

  20. Bottlenecks in the transmission of antibiotic resistance from natural ecosystems to human bacterial pathogens

    OpenAIRE

    Martinez, Jose L.

    2012-01-01

    It is generally accepted that resistance genes acquired by human pathogens trough horizontal gene transfer have been originated in environmental, non pathogenic bacteria. As the consequence, there exists an increasing concern on the role that natural, non-clinical ecosystems, may play on the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance upon their expression in a heterologous host is much larger than what is actu...

  1. Clustering of Antimicrobial Resistance Outbreaks Across Bacterial Species in the Intensive Care Unit

    OpenAIRE

    Vlek, AL; Cooper, BS; Kypraios, T.; Cox, A.; Edgeworth, JD; Auguet, OT

    2013-01-01

    BACKGROUND There are frequent reports of intensive care unit (ICU) outbreaks due to transmission of particular antibiotic-resistant bacteria. Less is known about the burden of outbreaks of resistance due to horizontal transfer of mobile genetic elements between species. Moreover, the potential of existing statistical software as a preliminary means for detecting such events has never been assessed. This study uses a software package to determine the burden of species and resistance outbreaks ...

  2. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1.

    OpenAIRE

    van Veen, Hendrik W.; Venema, Koen; Bolhuis, Henk; Oussenko, Irina; Kok, Jan; Poolman, Bert; Driessen, Arnold J. M.; Konings, Wil N.

    1996-01-01

    Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophi...

  3. CRACKING THE CODE: SELECTING FOR RESISTANCE AGAINST BACTERIAL COLD-WATER DISEASE

    Science.gov (United States)

    At the National Center for Cool and Cold Water Aquaculture (NCCCWA) reducing the negative impact of diseases on rainbow trout culture is a primary objective. Bacterial cold-water disease, a chronic disease of rainbow trout is caused by Flavobacterium psychrophilum. This bacterium also causes acute ...

  4. Preliminary field evaluation of rainbow trout selectively bred for increased resistance to bacterial cold water disease

    Science.gov (United States)

    Bacterial cold water disease (BCWD) is one of the most frequent causes of elevated mortality in juvenile salmonids, and the development of effective control strategies is a priority. We previously reported results of a selective breeding program designed to increase rainbow trout survival following ...

  5. Field evaluation of rainbow trout selectively bred for resistance to bacterial cold water disease

    Science.gov (United States)

    Bacterial cold water disease (BCWD) is a frequent cause of elevated mortality in rainbow trout and the development of effective control strategies is a priority within the U.S. Since 2005, the NCCCWA has implemented a selective breeding program and has created three genetic lines of outbred rainbow...

  6. The effect of long term storage on bacterial soft rot resistance in potato

    Science.gov (United States)

    Bacterial soft rot is a serious disease in potato (Solanum tuberosum L.), causing rapid tuber tissue maceration and, consequently, marketable yield loss. Soft rot bacteria, especially Pectobacterium carotovorum subsp. carotovorum (Pbc), are favored by moist conditions, which are prevalent in large p...

  7. Identification of markers associated with bacterial blight resistance loci in cowpea (Vigna unguiculata (L.) Walp.)

    NARCIS (Netherlands)

    Agbicodo, A.C.M.E.; Fatokun, C.A.; Bandyopadhyay, R.; Wydra, K.; Diop, N.N.; Muchero, W.; Ehlers, J.D.; Roberts, P.A.; Close, T.J.; Visser, R.G.F.; Linden, van der C.G.

    2010-01-01

    Cowpea bacterial blight (CoBB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is a worldwide major disease of cowpea [Vigna unguiculata (L.) Walp.]. Among different strategies to control the disease including cultural practices, intercropping, application of chemicals, and sowing pathogen-fr

  8. Increased susceptibility to bacterial wilt in tomatoes by nematode galling and the role of the Mi gene in resistance to nematodes and bacterial wilt

    OpenAIRE

    Deberdt, P.; Quénéhervé, Patrick; Darrasse, A; Prior, P

    1999-01-01

    The soil-borne bacterial pathogen #Ralstonia solanacearum$ commonly coexists with polyspecific nematode populations in tropical and subtropical areas. The wounding of roots by nematodes is usually invoked to explain the correlation between nematode infection and bacterial wilt, since this wounding increases the number of sites for bacterial entry. Bacterial wilt development on tomato was investigated in a controlled environment on the susceptible tomato cultivar Floradel and the polygenically...

  9. "ETIOLOGY AND ANTIBACTERIAL RESISTANCE OF BACTERIAL URINARY TRACT INFECTIONS IN CHILDREN’S MEDICAL CENTER, TEHRAN, IRAN"

    Directory of Open Access Journals (Sweden)

    M. Haghi-Ashteiani

    2007-06-01

    Full Text Available Urinary tract infection (UTI is a common bacterial illness in children. Knowledge of the antimicrobial resistance patterns of common uropathogens in children according to local epidemiology is essential for providing clinically appropriate, cost effective therapy for UTI. The aim of this study was to determine the distribution of urinary tract infections in a referral hospital, Children’s Medical Center, and determination of in vitro susceptibility of these organisms to antimicrobial agents. Of the 1231 bacterial isolates the most frequent isolates were Escherichia coli (38.66%, Klebsiella spp. (22.25%, Coagulase-negative staphylococci (10.1%, Pseudomonas spp. (8.7%, enterococci (8.28%, Enterobacter spp. (4.1%, staphylococcus aureus (3.24%, and proteus mirabilis (2.9%. Among Enterobacteriaceae, 79.80% of E. coli were amikacin-sensitive. Of Gram-positive cocci, 66.66% of staphylococcus aureus were vancomycin-sensitive. Our data show the original distribution of uropathogens from UTIs in children referred to Children’s Medical Center in Tehran and the emergence of multidrug resistant strains.

  10. Induction of resistance to bacterial leaf-blight (Xanthomonas oryzae) disease in the high-yielding variety, Vijaya (IR8 x T90)

    International Nuclear Information System (INIS)

    The high-yielding variety, Vijaya (IR8 x T90) susceptible to bacterial leaf-blight (Xanthomonas oryzae, Uyeda and Ishiyama, Dowson) was taken up for induction of resistance to bacterial leaf-blight disease through EMS treatments. The frequency distribution of bacterial leaf blight of Vijaya (untreated) was bimodal while the frequency curves of the EMS-treated population in M2 was polymodal, showing the introduction of new peaks, thus indicating that a wider range of variability had been induced both towards resistance and susceptibility. The seeds of ''resistant'' (R), ''moderately resistant'' (MR) and ''susceptible'' (S) selections were carried forward up to the M6 generation. The frequency curve of bacterial leaf-blight reaction in each generation (M3 - M6) was polymodal or had a normal distribution, thus indicating that the bacterial leaf-blight reaction of the variety, Vijaya, was probably controlled by a polygenic system. Resistant plants had a very low yield potential whereas the yield range of some MR selections was the same as that of the untreated parent, and in some S selections the yield was higher than that of the parent. (author)

  11. Dissemination of bacterial resistance to tetracycline antibiotics from animal husbandry to the soil.

    OpenAIRE

    HAVLÍČKOVÁ, Petra

    2011-01-01

    This bachaleor thesis is dedicated to occurence of tetracycline resistance genes in the soil environment influenced by wastes from a livestock productionanimal husbandry. In the experimental part, the transfer of tetracycline resistance genes from the excrements of a dairy cattle to the soils was studied.

  12. Hidden Selection of Bacterial Resistance to Fluoroquinolones In Vivo: The Case of Legionella pneumophila and Humans

    Directory of Open Access Journals (Sweden)

    Lubana Shadoud

    2015-09-01

    Interpretation: In vivo selection of antibiotic resistances in L. pneumophila may be associated with treatment failures and poor prognosis. This hidden resistance must be carefully considered in the therapeutic management of legionellosis patients and in the control of the gradual loss of effectiveness of antibiotics.

  13. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sebastian Gagneux

    2006-06-01

    Full Text Available Understanding the ecology of drug-resistant pathogens is essential for devising rational programs to preserve the effective lifespan of antimicrobial agents and to abrogate epidemics of drug-resistant organisms. Mathematical models predict that strain fitness is an important determinant of multidrug-resistant Mycobacterium tuberculosis transmission, but the effects of strain diversity have been largely overlooked. Here we compared the impact of resistance mutations on the transmission of isoniazid-resistant M. tuberculosis in San Francisco during a 9-y period. Strains with a KatG S315T or inhA promoter mutation were more likely to spread than strains with other mutations. The impact of these mutations on the transmission of isoniazid-resistant strains was comparable to the effect of other clinical determinants of transmission. Associations were apparent between specific drug resistance mutations and the main M. tuberculosis lineages. Our results show that in addition to host and environmental factors, strain genetic diversity can influence the transmission dynamics of drug-resistant bacteria.

  14. Identification of defensin-encoding genes of Picea glauca: characterization of PgD5, a conserved spruce defensin with strong antifungal activity

    Directory of Open Access Journals (Sweden)

    Picart Pere

    2012-10-01

    Full Text Available Abstract Background Plant defensins represent a major innate immune protein superfamily that displays strong inhibitory effects on filamentous fungi. The total number of plant defensins in a conifer species is unknown since there are no sequenced conifer genomes published, however the genomes of several angiosperm species provide an insight on the diversity of plant defensins. Here we report the identification of five new defensin-encoding genes from the Picea glauca genome and the characterization of two of their gene products, named PgD5 and endopiceasin. Results Screening of a P. glauca EST database with sequences of known plant defensins identified four genes with homology to the known P. glauca defensin PgD1, which were designated PgD2-5. Whereas in the mature PgD2-4 only 7–9 amino acids differed from PgD1, PgD5 had only 64% sequence identity. PgD5 was amplified from P. glauca genomic DNA by PCR. It codes for a precursor of 77-amino acid that is fully conserved within the Picea genus and has similarity to plant defensins. Recombinant PgD5, produced in Escherichia coli, had a molecular mass of 5.721 kDa, as determined by mass spectrometry. The PgD5 peptide exhibited strong antifungal activity against several phytopathogens without any effect on the morphology of the treated fungal hyphae, but strongly inhibited hyphal elongation. A SYTOX uptake assay suggested that the inhibitory activity of PgD5 could be associated with altering the permeability of the fungal membranes. Another completely unrelated defensin gene was identified in the EST library and named endopiceasin. Its gene codes for a 6-cysteine peptide that shares high similarity with the fungal defensin plectasin. Conclusions Screening of a P. glauca EST database resulted in the identification of five new defensin-encoding genes. PgD5 codes for a plant defensin that displays non-morphogenic antifungal activity against the phytopathogens tested, probably by altering membrane

  15. Identification, cloning and functional characterization of novel beta-defensins in the rat (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    French Frank S

    2006-02-01

    Full Text Available Abstract Background beta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial properties. The majority of beta-defensins identified in humans are predominantly expressed in the male reproductive tract and have roles in non-immunological processes such as sperm maturation and capacitation. Characterization of novel defensins in the male reproductive tract can lead to increased understanding of their dual roles in immunity and sperm maturation. Methods In silico rat genomic analyses were used to identify novel beta-defensins related to human defensins 118–123. RNAs isolated from male reproductive tract tissues of rat were reverse transcribed and PCR amplified using gene specific primers for defensins. PCR products were sequenced to confirm their identity. RT-PCR analysis was performed to analyze the tissue distribution, developmental expression and androgen regulation of these defensins. Recombinant defensins were tested against E. coli in a colony forming unit assay to analyze their antimicrobial activities. Results Novel beta-defensins, Defb21, Defb24, Defb27, Defb30 and Defb36 were identified in the rat male reproductive tract. Defb30 and Defb36 were the most restricted in expression, whereas the others were expressed in a variety of tissues including the female reproductive tract. Early onset of defensin expression was observed in the epididymides of 10–60 day old rats. Defb21-Defb36 expression in castrated rats was down regulated and maintained at normal levels in testosterone supplemented animals. DEFB24 and DEFB30 proteins showed potent dose and time dependent antibacterial activity. Conclusion Rat Defb21, Defb24, Defb27, Defb30 and Defb36 are abundantly expressed in the male reproductive tract where they most likely protect against microbial invasion. They are developmentally regulated and androgen is required for full expression in the adult epididymis.

  16. Increasing Ciprofloxacin Resistance Among Prevalent Urinary Tract Bacterial Isolates in Gaza Strip, Palestine

    Directory of Open Access Journals (Sweden)

    Zakaria El Astal

    2005-01-01

    Full Text Available This article presents the incidence of ciprofloxacin resistance among 480 clinical isolates obtained from patients with urinary tract infection (UTI during January to June 2004 in Gaza Strip, Palestine. The resistance rates observed were 15.0% to ciprofloxacin, 82.5% to amoxycillin, 64.4% to cotrimoxazole, 63.1% to doxycycline, 32.5% to cephalexin, 31.9% to nalidixic acid, and 10.0% to amikacin. High resistance to ciprofloxacin was detected among Acinetobacter haemolyticus (28.6%, Staphylococcus saprophyticus (25.0%,Pseudomonas aeruginosa (20.0%, Klebsiella pneumonia (17.6%, and Escherichia coli (12.0%. Minimal inhibitory concentration (MIC of ciprofloxacin evenly ranged from 4 to 32 μg/mL with a mean of 25.0 μg/mL. This study indicates emerging ciprofloxacin resistance among urinary tract infection isolates. Increasing resistance against ciprofloxacin demands coordinated monitoring of its activity and rational use of the antibiotics.

  17. A rapid in situ procedure for determination of bacterial susceptibility or resistance to antibiotics that inhibit peptidoglycan biosynthesis

    Directory of Open Access Journals (Sweden)

    Bou Germán

    2011-08-01

    Full Text Available Abstract Background Antibiotics which inhibit bacterial peptidoglycan biosynthesis are the most widely used in current clinical practice. Nevertheless, resistant strains increase dramatically, with serious economic impact and effects on public health, and are responsible for thousands of deaths each year. Critical clinical situations should benefit from a rapid procedure to evaluate the sensitivity or resistance to antibiotics that act at the cell wall. We have adapted a kit for rapid determination of bacterial DNA fragmentation, to assess cell wall integrity. Results Cells incubated with the antibiotic were embedded in an agarose microgel on a slide, incubated in an adapted lysis buffer, stained with a DNA fluorochrome, SYBR Gold and observed under fluorescence microscopy. The lysis affects the cells differentially, depending on the integrity of the wall. If the bacterium is susceptible to the antibiotic, the weakened cell wall is affected by the lysing solution so the nucleoid of DNA contained inside the bacterium is released and spread. Alternatively, if the bacterium is resistant to the antibiotic, it is practically unaffected by the lysis solution and does not liberate the nucleoid, retaining its normal morphological appearance. In an initial approach, the procedure accurately discriminates susceptible, intermediate and resistant strains of Escherichia coli to amoxicillin/clavulanic acid. When the bacteria came from an exponentially growing liquid culture, the effect on the cell wall of the β-lactam was evident much earlier that when they came from an agar plate. A dose-response experiment with an E. coli strain susceptible to ampicillin demonstrated a weak effect before the MIC dose. The cell wall damage was not homogenous among the different cells, but the level of damage increased as dose increased with a predominant degree of effect for each dose. A microgranular-fibrilar extracellular background was evident in gram

  18. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    Science.gov (United States)

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  19. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    Science.gov (United States)

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  20. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains

    Directory of Open Access Journals (Sweden)

    Sara eScandorieiro

    2016-05-01

    Full Text Available Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare essential oil (OEO and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP, produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all seventeen strains tested, with minimal inhibitory concentrations (MIC ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 µM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min, while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA cells exposed to three different treatments (OEO, bio-AgNP and combination of the two, which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds

  1. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates.

    Science.gov (United States)

    Friman, V-P; Soanes-Brown, D; Sierocinski, P; Molin, S; Johansen, H K; Merabishvili, M; Pirnay, J-P; De Vos, D; Buckling, A

    2016-01-01

    Recent years have seen renewed interest in phage therapy--the use of viruses to specifically kill disease-causing bacteria--because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here, we determined whether in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre-adapted all phage strains against all bacterial strains and then compared the efficacy of pre-adapted and nonadapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages, whereas all bacteria were able to evolve some level of resistance to ancestral phages. Although the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely to explain why evolved phages were more effective in reducing the densities of chronic isolates. Our data show that pathogen genotypes respond differently to phage pre-adaptation, and as a result, phage therapies might need to be individually adjusted for different patients. PMID:26476097

  2. Bacterial resistance to antibiotics, an exemplary model of directed molecular evolution

    OpenAIRE

    Ghuysen, Jean-Marie

    1998-01-01

    Het meest eenvouding gebeuren dat men zich kan voorstellen ter hoogte van de genen kan een efficiënte weerstand tegenover antibiotica uitlokkken. De bacteriële wereld gedraagt zich als een reusachtig organisme waarvan de cellen zeer gemakkelijk hun genen uitwisselen. In deze omstandigheden zijn de kansen tot mutaties blijkbaar onbeperkt. Deze vaststelling kan niet genegeerd worden en leidt tot het belangrijke besluit dat antibiotica sociale geneesmiddelen zijn. Een weerstandsgen die zich erge...

  3. Conjugative DNA Transfer Induces the Bacterial SOS Response and Promotes Antibiotic Resistance Development through Integron Activation

    OpenAIRE

    Baharoglu, Zeynep; Bikard, David; Mazel, Didier

    2010-01-01

    Conjugation is one mechanism for intra- and inter-species horizontal gene transfer among bacteria. Conjugative elements have been instrumental in many bacterial species to face the threat of antibiotics, by allowing them to evolve and adapt to these hostile conditions. Conjugative plasmids are transferred to plasmidless recipient cells as single-stranded DNA. We used lacZ and gfp fusions to address whether conjugation induces the SOS response and the integron integrase. The SOS response contr...

  4. Effect of Seed Treatment by Cold Plasma on the Resistance of Tomato to Ralstonia solanacearum (Bacterial Wilt)

    Science.gov (United States)

    Jiang, Jiafeng; Lu, Yufang; Li, Jiangang; Li, Ling; He, Xin; Shao, Hanliang; Dong, Yuanhua

    2014-01-01

    This study investigated the effect of cold plasma seed treatment on tomato bacterial wilt, caused by Ralstonia solanacearum (R. solanacearum), and the regulation of resistance mechanisms. The effect of cold plasma of 80W on seed germination, plant growth, nutrient uptake, disease severity, hydrogen peroxide (H2O2) concentration and activities of peroxidase (POD; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.10.3.2) and phenylalanine ammonia lyase (PAL; EC 4.3.1.5) were examined in tomato plants. Plasma treatment increased tomato resistance to R. solanacearum with an efficacy of 25.0%. Plasma treatment significantly increased both germination and plant growth in comparison with the control treatment, and plasma-treated plants absorbed more calcium and boron than the controls. In addition, H2O2 levels in treated plants rose faster and reached a higher peak, at 2.579 µM gFW−1, 140% greater than that of the control. Activities of POD (421.3 U gFW−1), PPO (508.8 U gFW−1) and PAL (707.3 U gFW−1) were also greater in the treated plants than in the controls (103.0 U gFW−1, 166.0 U gFW−1 and 309.4 U gFW−1, respectively). These results suggest that plasma treatment affects the regulation of plant growth, H2O2 concentration, and POD, PPO and PAL activity in tomato, resulting in an improved resistance to R. solanacearum. Consequently, cold plasma seed treatment has the potential to control tomato bacterial wilt caused by R. solanacearum. PMID:24840508

  5. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (Bacterial Wilt.

    Directory of Open Access Journals (Sweden)

    Jiafeng Jiang

    Full Text Available This study investigated the effect of cold plasma seed treatment on tomato bacterial wilt, caused by Ralstonia solanacearum (R. solanacearum, and the regulation of resistance mechanisms. The effect of cold plasma of 80W on seed germination, plant growth, nutrient uptake, disease severity, hydrogen peroxide (H2O2 concentration and activities of peroxidase (POD; EC 1.11.1.7, polyphenol oxidase (PPO; EC 1.10.3.2 and phenylalanine ammonia lyase (PAL; EC 4.3.1.5 were examined in tomato plants. Plasma treatment increased tomato resistance to R. solanacearum with an efficacy of 25.0%. Plasma treatment significantly increased both germination and plant growth in comparison with the control treatment, and plasma-treated plants absorbed more calcium and boron than the controls. In addition, H2O2 levels in treated plants rose faster and reached a higher peak, at 2.579 µM gFW-1, 140% greater than that of the control. Activities of POD (421.3 U gFW-1, PPO (508.8 U gFW-1 and PAL (707.3 U gFW-1 were also greater in the treated plants than in the controls (103.0 U gFW-1, 166.0 U gFW-1 and 309.4 U gFW-1, respectively. These results suggest that plasma treatment affects the regulation of plant growth, H2O2 concentration, and POD, PPO and PAL activity in tomato, resulting in an improved resistance to R. solanacearum. Consequently, cold plasma seed treatment has the potential to control tomato bacterial wilt caused by R. solanacearum.

  6. Rapid identification of bacterial resistance to Ciprofloxacin using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Pitris, Costas

    2014-02-01

    Due to its effectiveness and broad coverage, Ciprofloxacin is the fifth most prescribed antibiotic in the US. As current methods of infection diagnosis and antibiotic sensitivity testing (i.e. an antibiogram) are very time consuming, physicians prescribe ciprofloxacin before obtaining antibiogram results. In order to avoid increasing resistance to the antibiotic, a method was developed to provide both a rapid diagnosis and the sensitivity to the antibiotic. Using Surface Enhanced Raman Spectroscopy, an antibiogram was obtained after exposing the bacteria to Ciprofloxacin for just two hours. Spectral analysis revealed clear separation between sensitive and resistant bacteria and could also offer some inside into the mechanisms of resistance.

  7. Using reduced amino acid composition to predict defensin family and subfamily: Integrating similarity measure and structural alphabet.

    Science.gov (United States)

    Zuo, Yong-Chun; Li, Qian-Zhong

    2009-10-01

    Defensins are essentially ancient natural antibiotics with potent activity extending from lower organisms to humans. They can inhibit the growth or virulence of micro-organisms directly or indirectly enhance the host's immune system. The successful prediction of defensin peptides will provide very useful information and insights for the basic research of defensins. In this study, by selecting the N-peptide composition of reduced amino acid alphabet (RAAA) obtained from structural alphabet named Protein Blocks as the feature parameters, the increment of diversity (ID) is firstly developed to predict defensins family and subfamily. The jackknife test based on 2-peptide composition of reduced amino acid alphabet (RAAA) with 13 reduced amino acids shows that the overall accuracy of prediction are 91.36% for defensin family, and 94.21% for defensin subfamily. The results indicate that ID_RAAA is a simple and efficient prediction method for defensin peptides. PMID:19591890

  8. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation.

    Directory of Open Access Journals (Sweden)

    Zeynep Baharoglu

    2010-10-01

    Full Text Available Conjugation is one mechanism for intra- and inter-species horizontal gene transfer among bacteria. Conjugative elements have been instrumental in many bacterial species to face the threat of antibiotics, by allowing them to evolve and adapt to these hostile conditions. Conjugative plasmids are transferred to plasmidless recipient cells as single-stranded DNA. We used lacZ and gfp fusions to address whether conjugation induces the SOS response and the integron integrase. The SOS response controls a series of genes responsible for DNA damage repair, which can lead to recombination and mutagenesis. In this manuscript, we show that conjugative transfer of ssDNA induces the bacterial SOS stress response, unless an anti-SOS factor is present to alleviate this response. We also show that integron integrases are up-regulated during this process, resulting in increased cassette rearrangements. Moreover, the data we obtained using broad and narrow host range plasmids strongly suggests that plasmid transfer, even abortive, can trigger chromosomal gene rearrangements and transcriptional switches in the recipient cell. Our results highlight the importance of environments concentrating disparate bacterial communities as reactors for extensive genetic adaptation of bacteria.

  9. Induction of bacterial blight resistance in elite Indian rice (Oryza sativa L.) cultivars using gamma irradiation and ethyl methane sulfonate

    International Nuclear Information System (INIS)

    Rice is one of the most important crops in the world, feeding more than 50% of the human population. During the last 30 years, mutation breeding has played a significant role in rice breeding programmes. Rice mutants with higher yield, greater tolerance to diseases and pests and other agronomic qualities have been released for commercial cultivation in many countries. By the year 1991, as many as 278 rice cultivars had been released world-wide out of which 24 were from India. Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae is the second most important disease in southeast Asia, causing an average of 21 kg/ha yield loss. In the Basmati field yield loss can reach up to 100%. Moreover, there is no resistant source of Basmati rice known for its quality and aroma. Induction of bacterial blight resistance in basmati rice will not only help in developing high yielding Basmati cultivars without compromising the quality but will also be a good source of resistance for other Basmati rice varieties. Therefore, seeds of two Indian rice varieties viz. PR106 and Pusa Basmati 1 were treated with EMS (0.25% and 0.5%) at pH 7.0 at 25 ± 1 deg C for 12 h and gamma rays (100 and 200 Gy). A 3500-curie 60Co gamma cell with a dose rate of 3200 radians per minute was used for gamma irradiation of the paddy seeds containing 13% moisture. After mutagenic treatment seeds were germinated along with corresponding controls in petri dishes lined with wet filter paper. The seeds from the M1 generation were grown in the plant-to- progeny method for the M2 generation at Kapurthala, Punjab Agricultural University. Each progeny had 22-25 plants. The plant-to-plant distance was 20 cm and row-to-row distance was 30 cm. For every 20 lines, one line of check (parent variety) was grown. Screening against BB was made in the M2 generation by inoculating the plants at maximum tillering stage, following Kauffman et al. (1973). Observations for disease severity were recorded after 14 days of

  10. Antibacterial activity of defensin PaDef from avocado fruit (Persea americana var. drymifolia) expressed in endothelial cells against Escherichia coli and Staphylococcus aureus.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Suárez-Rodríguez, Luis M; Salgado-Garciglia, Rafael; Rodríguez-Zapata, Luis C; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2013-01-01

    Antimicrobial therapy is a useful tool to control infectious diseases in general and rising antibiotic resistant microorganisms in particular. Alternative strategies are desirable, and antimicrobial peptides (AMP) represent attractive control agents. Mexican avocado (Persea americana var. drymifolia) is used in traditional medicine; however, the AMP production has not been reported in this plant. We obtained a cDNA library from avocado fruit and clone PaDef was identified, which has a cDNA (249 bp) encoding a protein (78 aa) homologous with plant defensins (>80%). We expressed the defensin PaDef cDNA (pBME3) in the bovine endothelial cell line BVE-E6E7. Polyclonal and clonal populations were obtained and their activity was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. E. coli viability was inhibited with 100 μg/mL of total protein from clones (>55%). Also, S. aureus viability was inhibited from 50 μg/mL total protein (27-38%) but was more evident at 100 μg/mL (52-65%). This inhibition was higher than the effect showed by polyclonal population (~23%). Finally, we did not detect activity against C. albicans. These results are the first report that shows antimicrobial activity of a defensin produced by avocado and suggest that this AMP could be used in the control of pathogens. PMID:24319695

  11. Antibacterial Activity of Defensin PaDef from Avocado Fruit (Persea americana var. drymifolia Expressed in Endothelial Cells against Escherichia coli and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jaquelina Julia Guzmán-Rodríguez

    2013-01-01

    Full Text Available Antimicrobial therapy is a useful tool to control infectious diseases in general and rising antibiotic resistant microorganisms in particular. Alternative strategies are desirable, and antimicrobial peptides (AMP represent attractive control agents. Mexican avocado (Persea americana var. drymifolia is used in traditional medicine; however, the AMP production has not been reported in this plant. We obtained a cDNA library from avocado fruit and clone PaDef was identified, which has a cDNA (249 bp encoding a protein (78 aa homologous with plant defensins (>80%. We expressed the defensin PaDef cDNA (pBME3 in the bovine endothelial cell line BVE-E6E7. Polyclonal and clonal populations were obtained and their activity was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. E. coli viability was inhibited with 100 μg/mL of total protein from clones (>55%. Also, S. aureus viability was inhibited from 50 μg/mL total protein (27–38% but was more evident at 100 μg/mL (52–65%. This inhibition was higher than the effect showed by polyclonal population (~23%. Finally, we did not detect activity against C. albicans. These results are the first report that shows antimicrobial activity of a defensin produced by avocado and suggest that this AMP could be used in the control of pathogens.

  12. Inheritance of rainbow trout Oncorhynchus mykiss spleen size and correlation with bacterial cold water disease resistance

    Science.gov (United States)

    Infectious disease causes substantial loss in aquaculture and selective breeding for increased innate resistance offers an attractive strategy for controlling disease. In 2005, the NCCCWA implemented a selective breeding program to increase rainbow trout survival following challenge with Flavobacte...

  13. A new method to provide resistance to bacterial soft rot in plants

    OpenAIRE

    Bouwmeester, K.; Govers, F.

    2014-01-01

    The invention relates to a method for providing plants, preferably potato plants, with resistance to blackleg or soft rot caused by Pectobacterium carotovorum by providing them with a gene encoding the LecRK-I.9 protein.

  14. New Sources of Tobamoviruses, CMV and Bacterial Spot Resistance in Pepper

    OpenAIRE

    Stoimenova, Elisaveta; Mitrev, Sasa; Bogatzevska, Nevena

    2005-01-01

    The pepper cultivars Zlaten medal, Alfi and Zalfi, the six Macedonian pepper accessions and the five Bulgarian lines have been screening for the resistance to cucumber mosaic virus (CMV), tobamoviruses and Xanthomonas vesicatoria pepper - tomato pathotype (XvPT).

  15. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation.

    OpenAIRE

    Beaman, T C; Gerhardt, P

    1986-01-01

    Twenty-eight types of lysozyme-sensitive spores among seven Bacillus species representative of thermophiles, mesophiles, and psychrophiles were obtained spanning a 3,000-fold range in moist-heat resistance. The resistance within species was altered by demineralization of the native spores to protonated spores and remineralization of the protonated spores to calcified spores and by thermal adaptation at maximum, optimum, and minimum sporulation temperatures. Protoplast wet densities, and there...

  16. Inhibition of Bacterial Multidrug Resistance by Celecoxib, a Cyclooxygenase-2 Inhibitor▿

    OpenAIRE

    Kalle, Arunasree M.; Rizvi, Arshad

    2010-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs ins...

  17. Inhibition of Growth of Highly Resistant Bacterial and Fungal Pathogens by a Natural Product

    OpenAIRE

    Hafidh, Rand R; Abdulamir, Ahmed S; Vern, Law Se; Abu Bakar, Fatimah; Abas, Faridah; Jahanshiri, Fatemeh; Sekawi, Zamberi

    2011-01-01

    The continuous escalation of resistant bacteria against a wide range of antibiotics necessitates discovering novel unconventional sources of antibiotics. B. oleracea L (red cabbage) is health-promoting food with proven anticancer and anti-inflammatory activities. However, it has not been researched adequately for its antimicrobial activity on potential resistant pathogens. The methanol crude extract of B. oleracea L. was investigated for a possible anti-microbial activity. The screening metho...

  18. Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance.

    Directory of Open Access Journals (Sweden)

    Daniel Nichol

    2015-09-01

    Full Text Available The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treatments presents a growing threat to public health. Here, we consider a simple model of evolution in asexually reproducing populations which considers adaptation as a biased random walk on a fitness landscape. This model associates the global properties of the fitness landscape with the algebraic properties of a Markov chain transition matrix and allows us to derive general results on the non-commutativity and irreversibility of natural selection as well as antibiotic cycling strategies. Using this formalism, we analyze 15 empirical fitness landscapes of E. coli under selection by different β-lactam antibiotics and demonstrate that the emergence of resistance to a given antibiotic can be either hindered or promoted by different sequences of drug application. Specifically, we demonstrate that the majority, approximately 70%, of sequential drug treatments with 2-4 drugs promote resistance to the final antibiotic. Further, we derive optimal drug application sequences with which we can probabilistically 'steer' the population through genotype space to avoid the emergence of resistance. This suggests a new strategy in the war against antibiotic-resistant organisms: drug sequencing to shepherd evolution through genotype space to states from which resistance cannot emerge and by which to maximize the chance of successful therapy.

  19. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding.

    Science.gov (United States)

    Ellur, Ranjith K; Khanna, Apurva; Yadav, Ashutosh; Pathania, Sandeep; Rajashekara, H; Singh, Vikas K; Gopala Krishnan, S; Bhowmick, Prolay K; Nagarajan, M; Vinod, K K; Prakash, G; Mondal, Kalyan K; Singh, Nagendra K; Vinod Prabhu, K; Singh, Ashok K

    2016-01-01

    Marker assisted backcross breeding was employed to incorporate the blast resistance genes, Pi2 and Pi54 and bacterial blight (BB) resistance genes xa13 and Xa21 into the genetic background of Pusa Basmati 1121 (PB1121) and Pusa Basmati 6. Foreground selection for target gene(s) was followed by arduous phenotypic and background selection which fast-tracked the recovery of recurrent parent genome (RPG) to an extent of 95.8% in one of the near-isogenic lines (NILs) namely, Pusa 1728-23-33-31-56, which also showed high degree of resemblance to recurrent parent, PB6 in phenotype. The phenotypic selection prior to background selection provided an additional opportunity for identifying the novel recombinants viz., Pusa 1884-9-12-14 and Pusa 1884-3-9-175, superior to parental lines in terms of early maturity, higher yield and improved quality parameters. There was no significant difference between the RPG recovery estimated based on SSR or SNP markers, however, the panel of SNPs markers was considered as the better choice for background selection as it provided better genome coverage and included SNPs in the genic regions. Multi-location evaluation of NILs depicted their stable and high mean performance in comparison to the respective recurrent parents. The Pi2+Pi54 carrying NILs were effective in combating a pan-India panel of Magnaporthe oryzae isolates with high level of field resistance in northern, eastern and southern parts of India. Alongside, the PB1121-NILs and PB6-NILs carrying BB resistance genes xa13+Xa21 were resistant against Xanthomonas oryzae pv. oryzae races of north-western, southern and eastern parts of the country. Three of NILs developed in this study, have been promoted to final stage of testing during the ​Kharif 2015 in the Indian National Basmati Trial. PMID:26566849

  20. Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance

    Indian Academy of Sciences (India)

    Haiying Ren; Ganyu Gu; Juying Long; Qian Yin; Tingquan Wu; Tao Song; Shujian Zhang; Zhiyi Chen; Hansong Dong

    2006-12-01

    Expression of HpaGXoo, a bacterial type-III effector, in transgenic plants induces disease resistance. Resistance also can be elicited by biocontrol bacteria. In both cases, plant growth is often promoted. Here we address whether biocontrol bacteria and HpaGXoo can act together to provide better results in crop improvement. We studied effects of Pseudomonas cepacia on the rice variety R109 and the hpaGXoo-expressing rice line HER1. Compared to R109, HER1 showed increased growth, grain yield, and defense responses toward diseases and salinity stress. Colonization of roots by P. cepacia caused 20% and 13% increase, in contrast to controls, in root growth of R109 and HER1. Growth of leaves and stems also increased in R109 but that of HER1 was inhibited. When P. cepacia colonization was subsequent to plant inoculation with Rhizoctonia solani, a pathogen that causes sheath blight, the disease was less severe than controls in both R109 and HER1; HER1, nevertheless, was more resistant, suggesting that P. cepacia and HpaGXoo cooperate in inducing disease resistance. Several genes that critically regulate growth and defense behaved differentially in HER1 and R109 while responding to P. cepacia. In R109 leaves, the OsARF1 gene, which regulates plant growth, was expressed in consistence with growth promotion by P. cepacia. Inversely, OsARF1 expression was coincident with inhibition in growth of HER1 leaves. In both plants, the expression of OsEXP1, which encodes an expansin protein involved in plant growth, was concomitant with growth promotion in leaves instead of roots, in response to P. cepacia. We also studied OsMAPK, a gene that encodes a mitogen-activated protein kinase and controls defense responses toward salinity and infection by pathogens in rice. In response to P. cepacia, an early expression of OsMAPK was coincident with R109 resistance to the disease, while HER1 expressed the gene similarly whether P. cepacia was present or not. Evidently, P. cepacia and GXoo

  1. Mechanisms, molecular and sero-epidemiology of antimicrobial resistance in bacterial respiratory pathogens isolated from Japanese children

    Directory of Open Access Journals (Sweden)

    Sunakawa Keisuke

    2007-08-01

    Full Text Available Abstract Background The clinical management of community-acquired respiratory tract infections (RTIs is complicated by the increasing worldwide prevalence of antibacterial resistance, in particular, β-lactam and macrolide resistance, among the most common causative bacterial pathogens. This study aimed to determine the mechanisms and molecular- and sero-epidemiology of antibacterial resistance among the key paediatric respiratory pathogens in Japan. Methods Isolates were collected at 18 centres in Japan during 2002 and 2003 from children with RTIs as part of the PROTEKT surveillance programme. A proportion of Haemophilus influenzae isolates was subjected to sequencing analysis of the ftsI gene; phylogenetic relatedness was assessed using multilocus sequence typing. Streptococcus pneumoniae isolates were screened for macrolide-resistance genotype by polymerase chain reaction and serotyped using the capsular swelling method. Susceptibility of isolates to selected antibacterials was performed using CLSI methodology. Results and Discussion Of the 557 H. influenzae isolates collected, 30 (5.4% were β-lactamase-positive [BL+], 115 (20.6% were BL-nonproducing ampicillin-resistant (BLNAR; MIC ≥ 4 mg/L and 79 (14.2% were BL-nonproducing ampicillin-intermediate (BLNAI; MIC 2 mg/L. Dabernat Group III penicillin binding protein 3 (PBP3 amino acid substitutions in the ftsI gene were closely correlated with BLNAR status but phylogenetic analysis indicated marked clonal diversity. PBP mutations were also found among BL+ and BL-nonproducing ampicillin-sensitive isolates. Of the antibacterials tested, azithromycin and telithromycin were the most active against H. influenzae (100% and 99.3% susceptibility, respectively. A large proportion (75.2% of the 468 S. pneumoniae isolates exhibited macrolide resistance (erythromycin MIC ≥ 1 mg/L; erm(B was the most common macrolide resistance genotype (58.8%, followed by mef(A (37.2%. The most common pneumococcal

  2. 越南对抗角斑病棉花品种的选育(英)%Screening of Promising Cotton Varieties for Bacterial Blight Resistance

    Institute of Scientific and Technical Information of China (English)

    Bui Thi Ngan

    2002-01-01

    @@ I Introduction Bacterial Blight (Xanthomonas malvacearum ,BB) was probably originated in India, although the disease was first reported in the USA by Atkinson (1891), who gave the names angular leaf spot, blackarm and bacterial boll rot to the various stages in the syndrome of the disease. The first programme to breed for cultivar resistance to the disease was initiated in Sudan by research officers with the Cotton Research Corporation. Methods adopted there were soon implemented in Uganda and most of the early resistant varieties grown in many African countries were derived from the Uganda programme.

  3. Towards a tolerance toolkit: Gene expression signatures enabling the emergence of resistant bacterial strains

    Science.gov (United States)

    Erickson, Keesha; Chatterjee, Anushree

    2014-03-01

    Microbial pathogens are able to rapidly acquire tolerance to chemical toxins. Developing next-generation antibiotics that impede the emergence of resistance will help avoid a world-wide health crisis. Conversely, the ability to induce rapid tolerance gains could lead to high-yielding strains for sustainable production of biofuels and commodity chemicals. Achieving these goals requires an understanding of the general mechanisms allowing microbes to become resistant to diverse toxins. We apply top-down and bottom-up methodologies to identify biological network changes leading to adaptation and tolerance. Using a top-down approach, we perform evolution experiments to isolate resistant strains, collect samples for transcriptomic and proteomic analysis, and use the omics data to inform mathematical gene regulatory models. Using a bottom-up approach, we build and test synthetic genetic devices that enable increased or decreased expression of selected genes. Unique patterns in gene expression are identified in cultures actively gaining resistance, especially in pathways known to be involved with stress response, efflux, and mutagenesis. Genes correlated with tolerance could potentially allow the design of resistance-free antibiotics or robust chemical production strains.

  4. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.

    Science.gov (United States)

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-09-01

    Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide. PMID:26206286

  5. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  6. Consequences of bacterial resistance to disinfection by iodine in potable water

    Science.gov (United States)

    Mcfeters, Gordon A.; Pyle, Barry H.

    1987-01-01

    This study was done to quantify the sensitivity of bacteria to iodine under controlled laboratory conditions. When exposed to 1 mg/1 I2 for 1 min, bacteria isolated from the Shuttle were more resistant than a P. aeruginosa isolated from a povidine-iodine solution. Cultures grown in rich media were more sensitive than those grown in low nutrient solutions. The P. aeruginosa and a P. cepacia isolated from the Shuttle were resuspended in PBW after exposure to iodine. Iodinated cells recovered better than uniodinated controls. Pseudomonads in biofilms developed on coupons of stainless steel were more resistant to iodine than cells suspended in buffered water. Although resistant bacteria may colonize spacecraft water systems, multiple treatment barriers should provide adequate control of these contaminants.

  7. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas;

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin - II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003 - 2005, with the aim to establish a continuous monitoring of antimicrobial susceptibility among veterinary laboratories...... in European countries based on validated and harmonised methodologies. Available summary data of the susceptibility testing of the bacterial pathogens from the different laboratories were collected. Method: Antimicrobial susceptibility data for several bovine pathogens were obtained over a three year period...... testing was conducted each year to test the accuracy of antimicrobial susceptibility testing in the participating laboratories. The data from this testing demonstrated that for the species included in the EQAS the results are comparable between countries. Results: Data from 25,241 isolates were collected...

  8. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins.

    Science.gov (United States)

    Kovalskaya, Natalia; Hammond, Rosemarie W

    2009-01-01

    In this study, for the first time, functionally active, recombinant, cysteine-rich plant proteins snakin-1 (SN1) and defensin (PTH1) were expressed and purified using a prokaryotic expression system. The overall level of antimicrobial activities of SN1 and PTH1 produced in Escherichia coli was commensurate with that of the same proteins previously obtained from plant tissues. Both proteins exhibited strong antibacterial activity against the phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus (50% inhibitory concentration (IC(50)) 1.5-8 microM) and antifungal activity against the phytopathogenic fungi Colletotrichum coccoides and Botrytis cinerea (IC(50) 5-14 microM). Significantly weaker activity was observed against Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. tabaci. A pronounced synergistic antimicrobial effect against P. syringae pv. syringae and an additive effect against P. syringae pv. tabaci occurred with a combination of SN1 and PTH1. Aggregation of C. michiganensis subsp. sepedonicus bacterial cells at all protein concentrations tested was observed with the combination of SN1 and PTH1 and with SN1 alone. Our results demonstrate the use of a cost effective prokaryotic expression system for generation and in vitro characterization of plant cysteine-rich proteins with potential antimicrobial activities against a wide range of phytopathogenic microorganisms in order to select the most effective agents for future in vivo studies. PMID:18824107

  9. Changes of bacterial diversity and tetracycline resistance in sludge from AAO systems upon exposure to tetracycline pressure

    International Nuclear Information System (INIS)

    Highlights: • High-throughput sequencing was used to compare sludge bacteria with and without TC. • Bacterial diversity increased with TC addition despite of various oxygen conditions. • Total TRGs proliferated with TC addition in three kinds of sludge. • The concentration of efflux pump genes was the highest in the three groups of TRGs. - Abstract: Two lab-scale anaerobic-anoxic-oxic (AAO) systems were used to investigate the changes in tetracycline (TC) resistance and bacterial diversity upon exposure to TC pressure. High-throughput sequencing was used to detect diversity changes in microorganisms at the level of class in sludge from different bioreactors with and without TC. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the abundances of eight tetracycline resistance genes (TRGs), tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX. The results showed that the diversities of the microbial communities of anoxic, anaerobic and aerobic sludge all increased with the addition of TC. TC substantially changed the structure of the microbial community regardless of oxygen conditions. Bacteroidetes and Proteobacteria were the dominant species in the three kinds of sludge and were substantially enriched with TC pressure. In sludge with TC added, almost all target TRGs proliferated more than those in sludge without TC except tetX, which decreased in anaerobic sludge with TC addition. The concentration of efflux pump genes, tet(A–C, E), was the highest among the three groups of TRGs in the different kinds of sludge

  10. Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance.

    Science.gov (United States)

    Jones, Alexandra M E; Thomas, Vincent; Truman, Bill; Lilley, Kathryn; Mansfield, John; Grant, Murray

    2004-06-01

    Alterations in the proteome of Arabidopsis thaliana leaves during early responses to challenge by Pseudomonas syringae pv. tomato DC3000 (DC3000) were analysed using two-dimensional (2D) gel electrophoresis. Protein changes characteristic of the establishment of basal resistance and R-gene mediated resistance were examined by comparing responses to DC3000, a hrp mutant and DC3000 expressing avrRpm1 respectively. The abundance of selected transcripts was also analysed in GeneChip experiments. Here we present data from the soluble fraction of leaf protein, highlighting changes in two antioxidant enzyme groups; the glutathione S-transferases (GSTs F2, F6, F7 and F8) and peroxiredoxins (PrxA, B and IIE). Members of both enzyme groups showed signs of specific post-translational modifications, represented by multiple spots on gels. We suggest that oxidation of specific residues is responsible for some of the spot shifts. All forms of the GST proteins identified here increased following inoculation with bacteria. GSTF8 showed particularly dynamic responses to pathogen challenge, the corresponding transcript was significantly up-regulated by 2 h after inoculation, and the protein showed post-translational modifications specific to an incompatible interaction. Differential changes were observed with the peroxiredoxin proteins; PrxIIE and to a lesser extent PrxB, no change was observed with PrxA, but a truncated form PrxA-L was greatly reduced in abundance following bacterial challenges. Our data suggest that bacterial challenge generally induces Prxs and the antioxidants GSTs, however individual members of these families may be specifically modified dependent upon the virulence of the DC3000 strain and outcome of the interaction. Finally, proteomic and transcriptomic data derived from the same inoculation system are compared and the advantages offered by 2D gel analysis discussed in light of our results. PMID:15276439

  11. Changes of bacterial diversity and tetracycline resistance in sludge from AAO systems upon exposure to tetracycline pressure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Manhong, E-mail: egghmh@163.com; Qi, Fangfang; Wang, Jue; Xu, Qi; Lin, Li

    2015-11-15

    Highlights: • High-throughput sequencing was used to compare sludge bacteria with and without TC. • Bacterial diversity increased with TC addition despite of various oxygen conditions. • Total TRGs proliferated with TC addition in three kinds of sludge. • The concentration of efflux pump genes was the highest in the three groups of TRGs. - Abstract: Two lab-scale anaerobic-anoxic-oxic (AAO) systems were used to investigate the changes in tetracycline (TC) resistance and bacterial diversity upon exposure to TC pressure. High-throughput sequencing was used to detect diversity changes in microorganisms at the level of class in sludge from different bioreactors with and without TC. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the abundances of eight tetracycline resistance genes (TRGs), tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX. The results showed that the diversities of the microbial communities of anoxic, anaerobic and aerobic sludge all increased with the addition of TC. TC substantially changed the structure of the microbial community regardless of oxygen conditions. Bacteroidetes and Proteobacteria were the dominant species in the three kinds of sludge and were substantially enriched with TC pressure. In sludge with TC added, almost all target TRGs proliferated more than those in sludge without TC except tetX, which decreased in anaerobic sludge with TC addition. The concentration of efflux pump genes, tet(A–C, E), was the highest among the three groups of TRGs in the different kinds of sludge.

  12. Antibiotic resistance pattern of bacterial isolates from skin and soft tissue infections

    Directory of Open Access Journals (Sweden)

    Debadutta Mishra

    2016-05-01

    Conclusions: Staphylococcus aureus exhibited high resistance to commonly prescribed antibiotics like beta-lactams, fluroquinolones and fusidic acid. Hence, it is recommended to base the treatment upon culture and sensitivity report. [Int J Res Med Sci 2016; 4(5.000: 1458-1462

  13. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry

    DEFF Research Database (Denmark)

    Sengeløv, Gitte; Agersø, Yvonne; Halling-Sørensen, B.;

    2003-01-01

    Resistance to tetracycline, macrolides and streptomycin was measured for a period of 8 months in soil bacteria obtained from farmland treated with pig manure slurry. This was done by spread plating bacteria on selective media (Luria Bertani (LB) medium supplemented with antibiotics). To account for...

  14. Follow-Up Trends of Bacterial Etiology of Diarrhoea and Antimicrobial Resistance in Urban Areas of Bangladesh

    Directory of Open Access Journals (Sweden)

    Bashar Sami

    2015-11-01

    Full Text Available Background Diarrhoea is considered as the most widespread illness occurring in Bangladesh. In addition, the growing antimicrobial resistance of diarrhoeal pathogens in this developing country hardens physicians to supervise patients effectively. Objectives In our study, we retrospectively analysed the data of a diarrhoeal pathogens and their antimicrobial resistant patterns isolated from diarrhoeal patients attending Dhaka Hospital, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b, Dhaka and domiciliary patients of Dhaka city of Bangladesh. Patients and Methods During a six-year period (2009 - 2014, a total of 90207 diarrhoeal specimens were collected from patients to screen bacterial etiology by standard culture methods. Antimicrobial susceptibility testing was performed for culture-positive selected diarrhoeal pathogens using disk diffusion method. Results One or more potential pathogens were identified in 20467 (23% patients, more often from under-five children. The most predominant etiological agent was Vibrio spp. (33.23%, followed by Campylobacter spp. (26.04%, Shigella spp. (19.12%, Aeromonas spp. (12.21%, Salmonella spp. (6.74% and Plesiomonas shigelloides (2.66%. Among children under the age of five, Campylobacter spp., Vibrio spp. and Shigella spp. were more common. V. cholerae O1 El Tor biotype was the predominant pathogen (90.75% among all the Vibrio spp. isolated. High prevalence of multiple antibiotic resistances towards ampicillin (AM, ciprofloxacin (CIP and co-trimoxazole (SXT was common among Vibrio spp., Shigella spp. and Campylobacter spp. Beside, correlation with previous data from 2005 - 2008 showed that resistant percentages of Shigella spp., Campylobacter spp., Salmonella spp. to these antibiotics are increasing with time (P < 0.001. Conclusions These findings underscored the importance of monitoring and developing guidelines for better management of infectious diarrhoea in Bangladesh and

  15. Bacterial isolate and antibacterial resistance pattern of ear infection among patients attending at Hawassa university referral Hospital, Hawassa, Ethiopia

    Directory of Open Access Journals (Sweden)

    Mesfin Worku

    2014-01-01

    Full Text Available Background: Ear infection is highly prevalent worldwide. In the older child, long-standing Chronic Supparative Ottitis Media can result in a severe conductive hearing loss with significant drawbacks in learning, communication, and social adjustment. It is associated with hearing impairment, death, and severe disability due to central nervous system involvement in developing countries. Objective: To determine the bacteriological profile and antibacterial resistance of ear infection from patients seen at Ear Nose and Throat clinic of Hawassa University Referral Hospital. Materials and Methods: A cross-sectional study was conducted at clinic of Hawassa University Referal Hospital. Result: A total 117 study subjects included in this study from June 2013 to October 2013. Among these, 57 (48.7% were male and 53 (45.3% were children. Bacteria identified from positive ear swabs were: Staphylococcus aureus 24 (20.5%, Pseudomonas aeroginosa 17 (14.5%, Klebsiella species 10 (8.5%, Proteus species 7 (6.0%, Entrobacter species 4 (3.4%, Escherchia coli 3 (2.6%, Citrobacter species 2 (1.7%, and Providentia species 2 (1.7%. The overall sensitivity and resistance profile of antibacterial agent, Amikacin (90.0% and Gentamycin (89.1 showed high level of antibacterial effect on all identified bacterial species. On other hand, all isolates were highly resistance to ampicilin (87.5%, oxacillin (84.0%, ceftriaxone (82.8%, cephalotin (81.4%, and penicillin G (73.8%. Conclusion: Most of the isolates were resistant to commonly prescribed drug in the area. However, Amikacin and Gentamycin were highly active against the isolated organism, whereas Ciprofloxacilin was moderately active. Therefore, culture and susceptibility test is vital for appropriate management of ear infection in study area.

  16. Characterization of the Mouse Beta Defensin 1, Defb1, Mutant Mouse Model

    OpenAIRE

    Morrison, Gillian; Kilanowski, Fiona; Davidson, Donald; Dorin, Julia

    2002-01-01

    Beta defensins are small cationic antimicrobial peptides present in the respiratory system which have been proposed to be dysfunctional in the environment of the cystic fibrosis lung. Defb1, a murine homologue to the human beta defensins, has also been found to be expressed in the respiratory system and, in order to examine the function of beta defensins in vivo, gene targeting was used to generate Defb1-deficient (Defb1tm1Hgu/Defb1tm1Hgu [Defb1−/−]) mice. The Defb1 synthetic peptide was show...

  17. Antimicrobial activity of rabbit leukocyte defensins against Treponema pallidum subsp. pallidum.

    OpenAIRE

    Borenstein, L A; Selsted, M E; Lehrer, R I; Miller, J N

    1991-01-01

    Defensins, which are peptides with broad antimicrobial activity, are major constituents of rabbit neutrophils and certain macrophages. We tested six rabbit defensins, NP-1, NP-2, NP-3a, NP-3b, NP-4, and NP-5, for activity against Treponema pallidum subsp. pallidum. Mixtures of T. pallidum and defensin in 10% normal rabbit serum (NRS) or heat-inactivated NRS (HI-NRS) were incubated anaerobically for various time periods ranging between 0 and 16 h and then examined by dark-field microscopy for ...

  18. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available The hormone auxin plays an important role not only in the growth and development of rice, but also in its defense responses. We've previously shown that the P450 gene CYP71Z2 enhances disease resistance to pathogens through regulation of phytoalexin biosynthesis in rice, though it remains unclear if auxin is involved in this process or not.The expression of CYP71Z2 was induced by Xanthomonas oryzae pv. oryzae (Xoo inoculation was analyzed by qRT-PCR, with GUS histochemical staining showing that CYP71Z2 expression was limited to roots, blades and nodes. Overexpression of CYP71Z2 in rice durably and stably increased resistance to Xoo, though no significant difference in disease resistance was detected between CYP71Z2-RNA interference (RNAi rice and wild-type. Moreover, IAA concentration was determined using the HPLC/electrospray ionization/tandem mass spectrometry system. The accumulation of IAA was significantly reduced in CYP71Z2-overexpressing rice regardless of whether plants were inoculated or not, whereas it was unaffected in CYP71Z2-RNAi rice. Furthermore, the expression of genes related to IAA, expansin and SA/JA signaling pathways was suppressed in CYP71Z2-overexpressing rice with or without inoculation.These results suggest that CYP71Z2-mediated resistance to Xoo may be via suppression of IAA signaling in rice. Our studies also provide comprehensive insight into molecular mechanism of resistance to Xoo mediated by IAA in rice. Moreover, an available approach for understanding the P450 gene functions in interaction between rice and pathogens has been provided.

  19. BACTERIAL PROFILE, ANTIBIOTIC SENSITIVITY AND RESISTANCE OF LOWER RESPIRATORY TRACT INFECTIONS IN UPPER EGYPT

    Directory of Open Access Journals (Sweden)

    Gamal Agmy

    2013-09-01

    Full Text Available BACKGROUND: Lower respiratory tract infections (LRTI account for a considerable proportion of morbidity and antibiotic use. We aimed to identify the causative bacteria, antibiotic sensitivity and resistance of hospitalized adult patients due to LRTI in Upper Egypt. METHODS: A multicentre prospective study was performed at 3 University Hospitals for 3 years. Samples included sputum or bronchoalveolar lavage (BAL for staining and culture, and serum for serology. Samples were cultured on 3 bacteriological media (Nutrient, Chocolate ,MacConkey's agars.Colonies were identified via MicroScan WalkAway-96. Pneumoslide IgM kit was used for detection of atypical pathogens via indirect immunofluorescent assay. RESULTS: The predominant isolates in 360 patients with CAP were S.pneumoniae (36%, C. pneumoniae (18%, and M. pneumoniae (12%. A higher sensitivity was recorded for moxifloxacin, levofloxacin, macrolides, and cefepime. A higher of resistance was recorded for doxycycline, cephalosporins, and β-lactam-β-lactamase inhibitors. The predominant isolates in 318 patients with HAP were, methicillin-resistant Staphylococcus aureus; MRSA (23%, K. pneumoniae (14%, and polymicrobial in 12%. A higher sensitivity was recorded for vancomycin, ciprofloxacin, and moxifloxacin. Very high resistance was recorded for β-lactam-β-lactamase inhibitors and cephalosporins. The predominant organisms in 376 patients with acute exacerbation of chronic obstructive pulmonary diseases (AECOPD were H. influnzae (30%, S. pneumoniae (25%, and M. catarrhalis(18%. A higher sensitivity was recorded for moxifloxacin, macrolides and cefepime. A higher rate of resistance was recorded for aminoglycosides and cephalosporins CONCLUSIONS: The most predominant bacteria for CAP in Upper Egypt are S. pneumoniae and atypical organisms, while that for HAP are MRSA and Gram negative bacteria. For acute exacerbation of COPD,H.influnzae was the commonest organism. Respiratory quinolones

  20. Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant enterobacteria excreted.

    OpenAIRE

    Thu Thuy Nguyen; Jeremie Guedj; Elisabeth Chachaty; Jean de Gunzburg; Antoine Andremont; France Mentré

    2014-01-01

    Fecal excretion of antibiotics and resistant bacteria in the environment are major public health threats associated with extensive farming and modern medical care. Innovative strategies that can reduce the intestinal antibiotic concentrations during treatments are in development. However, the effect of lower exposure on the amount of resistant enterobacteria excreted has not been quantified, making it difficult to anticipate the impact of these strategies. Here, we introduce a bacterial kinet...

  1. Mathematical Modeling of Bacterial Kinetics to Predict the Impact of Antibiotic Colonic Exposure and Treatment Duration on the Amount of Resistant Enterobacteria Excreted

    OpenAIRE

    Nguyen, Thu Thuy; Guedj, Jeremie; Chachaty, Elisabeth; de Gunzburg, Jean; Andremont, Antoine; Mentré, France

    2014-01-01

    Fecal excretion of antibiotics and resistant bacteria in the environment are major public health threats associated with extensive farming and modern medical care. Innovative strategies that can reduce the intestinal antibiotic concentrations during treatments are in development. However, the effect of lower exposure on the amount of resistant enterobacteria excreted has not been quantified, making it difficult to anticipate the impact of these strategies. Here, we introduce a bacterial kinet...

  2. Country-to-country transfer of patients and the risk of multi-resistant bacterial infection.

    Science.gov (United States)

    Rogers, Benjamin A; Aminzadeh, Zohreh; Hayashi, Yoshiro; Paterson, David L

    2011-07-01

    Management of patients with a history of healthcare contact in multiple countries is now a reality for many clinicians. Leisure tourism, the burgeoning industry of medical tourism, military conflict, natural disasters, and changing patterns of human migration may all contribute to this emerging epidemiological trend. Such individuals may be both vectors and victims of healthcare-associated infection with multiresistant bacteria. Current literature describes intercountry transfer of multiresistant Acinetobacter spp and Klebsiella pneumoniae (including Klebsiella pneumoniae carbapenemase- and New Delhi metallo-β-lactamase-producing strains), methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and hypervirulent Clostridium difficile. Introduction of such organisms to new locations has led to their dissemination within hospitals. Healthcare institutions should have sound infection prevention strategies to mitigate the risk of dissemination of multiresistant organisms from patients who have been admitted to hospitals in other countries. Clinicians may also need to individualize empiric prescribing patterns to reflect the risk of multiresistant organisms in these patients. PMID:21653302

  3. Using wildlife activity and antibiotic resistance analysis to model bacterial water quality in coastal ponds

    OpenAIRE

    Pullaro, Thomas C.; Pan, Wei; Chiovarou, Erica D.; Daugomah, James W.; Shea, Norman R.; Siewicki, Thomas C.

    2009-01-01

    Models that help predict fecal coliform bacteria (FCB) levels in environmental waters can be important tools for resource managers. In this study, we used animal activity along with antibiotic resistance analysis (ARA), land cover, and other variables to build models that predict bacteria levels in coastal ponds that discharge into an estuary. Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife activity prior to sampling. Increased duck activity was an impor...

  4. Escape from Lethal Bacterial Competition through Coupled Activation of Antibiotic Resistance and a Mobilized Subpopulation.

    Science.gov (United States)

    Stubbendieck, Reed M; Straight, Paul D

    2015-12-01

    Bacteria have diverse mechanisms for competition that include biosynthesis of extracellular enzymes and antibiotic metabolites, as well as changes in community physiology, such as biofilm formation or motility. Considered collectively, networks of competitive functions for any organism determine success or failure in competition. How bacteria integrate different mechanisms to optimize competitive fitness is not well studied. Here we study a model competitive interaction between two soil bacteria: Bacillus subtilis and Streptomyces sp. Mg1 (S. Mg1). On an agar surface, colonies of B. subtilis suffer cellular lysis and progressive degradation caused by S. Mg1 cultured at a distance. We identify the lytic and degradative activity (LDA) as linearmycins, which are produced by S. Mg1 and are sufficient to cause lysis of B. subtilis. We obtained B. subtilis mutants spontaneously resistant to LDA (LDAR) that have visibly distinctive morphology and spread across the agar surface. Every LDAR mutant identified had a missense mutation in yfiJK, which encodes a previously uncharacterized two-component signaling system. We confirmed that gain-of-function alleles in yfiJK cause a combination of LDAR, changes in colony morphology, and motility. Downstream of yfiJK are the yfiLMN genes, which encode an ATP-binding cassette transporter. We show that yfiLMN genes are necessary for LDA resistance. The developmental phenotypes of LDAR mutants are genetically separable from LDA resistance, suggesting that the two competitive functions are distinct, but regulated by a single two-component system. Our findings suggest that a subpopulation of B. subtilis activate an array of defensive responses to counter lytic stress imposed by competition. Coordinated regulation of development and antibiotic resistance is a streamlined mechanism to promote competitive fitness of bacteria. PMID:26647299

  5. Trends of antibiotic resistance in mesophilic and psychrotrophic bacterial populations during cold storage of raw milk

    OpenAIRE

    Patricia Munsch-Alatossava; Jean-Pierre Gauchi; Bhawani Chamlagain; Tapani Alatossava

    2011-01-01

    Psychrotrophic bacteria in raw milk are most well known for their spoilage potential and cause significant economic losses in the dairy industry. Despite their ability to produce several exoenzyme types at low temperatures, psychrotrophs that dominate the microflora at the time of spoilage are generally considered benign bacteria. It was recently reported that raw milk-spoiling Gram-negative-psychrotrophs frequently carried antibiotic resistance (AR) features. The present study evaluated AR t...

  6. Epidemic Assessment of Bacterial Agents in Osteomyelitis and Their Antibiotic Resistance Pattern Determination

    OpenAIRE

    Reza Mirnejad; Shahab Fallahi; Jalal Kiani; Farhad Jeddi; Mehdi Khoobdel; Nematollah Jonaidi; Farshid Alaeddini

    2008-01-01

    The aim of the present study was to determine the causative agents of osteomyelitis and specifying their antibiotic resistance pattern in patients referred to pediatrics ward of Imam Khomeini Hospital. This study has been performed in Tehran during January to December 2006. In this study, synovial fluid was taken from 90 patients who referred to pediatrics ward of Imam Khomeini. Samples were examined by direct test, culture and biochemical tests. In next step, antibiogram by disk diffusion me...

  7. Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide

    OpenAIRE

    Friedline, Anthony; Zachariah, Malcolm; Middaugh, Amy; Heiser, Matt; Khanna, Neeraj; Vaishampayan, Parag; Rice, Charles V.

    2015-01-01

    Bacillus pumilus SAFR-032 spores isolated from a clean room environment are known to exhibit enhanced resistance to peroxide, desiccation, UV radiation and chemical disinfection than other spore-forming bacteria. The survival of B. pumilus SAFR-032 spores to standard clean room sterilization practices requires development of more stringent disinfection agents. Here, we report the effects of a stabilized chlorine dioxide-based biocidal agent against spores of B. pumilus SAFR-032 and Bacillus s...

  8. [The role of antimicrobial stewardship programs in the control of bacterial resistance].

    Science.gov (United States)

    Pasquau, J; Sadyrbaeva, S; De Jesús, S E; Hidalgo-Tenorio, C

    2016-09-01

    In order to improve infection prognosis and reduce the existing microbial resistance problem (a challenge similar to that of climate change), a higher implication of the Administration, an increased level of social awareness and the development of specific corporate networks, including the pharmaceutical industry, is needed. However, we must first consolidate Antimicrobial Stewardship Programmes with experts who seek to improve antibiotic therapy effectivity in severe infections and to reduce global antibiotic exposure. PMID:27608314

  9. Rapid emergence of quinolone resistance in cirrhotic patients treated with norfloxacin to prevent spontaneous bacterial peritonitis.

    OpenAIRE

    Dupeyron, C; Mangeney, N; Sedrati, L; Campillo, B.; Fouet, P; Leluan, G

    1994-01-01

    We carried out quantitative culturing of stools from 31 hospitalized alcoholic patients with cirrhosis and ascites, before treatment with 400 mg of norfloxacin per day, weekly for the first month, and then every 2 weeks thereafter for 15 to 229 days (median, 54 days). Members of the family Enterobacteriaceae virtually disappeared from the stools (< 10(2)/g), but treatment had little effect on enterococci. No selection of resistant organisms occurred in 15 patients, but the remaining 16 patien...

  10. Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry

    OpenAIRE

    Yannick Charretier; Olivier Dauwalder; Christine Franceschi; Elodie Degout-Charmette; Gilles Zambardi; Tiphaine Cecchini; Chloe Bardet; Xavier Lacoux; Philippe Dufour; Laurent Veron; Hervé Rostaing; Veronique Lanet; Tanguy Fortin; Corinne Beaulieu; Nadine Perrot

    2015-01-01

    Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60–80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation ...

  11. Possible implications of biocide accumulation in the environment on the prevalence of bacterial antibiotic resistance.

    Science.gov (United States)

    McBain, A J; Rickard, A H; Gilbert, P

    2002-12-01

    The lethality of biocides depends upon their interaction with a number of distinct biochemical targets. This often reflects reactive chemistry for any given agent, such as thiol oxidation. Susceptibility may vary markedly between different target organisms, and changes within the more sensitive targets can alter the inhibitory effect. The multiplicity of potential targets, however, usually dictates against the development of overt resistance to concentrations used for hygienic applications. Similarly, although changes in cellular permeability toward such agents, mediated either by envelope modification or the induction of efflux-pumps may reduce susceptibility, they rarely influence the outcome of treatments at use-concentration. It has recently been proposed that chronic exposure of the environment to biocides used in a variety of commercial products might expose some microbial communities to subeffective concentrations causing emergence of resistant clones. Such resistance might relate to mutational changes in the most susceptible target or to regulatory mutants that cause the constitutive expression of certain efflux pumps. Although selection of organisms with such modifications is unlikely to influence the effectiveness of the biocides, changes in their susceptibility to third-party antibiotics can be postulated. This is particularly the case where a cellular target is shared between a biocide and an antibiotic, or where induction of efflux is sufficient to confer antibiotic resistance in the clinic. Although such linkage has been demonstrated in the laboratory in pure culture, it has not been documented in environments commonly exposed to biocides. In nature, the effects of chronic stressing with biocides are complicated by competition between microbial community members that may result in clonal expansion of naturally insusceptible clones. PMID:12483474

  12. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages

    OpenAIRE

    Koskella, Britt; Taylor, Tiffany B; Bates, Jennifer; Buckling, Angus

    2011-01-01

    Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut l...

  13. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  14. Transgenic banana plants expressing Xanthomonas wilt resistance genes revealed a stable non-target bacterial colonization structure.

    Science.gov (United States)

    Nimusiima, Jean; Köberl, Martina; Tumuhairwe, John Baptist; Kubiriba, Jerome; Staver, Charles; Berg, Gabriele

    2015-01-01

    Africa is among the continents where the battle over genetically modified crops is currently being played out. The impact of GM in Africa could potentially be very positive. In Uganda, researchers have developed transgenic banana lines resistant to banana Xanthomonas wilt. The transgenic lines expressing hrap and pflp can provide a timely solution to the pandemic. However, the impact of the transgenes expression on non-target microorganisms has not yet been investigated. To study this effect, transgenic and control lines were grown under field conditions and their associated microbiome was investigated by 16S rRNA gene profiling combining amplicon sequencing and molecular fingerprinting. Three years after sucker planting, no statistically significant differences between transgenic lines and their non-modified predecessors were detected for their associated bacterial communities. The overall gammaproteobacterial rhizosphere microbiome was highly dominated by Xanthomonadales, while Pseudomonadales and Enterobacteriales were accumulated in the pseudostem. Shannon indices revealed much higher diversity in the rhizosphere than in the pseudostem endosphere. However, the expression of the transgenes did not result in changes in the diversity of Gammaproteobacteria, the closest relatives of the target pathogen. In this field experiment, the expression of the resistance genes appears to have no consequences for non-target rhizobacteria and endophytes. PMID:26657016

  15. Antibacterial action of doped CoFe{sub 2}O{sub 4} nanocrystals on multidrug resistant bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Velho-Pereira, S.; Noronha, A.; Mathias, A.; Zakane, R.; Naik, V.; Naik, P. [Department of Biotechnology, St. Xavier' s College, Goa (India); Salker, A.V. [Department of Chemistry, Goa University, Goa (India); Naik, S.R., E-mail: srnaik19@gmail.com [Department of Chemistry, St. Xavier' s College, Goa (India)

    2015-07-01

    The bactericidal effect of pristine and doped cobalt ferrite nanoparticles has been evaluated against multiple drug resistant clinical strains by assessing the number of colony-forming units (CFU). Monophasic polycrystalline ferrites have been prepared by the malate–glycolate sol–gel autocombustion method as confirmed by the X-ray diffraction study. Various changes occurring during the preparative stages have been demonstrated using TG–DTA analysis which is well complemented by the FTIR spectroscopy. The antibacterial studies carried out demonstrate a bactericidal effect of the nanoparticles wherein the number of CFU has been found to decrease with doping. Cellular distortions have been revealed through SEM. Variation in the number of CFU with dopant type has also been reported herein. - Graphical abstract: Antibacterial action of doped cobalt ferrites resulting in the lyses of multi-drug resistant bacterial strains. - Highlights: • The paper reports an antibacterial study of rare earth doped cobalt ferrite nanoparticles. • Monophasic compounds have been prepared by the sol–gel autocombustion method. • Bactericidal property has been evaluated based on the number of colony forming units. • Variation in bactericidal action with respect to the dopant type has been observed. • Cellular distortions resulting in cell lysis are confirmed from the SEM images.

  16. Fine mapping of the rice bacterial blight resistance gene Xa-4 and its co-segregation marker

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An F2 population developed from the Xa-4 near isogenic lines,IR24 and IRBB4,was used for fine mapping of the rice bacterial blight resistance gene,Xa-4.Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al.and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the gene Xa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55.The R gene homologous fragment marker RS13 was found co-segregating with Xa-4 by analyzing all the plants in the population.This result opened an approach to map-based cloning of this gene,and marker RS13 can be applied to molecular marker-assisted selection of Xa-4 in rice breeding programs.

  17. A novel form of bacterial resistance to the action of eukaryotic host defense peptides, the use of a lipid receptor.

    Science.gov (United States)

    Dennison, Sarah R; Harris, Frederick; Mura, Manuela; Morton, Leslie H G; Zvelindovsky, Andrei; Phoenix, David A

    2013-09-01

    Host defense peptides show great potential for development as new antimicrobial agents with novel mechanisms of action. However, a small number of resistance mechanisms to their action are known, and here, we report a novel bacterial resistance mechanism mediated by a lipid receptor. Maximin H5 from Bombina maxima bound anionic and zwitterionic membranes with low affinity (Kd > 225 μM) while showing a strong ability to lyse (>55%) and penetrate (π > 6.0 mN m(-1)) these membranes. However, the peptide bound Escherichia coli and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) membranes with higher affinity (Kd 1.0 mN m(-1)). Increasing levels of membrane DMPE correlated with enhanced binding by the peptide (R(2) = 0.96) but inversely correlated with its lytic ability (R(2) = 0.98). Taken with molecular dynamic simulations, these results suggest that maximin H5 possesses membranolytic activity, primarily involving bilayer insertion of its strongly hydrophobic N-terminal region. However, this region was predicted to form multiple hydrogen bonds with phosphate and ammonium groups within PE head-groups, which in concert with charge-charge interactions anchor the peptide to the surface of E. coli membranes, inhibiting its membranolytic action. PMID:23895279

  18. The survey of bacterial etiology and their resistance to antibiotics of urinary tract infections in children of Birjand city

    Directory of Open Access Journals (Sweden)

    Azita Fesharakinia

    2012-08-01

    Full Text Available Background and Aim: Urinary tract infection is one of the most prevalent bacterial infections in childhood, which due to an inapproto determine the common bacteria and their antibiotic susceptibility in children with urinary tract infection.   Materials and Methods: This descriptive-analytical and prospective study was done in 2009-2010 on urine samples of all children under 13 years who had been referred to Emmam-Reza hospital laboratory in Birjand and had positive urine culture. Sex and age of children, the kind of isolated bacteria in urine culture, susceptibility and resistance of these bacteria to current antibiotics were studied.The obtained data was analyzed by means of SPSS using Fisher exact- test.   Results: 100 children (84 girls and 16 boys with positive urine culture were studied. The most common age of urinary tract infection was under two years. In all ages the rate of urinary tract infection in females was more than males. E.coli was the most common cause in both sexes. There was a significant relationship between kind of microorganism and age of infection. The most prevalent cause of urinary tract infection in all ages was E.coli (75% ,infection by Proteus was 11%, and other microorganism caused 14% of the cases. E.coli had the most susceptibility to ceftriaxone and ceftazidime and the most resistance to cephalexin and co-trimoxazol. Not taking the type of microorganism into consideration, the most sensitive antibiotics were ceftazidime, ceftriaxone, cefexim and nalidixic acid and the most resistance was against co-trimoxasol and cefalexin.   Conclusion: Regarding the results, it is recommended to use cefexime and nalidixic acid for outpatient treatment of urinary infection , and ceftazidime and ceftriaxon for inpatient treatment.Selecting of antibiotics for urinary infection therapy should be based on the local prevalence of pathogenic bacteria and antibiotic sensitivities rather than on a universal guideline.

  19. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    Science.gov (United States)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  20. Correlation between plasma component levels of cultured fish and resistance to bacterial infection

    Science.gov (United States)

    Maita, M.; Satoh, K.-I.; Fukuda, Y.; Lee, H.-K.; Winton, J.R.; Okamoto, N.

    1998-01-01

    Mortalities of yellowtail Seriola quinqueradiata artificially infected with Lactococcus garvieae and of rainbow trout Oncorhynchus mykiss artificially infected with Vibrio anguillarum were compared with the levels of plasma components measured prior to challenge. The levels of plasma total cholesterol, free cholesterol and phospholipid of fish surviving infection were significantly higher in both yellowtail and rainbow trout than those of fish which died during the challenge test. Mortality of yellowtail with plasma total cholesterol levels lower than 250 mg/100 ml was significantly higher than that of fish which had cholesterol levels higher than 275 mg/100 ml (p resistance in cultured fish.

  1. Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Wen Xie

    Full Text Available BACKGROUND: Bemisia tabaci (Gennadius is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45% unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the

  2. Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo, Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2O(2 concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM and energy-dispersive X-ray spectrometer (EDS. Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2O(2, silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens.

  3. Expression and Antimicrobial Function of Beta-Defensin 1 in the Lower Urinary Tract

    OpenAIRE

    Becknell, Brian; Spencer, John David; Carpenter, Ashley R.; Chen, Xi; Singh, Aspinder; Ploeger, Suzanne; Kline, Jennifer; Ellsworth, Patrick; Li, Birong; Proksch, Ehrhardt; Schwaderer, Andrew L.; Hains, David S.; Justice, Sheryl S.; McHugh, Kirk M.

    2013-01-01

    Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse ...

  4. Homology modelling and molecular dynamics study of plant defensin DM-AMP1

    OpenAIRE

    Raghunath Satpathy; Rashmiranjan Behera; Rajesh Kumar Guru

    2012-01-01

    Defensin in plants are the most important types of antimicrobial protein that provides the natural immunity against the pathogens. In the present work a stable protein model of plant Defensin DM-AMP1 has been proposed, whose three dimensional structure is not known. The method comprises the homology based modelling of the protein by using MODELLER program and validation of the model by various tools. Molecular dynamics simulation of the model protein was performed in water. The stability of ...

  5. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance

    DEFF Research Database (Denmark)

    Wichmann, Fabienne; Asp, Torben; Widmer, Franko; Kölliker, Roland

    2011-01-01

    Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, a severe disease of forage grasses such as Italian ryegrass (Lolium multiflorum Lam.). In order to gain a more detailed understanding of the genetic control of resistance mechanisms and to provide prerequisites for marker assisted...... selection, the partial transcriptomes of two Italian ryegrass genotypes, one resistant and one susceptible to bacterial wilt were compared at four time points after Xtg infection. A cDNA microarray developed from a perennial ryegrass (Lolium perenne) expressed sequence tag set consisting of 9,990 unique...... genes was used for transcriptome analysis in Italian ryegrass. An average of 4,487 (45%) of the perennial ryegrass sequences spotted on the cDNA microarray were detected by cross-hybridisation to Italian ryegrass. Transcriptome analyses of the resistant versus the susceptible genotype revealed...

  6. Study of β-defensin polymorphisms in Valle del Belice dairy sheep

    Directory of Open Access Journals (Sweden)

    Rosa Reina

    2010-01-01

    Full Text Available The aim of this work was to sequence the exons of β-defensin 1 and 2 genes (SBD1 and SBD2 in Valle del Belice dairy sheep in order to identify polymorphisms. The study was conducted on 60 samples from three flocks. Six SNPs were identified: two in SBD1 and four in SBD2. Both genes consist of two exons and one intron. In SBD1 gene, SNPs were found only in the exon 2, whereas in SBD2, SNPs were detected in both exons. In both genes, SNPs were located in the coding regions and in the 3'-UTR. The SNP in SBD2 located at position 1659 determined a change in the protein sequence. Further studies will be necessary to investigate if the amino acid change modifies the biological function of the protein and the association with SCC, in order to use this information in a breeding program for mastitis resistance in Valle del Belice sheep.

  7. Rat Cardiomyocytes Express a Classical Epithelial Beta-Defensin

    Directory of Open Access Journals (Sweden)

    Annika Linde

    2008-01-01

    Full Text Available Beta-defensins (BDs are classical epithelial antimicrobial peptides of immediate importance in innate host defense. Since recent studies have suggested that certain BDs are also expressed in non-traditional tissues, including whole heart homogenate and because effector molecules of innate immunity and inflammation can influence the development of certain cardiovascular disease processes, we hypothesized that BDs are produced by cardiomyocytes as a local measure of cardioprotection against danger signals. Here we report that at least one rat beta-defensin, rBD1, is expressed constitutively in cardiomyocytes specifically isolated using position-ablation-laser-microdissection (P.A.L.M. Microlaser Technologies. RT-PCR analysis showed expression of a single 318 bp transcript in adult rat heart (laser-excised cardiomyocytes and H9c2 cells (neonatal rat heart myoblasts. Moreover, the full length cDNA of rBD1 was established and translated into a putative peptide with 69 amino acid residues. The predicted amino acid sequence of the adult rat cardiac BD-1 peptide displayed 99% identity with the previously reported renal rBD1 and 88, 53, 53 and 50% identity with mouse, human, gorilla and rhesus monkey BD1 respectively. Furthermore, structural analysis of the cardiac rBD1 showed the classical six-cysteine conserved motif of the BD family with an alpha-helix and three beta-sheets. Additionally, rBD1 displayed a significantly greater number of amphoteric residues than any of the human analogs, indicating a strong pH functional dependence in the rat. We suggest that rBD1, which was initially believed to be a specific epithelium-derived peptide, may be also involved in local cardiac innate immune defense mechanisms.

  8. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese; Aizenberg, Joanna (Harvard)

    2011-09-28

    Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severely compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.

  9. Genetic transformation of Nannochloropsis oculata with a bacterial phleomycin resistance gene as dominant selective marker

    Science.gov (United States)

    Ma, Xiaolei; Pan, Kehou; Zhang, Lin; Zhu, Baohua; Yang, Guanpin; Zhang, Xiangyang

    2016-04-01

    The gene ble from Streptoalloteichus hindustanus is widely used as a selective antibiotic marker. It can control the phleomycin resistance, and significantly increase the tolerance of hosts to zeocin. The unicellular marine microalga Nannochloropsis oculata is extremely sensitive to zeocin. We selected ble as the selective marker for the genetic transformation of N. oculata. After the algal cells at a density of 2×107 cells mL-1 was digested with 4% hemicellulase and 2% driselase for 1 h, the protoplasts accounted for 90% of the total. The ble was placed at the downstream of promoter HSP70A-RUBS2 isolated from Chlamydomonas reinhardtii, yielding a recombinant expression construct pMS188. The construct was transferred into the protoplasts through electroporation (1 kV, 15 μS). The transformed protoplasts were cultured in fresh f/2 liquid medium, and selected on solid f/2 medium supplemented with 500 ng mL-1 zeocin. The PCR result proved that ble existed in the transformants. Three transformants had been cultured for at least 5 generations without losing ble. Southern blotting analysis showed that the ble has been integrated into the genome of N. oculata. The ble will serve as a new dominant selective marker in genetic engineering N. oculata.

  10. 2011年中国CHINET细菌耐药性监测%2011 CHINET surveillance of bacterial resistance in China

    Institute of Scientific and Technical Information of China (English)

    胡付品; 王传清; 王爱敏; 倪语星; 孙景勇; 俞云松; 林洁; 单斌; 杜艳; 徐元宏; 沈继录; 朱德妹; 张泓; 孔菁; 卓超; 苏丹虹; 张朝霞; 季萍; 胡云建; 艾效曼; 黄文祥; 贾蓓; 汪复; 魏莲花; 吴玲; 蒋晓飞; 杨青; 徐英春; 张小江; 孙自镛; 陈中举

    2012-01-01

    目的 了解国内主要地区临床分离菌对常用抗菌药的敏感性和耐药性.方法 国内主要地区15所教学医院(13所综合性医院、2所儿童医院)临床分离菌采用纸片扩散法或自动化仪器法按统一方案进行细菌药敏试验.按CLSI 2011年版判断结果.结果 2011年1 - 12月收集各医院临床分离菌共59 287株,其中革兰阳性菌16 872株,占28.5%,革兰阴性菌42 415株,占71.5%.金葡菌(SA)和凝固酶阴性葡萄球菌(CNS)中甲氧西林耐药株的检出率平均分别为50.6%和74.6%.甲氧西林耐药株对β内酰胺类抗生素和其他测试药的耐药率显著高于甲氧西林敏感株.MRSA中有73.3%的菌株对甲氧苄啶-磺胺甲(噁)唑敏感;MRCNS中有88.2%的菌株对利福平敏感.未发现万古霉素、替考拉宁和利奈唑胺耐药株.肠球菌属细菌中粪肠球菌对所测试的抗菌药(氯霉素除外)的耐药率均显著低于屎肠球菌,两者中均有少数万古霉素耐药株,根据表型推测多数为VanA型耐药.肺炎链球菌非脑膜炎株成人株和儿童株中PSSP所占比例较2010年均略有升高,PRSP的检出率均有所下降.大肠埃希菌、克雷伯菌属细菌(肺炎克雷伯菌和产酸克雷伯菌)和奇异变形杆菌中产ESBLs株分别平均为50.7%、38.5%和13.8%.肠杆菌科细菌中产ESBLs株对测试药物的耐药率均比非产ESBLs株高.肠杆菌科细菌对碳青霉烯类抗生素仍高度敏感,总耐药率4%~6%.不动杆菌属细菌(鲍曼不动杆菌占88.6%)对亚胺培南和美罗培南的耐药率分别为60.4%和61.4%.肺炎克雷伯菌、鲍曼不动杆菌和铜绿假单胞菌中仍有少数泛耐药株.结论 细菌耐药性仍呈增长趋势,多重耐药和泛耐药菌株在某些科室内的流行播敖对临床构成严重威胁,应进行流行病学调查并采取有效的控制措施.%Objective To investigate the susceptibility and resistance of clinical bacterial isolates from

  11. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Mahajanakatti, Arpitha Badarinath; Grandhi, Nisha Jayaprakash; Prasanna, Akshatha; Sen, Ballari; Sharma, Narasimha; Vasist, Kiran S; Narayanappa, Rajeswari

    2015-05-01

    The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p ≤ 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51% (n = 793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46% (n = 273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85% (n = 107), 94.49% (n = 103), and 90.22% (n = 157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of bla TEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India. PMID:25896199

  12. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.

    Science.gov (United States)

    Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour S; Alkhedhairy, Abdulaziz A; Musarrat, Javed

    2016-06-15

    ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers. PMID:27031596

  13. Etablierung des Nachweises direkter antibakterieller Wirkung humaner Defensine für die Untersuchung der Defensinproduktion im menschlichen Darm bei Morbus Crohn und Colitis ulcerosa

    OpenAIRE

    Andreou, Andreas

    2010-01-01

    Introduction: As a part of the innate immunity, defensins support the preservation of the intestinal mucosal barrier which is affected in patients with inflammatory bowel disease (IBD). It is interesting whether a potential direct antibacterial activity of defensins in the bowel of IBD patients is changed compared to healthy persons. Since the mechanisms of defensin action are not fully understood, defensins themselves are the only reliable controls in respective studies. Methods: A densit...

  14. Study the effect of bacterial 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase on resistance to salt stress in tomato plant

    Directory of Open Access Journals (Sweden)

    Maryam SADRNIA

    2011-11-01

    Full Text Available 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase produced by rhizobacteria could be remove theethylene precursor and stimulate plant growth. Aim of the work was investigation on effect of rhizosphere bacteria Pseudomonasmendocina containing plasmid carrying gene encoding ACC deaminase on resistance of tomato plant to salinity. Amplification ofacds gene in selected Pseudomonas was performed; the g e n e w a s c l o n e d i n Escherichia coli and was cloned subsequently in P.mendocina. Enzyme activity was determined in cloned Escherichia coli and cloned P. mendocina for confirmation of geneexpression. Effect of bacterial ACC deaminase on resistance of tomato plants to NaCl was studied in Pot and Greenhouse. In potexperiment, tomato plant treated by cloned P. mendocina was compared with plants treated by P. mendocina (without plasmid andcontrol group. Salinity were established by adding 172 and 207 mM of NaCl to irrigated water. Greenhouse experiments wereconducted in similar groups of bacteria in 207 mM of NaCl. Results obtained from pot experiment revealed that plants treated bycloned P. mendocina in 172 mM of NaCl was showed increasing content of growth than ones treated by P. mendocina and controlas 11%, 18.4% growth for the shoot, 16.6%, 3.7% for roots and 9.6%, 27.5% for wet weight after five weeks, respectively. In 207mM of NaCl, the results were as 14.9 %, 9.7% for shoot, 94.3%, 15.7% for roots and 96.4%, 50.6% for wet weight, respectively. Ingreenhouse experiment, results in same parameter in 207 mM of NaCl were revealed as 63.7%, 7 times for shoot, 2.8, 14 times forroots and 66.1%, 154 times for wet weight, respectively. We concluded that recombinant P. mendocina producing ACC deaminaseby reduction of ethylene content of tomato plant in high salt concentrations could result in improvement of plant resistance tosalinity.

  15. CHINET 2014 surveillance of bacterial resistance in China%2014年CHINET中国细菌耐药性监测

    Institute of Scientific and Technical Information of China (English)

    胡付品; 康梅; 王传清; 王爱敏; 徐元宏; 沈继录; 孙自镛; 陈中举; 倪语星; 孙景勇; 褚云卓; 朱德妹; 田素飞; 胡志东; 李金; 俞云松; 林洁; 单斌; 杜艳; 韩艳秋; 郭素芳; 魏莲花; 汪复; 吴玲; 张泓; 孔菁; 胡云建; 艾效曼; 卓超; 苏丹虹; 蒋晓飞; 徐英春; 张小江; 张朝霞; 季萍; 谢轶

    2015-01-01

    average . ESBLs‐producing Enterobacteriaceae strains were more resistant than non‐ESBLs‐producing strains in terms of antibiotic resistance rates . The strains of Enterobacteriaceae were still highly susceptible to carbapenems .Overall less than 10 % of these strains were resistant to carbapenems . About 62 .4% and 66 .7% of Acinetobacter spp .(A .baumannii accounts for 93 .0 % ) strains were resistant to imipenem and meropenem ,respectively . Compared with the data of year 2013 ,extensively‐drug resistant strains in K . pneumoniae and A .baumannii increased . Conclusions The antibiotic resistance of clinical bacterial isolates is growing .The disseminated multi‐drug or pan‐drug resistant strains in a special region poses a serious threat to clinical practice and implies the importance of strengthening infection control .%目的:了解国内主要地区临床分离菌对常用抗菌药物的敏感性和耐药性。方法国内主要地区17所教学医院(15所综合性医院、2所儿童医院)临床分离菌采用纸片扩散法或自动化仪器法按统一方案进行细菌药物敏感性试验。按美国临床和实验室标准化协会(CLSI)2014版标准判断结果。结果收集各医院2014年1—12月临床分离菌共78955株,其中革兰阳性菌21635株,占27.4%,革兰阴性菌57320株,占72.6%。金黄色葡萄球菌和凝固酶阴性葡萄球菌中甲氧西林耐药株的平均检出率分别为44.6%和83.0%。甲氧西林耐药株(MRSA和MRCNS)对β内酰胺类抗生素和其他测试药的耐药率均显著高于甲氧西林敏感株(MSSA和MSCNS)。MRSA中有92.0%菌株对甲氧苄啶‐磺胺甲口恶唑敏感;MRCNS中有85.6%的菌株对利福平敏感。未发现万古霉素、替考拉宁和利奈唑胺耐药株。肠球菌属中粪肠球菌对多数测试抗菌药物(氯霉素除外)的耐药率显著低于屎肠球菌,两者中均有少数万古霉素耐药株,表型或基因

  16. 2013年中国CHINET细菌耐药性监测%CHINET 2013 surveillance of bacterial resistance in China

    Institute of Scientific and Technical Information of China (English)

    胡付品; 康梅; 徐英春; 张小江; 张朝霞; 季萍; 王传清; 王爱敏; 倪语星; 孙景勇; 俞云松; 朱德妹; 林洁; 储云卓; 田素飞; 徐元宏; 沈继录; 单斌; 杜艳; 卓超; 苏丹虹; 张泓; 汪复; 孔菁; 魏莲花; 吴玲; 胡云建; 艾效曼; 蒋晓飞; 孙自镛; 陈中举; 胡志东; 李金; 谢轶

    2014-01-01

    -producing Enterobacteriaceae strains were more resistant than non-ESBLs-producing strains in terms of antibiotic resistance rates .The strains of Enterobacteriaceae were still highly susceptible to carbapenems .Overall less than 7 .0% of these strains were resistant to carbapenems .About 62 .8% and 59 .4% of Acinetobacter spp .(A .baumannii accounts for 89 .2% ) strains were resistant to imipenem and meropenem ,respectively .Compared with the data of year 2012 , extensively-drug resistant strains in K . pneumoniae and A . baumannii decreased .Conclusions The antibiotic resistance of clinical bacterial isolates is growing in 2013 .The disseminated multi-drug or pan-drug resistant strains in a special region poses a serious threat to clinical practice and implies the importance of strengthening infection control .%目的:了解国内主要地区临床分离菌对常用抗菌药物的敏感性和耐药性。方法国内主要地区16所教学医院(14所综合性医院、2所儿童医院)临床分离菌采用纸片扩散法或自动化仪器法按统一方案进行药物敏感性试验。按CLSI 2013年版标准判断结果。结果2013年1-12月收集各医院临床分离菌共84572株,其中革兰阳性菌22863株,占27.0%,革兰阴性菌61709株,占73.0%。金黄色葡萄球菌(金葡菌)和凝固酶阴性葡萄球菌(CNS )中甲氧西林耐药株的平均检出率分别为45.2%和73.5%。甲氧西林耐药株(MRSA和MRCNS)对β内酰胺类抗生素和其他测试药物的耐药率均显著高于甲氧西林敏感株(MSSA和MSCNS)。MRSA中有92.2%的菌株对甲氧苄啶-磺胺甲口恶唑敏感;MRCNS中有87.4%的菌株对利福平敏感。葡萄球菌属中均未发现对万古霉素、替考拉宁和利奈唑胺耐药株。肠球菌属中粪肠球菌对绝大多数所测试的抗菌药物(氯霉素除外)的耐药率均显著低于屎肠球菌,两者中均有少数万古霉素耐药株,根据表型推测多数为 v an

  17. Increased Production of Lysozyme Associated with Bacterial Proliferation in Barrett's Esophagitis, Chronic Gastritis, Gluten-induced Atrophic Duodenitis (Celiac Disease), Lymphocytic Colitis, Collagenous Colitis, Ulcerative Colitis and Crohn's Colitis.

    Science.gov (United States)

    Rubio, Carlos A

    2015-12-01

    The mucosa of the esophagus, the stomach, the small intestine, the large intestine and rectum are unremittingly challenged by adverse micro-environmental factors, such as ingested pathogenic and non-pathogenic bacteria, and harsh secretions with digestive properties with disparate pH, as well as bacteria and secretions from upstream GI organs. Despite the apparently inauspicious mixture of secretions and bacteria, the normal GI mucosa retains a healthy state of cell renewal. To by-pass the tough microenvironment, the epithelia of the GI react by speeding-up cell exfoliation, by increasing peristalsis, eliminating bacteria through secretion of plasma cell-immunoglobulins and by increasing production of natural antibacterial enzymes (lysozyme) and host defense peptides (defensin-5). Lysozyme was recently found up-regulated in Barrett's esophagitis, in chronic gastritis, in gluten-induced atrophic duodenitis (celiac disease), in collagenous colitis, in lymphocytic colitis and in Crohn's colitis. This up-regulation is a response directed towards the special types of bacteria thriving in the microenvironment in each of the aforementioned clinical inflammatory maladies. The purpose of that up-regulation is to protect the mucosa affected by the ongoing chronic inflammation. Bacterial antibiotic resistance continues to exhaust our supply of effective antibiotics. The future challenge is how to solve the increasing menace of bacterial resistance to anti-bacterial drugs. Further research on natural anti-bacterial enzymes such as lysozyme, appears mandatory. PMID:26637845

  18. Manual annotation and analysis of the defensin gene cluster in the C57BL/6J mouse reference genome

    Directory of Open Access Journals (Sweden)

    Dougan Gordon

    2009-12-01

    Full Text Available Abstract Background Host defense peptides are a critical component of the innate immune system. Human alpha- and beta-defensin genes are subject to copy number variation (CNV and historically the organization of mouse alpha-defensin genes has been poorly defined. Here we present the first full manual genomic annotation of the mouse defensin region on Chromosome 8 of the reference strain C57BL/6J, and the analysis of the orthologous regions of the human and rat genomes. Problems were identified with the reference assemblies of all three genomes. Defensins have been studied for over two decades and their naming has become a critical issue due to incorrect identification of defensin genes derived from different mouse strains and the duplicated nature of this region. Results The defensin gene cluster region on mouse Chromosome 8 A2 contains 98 gene loci: 53 are likely active defensin genes and 22 defensin pseudogenes. Several TATA box motifs were found for human and mouse defensin genes that likely impact gene expression. Three novel defensin genes belonging to the Cryptdin Related Sequences (CRS family were identified. All additional mouse defensin loci on Chromosomes 1, 2 and 14 were annotated and unusual splice variants identified. Comparison of the mouse alpha-defensins in the three main mouse reference gene sets Ensembl, Mouse Genome Informatics (MGI, and NCBI RefSeq reveals significant inconsistencies in annotation and nomenclature. We are collaborating with the Mouse Genome Nomenclature Committee (MGNC to establish a standardized naming scheme for alpha-defensins. Conclusions Prior to this analysis, there was no reliable reference gene set available for the mouse strain C57BL/6J defensin genes, demonstrating that manual intervention is still critical for the annotation of complex gene families and heavily duplicated regions. Accurate gene annotation is facilitated by the annotation of pseudogenes and regulatory elements. Manually curated gene

  19. Human enteric defensin genes: Chromosomal map position and a model for possible evolutionary relationships

    Energy Technology Data Exchange (ETDEWEB)

    Bevins, C.L.; Jones, D.E.; Dutra, A.; Schaffzin, J.; Muenke, M. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1996-01-01

    Defensins, a family of antimicrobial peptides isolated from several mammalian species, have a proposed functional role in innate host defense. In humans, certain defensin genes are expressed in phagocytic cells of hematopoietic origin, while others are expressed in Paneth cells, epithelial cells of the small intestine. In this study, we determined the chromosomal localization of the human defensin (HD) genes expressed in Paneth cells, HD-5 and HD-6. Analysis of a panel of human/hamster hybrids localized both HD-5 and HD-6 to chromosome 8. Southern blot analysis of DNA from cell lines that contain either chromosome 8 deletions or duplications further localized these two genes to 8p21-pter. Fluorescence in situ hybridization analysis of metaphase chromosomes using an HD-5 probe further supported the regional map assignment. Previous studies had localized the hematopoietic genes to chromosome 8p23, and the current work is consistent with both the enteric and the myeloid defensin genes being located at the same cytogenetic region of chromosome 8. In addition, the evolutionary relationships of this gene family were addressed using dot matrix sequence analysis. From this analysis, a model for the possible evolutionary history of the human defensin genes is proposed. According to this model, an early duplication of a primordial defensin gene yielded the ancestral genes of present day HD-5 and HD-6. The model further suggests that a subsequent unequal meiotic crossover event had generated an additional gene, comprised of a hybrid of sequences from the two parental genes, and that this hybrid gene then served as the ancestor to present day hematopoietic defensin genes. 39 refs., 5 figs., 1 tab.

  20. The uptake, distribution and translocation of 86Rb in alfalfa plants susceptible and resistant to the bacterial wilt and the effect of Corynebacterium insidiosum upon these processes

    International Nuclear Information System (INIS)

    Alfalfa (Medicago sativa L.) plants susceptible (S) and resistant (R) to bacterial wilt were fed via roots with a nutrient solution labelled with 86Rb+, at different times after inoculation with Corynebacterium insidiosum (McCull.) H.L. Jens. The infection did not affect 86Rb+ uptake per plant in the course of a 14-day-period following inoculation; however, it affected its distribution differently in the S- and the R-plants. 86Rb+ uptake significantly decreased due to the infection in the S-plants on the day 49 after inoculation (a 4-h-exposure to 86Rb+), with the ions more slowly translocated to the shoots in diseased S-plants than in diseased R-plants. Likely factors causing these effects and their relationship to alfalfa resistance to bacterial wilt are discussed. (author)

  1. Role of Toll-like receptor 4 and human defensin 5 in primary endocervical epithelial cells

    Institute of Scientific and Technical Information of China (English)

    MA Jing-mei; YANG Hui-xia

    2010-01-01

    Background Endocervical epithelial cells play early roles in the defense of upper female genital tract to pathogens. Toll-like receptors (TLRs) and human defensins (HD) have recently been identified as fundamental components of the innate immune responses to bacterial pathogens. We aimed to use in vitro model of human primary endocervical epithelial cells (HPECs) to investigate their roles in innate immune response of the endocervix.Methods TLR4 expression and distribution in HPECs and endocervix were investigated by immunofluorescence (IF). Cultured HPECs were divided into lipopolysaccharide (LPS) group which were treated by LPS for 0, 24 and 48 hours, and control group without treatment. At each time point, the levels of HD5, IL-6 and TNF-a in supernants were determined by ELISA. TLR4 and HD5 expressions of cells were detected by Western blotting simultaneously. HD5 expression pattern was also compared between the HeLa cell line and HPECs.Results Endocervix tissue surface and HPECs expressed TLR4. After incubated with LPS, HPECs expressed significantly higher levels of TLR4 than control group, especially after 24 hours (P <0.01), however decreased after 48 hours with a similar level of TLR4 expression compared with control group. LPS could upregulate the secretion of HD5, IL-6 and TNF-α in a time-dependent manner (24 hours: P <0.05; 48 hours: P <0.01, compared with control group). Intracellular HD5 expression levels decreased over time. HD5 expression patterns in HPECs were different from HeLa cell line.Conclusions To respond to LPS stimulation, HPECs may function in the mucosal immune defense through TLR4 activation and HD5 secretion. HPEC is considered a significant model for immunological study.

  2. Bacterial resistance to ciprofloxacin in Greece: results from the National Electronic Surveillance System. Greek Network for the Surveillance of Antimicrobial Resistance.

    OpenAIRE

    Vatopoulos, A. C.; Kalapothaki, V.; Legakis, N. J.

    1999-01-01

    According to 1997 susceptibility data from the National Electronic System for the Surveillance of Antimicrobial Resistance, Greece has high rates of ciprofloxacin resistance. For most species, the frequency of ciprofloxacin-resistant isolates (from highest to lowest, by patient setting) was as follows: intensive care unit > surgical > medical > outpatient. Most ciprofloxacin-resistant strains were multidrug resistant.

  3. Effect of Introns and AT-Rich Sequences on Expression of the Bacterial Hygromycin B Resistance Gene in the Basidiomycete Schizophyllum commune

    OpenAIRE

    Scholtmeijer, K.; Wosten, H.A.B.; Springer, J.; Wessels, J.G.H.

    2001-01-01

    Previously, it was shown that introns are required for efficient mRNA accumulation in Schizophyllum commune and that the presence of AT-rich sequences in the coding region of genes can result in truncation of transcripts in this homobasidiomycete. Here we show that intron-dependent mRNA accumulation and truncation of transcripts are two independent events that both affect expression of the bacterial hygromycin B resistance gene in S. commune.

  4. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    OpenAIRE

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Eme...

  5. Resistência de bactérias ácido-láticas a bacteriófagos provenientes de unidades de processamento de queijo Coalho Phage resistance of acid lactic bacteria isolated from Coalho cheese industries

    Directory of Open Access Journals (Sweden)

    Cristiane Pereira de Lima

    2012-06-01

    Full Text Available Este trabalho teve como objetivos isolar bacteriófagos de amostras de leite, soro e queijo de Coalho e avaliar a resistência de cepas de Lactobacillus paracasei, pertencentes à Coleção de Micro-organismos de Interesse para a Agroindústria Tropical da Embrapa Agroindústria Tropical, aos fagos isolados. Posteriormente, a resistência destas cepas a fagos específicos para L. paracasei, da Coleção do Instituto de Lactología Industrial - INLAIN (Santa Fe, Argentina, também foi avaliada. As amostras para isolamento dos fagos foram obtidas em quatro unidades de processamento de queijo de Coalho, sendo duas artesanais e duas industriais, localizadas no Estado do Ceará. Para o isolamento dos bacteriófagos, foi empregado o teste de lise celular (spot, enquanto que a resistência das culturas aos fagos foi avaliada pelos testes de capacidade de produção de ácido e avaliação da turbidez. As cepas avaliadas foram resistentes aos bacteriófagos provenientes das unidades de processamento de queijo de Coalho e aos bacteriófagos da Coleção do INLAIN. Os resultados obtidos indicaram que as culturas láticas testadas, resistentes aos bacteriófagos, podem ser utilizadas na composição de fermento lático destinado à elaboração de queijo de Coalho, a partir de leite pasteurizado.The objectives of this research were to isolate bacteriophages from milk samples, whey and Coalho cheese and to evaluate the resistance of strains of Lactobacillus paracasei from the Collection of Microorganisms of Interest for the Tropical Agroindustry, belonging to Embrapa Tropical Agroindustry, to isolate phages. The strains resistance to specific L. paracasei phages from the collection of the Instituto de Lactología Industrial - INLAIN (Santa Fe, Argentina was also evaluated. Samples for phage isolation were from four Coalho cheese processing units, two artisanal and two industrial, localized in the state of Ceará. Spot test was employed for bacteriophages

  6. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  7. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  8. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells.

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  9. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?

    Directory of Open Access Journals (Sweden)

    Choong-Min eRyu

    2016-02-01

    Full Text Available Biological control (biocontrol agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR. Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 hours post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen

  10. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?

    Science.gov (United States)

    Sharifi, Rouhallah; Ryu, Choong-Min

    2016-01-01

    Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study

  11. Recombinant expression and purification of the tomato defensin TPP3 and its preliminary X-ray crystallographic analysis

    OpenAIRE

    Lay, Fung T.; Veneer, Prem K.; Hulett, Mark D.; Kvansakul, Marc

    2012-01-01

    TPP3 is a class II plant defensin from tomato. Here, the expression, purification, crystallization and preliminary X-ray crystallographic analysis of recombinant TPP3 are reported in order to define its structure and function in relation to other class II plant defensins.

  12. α-Defensins and outcome in patients with chronic heart failure

    DEFF Research Database (Denmark)

    Christensen, Heidi M; Frystyk, Jan; Faber, Jens;

    2012-01-01

    predictive ability of a-defensins, alone and combined with N-terminal pro brain natriuretic peptide (NT-proBNP), with respect to all-cause mortality. METHODS AND RESULTS: In a prospective observational study lasting 2.6 years we examined the prognostic value of plasma a-defensins with respect to mortality in...... 194 CHF patients, and compared plasma levels with those of 98 age-matched healthy controls. a-Defensin levels were twice as high among CHF patients in New York Heart Association (NYHA) functional class III-IV than in patients in NYHA class I-II and healthy controls (P = 0.001). The absolute increase.......65, 95% confidence interval 1.19-2.28, P = 0.002) per 1 standard deviation increment in Ln (natural logarithm)-transformed a-defensin values. The combination of high a-defensins and NT-proBNP levels provided incremental prognostic information independent of well-known prognostic biomarkers in heart...

  13. Toward the positional cloning of qBlsr5a, a QTL underlying resistance to bacterial leaf streak, using overlapping sub-CSSLs in rice.

    Directory of Open Access Journals (Sweden)

    Xiaofang Xie

    Full Text Available Bacterial leaf steak (BLS is one of the most destructive diseases in rice. Studies have shown that BLS resistance in rice is quantitatively inherited, controlled by multiple quantitative trait loci (QTLs. A QTL with relatively large effect, qBlsr5a, was previously mapped in a region of ∼ 380 kb on chromosome 5. To fine map qBlsr5a further, a set of overlapping sub-chromosome segment substitution lines (sub-CSSLs were developed from a large secondary F2 population (containing more than 7000 plants, in which only the chromosomal region harboring qBlsr5a was segregated. By genotyping the sub-CSSLs with molecular markers covering the target region and phenotyping the sub-CSSLs with artificial inoculation, qBlsr5a was delimited to a 30.0-kb interval, in which only three genes were predicted. qRT-PCR analysis indicated that the three putative genes did not show significant response to the infection of BLS pathogen in both resistant and susceptible parental lines. However, two nucleotide substitutions were found in the coding sequence of gene LOC_Os05g01710, which encodes the gamma chain of transcription initiation factor IIA (TFIIAγ. The nucleotide substitutions resulted in a change of the 39th amino acid from valine (in the susceptible parent to glutamic acid (in the resistant parent. Interestingly, the resistant parent allele of LOC_Os05g01710 is identical to xa5, a major gene resistant to bacterial leaf blight (another bacterial disease of rice. These results suggest that LOC_Os05g01710 is very possibly the candidate gene of qBlsr5a.

  14. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will...

  15. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tseng, I-Sheng; Møller, Per;

    2010-01-01

    Bacterial contamination is a major concern in many areas. In this study, silver was added to type 316 stainless steels in order to obtain an expected bacteria inhibiting property to reduce the occurrence of bacterial contamination. Silver-bearing 316 stainless steels were prepared by vacuum melti...

  16. Induction of resistance to bacterial leaf blight (Xanthomonas oryzae) disease in the high yielding variety Vijaya (IR 8 x T 90)

    International Nuclear Information System (INIS)

    The high-yield variety Vijaya ( IR 8 x T 90), susceptible to bacterial leaf blight (Xanthomonas oryzae, Uyeda and Ishiyama Dawson), was treated with EMS to induce resistance. Dehusked seeds were pre-soaked in distilled water for 4 hrs, and subjected to 0.1% and 0.2% EMS for 6 hrs. Seed germination and survival was low in 0.2% EMS. Seedlings of M1 were raised in pots, and panicles of individual plants harvested separately. The seeds of M2 (8800 plants) generation were grown in nursery beds, and transplanted in field after 30 days. The plants were inoculated at the boot leaf stage with X.oryzae by the clipping method, and lesion length measured 15 days later. The frequency distribution of controls was bimodal, the EMS-treated population polymodal with new peaks. A wider range of variability was induced on the resistant and susceptible side. In M2 0.36% resistant and 0.62% moderately resistant plants occurred. The seeds of (11) resistant and (20) moderately resistant plants of M2 were sown for M3 generation. These plants also segregated in the range of 0-31 and 0-32 cm lesion length. The frequency distribution curve was polymodal. M2 from ''R'' showed 1.07% of resistant plants and 0.42% from ''MR'', against, 4.28% of moderately resistant plants from ''R'' and 3.22% from ''MR''. Susceptible plants of M2 also segregated towards resistance (1.15%) and moderately resistant (6.96%) plants in M3 generation. Resistant (25) and moderately resistant (147) plants of M3 were carried forward to M4 generation, and segregated in the range of 2.1-25 cm lesion length. The frequency curve was polymodal. No resistant plant (up to 2.0 cm lesion length) could be isolated in M4. The percentage of moderately resistant plants was 4.44% from ''R'' of M3 and 4.82% from ''MR'' of M3 and 4.77% from ''S'' of M3 generation. The yield of resistant plants was low whereas the yield of moderately resistant plants equalled the parent; the yield of susceptible segregants equalled or exceeded the parent's

  17. Identification and gene prediction of a 24 kb region containing xa5, a recessive bacterial blight resistance gene in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    ZHONG Yiming; JIANG Guanghuai; CHEN Xuewei; XIA Zhihui; LI Xiaobing; ZHU Lihuang; ZHAI Wenxue

    2003-01-01

    Rice xa5 gene provides recessive, race-specific resistance to bacterial blight disease caused by the pathogen Xanthomonas oryzae pv. oryzae and has great value for research and breeding. In an effort to clone xa5, an F2 population of 4892 individuals was developed from the xa5 near isogenic lines, IR24 and IRBB5. A fine mapping procedure was conducted and tightly linked RFLP markers were used to screen a BAC library of IRBB56, a resistant rice line containing the xa5 gene. A 213 kb contig covering the xa5 locus was constructed. According to the sequences from the International Rice Genome Sequening Project (IRGSP), the Chinese Superhybrid Rice Genome Project (SRGP) and some sub-clones of the contig, twelve SSLP and CAPS markers were developed for fine mapping. The xa5 gene was mapped to a 0.3 cM interval between markers K5 and T4, which spanned an interval of approximately 24 kb, co-segregating with marker T2. Sequence analysis of the 24 kb region revealed that an ABC transporter and a basal transcription factor (TFIIa) were potential candidates for the xa5 resistance gene product. The molecular mechanism by which the xa5 gene provides recessive, race-specific resistance to bacterial blight will be elucidated by the functional tests of the 24 kb DNA and the candidate genes.

  18. Structure and antimicrobial activity of platypus 'intermediate' defensin-like peptide.

    Science.gov (United States)

    Torres, Allan M; Bansal, Paramjit; Koh, Jennifer M S; Pagès, Guilhem; Wu, Ming J; Kuchel, Philip W

    2014-05-01

    The three-dimensional structure of a chemically synthesized peptide that we have called 'intermediate' defensin-like peptide (Int-DLP), from the platypus genome, was determined by nuclear magnetic resonance (NMR) spectroscopy; and its antimicrobial activity was investigated. The overall structural fold of Int-DLP was similar to that of the DLPs and β-defensins, however the presence of a third antiparallel β-strand makes its structure more similar to the β-defensins than the DLPs. Int-DLP displayed potent antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The four arginine residues at the N-terminus of Int-DLP did not affect the overall fold, but were important for its antimicrobial potency. PMID:24694388

  19. Legionella pneumophila induces human beta Defensin-3 in pulmonary cells

    Directory of Open Access Journals (Sweden)

    Hippenstiel Stefan

    2010-07-01

    Full Text Available Abstract Background Legionella pneumophila is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3, an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we hypothesize that hBD-3 might be important for immune defense towards L. pneumophila. Methods We investigated the effects of L. pneumophila and different TLR agonists on pulmonary cells in regard to hBD-3 expression by ELISA. Furthermore, siRNA-mediated inhibition of TLRs as well as chemical inhibition of potential downstream signaling molecules was used for functional analysis. Results L. pneumophila induced release of hBD-3 in pulmonary epithelium and alveolar macrophages. A similar response was observed when epithelial cells were treated with different TLR agonists. Inhibition of TLR2, TLR5, and TLR9 expression led to a decreased hBD-3 expression. Furthermore expression of hBD-3 was mediated through a JNK dependent activation of AP-1 (c-Jun but appeared to be independent of NF-κB. Additionally, we demonstrate that hBD-3 elicited a strong antimicrobial effect on L. pneumophila replication. Conclusions Taken together, human pulmonary cells produce hBD-3 upon L. pneumophila infection via a TLR-JNK-AP-1-dependent pathway which may contribute to an efficient innate immune defense.

  20. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment

    Directory of Open Access Journals (Sweden)

    Lu Wuyuan

    2011-06-01

    Full Text Available Abstract Background Concurrent sexually transmitted infections (STIs increase the likelihood of HIV transmission. The levels of defensins are frequently elevated in genital fluids from individuals with STIs. We have previously shown that human defensins 5 and 6 (HD5 and HD6 promote HIV entry and contribute to Neisseria gonorrhoeae-mediated enhancement of HIV infectivity in vitro. In this study, we dissect the molecular mechanism of the HIV enhancing effect of defensins. Results HD5 and HD6 primarily acted on the virion to promote HIV infection. Both HD5 and HD6 antagonized the anti-HIV activities of inhibitors of HIV entry (TAK 779 and fusion (T-20 when the inhibitors were present only during viral attachment; however, when these inhibitors were added back during viral infection they overrode the HIV enhancing effect of defensins. HD5 and HD6 enhanced HIV infectivity by promoting HIV attachment to target cells. Studies using fluorescent HIV containing Vpr-GFP indicated that these defensins enhanced HIV attachment by concentrating virus particles on the target cells. HD5 and HD6 blocked anti-HIV activities of soluble glycosaminoglycans including heparin, chondroitin sulfate, and dextran sulfate. However, heparin, at a high concentration, diminished the HIV enhancing effect of HD5, but not HD6. Additionally, the degree of the HIV enhancing effect of HD5, but not HD6, was increased in heparinase-treated cells. These results suggest that HD5 and haparin/heparan sulfate compete for binding to HIV. Conclusions HD5 and HD6 increased HIV infectivity by concentrating virus on the target cells. These defensins may have a negative effect on the efficacy of microbicides, especially in the setting of STIs.

  1. Molecular cloning and characterization of three beta-defensins from canine testes.

    Science.gov (United States)

    Sang, Yongming; Ortega, M Teresa; Blecha, Frank; Prakash, Om; Melgarejo, Tonatiuh

    2005-05-01

    Mammalian beta-defensins are small cationic peptides possessing broad antimicrobial and physiological activities. Because dogs are particularly resilient to sexually transmitted diseases, it has been proposed that their antimicrobial peptide repertoire might provide insight into novel antimicrobial therapeutics and treatment regimens. To investigate this proposal, we cloned the full-length cDNA of three canine beta-defensin isoforms (cBD-1, -2, and -3) from canine testicular tissues. Their predicted peptides share identical N-terminal 65-amino-acid residues, including the beta-defensin consensus six-cysteine motif. The two longer isoforms, cBD-2 and -3, possess 4 and 34 additional amino acids, respectively, at the C terminus. To evaluate the antimicrobial activity of cBD, a 34-amino-acid peptide derived from the shared mature peptide region was synthesized. Canine beta-defensin displayed broad antimicrobial activity against gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus; MICs of 6 and 100 mug/ml, respectively), gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, and Neisseria gonorrhoeae; MICs of 20 to 50, 20, and 50 mug/ml, respectively), and yeast (Candida albicans; MIC of 5 to 50 mug/ml) and lower activity against Ureaplasma urealyticum and U. canigenitalium (MIC of 200 mug/ml). Antimicrobial potency was significantly reduced at salt concentrations higher than 140 mM. All three canine beta-defensins were highly expressed in testis. In situ hybridization indicated that cBD-1 was expressed primarily in Sertoli cells within the seminiferous tubules. In contrast, cBD-2 was located primarily within Leydig cells. The longest isoform, cBD-3, was detected in Sertoli cells and to a lesser extent in the interstitium. The tissue-specific expression and broad antimicrobial activity suggest that canine beta-defensins play an important role in host defense and other physiological functions of the male reproductive system. PMID:15845463

  2. Robust and regulatory expression of defensin A gene driven by vitellogenin promoter in transgenic Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    CHEN XiaoGuang; ZHANG YaJing; ZHENG XueLi; WANG ChunMei

    2007-01-01

    The use of genetically modified mosquitoes to reduce or replace field populations is a new strategy to control mosquito-borne diseases. The precondition of the implementation of this strategy is the ability to manipulate the genome of mosquitoes and to induce specific expression of the effector molecules driven by a suitable promoter. The objective of this study is to evaluate the expression of defensin A gene of Anopheles sinensis under the control of a vitellogenin promoter in transgenic Anopheles stephensi. The regulatory region of Anopheles gambiae vitellogenin was cloned and subcloned into transfer vector pSLFa consisting of an expression cassette with defensin A coding sequence. Then, the expression cassette was transferred into transformation vector pBac[3xP3-DsRedafm] using Asc I digestion. The recombinant plasmid DNA of pBac[3xP3DsRed-AgVgT2-DefA] and helper plasmid DNA of phsp-pBac were micro-injected into embryos of An. stephensi. The positive transgenic mosquitoes were screened by observing specific red fluorescence in the eyes of G1 larvae. Southern blot analysis showed that a single-copy transgene integrated into the genome of An. stephensi. RT-PCR analysis showed that the defensin A gene expressed specifically in fat bodies of female mosquitoes after a blood meal. Interestingly, the mRNA of defensin A is more stable compared with that of the endogenous vitellogenin gene. After multiple blood meals, the expression of defensin A appeared as a reducible and non-cycling type, a crucial feature for its anti-pathogen effect. From data above, we concluded that the regulatory function of the Vg promoter and the expression of defensin A gene were relatively conserved in different species of anopheles mosquitoes. These molecules could be used as candidates in the development of genetically modified mosquitoes.

  3. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins.

    Science.gov (United States)

    Spelbrink, Robert G; Dilmac, Nejmi; Allen, Aron; Smith, Thomas J; Shah, Dilip M; Hockerman, Gregory H

    2004-08-01

    Plant defensins are a family of small Cys-rich antifungal proteins that play important roles in plant defense against invading fungi. Structures of several plant defensins share a Cys-stabilized alpha/beta-motif. Structural determinants in plant defensins that govern their antifungal activity and the mechanisms by which they inhibit fungal growth remain unclear. Alfalfa (Medicago sativa) seed defensin, MsDef1, strongly inhibits the growth of Fusarium graminearum in vitro, and its antifungal activity is markedly reduced in the presence of Ca(2+). By contrast, MtDef2 from Medicago truncatula, which shares 65% amino acid sequence identity with MsDef1, lacks antifungal activity against F. graminearum. Characterization of the in vitro antifungal activity of the chimeras containing portions of the MsDef1 and MtDef2 proteins shows that the major determinants of antifungal activity reside in the carboxy-terminal region (amino acids 31-45) of MsDef1. We further define the active site by demonstrating that the Arg at position 38 of MsDef1 is critical for its antifungal activity. Furthermore, we have found for the first time, to our knowledge, that MsDef1 blocks the mammalian L-type Ca(2+) channel in a manner akin to a virally encoded and structurally unrelated antifungal toxin KP4 from Ustilago maydis, whereas structurally similar MtDef2 and the radish (Raphanus sativus) seed defensin Rs-AFP2 fail to block the L-type Ca(2+) channel. From these results, we speculate that the two unrelated antifungal proteins, KP4 and MsDef1, have evolutionarily converged upon the same molecular target, whereas the two structurally related antifungal plant defensins, MtDef2 and Rs-AFP2, have diverged to attack different targets in fungi. PMID:15299136

  4. Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem Resistant Escherichia coli.

    Science.gov (United States)

    Thakur, Pallavi; Chawla, Raman; Narula, Alka; Goel, Rajeev; Arora, Rajesh; Sharma, Rakesh Kumar

    2016-06-01

    Expression of a multitude of virulence factors by multi-drug resistant microbial strains, e.g., Carbapenem Resistant Escherichia coli (Family: Enterobacteriaceae; Class: Gammaproteobacteria), is responsible for resistance against beta-lactam antibiotics. Hemolysin production and induction of hemagglutination by bacterial surface receptors inflicts direct cytotoxicity by destroying host phagocytic and epithelial cells. We have previously reported that Berberis aristata, Camellia sinensis, Cyperus rotundus Holarrhena antidysenterica and Andrographis paniculata are promising herbal leads for targeting Carbapenem resistant Escherichia coli. These herbal leads were analyzed for their anti-hemolytic potential by employing spectrophotometric assay of hemoglobin liberation. Anti-hemagglutination potential of the extracts was assessed by employing qualitative assay of visible RBC aggregate formation. Camellia sinensis (PTRC-31911-A) exhibited anti-hemolytic potential of 73.97 ± 0.03%, followed by Holarrhena antidysenterica (PTRC-8111-A) i.e., 68.32 ± 0.05%, Berberis aristata (PTRC-2111-A) i.e., 60.26 ± 0.05% and Cyperus rotundus (PTRC-31811-A) i.e., 53.76 ± 0.03%. Comprehensive, visual analysis of hemagglutination inhibition revealed that only Berberis aristata (PTRC-2111-A) and Camellia sinensis (PTRC-31911-A) exhibited anti-hemagglutination activity. However, Andrographis paniculata (PTRC-11611-A) exhibited none of the inhibitory activities. Furthermore, the pair wise correlation analysis of the tested activities with quantitative phytochemical descriptors revealed that an increased content of alkaloid; flavonoids; polyphenols, and decreased content of saponins supported both the activities. Additionally, flow cytometry revealed that cell membrane structures of CRE were damaged by extracts of Berberis aristata (PTRC-2111-A) and Camellia sinensis (PTRC-31911-A) at their respective Minimum Inhibitory Concentrations, thereby confirming noteworthy antibacterial

  5. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.

    Science.gov (United States)

    Luo, Sheng-lian; Chen, Liang; Chen, Jue-liang; Xiao, Xiao; Xu, Tao-ying; Wan, Yong; Rao, Chan; Liu, Cheng-bin; Liu, Yu-tang; Lai, Cui; Zeng, Guang-ming

    2011-11-01

    This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency. PMID:21868057

  6. Gene organization of a novel defensin of Ixodes ricinus: first annotation of an intron/exon structure in a hard tick defensin gene and first evidence of the occurrence of two isoforms of one member of the arthropod defensin family

    Czech Academy of Sciences Publication Activity Database

    Rudenko, Natalia; Golovchenko, Maryna; Grubhoffer, Libor

    2007-01-01

    Roč. 16, č. 4 (2007), s. 501-507. ISSN 0962-1075 R&D Projects: GA MŠk(CZ) LC06009; GA ČR(CZ) GA524/06/1479 Institutional research plan: CEZ:AV0Z60220518 Keywords : defensin * Ixodes ricinus * intron/exon structure * immune response * antimicrobial activity Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.787, year: 2007

  7. In vitro antibacterial activity of methanol and water extracts of adiantum capillus veneris and tagetes patula against multidrug resistant bacterial strains

    International Nuclear Information System (INIS)

    The aim of present study was to screen the antimicrobial activities of extracts of leaves and stems of Adiantum capillus veneris and Tagetes patula against multidrug-resistant (MDR) bacterial strains. Extracts from the leaves and stems of these plants were extracted with methanol and water and tested for their antibacterial activity by disc diffusion method against ten MDR bacterial strains i.e., Citrobacter freundii, Escherichia coli, Providencia, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella and Vibrio cholerae. Leaves methanol extract (LME) of Adiantum showed maximum Zone of Inhibition (ZI) against Providencia, Klebsiella pneumoniae, Shigella, Vibrio cholerae, Staphylococcus aureus, Proteus vulgaris and Salmonella typhi, whereas its stem methanol extract (SME) was very active against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi. Similarly LME of Tagetes showed highest ZI against Escherichia coli and Vibrio cholerae while SME showed highest ZI to Escherichia coli, Vibrio cholerae, Providencia, Shigella and Klebsiella pneumoniae. Leaves water extract (LWE) of Adiantum was very active against all ten bacterial strains while its stem water extract (SWE) showed maximum ZI against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi, Shigella, Proteus vulgaris and Providencia. LWE of Tagetes was only active against Vibrio cholerae whereas SWE was very active against Salmonella typhi and active against P. vulgaris, Citrobacter freundii and Vibrio cholerae. It was concluded from this study that extracts of both Adiantum and Tagetes have prominent activities against most of the MDR bacterial strains and needs further studies for utmost benefits. (author)

  8. Antibiotic resistance of bacterial isolates from aquatic animals and its prevention and control%水产动物源细菌耐药性与预防控制

    Institute of Scientific and Technical Information of China (English)

    李国烈; 李林桂; 房文红

    2012-01-01

    Bacterial resistance is the ability of a disease-causing bacterium to resist being killed by antibiotics. The formation of bacterial resistance is the result of the development of bacterial evolution and the manifest of bacterial adaptability; however, it threatens the development of aquaculture and human health. Firstly, this paper summarized the research progress on the bacterial resistance in aquatic animals in recent years, including plasmid-mediated resistance of bacteria, resistance gene of bacterial isolates from aquatic animals, and the genetic mechanism of antibiotic resistance and so on. Secondly, the paper analyzed the harm of bacterial resistance, which included the pathogen of bacterial resistance that caused epidemics and the antibiotic resistance of bacterial isolates from aquatic animals that threatened public health. Finally, from rational and standardized use of drugs, speeding up the development and application of aquatic vaccines and new antimicrobial drugs alternatives, strengthening of the surveillance about pathogen isolates from aquatic animals and so on, the paper provided some valuable methods and strategies on the prevention and control for bacterial resistance in aquatic animals.%细菌耐药性是指细菌对于抗菌药物作用的耐受性。细菌耐药性的形成,是细菌进化发展的结果,是细菌适应性的表现,但它却给养殖业的发展和人类的健康带来威胁。本文首先综述了水产动物源细菌耐药性研究现状,主要包括质粒介导的水产动物源细菌耐药性、细菌耐药基因、细菌耐药性遗传学机制等;其次,从病原菌耐药性会导致水产疾病流行爆发和水产细菌耐药性对人类公共卫生安全的影响两方面,分析了水产动物源细菌耐药性的危害;最后,从合理、规范用药,加快水产疫苗和新型抗菌药物替代品的研制与应用,加强水产动物致病菌耐药性监测等方面,提出了预防和控制

  9. Disinfection of maxillofacial silicone elastomer using a novel antimicrobial agent: recombinant human beta-defensin-3.

    Science.gov (United States)

    Shi, Y; Song, W; Feng, Z H; Zhao, Y T; Li, F; Tian, Y; Zhao, Y M

    2009-04-01

    Maxillofacial silicone elastomer, when used as a prosthesis, is in contact with wound surfaces and mucosa, and tends to be contaminated with microorganisms from a patient's saliva and blood. The aim of the study was to evaluate the efficacy of human beta-defensin-3 (HBD3) on the reduction of two resistant bacteria species from the surface of maxillofacial silicone elastomer. HBD3 cDNA was amplified from total RNA, which had been extracted from human gingival epithelium by means of reverse-transcription polymerase chain reaction (RT-PCR). Following this, the cDNA fragments were recombined in a prokaryotic expression vector. The constructed expression vectors pET-32a/HBD3 were transformed into Escherichia coli to obtain recombinant protein. After protein purification and refolding, the product was verified in classic antimicrobial experiments against Staphylococcus aureus and Candida albicans. Specimens made of silicone elastomer A-2186, which had been contaminated with S. aureus or C. albicans, were immersed in rHBD3 or 5.25% sodium hypochlorite (a positive control) for 5 min, 10 min, 30 min, or 60 min. The active recombinant HBD3 obtained in the current study eliminated the S. aureus and C. albicans microorganism from the surface of the maxillofacial elastomer after a 30-min immersion. There was no statistically significant difference between the rHBD3 group and the sodium hypochlorite 5.25% group. In conclusion, rHBD3 exhibits antibacterial activity against oral pathogenic strains that adhere to maxillofacial elastomer, and may, thus, contribute to the prevention of infections caused by S. aureus and C. albicans. PMID:18841402

  10. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens.

    Directory of Open Access Journals (Sweden)

    Long Zhang

    Full Text Available Host defense peptides (HDPs play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3 is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs and peripheral blood mononuclear cells (PBMCs to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS. On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens.

  11. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens

    Science.gov (United States)

    Zhang, Guolong; Ouyang, Linghua; Robinson, Kelsy; Tang, Yanqiang; Zhu, Qing; Li, Diyan; Hu, Yaodong; Liu, Yiping

    2016-01-01

    Host defense peptides (HDPs) play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3) is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD) expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs) and peripheral blood mononuclear cells (PBMCs) to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS). On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens. PMID:27135828

  12. Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant enterobacteria excreted.

    Directory of Open Access Journals (Sweden)

    Thu Thuy Nguyen

    2014-09-01

    Full Text Available Fecal excretion of antibiotics and resistant bacteria in the environment are major public health threats associated with extensive farming and modern medical care. Innovative strategies that can reduce the intestinal antibiotic concentrations during treatments are in development. However, the effect of lower exposure on the amount of resistant enterobacteria excreted has not been quantified, making it difficult to anticipate the impact of these strategies. Here, we introduce a bacterial kinetic model to capture the complex relationships between drug exposure, loss of susceptible enterobacteria and growth of resistant strains in the feces of piglets receiving placebo, 1.5 or 15 mg/kg/day ciprofloxacin, a fluoroquinolone, for 5 days. The model could well describe the kinetics of drug susceptible and resistant enterobacteria observed during treatment, and up to 22 days after treatment cessation. Next, the model was used to predict the expected amount of resistant enterobacteria excreted over an average piglet's lifetime (150 days when varying drug exposure and treatment duration. For the clinically relevant dose of 15 mg/kg/day for 5 days, the total amount of resistant enterobacteria excreted was predicted to be reduced by 75% and 98% when reducing treatment duration to 3 and 1 day treatment, respectively. Alternatively, for a fixed 5-days treatment, the level of resistance excreted could be reduced by 18%, 33%, 57.5% and 97% if 3, 5, 10 and 30 times lower levels of colonic drug concentrations were achieved, respectively. This characterization on in vivo data of the dynamics of resistance to antibiotics in the colonic flora could provide new insights into the mechanism of dissemination of resistance and can be used to design strategies aiming to reduce it.

  13. Epidemiology of plasmid-mediated quinolone resistance determinants in bacterial isolates from animals and foods with co-resistance to several antibiotics

    OpenAIRE

    Ferreira, Eugénia; Francisco, Ana Patrícia; Jones-Dias, Daniela; Manageiro, Vera; Caniça, Manuela

    2011-01-01

    Background: The use of (fluoro)quinolones both in humans and animals has contributed to the selection of resistant bacteria, limiting the agents available for treatment. This study aims to search for plasmid-mediated quinolone resistance (PMQR) determinants to give information about these expanding resistance mechanisms, their capacity of dissemination among different bacteria by mobile elements, and the role that they play in facilitating co-resistance to several antimicrobials. Methods: ...

  14. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings.

    Science.gov (United States)

    Zhang, Wen-hui; Huang, Zhi; He, Lin-yan; Sheng, Xia-fang

    2012-06-01

    Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg(-1) of Pb, inoculation with the isolated Paenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment. PMID:22397839

  15. Prevalência de resistência bacteriana nas infecções de ferida operatória em cirurgia arterial periférica Prevalence of bacterial resistance in surgical wound infections in peripheral arterial surgery

    Directory of Open Access Journals (Sweden)

    Eduardo Lichtenfels

    2008-09-01

    Full Text Available CONTEXTO: A infecção de sítio cirúrgico é uma complicação grave da cirurgia vascular periférica. O recente aparecimento de microorganismos resistentes e agressivos gera uma nova preocupação com relação ao manejo dessas infecções. OBJETIVO: Verificar a prevalência de resistência bacteriana, a epidemiologia, os possíveis fatores associados e o padrão de resistência nas infecções de ferida operatória das cirurgias arteriais periféricas. MÉTODOS: Estudo de prevalência, envolvendo 40 pacientes portadores de infecção da ferida operatória e submetidos à cirurgia de revascularização arterial periférica no período de janeiro de 2007 a maio de 2008. RESULTADOS: Participaram do estudo pacientes com média de idade de 64,2 anos, predominantemente do sexo masculino (70%. A prevalência geral de resistência bacteriana foi 72,5%, e de multirresistência, 60%. O microorganismo mais freqüentemente isolado foi o Staphylococcus aureus (40%, sendo 11 das 16 culturas (68,7% resistentes à oxacilina. As taxas de resistência aos principais antimicrobianos testados foram: ampicilina, 85,7%; cefalosporina, 76,9%; oxacilina, 65%; e ciprofloxacina, 62,5%. Não foi identificada resistência à vancomicina e ao imipenem. CONCLUSÕES: Os achados deste estudo sugerem que a resistência bacteriana é um problema atual e muito prevalente nas cirurgias arteriais periféricas. O Staphylococcus aureus segue sendo o principal patógeno envolvido, demonstrando altas taxas de resistência. A vancomicina e o imipenem seguem sendo as principais opções terapêuticas para esse tipo de infecção.BACKGROUND: Surgical wound infection is a severe complication of peripheral vascular surgery. The recent appearance of resistant and aggressive pathogens brings new concerns related to the management of these infections. OBJECTIVE: To verify the prevalence of bacterial resistance, epidemiology, possibly associated factors and resistance patterns in wound

  16. Identification of microsatellite markers (SSR linked to a new bacterial blight resistance gene xa33(t in rice cultivar ‘Ba7’

    Directory of Open Access Journals (Sweden)

    Theerayut Toojinda

    2009-05-01

    Full Text Available This study attempts to identify a new source of bacterial blight (BB resistance gene and microsatellite makers (SSR linked to it. A total number of 139 F2 progenies generated from a cross between the resistant donor ‘Ba7’and ‘Pin Kaset’ were developed and used for this study. A Thai Xoo isolate, TXO16, collected from Phitsanulok province, was used to evaluate the resistance reaction in the F2 population. The segregation ratio of resistance (R and susceptibility (S was statistically fitted to 1R:3S model indicating single recessive gene segregation. Twenty F2 individuals consisting of 10 resistant and 10 susceptible plants were chosen for DNA analysis. Sixty-two polymorphic markers covering all rice chromosomes were used to identify the location and linked markers of the resistance gene. Four SSR markers, viz. RM30, RM7243, RM5509 and RM400, located on the long arm of rice chromosome 6, could clearly discriminate between resistant and susceptible phenotypes, and 161 BC2F2:3 individuals carrying BB resistance gene were developed through MAS using these SSR markers. This population was inoculated with TXO16 to validate and confirm the location of the gene and linked markers. The segregation ratio was statistically fitted to 1R:3S model confirming a recessive nature of the gene action in this germplasm. Phenotypic-genotypic association including five additional markers suggested that RM20590 was tightly linked to this resistance gene (R2=59.12 %. The BB phenotype was controlled by a recessive gene with incomplete dominance of susceptible allele providing intermediate resistance to Xoo pathogen in heterozygotes. The location of the gene was in the vicinity of a dominant gene, Xa7, which was previously reported. However, the resistance gene identified here was different from Xa7 because of the different nature of gene action. Consequently, this gene was tentatively designated as xa33(t. The resistance gene from rice cultivar ‘Ba7’ and the

  17. 新生儿细菌性结膜炎的细菌分布及耐药情况分析%Analysis of bacterial distribution and drug resistance of bacterial conjunc-tivitis in newborn

    Institute of Scientific and Technical Information of China (English)

    张萌; 王媛; 邬丽霞; 谢镜花

    2015-01-01

    目的:探讨新生儿细菌性结膜炎的细菌分布及耐药情况,为新生儿细菌性结膜炎的临床治疗和相关研究提供参考依据。方法选取2009年7月~2013年7月门诊就诊的150例新生儿细菌性结膜炎患儿作为研究对象,对患儿的眼分泌物病原学和药敏试验结果进行统计分析。结果共检出革兰氏阳性致病菌115株(83.33%),革兰氏阴性致病菌23株(16.67%)。对革兰氏阳性菌耐药的前5种抗菌药物为红霉素、妥布霉素、庆大霉素、新霉素、氯霉素,耐药率分别为89.57%、63.48%、41.74%、32.17%、9.57%。对革兰氏阴性菌耐药的前5种抗菌药物为红霉素、青霉素、新霉素、妥布霉素、氨苄西林,耐药率分别为95.65%、65.22%、65.22%、65.22%、60.87%。结论临床上导致新生儿细菌性结膜炎主要以革兰氏阳性致病菌为主,应根据药敏试验结果选择耐药率水平低的抗菌药物进行治疗。%Objective To explore the bacterial distribution and drug resistance of bacterial conjunctivitis in newborn,so as to provide reference for the clinical treatment and research in newborn with infections of the eye. Methods 150 cas-es of bacterial conjunctivitis in newborn from July 2009 to July 2013 in the clinic hospital were selected as the re-search object.The results of etiology and drug susceptibility test for the bacterium retrospectively was statistically ana-lyzed. Results 115 strains of gram positive pathogens were detected,the proportion of 83.33%.23 strains of gram nega-tive pathogenic bacteria were identified,the proportion of 16.67%.To be ranked in the top 5 of antimicrobial resistant gram positive pathogens were erythromycin,neomycin,gentamicin,tobramycin,chloramphenicol,drug resistance rate was 89.57%,63.48%,41.74%,32.17%,9.57%reapectively.To be ranked in the top 5 on antimicrobial resistance of gram neg-ative pathogenic bacteria were erythromycin

  18. Antibiotic resistance pattern of bacterial isolates from cases of urinary tract infections among hospitalized and out-patients at a tertiary health facility in South Western Nigeria

    Directory of Open Access Journals (Sweden)

    Oyekale Oluwalana Timothy

    2014-01-01

    Full Text Available Aim: Urinary tract infections (UTIs are among the most common human infections with distribution of causative agents and their susceptibility pattern to antibiotics varying from region to region. This study aimed at determining the bacterial uropathogens and their antibiotic resistance profile among patients in a Nigerian tertiary health care facility. Materials and Methods: Appropriate urine specimens (midstream/catheter specimen urine of all suspected cases of UTI by clinicians were processed in the medical microbiology laboratory for detection of significant bacteriuria. Bacteria uropathogens isolated were identified by standard biochemical tests and antibiotic susceptibility test to eight antibiotics was carried out on them using Kirby-Bauer disc diffusion technique. Methicillin-resistant Staphylococcus aureus (MRSA was identified by cefoxitin disc diffusion technique and extended-spectrum beta-lactamase (ESBL producing enterobacteria were detected using double-disc synergy test. Results: Of the total 157 males and 189 females investigated, 35.7% and 66.1% respectively had significant bacteriuria. Escherichia coli was the most commonly isolated bacterial pathogen both among in- and out-patients (52.6% vs. 65.5%. Other isolated organisms were S. aureus (13.4% vs. 19.0%, Pseudomonas aeruginosa (10.3% vs. 2.4%, Klebsiella pneumoniae (7.2% vs. 7.1% and K. aerogenes (7.2% vs. 1.2%. Resistance rate of uropathogens to antibiotics was higher among in-patients. Resistance rate to ofloxacin, ceftazidime and ceftriaxone was generally very low compared to other tested antibiotics. Multiple resistant bacteria: MRSA and ESBL-producing enterobacteria were detected among both in-and out-patient with no significant difference in isolation rate. Conclusion: There is a need for continuous monitoring of uropathogens and their antibiotic sensitivity profile for evidence-based empirical treatment of UTI. There is an urgent need for the establishment of antibiotic

  19. Bacteriophage Resistance Mechanisms in the Fish Pathogen Flavobacterium psychrophilum: Linking Genomic Mutations to Changes in Bacterial Virulence Factors

    DEFF Research Database (Denmark)

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Dalsgaard, Inger;

    2015-01-01

    short palindromic repeat (CRISPR) region was unaffected in the resistant isolates and thus did not play a role as a resistance mechanism for F. psychrophilum under the current conditions. All together, the results suggest that resistance in F. psychrophilum was driven by spontaneous mutations, which...

  20. Frequency of escherichia coli in patients with community acquired urinary tract infection and their resistance pattern against some commonly used anti bacterials

    International Nuclear Information System (INIS)

    Urinary tract infection (UTI) is a very common health problem and Escherichia coli (E coli) are the most common organisms associated with community acquired UTI. Unfortunately these bacteria have developed extensive resistance against most of the commonly used anti-bacterials. The objective of this study was to determine the frequency and resistance pattern of E coli in patients of community acquired UTI in an area in northern part of Pakistan. Methods: Urine specimens were collected from patients who were clinically diagnosed as community acquired UTI. Urine routine examination (Urine RE) was done and samples positive for UTI (Pus cells >10/High Power Field) were included in the study. These samples were inoculated on Eosin Methylene Blue (EMB) agar plates and incubated at 37 degree C for 36 hours. Suspected colonies were then inoculated further on EMB plates for pure cultures of E coli characterized by certain morphological characteristics. IMViC was applied for the confirmation of E coli. In vitro antibiotic susceptibility tests of E coli were performed with standardized commercial susceptibility discs (OXOID). Results: Out of 50 specimens, positive for UTI by urine RE, 20 showed pure growth of E coli on culture (40%). The majority of the isolates (28%; n=14) were from women while only 12% (n=6) were from men. Escherichia coli showed a high rate of resistance towards Ampicillin (90%), Tetracycline (70%), Erythromycin (70%) and Trimethoprim-Sulfamethoxazole (55%). Sparfloxacin showed better results (45%) than ciprofloxacin (50%). Out of 20 E coli isolates, two (10%) were resistant to all the antibacterials except chloramphenicol, eight isolates (40%) showed resistance to six or more than six while 14 (70%) were resistant to four or more than four drugs. Conclusion: Rate of resistance of E coli against commonly used antibacterials was quite high and majority of the strains showed multidrug resistance. (author)

  1. Comparative transcriptome proifling of two maize near-isogenic lines differing in the allelic state for bacterial brown spot disease resistance

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-jun; Xu Li; ZHAO Pan-feng; LI Na; WU Lei; HE Yan; WANG Shou-cai

    2015-01-01

    The bacterial brown spot disease (BBS), caused primarily by Pseudomonas syringae pv. syringae van Hal (Pss), reduces plant vigor, yield and quality in maize. To reveal the nature of the defense mechanisms and identify genes involved in the effective host resistance, the dynamic changes of defense transcriptome triggered by the infection of Pss were investigated and compared between two maize near-isogenic lines (NILs). We found that Pss infection resulted in a sophisticated tran-scriptional reprogramming of several biological processes and the resistant NIL employed much faster defense responses than the susceptible NIL. Numerous genes encoding essential components of plant basal resistance would be able to be activated in the susceptible NIL, such as PEN1, PEN2, PEN3, and EDR1, however, in a basic manner, such resistance might not be sufifcient for suppressing Pss pathogenesis. In addition, the expressions of a large number of PTI-, ETI-, PR-, and WRKY-related genes were pronouncedly activated in the resistant NIL, suggesting that maize employ a multitude of defense pathways to defend Pss infection. Six R-gene homologs were identiifed to have signiifcantly higher expression levels in the resistant NIL at early time point, indicating that a robust surveil ance system (gene-to-gene model) might operate in maize during Pss attacks, and these homolog genes are likely to be potential candidate resistance genes involved in BBS disease resistance. Furthermore, a holistic group of novel pathogen-responsive genes were deifned, providing the repertoire of candidate genes for further functional characterization and identiifcation of their regulation patterns during pathogen infection.

  2. Increased Resistance to Staphylococcus aureus Endophthalmitis in BALB/c Mice: Fas Ligand Is Required for Resolution of Inflammation but Not for Bacterial Clearance

    OpenAIRE

    Sugi, Norito; Whiston, Emily A.; Ksander, Bruce R.; Gregory, Meredith S.

    2013-01-01

    FasL was recently shown be required for bacterial clearance in C57BL/6 mice that express the FasL.1 allotype. The FasL.2 allotype is expressed in BALB/c mice and exhibits increased binding affinity to and increased cytotoxic activity against Fas+ target cells. Therefore, we hypothesized that BALB/c mice would be more resistant to Staphylococcus aureus-induced endophthalmitis. To test this hypothesis, C57BL/6, BALB/c, and BALB(gld) mice received intravitreal injections of 2,500 CFU of S. aureu...

  3. Lucifensin II, a Defensin of Medicinal Maggots of the Blowfly Lucilia cuprina (Diptera: Calliphoridae)

    Czech Academy of Sciences Publication Activity Database

    El Shazely, B.; Veverka, Václav; Fučík, Vladimír; Voburka, Zdeněk; Žďárek, Jan; Čeřovský, Václav

    2013-01-01

    Roč. 50, č. 3 (2013), s. 571-578. ISSN 0022-2585 Institutional support: RVO:61388963 Keywords : Lucilia cuprina * insect defensin * lucifensin * sequence determination * maggot therapy Subject RIV: CC - Organic Chemistry Impact factor: 1.815, year: 2013

  4. Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy

    Czech Academy of Sciences Publication Activity Database

    Čeřovský, Václav; Bém, R.

    2014-01-01

    Roč. 7, č. 3 (2014), s. 251-264. ISSN 1424-8247 R&D Projects: GA ČR GA203/08/0536 Institutional support: RVO:61388963 Keywords : antimicrobial peptide * insect defensin * lucifensin * maggot therapy * Lucilia sericata * Lucilia cuprina * peptide isolation * peptide identification Subject RIV: CC - Organic Chemistry http://www.mdpi.com/1424-8247/7/3/251

  5. Defensins and the convergent evolution of platypus and reptile venom genes.

    Science.gov (United States)

    Whittington, Camilla M; Papenfuss, Anthony T; Bansal, Paramjit; Torres, Allan M; Wong, Emily S W; Deakin, Janine E; Graves, Tina; Alsop, Amber; Schatzkamer, Kyriena; Kremitzki, Colin; Ponting, Chris P; Temple-Smith, Peter; Warren, Wesley C; Kuchel, Philip W; Belov, Katherine

    2008-06-01

    When the platypus (Ornithorhynchus anatinus) was first discovered, it was thought to be a taxidermist's hoax, as it has a blend of mammalian and reptilian features. It is a most remarkable mammal, not only because it lays eggs but also because it is venomous. Rather than delivering venom through a bite, as do snakes and shrews, male platypuses have venomous spurs on each hind leg. The platypus genome sequence provides a unique opportunity to unravel the evolutionary history of many of these interesting features. While searching the platypus genome for the sequences of antimicrobial defensin genes, we identified three Ornithorhynchus venom defensin-like peptide (OvDLP) genes, which produce the major components of platypus venom. We show that gene duplication and subsequent functional diversification of beta-defensins gave rise to these platypus OvDLPs. The OvDLP genes are located adjacent to the beta-defensins and share similar gene organization and peptide structures. Intriguingly, some species of snakes and lizards also produce venoms containing similar molecules called crotamines and crotamine-like peptides. This led us to trace the evolutionary origins of other components of platypus and reptile venom. Here we show that several venom components have evolved separately in the platypus and reptiles. Convergent evolution has repeatedly selected genes coding for proteins containing specific structural motifs as templates for venom molecules. PMID:18463304

  6. Gastrointestinal Autoimmunity Associated With Loss of Central Tolerance to Enteric alpha-Defensins

    Czech Academy of Sciences Publication Activity Database

    Dobeš, Jan; Neuwirth, Aleš; Dobešová, Martina; Vobořil, Matouš; Balounová, Jana; Ballek, Ondřej; Lebl, J.; Meloni, A.; Krohn, K.; Kluger, N.; Ranki, A.; Filipp, Dominik

    2015-01-01

    Roč. 149, č. 1 (2015), s. 139-150. ISSN 0016-5085 R&D Projects: GA ČR(CZ) GBP302/12/G101 Institutional support: RVO:68378050 Keywords : Enteric defensins * Intestinal autoimmunity * Mouse Model of APECED Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 16.716, year: 2014

  7. Expression and purification of recombinant human alpha-defensins in Escherichia coli.

    Science.gov (United States)

    Pazgier, Marzena; Lubkowski, Jacek

    2006-09-01

    Different strategies have been developed to produce small antimicrobial peptides (AMPs) using recombinant techniques. Up to now, all efforts to obtain larger quantities of active recombinant human alpha-defensins have been only moderately successful. Here we report an effective method of biosynthesis of human alpha-defensins (hNP-1 to hNP-3 and hD-5 and hD-6) in the Escherichia coli. All the peptides, expressed as insoluble fusions with the peptide encoded by a portion of E. coli tryptophan operon (trp DeltaLE 1413 polypeptide), were isolated from the inclusion bodies by immobilized metal affinity chromatography (IMAC) and separated from the fusion leader by chemical cleavage. Fully reduced peptides that were purified according to a straightforward protocol were subsequently folded, oxidized, and subjected to functional and structural analyses. With the exception of hD-6, all recombinant alpha-defensins exhibit expected anti-E. coli activity, as measured by the colony counting method. The method described in this report is a low-cost, efficient way of generating alpha-defensins in quantities ranging from milligrams to grams. PMID:16839776

  8. Tribolium castaneum defensins are primarily active against Gram-positive bacteria

    Czech Academy of Sciences Publication Activity Database

    Tonk, M.; Knorr, E.; Cabezas-Cruz, A.; Valdés, James J.; Kollewe, C.; Vilcinskas, A.

    2015-01-01

    Roč. 132, NOV 2015 (2015), s. 208-215. ISSN 0022-2011 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Antimicrobial peptides * Defensin * Innate immunity * Insects * Tribolium castaneum * Gram-positive bacteria Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.110, year: 2014

  9. Elevated Plasma α-Defensins (HNP1-3) Levels Correlated with IgA1 Glycosylation and Susceptibility to IgA Nephropathy.

    Science.gov (United States)

    Qi, Yuan-Yuan; Zhou, Xu-Jie; Cheng, Fa-Juan; Zhang, Hong

    2016-01-01

    Aim. IgA nephropathy (IgAN) is the most common form of glomerulonephritis. Recent genome-wide association study (GWAS) suggested that DEFA locus (which encodes α-defensins) may play a key role in IgAN. Methods. The levels of α-defensins in 169 IgAN patients and 83 healthy controls were tested by ELISA. Results. We observed that α-defensins human neutrophil peptides 1-3 (HNP1-3) in IgAN patients were elevated compared with healthy controls. The mean levels of α-defensins of 83 healthy controls and 169 IgAN patients were 50 ng/mL and 78.42 ng/mL. When the results were adjusted to the mean levels of α-defensins of IgAN patients, the percentage of individuals with high levels of α-defensins increased in IgAN patients (22.5%) compared to healthy controls (9.6%) (p = 0.013). The elevation of α-defensins in IgAN patients was independent of renal function or neutrophil count, which were major sources of α-defensins in circulation. More importantly, negative correlation was observed between galactose-deficient IgA1and α-defensins. Conclusion. As α-defensin is a lectin-like peptide, we speculated that it might be involved in IgA galactose deficiency. The data implied that patients with IgAN had higher plasma α-defensins levels and high α-defensins correlated with IgA galactose deficiency, further suggesting a pathogenic role of α-defensins in IgAN. PMID:27563166

  10. Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola

    Directory of Open Access Journals (Sweden)

    Fu Bin-Ying

    2010-02-01

    Full Text Available Abstract Background Non-host resistance in rice to its bacterial pathogen, Xanthomonas oryzae pv. oryzicola (Xoc, mediated by a maize NBS-LRR type R gene, Rxo1 shows a typical hypersensitive reaction (HR phenotype, but the molecular mechanism(s underlying this type of non-host resistance remain largely unknown. Results A microarray experiment was performed to reveal the molecular mechanisms underlying HR of rice to Xoc mediated by Rxo1 using a pair of transgenic and non-transgenic rice lines. Our results indicated that Rxo1 appeared to function in the very early step of the interaction between rice and Xoc, and could specifically activate large numbers of genes involved in signaling pathways leading to HR and some basal defensive pathways such as SA and ET pathways. In the former case, Rxo1 appeared to differ from the typical host R genes in that it could lead to HR without activating NDR1. In the latter cases, Rxo1 was able to induce a unique group of WRKY TF genes and a large set of genes encoding PPR and RRM proteins that share the same G-box in their promoter regions with possible functions in post-transcriptional regulation. Conclusions In conclusion, Rxo1, like most host R genes, was able to trigger HR against Xoc in the heterologous rice plants by activating multiple defensive pathways related to HR, providing useful information on the evolution of plant resistance genes. Maize non-host resistance gene Rxo1 could trigger the pathogen-specific HR in heterologous rice, and ultimately leading to a localized programmed cell death which exhibits the characteristics consistent with those mediated by host resistance genes, but a number of genes encoding pentatricopeptide repeat and RNA recognition motif protein were found specifically up-regulated in the Rxo1 mediated disease resistance. These results add to our understanding the evolution of plant resistance genes.

  11. Development of bacterial spot on near-isogenic lines of bell pepper carrying gene pyramids composed of defeated major resistance genes.

    Science.gov (United States)

    Kousik, C S; Ritchie, D F

    1999-11-01

    ABSTRACT Disease severity caused by races 1 through 6 of Xanthomonas campestris pv. vesicatoria on eight near-isogenic lines (isolines) of Early Calwonder (ECW) with three major resistance genes (Bs1, Bs2, and Bs3) in different combinations was evaluated in the greenhouse and field. Strains representing races 1, 3, 4, and 6 caused similar high levels of disease severity, followed by races 2 and 5 on susceptible ECW. Race 3 caused severe disease on all isolines lacking resistance gene Bs2. Race 4, which defeats Bs1 and Bs2, caused less disease on isoline ECW-12R (carries Bs1 + Bs2), than on isolines ECW, ECW-10R (carries Bs1), and ECW-20R (carries Bs2). Similar results were obtained with race 4 strains in field studies conducted during 1997 and 1998. In greenhouse studies, race 6, which defeats all three major genes, caused less disease on isoline ECW-13R (carries Bs1 + Bs3) and ECW-123R (carries Bs1 + Bs2 + Bs3) than on isolines ECW, ECW-10R, ECW-20R, and ECW-30R (carries Bs3), but not on ECW-23R (carries Bs2 + Bs3). In greenhouse studies with commercial hybrids, strains of races 4 and 6 caused less disease on Boynton Bell (carries Bs1 + Bs2) than on Camelot (carries no known resistance genes), King Arthur (carries Bs1), and X3R Camelot (carries Bs2). Race 6 caused less disease on hybrid R6015 (carries Bs1 + Bs2 + Bs3) and Sentinel (carries Bs1 + Bs3) than on Camelot. Residual effects were not as evident in field studies with race 6 strains. Defeated major resistance genes deployed in specific gene combinations (i.e., gene pyramids) were associated with less area under the disease progress curve than when genes were deployed individually in isolines of ECW or commercial hybrids. Successful management of bacterial spot of pepper is achieved incrementally by integrating multiple tactics. Although there is evidence of residual effects from defeated genes, these effects alone likely will not provide acceptable bacterial spot control in commercial production fields

  12. The Causes, Mechanism and Preventive Measures of Bacterial Resistance%细菌耐药性产生的原因、机制及防治措施

    Institute of Scientific and Technical Information of China (English)

    赵明秋; 沈海燕; 潘文; 王佳莹; 李银光; 常艳

    2011-01-01

    20世纪40年代青霉素的问世将人类带入了抗生素时代,抗感染治疗由此进入了新纪元,感染性疾病的病死率大大降低.半个世纪以来,人类一直把抗菌药物作为抗感染治疗最有力的武器.然而随着抗菌药物的广泛应用,感染性疾病的治疗又遇到了新的挑战--细菌对抗生素产生了耐药性,而此种耐药性表现为抗菌药物使用得越多耐药性亦变得越严重.目前已发现某些细菌对现有的几乎全部抗菌药物产生耐药,超级细菌的出现使人类有可能再次回到面临感染而无药可医的困境,控制细菌耐药性的增长已成为医学界乃至全人类的当务之急.正在逐渐建立自己的细菌耐药监测网络,监测细菌耐药的流行状况和规律,研究细菌产生耐药性的机制.%With the advent of penicillin in the 1940s an era of antibiotics was started, anti-infection treatment thus entered a new era, the mortality rate of infectious diseases decreased dramatically.For a half century, humans have always considered antibacterial drugs as the most powerful weapon of anti-infection treatment.However, with the wide application of antimicrobial agents, the treatment of infectious diseases also meet the new challenges-bacterial resistance to antibiotics, which become more serious as the usage of antimicrobial is increased.Currently some bacteria have been found susceptible to almost all the antimicrobial agents, the appearance of super bacteria may bring humans back to the dilemma of no medicine for infectious diseases, so the control of the increase of bacterial resistance has become urgent for medicine and humankind.Our country is gradually building our own monitoring network of bacterial resistance, monitoring of the current epidemic status and trends of bacteria resistant, studying on the mechanism of bacteria resistant.

  13. Selection for bacterial leaf-blight (Xanthomonas oryzae) and sheath-blight (Rhizoctonia oryzae) resistant mutants in a collection of early rice mutants

    International Nuclear Information System (INIS)

    Two of the most important and common rice diseases in Indonesia are bacterial leaf blight (BLB) and sheath blight (SB). The best rice yielding varieties in Indonesia, Pelita I/1 and IR5, were treated with gamma radiation and EMS. All the early maturing mutants which were selected from M2 and M3 generations, and afterwards in the M8 generation we tested for their reaction to bacterial leaf blight and sheath blight. Pelita I/1 is moderately resistant to BLB and moderately susceptible to SB, but IR5 is susceptible to BLB or SB. At 30 and 60 days after transplanting, 107 early maturing mutants were inoculated with BLB. The bacteria were isolated from three different rice fields, and grown into Wakimoto media. Inoculation was done by the cutting method with suspension of 10-7-10-8cell/cm3. The virulence of bacteria isolated from the three fields was different. Resistant mutants were only observed in the Pelita I/1 early mutant collection; however, moderate resistance was found in the IR5 early mutants collection. At late growth stage the plant seems relatively more resistant to BLB. Early mutants of Pelita I/1 were inoculated with fungus SB following the procedure of the International Rice Sheath Blight Nursery (IRSHBN). Of 96 mutants, 55 were susceptible and 41 were moderately susceptible. Pelita I/1 was moderately susceptible with 48% damage and, compared with this, 9 mutant lines showed less than 40% damage. Selection was also carried out by natural infection; however, owing to ecoclimatic conditions the result was not convincing. (author)

  14. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway

    OpenAIRE

    Yang, Wei; Xu, Xiaonan; Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato...

  15. Integration of selective breeding and vaccination to improve disease resistance in aquaculture: Application to control bacterial cold water disease

    Science.gov (United States)

    Bacterial cold water disease (BCWD) is a frequent cause of elevated mortality in rainbow trout and the development of effective control strategies is a priority within the U.S. A goal of the NCCCWA breeding program is to produce germplasm with superior growth and survival following exposure to infe...

  16. Radio-resistance of some bacterial pathogens in soft-shell clams (Mya arenaria) and mussels (Mytilus edulis)

    International Nuclear Information System (INIS)

    Gamma-irradiation decimal reduction doses were determined for E. coli, Salmonella typhimurium, Shigella flexneri, Strept. faecalis, Staph, aureus, and the Total Plate Count in a soft-shell clam or mussel substrate. Factors to be considered for designing and irradiation bacterial-decontamination process for shellfish are discussed

  17. Bacterial-resistance among outpatients of county hospitals in China: significant geographic distinctions and minor differences between central cities.

    Science.gov (United States)

    Xiao, Yonghong; Wei, Zeqing; Shen, Ping; Ji, Jinru; Sun, Ziyong; Yu, Hua; Zhang, Tiantuo; Ji, Ping; Ni, Yuxing; Hu, Zhidong; Chu, Yunzhuo; Li, Lanjuan

    2015-06-01

    The purpose of this study was to survey antibacterial resistance in outpatients of Chinese county hospitals. A total of 31 county hospitals were selected and samples continuously collected from August 2010 to August 2011. Drug sensitivity testing was conducted in a central laboratory. A total of 2946 unique isolates were collected, including 634 strains of Escherichia coli, 606 Klebsiella pneumoniae, 476 Staphylococcus aureus, 308 Streptococcus pneumoniae, and 160 Haemophilus influenzae. Extended-spectrum β-lactamases were detected in E. coli (42.3% strains), K. pneumoniae (31.7%), and Proteus mirabilis (39.0%). Ciprofloxacin-resistance was detected in 51.0% of E. coli strains. Salmonella spp. and Shigella spp. were sensitive to most antibacterial agents. Less than 8.0% of Pseudomonas aeruginosa isolates were resistant to carbapenem. For S. aureus strains, 15.3% were resistant to methicillin, and some strains of S. pneumoniae showed resistance to penicillin (1.6%), ceftriaxone (13.0%), and erythromycin (96.4%). β-lactamase was produced by 96.5% of Moraxella catarrhalis strains, and 36.2% of H. influenzae isolates were resistant to ampicillin. Azithromycin-resistant H. influenzae, imipenem-resistant but meropenem-sensitive Proteus, and ceftriaxone- and carbapenem non-sensitive M. catarrhalis were recorded. In conclusion, cephalosporin- and quinolone-resistant strains of E. coli and Klebsiella pneumonia and macrolide-resistant Gram-positive cocci were relatively prominent in county hospitals. The antibacterial resistance profiles of isolates from different geographical locations varied significantly, with proportions in county hospitals lower than those in their tertiary counterparts in the central cities, although the difference is diminishing. PMID:25708671

  18. Bacterial gastroenteritis

    Science.gov (United States)

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... Bacterial gastroenteritis can affect 1 person or a group of people who all ate the same food. It is ...

  19. Influence of First-Line Antibiotics on the Antibacterial Activities of Acetone Stem Bark Extract of Acacia mearnsii De Wild. against Drug-Resistant Bacterial Isolates

    Directory of Open Access Journals (Sweden)

    Olufunmiso O. Olajuyigbe

    2014-01-01

    Full Text Available Background. This study was aimed at evaluating the antibacterial activity of the acetone extract of A. mearnsii and its interactions with antibiotics against some resistant bacterial strains. Methods. The antibacterial susceptibility testing was determined by agar diffusion and macrobroth dilution methods while the checkerboard method was used for the determination of synergy between the antibiotics and the extract. Results. The results showed that the susceptibility of the different bacterial isolates was concentration dependent for the extract and the different antibiotics. With the exception of S. marcescens, the inhibition zones of the extract produced by 20 mg/mL ranged between 18 and 32 mm. While metronidazole did not inhibit any of the bacterial isolates, all the antibiotics and their combinations, except for ciprofloxacin and its combination, did not inhibit Enterococcus faecalis. The antibacterial combinations were more of being antagonistic than of being synergistic in the agar diffusion assay. From the macrobroth dilution, the extract and the antibiotics exerted a varied degree of inhibitory effect on the test organisms. The MIC values of the acetone extract which are in mg/mL are lower than those of the different antibiotics which are in μg/mL. From the checkerboard assay, the antibacterial combinations showed varied degrees of interactions including synergism, additive, indifference, and antagonism interactions. While antagonistic and additive interactions were 14.44%, indifference interaction was 22.22% and synergistic interaction was 37.78% of the antibacterial combinations against the test isolates. While the additivity/indifference interactions indicated no interactions, the antagonistic interaction may be considered as a negative interaction that could result in toxicity and suboptimal bioactivity. Conclusion. The synergistic effects of the herbal-drug combinations may be harnessed for the discovery and development of more

  20. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers

    Science.gov (United States)

    Laffite, Amandine; Kilunga, Pitchouna I.; Kayembe, John M.; Devarajan, Naresh; Mulaji, Crispin K.; Giuliani, Gregory; Slaveykova, Vera I.; Poté, John

    2016-01-01

    Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (blaTEM, blaCTX-M, blaSHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg−1) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p toxic metals (Cd, Cr, Cu, and Zn) 0.44 to 0.72, (p toxic metals and biological emerging contaminants in aquatic ecosystems. PMID:27499749

  1. Selective breeding improves rainbow trout resistance against bacterial cold water disease with little evidence for change in tolerance

    Science.gov (United States)

    Animals exhibit two broadly-defined defense strategies upon pathogen exposure: resistance and tolerance. Resistance is a measure of the host's capacity to limit pathogen number, while tolerance is defined as the host's ability to limit the negative health impact of a defined pathogen load. Most an...

  2. Parasitic infection protects wasp larvae against a bacterial challenge.

    Science.gov (United States)

    Manfredini, Fabio; Beani, Laura; Taormina, Mauro; Vannini, Laura

    2010-09-01

    Host antibacterial defense after Strepsiptera parasitization is a complex and rather unexplored topic. The way how these parasites interact with bacteria invading into the host insect during an infection is completely unknown. In the present study we demonstrate that larvae of the paper wasp Polistes dominulus are more efficient at eliminating bacteria when they are parasitized by the strepsipteran insect Xenos vesparum. We looked at the expression levels of the antimicrobial peptide defensin and we screened for the activity of other hemolymph components by using a zone of inhibition assay. Transcription of defensin is triggered by parasitization, but also by mechanical injury (aseptic injection). Inhibitory activity in vitro against the Gram positive bacterium Staphylococcus aureus is not influenced by the presence of the parasite in the wasp or by a previous immune challenge, suggesting a constitutive power of killing this bacterium by wasp hemolymph. Our results suggest either direct involvement of the parasite or that defensin and further immune components not investigated in this paper, for example other antimicrobial peptides, could play a role in fighting off bacterial infections in Polistes. PMID:20546915

  3. Surveillance of bacterial resistance in Streptococcus pneumoniae%肺炎链球菌的耐药性监测

    Institute of Scientific and Technical Information of China (English)

    张泓

    2011-01-01

    As the prevalence of resistant Streptococcus pneumoniae has been increased significantly, understanding the characteristic of resistant strains and applying surveillance for them are helpful to guide clinical therapy and control the prevalence of resistant strains. This review describes Streptococcus pneumoniae resistance, resistance mechanism and their clinical surveillance.%肺炎链球菌耐药率不断上升,监测其耐药性并掌握耐药特征,有助于指导临床合理选药及控制肺炎链球菌耐药株流行.本文综述肺炎链球菌的耐药现状、相关机制及监测方法.

  4. ORIGINAL ARTICLE: Detection of β-Lactamase Activity in Various Clinical Bacterial Isolates by Three Different Methods and its Correlation with Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Sanjay M Wavare

    2012-07-01

    Full Text Available Background: β-lactams such as penicillins are the most widely used antibiotics, and β-lactamases are the greatest source of resistance to penicillins. Aims and Objectives: To study β-lactamase production in clinical isolates of family Enterobacteriaceae, P. aeruginosa and Staphylococci by three different methods and to correlate its potential with drug resistance; with an endeavour to evaluate convenient and economical method duly supported by relevant Minimum Inhibitory Concentration (MIC studies. Material and Methods: Total 240 clinical isolates (Gram-negative bacilli-191, staphylococci-49 were subjected to antimicrobial susceptibility testing by Kirby-Bauer disk diffusion method and MIC for ampicillin and penicillin was determined by agar dilution method. β-lactamase was detected by broth acidometric, iodometric cell suspension and microbiological method. Results: Multidrug resistance was observed in more than 90% isolates. One hundred and ninety Gram-negative bacilli were resistant to ampicillin and 47 staphylococcal isolates were resistant to both penicillin and ampicillin. Though microbiological method gave highest positive results 210 (87.5%, iodometric method could detect β-lactamase in apparently sensitive isolates as well giving satisfactory [207 (86.25%] comparable results. Conclusion: In view of the noted bacterial resistance, tests for β-lactamase should be carried out on a routine basis for an early implementation of appropriate antimicrobial therapy. Iodometric method is eminently convenient, economical and reliable method. Isolates showing MIC <0.125µg/ml for penicillin and MIC <8µg/ml for ampicillin should be checked for β-lactamase production.

  5. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...... become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future....

  6. Quantitative resistance level (MIC) of bacterial pathogens (Escherichia coli, Pasteurella multocida, Pseudomonas aeruginosa, Salmonella sp., Staphylococcus aureus) isolated from chickens and turkeys: national resistance monitoring by the BVL 2004/2005.

    Science.gov (United States)

    Wallmann, Jürgen; Schröer, Ulrike; Kaspar, Heike

    2007-01-01

    In the study 2004/2005, the current quantitative resistance level of Escherichia coli, Pasteurella multocida, Pseudomonas aeruginosa, Salmonella sp. and Staphylococcus aureus from chickens and turkeys was determined for the first time within the framework of the National Resistance Monitoring of the Federal Office of Consumer Protection and Food Safety (BVL). The objective was to implement a valid database on the basis of which the development and spread of resistance can be evaluated and monitored. During the investigation period from January 2004 to February 2005,927 strains were collected and 857 (92%) bacteria strains which corresponded to the specifications of the study protocol were tested with the broth microdilution method to determine the in vitro susceptibility (minimum inhibitory concentration) to 22 to 28 antimicrobial agents or antibiotic combinations. The results document a prevalence of resistance that exceeds that of bacterial pathogens of other animal species, especially in the case of tetracycline. Apart for S. aureus, clinical resistance to fluoroquinolones can still be considered low in poultry pathogens (E. coli approx. 2%). By applying the MICG of 4 mg/L for enrofloxacin, a susceptibility of approximately 78 % was calculated for S. aureus. A comparison of the prevalence of resistance between chickens and turkeys, showed that a slightly higher prevalence of resistance can be expected in turkeys. Differences between the susceptibility data of chicks and adult animals could only be found in turkeys. In the case of E. coli, the prevalence of resistance of strains isolated from adult turkeys was up to 10% higher than those isolated from chicks for the corresponding antimicrobial agents. It must be pointed out that the number of E. coli strains from adult turkeys was much higher (n = 194) than the number from turkey chicks (n = 21). The results indicate clearly that in a resistance monitoring system it is necessary to categorise poultry by animal

  7. Characterization of a defensin from the oyster Crassostrea gigas - Recombinant production, folding, solution structure, antimicrobial activities, and gene expression

    OpenAIRE

    Gueguen, Yannick; Herpin, Amaury; Aumelas, André; Garnier, Julien; Fievet, Julie; Escoubas, Jean-Michel; Bulet, Philippe; Gonzalez, Marcelo; Lelong, Christophe; Favrel, Pascal; Bachere, Evelyne

    2006-01-01

    In invertebrates, defensins were found in arthropods and in the mussels. Here, we report for the first time the identification and characterization of a defensin (Cg-Def) from an oyster. Cg-def mRNA was isolated from Crassostrea gigas mantle using an expressed sequence tag approach. To gain insight into potential roles of Cg-Def in oyster immunity, we produced the recombinant peptide in Escherichia coli, characterized its antimicrobial activities, determined its solution structure by NMR spec...

  8. Mechanisms of α-defensin bactericidal action: COMPARATIVE MEMBRANE DISRUPTION BY CRYPTDIN-4 AND ITS DISULFIDE-NULL ANALOG†

    OpenAIRE

    Hadjicharalambous, Chrystalleni; Sheynis, Tanya; Jelinek, Raz; Shanahan, Michael T.; Ouellette, Andre J.; Gizeli, Electra

    2008-01-01

    Mammalian α-defensins all have a conserved triple-stranded β-sheet structure that is constrained by an invariant tridisulfide array, and the peptides exert bactericidal effects by permeabilizing the target cell envelope. Curiously, the disordered, disulfide-null variant of mouse α-defensin cryptdin-4 (Crp4), termed (6C/A)-Crp4, has equal or greater bactericidal activity than the native peptide, providing rationale for comparing the mechanisms by which the peptides interact with and disrupt ph...

  9. 广藿香抗青枯病鉴定方法的研究%Study on Bacterial-wilt-resistance Identification Methods for Pogostemon cablin (Blanco) Benth.

    Institute of Scientific and Technical Information of China (English)

    贺红; 温雁鹰; 许仕仰; 梁志毅

    2011-01-01

    Objective To investigate the optimal concentration and inoculation procedure of crude toxin from Ralstonia solanacearum, and to establish the identification method for bacterial wilt resistance of Pogostemon cablin (Blanco) Benth. seedling, so as to lay the foundation for resistance breeding of Pogostemon cablin (Blanco)Benth.. Methods The growth curve of Ralstonia solanacearum was determined. And then we studied the effect of seedling age, crude toxin concentrations and inoculation ways for the crude toxin on the pathogenicity of Pogostemon cablin (Blanco) Benth.. Results The growth of Ralstonia solanacearum presented as the S-shaped curve, the highest concentration being 12. 46 × l08 cfu/mL. The seedling of Pogostemon cablin (Blanco) Benth. aged 100 days was optimal for the identification of bacterial wilt resistance. In the crude toxin concentration range of 0. 4 ×108 ~ 0. 6 × 108 cfu/mL, the inoculated plant showed a moderately advanced progress of bacterial wilt, which was suitable for the resistance identification. Having the advantage of shortening the experiment period, the rootsubmerging method was recommended for the resistance identification of Pogostemon cablin (Blanco) Benth..Conclusion The indoor identification method for Pogostemon cablin (Blanco) Benth. resistance to bacterial wilt has been established preliminarily.%[目的]对广藿香幼苗接种青枯茵粗毒素,观察其感病状况,建立广藿香苗期抗性鉴定方法,为广藿香抗病育种奠定基础.[方法]测定不同培养时间的青枯茵菌液浓度,绘制青枯菌的生长曲线;分别设置不同广藿香苗龄、不同浓度青枯菌制备粗毒素及不同接种方法等试验,探讨影响致病性的因素.[结果]青枯茵的生长曲线呈"S"型,青枯茵菌液浓度在稳定期最高可达12.46×108cfu/mL.对于广藿香抗青枯病的苗期鉴定,以100d左右苗龄的植株较适宜;在0.4×108~0.6×108cfu/mL浓度范围内,接种植株表现渐进的发病过

  10. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Directory of Open Access Journals (Sweden)

    Ryo Futahashi

    Full Text Available The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  11. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene.

    OpenAIRE

    Rugh, C L; Wilde, H D; Stack, N M; Thompson, D. M.; Summers, A O; Meagher, R B

    1996-01-01

    With global heavy metal contamination increasing, plants that can process heavy metals might provide efficient and ecologically sound approaches to sequestration and removal. Mercuric ion reductase, MerA, converts toxic Hg2+ to the less toxic, relatively inert metallic mercury (Hg0) The bacterial merA sequence is rich in CpG dinucleotides and has a highly skewed codon usage, both of which are particularly unfavorable to efficient expression in plants. We constructed a mutagenized merA sequenc...

  12. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms†

    OpenAIRE

    Burmølle, Mette; Webb, Jeremy S; Rao, Dhana; Hansen, Lars H.; Sørensen, Søren J.; Kjelleberg, Staffan

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosph...

  13. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time

    OpenAIRE

    Koskella, B; Parr, N.

    2015-01-01

    © 2015 The Authors. Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host–parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation...

  14. The survey of bacterial etiology and their resistance to antibiotics of urinary tract infections in children of Birjand city

    OpenAIRE

    Azita Fesharakinia; Mohammad Malekaneh; Hashem Hooshyar; Marzieh Aval; Fahimeh Gandomy-Sany

    2012-01-01

    Background and Aim: Urinary tract infection is one of the most prevalent bacterial infections in childhood, which due to an inapproto determine the common bacteria and their antibiotic susceptibility in children with urinary tract infection.   Materials and Methods: This descriptive-analytical and prospective study was done in 2009-2010 on urine samples of all children under 13 years who had been referred to Emmam-Reza hospital laboratory in Birjand and had positive urine culture. Sex and age...

  15. High level expression of human epithelial β-defensins (hBD-1, 2 and 3 in papillomavirus induced lesions

    Directory of Open Access Journals (Sweden)

    Chong Kong T

    2006-09-01

    Full Text Available Abstract Background Epithelial defensins including human β-defensins (hBDs and α-defensins (HDs are antimicrobial peptides that play important roles in the mucosal defense system. However, the role of defensins in papillomavirus induced epithelial lesions is unknown. Results Papilloma tissues were prospectively collected from 15 patients with recurrent respiratory papillomatosis (RRP and analyzed for defensins and chemokine IL-8 expression by quantitative, reverse-transcriptase polymerase chain reaction (RT-PCR assays. HBD-1, -2 and -3 mRNAs were detectable in papilloma samples from all RRP patients and the levels were higher than in normal oral mucosal tissues from healthy individuals. Immunohistochemical analysis showed that both hBD-1 and 2 were localized in the upper epithelial layers of papilloma tissues. Expression of hBD-2 and hBD-3 appeared to be correlated as indicated by scatter plot analysis (r = 0.837, p Conclusion Human β-defensins are upregulated in respiratory papillomas. This novel finding suggests that hBDs might contribute to innate and adaptive immune responses targeted against papillomavirus-induced epithelial lesions.

  16. One ring to rule them all: Current trends in combating bacterial resistance to the β-lactams.

    Science.gov (United States)

    King, Dustin T; Sobhanifar, Solmaz; Strynadka, Natalie C J

    2016-04-01

    From humble beginnings of a contaminated petri dish, β-lactam antibiotics have distinguished themselves among some of the most powerful drugs in human history. The devastating effects of antibiotic resistance have nevertheless led to an "arms race" with disquieting prospects. The emergence of multidrug resistant bacteria threatens an ever-dwindling antibiotic arsenal, calling for new discovery, rediscovery, and innovation in β-lactam research. Here the current state of β-lactam antibiotics from a structural perspective was reviewed. PMID:26813250

  17. Antimicrobial activity of rabbit leukocyte defensins against Treponema pallidum subsp. pallidum.

    Science.gov (United States)

    Borenstein, L A; Selsted, M E; Lehrer, R I; Miller, J N

    1991-04-01

    Defensins, which are peptides with broad antimicrobial activity, are major constituents of rabbit neutrophils and certain macrophages. We tested six rabbit defensins, NP-1, NP-2, NP-3a, NP-3b, NP-4, and NP-5, for activity against Treponema pallidum subsp. pallidum. Mixtures of T. pallidum and defensin in 10% normal rabbit serum (NRS) or heat-inactivated NRS (HI-NRS) were incubated anaerobically for various time periods ranging between 0 and 16 h and then examined by dark-field microscopy for treponemal motility or inoculated intradermally into rabbits to assess treponemal virulence. Immobilization of T. pallidum by NP-1 (400 micrograms/ml) occurred after 4 and 8 h of coincubation in mixtures containing NRS and HI-NRS, respectively. Similarly, neutralization of T. pallidum by NP-1 occurred more rapidly and was complete when incubations were performed in NRS as compared with that in HI-NRS. Endpoint titration confirmed the augmentation of NP-1 antitreponemal activity by heat-labile serum factors; NP-1 showed neutralizing activity at 4 micrograms/ml (about 1 microM) in NRS and at 40 micrograms/ml in HI-NRS. When NP-1 was tested in serum that was deficient in C6, the T. pallidum neutralizing activity of NP-1 was reduced to levels slightly greater than that observed in HI-NRS. NP-1 that had been reduced and alkylated was inactive against T. pallidum. When NP-2, NP-3a, NP-3b, NP-4, and NP-5 were tested at 400 micrograms/ml, all exerted potent treponemicidal activity, manifested by abrogation or delayed development of cutaneous lesions relative to that of controls. These data suggest that defensins may equip certain macrophages and neutrophils to participate in host defense against T. pallidum, that the direct activity of defensins against T. pallidum is enhanced by heat-labile serum factors (presumably complement), and that conformational factors influence the biological activity of the defensin molecule. PMID:2004816

  18. Fontes de resistência à murcha bacteriana em germoplasma de Capsicum spp. do estado do Amazonas Sources of resistance against bacterial wilt in Capsicum spp. germoplasm of the Amazonas state

    Directory of Open Access Journals (Sweden)

    Liane Cristine Rebouças Demosthenes

    2011-01-01

    Full Text Available A murcha bacteriana, causada por Ralstonia solanacearum, é uma das doenças mais importantes do gênero Capsicum no Brasil. No Amazonas, as condições de elevada temperatura e umidade favorecem o desenvolvimento da doença. O objetivo deste trabalho foi avaliar a resistência à murcha bacteriana de germoplasma, selvagem e comercial, de Capsicum spp. Foram avaliados 22 acessos de Capsicum em casa de vegetação. A inoculação foi feita mediante ferimento das raízes, seguido de adição no solo, ao redor das plantas, de suspensão bacteriana na concentração de 10(8 ufc mL-1. A avaliação foi feita diariamente a partir do quarto dia após a inoculação, em função desenvolvimento dos sintomas. A partir das médias de progresso dos sintomas foi construída a área abaixo da curva de progresso da doença (AACPD, e os dados submetidos ao teste de Scott-Knott ao nível de 5% de probabilidade, utilizando o programa estatístico SAEG 9.1. Foram selecionados os acessos 30, 20 e 17, da espécie C. chinense, como resistentes à murcha bacteriana para ensaios futuros em programas de melhoramento genético.The bacterial wilt caused by Ralstonia solanacearum is one of the most important in the genus Capsicum in Brazil. In the state of Amazonas, high temperatures and humidity favor the development of the disease. The objective of this work was to evaluate resistance in germoplasm of wild and commercial Capsicum spp. to bacterial wilt. Twenty two accesses of Capsicum spp. were evaluated in greenhouse conditions. The inoculation was made by means of wounds in the roots, followed by addition of bacterial suspension in the concentration of 10(8 ufc ml-1 in the soil, around the plants. Plant evaluation was made daily after the fourth day of the inoculation (DAI considering the symptoms progress. From the average progress of symptoms was constructed the area under the disease progress curve (AUDPC, and the data submitted to the Scott-Knott test at 5% of

  19. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    Directory of Open Access Journals (Sweden)

    Kamika Ilunga

    2013-02-01

    Full Text Available Abstract Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively compared to other test isolates. This was also revealed with significant COD increases (p Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49% followed by Bacillus licheniformis (Al-23% and Zn-53% and Peranema sp. (Cd-42%. None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes. Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas

  20. Fate of classical faecal bacterial markers and ampicillin-resistant bacteria in agricultural soils under Mediterranean climate after urban sludge amendment.

    Science.gov (United States)

    Gondim-Porto, Clarissa; Platero, Leticia; Nadal, Ignacio; Navarro-García, Federico

    2016-09-15

    The use of sewage sludge or biosolids as agricultural amendments may pose environmental and human health risks related to pathogen or antibiotic-resistant microorganism transmission from soils to vegetables or to water through runoff. Since the survival of those microorganisms in amended soils has been poorly studied under Mediterranean climatic conditions, we followed the variation of soil fecal bacterial markers and ampicillin-resistant bacteria for two years with samplings every four months in a split block design with three replica in a crop soil where two different types of biosolids (aerobically or anaerobically digested) at three doses (low, 40; intermediate, 80; and high, 160Mg·ha(-1)) were applied. Low amounts of biosolids produced similar decay rates of coliform populations than in control soil (-0.19 and -0.27log10CFUs·g(-1)drysoilmonth(-1) versus -0.22) while in the case of intermediate and high doses were close to zero and their populations remained 24months later in the range of 4-5log10CFUs·g(-1)ds. Enterococci populations decayed at different rates when using aerobic than anaerobic biosolids although high doses had higher rates than control (-0.09 and -0.13log10CFUs·g(-1)dsmonth(-1) for aerobic and anaerobic, respectively, vs -0.07). At the end of the experiment, counts in high aerobic and low and intermediate anaerobic plots were 1 log10 higher than in control (4.21, 4.03, 4.2 and 3.11log10CFUs·g(-1) ds, respectively). Biosolid application increased the number of Clostridium spores in all plots at least 1 log10 with respect to control with a different dynamic of decay for low and intermediate doses of aerobic and anaerobic sludge. Ampicillin-resistant bacteria increased in amended soils 4months after amendment and remained at least 1 log10 higher 24months later, especially in aerobic and low and intermediate anaerobic plots due to small rates of decay (in the range of -0.001 to -0.008log10CFUs·g(-1)dsmonth(-1) vs -0.016 for control). Aerobic